• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 
22 #ifdef CONFIG_EXT4_DEBUG
23 ushort ext4_mballoc_debug __read_mostly;
24 
25 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
26 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
27 #endif
28 
29 /*
30  * MUSTDO:
31  *   - test ext4_ext_search_left() and ext4_ext_search_right()
32  *   - search for metadata in few groups
33  *
34  * TODO v4:
35  *   - normalization should take into account whether file is still open
36  *   - discard preallocations if no free space left (policy?)
37  *   - don't normalize tails
38  *   - quota
39  *   - reservation for superuser
40  *
41  * TODO v3:
42  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
43  *   - track min/max extents in each group for better group selection
44  *   - mb_mark_used() may allocate chunk right after splitting buddy
45  *   - tree of groups sorted by number of free blocks
46  *   - error handling
47  */
48 
49 /*
50  * The allocation request involve request for multiple number of blocks
51  * near to the goal(block) value specified.
52  *
53  * During initialization phase of the allocator we decide to use the
54  * group preallocation or inode preallocation depending on the size of
55  * the file. The size of the file could be the resulting file size we
56  * would have after allocation, or the current file size, which ever
57  * is larger. If the size is less than sbi->s_mb_stream_request we
58  * select to use the group preallocation. The default value of
59  * s_mb_stream_request is 16 blocks. This can also be tuned via
60  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61  * terms of number of blocks.
62  *
63  * The main motivation for having small file use group preallocation is to
64  * ensure that we have small files closer together on the disk.
65  *
66  * First stage the allocator looks at the inode prealloc list,
67  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68  * spaces for this particular inode. The inode prealloc space is
69  * represented as:
70  *
71  * pa_lstart -> the logical start block for this prealloc space
72  * pa_pstart -> the physical start block for this prealloc space
73  * pa_len    -> length for this prealloc space (in clusters)
74  * pa_free   ->  free space available in this prealloc space (in clusters)
75  *
76  * The inode preallocation space is used looking at the _logical_ start
77  * block. If only the logical file block falls within the range of prealloc
78  * space we will consume the particular prealloc space. This makes sure that
79  * we have contiguous physical blocks representing the file blocks
80  *
81  * The important thing to be noted in case of inode prealloc space is that
82  * we don't modify the values associated to inode prealloc space except
83  * pa_free.
84  *
85  * If we are not able to find blocks in the inode prealloc space and if we
86  * have the group allocation flag set then we look at the locality group
87  * prealloc space. These are per CPU prealloc list represented as
88  *
89  * ext4_sb_info.s_locality_groups[smp_processor_id()]
90  *
91  * The reason for having a per cpu locality group is to reduce the contention
92  * between CPUs. It is possible to get scheduled at this point.
93  *
94  * The locality group prealloc space is used looking at whether we have
95  * enough free space (pa_free) within the prealloc space.
96  *
97  * If we can't allocate blocks via inode prealloc or/and locality group
98  * prealloc then we look at the buddy cache. The buddy cache is represented
99  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100  * mapped to the buddy and bitmap information regarding different
101  * groups. The buddy information is attached to buddy cache inode so that
102  * we can access them through the page cache. The information regarding
103  * each group is loaded via ext4_mb_load_buddy.  The information involve
104  * block bitmap and buddy information. The information are stored in the
105  * inode as:
106  *
107  *  {                        page                        }
108  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109  *
110  *
111  * one block each for bitmap and buddy information.  So for each group we
112  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
113  * blocksize) blocks.  So it can have information regarding groups_per_page
114  * which is blocks_per_page/2
115  *
116  * The buddy cache inode is not stored on disk. The inode is thrown
117  * away when the filesystem is unmounted.
118  *
119  * We look for count number of blocks in the buddy cache. If we were able
120  * to locate that many free blocks we return with additional information
121  * regarding rest of the contiguous physical block available
122  *
123  * Before allocating blocks via buddy cache we normalize the request
124  * blocks. This ensure we ask for more blocks that we needed. The extra
125  * blocks that we get after allocation is added to the respective prealloc
126  * list. In case of inode preallocation we follow a list of heuristics
127  * based on file size. This can be found in ext4_mb_normalize_request. If
128  * we are doing a group prealloc we try to normalize the request to
129  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
130  * dependent on the cluster size; for non-bigalloc file systems, it is
131  * 512 blocks. This can be tuned via
132  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
133  * terms of number of blocks. If we have mounted the file system with -O
134  * stripe=<value> option the group prealloc request is normalized to the
135  * the smallest multiple of the stripe value (sbi->s_stripe) which is
136  * greater than the default mb_group_prealloc.
137  *
138  * The regular allocator (using the buddy cache) supports a few tunables.
139  *
140  * /sys/fs/ext4/<partition>/mb_min_to_scan
141  * /sys/fs/ext4/<partition>/mb_max_to_scan
142  * /sys/fs/ext4/<partition>/mb_order2_req
143  *
144  * The regular allocator uses buddy scan only if the request len is power of
145  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
146  * value of s_mb_order2_reqs can be tuned via
147  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
148  * stripe size (sbi->s_stripe), we try to search for contiguous block in
149  * stripe size. This should result in better allocation on RAID setups. If
150  * not, we search in the specific group using bitmap for best extents. The
151  * tunable min_to_scan and max_to_scan control the behaviour here.
152  * min_to_scan indicate how long the mballoc __must__ look for a best
153  * extent and max_to_scan indicates how long the mballoc __can__ look for a
154  * best extent in the found extents. Searching for the blocks starts with
155  * the group specified as the goal value in allocation context via
156  * ac_g_ex. Each group is first checked based on the criteria whether it
157  * can be used for allocation. ext4_mb_good_group explains how the groups are
158  * checked.
159  *
160  * Both the prealloc space are getting populated as above. So for the first
161  * request we will hit the buddy cache which will result in this prealloc
162  * space getting filled. The prealloc space is then later used for the
163  * subsequent request.
164  */
165 
166 /*
167  * mballoc operates on the following data:
168  *  - on-disk bitmap
169  *  - in-core buddy (actually includes buddy and bitmap)
170  *  - preallocation descriptors (PAs)
171  *
172  * there are two types of preallocations:
173  *  - inode
174  *    assiged to specific inode and can be used for this inode only.
175  *    it describes part of inode's space preallocated to specific
176  *    physical blocks. any block from that preallocated can be used
177  *    independent. the descriptor just tracks number of blocks left
178  *    unused. so, before taking some block from descriptor, one must
179  *    make sure corresponded logical block isn't allocated yet. this
180  *    also means that freeing any block within descriptor's range
181  *    must discard all preallocated blocks.
182  *  - locality group
183  *    assigned to specific locality group which does not translate to
184  *    permanent set of inodes: inode can join and leave group. space
185  *    from this type of preallocation can be used for any inode. thus
186  *    it's consumed from the beginning to the end.
187  *
188  * relation between them can be expressed as:
189  *    in-core buddy = on-disk bitmap + preallocation descriptors
190  *
191  * this mean blocks mballoc considers used are:
192  *  - allocated blocks (persistent)
193  *  - preallocated blocks (non-persistent)
194  *
195  * consistency in mballoc world means that at any time a block is either
196  * free or used in ALL structures. notice: "any time" should not be read
197  * literally -- time is discrete and delimited by locks.
198  *
199  *  to keep it simple, we don't use block numbers, instead we count number of
200  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
201  *
202  * all operations can be expressed as:
203  *  - init buddy:			buddy = on-disk + PAs
204  *  - new PA:				buddy += N; PA = N
205  *  - use inode PA:			on-disk += N; PA -= N
206  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
207  *  - use locality group PA		on-disk += N; PA -= N
208  *  - discard locality group PA		buddy -= PA; PA = 0
209  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
210  *        is used in real operation because we can't know actual used
211  *        bits from PA, only from on-disk bitmap
212  *
213  * if we follow this strict logic, then all operations above should be atomic.
214  * given some of them can block, we'd have to use something like semaphores
215  * killing performance on high-end SMP hardware. let's try to relax it using
216  * the following knowledge:
217  *  1) if buddy is referenced, it's already initialized
218  *  2) while block is used in buddy and the buddy is referenced,
219  *     nobody can re-allocate that block
220  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
221  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
222  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
223  *     block
224  *
225  * so, now we're building a concurrency table:
226  *  - init buddy vs.
227  *    - new PA
228  *      blocks for PA are allocated in the buddy, buddy must be referenced
229  *      until PA is linked to allocation group to avoid concurrent buddy init
230  *    - use inode PA
231  *      we need to make sure that either on-disk bitmap or PA has uptodate data
232  *      given (3) we care that PA-=N operation doesn't interfere with init
233  *    - discard inode PA
234  *      the simplest way would be to have buddy initialized by the discard
235  *    - use locality group PA
236  *      again PA-=N must be serialized with init
237  *    - discard locality group PA
238  *      the simplest way would be to have buddy initialized by the discard
239  *  - new PA vs.
240  *    - use inode PA
241  *      i_data_sem serializes them
242  *    - discard inode PA
243  *      discard process must wait until PA isn't used by another process
244  *    - use locality group PA
245  *      some mutex should serialize them
246  *    - discard locality group PA
247  *      discard process must wait until PA isn't used by another process
248  *  - use inode PA
249  *    - use inode PA
250  *      i_data_sem or another mutex should serializes them
251  *    - discard inode PA
252  *      discard process must wait until PA isn't used by another process
253  *    - use locality group PA
254  *      nothing wrong here -- they're different PAs covering different blocks
255  *    - discard locality group PA
256  *      discard process must wait until PA isn't used by another process
257  *
258  * now we're ready to make few consequences:
259  *  - PA is referenced and while it is no discard is possible
260  *  - PA is referenced until block isn't marked in on-disk bitmap
261  *  - PA changes only after on-disk bitmap
262  *  - discard must not compete with init. either init is done before
263  *    any discard or they're serialized somehow
264  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
265  *
266  * a special case when we've used PA to emptiness. no need to modify buddy
267  * in this case, but we should care about concurrent init
268  *
269  */
270 
271  /*
272  * Logic in few words:
273  *
274  *  - allocation:
275  *    load group
276  *    find blocks
277  *    mark bits in on-disk bitmap
278  *    release group
279  *
280  *  - use preallocation:
281  *    find proper PA (per-inode or group)
282  *    load group
283  *    mark bits in on-disk bitmap
284  *    release group
285  *    release PA
286  *
287  *  - free:
288  *    load group
289  *    mark bits in on-disk bitmap
290  *    release group
291  *
292  *  - discard preallocations in group:
293  *    mark PAs deleted
294  *    move them onto local list
295  *    load on-disk bitmap
296  *    load group
297  *    remove PA from object (inode or locality group)
298  *    mark free blocks in-core
299  *
300  *  - discard inode's preallocations:
301  */
302 
303 /*
304  * Locking rules
305  *
306  * Locks:
307  *  - bitlock on a group	(group)
308  *  - object (inode/locality)	(object)
309  *  - per-pa lock		(pa)
310  *
311  * Paths:
312  *  - new pa
313  *    object
314  *    group
315  *
316  *  - find and use pa:
317  *    pa
318  *
319  *  - release consumed pa:
320  *    pa
321  *    group
322  *    object
323  *
324  *  - generate in-core bitmap:
325  *    group
326  *        pa
327  *
328  *  - discard all for given object (inode, locality group):
329  *    object
330  *        pa
331  *    group
332  *
333  *  - discard all for given group:
334  *    group
335  *        pa
336  *    group
337  *        object
338  *
339  */
340 static struct kmem_cache *ext4_pspace_cachep;
341 static struct kmem_cache *ext4_ac_cachep;
342 static struct kmem_cache *ext4_free_data_cachep;
343 
344 /* We create slab caches for groupinfo data structures based on the
345  * superblock block size.  There will be one per mounted filesystem for
346  * each unique s_blocksize_bits */
347 #define NR_GRPINFO_CACHES 8
348 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
349 
350 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
351 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
352 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
353 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
354 };
355 
356 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
357 					ext4_group_t group);
358 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
359 						ext4_group_t group);
360 
mb_correct_addr_and_bit(int * bit,void * addr)361 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
362 {
363 #if BITS_PER_LONG == 64
364 	*bit += ((unsigned long) addr & 7UL) << 3;
365 	addr = (void *) ((unsigned long) addr & ~7UL);
366 #elif BITS_PER_LONG == 32
367 	*bit += ((unsigned long) addr & 3UL) << 3;
368 	addr = (void *) ((unsigned long) addr & ~3UL);
369 #else
370 #error "how many bits you are?!"
371 #endif
372 	return addr;
373 }
374 
mb_test_bit(int bit,void * addr)375 static inline int mb_test_bit(int bit, void *addr)
376 {
377 	/*
378 	 * ext4_test_bit on architecture like powerpc
379 	 * needs unsigned long aligned address
380 	 */
381 	addr = mb_correct_addr_and_bit(&bit, addr);
382 	return ext4_test_bit(bit, addr);
383 }
384 
mb_set_bit(int bit,void * addr)385 static inline void mb_set_bit(int bit, void *addr)
386 {
387 	addr = mb_correct_addr_and_bit(&bit, addr);
388 	ext4_set_bit(bit, addr);
389 }
390 
mb_clear_bit(int bit,void * addr)391 static inline void mb_clear_bit(int bit, void *addr)
392 {
393 	addr = mb_correct_addr_and_bit(&bit, addr);
394 	ext4_clear_bit(bit, addr);
395 }
396 
mb_test_and_clear_bit(int bit,void * addr)397 static inline int mb_test_and_clear_bit(int bit, void *addr)
398 {
399 	addr = mb_correct_addr_and_bit(&bit, addr);
400 	return ext4_test_and_clear_bit(bit, addr);
401 }
402 
mb_find_next_zero_bit(void * addr,int max,int start)403 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
404 {
405 	int fix = 0, ret, tmpmax;
406 	addr = mb_correct_addr_and_bit(&fix, addr);
407 	tmpmax = max + fix;
408 	start += fix;
409 
410 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
411 	if (ret > max)
412 		return max;
413 	return ret;
414 }
415 
mb_find_next_bit(void * addr,int max,int start)416 static inline int mb_find_next_bit(void *addr, int max, int start)
417 {
418 	int fix = 0, ret, tmpmax;
419 	addr = mb_correct_addr_and_bit(&fix, addr);
420 	tmpmax = max + fix;
421 	start += fix;
422 
423 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
424 	if (ret > max)
425 		return max;
426 	return ret;
427 }
428 
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)429 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
430 {
431 	char *bb;
432 
433 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
434 	BUG_ON(max == NULL);
435 
436 	if (order > e4b->bd_blkbits + 1) {
437 		*max = 0;
438 		return NULL;
439 	}
440 
441 	/* at order 0 we see each particular block */
442 	if (order == 0) {
443 		*max = 1 << (e4b->bd_blkbits + 3);
444 		return e4b->bd_bitmap;
445 	}
446 
447 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
448 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
449 
450 	return bb;
451 }
452 
453 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)454 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
455 			   int first, int count)
456 {
457 	int i;
458 	struct super_block *sb = e4b->bd_sb;
459 
460 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
461 		return;
462 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
463 	for (i = 0; i < count; i++) {
464 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
465 			ext4_fsblk_t blocknr;
466 
467 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
468 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
469 			ext4_grp_locked_error(sb, e4b->bd_group,
470 					      inode ? inode->i_ino : 0,
471 					      blocknr,
472 					      "freeing block already freed "
473 					      "(bit %u)",
474 					      first + i);
475 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
476 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
477 		}
478 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
479 	}
480 }
481 
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)482 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
483 {
484 	int i;
485 
486 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
487 		return;
488 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
489 	for (i = 0; i < count; i++) {
490 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
491 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
492 	}
493 }
494 
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)495 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
496 {
497 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
498 		unsigned char *b1, *b2;
499 		int i;
500 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
501 		b2 = (unsigned char *) bitmap;
502 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
503 			if (b1[i] != b2[i]) {
504 				ext4_msg(e4b->bd_sb, KERN_ERR,
505 					 "corruption in group %u "
506 					 "at byte %u(%u): %x in copy != %x "
507 					 "on disk/prealloc",
508 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
509 				BUG();
510 			}
511 		}
512 	}
513 }
514 
515 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)516 static inline void mb_free_blocks_double(struct inode *inode,
517 				struct ext4_buddy *e4b, int first, int count)
518 {
519 	return;
520 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)521 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
522 						int first, int count)
523 {
524 	return;
525 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)526 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
527 {
528 	return;
529 }
530 #endif
531 
532 #ifdef AGGRESSIVE_CHECK
533 
534 #define MB_CHECK_ASSERT(assert)						\
535 do {									\
536 	if (!(assert)) {						\
537 		printk(KERN_EMERG					\
538 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
539 			function, file, line, # assert);		\
540 		BUG();							\
541 	}								\
542 } while (0)
543 
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)544 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
545 				const char *function, int line)
546 {
547 	struct super_block *sb = e4b->bd_sb;
548 	int order = e4b->bd_blkbits + 1;
549 	int max;
550 	int max2;
551 	int i;
552 	int j;
553 	int k;
554 	int count;
555 	struct ext4_group_info *grp;
556 	int fragments = 0;
557 	int fstart;
558 	struct list_head *cur;
559 	void *buddy;
560 	void *buddy2;
561 
562 	{
563 		static int mb_check_counter;
564 		if (mb_check_counter++ % 100 != 0)
565 			return 0;
566 	}
567 
568 	while (order > 1) {
569 		buddy = mb_find_buddy(e4b, order, &max);
570 		MB_CHECK_ASSERT(buddy);
571 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
572 		MB_CHECK_ASSERT(buddy2);
573 		MB_CHECK_ASSERT(buddy != buddy2);
574 		MB_CHECK_ASSERT(max * 2 == max2);
575 
576 		count = 0;
577 		for (i = 0; i < max; i++) {
578 
579 			if (mb_test_bit(i, buddy)) {
580 				/* only single bit in buddy2 may be 1 */
581 				if (!mb_test_bit(i << 1, buddy2)) {
582 					MB_CHECK_ASSERT(
583 						mb_test_bit((i<<1)+1, buddy2));
584 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
585 					MB_CHECK_ASSERT(
586 						mb_test_bit(i << 1, buddy2));
587 				}
588 				continue;
589 			}
590 
591 			/* both bits in buddy2 must be 1 */
592 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
593 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
594 
595 			for (j = 0; j < (1 << order); j++) {
596 				k = (i * (1 << order)) + j;
597 				MB_CHECK_ASSERT(
598 					!mb_test_bit(k, e4b->bd_bitmap));
599 			}
600 			count++;
601 		}
602 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
603 		order--;
604 	}
605 
606 	fstart = -1;
607 	buddy = mb_find_buddy(e4b, 0, &max);
608 	for (i = 0; i < max; i++) {
609 		if (!mb_test_bit(i, buddy)) {
610 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
611 			if (fstart == -1) {
612 				fragments++;
613 				fstart = i;
614 			}
615 			continue;
616 		}
617 		fstart = -1;
618 		/* check used bits only */
619 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
620 			buddy2 = mb_find_buddy(e4b, j, &max2);
621 			k = i >> j;
622 			MB_CHECK_ASSERT(k < max2);
623 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
624 		}
625 	}
626 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
627 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
628 
629 	grp = ext4_get_group_info(sb, e4b->bd_group);
630 	list_for_each(cur, &grp->bb_prealloc_list) {
631 		ext4_group_t groupnr;
632 		struct ext4_prealloc_space *pa;
633 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
634 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
635 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
636 		for (i = 0; i < pa->pa_len; i++)
637 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
638 	}
639 	return 0;
640 }
641 #undef MB_CHECK_ASSERT
642 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
643 					__FILE__, __func__, __LINE__)
644 #else
645 #define mb_check_buddy(e4b)
646 #endif
647 
648 /*
649  * Divide blocks started from @first with length @len into
650  * smaller chunks with power of 2 blocks.
651  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
652  * then increase bb_counters[] for corresponded chunk size.
653  */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)654 static void ext4_mb_mark_free_simple(struct super_block *sb,
655 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
656 					struct ext4_group_info *grp)
657 {
658 	struct ext4_sb_info *sbi = EXT4_SB(sb);
659 	ext4_grpblk_t min;
660 	ext4_grpblk_t max;
661 	ext4_grpblk_t chunk;
662 	unsigned int border;
663 
664 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
665 
666 	border = 2 << sb->s_blocksize_bits;
667 
668 	while (len > 0) {
669 		/* find how many blocks can be covered since this position */
670 		max = ffs(first | border) - 1;
671 
672 		/* find how many blocks of power 2 we need to mark */
673 		min = fls(len) - 1;
674 
675 		if (max < min)
676 			min = max;
677 		chunk = 1 << min;
678 
679 		/* mark multiblock chunks only */
680 		grp->bb_counters[min]++;
681 		if (min > 0)
682 			mb_clear_bit(first >> min,
683 				     buddy + sbi->s_mb_offsets[min]);
684 
685 		len -= chunk;
686 		first += chunk;
687 	}
688 }
689 
690 /*
691  * Cache the order of the largest free extent we have available in this block
692  * group.
693  */
694 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)695 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
696 {
697 	int i;
698 	int bits;
699 
700 	grp->bb_largest_free_order = -1; /* uninit */
701 
702 	bits = sb->s_blocksize_bits + 1;
703 	for (i = bits; i >= 0; i--) {
704 		if (grp->bb_counters[i] > 0) {
705 			grp->bb_largest_free_order = i;
706 			break;
707 		}
708 	}
709 }
710 
711 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)712 void ext4_mb_generate_buddy(struct super_block *sb,
713 				void *buddy, void *bitmap, ext4_group_t group)
714 {
715 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
716 	struct ext4_sb_info *sbi = EXT4_SB(sb);
717 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
718 	ext4_grpblk_t i = 0;
719 	ext4_grpblk_t first;
720 	ext4_grpblk_t len;
721 	unsigned free = 0;
722 	unsigned fragments = 0;
723 	unsigned long long period = get_cycles();
724 
725 	/* initialize buddy from bitmap which is aggregation
726 	 * of on-disk bitmap and preallocations */
727 	i = mb_find_next_zero_bit(bitmap, max, 0);
728 	grp->bb_first_free = i;
729 	while (i < max) {
730 		fragments++;
731 		first = i;
732 		i = mb_find_next_bit(bitmap, max, i);
733 		len = i - first;
734 		free += len;
735 		if (len > 1)
736 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
737 		else
738 			grp->bb_counters[0]++;
739 		if (i < max)
740 			i = mb_find_next_zero_bit(bitmap, max, i);
741 	}
742 	grp->bb_fragments = fragments;
743 
744 	if (free != grp->bb_free) {
745 		ext4_grp_locked_error(sb, group, 0, 0,
746 				      "block bitmap and bg descriptor "
747 				      "inconsistent: %u vs %u free clusters",
748 				      free, grp->bb_free);
749 		/*
750 		 * If we intend to continue, we consider group descriptor
751 		 * corrupt and update bb_free using bitmap value
752 		 */
753 		grp->bb_free = free;
754 		ext4_mark_group_bitmap_corrupted(sb, group,
755 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
756 	}
757 	mb_set_largest_free_order(sb, grp);
758 
759 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
760 
761 	period = get_cycles() - period;
762 	spin_lock(&sbi->s_bal_lock);
763 	sbi->s_mb_buddies_generated++;
764 	sbi->s_mb_generation_time += period;
765 	spin_unlock(&sbi->s_bal_lock);
766 }
767 
mb_regenerate_buddy(struct ext4_buddy * e4b)768 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
769 {
770 	int count;
771 	int order = 1;
772 	void *buddy;
773 
774 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
775 		ext4_set_bits(buddy, 0, count);
776 	}
777 	e4b->bd_info->bb_fragments = 0;
778 	memset(e4b->bd_info->bb_counters, 0,
779 		sizeof(*e4b->bd_info->bb_counters) *
780 		(e4b->bd_sb->s_blocksize_bits + 2));
781 
782 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
783 		e4b->bd_bitmap, e4b->bd_group);
784 }
785 
786 /* The buddy information is attached the buddy cache inode
787  * for convenience. The information regarding each group
788  * is loaded via ext4_mb_load_buddy. The information involve
789  * block bitmap and buddy information. The information are
790  * stored in the inode as
791  *
792  * {                        page                        }
793  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
794  *
795  *
796  * one block each for bitmap and buddy information.
797  * So for each group we take up 2 blocks. A page can
798  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
799  * So it can have information regarding groups_per_page which
800  * is blocks_per_page/2
801  *
802  * Locking note:  This routine takes the block group lock of all groups
803  * for this page; do not hold this lock when calling this routine!
804  */
805 
ext4_mb_init_cache(struct page * page,char * incore,gfp_t gfp)806 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
807 {
808 	ext4_group_t ngroups;
809 	int blocksize;
810 	int blocks_per_page;
811 	int groups_per_page;
812 	int err = 0;
813 	int i;
814 	ext4_group_t first_group, group;
815 	int first_block;
816 	struct super_block *sb;
817 	struct buffer_head *bhs;
818 	struct buffer_head **bh = NULL;
819 	struct inode *inode;
820 	char *data;
821 	char *bitmap;
822 	struct ext4_group_info *grinfo;
823 
824 	mb_debug(1, "init page %lu\n", page->index);
825 
826 	inode = page->mapping->host;
827 	sb = inode->i_sb;
828 	ngroups = ext4_get_groups_count(sb);
829 	blocksize = i_blocksize(inode);
830 	blocks_per_page = PAGE_SIZE / blocksize;
831 
832 	groups_per_page = blocks_per_page >> 1;
833 	if (groups_per_page == 0)
834 		groups_per_page = 1;
835 
836 	/* allocate buffer_heads to read bitmaps */
837 	if (groups_per_page > 1) {
838 		i = sizeof(struct buffer_head *) * groups_per_page;
839 		bh = kzalloc(i, gfp);
840 		if (bh == NULL) {
841 			err = -ENOMEM;
842 			goto out;
843 		}
844 	} else
845 		bh = &bhs;
846 
847 	first_group = page->index * blocks_per_page / 2;
848 
849 	/* read all groups the page covers into the cache */
850 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
851 		if (group >= ngroups)
852 			break;
853 
854 		grinfo = ext4_get_group_info(sb, group);
855 		/*
856 		 * If page is uptodate then we came here after online resize
857 		 * which added some new uninitialized group info structs, so
858 		 * we must skip all initialized uptodate buddies on the page,
859 		 * which may be currently in use by an allocating task.
860 		 */
861 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
862 			bh[i] = NULL;
863 			continue;
864 		}
865 		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
866 		if (IS_ERR(bh[i])) {
867 			err = PTR_ERR(bh[i]);
868 			bh[i] = NULL;
869 			goto out;
870 		}
871 		mb_debug(1, "read bitmap for group %u\n", group);
872 	}
873 
874 	/* wait for I/O completion */
875 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
876 		int err2;
877 
878 		if (!bh[i])
879 			continue;
880 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
881 		if (!err)
882 			err = err2;
883 	}
884 
885 	first_block = page->index * blocks_per_page;
886 	for (i = 0; i < blocks_per_page; i++) {
887 		group = (first_block + i) >> 1;
888 		if (group >= ngroups)
889 			break;
890 
891 		if (!bh[group - first_group])
892 			/* skip initialized uptodate buddy */
893 			continue;
894 
895 		if (!buffer_verified(bh[group - first_group]))
896 			/* Skip faulty bitmaps */
897 			continue;
898 		err = 0;
899 
900 		/*
901 		 * data carry information regarding this
902 		 * particular group in the format specified
903 		 * above
904 		 *
905 		 */
906 		data = page_address(page) + (i * blocksize);
907 		bitmap = bh[group - first_group]->b_data;
908 
909 		/*
910 		 * We place the buddy block and bitmap block
911 		 * close together
912 		 */
913 		if ((first_block + i) & 1) {
914 			/* this is block of buddy */
915 			BUG_ON(incore == NULL);
916 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
917 				group, page->index, i * blocksize);
918 			trace_ext4_mb_buddy_bitmap_load(sb, group);
919 			grinfo = ext4_get_group_info(sb, group);
920 			grinfo->bb_fragments = 0;
921 			memset(grinfo->bb_counters, 0,
922 			       sizeof(*grinfo->bb_counters) *
923 				(sb->s_blocksize_bits+2));
924 			/*
925 			 * incore got set to the group block bitmap below
926 			 */
927 			ext4_lock_group(sb, group);
928 			/* init the buddy */
929 			memset(data, 0xff, blocksize);
930 			ext4_mb_generate_buddy(sb, data, incore, group);
931 			ext4_unlock_group(sb, group);
932 			incore = NULL;
933 		} else {
934 			/* this is block of bitmap */
935 			BUG_ON(incore != NULL);
936 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
937 				group, page->index, i * blocksize);
938 			trace_ext4_mb_bitmap_load(sb, group);
939 
940 			/* see comments in ext4_mb_put_pa() */
941 			ext4_lock_group(sb, group);
942 			memcpy(data, bitmap, blocksize);
943 
944 			/* mark all preallocated blks used in in-core bitmap */
945 			ext4_mb_generate_from_pa(sb, data, group);
946 			ext4_mb_generate_from_freelist(sb, data, group);
947 			ext4_unlock_group(sb, group);
948 
949 			/* set incore so that the buddy information can be
950 			 * generated using this
951 			 */
952 			incore = data;
953 		}
954 	}
955 	SetPageUptodate(page);
956 
957 out:
958 	if (bh) {
959 		for (i = 0; i < groups_per_page; i++)
960 			brelse(bh[i]);
961 		if (bh != &bhs)
962 			kfree(bh);
963 	}
964 	return err;
965 }
966 
967 /*
968  * Lock the buddy and bitmap pages. This make sure other parallel init_group
969  * on the same buddy page doesn't happen whild holding the buddy page lock.
970  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
971  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
972  */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)973 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
974 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
975 {
976 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
977 	int block, pnum, poff;
978 	int blocks_per_page;
979 	struct page *page;
980 
981 	e4b->bd_buddy_page = NULL;
982 	e4b->bd_bitmap_page = NULL;
983 
984 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
985 	/*
986 	 * the buddy cache inode stores the block bitmap
987 	 * and buddy information in consecutive blocks.
988 	 * So for each group we need two blocks.
989 	 */
990 	block = group * 2;
991 	pnum = block / blocks_per_page;
992 	poff = block % blocks_per_page;
993 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
994 	if (!page)
995 		return -ENOMEM;
996 	BUG_ON(page->mapping != inode->i_mapping);
997 	e4b->bd_bitmap_page = page;
998 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
999 
1000 	if (blocks_per_page >= 2) {
1001 		/* buddy and bitmap are on the same page */
1002 		return 0;
1003 	}
1004 
1005 	block++;
1006 	pnum = block / blocks_per_page;
1007 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1008 	if (!page)
1009 		return -ENOMEM;
1010 	BUG_ON(page->mapping != inode->i_mapping);
1011 	e4b->bd_buddy_page = page;
1012 	return 0;
1013 }
1014 
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1015 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1016 {
1017 	if (e4b->bd_bitmap_page) {
1018 		unlock_page(e4b->bd_bitmap_page);
1019 		put_page(e4b->bd_bitmap_page);
1020 	}
1021 	if (e4b->bd_buddy_page) {
1022 		unlock_page(e4b->bd_buddy_page);
1023 		put_page(e4b->bd_buddy_page);
1024 	}
1025 }
1026 
1027 /*
1028  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1029  * block group lock of all groups for this page; do not hold the BG lock when
1030  * calling this routine!
1031  */
1032 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1033 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1034 {
1035 
1036 	struct ext4_group_info *this_grp;
1037 	struct ext4_buddy e4b;
1038 	struct page *page;
1039 	int ret = 0;
1040 
1041 	might_sleep();
1042 	mb_debug(1, "init group %u\n", group);
1043 	this_grp = ext4_get_group_info(sb, group);
1044 	/*
1045 	 * This ensures that we don't reinit the buddy cache
1046 	 * page which map to the group from which we are already
1047 	 * allocating. If we are looking at the buddy cache we would
1048 	 * have taken a reference using ext4_mb_load_buddy and that
1049 	 * would have pinned buddy page to page cache.
1050 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1051 	 * page accessed.
1052 	 */
1053 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1054 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1055 		/*
1056 		 * somebody initialized the group
1057 		 * return without doing anything
1058 		 */
1059 		goto err;
1060 	}
1061 
1062 	page = e4b.bd_bitmap_page;
1063 	ret = ext4_mb_init_cache(page, NULL, gfp);
1064 	if (ret)
1065 		goto err;
1066 	if (!PageUptodate(page)) {
1067 		ret = -EIO;
1068 		goto err;
1069 	}
1070 
1071 	if (e4b.bd_buddy_page == NULL) {
1072 		/*
1073 		 * If both the bitmap and buddy are in
1074 		 * the same page we don't need to force
1075 		 * init the buddy
1076 		 */
1077 		ret = 0;
1078 		goto err;
1079 	}
1080 	/* init buddy cache */
1081 	page = e4b.bd_buddy_page;
1082 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1083 	if (ret)
1084 		goto err;
1085 	if (!PageUptodate(page)) {
1086 		ret = -EIO;
1087 		goto err;
1088 	}
1089 err:
1090 	ext4_mb_put_buddy_page_lock(&e4b);
1091 	return ret;
1092 }
1093 
1094 /*
1095  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1096  * block group lock of all groups for this page; do not hold the BG lock when
1097  * calling this routine!
1098  */
1099 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1100 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1101 		       struct ext4_buddy *e4b, gfp_t gfp)
1102 {
1103 	int blocks_per_page;
1104 	int block;
1105 	int pnum;
1106 	int poff;
1107 	struct page *page;
1108 	int ret;
1109 	struct ext4_group_info *grp;
1110 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1111 	struct inode *inode = sbi->s_buddy_cache;
1112 
1113 	might_sleep();
1114 	mb_debug(1, "load group %u\n", group);
1115 
1116 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1117 	grp = ext4_get_group_info(sb, group);
1118 
1119 	e4b->bd_blkbits = sb->s_blocksize_bits;
1120 	e4b->bd_info = grp;
1121 	e4b->bd_sb = sb;
1122 	e4b->bd_group = group;
1123 	e4b->bd_buddy_page = NULL;
1124 	e4b->bd_bitmap_page = NULL;
1125 
1126 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1127 		/*
1128 		 * we need full data about the group
1129 		 * to make a good selection
1130 		 */
1131 		ret = ext4_mb_init_group(sb, group, gfp);
1132 		if (ret)
1133 			return ret;
1134 	}
1135 
1136 	/*
1137 	 * the buddy cache inode stores the block bitmap
1138 	 * and buddy information in consecutive blocks.
1139 	 * So for each group we need two blocks.
1140 	 */
1141 	block = group * 2;
1142 	pnum = block / blocks_per_page;
1143 	poff = block % blocks_per_page;
1144 
1145 	/* we could use find_or_create_page(), but it locks page
1146 	 * what we'd like to avoid in fast path ... */
1147 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1148 	if (page == NULL || !PageUptodate(page)) {
1149 		if (page)
1150 			/*
1151 			 * drop the page reference and try
1152 			 * to get the page with lock. If we
1153 			 * are not uptodate that implies
1154 			 * somebody just created the page but
1155 			 * is yet to initialize the same. So
1156 			 * wait for it to initialize.
1157 			 */
1158 			put_page(page);
1159 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1160 		if (page) {
1161 			BUG_ON(page->mapping != inode->i_mapping);
1162 			if (!PageUptodate(page)) {
1163 				ret = ext4_mb_init_cache(page, NULL, gfp);
1164 				if (ret) {
1165 					unlock_page(page);
1166 					goto err;
1167 				}
1168 				mb_cmp_bitmaps(e4b, page_address(page) +
1169 					       (poff * sb->s_blocksize));
1170 			}
1171 			unlock_page(page);
1172 		}
1173 	}
1174 	if (page == NULL) {
1175 		ret = -ENOMEM;
1176 		goto err;
1177 	}
1178 	if (!PageUptodate(page)) {
1179 		ret = -EIO;
1180 		goto err;
1181 	}
1182 
1183 	/* Pages marked accessed already */
1184 	e4b->bd_bitmap_page = page;
1185 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1186 
1187 	block++;
1188 	pnum = block / blocks_per_page;
1189 	poff = block % blocks_per_page;
1190 
1191 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1192 	if (page == NULL || !PageUptodate(page)) {
1193 		if (page)
1194 			put_page(page);
1195 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1196 		if (page) {
1197 			BUG_ON(page->mapping != inode->i_mapping);
1198 			if (!PageUptodate(page)) {
1199 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1200 							 gfp);
1201 				if (ret) {
1202 					unlock_page(page);
1203 					goto err;
1204 				}
1205 			}
1206 			unlock_page(page);
1207 		}
1208 	}
1209 	if (page == NULL) {
1210 		ret = -ENOMEM;
1211 		goto err;
1212 	}
1213 	if (!PageUptodate(page)) {
1214 		ret = -EIO;
1215 		goto err;
1216 	}
1217 
1218 	/* Pages marked accessed already */
1219 	e4b->bd_buddy_page = page;
1220 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221 
1222 	BUG_ON(e4b->bd_bitmap_page == NULL);
1223 	BUG_ON(e4b->bd_buddy_page == NULL);
1224 
1225 	return 0;
1226 
1227 err:
1228 	if (page)
1229 		put_page(page);
1230 	if (e4b->bd_bitmap_page)
1231 		put_page(e4b->bd_bitmap_page);
1232 	if (e4b->bd_buddy_page)
1233 		put_page(e4b->bd_buddy_page);
1234 	e4b->bd_buddy = NULL;
1235 	e4b->bd_bitmap = NULL;
1236 	return ret;
1237 }
1238 
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1239 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1240 			      struct ext4_buddy *e4b)
1241 {
1242 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1243 }
1244 
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1245 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1246 {
1247 	if (e4b->bd_bitmap_page)
1248 		put_page(e4b->bd_bitmap_page);
1249 	if (e4b->bd_buddy_page)
1250 		put_page(e4b->bd_buddy_page);
1251 }
1252 
1253 
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1254 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1255 {
1256 	int order = 1;
1257 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1258 	void *bb;
1259 
1260 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1261 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1262 
1263 	bb = e4b->bd_buddy;
1264 	while (order <= e4b->bd_blkbits + 1) {
1265 		block = block >> 1;
1266 		if (!mb_test_bit(block, bb)) {
1267 			/* this block is part of buddy of order 'order' */
1268 			return order;
1269 		}
1270 		bb += bb_incr;
1271 		bb_incr >>= 1;
1272 		order++;
1273 	}
1274 	return 0;
1275 }
1276 
mb_clear_bits(void * bm,int cur,int len)1277 static void mb_clear_bits(void *bm, int cur, int len)
1278 {
1279 	__u32 *addr;
1280 
1281 	len = cur + len;
1282 	while (cur < len) {
1283 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1284 			/* fast path: clear whole word at once */
1285 			addr = bm + (cur >> 3);
1286 			*addr = 0;
1287 			cur += 32;
1288 			continue;
1289 		}
1290 		mb_clear_bit(cur, bm);
1291 		cur++;
1292 	}
1293 }
1294 
1295 /* clear bits in given range
1296  * will return first found zero bit if any, -1 otherwise
1297  */
mb_test_and_clear_bits(void * bm,int cur,int len)1298 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1299 {
1300 	__u32 *addr;
1301 	int zero_bit = -1;
1302 
1303 	len = cur + len;
1304 	while (cur < len) {
1305 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1306 			/* fast path: clear whole word at once */
1307 			addr = bm + (cur >> 3);
1308 			if (*addr != (__u32)(-1) && zero_bit == -1)
1309 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1310 			*addr = 0;
1311 			cur += 32;
1312 			continue;
1313 		}
1314 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1315 			zero_bit = cur;
1316 		cur++;
1317 	}
1318 
1319 	return zero_bit;
1320 }
1321 
ext4_set_bits(void * bm,int cur,int len)1322 void ext4_set_bits(void *bm, int cur, int len)
1323 {
1324 	__u32 *addr;
1325 
1326 	len = cur + len;
1327 	while (cur < len) {
1328 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1329 			/* fast path: set whole word at once */
1330 			addr = bm + (cur >> 3);
1331 			*addr = 0xffffffff;
1332 			cur += 32;
1333 			continue;
1334 		}
1335 		mb_set_bit(cur, bm);
1336 		cur++;
1337 	}
1338 }
1339 
1340 /*
1341  * _________________________________________________________________ */
1342 
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1343 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1344 {
1345 	if (mb_test_bit(*bit + side, bitmap)) {
1346 		mb_clear_bit(*bit, bitmap);
1347 		(*bit) -= side;
1348 		return 1;
1349 	}
1350 	else {
1351 		(*bit) += side;
1352 		mb_set_bit(*bit, bitmap);
1353 		return -1;
1354 	}
1355 }
1356 
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1357 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1358 {
1359 	int max;
1360 	int order = 1;
1361 	void *buddy = mb_find_buddy(e4b, order, &max);
1362 
1363 	while (buddy) {
1364 		void *buddy2;
1365 
1366 		/* Bits in range [first; last] are known to be set since
1367 		 * corresponding blocks were allocated. Bits in range
1368 		 * (first; last) will stay set because they form buddies on
1369 		 * upper layer. We just deal with borders if they don't
1370 		 * align with upper layer and then go up.
1371 		 * Releasing entire group is all about clearing
1372 		 * single bit of highest order buddy.
1373 		 */
1374 
1375 		/* Example:
1376 		 * ---------------------------------
1377 		 * |   1   |   1   |   1   |   1   |
1378 		 * ---------------------------------
1379 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1380 		 * ---------------------------------
1381 		 *   0   1   2   3   4   5   6   7
1382 		 *      \_____________________/
1383 		 *
1384 		 * Neither [1] nor [6] is aligned to above layer.
1385 		 * Left neighbour [0] is free, so mark it busy,
1386 		 * decrease bb_counters and extend range to
1387 		 * [0; 6]
1388 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1389 		 * mark [6] free, increase bb_counters and shrink range to
1390 		 * [0; 5].
1391 		 * Then shift range to [0; 2], go up and do the same.
1392 		 */
1393 
1394 
1395 		if (first & 1)
1396 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1397 		if (!(last & 1))
1398 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1399 		if (first > last)
1400 			break;
1401 		order++;
1402 
1403 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1404 			mb_clear_bits(buddy, first, last - first + 1);
1405 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1406 			break;
1407 		}
1408 		first >>= 1;
1409 		last >>= 1;
1410 		buddy = buddy2;
1411 	}
1412 }
1413 
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1414 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1415 			   int first, int count)
1416 {
1417 	int left_is_free = 0;
1418 	int right_is_free = 0;
1419 	int block;
1420 	int last = first + count - 1;
1421 	struct super_block *sb = e4b->bd_sb;
1422 
1423 	if (WARN_ON(count == 0))
1424 		return;
1425 	BUG_ON(last >= (sb->s_blocksize << 3));
1426 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1427 	/* Don't bother if the block group is corrupt. */
1428 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1429 		return;
1430 
1431 	mb_check_buddy(e4b);
1432 	mb_free_blocks_double(inode, e4b, first, count);
1433 
1434 	e4b->bd_info->bb_free += count;
1435 	if (first < e4b->bd_info->bb_first_free)
1436 		e4b->bd_info->bb_first_free = first;
1437 
1438 	/* access memory sequentially: check left neighbour,
1439 	 * clear range and then check right neighbour
1440 	 */
1441 	if (first != 0)
1442 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1443 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1444 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1445 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1446 
1447 	if (unlikely(block != -1)) {
1448 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1449 		ext4_fsblk_t blocknr;
1450 
1451 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1452 		blocknr += EXT4_C2B(sbi, block);
1453 		ext4_grp_locked_error(sb, e4b->bd_group,
1454 				      inode ? inode->i_ino : 0,
1455 				      blocknr,
1456 				      "freeing already freed block "
1457 				      "(bit %u); block bitmap corrupt.",
1458 				      block);
1459 		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1460 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1461 		mb_regenerate_buddy(e4b);
1462 		goto done;
1463 	}
1464 
1465 	/* let's maintain fragments counter */
1466 	if (left_is_free && right_is_free)
1467 		e4b->bd_info->bb_fragments--;
1468 	else if (!left_is_free && !right_is_free)
1469 		e4b->bd_info->bb_fragments++;
1470 
1471 	/* buddy[0] == bd_bitmap is a special case, so handle
1472 	 * it right away and let mb_buddy_mark_free stay free of
1473 	 * zero order checks.
1474 	 * Check if neighbours are to be coaleasced,
1475 	 * adjust bitmap bb_counters and borders appropriately.
1476 	 */
1477 	if (first & 1) {
1478 		first += !left_is_free;
1479 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1480 	}
1481 	if (!(last & 1)) {
1482 		last -= !right_is_free;
1483 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1484 	}
1485 
1486 	if (first <= last)
1487 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1488 
1489 done:
1490 	mb_set_largest_free_order(sb, e4b->bd_info);
1491 	mb_check_buddy(e4b);
1492 }
1493 
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1494 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1495 				int needed, struct ext4_free_extent *ex)
1496 {
1497 	int next = block;
1498 	int max, order;
1499 	void *buddy;
1500 
1501 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1502 	BUG_ON(ex == NULL);
1503 
1504 	buddy = mb_find_buddy(e4b, 0, &max);
1505 	BUG_ON(buddy == NULL);
1506 	BUG_ON(block >= max);
1507 	if (mb_test_bit(block, buddy)) {
1508 		ex->fe_len = 0;
1509 		ex->fe_start = 0;
1510 		ex->fe_group = 0;
1511 		return 0;
1512 	}
1513 
1514 	/* find actual order */
1515 	order = mb_find_order_for_block(e4b, block);
1516 	block = block >> order;
1517 
1518 	ex->fe_len = 1 << order;
1519 	ex->fe_start = block << order;
1520 	ex->fe_group = e4b->bd_group;
1521 
1522 	/* calc difference from given start */
1523 	next = next - ex->fe_start;
1524 	ex->fe_len -= next;
1525 	ex->fe_start += next;
1526 
1527 	while (needed > ex->fe_len &&
1528 	       mb_find_buddy(e4b, order, &max)) {
1529 
1530 		if (block + 1 >= max)
1531 			break;
1532 
1533 		next = (block + 1) * (1 << order);
1534 		if (mb_test_bit(next, e4b->bd_bitmap))
1535 			break;
1536 
1537 		order = mb_find_order_for_block(e4b, next);
1538 
1539 		block = next >> order;
1540 		ex->fe_len += 1 << order;
1541 	}
1542 
1543 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1544 		/* Should never happen! (but apparently sometimes does?!?) */
1545 		WARN_ON(1);
1546 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1547 			"corruption or bug in mb_find_extent "
1548 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1549 			block, order, needed, ex->fe_group, ex->fe_start,
1550 			ex->fe_len, ex->fe_logical);
1551 		ex->fe_len = 0;
1552 		ex->fe_start = 0;
1553 		ex->fe_group = 0;
1554 	}
1555 	return ex->fe_len;
1556 }
1557 
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1558 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1559 {
1560 	int ord;
1561 	int mlen = 0;
1562 	int max = 0;
1563 	int cur;
1564 	int start = ex->fe_start;
1565 	int len = ex->fe_len;
1566 	unsigned ret = 0;
1567 	int len0 = len;
1568 	void *buddy;
1569 
1570 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1571 	BUG_ON(e4b->bd_group != ex->fe_group);
1572 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1573 	mb_check_buddy(e4b);
1574 	mb_mark_used_double(e4b, start, len);
1575 
1576 	e4b->bd_info->bb_free -= len;
1577 	if (e4b->bd_info->bb_first_free == start)
1578 		e4b->bd_info->bb_first_free += len;
1579 
1580 	/* let's maintain fragments counter */
1581 	if (start != 0)
1582 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1583 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1584 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1585 	if (mlen && max)
1586 		e4b->bd_info->bb_fragments++;
1587 	else if (!mlen && !max)
1588 		e4b->bd_info->bb_fragments--;
1589 
1590 	/* let's maintain buddy itself */
1591 	while (len) {
1592 		ord = mb_find_order_for_block(e4b, start);
1593 
1594 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1595 			/* the whole chunk may be allocated at once! */
1596 			mlen = 1 << ord;
1597 			buddy = mb_find_buddy(e4b, ord, &max);
1598 			BUG_ON((start >> ord) >= max);
1599 			mb_set_bit(start >> ord, buddy);
1600 			e4b->bd_info->bb_counters[ord]--;
1601 			start += mlen;
1602 			len -= mlen;
1603 			BUG_ON(len < 0);
1604 			continue;
1605 		}
1606 
1607 		/* store for history */
1608 		if (ret == 0)
1609 			ret = len | (ord << 16);
1610 
1611 		/* we have to split large buddy */
1612 		BUG_ON(ord <= 0);
1613 		buddy = mb_find_buddy(e4b, ord, &max);
1614 		mb_set_bit(start >> ord, buddy);
1615 		e4b->bd_info->bb_counters[ord]--;
1616 
1617 		ord--;
1618 		cur = (start >> ord) & ~1U;
1619 		buddy = mb_find_buddy(e4b, ord, &max);
1620 		mb_clear_bit(cur, buddy);
1621 		mb_clear_bit(cur + 1, buddy);
1622 		e4b->bd_info->bb_counters[ord]++;
1623 		e4b->bd_info->bb_counters[ord]++;
1624 	}
1625 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1626 
1627 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1628 	mb_check_buddy(e4b);
1629 
1630 	return ret;
1631 }
1632 
1633 /*
1634  * Must be called under group lock!
1635  */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1636 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1637 					struct ext4_buddy *e4b)
1638 {
1639 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1640 	int ret;
1641 
1642 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1643 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1644 
1645 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1646 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1647 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1648 
1649 	/* preallocation can change ac_b_ex, thus we store actually
1650 	 * allocated blocks for history */
1651 	ac->ac_f_ex = ac->ac_b_ex;
1652 
1653 	ac->ac_status = AC_STATUS_FOUND;
1654 	ac->ac_tail = ret & 0xffff;
1655 	ac->ac_buddy = ret >> 16;
1656 
1657 	/*
1658 	 * take the page reference. We want the page to be pinned
1659 	 * so that we don't get a ext4_mb_init_cache_call for this
1660 	 * group until we update the bitmap. That would mean we
1661 	 * double allocate blocks. The reference is dropped
1662 	 * in ext4_mb_release_context
1663 	 */
1664 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1665 	get_page(ac->ac_bitmap_page);
1666 	ac->ac_buddy_page = e4b->bd_buddy_page;
1667 	get_page(ac->ac_buddy_page);
1668 	/* store last allocated for subsequent stream allocation */
1669 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1670 		spin_lock(&sbi->s_md_lock);
1671 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1672 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1673 		spin_unlock(&sbi->s_md_lock);
1674 	}
1675 }
1676 
1677 /*
1678  * regular allocator, for general purposes allocation
1679  */
1680 
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1681 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1682 					struct ext4_buddy *e4b,
1683 					int finish_group)
1684 {
1685 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1686 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1687 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1688 	struct ext4_free_extent ex;
1689 	int max;
1690 
1691 	if (ac->ac_status == AC_STATUS_FOUND)
1692 		return;
1693 	/*
1694 	 * We don't want to scan for a whole year
1695 	 */
1696 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1697 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1698 		ac->ac_status = AC_STATUS_BREAK;
1699 		return;
1700 	}
1701 
1702 	/*
1703 	 * Haven't found good chunk so far, let's continue
1704 	 */
1705 	if (bex->fe_len < gex->fe_len)
1706 		return;
1707 
1708 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1709 			&& bex->fe_group == e4b->bd_group) {
1710 		/* recheck chunk's availability - we don't know
1711 		 * when it was found (within this lock-unlock
1712 		 * period or not) */
1713 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1714 		if (max >= gex->fe_len) {
1715 			ext4_mb_use_best_found(ac, e4b);
1716 			return;
1717 		}
1718 	}
1719 }
1720 
1721 /*
1722  * The routine checks whether found extent is good enough. If it is,
1723  * then the extent gets marked used and flag is set to the context
1724  * to stop scanning. Otherwise, the extent is compared with the
1725  * previous found extent and if new one is better, then it's stored
1726  * in the context. Later, the best found extent will be used, if
1727  * mballoc can't find good enough extent.
1728  *
1729  * FIXME: real allocation policy is to be designed yet!
1730  */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1731 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1732 					struct ext4_free_extent *ex,
1733 					struct ext4_buddy *e4b)
1734 {
1735 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1736 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1737 
1738 	BUG_ON(ex->fe_len <= 0);
1739 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1740 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1741 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1742 
1743 	ac->ac_found++;
1744 
1745 	/*
1746 	 * The special case - take what you catch first
1747 	 */
1748 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1749 		*bex = *ex;
1750 		ext4_mb_use_best_found(ac, e4b);
1751 		return;
1752 	}
1753 
1754 	/*
1755 	 * Let's check whether the chuck is good enough
1756 	 */
1757 	if (ex->fe_len == gex->fe_len) {
1758 		*bex = *ex;
1759 		ext4_mb_use_best_found(ac, e4b);
1760 		return;
1761 	}
1762 
1763 	/*
1764 	 * If this is first found extent, just store it in the context
1765 	 */
1766 	if (bex->fe_len == 0) {
1767 		*bex = *ex;
1768 		return;
1769 	}
1770 
1771 	/*
1772 	 * If new found extent is better, store it in the context
1773 	 */
1774 	if (bex->fe_len < gex->fe_len) {
1775 		/* if the request isn't satisfied, any found extent
1776 		 * larger than previous best one is better */
1777 		if (ex->fe_len > bex->fe_len)
1778 			*bex = *ex;
1779 	} else if (ex->fe_len > gex->fe_len) {
1780 		/* if the request is satisfied, then we try to find
1781 		 * an extent that still satisfy the request, but is
1782 		 * smaller than previous one */
1783 		if (ex->fe_len < bex->fe_len)
1784 			*bex = *ex;
1785 	}
1786 
1787 	ext4_mb_check_limits(ac, e4b, 0);
1788 }
1789 
1790 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1791 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1792 					struct ext4_buddy *e4b)
1793 {
1794 	struct ext4_free_extent ex = ac->ac_b_ex;
1795 	ext4_group_t group = ex.fe_group;
1796 	int max;
1797 	int err;
1798 
1799 	BUG_ON(ex.fe_len <= 0);
1800 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1801 	if (err)
1802 		return err;
1803 
1804 	ext4_lock_group(ac->ac_sb, group);
1805 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1806 		goto out;
1807 
1808 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1809 
1810 	if (max > 0) {
1811 		ac->ac_b_ex = ex;
1812 		ext4_mb_use_best_found(ac, e4b);
1813 	}
1814 
1815 out:
1816 	ext4_unlock_group(ac->ac_sb, group);
1817 	ext4_mb_unload_buddy(e4b);
1818 
1819 	return 0;
1820 }
1821 
1822 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1823 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1824 				struct ext4_buddy *e4b)
1825 {
1826 	ext4_group_t group = ac->ac_g_ex.fe_group;
1827 	int max;
1828 	int err;
1829 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1830 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1831 	struct ext4_free_extent ex;
1832 
1833 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1834 		return 0;
1835 	if (grp->bb_free == 0)
1836 		return 0;
1837 
1838 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1839 	if (err)
1840 		return err;
1841 
1842 	ext4_lock_group(ac->ac_sb, group);
1843 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1844 		goto out;
1845 
1846 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1847 			     ac->ac_g_ex.fe_len, &ex);
1848 	ex.fe_logical = 0xDEADFA11; /* debug value */
1849 
1850 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1851 		ext4_fsblk_t start;
1852 
1853 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1854 			ex.fe_start;
1855 		/* use do_div to get remainder (would be 64-bit modulo) */
1856 		if (do_div(start, sbi->s_stripe) == 0) {
1857 			ac->ac_found++;
1858 			ac->ac_b_ex = ex;
1859 			ext4_mb_use_best_found(ac, e4b);
1860 		}
1861 	} else if (max >= ac->ac_g_ex.fe_len) {
1862 		BUG_ON(ex.fe_len <= 0);
1863 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1864 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1865 		ac->ac_found++;
1866 		ac->ac_b_ex = ex;
1867 		ext4_mb_use_best_found(ac, e4b);
1868 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1869 		/* Sometimes, caller may want to merge even small
1870 		 * number of blocks to an existing extent */
1871 		BUG_ON(ex.fe_len <= 0);
1872 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1873 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1874 		ac->ac_found++;
1875 		ac->ac_b_ex = ex;
1876 		ext4_mb_use_best_found(ac, e4b);
1877 	}
1878 out:
1879 	ext4_unlock_group(ac->ac_sb, group);
1880 	ext4_mb_unload_buddy(e4b);
1881 
1882 	return 0;
1883 }
1884 
1885 /*
1886  * The routine scans buddy structures (not bitmap!) from given order
1887  * to max order and tries to find big enough chunk to satisfy the req
1888  */
1889 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1890 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1891 					struct ext4_buddy *e4b)
1892 {
1893 	struct super_block *sb = ac->ac_sb;
1894 	struct ext4_group_info *grp = e4b->bd_info;
1895 	void *buddy;
1896 	int i;
1897 	int k;
1898 	int max;
1899 
1900 	BUG_ON(ac->ac_2order <= 0);
1901 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1902 		if (grp->bb_counters[i] == 0)
1903 			continue;
1904 
1905 		buddy = mb_find_buddy(e4b, i, &max);
1906 		BUG_ON(buddy == NULL);
1907 
1908 		k = mb_find_next_zero_bit(buddy, max, 0);
1909 		if (k >= max) {
1910 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1911 				"%d free clusters of order %d. But found 0",
1912 				grp->bb_counters[i], i);
1913 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1914 					 e4b->bd_group,
1915 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1916 			break;
1917 		}
1918 		ac->ac_found++;
1919 
1920 		ac->ac_b_ex.fe_len = 1 << i;
1921 		ac->ac_b_ex.fe_start = k << i;
1922 		ac->ac_b_ex.fe_group = e4b->bd_group;
1923 
1924 		ext4_mb_use_best_found(ac, e4b);
1925 
1926 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1927 
1928 		if (EXT4_SB(sb)->s_mb_stats)
1929 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1930 
1931 		break;
1932 	}
1933 }
1934 
1935 /*
1936  * The routine scans the group and measures all found extents.
1937  * In order to optimize scanning, caller must pass number of
1938  * free blocks in the group, so the routine can know upper limit.
1939  */
1940 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1941 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1942 					struct ext4_buddy *e4b)
1943 {
1944 	struct super_block *sb = ac->ac_sb;
1945 	void *bitmap = e4b->bd_bitmap;
1946 	struct ext4_free_extent ex;
1947 	int i;
1948 	int free;
1949 
1950 	free = e4b->bd_info->bb_free;
1951 	if (WARN_ON(free <= 0))
1952 		return;
1953 
1954 	i = e4b->bd_info->bb_first_free;
1955 
1956 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1957 		i = mb_find_next_zero_bit(bitmap,
1958 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1959 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1960 			/*
1961 			 * IF we have corrupt bitmap, we won't find any
1962 			 * free blocks even though group info says we
1963 			 * we have free blocks
1964 			 */
1965 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1966 					"%d free clusters as per "
1967 					"group info. But bitmap says 0",
1968 					free);
1969 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1970 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1971 			break;
1972 		}
1973 
1974 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1975 		if (WARN_ON(ex.fe_len <= 0))
1976 			break;
1977 		if (free < ex.fe_len) {
1978 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1979 					"%d free clusters as per "
1980 					"group info. But got %d blocks",
1981 					free, ex.fe_len);
1982 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1983 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1984 			/*
1985 			 * The number of free blocks differs. This mostly
1986 			 * indicate that the bitmap is corrupt. So exit
1987 			 * without claiming the space.
1988 			 */
1989 			break;
1990 		}
1991 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1992 		ext4_mb_measure_extent(ac, &ex, e4b);
1993 
1994 		i += ex.fe_len;
1995 		free -= ex.fe_len;
1996 	}
1997 
1998 	ext4_mb_check_limits(ac, e4b, 1);
1999 }
2000 
2001 /*
2002  * This is a special case for storages like raid5
2003  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2004  */
2005 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2006 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2007 				 struct ext4_buddy *e4b)
2008 {
2009 	struct super_block *sb = ac->ac_sb;
2010 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2011 	void *bitmap = e4b->bd_bitmap;
2012 	struct ext4_free_extent ex;
2013 	ext4_fsblk_t first_group_block;
2014 	ext4_fsblk_t a;
2015 	ext4_grpblk_t i;
2016 	int max;
2017 
2018 	BUG_ON(sbi->s_stripe == 0);
2019 
2020 	/* find first stripe-aligned block in group */
2021 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2022 
2023 	a = first_group_block + sbi->s_stripe - 1;
2024 	do_div(a, sbi->s_stripe);
2025 	i = (a * sbi->s_stripe) - first_group_block;
2026 
2027 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2028 		if (!mb_test_bit(i, bitmap)) {
2029 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2030 			if (max >= sbi->s_stripe) {
2031 				ac->ac_found++;
2032 				ex.fe_logical = 0xDEADF00D; /* debug value */
2033 				ac->ac_b_ex = ex;
2034 				ext4_mb_use_best_found(ac, e4b);
2035 				break;
2036 			}
2037 		}
2038 		i += sbi->s_stripe;
2039 	}
2040 }
2041 
2042 /*
2043  * This is now called BEFORE we load the buddy bitmap.
2044  * Returns either 1 or 0 indicating that the group is either suitable
2045  * for the allocation or not. In addition it can also return negative
2046  * error code when something goes wrong.
2047  */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2048 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2049 				ext4_group_t group, int cr)
2050 {
2051 	unsigned free, fragments;
2052 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2053 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2054 
2055 	BUG_ON(cr < 0 || cr >= 4);
2056 
2057 	free = grp->bb_free;
2058 	if (free == 0)
2059 		return 0;
2060 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2061 		return 0;
2062 
2063 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2064 		return 0;
2065 
2066 	/* We only do this if the grp has never been initialized */
2067 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2068 		int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2069 		if (ret)
2070 			return ret;
2071 	}
2072 
2073 	fragments = grp->bb_fragments;
2074 	if (fragments == 0)
2075 		return 0;
2076 
2077 	switch (cr) {
2078 	case 0:
2079 		BUG_ON(ac->ac_2order == 0);
2080 
2081 		/* Avoid using the first bg of a flexgroup for data files */
2082 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2083 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2084 		    ((group % flex_size) == 0))
2085 			return 0;
2086 
2087 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2088 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2089 			return 1;
2090 
2091 		if (grp->bb_largest_free_order < ac->ac_2order)
2092 			return 0;
2093 
2094 		return 1;
2095 	case 1:
2096 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2097 			return 1;
2098 		break;
2099 	case 2:
2100 		if (free >= ac->ac_g_ex.fe_len)
2101 			return 1;
2102 		break;
2103 	case 3:
2104 		return 1;
2105 	default:
2106 		BUG();
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2113 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2114 {
2115 	ext4_group_t ngroups, group, i;
2116 	int cr;
2117 	int err = 0, first_err = 0;
2118 	struct ext4_sb_info *sbi;
2119 	struct super_block *sb;
2120 	struct ext4_buddy e4b;
2121 
2122 	sb = ac->ac_sb;
2123 	sbi = EXT4_SB(sb);
2124 	ngroups = ext4_get_groups_count(sb);
2125 	/* non-extent files are limited to low blocks/groups */
2126 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2127 		ngroups = sbi->s_blockfile_groups;
2128 
2129 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2130 
2131 	/* first, try the goal */
2132 	err = ext4_mb_find_by_goal(ac, &e4b);
2133 	if (err || ac->ac_status == AC_STATUS_FOUND)
2134 		goto out;
2135 
2136 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2137 		goto out;
2138 
2139 	/*
2140 	 * ac->ac2_order is set only if the fe_len is a power of 2
2141 	 * if ac2_order is set we also set criteria to 0 so that we
2142 	 * try exact allocation using buddy.
2143 	 */
2144 	i = fls(ac->ac_g_ex.fe_len);
2145 	ac->ac_2order = 0;
2146 	/*
2147 	 * We search using buddy data only if the order of the request
2148 	 * is greater than equal to the sbi_s_mb_order2_reqs
2149 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2150 	 * We also support searching for power-of-two requests only for
2151 	 * requests upto maximum buddy size we have constructed.
2152 	 */
2153 	if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2154 		/*
2155 		 * This should tell if fe_len is exactly power of 2
2156 		 */
2157 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2158 			ac->ac_2order = array_index_nospec(i - 1,
2159 							   sb->s_blocksize_bits + 2);
2160 	}
2161 
2162 	/* if stream allocation is enabled, use global goal */
2163 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2164 		/* TBD: may be hot point */
2165 		spin_lock(&sbi->s_md_lock);
2166 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2167 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2168 		spin_unlock(&sbi->s_md_lock);
2169 	}
2170 
2171 	/* Let's just scan groups to find more-less suitable blocks */
2172 	cr = ac->ac_2order ? 0 : 1;
2173 	/*
2174 	 * cr == 0 try to get exact allocation,
2175 	 * cr == 3  try to get anything
2176 	 */
2177 repeat:
2178 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2179 		ac->ac_criteria = cr;
2180 		/*
2181 		 * searching for the right group start
2182 		 * from the goal value specified
2183 		 */
2184 		group = ac->ac_g_ex.fe_group;
2185 
2186 		for (i = 0; i < ngroups; group++, i++) {
2187 			int ret = 0;
2188 			cond_resched();
2189 			/*
2190 			 * Artificially restricted ngroups for non-extent
2191 			 * files makes group > ngroups possible on first loop.
2192 			 */
2193 			if (group >= ngroups)
2194 				group = 0;
2195 
2196 			/* This now checks without needing the buddy page */
2197 			ret = ext4_mb_good_group(ac, group, cr);
2198 			if (ret <= 0) {
2199 				if (!first_err)
2200 					first_err = ret;
2201 				continue;
2202 			}
2203 
2204 			err = ext4_mb_load_buddy(sb, group, &e4b);
2205 			if (err)
2206 				goto out;
2207 
2208 			ext4_lock_group(sb, group);
2209 
2210 			/*
2211 			 * We need to check again after locking the
2212 			 * block group
2213 			 */
2214 			ret = ext4_mb_good_group(ac, group, cr);
2215 			if (ret <= 0) {
2216 				ext4_unlock_group(sb, group);
2217 				ext4_mb_unload_buddy(&e4b);
2218 				if (!first_err)
2219 					first_err = ret;
2220 				continue;
2221 			}
2222 
2223 			ac->ac_groups_scanned++;
2224 			if (cr == 0)
2225 				ext4_mb_simple_scan_group(ac, &e4b);
2226 			else if (cr == 1 && sbi->s_stripe &&
2227 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2228 				ext4_mb_scan_aligned(ac, &e4b);
2229 			else
2230 				ext4_mb_complex_scan_group(ac, &e4b);
2231 
2232 			ext4_unlock_group(sb, group);
2233 			ext4_mb_unload_buddy(&e4b);
2234 
2235 			if (ac->ac_status != AC_STATUS_CONTINUE)
2236 				break;
2237 		}
2238 	}
2239 
2240 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2241 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2242 		/*
2243 		 * We've been searching too long. Let's try to allocate
2244 		 * the best chunk we've found so far
2245 		 */
2246 
2247 		ext4_mb_try_best_found(ac, &e4b);
2248 		if (ac->ac_status != AC_STATUS_FOUND) {
2249 			/*
2250 			 * Someone more lucky has already allocated it.
2251 			 * The only thing we can do is just take first
2252 			 * found block(s)
2253 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2254 			 */
2255 			ac->ac_b_ex.fe_group = 0;
2256 			ac->ac_b_ex.fe_start = 0;
2257 			ac->ac_b_ex.fe_len = 0;
2258 			ac->ac_status = AC_STATUS_CONTINUE;
2259 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2260 			cr = 3;
2261 			atomic_inc(&sbi->s_mb_lost_chunks);
2262 			goto repeat;
2263 		}
2264 	}
2265 out:
2266 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2267 		err = first_err;
2268 	return err;
2269 }
2270 
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2271 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2272 {
2273 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2274 	ext4_group_t group;
2275 
2276 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2277 		return NULL;
2278 	group = *pos + 1;
2279 	return (void *) ((unsigned long) group);
2280 }
2281 
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2282 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2283 {
2284 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2285 	ext4_group_t group;
2286 
2287 	++*pos;
2288 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2289 		return NULL;
2290 	group = *pos + 1;
2291 	return (void *) ((unsigned long) group);
2292 }
2293 
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2294 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2295 {
2296 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2297 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2298 	int i;
2299 	int err, buddy_loaded = 0;
2300 	struct ext4_buddy e4b;
2301 	struct ext4_group_info *grinfo;
2302 	unsigned char blocksize_bits = min_t(unsigned char,
2303 					     sb->s_blocksize_bits,
2304 					     EXT4_MAX_BLOCK_LOG_SIZE);
2305 	struct sg {
2306 		struct ext4_group_info info;
2307 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2308 	} sg;
2309 
2310 	group--;
2311 	if (group == 0)
2312 		seq_puts(seq, "#group: free  frags first ["
2313 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2314 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2315 
2316 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2317 		sizeof(struct ext4_group_info);
2318 
2319 	grinfo = ext4_get_group_info(sb, group);
2320 	/* Load the group info in memory only if not already loaded. */
2321 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2322 		err = ext4_mb_load_buddy(sb, group, &e4b);
2323 		if (err) {
2324 			seq_printf(seq, "#%-5u: I/O error\n", group);
2325 			return 0;
2326 		}
2327 		buddy_loaded = 1;
2328 	}
2329 
2330 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2331 
2332 	if (buddy_loaded)
2333 		ext4_mb_unload_buddy(&e4b);
2334 
2335 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2336 			sg.info.bb_fragments, sg.info.bb_first_free);
2337 	for (i = 0; i <= 13; i++)
2338 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2339 				sg.info.bb_counters[i] : 0);
2340 	seq_printf(seq, " ]\n");
2341 
2342 	return 0;
2343 }
2344 
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2345 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2346 {
2347 }
2348 
2349 const struct seq_operations ext4_mb_seq_groups_ops = {
2350 	.start  = ext4_mb_seq_groups_start,
2351 	.next   = ext4_mb_seq_groups_next,
2352 	.stop   = ext4_mb_seq_groups_stop,
2353 	.show   = ext4_mb_seq_groups_show,
2354 };
2355 
get_groupinfo_cache(int blocksize_bits)2356 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2357 {
2358 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2359 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2360 
2361 	BUG_ON(!cachep);
2362 	return cachep;
2363 }
2364 
2365 /*
2366  * Allocate the top-level s_group_info array for the specified number
2367  * of groups
2368  */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)2369 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2370 {
2371 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2372 	unsigned size;
2373 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2374 
2375 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2376 		EXT4_DESC_PER_BLOCK_BITS(sb);
2377 	if (size <= sbi->s_group_info_size)
2378 		return 0;
2379 
2380 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2381 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
2382 	if (!new_groupinfo) {
2383 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2384 		return -ENOMEM;
2385 	}
2386 	rcu_read_lock();
2387 	old_groupinfo = rcu_dereference(sbi->s_group_info);
2388 	if (old_groupinfo)
2389 		memcpy(new_groupinfo, old_groupinfo,
2390 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2391 	rcu_read_unlock();
2392 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2393 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2394 	if (old_groupinfo)
2395 		ext4_kvfree_array_rcu(old_groupinfo);
2396 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2397 		   sbi->s_group_info_size);
2398 	return 0;
2399 }
2400 
2401 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2402 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2403 			  struct ext4_group_desc *desc)
2404 {
2405 	int i;
2406 	int metalen = 0;
2407 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2408 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2409 	struct ext4_group_info **meta_group_info;
2410 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2411 
2412 	/*
2413 	 * First check if this group is the first of a reserved block.
2414 	 * If it's true, we have to allocate a new table of pointers
2415 	 * to ext4_group_info structures
2416 	 */
2417 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2418 		metalen = sizeof(*meta_group_info) <<
2419 			EXT4_DESC_PER_BLOCK_BITS(sb);
2420 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2421 		if (meta_group_info == NULL) {
2422 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2423 				 "for a buddy group");
2424 			goto exit_meta_group_info;
2425 		}
2426 		rcu_read_lock();
2427 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2428 		rcu_read_unlock();
2429 	}
2430 
2431 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2432 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2433 
2434 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2435 	if (meta_group_info[i] == NULL) {
2436 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2437 		goto exit_group_info;
2438 	}
2439 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2440 		&(meta_group_info[i]->bb_state));
2441 
2442 	/*
2443 	 * initialize bb_free to be able to skip
2444 	 * empty groups without initialization
2445 	 */
2446 	if (ext4_has_group_desc_csum(sb) &&
2447 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2448 		meta_group_info[i]->bb_free =
2449 			ext4_free_clusters_after_init(sb, group, desc);
2450 	} else {
2451 		meta_group_info[i]->bb_free =
2452 			ext4_free_group_clusters(sb, desc);
2453 	}
2454 
2455 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2456 	init_rwsem(&meta_group_info[i]->alloc_sem);
2457 	meta_group_info[i]->bb_free_root = RB_ROOT;
2458 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2459 
2460 #ifdef DOUBLE_CHECK
2461 	{
2462 		struct buffer_head *bh;
2463 		meta_group_info[i]->bb_bitmap =
2464 			kmalloc(sb->s_blocksize, GFP_NOFS);
2465 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2466 		bh = ext4_read_block_bitmap(sb, group);
2467 		BUG_ON(IS_ERR_OR_NULL(bh));
2468 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2469 			sb->s_blocksize);
2470 		put_bh(bh);
2471 	}
2472 #endif
2473 
2474 	return 0;
2475 
2476 exit_group_info:
2477 	/* If a meta_group_info table has been allocated, release it now */
2478 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2479 		struct ext4_group_info ***group_info;
2480 
2481 		rcu_read_lock();
2482 		group_info = rcu_dereference(sbi->s_group_info);
2483 		kfree(group_info[idx]);
2484 		group_info[idx] = NULL;
2485 		rcu_read_unlock();
2486 	}
2487 exit_meta_group_info:
2488 	return -ENOMEM;
2489 } /* ext4_mb_add_groupinfo */
2490 
ext4_mb_init_backend(struct super_block * sb)2491 static int ext4_mb_init_backend(struct super_block *sb)
2492 {
2493 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2494 	ext4_group_t i;
2495 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2496 	int err;
2497 	struct ext4_group_desc *desc;
2498 	struct ext4_group_info ***group_info;
2499 	struct kmem_cache *cachep;
2500 
2501 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2502 	if (err)
2503 		return err;
2504 
2505 	sbi->s_buddy_cache = new_inode(sb);
2506 	if (sbi->s_buddy_cache == NULL) {
2507 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2508 		goto err_freesgi;
2509 	}
2510 	/* To avoid potentially colliding with an valid on-disk inode number,
2511 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2512 	 * not in the inode hash, so it should never be found by iget(), but
2513 	 * this will avoid confusion if it ever shows up during debugging. */
2514 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2515 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2516 	for (i = 0; i < ngroups; i++) {
2517 		cond_resched();
2518 		desc = ext4_get_group_desc(sb, i, NULL);
2519 		if (desc == NULL) {
2520 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2521 			goto err_freebuddy;
2522 		}
2523 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2524 			goto err_freebuddy;
2525 	}
2526 
2527 	return 0;
2528 
2529 err_freebuddy:
2530 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2531 	while (i-- > 0)
2532 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2533 	i = sbi->s_group_info_size;
2534 	rcu_read_lock();
2535 	group_info = rcu_dereference(sbi->s_group_info);
2536 	while (i-- > 0)
2537 		kfree(group_info[i]);
2538 	rcu_read_unlock();
2539 	iput(sbi->s_buddy_cache);
2540 err_freesgi:
2541 	rcu_read_lock();
2542 	kvfree(rcu_dereference(sbi->s_group_info));
2543 	rcu_read_unlock();
2544 	return -ENOMEM;
2545 }
2546 
ext4_groupinfo_destroy_slabs(void)2547 static void ext4_groupinfo_destroy_slabs(void)
2548 {
2549 	int i;
2550 
2551 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2552 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
2553 		ext4_groupinfo_caches[i] = NULL;
2554 	}
2555 }
2556 
ext4_groupinfo_create_slab(size_t size)2557 static int ext4_groupinfo_create_slab(size_t size)
2558 {
2559 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2560 	int slab_size;
2561 	int blocksize_bits = order_base_2(size);
2562 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2563 	struct kmem_cache *cachep;
2564 
2565 	if (cache_index >= NR_GRPINFO_CACHES)
2566 		return -EINVAL;
2567 
2568 	if (unlikely(cache_index < 0))
2569 		cache_index = 0;
2570 
2571 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2572 	if (ext4_groupinfo_caches[cache_index]) {
2573 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2574 		return 0;	/* Already created */
2575 	}
2576 
2577 	slab_size = offsetof(struct ext4_group_info,
2578 				bb_counters[blocksize_bits + 2]);
2579 
2580 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2581 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2582 					NULL);
2583 
2584 	ext4_groupinfo_caches[cache_index] = cachep;
2585 
2586 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2587 	if (!cachep) {
2588 		printk(KERN_EMERG
2589 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2590 		return -ENOMEM;
2591 	}
2592 
2593 	return 0;
2594 }
2595 
ext4_mb_init(struct super_block * sb)2596 int ext4_mb_init(struct super_block *sb)
2597 {
2598 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2599 	unsigned i, j;
2600 	unsigned offset, offset_incr;
2601 	unsigned max;
2602 	int ret;
2603 
2604 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2605 
2606 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2607 	if (sbi->s_mb_offsets == NULL) {
2608 		ret = -ENOMEM;
2609 		goto out;
2610 	}
2611 
2612 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2613 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2614 	if (sbi->s_mb_maxs == NULL) {
2615 		ret = -ENOMEM;
2616 		goto out;
2617 	}
2618 
2619 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2620 	if (ret < 0)
2621 		goto out;
2622 
2623 	/* order 0 is regular bitmap */
2624 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2625 	sbi->s_mb_offsets[0] = 0;
2626 
2627 	i = 1;
2628 	offset = 0;
2629 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2630 	max = sb->s_blocksize << 2;
2631 	do {
2632 		sbi->s_mb_offsets[i] = offset;
2633 		sbi->s_mb_maxs[i] = max;
2634 		offset += offset_incr;
2635 		offset_incr = offset_incr >> 1;
2636 		max = max >> 1;
2637 		i++;
2638 	} while (i <= sb->s_blocksize_bits + 1);
2639 
2640 	spin_lock_init(&sbi->s_md_lock);
2641 	spin_lock_init(&sbi->s_bal_lock);
2642 	sbi->s_mb_free_pending = 0;
2643 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
2644 
2645 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2646 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2647 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2648 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2649 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2650 	/*
2651 	 * The default group preallocation is 512, which for 4k block
2652 	 * sizes translates to 2 megabytes.  However for bigalloc file
2653 	 * systems, this is probably too big (i.e, if the cluster size
2654 	 * is 1 megabyte, then group preallocation size becomes half a
2655 	 * gigabyte!).  As a default, we will keep a two megabyte
2656 	 * group pralloc size for cluster sizes up to 64k, and after
2657 	 * that, we will force a minimum group preallocation size of
2658 	 * 32 clusters.  This translates to 8 megs when the cluster
2659 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2660 	 * which seems reasonable as a default.
2661 	 */
2662 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2663 				       sbi->s_cluster_bits, 32);
2664 	/*
2665 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2666 	 * to the lowest multiple of s_stripe which is bigger than
2667 	 * the s_mb_group_prealloc as determined above. We want
2668 	 * the preallocation size to be an exact multiple of the
2669 	 * RAID stripe size so that preallocations don't fragment
2670 	 * the stripes.
2671 	 */
2672 	if (sbi->s_stripe > 1) {
2673 		sbi->s_mb_group_prealloc = roundup(
2674 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2675 	}
2676 
2677 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2678 	if (sbi->s_locality_groups == NULL) {
2679 		ret = -ENOMEM;
2680 		goto out;
2681 	}
2682 	for_each_possible_cpu(i) {
2683 		struct ext4_locality_group *lg;
2684 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2685 		mutex_init(&lg->lg_mutex);
2686 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2687 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2688 		spin_lock_init(&lg->lg_prealloc_lock);
2689 	}
2690 
2691 	/* init file for buddy data */
2692 	ret = ext4_mb_init_backend(sb);
2693 	if (ret != 0)
2694 		goto out_free_locality_groups;
2695 
2696 	return 0;
2697 
2698 out_free_locality_groups:
2699 	free_percpu(sbi->s_locality_groups);
2700 	sbi->s_locality_groups = NULL;
2701 out:
2702 	kfree(sbi->s_mb_offsets);
2703 	sbi->s_mb_offsets = NULL;
2704 	kfree(sbi->s_mb_maxs);
2705 	sbi->s_mb_maxs = NULL;
2706 	return ret;
2707 }
2708 
2709 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2710 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2711 {
2712 	struct ext4_prealloc_space *pa;
2713 	struct list_head *cur, *tmp;
2714 	int count = 0;
2715 
2716 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2717 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2718 		list_del(&pa->pa_group_list);
2719 		count++;
2720 		kmem_cache_free(ext4_pspace_cachep, pa);
2721 	}
2722 	if (count)
2723 		mb_debug(1, "mballoc: %u PAs left\n", count);
2724 
2725 }
2726 
ext4_mb_release(struct super_block * sb)2727 int ext4_mb_release(struct super_block *sb)
2728 {
2729 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2730 	ext4_group_t i;
2731 	int num_meta_group_infos;
2732 	struct ext4_group_info *grinfo, ***group_info;
2733 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2734 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2735 
2736 	if (sbi->s_group_info) {
2737 		for (i = 0; i < ngroups; i++) {
2738 			cond_resched();
2739 			grinfo = ext4_get_group_info(sb, i);
2740 #ifdef DOUBLE_CHECK
2741 			kfree(grinfo->bb_bitmap);
2742 #endif
2743 			ext4_lock_group(sb, i);
2744 			ext4_mb_cleanup_pa(grinfo);
2745 			ext4_unlock_group(sb, i);
2746 			kmem_cache_free(cachep, grinfo);
2747 		}
2748 		num_meta_group_infos = (ngroups +
2749 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2750 			EXT4_DESC_PER_BLOCK_BITS(sb);
2751 		rcu_read_lock();
2752 		group_info = rcu_dereference(sbi->s_group_info);
2753 		for (i = 0; i < num_meta_group_infos; i++)
2754 			kfree(group_info[i]);
2755 		kvfree(group_info);
2756 		rcu_read_unlock();
2757 	}
2758 	kfree(sbi->s_mb_offsets);
2759 	kfree(sbi->s_mb_maxs);
2760 	iput(sbi->s_buddy_cache);
2761 	if (sbi->s_mb_stats) {
2762 		ext4_msg(sb, KERN_INFO,
2763 		       "mballoc: %u blocks %u reqs (%u success)",
2764 				atomic_read(&sbi->s_bal_allocated),
2765 				atomic_read(&sbi->s_bal_reqs),
2766 				atomic_read(&sbi->s_bal_success));
2767 		ext4_msg(sb, KERN_INFO,
2768 		      "mballoc: %u extents scanned, %u goal hits, "
2769 				"%u 2^N hits, %u breaks, %u lost",
2770 				atomic_read(&sbi->s_bal_ex_scanned),
2771 				atomic_read(&sbi->s_bal_goals),
2772 				atomic_read(&sbi->s_bal_2orders),
2773 				atomic_read(&sbi->s_bal_breaks),
2774 				atomic_read(&sbi->s_mb_lost_chunks));
2775 		ext4_msg(sb, KERN_INFO,
2776 		       "mballoc: %lu generated and it took %Lu",
2777 				sbi->s_mb_buddies_generated,
2778 				sbi->s_mb_generation_time);
2779 		ext4_msg(sb, KERN_INFO,
2780 		       "mballoc: %u preallocated, %u discarded",
2781 				atomic_read(&sbi->s_mb_preallocated),
2782 				atomic_read(&sbi->s_mb_discarded));
2783 	}
2784 
2785 	free_percpu(sbi->s_locality_groups);
2786 
2787 	return 0;
2788 }
2789 
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count,struct bio ** biop)2790 static inline int ext4_issue_discard(struct super_block *sb,
2791 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2792 		struct bio **biop)
2793 {
2794 	ext4_fsblk_t discard_block;
2795 
2796 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2797 			 ext4_group_first_block_no(sb, block_group));
2798 	count = EXT4_C2B(EXT4_SB(sb), count);
2799 	trace_ext4_discard_blocks(sb,
2800 			(unsigned long long) discard_block, count);
2801 	if (biop) {
2802 		return __blkdev_issue_discard(sb->s_bdev,
2803 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
2804 			(sector_t)count << (sb->s_blocksize_bits - 9),
2805 			GFP_NOFS, 0, biop);
2806 	} else
2807 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2808 }
2809 
ext4_free_data_in_buddy(struct super_block * sb,struct ext4_free_data * entry)2810 static void ext4_free_data_in_buddy(struct super_block *sb,
2811 				    struct ext4_free_data *entry)
2812 {
2813 	struct ext4_buddy e4b;
2814 	struct ext4_group_info *db;
2815 	int err, count = 0, count2 = 0;
2816 
2817 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2818 		 entry->efd_count, entry->efd_group, entry);
2819 
2820 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2821 	/* we expect to find existing buddy because it's pinned */
2822 	BUG_ON(err != 0);
2823 
2824 	spin_lock(&EXT4_SB(sb)->s_md_lock);
2825 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2826 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
2827 
2828 	db = e4b.bd_info;
2829 	/* there are blocks to put in buddy to make them really free */
2830 	count += entry->efd_count;
2831 	count2++;
2832 	ext4_lock_group(sb, entry->efd_group);
2833 	/* Take it out of per group rb tree */
2834 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2835 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2836 
2837 	/*
2838 	 * Clear the trimmed flag for the group so that the next
2839 	 * ext4_trim_fs can trim it.
2840 	 * If the volume is mounted with -o discard, online discard
2841 	 * is supported and the free blocks will be trimmed online.
2842 	 */
2843 	if (!test_opt(sb, DISCARD))
2844 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2845 
2846 	if (!db->bb_free_root.rb_node) {
2847 		/* No more items in the per group rb tree
2848 		 * balance refcounts from ext4_mb_free_metadata()
2849 		 */
2850 		put_page(e4b.bd_buddy_page);
2851 		put_page(e4b.bd_bitmap_page);
2852 	}
2853 	ext4_unlock_group(sb, entry->efd_group);
2854 	kmem_cache_free(ext4_free_data_cachep, entry);
2855 	ext4_mb_unload_buddy(&e4b);
2856 
2857 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2858 }
2859 
2860 /*
2861  * This function is called by the jbd2 layer once the commit has finished,
2862  * so we know we can free the blocks that were released with that commit.
2863  */
ext4_process_freed_data(struct super_block * sb,tid_t commit_tid)2864 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2865 {
2866 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2867 	struct ext4_free_data *entry, *tmp;
2868 	struct bio *discard_bio = NULL;
2869 	struct list_head freed_data_list;
2870 	struct list_head *cut_pos = NULL;
2871 	int err;
2872 
2873 	INIT_LIST_HEAD(&freed_data_list);
2874 
2875 	spin_lock(&sbi->s_md_lock);
2876 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2877 		if (entry->efd_tid != commit_tid)
2878 			break;
2879 		cut_pos = &entry->efd_list;
2880 	}
2881 	if (cut_pos)
2882 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2883 				  cut_pos);
2884 	spin_unlock(&sbi->s_md_lock);
2885 
2886 	if (test_opt(sb, DISCARD)) {
2887 		list_for_each_entry(entry, &freed_data_list, efd_list) {
2888 			err = ext4_issue_discard(sb, entry->efd_group,
2889 						 entry->efd_start_cluster,
2890 						 entry->efd_count,
2891 						 &discard_bio);
2892 			if (err && err != -EOPNOTSUPP) {
2893 				ext4_msg(sb, KERN_WARNING, "discard request in"
2894 					 " group:%d block:%d count:%d failed"
2895 					 " with %d", entry->efd_group,
2896 					 entry->efd_start_cluster,
2897 					 entry->efd_count, err);
2898 			} else if (err == -EOPNOTSUPP)
2899 				break;
2900 		}
2901 
2902 		if (discard_bio) {
2903 			submit_bio_wait(discard_bio);
2904 			bio_put(discard_bio);
2905 		}
2906 	}
2907 
2908 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2909 		ext4_free_data_in_buddy(sb, entry);
2910 }
2911 
ext4_init_mballoc(void)2912 int __init ext4_init_mballoc(void)
2913 {
2914 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2915 					SLAB_RECLAIM_ACCOUNT);
2916 	if (ext4_pspace_cachep == NULL)
2917 		return -ENOMEM;
2918 
2919 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2920 				    SLAB_RECLAIM_ACCOUNT);
2921 	if (ext4_ac_cachep == NULL) {
2922 		kmem_cache_destroy(ext4_pspace_cachep);
2923 		return -ENOMEM;
2924 	}
2925 
2926 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2927 					   SLAB_RECLAIM_ACCOUNT);
2928 	if (ext4_free_data_cachep == NULL) {
2929 		kmem_cache_destroy(ext4_pspace_cachep);
2930 		kmem_cache_destroy(ext4_ac_cachep);
2931 		return -ENOMEM;
2932 	}
2933 	return 0;
2934 }
2935 
ext4_exit_mballoc(void)2936 void ext4_exit_mballoc(void)
2937 {
2938 	/*
2939 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2940 	 * before destroying the slab cache.
2941 	 */
2942 	rcu_barrier();
2943 	kmem_cache_destroy(ext4_pspace_cachep);
2944 	kmem_cache_destroy(ext4_ac_cachep);
2945 	kmem_cache_destroy(ext4_free_data_cachep);
2946 	ext4_groupinfo_destroy_slabs();
2947 }
2948 
2949 
2950 /*
2951  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2952  * Returns 0 if success or error code
2953  */
2954 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)2955 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2956 				handle_t *handle, unsigned int reserv_clstrs)
2957 {
2958 	struct buffer_head *bitmap_bh = NULL;
2959 	struct ext4_group_desc *gdp;
2960 	struct buffer_head *gdp_bh;
2961 	struct ext4_sb_info *sbi;
2962 	struct super_block *sb;
2963 	ext4_fsblk_t block;
2964 	int err, len;
2965 
2966 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2967 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2968 
2969 	sb = ac->ac_sb;
2970 	sbi = EXT4_SB(sb);
2971 
2972 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2973 	if (IS_ERR(bitmap_bh)) {
2974 		err = PTR_ERR(bitmap_bh);
2975 		bitmap_bh = NULL;
2976 		goto out_err;
2977 	}
2978 
2979 	BUFFER_TRACE(bitmap_bh, "getting write access");
2980 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2981 	if (err)
2982 		goto out_err;
2983 
2984 	err = -EIO;
2985 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2986 	if (!gdp)
2987 		goto out_err;
2988 
2989 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2990 			ext4_free_group_clusters(sb, gdp));
2991 
2992 	BUFFER_TRACE(gdp_bh, "get_write_access");
2993 	err = ext4_journal_get_write_access(handle, gdp_bh);
2994 	if (err)
2995 		goto out_err;
2996 
2997 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2998 
2999 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3000 	if (!ext4_data_block_valid(sbi, block, len)) {
3001 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3002 			   "fs metadata", block, block+len);
3003 		/* File system mounted not to panic on error
3004 		 * Fix the bitmap and return EFSCORRUPTED
3005 		 * We leak some of the blocks here.
3006 		 */
3007 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3008 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3009 			      ac->ac_b_ex.fe_len);
3010 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3011 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3012 		if (!err)
3013 			err = -EFSCORRUPTED;
3014 		goto out_err;
3015 	}
3016 
3017 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3018 #ifdef AGGRESSIVE_CHECK
3019 	{
3020 		int i;
3021 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3022 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3023 						bitmap_bh->b_data));
3024 		}
3025 	}
3026 #endif
3027 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3028 		      ac->ac_b_ex.fe_len);
3029 	if (ext4_has_group_desc_csum(sb) &&
3030 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3031 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3032 		ext4_free_group_clusters_set(sb, gdp,
3033 					     ext4_free_clusters_after_init(sb,
3034 						ac->ac_b_ex.fe_group, gdp));
3035 	}
3036 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3037 	ext4_free_group_clusters_set(sb, gdp, len);
3038 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3039 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3040 
3041 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3042 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3043 	/*
3044 	 * Now reduce the dirty block count also. Should not go negative
3045 	 */
3046 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3047 		/* release all the reserved blocks if non delalloc */
3048 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3049 				   reserv_clstrs);
3050 
3051 	if (sbi->s_log_groups_per_flex) {
3052 		ext4_group_t flex_group = ext4_flex_group(sbi,
3053 							  ac->ac_b_ex.fe_group);
3054 		atomic64_sub(ac->ac_b_ex.fe_len,
3055 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3056 						  flex_group)->free_clusters);
3057 	}
3058 
3059 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3060 	if (err)
3061 		goto out_err;
3062 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3063 
3064 out_err:
3065 	brelse(bitmap_bh);
3066 	return err;
3067 }
3068 
3069 /*
3070  * here we normalize request for locality group
3071  * Group request are normalized to s_mb_group_prealloc, which goes to
3072  * s_strip if we set the same via mount option.
3073  * s_mb_group_prealloc can be configured via
3074  * /sys/fs/ext4/<partition>/mb_group_prealloc
3075  *
3076  * XXX: should we try to preallocate more than the group has now?
3077  */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3078 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3079 {
3080 	struct super_block *sb = ac->ac_sb;
3081 	struct ext4_locality_group *lg = ac->ac_lg;
3082 
3083 	BUG_ON(lg == NULL);
3084 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3085 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3086 		current->pid, ac->ac_g_ex.fe_len);
3087 }
3088 
3089 /*
3090  * Normalization means making request better in terms of
3091  * size and alignment
3092  */
3093 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3094 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3095 				struct ext4_allocation_request *ar)
3096 {
3097 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3098 	struct ext4_super_block *es = sbi->s_es;
3099 	int bsbits, max;
3100 	loff_t size, start_off, end;
3101 	loff_t orig_size __maybe_unused;
3102 	ext4_lblk_t start;
3103 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3104 	struct ext4_prealloc_space *pa;
3105 
3106 	/* do normalize only data requests, metadata requests
3107 	   do not need preallocation */
3108 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3109 		return;
3110 
3111 	/* sometime caller may want exact blocks */
3112 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3113 		return;
3114 
3115 	/* caller may indicate that preallocation isn't
3116 	 * required (it's a tail, for example) */
3117 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3118 		return;
3119 
3120 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3121 		ext4_mb_normalize_group_request(ac);
3122 		return ;
3123 	}
3124 
3125 	bsbits = ac->ac_sb->s_blocksize_bits;
3126 
3127 	/* first, let's learn actual file size
3128 	 * given current request is allocated */
3129 	size = extent_logical_end(sbi, &ac->ac_o_ex);
3130 	size = size << bsbits;
3131 	if (size < i_size_read(ac->ac_inode))
3132 		size = i_size_read(ac->ac_inode);
3133 	orig_size = size;
3134 
3135 	/* max size of free chunks */
3136 	max = 2 << bsbits;
3137 
3138 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3139 		(req <= (size) || max <= (chunk_size))
3140 
3141 	/* first, try to predict filesize */
3142 	/* XXX: should this table be tunable? */
3143 	start_off = 0;
3144 	if (size <= 16 * 1024) {
3145 		size = 16 * 1024;
3146 	} else if (size <= 32 * 1024) {
3147 		size = 32 * 1024;
3148 	} else if (size <= 64 * 1024) {
3149 		size = 64 * 1024;
3150 	} else if (size <= 128 * 1024) {
3151 		size = 128 * 1024;
3152 	} else if (size <= 256 * 1024) {
3153 		size = 256 * 1024;
3154 	} else if (size <= 512 * 1024) {
3155 		size = 512 * 1024;
3156 	} else if (size <= 1024 * 1024) {
3157 		size = 1024 * 1024;
3158 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3159 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3160 						(21 - bsbits)) << 21;
3161 		size = 2 * 1024 * 1024;
3162 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3163 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3164 							(22 - bsbits)) << 22;
3165 		size = 4 * 1024 * 1024;
3166 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3167 					(8<<20)>>bsbits, max, 8 * 1024)) {
3168 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3169 							(23 - bsbits)) << 23;
3170 		size = 8 * 1024 * 1024;
3171 	} else {
3172 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3173 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3174 					      ac->ac_o_ex.fe_len) << bsbits;
3175 	}
3176 	size = size >> bsbits;
3177 	start = start_off >> bsbits;
3178 
3179 	/*
3180 	 * For tiny groups (smaller than 8MB) the chosen allocation
3181 	 * alignment may be larger than group size. Make sure the
3182 	 * alignment does not move allocation to a different group which
3183 	 * makes mballoc fail assertions later.
3184 	 */
3185 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
3186 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
3187 
3188 	/* avoid unnecessary preallocation that may trigger assertions */
3189 	if (start + size > EXT_MAX_BLOCKS)
3190 		size = EXT_MAX_BLOCKS - start;
3191 
3192 	/* don't cover already allocated blocks in selected range */
3193 	if (ar->pleft && start <= ar->lleft) {
3194 		size -= ar->lleft + 1 - start;
3195 		start = ar->lleft + 1;
3196 	}
3197 	if (ar->pright && start + size - 1 >= ar->lright)
3198 		size -= start + size - ar->lright;
3199 
3200 	/*
3201 	 * Trim allocation request for filesystems with artificially small
3202 	 * groups.
3203 	 */
3204 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3205 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3206 
3207 	end = start + size;
3208 
3209 	/* check we don't cross already preallocated blocks */
3210 	rcu_read_lock();
3211 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3212 		loff_t pa_end;
3213 
3214 		if (pa->pa_deleted)
3215 			continue;
3216 		spin_lock(&pa->pa_lock);
3217 		if (pa->pa_deleted) {
3218 			spin_unlock(&pa->pa_lock);
3219 			continue;
3220 		}
3221 
3222 		pa_end = pa_logical_end(EXT4_SB(ac->ac_sb), pa);
3223 
3224 		/* PA must not overlap original request */
3225 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3226 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3227 
3228 		/* skip PAs this normalized request doesn't overlap with */
3229 		if (pa->pa_lstart >= end || pa_end <= start) {
3230 			spin_unlock(&pa->pa_lock);
3231 			continue;
3232 		}
3233 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3234 
3235 		/* adjust start or end to be adjacent to this pa */
3236 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3237 			BUG_ON(pa_end < start);
3238 			start = pa_end;
3239 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3240 			BUG_ON(pa->pa_lstart > end);
3241 			end = pa->pa_lstart;
3242 		}
3243 		spin_unlock(&pa->pa_lock);
3244 	}
3245 	rcu_read_unlock();
3246 	size = end - start;
3247 
3248 	/* XXX: extra loop to check we really don't overlap preallocations */
3249 	rcu_read_lock();
3250 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3251 		loff_t pa_end;
3252 
3253 		spin_lock(&pa->pa_lock);
3254 		if (pa->pa_deleted == 0) {
3255 			pa_end = pa_logical_end(EXT4_SB(ac->ac_sb), pa);
3256 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3257 		}
3258 		spin_unlock(&pa->pa_lock);
3259 	}
3260 	rcu_read_unlock();
3261 
3262 	if (start + size <= ac->ac_o_ex.fe_logical &&
3263 			start > ac->ac_o_ex.fe_logical) {
3264 		ext4_msg(ac->ac_sb, KERN_ERR,
3265 			 "start %lu, size %lu, fe_logical %lu",
3266 			 (unsigned long) start, (unsigned long) size,
3267 			 (unsigned long) ac->ac_o_ex.fe_logical);
3268 		BUG();
3269 	}
3270 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3271 
3272 	/* now prepare goal request */
3273 
3274 	/* XXX: is it better to align blocks WRT to logical
3275 	 * placement or satisfy big request as is */
3276 	ac->ac_g_ex.fe_logical = start;
3277 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3278 
3279 	/* define goal start in order to merge */
3280 	if (ar->pright && (ar->lright == (start + size)) &&
3281 	    ar->pright >= size &&
3282 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
3283 		/* merge to the right */
3284 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3285 						&ac->ac_g_ex.fe_group,
3286 						&ac->ac_g_ex.fe_start);
3287 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3288 	}
3289 	if (ar->pleft && (ar->lleft + 1 == start) &&
3290 	    ar->pleft + 1 < ext4_blocks_count(es)) {
3291 		/* merge to the left */
3292 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3293 						&ac->ac_g_ex.fe_group,
3294 						&ac->ac_g_ex.fe_start);
3295 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3296 	}
3297 
3298 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3299 		(unsigned) orig_size, (unsigned) start);
3300 }
3301 
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3302 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3303 {
3304 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3305 
3306 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3307 		atomic_inc(&sbi->s_bal_reqs);
3308 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3309 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3310 			atomic_inc(&sbi->s_bal_success);
3311 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3312 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3313 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3314 			atomic_inc(&sbi->s_bal_goals);
3315 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3316 			atomic_inc(&sbi->s_bal_breaks);
3317 	}
3318 
3319 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3320 		trace_ext4_mballoc_alloc(ac);
3321 	else
3322 		trace_ext4_mballoc_prealloc(ac);
3323 }
3324 
3325 /*
3326  * Called on failure; free up any blocks from the inode PA for this
3327  * context.  We don't need this for MB_GROUP_PA because we only change
3328  * pa_free in ext4_mb_release_context(), but on failure, we've already
3329  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3330  */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3331 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3332 {
3333 	struct ext4_prealloc_space *pa = ac->ac_pa;
3334 	struct ext4_buddy e4b;
3335 	int err;
3336 
3337 	if (pa == NULL) {
3338 		if (ac->ac_f_ex.fe_len == 0)
3339 			return;
3340 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3341 		if (err) {
3342 			/*
3343 			 * This should never happen since we pin the
3344 			 * pages in the ext4_allocation_context so
3345 			 * ext4_mb_load_buddy() should never fail.
3346 			 */
3347 			WARN(1, "mb_load_buddy failed (%d)", err);
3348 			return;
3349 		}
3350 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3351 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3352 			       ac->ac_f_ex.fe_len);
3353 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3354 		ext4_mb_unload_buddy(&e4b);
3355 		return;
3356 	}
3357 	if (pa->pa_type == MB_INODE_PA)
3358 		pa->pa_free += ac->ac_b_ex.fe_len;
3359 }
3360 
3361 /*
3362  * use blocks preallocated to inode
3363  */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3364 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3365 				struct ext4_prealloc_space *pa)
3366 {
3367 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3368 	ext4_fsblk_t start;
3369 	ext4_fsblk_t end;
3370 	int len;
3371 
3372 	/* found preallocated blocks, use them */
3373 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3374 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3375 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3376 	len = EXT4_NUM_B2C(sbi, end - start);
3377 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3378 					&ac->ac_b_ex.fe_start);
3379 	ac->ac_b_ex.fe_len = len;
3380 	ac->ac_status = AC_STATUS_FOUND;
3381 	ac->ac_pa = pa;
3382 
3383 	BUG_ON(start < pa->pa_pstart);
3384 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3385 	BUG_ON(pa->pa_free < len);
3386 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3387 	pa->pa_free -= len;
3388 
3389 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3390 }
3391 
3392 /*
3393  * use blocks preallocated to locality group
3394  */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3395 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3396 				struct ext4_prealloc_space *pa)
3397 {
3398 	unsigned int len = ac->ac_o_ex.fe_len;
3399 
3400 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3401 					&ac->ac_b_ex.fe_group,
3402 					&ac->ac_b_ex.fe_start);
3403 	ac->ac_b_ex.fe_len = len;
3404 	ac->ac_status = AC_STATUS_FOUND;
3405 	ac->ac_pa = pa;
3406 
3407 	/* we don't correct pa_pstart or pa_plen here to avoid
3408 	 * possible race when the group is being loaded concurrently
3409 	 * instead we correct pa later, after blocks are marked
3410 	 * in on-disk bitmap -- see ext4_mb_release_context()
3411 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3412 	 */
3413 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3414 }
3415 
3416 /*
3417  * Return the prealloc space that have minimal distance
3418  * from the goal block. @cpa is the prealloc
3419  * space that is having currently known minimal distance
3420  * from the goal block.
3421  */
3422 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3423 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3424 			struct ext4_prealloc_space *pa,
3425 			struct ext4_prealloc_space *cpa)
3426 {
3427 	ext4_fsblk_t cur_distance, new_distance;
3428 
3429 	if (cpa == NULL) {
3430 		atomic_inc(&pa->pa_count);
3431 		return pa;
3432 	}
3433 	cur_distance = abs(goal_block - cpa->pa_pstart);
3434 	new_distance = abs(goal_block - pa->pa_pstart);
3435 
3436 	if (cur_distance <= new_distance)
3437 		return cpa;
3438 
3439 	/* drop the previous reference */
3440 	atomic_dec(&cpa->pa_count);
3441 	atomic_inc(&pa->pa_count);
3442 	return pa;
3443 }
3444 
3445 /*
3446  * search goal blocks in preallocated space
3447  */
3448 static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3449 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3450 {
3451 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3452 	int order, i;
3453 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3454 	struct ext4_locality_group *lg;
3455 	struct ext4_prealloc_space *pa, *cpa = NULL;
3456 	ext4_fsblk_t goal_block;
3457 
3458 	/* only data can be preallocated */
3459 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3460 		return 0;
3461 
3462 	/* first, try per-file preallocation */
3463 	rcu_read_lock();
3464 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3465 
3466 		/* all fields in this condition don't change,
3467 		 * so we can skip locking for them */
3468 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3469 		    ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, pa))
3470 			continue;
3471 
3472 		/* non-extent files can't have physical blocks past 2^32 */
3473 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3474 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3475 		     EXT4_MAX_BLOCK_FILE_PHYS))
3476 			continue;
3477 
3478 		/* found preallocated blocks, use them */
3479 		spin_lock(&pa->pa_lock);
3480 		if (pa->pa_deleted == 0 && pa->pa_free) {
3481 			atomic_inc(&pa->pa_count);
3482 			ext4_mb_use_inode_pa(ac, pa);
3483 			spin_unlock(&pa->pa_lock);
3484 			ac->ac_criteria = 10;
3485 			rcu_read_unlock();
3486 			return 1;
3487 		}
3488 		spin_unlock(&pa->pa_lock);
3489 	}
3490 	rcu_read_unlock();
3491 
3492 	/* can we use group allocation? */
3493 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3494 		return 0;
3495 
3496 	/* inode may have no locality group for some reason */
3497 	lg = ac->ac_lg;
3498 	if (lg == NULL)
3499 		return 0;
3500 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3501 	if (order > PREALLOC_TB_SIZE - 1)
3502 		/* The max size of hash table is PREALLOC_TB_SIZE */
3503 		order = PREALLOC_TB_SIZE - 1;
3504 
3505 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3506 	/*
3507 	 * search for the prealloc space that is having
3508 	 * minimal distance from the goal block.
3509 	 */
3510 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3511 		rcu_read_lock();
3512 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3513 					pa_inode_list) {
3514 			spin_lock(&pa->pa_lock);
3515 			if (pa->pa_deleted == 0 &&
3516 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3517 
3518 				cpa = ext4_mb_check_group_pa(goal_block,
3519 								pa, cpa);
3520 			}
3521 			spin_unlock(&pa->pa_lock);
3522 		}
3523 		rcu_read_unlock();
3524 	}
3525 	if (cpa) {
3526 		ext4_mb_use_group_pa(ac, cpa);
3527 		ac->ac_criteria = 20;
3528 		return 1;
3529 	}
3530 	return 0;
3531 }
3532 
3533 /*
3534  * the function goes through all block freed in the group
3535  * but not yet committed and marks them used in in-core bitmap.
3536  * buddy must be generated from this bitmap
3537  * Need to be called with the ext4 group lock held
3538  */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3539 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3540 						ext4_group_t group)
3541 {
3542 	struct rb_node *n;
3543 	struct ext4_group_info *grp;
3544 	struct ext4_free_data *entry;
3545 
3546 	grp = ext4_get_group_info(sb, group);
3547 	n = rb_first(&(grp->bb_free_root));
3548 
3549 	while (n) {
3550 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3551 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3552 		n = rb_next(n);
3553 	}
3554 	return;
3555 }
3556 
3557 /*
3558  * the function goes through all preallocation in this group and marks them
3559  * used in in-core bitmap. buddy must be generated from this bitmap
3560  * Need to be called with ext4 group lock held
3561  */
3562 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3563 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3564 					ext4_group_t group)
3565 {
3566 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3567 	struct ext4_prealloc_space *pa;
3568 	struct list_head *cur;
3569 	ext4_group_t groupnr;
3570 	ext4_grpblk_t start;
3571 	int preallocated = 0;
3572 	int len;
3573 
3574 	/* all form of preallocation discards first load group,
3575 	 * so the only competing code is preallocation use.
3576 	 * we don't need any locking here
3577 	 * notice we do NOT ignore preallocations with pa_deleted
3578 	 * otherwise we could leave used blocks available for
3579 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3580 	 * is dropping preallocation
3581 	 */
3582 	list_for_each(cur, &grp->bb_prealloc_list) {
3583 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3584 		spin_lock(&pa->pa_lock);
3585 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3586 					     &groupnr, &start);
3587 		len = pa->pa_len;
3588 		spin_unlock(&pa->pa_lock);
3589 		if (unlikely(len == 0))
3590 			continue;
3591 		BUG_ON(groupnr != group);
3592 		ext4_set_bits(bitmap, start, len);
3593 		preallocated += len;
3594 	}
3595 	mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3596 }
3597 
ext4_mb_pa_callback(struct rcu_head * head)3598 static void ext4_mb_pa_callback(struct rcu_head *head)
3599 {
3600 	struct ext4_prealloc_space *pa;
3601 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3602 
3603 	BUG_ON(atomic_read(&pa->pa_count));
3604 	BUG_ON(pa->pa_deleted == 0);
3605 	kmem_cache_free(ext4_pspace_cachep, pa);
3606 }
3607 
3608 /*
3609  * drops a reference to preallocated space descriptor
3610  * if this was the last reference and the space is consumed
3611  */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3612 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3613 			struct super_block *sb, struct ext4_prealloc_space *pa)
3614 {
3615 	ext4_group_t grp;
3616 	ext4_fsblk_t grp_blk;
3617 
3618 	/* in this short window concurrent discard can set pa_deleted */
3619 	spin_lock(&pa->pa_lock);
3620 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3621 		spin_unlock(&pa->pa_lock);
3622 		return;
3623 	}
3624 
3625 	if (pa->pa_deleted == 1) {
3626 		spin_unlock(&pa->pa_lock);
3627 		return;
3628 	}
3629 
3630 	pa->pa_deleted = 1;
3631 	spin_unlock(&pa->pa_lock);
3632 
3633 	grp_blk = pa->pa_pstart;
3634 	/*
3635 	 * If doing group-based preallocation, pa_pstart may be in the
3636 	 * next group when pa is used up
3637 	 */
3638 	if (pa->pa_type == MB_GROUP_PA)
3639 		grp_blk--;
3640 
3641 	grp = ext4_get_group_number(sb, grp_blk);
3642 
3643 	/*
3644 	 * possible race:
3645 	 *
3646 	 *  P1 (buddy init)			P2 (regular allocation)
3647 	 *					find block B in PA
3648 	 *  copy on-disk bitmap to buddy
3649 	 *  					mark B in on-disk bitmap
3650 	 *					drop PA from group
3651 	 *  mark all PAs in buddy
3652 	 *
3653 	 * thus, P1 initializes buddy with B available. to prevent this
3654 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3655 	 * against that pair
3656 	 */
3657 	ext4_lock_group(sb, grp);
3658 	list_del(&pa->pa_group_list);
3659 	ext4_unlock_group(sb, grp);
3660 
3661 	spin_lock(pa->pa_obj_lock);
3662 	list_del_rcu(&pa->pa_inode_list);
3663 	spin_unlock(pa->pa_obj_lock);
3664 
3665 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3666 }
3667 
3668 /*
3669  * creates new preallocated space for given inode
3670  */
3671 static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3672 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3673 {
3674 	struct super_block *sb = ac->ac_sb;
3675 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3676 	struct ext4_prealloc_space *pa;
3677 	struct ext4_group_info *grp;
3678 	struct ext4_inode_info *ei;
3679 
3680 	/* preallocate only when found space is larger then requested */
3681 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3682 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3683 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3684 
3685 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3686 	if (pa == NULL)
3687 		return -ENOMEM;
3688 
3689 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3690 		struct ext4_free_extent ex = {
3691 			.fe_logical = ac->ac_g_ex.fe_logical,
3692 			.fe_len = ac->ac_g_ex.fe_len,
3693 		};
3694 		loff_t orig_goal_end = extent_logical_end(sbi, &ex);
3695 		loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
3696 
3697 		/*
3698 		 * We can't allocate as much as normalizer wants, so we try
3699 		 * to get proper lstart to cover the original request, except
3700 		 * when the goal doesn't cover the original request as below:
3701 		 *
3702 		 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
3703 		 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
3704 		 */
3705 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3706 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3707 
3708 		/*
3709 		 * Use the below logic for adjusting best extent as it keeps
3710 		 * fragmentation in check while ensuring logical range of best
3711 		 * extent doesn't overflow out of goal extent:
3712 		 *
3713 		 * 1. Check if best ex can be kept at end of goal and still
3714 		 *    cover original start
3715 		 * 2. Else, check if best ex can be kept at start of goal and
3716 		 *    still cover original end
3717 		 * 3. Else, keep the best ex at start of original request.
3718 		 */
3719 		ex.fe_len = ac->ac_b_ex.fe_len;
3720 
3721 		ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
3722 		if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
3723 			goto adjust_bex;
3724 
3725 		ex.fe_logical = ac->ac_g_ex.fe_logical;
3726 		if (o_ex_end <= extent_logical_end(sbi, &ex))
3727 			goto adjust_bex;
3728 
3729 		ex.fe_logical = ac->ac_o_ex.fe_logical;
3730 adjust_bex:
3731 		ac->ac_b_ex.fe_logical = ex.fe_logical;
3732 
3733 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3734 		BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
3735 	}
3736 
3737 	/* preallocation can change ac_b_ex, thus we store actually
3738 	 * allocated blocks for history */
3739 	ac->ac_f_ex = ac->ac_b_ex;
3740 
3741 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3742 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3743 	pa->pa_len = ac->ac_b_ex.fe_len;
3744 	pa->pa_free = pa->pa_len;
3745 	atomic_set(&pa->pa_count, 1);
3746 	spin_lock_init(&pa->pa_lock);
3747 	INIT_LIST_HEAD(&pa->pa_inode_list);
3748 	INIT_LIST_HEAD(&pa->pa_group_list);
3749 	pa->pa_deleted = 0;
3750 	pa->pa_type = MB_INODE_PA;
3751 
3752 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3753 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3754 	trace_ext4_mb_new_inode_pa(ac, pa);
3755 
3756 	ext4_mb_use_inode_pa(ac, pa);
3757 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3758 
3759 	ei = EXT4_I(ac->ac_inode);
3760 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3761 
3762 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3763 	pa->pa_inode = ac->ac_inode;
3764 
3765 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3766 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3767 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3768 
3769 	spin_lock(pa->pa_obj_lock);
3770 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3771 	spin_unlock(pa->pa_obj_lock);
3772 
3773 	return 0;
3774 }
3775 
3776 /*
3777  * creates new preallocated space for locality group inodes belongs to
3778  */
3779 static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3780 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3781 {
3782 	struct super_block *sb = ac->ac_sb;
3783 	struct ext4_locality_group *lg;
3784 	struct ext4_prealloc_space *pa;
3785 	struct ext4_group_info *grp;
3786 
3787 	/* preallocate only when found space is larger then requested */
3788 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3789 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3790 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3791 
3792 	BUG_ON(ext4_pspace_cachep == NULL);
3793 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3794 	if (pa == NULL)
3795 		return -ENOMEM;
3796 
3797 	/* preallocation can change ac_b_ex, thus we store actually
3798 	 * allocated blocks for history */
3799 	ac->ac_f_ex = ac->ac_b_ex;
3800 
3801 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3802 	pa->pa_lstart = pa->pa_pstart;
3803 	pa->pa_len = ac->ac_b_ex.fe_len;
3804 	pa->pa_free = pa->pa_len;
3805 	atomic_set(&pa->pa_count, 1);
3806 	spin_lock_init(&pa->pa_lock);
3807 	INIT_LIST_HEAD(&pa->pa_inode_list);
3808 	INIT_LIST_HEAD(&pa->pa_group_list);
3809 	pa->pa_deleted = 0;
3810 	pa->pa_type = MB_GROUP_PA;
3811 
3812 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3813 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3814 	trace_ext4_mb_new_group_pa(ac, pa);
3815 
3816 	ext4_mb_use_group_pa(ac, pa);
3817 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3818 
3819 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3820 	lg = ac->ac_lg;
3821 	BUG_ON(lg == NULL);
3822 
3823 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3824 	pa->pa_inode = NULL;
3825 
3826 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3827 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3828 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3829 
3830 	/*
3831 	 * We will later add the new pa to the right bucket
3832 	 * after updating the pa_free in ext4_mb_release_context
3833 	 */
3834 	return 0;
3835 }
3836 
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3837 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3838 {
3839 	int err;
3840 
3841 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3842 		err = ext4_mb_new_group_pa(ac);
3843 	else
3844 		err = ext4_mb_new_inode_pa(ac);
3845 	return err;
3846 }
3847 
3848 /*
3849  * finds all unused blocks in on-disk bitmap, frees them in
3850  * in-core bitmap and buddy.
3851  * @pa must be unlinked from inode and group lists, so that
3852  * nobody else can find/use it.
3853  * the caller MUST hold group/inode locks.
3854  * TODO: optimize the case when there are no in-core structures yet
3855  */
3856 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)3857 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3858 			struct ext4_prealloc_space *pa)
3859 {
3860 	struct super_block *sb = e4b->bd_sb;
3861 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3862 	unsigned int end;
3863 	unsigned int next;
3864 	ext4_group_t group;
3865 	ext4_grpblk_t bit;
3866 	unsigned long long grp_blk_start;
3867 	int free = 0;
3868 
3869 	BUG_ON(pa->pa_deleted == 0);
3870 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3871 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3872 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3873 	end = bit + pa->pa_len;
3874 
3875 	while (bit < end) {
3876 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3877 		if (bit >= end)
3878 			break;
3879 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3880 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3881 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3882 			 (unsigned) next - bit, (unsigned) group);
3883 		free += next - bit;
3884 
3885 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3886 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3887 						    EXT4_C2B(sbi, bit)),
3888 					       next - bit);
3889 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3890 		bit = next + 1;
3891 	}
3892 	if (free != pa->pa_free) {
3893 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3894 			 "pa %p: logic %lu, phys. %lu, len %lu",
3895 			 pa, (unsigned long) pa->pa_lstart,
3896 			 (unsigned long) pa->pa_pstart,
3897 			 (unsigned long) pa->pa_len);
3898 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3899 					free, pa->pa_free);
3900 		/*
3901 		 * pa is already deleted so we use the value obtained
3902 		 * from the bitmap and continue.
3903 		 */
3904 	}
3905 	atomic_add(free, &sbi->s_mb_discarded);
3906 
3907 	return 0;
3908 }
3909 
3910 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)3911 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3912 				struct ext4_prealloc_space *pa)
3913 {
3914 	struct super_block *sb = e4b->bd_sb;
3915 	ext4_group_t group;
3916 	ext4_grpblk_t bit;
3917 
3918 	trace_ext4_mb_release_group_pa(sb, pa);
3919 	BUG_ON(pa->pa_deleted == 0);
3920 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3921 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
3922 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
3923 			     e4b->bd_group, group, pa->pa_pstart);
3924 		return 0;
3925 	}
3926 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3927 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3928 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3929 
3930 	return 0;
3931 }
3932 
3933 /*
3934  * releases all preallocations in given group
3935  *
3936  * first, we need to decide discard policy:
3937  * - when do we discard
3938  *   1) ENOSPC
3939  * - how many do we discard
3940  *   1) how many requested
3941  */
3942 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3943 ext4_mb_discard_group_preallocations(struct super_block *sb,
3944 					ext4_group_t group, int needed)
3945 {
3946 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3947 	struct buffer_head *bitmap_bh = NULL;
3948 	struct ext4_prealloc_space *pa, *tmp;
3949 	struct list_head list;
3950 	struct ext4_buddy e4b;
3951 	int err;
3952 	int busy = 0;
3953 	int free = 0;
3954 
3955 	mb_debug(1, "discard preallocation for group %u\n", group);
3956 
3957 	if (list_empty(&grp->bb_prealloc_list))
3958 		return 0;
3959 
3960 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3961 	if (IS_ERR(bitmap_bh)) {
3962 		err = PTR_ERR(bitmap_bh);
3963 		ext4_error(sb, "Error %d reading block bitmap for %u",
3964 			   err, group);
3965 		return 0;
3966 	}
3967 
3968 	err = ext4_mb_load_buddy(sb, group, &e4b);
3969 	if (err) {
3970 		ext4_warning(sb, "Error %d loading buddy information for %u",
3971 			     err, group);
3972 		put_bh(bitmap_bh);
3973 		return 0;
3974 	}
3975 
3976 	if (needed == 0)
3977 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3978 
3979 	INIT_LIST_HEAD(&list);
3980 repeat:
3981 	ext4_lock_group(sb, group);
3982 	list_for_each_entry_safe(pa, tmp,
3983 				&grp->bb_prealloc_list, pa_group_list) {
3984 		spin_lock(&pa->pa_lock);
3985 		if (atomic_read(&pa->pa_count)) {
3986 			spin_unlock(&pa->pa_lock);
3987 			busy = 1;
3988 			continue;
3989 		}
3990 		if (pa->pa_deleted) {
3991 			spin_unlock(&pa->pa_lock);
3992 			continue;
3993 		}
3994 
3995 		/* seems this one can be freed ... */
3996 		pa->pa_deleted = 1;
3997 
3998 		/* we can trust pa_free ... */
3999 		free += pa->pa_free;
4000 
4001 		spin_unlock(&pa->pa_lock);
4002 
4003 		list_del(&pa->pa_group_list);
4004 		list_add(&pa->u.pa_tmp_list, &list);
4005 	}
4006 
4007 	/* if we still need more blocks and some PAs were used, try again */
4008 	if (free < needed && busy) {
4009 		busy = 0;
4010 		ext4_unlock_group(sb, group);
4011 		cond_resched();
4012 		goto repeat;
4013 	}
4014 
4015 	/* found anything to free? */
4016 	if (list_empty(&list)) {
4017 		BUG_ON(free != 0);
4018 		goto out;
4019 	}
4020 
4021 	/* now free all selected PAs */
4022 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4023 
4024 		/* remove from object (inode or locality group) */
4025 		spin_lock(pa->pa_obj_lock);
4026 		list_del_rcu(&pa->pa_inode_list);
4027 		spin_unlock(pa->pa_obj_lock);
4028 
4029 		if (pa->pa_type == MB_GROUP_PA)
4030 			ext4_mb_release_group_pa(&e4b, pa);
4031 		else
4032 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4033 
4034 		list_del(&pa->u.pa_tmp_list);
4035 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4036 	}
4037 
4038 out:
4039 	ext4_unlock_group(sb, group);
4040 	ext4_mb_unload_buddy(&e4b);
4041 	put_bh(bitmap_bh);
4042 	return free;
4043 }
4044 
4045 /*
4046  * releases all non-used preallocated blocks for given inode
4047  *
4048  * It's important to discard preallocations under i_data_sem
4049  * We don't want another block to be served from the prealloc
4050  * space when we are discarding the inode prealloc space.
4051  *
4052  * FIXME!! Make sure it is valid at all the call sites
4053  */
ext4_discard_preallocations(struct inode * inode)4054 void ext4_discard_preallocations(struct inode *inode)
4055 {
4056 	struct ext4_inode_info *ei = EXT4_I(inode);
4057 	struct super_block *sb = inode->i_sb;
4058 	struct buffer_head *bitmap_bh = NULL;
4059 	struct ext4_prealloc_space *pa, *tmp;
4060 	ext4_group_t group = 0;
4061 	struct list_head list;
4062 	struct ext4_buddy e4b;
4063 	int err;
4064 
4065 	if (!S_ISREG(inode->i_mode)) {
4066 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4067 		return;
4068 	}
4069 
4070 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4071 	trace_ext4_discard_preallocations(inode);
4072 
4073 	INIT_LIST_HEAD(&list);
4074 
4075 repeat:
4076 	/* first, collect all pa's in the inode */
4077 	spin_lock(&ei->i_prealloc_lock);
4078 	while (!list_empty(&ei->i_prealloc_list)) {
4079 		pa = list_entry(ei->i_prealloc_list.next,
4080 				struct ext4_prealloc_space, pa_inode_list);
4081 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4082 		spin_lock(&pa->pa_lock);
4083 		if (atomic_read(&pa->pa_count)) {
4084 			/* this shouldn't happen often - nobody should
4085 			 * use preallocation while we're discarding it */
4086 			spin_unlock(&pa->pa_lock);
4087 			spin_unlock(&ei->i_prealloc_lock);
4088 			ext4_msg(sb, KERN_ERR,
4089 				 "uh-oh! used pa while discarding");
4090 			WARN_ON(1);
4091 			schedule_timeout_uninterruptible(HZ);
4092 			goto repeat;
4093 
4094 		}
4095 		if (pa->pa_deleted == 0) {
4096 			pa->pa_deleted = 1;
4097 			spin_unlock(&pa->pa_lock);
4098 			list_del_rcu(&pa->pa_inode_list);
4099 			list_add(&pa->u.pa_tmp_list, &list);
4100 			continue;
4101 		}
4102 
4103 		/* someone is deleting pa right now */
4104 		spin_unlock(&pa->pa_lock);
4105 		spin_unlock(&ei->i_prealloc_lock);
4106 
4107 		/* we have to wait here because pa_deleted
4108 		 * doesn't mean pa is already unlinked from
4109 		 * the list. as we might be called from
4110 		 * ->clear_inode() the inode will get freed
4111 		 * and concurrent thread which is unlinking
4112 		 * pa from inode's list may access already
4113 		 * freed memory, bad-bad-bad */
4114 
4115 		/* XXX: if this happens too often, we can
4116 		 * add a flag to force wait only in case
4117 		 * of ->clear_inode(), but not in case of
4118 		 * regular truncate */
4119 		schedule_timeout_uninterruptible(HZ);
4120 		goto repeat;
4121 	}
4122 	spin_unlock(&ei->i_prealloc_lock);
4123 
4124 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4125 		BUG_ON(pa->pa_type != MB_INODE_PA);
4126 		group = ext4_get_group_number(sb, pa->pa_pstart);
4127 
4128 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4129 					     GFP_NOFS|__GFP_NOFAIL);
4130 		if (err) {
4131 			ext4_error(sb, "Error %d loading buddy information for %u",
4132 				   err, group);
4133 			continue;
4134 		}
4135 
4136 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4137 		if (IS_ERR(bitmap_bh)) {
4138 			err = PTR_ERR(bitmap_bh);
4139 			ext4_error(sb, "Error %d reading block bitmap for %u",
4140 					err, group);
4141 			ext4_mb_unload_buddy(&e4b);
4142 			continue;
4143 		}
4144 
4145 		ext4_lock_group(sb, group);
4146 		list_del(&pa->pa_group_list);
4147 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4148 		ext4_unlock_group(sb, group);
4149 
4150 		ext4_mb_unload_buddy(&e4b);
4151 		put_bh(bitmap_bh);
4152 
4153 		list_del(&pa->u.pa_tmp_list);
4154 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4155 	}
4156 }
4157 
4158 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_ac(struct ext4_allocation_context * ac)4159 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4160 {
4161 	struct super_block *sb = ac->ac_sb;
4162 	ext4_group_t ngroups, i;
4163 
4164 	if (!ext4_mballoc_debug ||
4165 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4166 		return;
4167 
4168 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4169 			" Allocation context details:");
4170 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4171 			ac->ac_status, ac->ac_flags);
4172 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4173 		 	"goal %lu/%lu/%lu@%lu, "
4174 			"best %lu/%lu/%lu@%lu cr %d",
4175 			(unsigned long)ac->ac_o_ex.fe_group,
4176 			(unsigned long)ac->ac_o_ex.fe_start,
4177 			(unsigned long)ac->ac_o_ex.fe_len,
4178 			(unsigned long)ac->ac_o_ex.fe_logical,
4179 			(unsigned long)ac->ac_g_ex.fe_group,
4180 			(unsigned long)ac->ac_g_ex.fe_start,
4181 			(unsigned long)ac->ac_g_ex.fe_len,
4182 			(unsigned long)ac->ac_g_ex.fe_logical,
4183 			(unsigned long)ac->ac_b_ex.fe_group,
4184 			(unsigned long)ac->ac_b_ex.fe_start,
4185 			(unsigned long)ac->ac_b_ex.fe_len,
4186 			(unsigned long)ac->ac_b_ex.fe_logical,
4187 			(int)ac->ac_criteria);
4188 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4189 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4190 	ngroups = ext4_get_groups_count(sb);
4191 	for (i = 0; i < ngroups; i++) {
4192 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4193 		struct ext4_prealloc_space *pa;
4194 		ext4_grpblk_t start;
4195 		struct list_head *cur;
4196 		ext4_lock_group(sb, i);
4197 		list_for_each(cur, &grp->bb_prealloc_list) {
4198 			pa = list_entry(cur, struct ext4_prealloc_space,
4199 					pa_group_list);
4200 			spin_lock(&pa->pa_lock);
4201 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4202 						     NULL, &start);
4203 			spin_unlock(&pa->pa_lock);
4204 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4205 			       start, pa->pa_len);
4206 		}
4207 		ext4_unlock_group(sb, i);
4208 
4209 		if (grp->bb_free == 0)
4210 			continue;
4211 		printk(KERN_ERR "%u: %d/%d \n",
4212 		       i, grp->bb_free, grp->bb_fragments);
4213 	}
4214 	printk(KERN_ERR "\n");
4215 }
4216 #else
ext4_mb_show_ac(struct ext4_allocation_context * ac)4217 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4218 {
4219 	return;
4220 }
4221 #endif
4222 
4223 /*
4224  * We use locality group preallocation for small size file. The size of the
4225  * file is determined by the current size or the resulting size after
4226  * allocation which ever is larger
4227  *
4228  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4229  */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4230 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4231 {
4232 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4233 	int bsbits = ac->ac_sb->s_blocksize_bits;
4234 	loff_t size, isize;
4235 
4236 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4237 		return;
4238 
4239 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4240 		return;
4241 
4242 	size = extent_logical_end(sbi, &ac->ac_o_ex);
4243 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4244 		>> bsbits;
4245 
4246 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4247 	    !inode_is_open_for_write(ac->ac_inode)) {
4248 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4249 		return;
4250 	}
4251 
4252 	if (sbi->s_mb_group_prealloc <= 0) {
4253 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4254 		return;
4255 	}
4256 
4257 	/* don't use group allocation for large files */
4258 	size = max(size, isize);
4259 	if (size > sbi->s_mb_stream_request) {
4260 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4261 		return;
4262 	}
4263 
4264 	BUG_ON(ac->ac_lg != NULL);
4265 	/*
4266 	 * locality group prealloc space are per cpu. The reason for having
4267 	 * per cpu locality group is to reduce the contention between block
4268 	 * request from multiple CPUs.
4269 	 */
4270 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4271 
4272 	/* we're going to use group allocation */
4273 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4274 
4275 	/* serialize all allocations in the group */
4276 	mutex_lock(&ac->ac_lg->lg_mutex);
4277 }
4278 
4279 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4280 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4281 				struct ext4_allocation_request *ar)
4282 {
4283 	struct super_block *sb = ar->inode->i_sb;
4284 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4285 	struct ext4_super_block *es = sbi->s_es;
4286 	ext4_group_t group;
4287 	unsigned int len;
4288 	ext4_fsblk_t goal;
4289 	ext4_grpblk_t block;
4290 
4291 	/* we can't allocate > group size */
4292 	len = ar->len;
4293 
4294 	/* just a dirty hack to filter too big requests  */
4295 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4296 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4297 
4298 	/* start searching from the goal */
4299 	goal = ar->goal;
4300 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4301 			goal >= ext4_blocks_count(es))
4302 		goal = le32_to_cpu(es->s_first_data_block);
4303 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4304 
4305 	/* set up allocation goals */
4306 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4307 	ac->ac_status = AC_STATUS_CONTINUE;
4308 	ac->ac_sb = sb;
4309 	ac->ac_inode = ar->inode;
4310 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4311 	ac->ac_o_ex.fe_group = group;
4312 	ac->ac_o_ex.fe_start = block;
4313 	ac->ac_o_ex.fe_len = len;
4314 	ac->ac_g_ex = ac->ac_o_ex;
4315 	ac->ac_flags = ar->flags;
4316 
4317 	/* we have to define context: we'll we work with a file or
4318 	 * locality group. this is a policy, actually */
4319 	ext4_mb_group_or_file(ac);
4320 
4321 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4322 			"left: %u/%u, right %u/%u to %swritable\n",
4323 			(unsigned) ar->len, (unsigned) ar->logical,
4324 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4325 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4326 			(unsigned) ar->lright, (unsigned) ar->pright,
4327 			inode_is_open_for_write(ar->inode) ? "" : "non-");
4328 	return 0;
4329 
4330 }
4331 
4332 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4333 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4334 					struct ext4_locality_group *lg,
4335 					int order, int total_entries)
4336 {
4337 	ext4_group_t group = 0;
4338 	struct ext4_buddy e4b;
4339 	struct list_head discard_list;
4340 	struct ext4_prealloc_space *pa, *tmp;
4341 
4342 	mb_debug(1, "discard locality group preallocation\n");
4343 
4344 	INIT_LIST_HEAD(&discard_list);
4345 
4346 	spin_lock(&lg->lg_prealloc_lock);
4347 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4348 						pa_inode_list) {
4349 		spin_lock(&pa->pa_lock);
4350 		if (atomic_read(&pa->pa_count)) {
4351 			/*
4352 			 * This is the pa that we just used
4353 			 * for block allocation. So don't
4354 			 * free that
4355 			 */
4356 			spin_unlock(&pa->pa_lock);
4357 			continue;
4358 		}
4359 		if (pa->pa_deleted) {
4360 			spin_unlock(&pa->pa_lock);
4361 			continue;
4362 		}
4363 		/* only lg prealloc space */
4364 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4365 
4366 		/* seems this one can be freed ... */
4367 		pa->pa_deleted = 1;
4368 		spin_unlock(&pa->pa_lock);
4369 
4370 		list_del_rcu(&pa->pa_inode_list);
4371 		list_add(&pa->u.pa_tmp_list, &discard_list);
4372 
4373 		total_entries--;
4374 		if (total_entries <= 5) {
4375 			/*
4376 			 * we want to keep only 5 entries
4377 			 * allowing it to grow to 8. This
4378 			 * mak sure we don't call discard
4379 			 * soon for this list.
4380 			 */
4381 			break;
4382 		}
4383 	}
4384 	spin_unlock(&lg->lg_prealloc_lock);
4385 
4386 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4387 		int err;
4388 
4389 		group = ext4_get_group_number(sb, pa->pa_pstart);
4390 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4391 					     GFP_NOFS|__GFP_NOFAIL);
4392 		if (err) {
4393 			ext4_error(sb, "Error %d loading buddy information for %u",
4394 				   err, group);
4395 			continue;
4396 		}
4397 		ext4_lock_group(sb, group);
4398 		list_del(&pa->pa_group_list);
4399 		ext4_mb_release_group_pa(&e4b, pa);
4400 		ext4_unlock_group(sb, group);
4401 
4402 		ext4_mb_unload_buddy(&e4b);
4403 		list_del(&pa->u.pa_tmp_list);
4404 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4405 	}
4406 }
4407 
4408 /*
4409  * We have incremented pa_count. So it cannot be freed at this
4410  * point. Also we hold lg_mutex. So no parallel allocation is
4411  * possible from this lg. That means pa_free cannot be updated.
4412  *
4413  * A parallel ext4_mb_discard_group_preallocations is possible.
4414  * which can cause the lg_prealloc_list to be updated.
4415  */
4416 
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4417 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4418 {
4419 	int order, added = 0, lg_prealloc_count = 1;
4420 	struct super_block *sb = ac->ac_sb;
4421 	struct ext4_locality_group *lg = ac->ac_lg;
4422 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4423 
4424 	order = fls(pa->pa_free) - 1;
4425 	if (order > PREALLOC_TB_SIZE - 1)
4426 		/* The max size of hash table is PREALLOC_TB_SIZE */
4427 		order = PREALLOC_TB_SIZE - 1;
4428 	/* Add the prealloc space to lg */
4429 	spin_lock(&lg->lg_prealloc_lock);
4430 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4431 						pa_inode_list) {
4432 		spin_lock(&tmp_pa->pa_lock);
4433 		if (tmp_pa->pa_deleted) {
4434 			spin_unlock(&tmp_pa->pa_lock);
4435 			continue;
4436 		}
4437 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4438 			/* Add to the tail of the previous entry */
4439 			list_add_tail_rcu(&pa->pa_inode_list,
4440 						&tmp_pa->pa_inode_list);
4441 			added = 1;
4442 			/*
4443 			 * we want to count the total
4444 			 * number of entries in the list
4445 			 */
4446 		}
4447 		spin_unlock(&tmp_pa->pa_lock);
4448 		lg_prealloc_count++;
4449 	}
4450 	if (!added)
4451 		list_add_tail_rcu(&pa->pa_inode_list,
4452 					&lg->lg_prealloc_list[order]);
4453 	spin_unlock(&lg->lg_prealloc_lock);
4454 
4455 	/* Now trim the list to be not more than 8 elements */
4456 	if (lg_prealloc_count > 8) {
4457 		ext4_mb_discard_lg_preallocations(sb, lg,
4458 						  order, lg_prealloc_count);
4459 		return;
4460 	}
4461 	return ;
4462 }
4463 
4464 /*
4465  * release all resource we used in allocation
4466  */
ext4_mb_release_context(struct ext4_allocation_context * ac)4467 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4468 {
4469 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4470 	struct ext4_prealloc_space *pa = ac->ac_pa;
4471 	if (pa) {
4472 		if (pa->pa_type == MB_GROUP_PA) {
4473 			/* see comment in ext4_mb_use_group_pa() */
4474 			spin_lock(&pa->pa_lock);
4475 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4476 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4477 			pa->pa_free -= ac->ac_b_ex.fe_len;
4478 			pa->pa_len -= ac->ac_b_ex.fe_len;
4479 			spin_unlock(&pa->pa_lock);
4480 		}
4481 	}
4482 	if (pa) {
4483 		/*
4484 		 * We want to add the pa to the right bucket.
4485 		 * Remove it from the list and while adding
4486 		 * make sure the list to which we are adding
4487 		 * doesn't grow big.
4488 		 */
4489 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4490 			spin_lock(pa->pa_obj_lock);
4491 			list_del_rcu(&pa->pa_inode_list);
4492 			spin_unlock(pa->pa_obj_lock);
4493 			ext4_mb_add_n_trim(ac);
4494 		}
4495 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4496 	}
4497 	if (ac->ac_bitmap_page)
4498 		put_page(ac->ac_bitmap_page);
4499 	if (ac->ac_buddy_page)
4500 		put_page(ac->ac_buddy_page);
4501 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4502 		mutex_unlock(&ac->ac_lg->lg_mutex);
4503 	ext4_mb_collect_stats(ac);
4504 	return 0;
4505 }
4506 
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4507 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4508 {
4509 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4510 	int ret;
4511 	int freed = 0;
4512 
4513 	trace_ext4_mb_discard_preallocations(sb, needed);
4514 	for (i = 0; i < ngroups && needed > 0; i++) {
4515 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4516 		freed += ret;
4517 		needed -= ret;
4518 	}
4519 
4520 	return freed;
4521 }
4522 
4523 /*
4524  * Main entry point into mballoc to allocate blocks
4525  * it tries to use preallocation first, then falls back
4526  * to usual allocation
4527  */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4528 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4529 				struct ext4_allocation_request *ar, int *errp)
4530 {
4531 	int freed;
4532 	struct ext4_allocation_context *ac = NULL;
4533 	struct ext4_sb_info *sbi;
4534 	struct super_block *sb;
4535 	ext4_fsblk_t block = 0;
4536 	unsigned int inquota = 0;
4537 	unsigned int reserv_clstrs = 0;
4538 
4539 	might_sleep();
4540 	sb = ar->inode->i_sb;
4541 	sbi = EXT4_SB(sb);
4542 
4543 	trace_ext4_request_blocks(ar);
4544 
4545 	/* Allow to use superuser reservation for quota file */
4546 	if (ext4_is_quota_file(ar->inode))
4547 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4548 
4549 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4550 		/* Without delayed allocation we need to verify
4551 		 * there is enough free blocks to do block allocation
4552 		 * and verify allocation doesn't exceed the quota limits.
4553 		 */
4554 		while (ar->len &&
4555 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4556 
4557 			/* let others to free the space */
4558 			cond_resched();
4559 			ar->len = ar->len >> 1;
4560 		}
4561 		if (!ar->len) {
4562 			*errp = -ENOSPC;
4563 			return 0;
4564 		}
4565 		reserv_clstrs = ar->len;
4566 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4567 			dquot_alloc_block_nofail(ar->inode,
4568 						 EXT4_C2B(sbi, ar->len));
4569 		} else {
4570 			while (ar->len &&
4571 				dquot_alloc_block(ar->inode,
4572 						  EXT4_C2B(sbi, ar->len))) {
4573 
4574 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4575 				ar->len--;
4576 			}
4577 		}
4578 		inquota = ar->len;
4579 		if (ar->len == 0) {
4580 			*errp = -EDQUOT;
4581 			goto out;
4582 		}
4583 	}
4584 
4585 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4586 	if (!ac) {
4587 		ar->len = 0;
4588 		*errp = -ENOMEM;
4589 		goto out;
4590 	}
4591 
4592 	*errp = ext4_mb_initialize_context(ac, ar);
4593 	if (*errp) {
4594 		ar->len = 0;
4595 		goto out;
4596 	}
4597 
4598 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4599 	if (!ext4_mb_use_preallocated(ac)) {
4600 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4601 		ext4_mb_normalize_request(ac, ar);
4602 repeat:
4603 		/* allocate space in core */
4604 		*errp = ext4_mb_regular_allocator(ac);
4605 		if (*errp)
4606 			goto discard_and_exit;
4607 
4608 		/* as we've just preallocated more space than
4609 		 * user requested originally, we store allocated
4610 		 * space in a special descriptor */
4611 		if (ac->ac_status == AC_STATUS_FOUND &&
4612 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4613 			*errp = ext4_mb_new_preallocation(ac);
4614 		if (*errp) {
4615 		discard_and_exit:
4616 			ext4_discard_allocated_blocks(ac);
4617 			goto errout;
4618 		}
4619 	}
4620 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4621 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4622 		if (*errp) {
4623 			ext4_discard_allocated_blocks(ac);
4624 			goto errout;
4625 		} else {
4626 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4627 			ar->len = ac->ac_b_ex.fe_len;
4628 		}
4629 	} else {
4630 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4631 		if (freed)
4632 			goto repeat;
4633 		*errp = -ENOSPC;
4634 	}
4635 
4636 errout:
4637 	if (*errp) {
4638 		ac->ac_b_ex.fe_len = 0;
4639 		ar->len = 0;
4640 		ext4_mb_show_ac(ac);
4641 	}
4642 	ext4_mb_release_context(ac);
4643 out:
4644 	if (ac)
4645 		kmem_cache_free(ext4_ac_cachep, ac);
4646 	if (inquota && ar->len < inquota)
4647 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4648 	if (!ar->len) {
4649 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4650 			/* release all the reserved blocks if non delalloc */
4651 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4652 						reserv_clstrs);
4653 	}
4654 
4655 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4656 
4657 	return block;
4658 }
4659 
4660 /*
4661  * We can merge two free data extents only if the physical blocks
4662  * are contiguous, AND the extents were freed by the same transaction,
4663  * AND the blocks are associated with the same group.
4664  */
ext4_try_merge_freed_extent(struct ext4_sb_info * sbi,struct ext4_free_data * entry,struct ext4_free_data * new_entry,struct rb_root * entry_rb_root)4665 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4666 					struct ext4_free_data *entry,
4667 					struct ext4_free_data *new_entry,
4668 					struct rb_root *entry_rb_root)
4669 {
4670 	if ((entry->efd_tid != new_entry->efd_tid) ||
4671 	    (entry->efd_group != new_entry->efd_group))
4672 		return;
4673 	if (entry->efd_start_cluster + entry->efd_count ==
4674 	    new_entry->efd_start_cluster) {
4675 		new_entry->efd_start_cluster = entry->efd_start_cluster;
4676 		new_entry->efd_count += entry->efd_count;
4677 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4678 		   entry->efd_start_cluster) {
4679 		new_entry->efd_count += entry->efd_count;
4680 	} else
4681 		return;
4682 	spin_lock(&sbi->s_md_lock);
4683 	list_del(&entry->efd_list);
4684 	spin_unlock(&sbi->s_md_lock);
4685 	rb_erase(&entry->efd_node, entry_rb_root);
4686 	kmem_cache_free(ext4_free_data_cachep, entry);
4687 }
4688 
4689 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4690 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4691 		      struct ext4_free_data *new_entry)
4692 {
4693 	ext4_group_t group = e4b->bd_group;
4694 	ext4_grpblk_t cluster;
4695 	ext4_grpblk_t clusters = new_entry->efd_count;
4696 	struct ext4_free_data *entry;
4697 	struct ext4_group_info *db = e4b->bd_info;
4698 	struct super_block *sb = e4b->bd_sb;
4699 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4700 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4701 	struct rb_node *parent = NULL, *new_node;
4702 
4703 	BUG_ON(!ext4_handle_valid(handle));
4704 	BUG_ON(e4b->bd_bitmap_page == NULL);
4705 	BUG_ON(e4b->bd_buddy_page == NULL);
4706 
4707 	new_node = &new_entry->efd_node;
4708 	cluster = new_entry->efd_start_cluster;
4709 
4710 	if (!*n) {
4711 		/* first free block exent. We need to
4712 		   protect buddy cache from being freed,
4713 		 * otherwise we'll refresh it from
4714 		 * on-disk bitmap and lose not-yet-available
4715 		 * blocks */
4716 		get_page(e4b->bd_buddy_page);
4717 		get_page(e4b->bd_bitmap_page);
4718 	}
4719 	while (*n) {
4720 		parent = *n;
4721 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4722 		if (cluster < entry->efd_start_cluster)
4723 			n = &(*n)->rb_left;
4724 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4725 			n = &(*n)->rb_right;
4726 		else {
4727 			ext4_grp_locked_error(sb, group, 0,
4728 				ext4_group_first_block_no(sb, group) +
4729 				EXT4_C2B(sbi, cluster),
4730 				"Block already on to-be-freed list");
4731 			kmem_cache_free(ext4_free_data_cachep, new_entry);
4732 			return 0;
4733 		}
4734 	}
4735 
4736 	rb_link_node(new_node, parent, n);
4737 	rb_insert_color(new_node, &db->bb_free_root);
4738 
4739 	/* Now try to see the extent can be merged to left and right */
4740 	node = rb_prev(new_node);
4741 	if (node) {
4742 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4743 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4744 					    &(db->bb_free_root));
4745 	}
4746 
4747 	node = rb_next(new_node);
4748 	if (node) {
4749 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4750 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4751 					    &(db->bb_free_root));
4752 	}
4753 
4754 	spin_lock(&sbi->s_md_lock);
4755 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4756 	sbi->s_mb_free_pending += clusters;
4757 	spin_unlock(&sbi->s_md_lock);
4758 	return 0;
4759 }
4760 
4761 /**
4762  * ext4_free_blocks() -- Free given blocks and update quota
4763  * @handle:		handle for this transaction
4764  * @inode:		inode
4765  * @bh:			optional buffer of the block to be freed
4766  * @block:		starting physical block to be freed
4767  * @count:		number of blocks to be freed
4768  * @flags:		flags used by ext4_free_blocks
4769  */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)4770 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4771 		      struct buffer_head *bh, ext4_fsblk_t block,
4772 		      unsigned long count, int flags)
4773 {
4774 	struct buffer_head *bitmap_bh = NULL;
4775 	struct super_block *sb = inode->i_sb;
4776 	struct ext4_group_desc *gdp;
4777 	unsigned int overflow;
4778 	ext4_grpblk_t bit;
4779 	struct buffer_head *gd_bh;
4780 	ext4_group_t block_group;
4781 	struct ext4_sb_info *sbi;
4782 	struct ext4_buddy e4b;
4783 	unsigned int count_clusters;
4784 	int err = 0;
4785 	int ret;
4786 
4787 	might_sleep();
4788 	if (bh) {
4789 		if (block)
4790 			BUG_ON(block != bh->b_blocknr);
4791 		else
4792 			block = bh->b_blocknr;
4793 	}
4794 
4795 	sbi = EXT4_SB(sb);
4796 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4797 	    !ext4_data_block_valid(sbi, block, count)) {
4798 		ext4_error(sb, "Freeing blocks not in datazone - "
4799 			   "block = %llu, count = %lu", block, count);
4800 		goto error_return;
4801 	}
4802 
4803 	ext4_debug("freeing block %llu\n", block);
4804 	trace_ext4_free_blocks(inode, block, count, flags);
4805 
4806 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4807 		BUG_ON(count > 1);
4808 
4809 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4810 			    inode, bh, block);
4811 	}
4812 
4813 	/*
4814 	 * If the extent to be freed does not begin on a cluster
4815 	 * boundary, we need to deal with partial clusters at the
4816 	 * beginning and end of the extent.  Normally we will free
4817 	 * blocks at the beginning or the end unless we are explicitly
4818 	 * requested to avoid doing so.
4819 	 */
4820 	overflow = EXT4_PBLK_COFF(sbi, block);
4821 	if (overflow) {
4822 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4823 			overflow = sbi->s_cluster_ratio - overflow;
4824 			block += overflow;
4825 			if (count > overflow)
4826 				count -= overflow;
4827 			else
4828 				return;
4829 		} else {
4830 			block -= overflow;
4831 			count += overflow;
4832 		}
4833 	}
4834 	overflow = EXT4_LBLK_COFF(sbi, count);
4835 	if (overflow) {
4836 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4837 			if (count > overflow)
4838 				count -= overflow;
4839 			else
4840 				return;
4841 		} else
4842 			count += sbi->s_cluster_ratio - overflow;
4843 	}
4844 
4845 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4846 		int i;
4847 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4848 
4849 		for (i = 0; i < count; i++) {
4850 			cond_resched();
4851 			if (is_metadata)
4852 				bh = sb_find_get_block(inode->i_sb, block + i);
4853 			ext4_forget(handle, is_metadata, inode, bh, block + i);
4854 		}
4855 	}
4856 
4857 do_more:
4858 	overflow = 0;
4859 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4860 
4861 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4862 			ext4_get_group_info(sb, block_group))))
4863 		return;
4864 
4865 	/*
4866 	 * Check to see if we are freeing blocks across a group
4867 	 * boundary.
4868 	 */
4869 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4870 		overflow = EXT4_C2B(sbi, bit) + count -
4871 			EXT4_BLOCKS_PER_GROUP(sb);
4872 		count -= overflow;
4873 	}
4874 	count_clusters = EXT4_NUM_B2C(sbi, count);
4875 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4876 	if (IS_ERR(bitmap_bh)) {
4877 		err = PTR_ERR(bitmap_bh);
4878 		bitmap_bh = NULL;
4879 		goto error_return;
4880 	}
4881 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4882 	if (!gdp) {
4883 		err = -EIO;
4884 		goto error_return;
4885 	}
4886 
4887 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4888 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4889 	    in_range(block, ext4_inode_table(sb, gdp),
4890 		     sbi->s_itb_per_group) ||
4891 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4892 		     sbi->s_itb_per_group)) {
4893 
4894 		ext4_error(sb, "Freeing blocks in system zone - "
4895 			   "Block = %llu, count = %lu", block, count);
4896 		/* err = 0. ext4_std_error should be a no op */
4897 		goto error_return;
4898 	}
4899 
4900 	BUFFER_TRACE(bitmap_bh, "getting write access");
4901 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4902 	if (err)
4903 		goto error_return;
4904 
4905 	/*
4906 	 * We are about to modify some metadata.  Call the journal APIs
4907 	 * to unshare ->b_data if a currently-committing transaction is
4908 	 * using it
4909 	 */
4910 	BUFFER_TRACE(gd_bh, "get_write_access");
4911 	err = ext4_journal_get_write_access(handle, gd_bh);
4912 	if (err)
4913 		goto error_return;
4914 #ifdef AGGRESSIVE_CHECK
4915 	{
4916 		int i;
4917 		for (i = 0; i < count_clusters; i++)
4918 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4919 	}
4920 #endif
4921 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4922 
4923 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4924 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4925 				     GFP_NOFS|__GFP_NOFAIL);
4926 	if (err)
4927 		goto error_return;
4928 
4929 	/*
4930 	 * We need to make sure we don't reuse the freed block until after the
4931 	 * transaction is committed. We make an exception if the inode is to be
4932 	 * written in writeback mode since writeback mode has weak data
4933 	 * consistency guarantees.
4934 	 */
4935 	if (ext4_handle_valid(handle) &&
4936 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4937 	     !ext4_should_writeback_data(inode))) {
4938 		struct ext4_free_data *new_entry;
4939 		/*
4940 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4941 		 * to fail.
4942 		 */
4943 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4944 				GFP_NOFS|__GFP_NOFAIL);
4945 		new_entry->efd_start_cluster = bit;
4946 		new_entry->efd_group = block_group;
4947 		new_entry->efd_count = count_clusters;
4948 		new_entry->efd_tid = handle->h_transaction->t_tid;
4949 
4950 		ext4_lock_group(sb, block_group);
4951 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4952 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4953 	} else {
4954 		/* need to update group_info->bb_free and bitmap
4955 		 * with group lock held. generate_buddy look at
4956 		 * them with group lock_held
4957 		 */
4958 		if (test_opt(sb, DISCARD)) {
4959 			err = ext4_issue_discard(sb, block_group, bit,
4960 						 count_clusters, NULL);
4961 			if (err && err != -EOPNOTSUPP)
4962 				ext4_msg(sb, KERN_WARNING, "discard request in"
4963 					 " group:%d block:%d count:%lu failed"
4964 					 " with %d", block_group, bit, count,
4965 					 err);
4966 		} else
4967 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4968 
4969 		ext4_lock_group(sb, block_group);
4970 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4971 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4972 	}
4973 
4974 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4975 	ext4_free_group_clusters_set(sb, gdp, ret);
4976 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4977 	ext4_group_desc_csum_set(sb, block_group, gdp);
4978 	ext4_unlock_group(sb, block_group);
4979 
4980 	if (sbi->s_log_groups_per_flex) {
4981 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4982 		atomic64_add(count_clusters,
4983 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
4984 						  flex_group)->free_clusters);
4985 	}
4986 
4987 	/*
4988 	 * on a bigalloc file system, defer the s_freeclusters_counter
4989 	 * update to the caller (ext4_remove_space and friends) so they
4990 	 * can determine if a cluster freed here should be rereserved
4991 	 */
4992 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
4993 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4994 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4995 		percpu_counter_add(&sbi->s_freeclusters_counter,
4996 				   count_clusters);
4997 	}
4998 
4999 	ext4_mb_unload_buddy(&e4b);
5000 
5001 	/* We dirtied the bitmap block */
5002 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5003 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5004 
5005 	/* And the group descriptor block */
5006 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5007 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5008 	if (!err)
5009 		err = ret;
5010 
5011 	if (overflow && !err) {
5012 		block += count;
5013 		count = overflow;
5014 		put_bh(bitmap_bh);
5015 		goto do_more;
5016 	}
5017 error_return:
5018 	brelse(bitmap_bh);
5019 	ext4_std_error(sb, err);
5020 	return;
5021 }
5022 
5023 /**
5024  * ext4_group_add_blocks() -- Add given blocks to an existing group
5025  * @handle:			handle to this transaction
5026  * @sb:				super block
5027  * @block:			start physical block to add to the block group
5028  * @count:			number of blocks to free
5029  *
5030  * This marks the blocks as free in the bitmap and buddy.
5031  */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)5032 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
5033 			 ext4_fsblk_t block, unsigned long count)
5034 {
5035 	struct buffer_head *bitmap_bh = NULL;
5036 	struct buffer_head *gd_bh;
5037 	ext4_group_t block_group;
5038 	ext4_grpblk_t bit;
5039 	unsigned int i;
5040 	struct ext4_group_desc *desc;
5041 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5042 	struct ext4_buddy e4b;
5043 	int err = 0, ret, free_clusters_count;
5044 	ext4_grpblk_t clusters_freed;
5045 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5046 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5047 	unsigned long cluster_count = last_cluster - first_cluster + 1;
5048 
5049 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5050 
5051 	if (count == 0)
5052 		return 0;
5053 
5054 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5055 	/*
5056 	 * Check to see if we are freeing blocks across a group
5057 	 * boundary.
5058 	 */
5059 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5060 		ext4_warning(sb, "too many blocks added to group %u",
5061 			     block_group);
5062 		err = -EINVAL;
5063 		goto error_return;
5064 	}
5065 
5066 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5067 	if (IS_ERR(bitmap_bh)) {
5068 		err = PTR_ERR(bitmap_bh);
5069 		bitmap_bh = NULL;
5070 		goto error_return;
5071 	}
5072 
5073 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5074 	if (!desc) {
5075 		err = -EIO;
5076 		goto error_return;
5077 	}
5078 
5079 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5080 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5081 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5082 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
5083 		     sbi->s_itb_per_group)) {
5084 		ext4_error(sb, "Adding blocks in system zones - "
5085 			   "Block = %llu, count = %lu",
5086 			   block, count);
5087 		err = -EINVAL;
5088 		goto error_return;
5089 	}
5090 
5091 	BUFFER_TRACE(bitmap_bh, "getting write access");
5092 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5093 	if (err)
5094 		goto error_return;
5095 
5096 	/*
5097 	 * We are about to modify some metadata.  Call the journal APIs
5098 	 * to unshare ->b_data if a currently-committing transaction is
5099 	 * using it
5100 	 */
5101 	BUFFER_TRACE(gd_bh, "get_write_access");
5102 	err = ext4_journal_get_write_access(handle, gd_bh);
5103 	if (err)
5104 		goto error_return;
5105 
5106 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5107 		BUFFER_TRACE(bitmap_bh, "clear bit");
5108 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5109 			ext4_error(sb, "bit already cleared for block %llu",
5110 				   (ext4_fsblk_t)(block + i));
5111 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
5112 		} else {
5113 			clusters_freed++;
5114 		}
5115 	}
5116 
5117 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
5118 	if (err)
5119 		goto error_return;
5120 
5121 	/*
5122 	 * need to update group_info->bb_free and bitmap
5123 	 * with group lock held. generate_buddy look at
5124 	 * them with group lock_held
5125 	 */
5126 	ext4_lock_group(sb, block_group);
5127 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5128 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
5129 	free_clusters_count = clusters_freed +
5130 		ext4_free_group_clusters(sb, desc);
5131 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5132 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5133 	ext4_group_desc_csum_set(sb, block_group, desc);
5134 	ext4_unlock_group(sb, block_group);
5135 	percpu_counter_add(&sbi->s_freeclusters_counter,
5136 			   clusters_freed);
5137 
5138 	if (sbi->s_log_groups_per_flex) {
5139 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5140 		atomic64_add(clusters_freed,
5141 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
5142 						  flex_group)->free_clusters);
5143 	}
5144 
5145 	ext4_mb_unload_buddy(&e4b);
5146 
5147 	/* We dirtied the bitmap block */
5148 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5149 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5150 
5151 	/* And the group descriptor block */
5152 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5153 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5154 	if (!err)
5155 		err = ret;
5156 
5157 error_return:
5158 	brelse(bitmap_bh);
5159 	ext4_std_error(sb, err);
5160 	return err;
5161 }
5162 
5163 /**
5164  * ext4_trim_extent -- function to TRIM one single free extent in the group
5165  * @sb:		super block for the file system
5166  * @start:	starting block of the free extent in the alloc. group
5167  * @count:	number of blocks to TRIM
5168  * @e4b:	ext4 buddy for the group
5169  *
5170  * Trim "count" blocks starting at "start" in the "group". To assure that no
5171  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5172  * be called with under the group lock.
5173  */
ext4_trim_extent(struct super_block * sb,int start,int count,struct ext4_buddy * e4b)5174 static int ext4_trim_extent(struct super_block *sb,
5175 		int start, int count, struct ext4_buddy *e4b)
5176 __releases(bitlock)
5177 __acquires(bitlock)
5178 {
5179 	struct ext4_free_extent ex;
5180 	ext4_group_t group = e4b->bd_group;
5181 	int ret = 0;
5182 
5183 	trace_ext4_trim_extent(sb, group, start, count);
5184 
5185 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5186 
5187 	ex.fe_start = start;
5188 	ex.fe_group = group;
5189 	ex.fe_len = count;
5190 
5191 	/*
5192 	 * Mark blocks used, so no one can reuse them while
5193 	 * being trimmed.
5194 	 */
5195 	mb_mark_used(e4b, &ex);
5196 	ext4_unlock_group(sb, group);
5197 	ret = ext4_issue_discard(sb, group, start, count, NULL);
5198 	ext4_lock_group(sb, group);
5199 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5200 	return ret;
5201 }
5202 
ext4_last_grp_cluster(struct super_block * sb,ext4_group_t grp)5203 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
5204 					   ext4_group_t grp)
5205 {
5206 	unsigned long nr_clusters_in_group;
5207 
5208 	if (grp < (ext4_get_groups_count(sb) - 1))
5209 		nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
5210 	else
5211 		nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
5212 					ext4_group_first_block_no(sb, grp))
5213 				       >> EXT4_CLUSTER_BITS(sb);
5214 
5215 	return nr_clusters_in_group - 1;
5216 }
5217 
ext4_trim_interrupted(void)5218 static bool ext4_trim_interrupted(void)
5219 {
5220 	return fatal_signal_pending(current) || freezing(current);
5221 }
5222 
ext4_try_to_trim_range(struct super_block * sb,struct ext4_buddy * e4b,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)5223 static int ext4_try_to_trim_range(struct super_block *sb,
5224 		struct ext4_buddy *e4b, ext4_grpblk_t start,
5225 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
5226 {
5227 	ext4_grpblk_t next, count, free_count, last, origin_start;
5228 	bool set_trimmed = false;
5229 	void *bitmap;
5230 
5231 	last = ext4_last_grp_cluster(sb, e4b->bd_group);
5232 	bitmap = e4b->bd_bitmap;
5233 	if (start == 0 && max >= last)
5234 		set_trimmed = true;
5235 	origin_start = start;
5236 	start = max(e4b->bd_info->bb_first_free, start);
5237 	count = 0;
5238 	free_count = 0;
5239 
5240 	while (start <= max) {
5241 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5242 		if (start > max)
5243 			break;
5244 
5245 		next = mb_find_next_bit(bitmap, last + 1, start);
5246 		if (origin_start == 0 && next >= last)
5247 			set_trimmed = true;
5248 
5249 		if ((next - start) >= minblocks) {
5250 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
5251 
5252 			if (ret && ret != -EOPNOTSUPP)
5253 				return count;
5254 			count += next - start;
5255 		}
5256 		free_count += next - start;
5257 		start = next + 1;
5258 
5259 		if (ext4_trim_interrupted())
5260 			return count;
5261 
5262 		if (need_resched()) {
5263 			ext4_unlock_group(sb, e4b->bd_group);
5264 			cond_resched();
5265 			ext4_lock_group(sb, e4b->bd_group);
5266 		}
5267 
5268 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
5269 			break;
5270 	}
5271 
5272 	if (set_trimmed)
5273 		EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
5274 
5275 	return count;
5276 }
5277 
5278 /**
5279  * ext4_trim_all_free -- function to trim all free space in alloc. group
5280  * @sb:			super block for file system
5281  * @group:		group to be trimmed
5282  * @start:		first group block to examine
5283  * @max:		last group block to examine
5284  * @minblocks:		minimum extent block count
5285  *
5286  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5287  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5288  * the extent.
5289  *
5290  *
5291  * ext4_trim_all_free walks through group's block bitmap searching for free
5292  * extents. When the free extent is found, mark it as used in group buddy
5293  * bitmap. Then issue a TRIM command on this extent and free the extent in
5294  * the group buddy bitmap. This is done until whole group is scanned.
5295  */
5296 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)5297 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5298 		   ext4_grpblk_t start, ext4_grpblk_t max,
5299 		   ext4_grpblk_t minblocks)
5300 {
5301 	struct ext4_buddy e4b;
5302 	int ret;
5303 
5304 	trace_ext4_trim_all_free(sb, group, start, max);
5305 
5306 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5307 	if (ret) {
5308 		ext4_warning(sb, "Error %d loading buddy information for %u",
5309 			     ret, group);
5310 		return ret;
5311 	}
5312 
5313 	ext4_lock_group(sb, group);
5314 
5315 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
5316 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks)
5317 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
5318 	else
5319 		ret = 0;
5320 
5321 	ext4_unlock_group(sb, group);
5322 	ext4_mb_unload_buddy(&e4b);
5323 
5324 	ext4_debug("trimmed %d blocks in the group %d\n",
5325 		ret, group);
5326 
5327 	return ret;
5328 }
5329 
5330 /**
5331  * ext4_trim_fs() -- trim ioctl handle function
5332  * @sb:			superblock for filesystem
5333  * @range:		fstrim_range structure
5334  *
5335  * start:	First Byte to trim
5336  * len:		number of Bytes to trim from start
5337  * minlen:	minimum extent length in Bytes
5338  * ext4_trim_fs goes through all allocation groups containing Bytes from
5339  * start to start+len. For each such a group ext4_trim_all_free function
5340  * is invoked to trim all free space.
5341  */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)5342 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5343 {
5344 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
5345 	struct ext4_group_info *grp;
5346 	ext4_group_t group, first_group, last_group;
5347 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5348 	uint64_t start, end, minlen, trimmed = 0;
5349 	ext4_fsblk_t first_data_blk =
5350 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5351 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5352 	int ret = 0;
5353 
5354 	start = range->start >> sb->s_blocksize_bits;
5355 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5356 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5357 			      range->minlen >> sb->s_blocksize_bits);
5358 
5359 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5360 	    start >= max_blks ||
5361 	    range->len < sb->s_blocksize)
5362 		return -EINVAL;
5363 	/* No point to try to trim less than discard granularity */
5364 	if (range->minlen < q->limits.discard_granularity) {
5365 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5366 			q->limits.discard_granularity >> sb->s_blocksize_bits);
5367 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
5368 			goto out;
5369 	}
5370 	if (end >= max_blks - 1)
5371 		end = max_blks - 1;
5372 	if (end <= first_data_blk)
5373 		goto out;
5374 	if (start < first_data_blk)
5375 		start = first_data_blk;
5376 
5377 	/* Determine first and last group to examine based on start and end */
5378 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5379 				     &first_group, &first_cluster);
5380 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5381 				     &last_group, &last_cluster);
5382 
5383 	/* end now represents the last cluster to discard in this group */
5384 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5385 
5386 	for (group = first_group; group <= last_group; group++) {
5387 		if (ext4_trim_interrupted())
5388 			break;
5389 		grp = ext4_get_group_info(sb, group);
5390 		/* We only do this if the grp has never been initialized */
5391 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5392 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5393 			if (ret)
5394 				break;
5395 		}
5396 
5397 		/*
5398 		 * For all the groups except the last one, last cluster will
5399 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5400 		 * change it for the last group, note that last_cluster is
5401 		 * already computed earlier by ext4_get_group_no_and_offset()
5402 		 */
5403 		if (group == last_group)
5404 			end = last_cluster;
5405 		if (grp->bb_free >= minlen) {
5406 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5407 						 end, minlen);
5408 			if (cnt < 0) {
5409 				ret = cnt;
5410 				break;
5411 			}
5412 			trimmed += cnt;
5413 		}
5414 
5415 		/*
5416 		 * For every group except the first one, we are sure
5417 		 * that the first cluster to discard will be cluster #0.
5418 		 */
5419 		first_cluster = 0;
5420 	}
5421 
5422 	if (!ret)
5423 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
5424 
5425 out:
5426 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5427 	return ret;
5428 }
5429 
5430 /* Iterate all the free extents in the group. */
5431 int
ext4_mballoc_query_range(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t end,ext4_mballoc_query_range_fn formatter,void * priv)5432 ext4_mballoc_query_range(
5433 	struct super_block		*sb,
5434 	ext4_group_t			group,
5435 	ext4_grpblk_t			start,
5436 	ext4_grpblk_t			end,
5437 	ext4_mballoc_query_range_fn	formatter,
5438 	void				*priv)
5439 {
5440 	void				*bitmap;
5441 	ext4_grpblk_t			next;
5442 	struct ext4_buddy		e4b;
5443 	int				error;
5444 
5445 	error = ext4_mb_load_buddy(sb, group, &e4b);
5446 	if (error)
5447 		return error;
5448 	bitmap = e4b.bd_bitmap;
5449 
5450 	ext4_lock_group(sb, group);
5451 
5452 	start = max(e4b.bd_info->bb_first_free, start);
5453 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5454 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5455 
5456 	while (start <= end) {
5457 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
5458 		if (start > end)
5459 			break;
5460 		next = mb_find_next_bit(bitmap, end + 1, start);
5461 
5462 		ext4_unlock_group(sb, group);
5463 		error = formatter(sb, group, start, next - start, priv);
5464 		if (error)
5465 			goto out_unload;
5466 		ext4_lock_group(sb, group);
5467 
5468 		start = next + 1;
5469 	}
5470 
5471 	ext4_unlock_group(sb, group);
5472 out_unload:
5473 	ext4_mb_unload_buddy(&e4b);
5474 
5475 	return error;
5476 }
5477