• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/init.h>
18 #include <linux/kprobes.h>
19 #include <linux/kgdb.h>
20 #include <linux/mem_encrypt.h>
21 #include <linux/smp.h>
22 #include <linux/cpu.h>
23 #include <linux/io.h>
24 #include <linux/syscore_ops.h>
25 
26 #include <asm/stackprotector.h>
27 #include <linux/utsname.h>
28 
29 #include <asm/alternative.h>
30 #include <asm/perf_event.h>
31 #include <asm/mmu_context.h>
32 #include <asm/archrandom.h>
33 #include <asm/hypervisor.h>
34 #include <asm/processor.h>
35 #include <asm/tlbflush.h>
36 #include <asm/debugreg.h>
37 #include <asm/sections.h>
38 #include <asm/vsyscall.h>
39 #include <linux/topology.h>
40 #include <linux/cpumask.h>
41 #include <asm/pgtable.h>
42 #include <linux/atomic.h>
43 #include <asm/proto.h>
44 #include <asm/setup.h>
45 #include <asm/apic.h>
46 #include <asm/desc.h>
47 #include <asm/fpu/internal.h>
48 #include <asm/mtrr.h>
49 #include <asm/hwcap2.h>
50 #include <linux/numa.h>
51 #include <asm/asm.h>
52 #include <asm/bugs.h>
53 #include <asm/cpu.h>
54 #include <asm/mce.h>
55 #include <asm/msr.h>
56 #include <asm/pat.h>
57 #include <asm/microcode.h>
58 #include <asm/microcode_intel.h>
59 #include <asm/intel-family.h>
60 #include <asm/cpu_device_id.h>
61 
62 #ifdef CONFIG_X86_LOCAL_APIC
63 #include <asm/uv/uv.h>
64 #endif
65 #include <asm/set_memory.h>
66 
67 #include "cpu.h"
68 
69 u32 elf_hwcap2 __read_mostly;
70 
71 /* all of these masks are initialized in setup_cpu_local_masks() */
72 cpumask_var_t cpu_initialized_mask;
73 cpumask_var_t cpu_callout_mask;
74 cpumask_var_t cpu_callin_mask;
75 
76 /* representing cpus for which sibling maps can be computed */
77 cpumask_var_t cpu_sibling_setup_mask;
78 
79 /* Number of siblings per CPU package */
80 int smp_num_siblings = 1;
81 EXPORT_SYMBOL(smp_num_siblings);
82 
83 /* Last level cache ID of each logical CPU */
84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
85 
86 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)87 void __init setup_cpu_local_masks(void)
88 {
89 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
90 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
91 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
92 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
93 }
94 
default_init(struct cpuinfo_x86 * c)95 static void default_init(struct cpuinfo_x86 *c)
96 {
97 #ifdef CONFIG_X86_64
98 	cpu_detect_cache_sizes(c);
99 #else
100 	/* Not much we can do here... */
101 	/* Check if at least it has cpuid */
102 	if (c->cpuid_level == -1) {
103 		/* No cpuid. It must be an ancient CPU */
104 		if (c->x86 == 4)
105 			strcpy(c->x86_model_id, "486");
106 		else if (c->x86 == 3)
107 			strcpy(c->x86_model_id, "386");
108 	}
109 #endif
110 }
111 
112 static const struct cpu_dev default_cpu = {
113 	.c_init		= default_init,
114 	.c_vendor	= "Unknown",
115 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
116 };
117 
118 static const struct cpu_dev *this_cpu = &default_cpu;
119 
120 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
121 #ifdef CONFIG_X86_64
122 	/*
123 	 * We need valid kernel segments for data and code in long mode too
124 	 * IRET will check the segment types  kkeil 2000/10/28
125 	 * Also sysret mandates a special GDT layout
126 	 *
127 	 * TLS descriptors are currently at a different place compared to i386.
128 	 * Hopefully nobody expects them at a fixed place (Wine?)
129 	 */
130 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
131 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
132 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
133 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
134 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
135 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
136 #else
137 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
138 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
139 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
140 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
141 	/*
142 	 * Segments used for calling PnP BIOS have byte granularity.
143 	 * They code segments and data segments have fixed 64k limits,
144 	 * the transfer segment sizes are set at run time.
145 	 */
146 	/* 32-bit code */
147 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
148 	/* 16-bit code */
149 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
150 	/* 16-bit data */
151 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
152 	/* 16-bit data */
153 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
154 	/* 16-bit data */
155 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
156 	/*
157 	 * The APM segments have byte granularity and their bases
158 	 * are set at run time.  All have 64k limits.
159 	 */
160 	/* 32-bit code */
161 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
162 	/* 16-bit code */
163 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
164 	/* data */
165 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
166 
167 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
168 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
169 	GDT_STACK_CANARY_INIT
170 #endif
171 } };
172 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
173 
x86_mpx_setup(char * s)174 static int __init x86_mpx_setup(char *s)
175 {
176 	/* require an exact match without trailing characters */
177 	if (strlen(s))
178 		return 0;
179 
180 	/* do not emit a message if the feature is not present */
181 	if (!boot_cpu_has(X86_FEATURE_MPX))
182 		return 1;
183 
184 	setup_clear_cpu_cap(X86_FEATURE_MPX);
185 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
186 	return 1;
187 }
188 __setup("nompx", x86_mpx_setup);
189 
190 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)191 static int __init x86_nopcid_setup(char *s)
192 {
193 	/* nopcid doesn't accept parameters */
194 	if (s)
195 		return -EINVAL;
196 
197 	/* do not emit a message if the feature is not present */
198 	if (!boot_cpu_has(X86_FEATURE_PCID))
199 		return 0;
200 
201 	setup_clear_cpu_cap(X86_FEATURE_PCID);
202 	pr_info("nopcid: PCID feature disabled\n");
203 	return 0;
204 }
205 early_param("nopcid", x86_nopcid_setup);
206 #endif
207 
x86_noinvpcid_setup(char * s)208 static int __init x86_noinvpcid_setup(char *s)
209 {
210 	/* noinvpcid doesn't accept parameters */
211 	if (s)
212 		return -EINVAL;
213 
214 	/* do not emit a message if the feature is not present */
215 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
216 		return 0;
217 
218 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
219 	pr_info("noinvpcid: INVPCID feature disabled\n");
220 	return 0;
221 }
222 early_param("noinvpcid", x86_noinvpcid_setup);
223 
224 #ifdef CONFIG_X86_32
225 static int cachesize_override = -1;
226 static int disable_x86_serial_nr = 1;
227 
cachesize_setup(char * str)228 static int __init cachesize_setup(char *str)
229 {
230 	get_option(&str, &cachesize_override);
231 	return 1;
232 }
233 __setup("cachesize=", cachesize_setup);
234 
x86_sep_setup(char * s)235 static int __init x86_sep_setup(char *s)
236 {
237 	setup_clear_cpu_cap(X86_FEATURE_SEP);
238 	return 1;
239 }
240 __setup("nosep", x86_sep_setup);
241 
242 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)243 static inline int flag_is_changeable_p(u32 flag)
244 {
245 	u32 f1, f2;
246 
247 	/*
248 	 * Cyrix and IDT cpus allow disabling of CPUID
249 	 * so the code below may return different results
250 	 * when it is executed before and after enabling
251 	 * the CPUID. Add "volatile" to not allow gcc to
252 	 * optimize the subsequent calls to this function.
253 	 */
254 	asm volatile ("pushfl		\n\t"
255 		      "pushfl		\n\t"
256 		      "popl %0		\n\t"
257 		      "movl %0, %1	\n\t"
258 		      "xorl %2, %0	\n\t"
259 		      "pushl %0		\n\t"
260 		      "popfl		\n\t"
261 		      "pushfl		\n\t"
262 		      "popl %0		\n\t"
263 		      "popfl		\n\t"
264 
265 		      : "=&r" (f1), "=&r" (f2)
266 		      : "ir" (flag));
267 
268 	return ((f1^f2) & flag) != 0;
269 }
270 
271 /* Probe for the CPUID instruction */
have_cpuid_p(void)272 int have_cpuid_p(void)
273 {
274 	return flag_is_changeable_p(X86_EFLAGS_ID);
275 }
276 
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)277 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
278 {
279 	unsigned long lo, hi;
280 
281 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
282 		return;
283 
284 	/* Disable processor serial number: */
285 
286 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
287 	lo |= 0x200000;
288 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
289 
290 	pr_notice("CPU serial number disabled.\n");
291 	clear_cpu_cap(c, X86_FEATURE_PN);
292 
293 	/* Disabling the serial number may affect the cpuid level */
294 	c->cpuid_level = cpuid_eax(0);
295 }
296 
x86_serial_nr_setup(char * s)297 static int __init x86_serial_nr_setup(char *s)
298 {
299 	disable_x86_serial_nr = 0;
300 	return 1;
301 }
302 __setup("serialnumber", x86_serial_nr_setup);
303 #else
flag_is_changeable_p(u32 flag)304 static inline int flag_is_changeable_p(u32 flag)
305 {
306 	return 1;
307 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)308 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
309 {
310 }
311 #endif
312 
setup_disable_smep(char * arg)313 static __init int setup_disable_smep(char *arg)
314 {
315 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
316 	/* Check for things that depend on SMEP being enabled: */
317 	check_mpx_erratum(&boot_cpu_data);
318 	return 1;
319 }
320 __setup("nosmep", setup_disable_smep);
321 
setup_smep(struct cpuinfo_x86 * c)322 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
323 {
324 	if (cpu_has(c, X86_FEATURE_SMEP))
325 		cr4_set_bits(X86_CR4_SMEP);
326 }
327 
setup_disable_smap(char * arg)328 static __init int setup_disable_smap(char *arg)
329 {
330 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
331 	return 1;
332 }
333 __setup("nosmap", setup_disable_smap);
334 
setup_smap(struct cpuinfo_x86 * c)335 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
336 {
337 	unsigned long eflags = native_save_fl();
338 
339 	/* This should have been cleared long ago */
340 	BUG_ON(eflags & X86_EFLAGS_AC);
341 
342 	if (cpu_has(c, X86_FEATURE_SMAP)) {
343 #ifdef CONFIG_X86_SMAP
344 		cr4_set_bits(X86_CR4_SMAP);
345 #else
346 		cr4_clear_bits(X86_CR4_SMAP);
347 #endif
348 	}
349 }
350 
setup_umip(struct cpuinfo_x86 * c)351 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
352 {
353 	/* Check the boot processor, plus build option for UMIP. */
354 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
355 		goto out;
356 
357 	/* Check the current processor's cpuid bits. */
358 	if (!cpu_has(c, X86_FEATURE_UMIP))
359 		goto out;
360 
361 	cr4_set_bits(X86_CR4_UMIP);
362 
363 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
364 
365 	return;
366 
367 out:
368 	/*
369 	 * Make sure UMIP is disabled in case it was enabled in a
370 	 * previous boot (e.g., via kexec).
371 	 */
372 	cr4_clear_bits(X86_CR4_UMIP);
373 }
374 
375 /* These bits should not change their value after CPU init is finished. */
376 static const unsigned long cr4_pinned_mask =
377 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
378 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
379 static unsigned long cr4_pinned_bits __ro_after_init;
380 
native_write_cr0(unsigned long val)381 void native_write_cr0(unsigned long val)
382 {
383 	unsigned long bits_missing = 0;
384 
385 set_register:
386 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
387 
388 	if (static_branch_likely(&cr_pinning)) {
389 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
390 			bits_missing = X86_CR0_WP;
391 			val |= bits_missing;
392 			goto set_register;
393 		}
394 		/* Warn after we've set the missing bits. */
395 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
396 	}
397 }
398 EXPORT_SYMBOL(native_write_cr0);
399 
native_write_cr4(unsigned long val)400 void native_write_cr4(unsigned long val)
401 {
402 	unsigned long bits_changed = 0;
403 
404 set_register:
405 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
406 
407 	if (static_branch_likely(&cr_pinning)) {
408 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
409 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
410 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
411 			goto set_register;
412 		}
413 		/* Warn after we've corrected the changed bits. */
414 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
415 			  bits_changed);
416 	}
417 }
418 EXPORT_SYMBOL(native_write_cr4);
419 
cr4_init(void)420 void cr4_init(void)
421 {
422 	unsigned long cr4 = __read_cr4();
423 
424 	if (boot_cpu_has(X86_FEATURE_PCID))
425 		cr4 |= X86_CR4_PCIDE;
426 	if (static_branch_likely(&cr_pinning))
427 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
428 
429 	__write_cr4(cr4);
430 
431 	/* Initialize cr4 shadow for this CPU. */
432 	this_cpu_write(cpu_tlbstate.cr4, cr4);
433 }
434 
435 /*
436  * Once CPU feature detection is finished (and boot params have been
437  * parsed), record any of the sensitive CR bits that are set, and
438  * enable CR pinning.
439  */
setup_cr_pinning(void)440 static void __init setup_cr_pinning(void)
441 {
442 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
443 	static_key_enable(&cr_pinning.key);
444 }
445 
446 /*
447  * Protection Keys are not available in 32-bit mode.
448  */
449 static bool pku_disabled;
450 
setup_pku(struct cpuinfo_x86 * c)451 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
452 {
453 	/* check the boot processor, plus compile options for PKU: */
454 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
455 		return;
456 	/* checks the actual processor's cpuid bits: */
457 	if (!cpu_has(c, X86_FEATURE_PKU))
458 		return;
459 	if (pku_disabled)
460 		return;
461 
462 	cr4_set_bits(X86_CR4_PKE);
463 	/*
464 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
465 	 * cpuid bit to be set.  We need to ensure that we
466 	 * update that bit in this CPU's "cpu_info".
467 	 */
468 	set_cpu_cap(c, X86_FEATURE_OSPKE);
469 }
470 
471 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)472 static __init int setup_disable_pku(char *arg)
473 {
474 	/*
475 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
476 	 * runtime checks are against OSPKE so clearing the
477 	 * bit does nothing.
478 	 *
479 	 * This way, we will see "pku" in cpuinfo, but not
480 	 * "ospke", which is exactly what we want.  It shows
481 	 * that the CPU has PKU, but the OS has not enabled it.
482 	 * This happens to be exactly how a system would look
483 	 * if we disabled the config option.
484 	 */
485 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
486 	pku_disabled = true;
487 	return 1;
488 }
489 __setup("nopku", setup_disable_pku);
490 #endif /* CONFIG_X86_64 */
491 
492 /*
493  * Some CPU features depend on higher CPUID levels, which may not always
494  * be available due to CPUID level capping or broken virtualization
495  * software.  Add those features to this table to auto-disable them.
496  */
497 struct cpuid_dependent_feature {
498 	u32 feature;
499 	u32 level;
500 };
501 
502 static const struct cpuid_dependent_feature
503 cpuid_dependent_features[] = {
504 	{ X86_FEATURE_MWAIT,		0x00000005 },
505 	{ X86_FEATURE_DCA,		0x00000009 },
506 	{ X86_FEATURE_XSAVE,		0x0000000d },
507 	{ 0, 0 }
508 };
509 
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)510 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
511 {
512 	const struct cpuid_dependent_feature *df;
513 
514 	for (df = cpuid_dependent_features; df->feature; df++) {
515 
516 		if (!cpu_has(c, df->feature))
517 			continue;
518 		/*
519 		 * Note: cpuid_level is set to -1 if unavailable, but
520 		 * extended_extended_level is set to 0 if unavailable
521 		 * and the legitimate extended levels are all negative
522 		 * when signed; hence the weird messing around with
523 		 * signs here...
524 		 */
525 		if (!((s32)df->level < 0 ?
526 		     (u32)df->level > (u32)c->extended_cpuid_level :
527 		     (s32)df->level > (s32)c->cpuid_level))
528 			continue;
529 
530 		clear_cpu_cap(c, df->feature);
531 		if (!warn)
532 			continue;
533 
534 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
535 			x86_cap_flag(df->feature), df->level);
536 	}
537 }
538 
539 /*
540  * Naming convention should be: <Name> [(<Codename>)]
541  * This table only is used unless init_<vendor>() below doesn't set it;
542  * in particular, if CPUID levels 0x80000002..4 are supported, this
543  * isn't used
544  */
545 
546 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)547 static const char *table_lookup_model(struct cpuinfo_x86 *c)
548 {
549 #ifdef CONFIG_X86_32
550 	const struct legacy_cpu_model_info *info;
551 
552 	if (c->x86_model >= 16)
553 		return NULL;	/* Range check */
554 
555 	if (!this_cpu)
556 		return NULL;
557 
558 	info = this_cpu->legacy_models;
559 
560 	while (info->family) {
561 		if (info->family == c->x86)
562 			return info->model_names[c->x86_model];
563 		info++;
564 	}
565 #endif
566 	return NULL;		/* Not found */
567 }
568 
569 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
570 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
571 
load_percpu_segment(int cpu)572 void load_percpu_segment(int cpu)
573 {
574 #ifdef CONFIG_X86_32
575 	loadsegment(fs, __KERNEL_PERCPU);
576 #else
577 	__loadsegment_simple(gs, 0);
578 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
579 #endif
580 	load_stack_canary_segment();
581 }
582 
583 #ifdef CONFIG_X86_32
584 /* The 32-bit entry code needs to find cpu_entry_area. */
585 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
586 #endif
587 
588 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)589 void load_direct_gdt(int cpu)
590 {
591 	struct desc_ptr gdt_descr;
592 
593 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
594 	gdt_descr.size = GDT_SIZE - 1;
595 	load_gdt(&gdt_descr);
596 }
597 EXPORT_SYMBOL_GPL(load_direct_gdt);
598 
599 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)600 void load_fixmap_gdt(int cpu)
601 {
602 	struct desc_ptr gdt_descr;
603 
604 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
605 	gdt_descr.size = GDT_SIZE - 1;
606 	load_gdt(&gdt_descr);
607 }
608 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
609 
610 /*
611  * Current gdt points %fs at the "master" per-cpu area: after this,
612  * it's on the real one.
613  */
switch_to_new_gdt(int cpu)614 void switch_to_new_gdt(int cpu)
615 {
616 	/* Load the original GDT */
617 	load_direct_gdt(cpu);
618 	/* Reload the per-cpu base */
619 	load_percpu_segment(cpu);
620 }
621 
622 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
623 
get_model_name(struct cpuinfo_x86 * c)624 static void get_model_name(struct cpuinfo_x86 *c)
625 {
626 	unsigned int *v;
627 	char *p, *q, *s;
628 
629 	if (c->extended_cpuid_level < 0x80000004)
630 		return;
631 
632 	v = (unsigned int *)c->x86_model_id;
633 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
634 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
635 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
636 	c->x86_model_id[48] = 0;
637 
638 	/* Trim whitespace */
639 	p = q = s = &c->x86_model_id[0];
640 
641 	while (*p == ' ')
642 		p++;
643 
644 	while (*p) {
645 		/* Note the last non-whitespace index */
646 		if (!isspace(*p))
647 			s = q;
648 
649 		*q++ = *p++;
650 	}
651 
652 	*(s + 1) = '\0';
653 }
654 
detect_num_cpu_cores(struct cpuinfo_x86 * c)655 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
656 {
657 	unsigned int eax, ebx, ecx, edx;
658 
659 	c->x86_max_cores = 1;
660 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
661 		return;
662 
663 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
664 	if (eax & 0x1f)
665 		c->x86_max_cores = (eax >> 26) + 1;
666 }
667 
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)668 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
669 {
670 	unsigned int n, dummy, ebx, ecx, edx, l2size;
671 
672 	n = c->extended_cpuid_level;
673 
674 	if (n >= 0x80000005) {
675 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
676 		c->x86_cache_size = (ecx>>24) + (edx>>24);
677 #ifdef CONFIG_X86_64
678 		/* On K8 L1 TLB is inclusive, so don't count it */
679 		c->x86_tlbsize = 0;
680 #endif
681 	}
682 
683 	if (n < 0x80000006)	/* Some chips just has a large L1. */
684 		return;
685 
686 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
687 	l2size = ecx >> 16;
688 
689 #ifdef CONFIG_X86_64
690 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
691 #else
692 	/* do processor-specific cache resizing */
693 	if (this_cpu->legacy_cache_size)
694 		l2size = this_cpu->legacy_cache_size(c, l2size);
695 
696 	/* Allow user to override all this if necessary. */
697 	if (cachesize_override != -1)
698 		l2size = cachesize_override;
699 
700 	if (l2size == 0)
701 		return;		/* Again, no L2 cache is possible */
702 #endif
703 
704 	c->x86_cache_size = l2size;
705 }
706 
707 u16 __read_mostly tlb_lli_4k[NR_INFO];
708 u16 __read_mostly tlb_lli_2m[NR_INFO];
709 u16 __read_mostly tlb_lli_4m[NR_INFO];
710 u16 __read_mostly tlb_lld_4k[NR_INFO];
711 u16 __read_mostly tlb_lld_2m[NR_INFO];
712 u16 __read_mostly tlb_lld_4m[NR_INFO];
713 u16 __read_mostly tlb_lld_1g[NR_INFO];
714 
cpu_detect_tlb(struct cpuinfo_x86 * c)715 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
716 {
717 	if (this_cpu->c_detect_tlb)
718 		this_cpu->c_detect_tlb(c);
719 
720 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
721 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
722 		tlb_lli_4m[ENTRIES]);
723 
724 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
725 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
726 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
727 }
728 
detect_ht_early(struct cpuinfo_x86 * c)729 int detect_ht_early(struct cpuinfo_x86 *c)
730 {
731 #ifdef CONFIG_SMP
732 	u32 eax, ebx, ecx, edx;
733 
734 	if (!cpu_has(c, X86_FEATURE_HT))
735 		return -1;
736 
737 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
738 		return -1;
739 
740 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
741 		return -1;
742 
743 	cpuid(1, &eax, &ebx, &ecx, &edx);
744 
745 	smp_num_siblings = (ebx & 0xff0000) >> 16;
746 	if (smp_num_siblings == 1)
747 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
748 #endif
749 	return 0;
750 }
751 
detect_ht(struct cpuinfo_x86 * c)752 void detect_ht(struct cpuinfo_x86 *c)
753 {
754 #ifdef CONFIG_SMP
755 	int index_msb, core_bits;
756 
757 	if (detect_ht_early(c) < 0)
758 		return;
759 
760 	index_msb = get_count_order(smp_num_siblings);
761 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
762 
763 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
764 
765 	index_msb = get_count_order(smp_num_siblings);
766 
767 	core_bits = get_count_order(c->x86_max_cores);
768 
769 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
770 				       ((1 << core_bits) - 1);
771 #endif
772 }
773 
get_cpu_vendor(struct cpuinfo_x86 * c)774 static void get_cpu_vendor(struct cpuinfo_x86 *c)
775 {
776 	char *v = c->x86_vendor_id;
777 	int i;
778 
779 	for (i = 0; i < X86_VENDOR_NUM; i++) {
780 		if (!cpu_devs[i])
781 			break;
782 
783 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
784 		    (cpu_devs[i]->c_ident[1] &&
785 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
786 
787 			this_cpu = cpu_devs[i];
788 			c->x86_vendor = this_cpu->c_x86_vendor;
789 			return;
790 		}
791 	}
792 
793 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
794 		    "CPU: Your system may be unstable.\n", v);
795 
796 	c->x86_vendor = X86_VENDOR_UNKNOWN;
797 	this_cpu = &default_cpu;
798 }
799 
cpu_detect(struct cpuinfo_x86 * c)800 void cpu_detect(struct cpuinfo_x86 *c)
801 {
802 	/* Get vendor name */
803 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
804 	      (unsigned int *)&c->x86_vendor_id[0],
805 	      (unsigned int *)&c->x86_vendor_id[8],
806 	      (unsigned int *)&c->x86_vendor_id[4]);
807 
808 	c->x86 = 4;
809 	/* Intel-defined flags: level 0x00000001 */
810 	if (c->cpuid_level >= 0x00000001) {
811 		u32 junk, tfms, cap0, misc;
812 
813 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
814 		c->x86		= x86_family(tfms);
815 		c->x86_model	= x86_model(tfms);
816 		c->x86_stepping	= x86_stepping(tfms);
817 
818 		if (cap0 & (1<<19)) {
819 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
820 			c->x86_cache_alignment = c->x86_clflush_size;
821 		}
822 	}
823 }
824 
apply_forced_caps(struct cpuinfo_x86 * c)825 static void apply_forced_caps(struct cpuinfo_x86 *c)
826 {
827 	int i;
828 
829 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
830 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
831 		c->x86_capability[i] |= cpu_caps_set[i];
832 	}
833 }
834 
init_speculation_control(struct cpuinfo_x86 * c)835 static void init_speculation_control(struct cpuinfo_x86 *c)
836 {
837 	/*
838 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
839 	 * and they also have a different bit for STIBP support. Also,
840 	 * a hypervisor might have set the individual AMD bits even on
841 	 * Intel CPUs, for finer-grained selection of what's available.
842 	 */
843 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
844 		set_cpu_cap(c, X86_FEATURE_IBRS);
845 		set_cpu_cap(c, X86_FEATURE_IBPB);
846 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
847 	}
848 
849 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
850 		set_cpu_cap(c, X86_FEATURE_STIBP);
851 
852 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
853 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
854 		set_cpu_cap(c, X86_FEATURE_SSBD);
855 
856 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
857 		set_cpu_cap(c, X86_FEATURE_IBRS);
858 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
859 	}
860 
861 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
862 		set_cpu_cap(c, X86_FEATURE_IBPB);
863 
864 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
865 		set_cpu_cap(c, X86_FEATURE_STIBP);
866 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
867 	}
868 
869 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
870 		set_cpu_cap(c, X86_FEATURE_SSBD);
871 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
872 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
873 	}
874 }
875 
init_cqm(struct cpuinfo_x86 * c)876 static void init_cqm(struct cpuinfo_x86 *c)
877 {
878 	if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
879 		c->x86_cache_max_rmid  = -1;
880 		c->x86_cache_occ_scale = -1;
881 		return;
882 	}
883 
884 	/* will be overridden if occupancy monitoring exists */
885 	c->x86_cache_max_rmid = cpuid_ebx(0xf);
886 
887 	if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
888 	    cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
889 	    cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
890 		u32 eax, ebx, ecx, edx;
891 
892 		/* QoS sub-leaf, EAX=0Fh, ECX=1 */
893 		cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
894 
895 		c->x86_cache_max_rmid  = ecx;
896 		c->x86_cache_occ_scale = ebx;
897 	}
898 }
899 
get_cpu_cap(struct cpuinfo_x86 * c)900 void get_cpu_cap(struct cpuinfo_x86 *c)
901 {
902 	u32 eax, ebx, ecx, edx;
903 
904 	/* Intel-defined flags: level 0x00000001 */
905 	if (c->cpuid_level >= 0x00000001) {
906 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
907 
908 		c->x86_capability[CPUID_1_ECX] = ecx;
909 		c->x86_capability[CPUID_1_EDX] = edx;
910 	}
911 
912 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
913 	if (c->cpuid_level >= 0x00000006)
914 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
915 
916 	/* Additional Intel-defined flags: level 0x00000007 */
917 	if (c->cpuid_level >= 0x00000007) {
918 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
919 		c->x86_capability[CPUID_7_0_EBX] = ebx;
920 		c->x86_capability[CPUID_7_ECX] = ecx;
921 		c->x86_capability[CPUID_7_EDX] = edx;
922 
923 		/* Check valid sub-leaf index before accessing it */
924 		if (eax >= 1) {
925 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
926 			c->x86_capability[CPUID_7_1_EAX] = eax;
927 		}
928 	}
929 
930 	/* Extended state features: level 0x0000000d */
931 	if (c->cpuid_level >= 0x0000000d) {
932 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
933 
934 		c->x86_capability[CPUID_D_1_EAX] = eax;
935 	}
936 
937 	/* AMD-defined flags: level 0x80000001 */
938 	eax = cpuid_eax(0x80000000);
939 	c->extended_cpuid_level = eax;
940 
941 	if ((eax & 0xffff0000) == 0x80000000) {
942 		if (eax >= 0x80000001) {
943 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
944 
945 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
946 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
947 		}
948 	}
949 
950 	if (c->extended_cpuid_level >= 0x80000007) {
951 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
952 
953 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
954 		c->x86_power = edx;
955 	}
956 
957 	if (c->extended_cpuid_level >= 0x80000008) {
958 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
959 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
960 	}
961 
962 	if (c->extended_cpuid_level >= 0x8000000a)
963 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
964 
965 	if (c->extended_cpuid_level >= 0x8000001f)
966 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
967 
968 	if (c->extended_cpuid_level >= 0x80000021)
969 		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
970 
971 	init_scattered_cpuid_features(c);
972 	init_speculation_control(c);
973 	init_cqm(c);
974 
975 	/*
976 	 * Clear/Set all flags overridden by options, after probe.
977 	 * This needs to happen each time we re-probe, which may happen
978 	 * several times during CPU initialization.
979 	 */
980 	apply_forced_caps(c);
981 }
982 
get_cpu_address_sizes(struct cpuinfo_x86 * c)983 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
984 {
985 	u32 eax, ebx, ecx, edx;
986 
987 	if (c->extended_cpuid_level >= 0x80000008) {
988 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
989 
990 		c->x86_virt_bits = (eax >> 8) & 0xff;
991 		c->x86_phys_bits = eax & 0xff;
992 	}
993 #ifdef CONFIG_X86_32
994 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
995 		c->x86_phys_bits = 36;
996 #endif
997 	c->x86_cache_bits = c->x86_phys_bits;
998 }
999 
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1000 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1001 {
1002 #ifdef CONFIG_X86_32
1003 	int i;
1004 
1005 	/*
1006 	 * First of all, decide if this is a 486 or higher
1007 	 * It's a 486 if we can modify the AC flag
1008 	 */
1009 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1010 		c->x86 = 4;
1011 	else
1012 		c->x86 = 3;
1013 
1014 	for (i = 0; i < X86_VENDOR_NUM; i++)
1015 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1016 			c->x86_vendor_id[0] = 0;
1017 			cpu_devs[i]->c_identify(c);
1018 			if (c->x86_vendor_id[0]) {
1019 				get_cpu_vendor(c);
1020 				break;
1021 			}
1022 		}
1023 #endif
1024 }
1025 
1026 #define NO_SPECULATION		BIT(0)
1027 #define NO_MELTDOWN		BIT(1)
1028 #define NO_SSB			BIT(2)
1029 #define NO_L1TF			BIT(3)
1030 #define NO_MDS			BIT(4)
1031 #define MSBDS_ONLY		BIT(5)
1032 #define NO_SWAPGS		BIT(6)
1033 #define NO_ITLB_MULTIHIT	BIT(7)
1034 #define NO_SPECTRE_V2		BIT(8)
1035 #define NO_EIBRS_PBRSB		BIT(9)
1036 #define NO_MMIO			BIT(10)
1037 
1038 #define VULNWL(_vendor, _family, _model, _whitelist)	\
1039 	{ X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
1040 
1041 #define VULNWL_INTEL(model, whitelist)		\
1042 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1043 
1044 #define VULNWL_AMD(family, whitelist)		\
1045 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1046 
1047 #define VULNWL_HYGON(family, whitelist)		\
1048 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1049 
1050 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1051 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1052 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1053 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1054 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1055 
1056 	/* Intel Family 6 */
1057 	VULNWL_INTEL(TIGERLAKE,			NO_MMIO),
1058 	VULNWL_INTEL(TIGERLAKE_L,		NO_MMIO),
1059 	VULNWL_INTEL(ALDERLAKE,			NO_MMIO),
1060 	VULNWL_INTEL(ALDERLAKE_L,		NO_MMIO),
1061 
1062 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1063 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1064 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1065 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1066 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1067 
1068 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1069 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1070 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1071 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1072 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1073 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1074 
1075 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1076 
1077 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1078 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1079 
1080 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1081 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1082 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1083 
1084 	/*
1085 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1086 	 * being documented as such in the APM).  But according to AMD, %gs is
1087 	 * updated non-speculatively, and the issuing of %gs-relative memory
1088 	 * operands will be blocked until the %gs update completes, which is
1089 	 * good enough for our purposes.
1090 	 */
1091 
1092 	VULNWL_INTEL(ATOM_TREMONT,		NO_EIBRS_PBRSB),
1093 	VULNWL_INTEL(ATOM_TREMONT_L,		NO_EIBRS_PBRSB),
1094 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1095 
1096 	/* AMD Family 0xf - 0x12 */
1097 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1098 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1099 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1100 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1101 
1102 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1103 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1104 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1105 
1106 	/* Zhaoxin Family 7 */
1107 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_MMIO),
1108 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_MMIO),
1109 	{}
1110 };
1111 
1112 #define VULNBL(vendor, family, model, blacklist)	\
1113 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1114 
1115 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1116 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1117 					    INTEL_FAM6_##model, steppings, \
1118 					    X86_FEATURE_ANY, issues)
1119 
1120 #define VULNBL_AMD(family, blacklist)		\
1121 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1122 
1123 #define VULNBL_HYGON(family, blacklist)		\
1124 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1125 
1126 #define SRBDS		BIT(0)
1127 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1128 #define MMIO		BIT(1)
1129 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1130 #define MMIO_SBDS	BIT(2)
1131 /* CPU is affected by RETbleed, speculating where you would not expect it */
1132 #define RETBLEED	BIT(3)
1133 /* CPU is affected by SMT (cross-thread) return predictions */
1134 #define SMT_RSB		BIT(4)
1135 /* CPU is affected by SRSO */
1136 #define SRSO		BIT(5)
1137 /* CPU is affected by GDS */
1138 #define GDS		BIT(6)
1139 
1140 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1141 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1142 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1143 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1144 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1145 	VULNBL_INTEL_STEPPINGS(HASWELL_X,	X86_STEPPING_ANY,		MMIO),
1146 	VULNBL_INTEL_STEPPINGS(BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
1147 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1148 	VULNBL_INTEL_STEPPINGS(BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
1149 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1150 	VULNBL_INTEL_STEPPINGS(SKYLAKE_X,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1151 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1152 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1153 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1154 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1155 	VULNBL_INTEL_STEPPINGS(CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
1156 	VULNBL_INTEL_STEPPINGS(ICELAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1157 	VULNBL_INTEL_STEPPINGS(ICELAKE_D,	X86_STEPPING_ANY,		MMIO | GDS),
1158 	VULNBL_INTEL_STEPPINGS(ICELAKE_X,	X86_STEPPING_ANY,		MMIO | GDS),
1159 	VULNBL_INTEL_STEPPINGS(COMETLAKE,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1160 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
1161 	VULNBL_INTEL_STEPPINGS(COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1162 	VULNBL_INTEL_STEPPINGS(TIGERLAKE_L,	X86_STEPPING_ANY,		GDS),
1163 	VULNBL_INTEL_STEPPINGS(TIGERLAKE,	X86_STEPPING_ANY,		GDS),
1164 	VULNBL_INTEL_STEPPINGS(LAKEFIELD,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1165 	VULNBL_INTEL_STEPPINGS(ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1166 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1167 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO),
1168 	VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS),
1169 
1170 	VULNBL_AMD(0x15, RETBLEED),
1171 	VULNBL_AMD(0x16, RETBLEED),
1172 	VULNBL_AMD(0x17, RETBLEED),
1173 	VULNBL_HYGON(0x18, RETBLEED),
1174 	{}
1175 };
1176 
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1177 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1178 {
1179 	const struct x86_cpu_id *m = x86_match_cpu(table);
1180 
1181 	return m && !!(m->driver_data & which);
1182 }
1183 
x86_read_arch_cap_msr(void)1184 u64 x86_read_arch_cap_msr(void)
1185 {
1186 	u64 ia32_cap = 0;
1187 
1188 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1189 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1190 
1191 	return ia32_cap;
1192 }
1193 
arch_cap_mmio_immune(u64 ia32_cap)1194 static bool arch_cap_mmio_immune(u64 ia32_cap)
1195 {
1196 	return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1197 		ia32_cap & ARCH_CAP_PSDP_NO &&
1198 		ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1199 }
1200 
cpu_set_bug_bits(struct cpuinfo_x86 * c)1201 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1202 {
1203 	u64 ia32_cap = x86_read_arch_cap_msr();
1204 
1205 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1206 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1207 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1208 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1209 
1210 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1211 		return;
1212 
1213 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1214 
1215 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1216 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1217 
1218 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1219 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1220 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1221 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1222 
1223 	/*
1224 	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1225 	 * flag and protect from vendor-specific bugs via the whitelist.
1226 	 */
1227 	if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1228 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1229 		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1230 		    !(ia32_cap & ARCH_CAP_PBRSB_NO))
1231 			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1232 	}
1233 
1234 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1235 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1236 		setup_force_cpu_bug(X86_BUG_MDS);
1237 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1238 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1239 	}
1240 
1241 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1242 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1243 
1244 	/*
1245 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1246 	 *	- TSX is supported or
1247 	 *	- TSX_CTRL is present
1248 	 *
1249 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1250 	 * the kernel boot e.g. kexec.
1251 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1252 	 * update is not present or running as guest that don't get TSX_CTRL.
1253 	 */
1254 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1255 	    (cpu_has(c, X86_FEATURE_RTM) ||
1256 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1257 		setup_force_cpu_bug(X86_BUG_TAA);
1258 
1259 	/*
1260 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1261 	 * in the vulnerability blacklist.
1262 	 *
1263 	 * Some of the implications and mitigation of Shared Buffers Data
1264 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1265 	 * SRBDS.
1266 	 */
1267 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1268 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1269 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1270 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1271 
1272 	/*
1273 	 * Processor MMIO Stale Data bug enumeration
1274 	 *
1275 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1276 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1277 	 * not want the guest to enumerate the bug.
1278 	 *
1279 	 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1280 	 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1281 	 */
1282 	if (!arch_cap_mmio_immune(ia32_cap)) {
1283 		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1284 			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1285 		else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1286 			setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1287 	}
1288 
1289 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1290 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1291 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1292 	}
1293 
1294 	/*
1295 	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1296 	 * an affected processor, the VMM may have disabled the use of GATHER by
1297 	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1298 	 * which means that AVX will be disabled.
1299 	 */
1300 	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1301 	    boot_cpu_has(X86_FEATURE_AVX))
1302 		setup_force_cpu_bug(X86_BUG_GDS);
1303 
1304 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1305 		return;
1306 
1307 	/* Rogue Data Cache Load? No! */
1308 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1309 		return;
1310 
1311 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1312 
1313 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1314 		return;
1315 
1316 	setup_force_cpu_bug(X86_BUG_L1TF);
1317 }
1318 
1319 /*
1320  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1321  * unfortunately, that's not true in practice because of early VIA
1322  * chips and (more importantly) broken virtualizers that are not easy
1323  * to detect. In the latter case it doesn't even *fail* reliably, so
1324  * probing for it doesn't even work. Disable it completely on 32-bit
1325  * unless we can find a reliable way to detect all the broken cases.
1326  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1327  */
detect_nopl(void)1328 static void detect_nopl(void)
1329 {
1330 #ifdef CONFIG_X86_32
1331 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1332 #else
1333 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1334 #endif
1335 }
1336 
1337 /*
1338  * Do minimum CPU detection early.
1339  * Fields really needed: vendor, cpuid_level, family, model, mask,
1340  * cache alignment.
1341  * The others are not touched to avoid unwanted side effects.
1342  *
1343  * WARNING: this function is only called on the boot CPU.  Don't add code
1344  * here that is supposed to run on all CPUs.
1345  */
early_identify_cpu(struct cpuinfo_x86 * c)1346 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1347 {
1348 #ifdef CONFIG_X86_64
1349 	c->x86_clflush_size = 64;
1350 	c->x86_phys_bits = 36;
1351 	c->x86_virt_bits = 48;
1352 #else
1353 	c->x86_clflush_size = 32;
1354 	c->x86_phys_bits = 32;
1355 	c->x86_virt_bits = 32;
1356 #endif
1357 	c->x86_cache_alignment = c->x86_clflush_size;
1358 
1359 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1360 	c->extended_cpuid_level = 0;
1361 
1362 	if (!have_cpuid_p())
1363 		identify_cpu_without_cpuid(c);
1364 
1365 	/* cyrix could have cpuid enabled via c_identify()*/
1366 	if (have_cpuid_p()) {
1367 		cpu_detect(c);
1368 		get_cpu_vendor(c);
1369 		get_cpu_cap(c);
1370 		get_cpu_address_sizes(c);
1371 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1372 
1373 		if (this_cpu->c_early_init)
1374 			this_cpu->c_early_init(c);
1375 
1376 		c->cpu_index = 0;
1377 		filter_cpuid_features(c, false);
1378 
1379 		if (this_cpu->c_bsp_init)
1380 			this_cpu->c_bsp_init(c);
1381 	} else {
1382 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1383 	}
1384 
1385 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1386 
1387 	cpu_set_bug_bits(c);
1388 
1389 #ifdef CONFIG_X86_32
1390 	/*
1391 	 * Regardless of whether PCID is enumerated, the SDM says
1392 	 * that it can't be enabled in 32-bit mode.
1393 	 */
1394 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1395 #endif
1396 
1397 	/*
1398 	 * Later in the boot process pgtable_l5_enabled() relies on
1399 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1400 	 * enabled by this point we need to clear the feature bit to avoid
1401 	 * false-positives at the later stage.
1402 	 *
1403 	 * pgtable_l5_enabled() can be false here for several reasons:
1404 	 *  - 5-level paging is disabled compile-time;
1405 	 *  - it's 32-bit kernel;
1406 	 *  - machine doesn't support 5-level paging;
1407 	 *  - user specified 'no5lvl' in kernel command line.
1408 	 */
1409 	if (!pgtable_l5_enabled())
1410 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1411 
1412 	detect_nopl();
1413 }
1414 
early_cpu_init(void)1415 void __init early_cpu_init(void)
1416 {
1417 	const struct cpu_dev *const *cdev;
1418 	int count = 0;
1419 
1420 #ifdef CONFIG_PROCESSOR_SELECT
1421 	pr_info("KERNEL supported cpus:\n");
1422 #endif
1423 
1424 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1425 		const struct cpu_dev *cpudev = *cdev;
1426 
1427 		if (count >= X86_VENDOR_NUM)
1428 			break;
1429 		cpu_devs[count] = cpudev;
1430 		count++;
1431 
1432 #ifdef CONFIG_PROCESSOR_SELECT
1433 		{
1434 			unsigned int j;
1435 
1436 			for (j = 0; j < 2; j++) {
1437 				if (!cpudev->c_ident[j])
1438 					continue;
1439 				pr_info("  %s %s\n", cpudev->c_vendor,
1440 					cpudev->c_ident[j]);
1441 			}
1442 		}
1443 #endif
1444 	}
1445 	early_identify_cpu(&boot_cpu_data);
1446 }
1447 
detect_null_seg_behavior(void)1448 static bool detect_null_seg_behavior(void)
1449 {
1450 	/*
1451 	 * Empirically, writing zero to a segment selector on AMD does
1452 	 * not clear the base, whereas writing zero to a segment
1453 	 * selector on Intel does clear the base.  Intel's behavior
1454 	 * allows slightly faster context switches in the common case
1455 	 * where GS is unused by the prev and next threads.
1456 	 *
1457 	 * Since neither vendor documents this anywhere that I can see,
1458 	 * detect it directly instead of hardcoding the choice by
1459 	 * vendor.
1460 	 *
1461 	 * I've designated AMD's behavior as the "bug" because it's
1462 	 * counterintuitive and less friendly.
1463 	 */
1464 
1465 	unsigned long old_base, tmp;
1466 	rdmsrl(MSR_FS_BASE, old_base);
1467 	wrmsrl(MSR_FS_BASE, 1);
1468 	loadsegment(fs, 0);
1469 	rdmsrl(MSR_FS_BASE, tmp);
1470 	wrmsrl(MSR_FS_BASE, old_base);
1471 	return tmp == 0;
1472 }
1473 
check_null_seg_clears_base(struct cpuinfo_x86 * c)1474 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1475 {
1476 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1477 	if (!IS_ENABLED(CONFIG_X86_64))
1478 		return;
1479 
1480 	/* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1481 	if (c->extended_cpuid_level >= 0x80000021 &&
1482 	    cpuid_eax(0x80000021) & BIT(6))
1483 		return;
1484 
1485 	/*
1486 	 * CPUID bit above wasn't set. If this kernel is still running
1487 	 * as a HV guest, then the HV has decided not to advertize
1488 	 * that CPUID bit for whatever reason.	For example, one
1489 	 * member of the migration pool might be vulnerable.  Which
1490 	 * means, the bug is present: set the BUG flag and return.
1491 	 */
1492 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1493 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1494 		return;
1495 	}
1496 
1497 	/*
1498 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1499 	 * 0x18 is the respective family for Hygon.
1500 	 */
1501 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1502 	    detect_null_seg_behavior())
1503 		return;
1504 
1505 	/* All the remaining ones are affected */
1506 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1507 }
1508 
generic_identify(struct cpuinfo_x86 * c)1509 static void generic_identify(struct cpuinfo_x86 *c)
1510 {
1511 	c->extended_cpuid_level = 0;
1512 
1513 	if (!have_cpuid_p())
1514 		identify_cpu_without_cpuid(c);
1515 
1516 	/* cyrix could have cpuid enabled via c_identify()*/
1517 	if (!have_cpuid_p())
1518 		return;
1519 
1520 	cpu_detect(c);
1521 
1522 	get_cpu_vendor(c);
1523 
1524 	get_cpu_cap(c);
1525 
1526 	get_cpu_address_sizes(c);
1527 
1528 	if (c->cpuid_level >= 0x00000001) {
1529 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1530 #ifdef CONFIG_X86_32
1531 # ifdef CONFIG_SMP
1532 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1533 # else
1534 		c->apicid = c->initial_apicid;
1535 # endif
1536 #endif
1537 		c->phys_proc_id = c->initial_apicid;
1538 	}
1539 
1540 	get_model_name(c); /* Default name */
1541 
1542 	/*
1543 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1544 	 * systems that run Linux at CPL > 0 may or may not have the
1545 	 * issue, but, even if they have the issue, there's absolutely
1546 	 * nothing we can do about it because we can't use the real IRET
1547 	 * instruction.
1548 	 *
1549 	 * NB: For the time being, only 32-bit kernels support
1550 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1551 	 * whether to apply espfix using paravirt hooks.  If any
1552 	 * non-paravirt system ever shows up that does *not* have the
1553 	 * ESPFIX issue, we can change this.
1554 	 */
1555 #ifdef CONFIG_X86_32
1556 # ifdef CONFIG_PARAVIRT_XXL
1557 	do {
1558 		extern void native_iret(void);
1559 		if (pv_ops.cpu.iret == native_iret)
1560 			set_cpu_bug(c, X86_BUG_ESPFIX);
1561 	} while (0);
1562 # else
1563 	set_cpu_bug(c, X86_BUG_ESPFIX);
1564 # endif
1565 #endif
1566 }
1567 
x86_init_cache_qos(struct cpuinfo_x86 * c)1568 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1569 {
1570 	/*
1571 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1572 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1573 	 * in case CQM bits really aren't there in this CPU.
1574 	 */
1575 	if (c != &boot_cpu_data) {
1576 		boot_cpu_data.x86_cache_max_rmid =
1577 			min(boot_cpu_data.x86_cache_max_rmid,
1578 			    c->x86_cache_max_rmid);
1579 	}
1580 }
1581 
1582 /*
1583  * Validate that ACPI/mptables have the same information about the
1584  * effective APIC id and update the package map.
1585  */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1586 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1587 {
1588 #ifdef CONFIG_SMP
1589 	unsigned int apicid, cpu = smp_processor_id();
1590 
1591 	apicid = apic->cpu_present_to_apicid(cpu);
1592 
1593 	if (apicid != c->apicid) {
1594 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1595 		       cpu, apicid, c->initial_apicid);
1596 	}
1597 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1598 	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1599 #else
1600 	c->logical_proc_id = 0;
1601 #endif
1602 }
1603 
1604 /*
1605  * This does the hard work of actually picking apart the CPU stuff...
1606  */
identify_cpu(struct cpuinfo_x86 * c)1607 static void identify_cpu(struct cpuinfo_x86 *c)
1608 {
1609 	int i;
1610 
1611 	c->loops_per_jiffy = loops_per_jiffy;
1612 	c->x86_cache_size = 0;
1613 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1614 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1615 	c->x86_vendor_id[0] = '\0'; /* Unset */
1616 	c->x86_model_id[0] = '\0';  /* Unset */
1617 	c->x86_max_cores = 1;
1618 	c->x86_coreid_bits = 0;
1619 	c->cu_id = 0xff;
1620 #ifdef CONFIG_X86_64
1621 	c->x86_clflush_size = 64;
1622 	c->x86_phys_bits = 36;
1623 	c->x86_virt_bits = 48;
1624 #else
1625 	c->cpuid_level = -1;	/* CPUID not detected */
1626 	c->x86_clflush_size = 32;
1627 	c->x86_phys_bits = 32;
1628 	c->x86_virt_bits = 32;
1629 #endif
1630 	c->x86_cache_alignment = c->x86_clflush_size;
1631 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1632 
1633 	generic_identify(c);
1634 
1635 	if (this_cpu->c_identify)
1636 		this_cpu->c_identify(c);
1637 
1638 	/* Clear/Set all flags overridden by options, after probe */
1639 	apply_forced_caps(c);
1640 
1641 #ifdef CONFIG_X86_64
1642 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1643 #endif
1644 
1645 	/*
1646 	 * Vendor-specific initialization.  In this section we
1647 	 * canonicalize the feature flags, meaning if there are
1648 	 * features a certain CPU supports which CPUID doesn't
1649 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1650 	 * we handle them here.
1651 	 *
1652 	 * At the end of this section, c->x86_capability better
1653 	 * indicate the features this CPU genuinely supports!
1654 	 */
1655 	if (this_cpu->c_init)
1656 		this_cpu->c_init(c);
1657 
1658 	/* Disable the PN if appropriate */
1659 	squash_the_stupid_serial_number(c);
1660 
1661 	/* Set up SMEP/SMAP/UMIP */
1662 	setup_smep(c);
1663 	setup_smap(c);
1664 	setup_umip(c);
1665 
1666 	/*
1667 	 * The vendor-specific functions might have changed features.
1668 	 * Now we do "generic changes."
1669 	 */
1670 
1671 	/* Filter out anything that depends on CPUID levels we don't have */
1672 	filter_cpuid_features(c, true);
1673 
1674 	/* If the model name is still unset, do table lookup. */
1675 	if (!c->x86_model_id[0]) {
1676 		const char *p;
1677 		p = table_lookup_model(c);
1678 		if (p)
1679 			strcpy(c->x86_model_id, p);
1680 		else
1681 			/* Last resort... */
1682 			sprintf(c->x86_model_id, "%02x/%02x",
1683 				c->x86, c->x86_model);
1684 	}
1685 
1686 #ifdef CONFIG_X86_64
1687 	detect_ht(c);
1688 #endif
1689 
1690 	x86_init_rdrand(c);
1691 	x86_init_cache_qos(c);
1692 	setup_pku(c);
1693 
1694 	/*
1695 	 * Clear/Set all flags overridden by options, need do it
1696 	 * before following smp all cpus cap AND.
1697 	 */
1698 	apply_forced_caps(c);
1699 
1700 	/*
1701 	 * On SMP, boot_cpu_data holds the common feature set between
1702 	 * all CPUs; so make sure that we indicate which features are
1703 	 * common between the CPUs.  The first time this routine gets
1704 	 * executed, c == &boot_cpu_data.
1705 	 */
1706 	if (c != &boot_cpu_data) {
1707 		/* AND the already accumulated flags with these */
1708 		for (i = 0; i < NCAPINTS; i++)
1709 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1710 
1711 		/* OR, i.e. replicate the bug flags */
1712 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1713 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1714 	}
1715 
1716 	/* Init Machine Check Exception if available. */
1717 	mcheck_cpu_init(c);
1718 
1719 	select_idle_routine(c);
1720 
1721 #ifdef CONFIG_NUMA
1722 	numa_add_cpu(smp_processor_id());
1723 #endif
1724 }
1725 
1726 /*
1727  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1728  * on 32-bit kernels:
1729  */
1730 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1731 void enable_sep_cpu(void)
1732 {
1733 	struct tss_struct *tss;
1734 	int cpu;
1735 
1736 	if (!boot_cpu_has(X86_FEATURE_SEP))
1737 		return;
1738 
1739 	cpu = get_cpu();
1740 	tss = &per_cpu(cpu_tss_rw, cpu);
1741 
1742 	/*
1743 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1744 	 * see the big comment in struct x86_hw_tss's definition.
1745 	 */
1746 
1747 	tss->x86_tss.ss1 = __KERNEL_CS;
1748 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1749 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1750 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1751 
1752 	put_cpu();
1753 }
1754 #endif
1755 
identify_boot_cpu(void)1756 void __init identify_boot_cpu(void)
1757 {
1758 	identify_cpu(&boot_cpu_data);
1759 #ifdef CONFIG_X86_32
1760 	sysenter_setup();
1761 	enable_sep_cpu();
1762 #endif
1763 	cpu_detect_tlb(&boot_cpu_data);
1764 	setup_cr_pinning();
1765 
1766 	tsx_init();
1767 }
1768 
identify_secondary_cpu(struct cpuinfo_x86 * c)1769 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1770 {
1771 	BUG_ON(c == &boot_cpu_data);
1772 	identify_cpu(c);
1773 #ifdef CONFIG_X86_32
1774 	enable_sep_cpu();
1775 #endif
1776 	mtrr_ap_init();
1777 	validate_apic_and_package_id(c);
1778 	x86_spec_ctrl_setup_ap();
1779 	update_srbds_msr();
1780 	if (boot_cpu_has_bug(X86_BUG_GDS))
1781 		update_gds_msr();
1782 }
1783 
setup_noclflush(char * arg)1784 static __init int setup_noclflush(char *arg)
1785 {
1786 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1787 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1788 	return 1;
1789 }
1790 __setup("noclflush", setup_noclflush);
1791 
print_cpu_info(struct cpuinfo_x86 * c)1792 void print_cpu_info(struct cpuinfo_x86 *c)
1793 {
1794 	const char *vendor = NULL;
1795 
1796 	if (c->x86_vendor < X86_VENDOR_NUM) {
1797 		vendor = this_cpu->c_vendor;
1798 	} else {
1799 		if (c->cpuid_level >= 0)
1800 			vendor = c->x86_vendor_id;
1801 	}
1802 
1803 	if (vendor && !strstr(c->x86_model_id, vendor))
1804 		pr_cont("%s ", vendor);
1805 
1806 	if (c->x86_model_id[0])
1807 		pr_cont("%s", c->x86_model_id);
1808 	else
1809 		pr_cont("%d86", c->x86);
1810 
1811 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1812 
1813 	if (c->x86_stepping || c->cpuid_level >= 0)
1814 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1815 	else
1816 		pr_cont(")\n");
1817 }
1818 
1819 /*
1820  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1821  * But we need to keep a dummy __setup around otherwise it would
1822  * show up as an environment variable for init.
1823  */
setup_clearcpuid(char * arg)1824 static __init int setup_clearcpuid(char *arg)
1825 {
1826 	return 1;
1827 }
1828 __setup("clearcpuid=", setup_clearcpuid);
1829 
1830 #ifdef CONFIG_X86_64
1831 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1832 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1833 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1834 
1835 /*
1836  * The following percpu variables are hot.  Align current_task to
1837  * cacheline size such that they fall in the same cacheline.
1838  */
1839 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1840 	&init_task;
1841 EXPORT_PER_CPU_SYMBOL(current_task);
1842 
1843 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1844 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1845 
1846 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1847 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1848 
1849 /* May not be marked __init: used by software suspend */
syscall_init(void)1850 void syscall_init(void)
1851 {
1852 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1853 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1854 
1855 #ifdef CONFIG_IA32_EMULATION
1856 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1857 	/*
1858 	 * This only works on Intel CPUs.
1859 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1860 	 * This does not cause SYSENTER to jump to the wrong location, because
1861 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1862 	 */
1863 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1864 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1865 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1866 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1867 #else
1868 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1869 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1870 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1871 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1872 #endif
1873 
1874 	/* Flags to clear on syscall */
1875 	wrmsrl(MSR_SYSCALL_MASK,
1876 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1877 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1878 }
1879 
1880 DEFINE_PER_CPU(int, debug_stack_usage);
1881 DEFINE_PER_CPU(u32, debug_idt_ctr);
1882 
debug_stack_set_zero(void)1883 void debug_stack_set_zero(void)
1884 {
1885 	this_cpu_inc(debug_idt_ctr);
1886 	load_current_idt();
1887 }
1888 NOKPROBE_SYMBOL(debug_stack_set_zero);
1889 
debug_stack_reset(void)1890 void debug_stack_reset(void)
1891 {
1892 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1893 		return;
1894 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1895 		load_current_idt();
1896 }
1897 NOKPROBE_SYMBOL(debug_stack_reset);
1898 
1899 #else	/* CONFIG_X86_64 */
1900 
1901 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1902 EXPORT_PER_CPU_SYMBOL(current_task);
1903 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1904 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1905 
1906 /*
1907  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1908  * the top of the kernel stack.  Use an extra percpu variable to track the
1909  * top of the kernel stack directly.
1910  */
1911 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1912 	(unsigned long)&init_thread_union + THREAD_SIZE;
1913 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1914 
1915 #ifdef CONFIG_STACKPROTECTOR
1916 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1917 #endif
1918 
1919 #endif	/* CONFIG_X86_64 */
1920 
1921 /*
1922  * Clear all 6 debug registers:
1923  */
clear_all_debug_regs(void)1924 static void clear_all_debug_regs(void)
1925 {
1926 	int i;
1927 
1928 	for (i = 0; i < 8; i++) {
1929 		/* Ignore db4, db5 */
1930 		if ((i == 4) || (i == 5))
1931 			continue;
1932 
1933 		set_debugreg(0, i);
1934 	}
1935 }
1936 
1937 #ifdef CONFIG_KGDB
1938 /*
1939  * Restore debug regs if using kgdbwait and you have a kernel debugger
1940  * connection established.
1941  */
dbg_restore_debug_regs(void)1942 static void dbg_restore_debug_regs(void)
1943 {
1944 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1945 		arch_kgdb_ops.correct_hw_break();
1946 }
1947 #else /* ! CONFIG_KGDB */
1948 #define dbg_restore_debug_regs()
1949 #endif /* ! CONFIG_KGDB */
1950 
wait_for_master_cpu(int cpu)1951 static void wait_for_master_cpu(int cpu)
1952 {
1953 #ifdef CONFIG_SMP
1954 	/*
1955 	 * wait for ACK from master CPU before continuing
1956 	 * with AP initialization
1957 	 */
1958 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1959 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1960 		cpu_relax();
1961 #endif
1962 }
1963 
1964 #ifdef CONFIG_X86_64
setup_getcpu(int cpu)1965 static void setup_getcpu(int cpu)
1966 {
1967 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1968 	struct desc_struct d = { };
1969 
1970 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1971 		write_rdtscp_aux(cpudata);
1972 
1973 	/* Store CPU and node number in limit. */
1974 	d.limit0 = cpudata;
1975 	d.limit1 = cpudata >> 16;
1976 
1977 	d.type = 5;		/* RO data, expand down, accessed */
1978 	d.dpl = 3;		/* Visible to user code */
1979 	d.s = 1;		/* Not a system segment */
1980 	d.p = 1;		/* Present */
1981 	d.d = 1;		/* 32-bit */
1982 
1983 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1984 }
1985 #endif
1986 
1987 /*
1988  * cpu_init() initializes state that is per-CPU. Some data is already
1989  * initialized (naturally) in the bootstrap process, such as the GDT
1990  * and IDT. We reload them nevertheless, this function acts as a
1991  * 'CPU state barrier', nothing should get across.
1992  */
1993 #ifdef CONFIG_X86_64
1994 
cpu_init(void)1995 void cpu_init(void)
1996 {
1997 	int cpu = raw_smp_processor_id();
1998 	struct task_struct *me;
1999 	struct tss_struct *t;
2000 	int i;
2001 
2002 	wait_for_master_cpu(cpu);
2003 
2004 	if (cpu)
2005 		load_ucode_ap();
2006 
2007 	t = &per_cpu(cpu_tss_rw, cpu);
2008 
2009 #ifdef CONFIG_NUMA
2010 	if (this_cpu_read(numa_node) == 0 &&
2011 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2012 		set_numa_node(early_cpu_to_node(cpu));
2013 #endif
2014 	setup_getcpu(cpu);
2015 
2016 	me = current;
2017 
2018 	pr_debug("Initializing CPU#%d\n", cpu);
2019 
2020 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2021 
2022 	/*
2023 	 * Initialize the per-CPU GDT with the boot GDT,
2024 	 * and set up the GDT descriptor:
2025 	 */
2026 
2027 	switch_to_new_gdt(cpu);
2028 	loadsegment(fs, 0);
2029 
2030 	load_current_idt();
2031 
2032 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2033 	syscall_init();
2034 
2035 	wrmsrl(MSR_FS_BASE, 0);
2036 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
2037 	barrier();
2038 
2039 	x86_configure_nx();
2040 	x2apic_setup();
2041 
2042 	/*
2043 	 * set up and load the per-CPU TSS
2044 	 */
2045 	if (!t->x86_tss.ist[0]) {
2046 		t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2047 		t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2048 		t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2049 		t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2050 	}
2051 
2052 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
2053 
2054 	/*
2055 	 * <= is required because the CPU will access up to
2056 	 * 8 bits beyond the end of the IO permission bitmap.
2057 	 */
2058 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
2059 		t->io_bitmap[i] = ~0UL;
2060 
2061 	mmgrab(&init_mm);
2062 	me->active_mm = &init_mm;
2063 	BUG_ON(me->mm);
2064 	initialize_tlbstate_and_flush();
2065 	enter_lazy_tlb(&init_mm, me);
2066 
2067 	/*
2068 	 * Initialize the TSS.  sp0 points to the entry trampoline stack
2069 	 * regardless of what task is running.
2070 	 */
2071 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2072 	load_TR_desc();
2073 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2074 
2075 	load_mm_ldt(&init_mm);
2076 
2077 	clear_all_debug_regs();
2078 	dbg_restore_debug_regs();
2079 
2080 	if (is_uv_system())
2081 		uv_cpu_init();
2082 
2083 	load_fixmap_gdt(cpu);
2084 }
2085 
2086 #else
2087 
cpu_init(void)2088 void cpu_init(void)
2089 {
2090 	int cpu = smp_processor_id();
2091 	struct task_struct *curr = current;
2092 	struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
2093 
2094 	wait_for_master_cpu(cpu);
2095 
2096 	show_ucode_info_early();
2097 
2098 	pr_info("Initializing CPU#%d\n", cpu);
2099 
2100 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
2101 	    boot_cpu_has(X86_FEATURE_TSC) ||
2102 	    boot_cpu_has(X86_FEATURE_DE))
2103 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2104 
2105 	load_current_idt();
2106 	switch_to_new_gdt(cpu);
2107 
2108 	/*
2109 	 * Set up and load the per-CPU TSS and LDT
2110 	 */
2111 	mmgrab(&init_mm);
2112 	curr->active_mm = &init_mm;
2113 	BUG_ON(curr->mm);
2114 	initialize_tlbstate_and_flush();
2115 	enter_lazy_tlb(&init_mm, curr);
2116 
2117 	/*
2118 	 * Initialize the TSS.  sp0 points to the entry trampoline stack
2119 	 * regardless of what task is running.
2120 	 */
2121 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2122 	load_TR_desc();
2123 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2124 
2125 	load_mm_ldt(&init_mm);
2126 
2127 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
2128 
2129 #ifdef CONFIG_DOUBLEFAULT
2130 	/* Set up doublefault TSS pointer in the GDT */
2131 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
2132 #endif
2133 
2134 	clear_all_debug_regs();
2135 	dbg_restore_debug_regs();
2136 
2137 	load_fixmap_gdt(cpu);
2138 }
2139 #endif
2140 
2141 /*
2142  * The microcode loader calls this upon late microcode load to recheck features,
2143  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2144  * hotplug lock.
2145  */
microcode_check(void)2146 void microcode_check(void)
2147 {
2148 	struct cpuinfo_x86 info;
2149 
2150 	perf_check_microcode();
2151 
2152 	amd_check_microcode();
2153 
2154 	/* Reload CPUID max function as it might've changed. */
2155 	info.cpuid_level = cpuid_eax(0);
2156 
2157 	/*
2158 	 * Copy all capability leafs to pick up the synthetic ones so that
2159 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2160 	 * get overwritten in get_cpu_cap().
2161 	 */
2162 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2163 
2164 	get_cpu_cap(&info);
2165 
2166 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2167 		return;
2168 
2169 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2170 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2171 }
2172 
2173 /*
2174  * Invoked from core CPU hotplug code after hotplug operations
2175  */
arch_smt_update(void)2176 void arch_smt_update(void)
2177 {
2178 	/* Handle the speculative execution misfeatures */
2179 	cpu_bugs_smt_update();
2180 	/* Check whether IPI broadcasting can be enabled */
2181 	apic_smt_update();
2182 }
2183 
arch_cpu_finalize_init(void)2184 void __init arch_cpu_finalize_init(void)
2185 {
2186 	identify_boot_cpu();
2187 
2188 	/*
2189 	 * identify_boot_cpu() initialized SMT support information, let the
2190 	 * core code know.
2191 	 */
2192 	cpu_smt_check_topology();
2193 
2194 	if (!IS_ENABLED(CONFIG_SMP)) {
2195 		pr_info("CPU: ");
2196 		print_cpu_info(&boot_cpu_data);
2197 	}
2198 
2199 	cpu_select_mitigations();
2200 
2201 	arch_smt_update();
2202 
2203 	if (IS_ENABLED(CONFIG_X86_32)) {
2204 		/*
2205 		 * Check whether this is a real i386 which is not longer
2206 		 * supported and fixup the utsname.
2207 		 */
2208 		if (boot_cpu_data.x86 < 4)
2209 			panic("Kernel requires i486+ for 'invlpg' and other features");
2210 
2211 		init_utsname()->machine[1] =
2212 			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2213 	}
2214 
2215 	/*
2216 	 * Must be before alternatives because it might set or clear
2217 	 * feature bits.
2218 	 */
2219 	fpu__init_system();
2220 	fpu__init_cpu();
2221 
2222 	alternative_instructions();
2223 
2224 	if (IS_ENABLED(CONFIG_X86_64)) {
2225 		/*
2226 		 * Make sure the first 2MB area is not mapped by huge pages
2227 		 * There are typically fixed size MTRRs in there and overlapping
2228 		 * MTRRs into large pages causes slow downs.
2229 		 *
2230 		 * Right now we don't do that with gbpages because there seems
2231 		 * very little benefit for that case.
2232 		 */
2233 		if (!direct_gbpages)
2234 			set_memory_4k((unsigned long)__va(0), 1);
2235 	} else {
2236 		fpu__init_check_bugs();
2237 	}
2238 
2239 	/*
2240 	 * This needs to be called before any devices perform DMA
2241 	 * operations that might use the SWIOTLB bounce buffers. It will
2242 	 * mark the bounce buffers as decrypted so that their usage will
2243 	 * not cause "plain-text" data to be decrypted when accessed. It
2244 	 * must be called after late_time_init() so that Hyper-V x86/x64
2245 	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2246 	 */
2247 	mem_encrypt_init();
2248 }
2249