1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8 /*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21
22 #ifdef CONFIG_EXT4_DEBUG
23 ushort ext4_mballoc_debug __read_mostly;
24
25 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
26 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
27 #endif
28
29 /*
30 * MUSTDO:
31 * - test ext4_ext_search_left() and ext4_ext_search_right()
32 * - search for metadata in few groups
33 *
34 * TODO v4:
35 * - normalization should take into account whether file is still open
36 * - discard preallocations if no free space left (policy?)
37 * - don't normalize tails
38 * - quota
39 * - reservation for superuser
40 *
41 * TODO v3:
42 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
43 * - track min/max extents in each group for better group selection
44 * - mb_mark_used() may allocate chunk right after splitting buddy
45 * - tree of groups sorted by number of free blocks
46 * - error handling
47 */
48
49 /*
50 * The allocation request involve request for multiple number of blocks
51 * near to the goal(block) value specified.
52 *
53 * During initialization phase of the allocator we decide to use the
54 * group preallocation or inode preallocation depending on the size of
55 * the file. The size of the file could be the resulting file size we
56 * would have after allocation, or the current file size, which ever
57 * is larger. If the size is less than sbi->s_mb_stream_request we
58 * select to use the group preallocation. The default value of
59 * s_mb_stream_request is 16 blocks. This can also be tuned via
60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61 * terms of number of blocks.
62 *
63 * The main motivation for having small file use group preallocation is to
64 * ensure that we have small files closer together on the disk.
65 *
66 * First stage the allocator looks at the inode prealloc list,
67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68 * spaces for this particular inode. The inode prealloc space is
69 * represented as:
70 *
71 * pa_lstart -> the logical start block for this prealloc space
72 * pa_pstart -> the physical start block for this prealloc space
73 * pa_len -> length for this prealloc space (in clusters)
74 * pa_free -> free space available in this prealloc space (in clusters)
75 *
76 * The inode preallocation space is used looking at the _logical_ start
77 * block. If only the logical file block falls within the range of prealloc
78 * space we will consume the particular prealloc space. This makes sure that
79 * we have contiguous physical blocks representing the file blocks
80 *
81 * The important thing to be noted in case of inode prealloc space is that
82 * we don't modify the values associated to inode prealloc space except
83 * pa_free.
84 *
85 * If we are not able to find blocks in the inode prealloc space and if we
86 * have the group allocation flag set then we look at the locality group
87 * prealloc space. These are per CPU prealloc list represented as
88 *
89 * ext4_sb_info.s_locality_groups[smp_processor_id()]
90 *
91 * The reason for having a per cpu locality group is to reduce the contention
92 * between CPUs. It is possible to get scheduled at this point.
93 *
94 * The locality group prealloc space is used looking at whether we have
95 * enough free space (pa_free) within the prealloc space.
96 *
97 * If we can't allocate blocks via inode prealloc or/and locality group
98 * prealloc then we look at the buddy cache. The buddy cache is represented
99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100 * mapped to the buddy and bitmap information regarding different
101 * groups. The buddy information is attached to buddy cache inode so that
102 * we can access them through the page cache. The information regarding
103 * each group is loaded via ext4_mb_load_buddy. The information involve
104 * block bitmap and buddy information. The information are stored in the
105 * inode as:
106 *
107 * { page }
108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109 *
110 *
111 * one block each for bitmap and buddy information. So for each group we
112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
113 * blocksize) blocks. So it can have information regarding groups_per_page
114 * which is blocks_per_page/2
115 *
116 * The buddy cache inode is not stored on disk. The inode is thrown
117 * away when the filesystem is unmounted.
118 *
119 * We look for count number of blocks in the buddy cache. If we were able
120 * to locate that many free blocks we return with additional information
121 * regarding rest of the contiguous physical block available
122 *
123 * Before allocating blocks via buddy cache we normalize the request
124 * blocks. This ensure we ask for more blocks that we needed. The extra
125 * blocks that we get after allocation is added to the respective prealloc
126 * list. In case of inode preallocation we follow a list of heuristics
127 * based on file size. This can be found in ext4_mb_normalize_request. If
128 * we are doing a group prealloc we try to normalize the request to
129 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
130 * dependent on the cluster size; for non-bigalloc file systems, it is
131 * 512 blocks. This can be tuned via
132 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
133 * terms of number of blocks. If we have mounted the file system with -O
134 * stripe=<value> option the group prealloc request is normalized to the
135 * the smallest multiple of the stripe value (sbi->s_stripe) which is
136 * greater than the default mb_group_prealloc.
137 *
138 * The regular allocator (using the buddy cache) supports a few tunables.
139 *
140 * /sys/fs/ext4/<partition>/mb_min_to_scan
141 * /sys/fs/ext4/<partition>/mb_max_to_scan
142 * /sys/fs/ext4/<partition>/mb_order2_req
143 *
144 * The regular allocator uses buddy scan only if the request len is power of
145 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
146 * value of s_mb_order2_reqs can be tuned via
147 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
148 * stripe size (sbi->s_stripe), we try to search for contiguous block in
149 * stripe size. This should result in better allocation on RAID setups. If
150 * not, we search in the specific group using bitmap for best extents. The
151 * tunable min_to_scan and max_to_scan control the behaviour here.
152 * min_to_scan indicate how long the mballoc __must__ look for a best
153 * extent and max_to_scan indicates how long the mballoc __can__ look for a
154 * best extent in the found extents. Searching for the blocks starts with
155 * the group specified as the goal value in allocation context via
156 * ac_g_ex. Each group is first checked based on the criteria whether it
157 * can be used for allocation. ext4_mb_good_group explains how the groups are
158 * checked.
159 *
160 * Both the prealloc space are getting populated as above. So for the first
161 * request we will hit the buddy cache which will result in this prealloc
162 * space getting filled. The prealloc space is then later used for the
163 * subsequent request.
164 */
165
166 /*
167 * mballoc operates on the following data:
168 * - on-disk bitmap
169 * - in-core buddy (actually includes buddy and bitmap)
170 * - preallocation descriptors (PAs)
171 *
172 * there are two types of preallocations:
173 * - inode
174 * assiged to specific inode and can be used for this inode only.
175 * it describes part of inode's space preallocated to specific
176 * physical blocks. any block from that preallocated can be used
177 * independent. the descriptor just tracks number of blocks left
178 * unused. so, before taking some block from descriptor, one must
179 * make sure corresponded logical block isn't allocated yet. this
180 * also means that freeing any block within descriptor's range
181 * must discard all preallocated blocks.
182 * - locality group
183 * assigned to specific locality group which does not translate to
184 * permanent set of inodes: inode can join and leave group. space
185 * from this type of preallocation can be used for any inode. thus
186 * it's consumed from the beginning to the end.
187 *
188 * relation between them can be expressed as:
189 * in-core buddy = on-disk bitmap + preallocation descriptors
190 *
191 * this mean blocks mballoc considers used are:
192 * - allocated blocks (persistent)
193 * - preallocated blocks (non-persistent)
194 *
195 * consistency in mballoc world means that at any time a block is either
196 * free or used in ALL structures. notice: "any time" should not be read
197 * literally -- time is discrete and delimited by locks.
198 *
199 * to keep it simple, we don't use block numbers, instead we count number of
200 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
201 *
202 * all operations can be expressed as:
203 * - init buddy: buddy = on-disk + PAs
204 * - new PA: buddy += N; PA = N
205 * - use inode PA: on-disk += N; PA -= N
206 * - discard inode PA buddy -= on-disk - PA; PA = 0
207 * - use locality group PA on-disk += N; PA -= N
208 * - discard locality group PA buddy -= PA; PA = 0
209 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
210 * is used in real operation because we can't know actual used
211 * bits from PA, only from on-disk bitmap
212 *
213 * if we follow this strict logic, then all operations above should be atomic.
214 * given some of them can block, we'd have to use something like semaphores
215 * killing performance on high-end SMP hardware. let's try to relax it using
216 * the following knowledge:
217 * 1) if buddy is referenced, it's already initialized
218 * 2) while block is used in buddy and the buddy is referenced,
219 * nobody can re-allocate that block
220 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
221 * bit set and PA claims same block, it's OK. IOW, one can set bit in
222 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
223 * block
224 *
225 * so, now we're building a concurrency table:
226 * - init buddy vs.
227 * - new PA
228 * blocks for PA are allocated in the buddy, buddy must be referenced
229 * until PA is linked to allocation group to avoid concurrent buddy init
230 * - use inode PA
231 * we need to make sure that either on-disk bitmap or PA has uptodate data
232 * given (3) we care that PA-=N operation doesn't interfere with init
233 * - discard inode PA
234 * the simplest way would be to have buddy initialized by the discard
235 * - use locality group PA
236 * again PA-=N must be serialized with init
237 * - discard locality group PA
238 * the simplest way would be to have buddy initialized by the discard
239 * - new PA vs.
240 * - use inode PA
241 * i_data_sem serializes them
242 * - discard inode PA
243 * discard process must wait until PA isn't used by another process
244 * - use locality group PA
245 * some mutex should serialize them
246 * - discard locality group PA
247 * discard process must wait until PA isn't used by another process
248 * - use inode PA
249 * - use inode PA
250 * i_data_sem or another mutex should serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * nothing wrong here -- they're different PAs covering different blocks
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 *
258 * now we're ready to make few consequences:
259 * - PA is referenced and while it is no discard is possible
260 * - PA is referenced until block isn't marked in on-disk bitmap
261 * - PA changes only after on-disk bitmap
262 * - discard must not compete with init. either init is done before
263 * any discard or they're serialized somehow
264 * - buddy init as sum of on-disk bitmap and PAs is done atomically
265 *
266 * a special case when we've used PA to emptiness. no need to modify buddy
267 * in this case, but we should care about concurrent init
268 *
269 */
270
271 /*
272 * Logic in few words:
273 *
274 * - allocation:
275 * load group
276 * find blocks
277 * mark bits in on-disk bitmap
278 * release group
279 *
280 * - use preallocation:
281 * find proper PA (per-inode or group)
282 * load group
283 * mark bits in on-disk bitmap
284 * release group
285 * release PA
286 *
287 * - free:
288 * load group
289 * mark bits in on-disk bitmap
290 * release group
291 *
292 * - discard preallocations in group:
293 * mark PAs deleted
294 * move them onto local list
295 * load on-disk bitmap
296 * load group
297 * remove PA from object (inode or locality group)
298 * mark free blocks in-core
299 *
300 * - discard inode's preallocations:
301 */
302
303 /*
304 * Locking rules
305 *
306 * Locks:
307 * - bitlock on a group (group)
308 * - object (inode/locality) (object)
309 * - per-pa lock (pa)
310 *
311 * Paths:
312 * - new pa
313 * object
314 * group
315 *
316 * - find and use pa:
317 * pa
318 *
319 * - release consumed pa:
320 * pa
321 * group
322 * object
323 *
324 * - generate in-core bitmap:
325 * group
326 * pa
327 *
328 * - discard all for given object (inode, locality group):
329 * object
330 * pa
331 * group
332 *
333 * - discard all for given group:
334 * group
335 * pa
336 * group
337 * object
338 *
339 */
340 static struct kmem_cache *ext4_pspace_cachep;
341 static struct kmem_cache *ext4_ac_cachep;
342 static struct kmem_cache *ext4_free_data_cachep;
343
344 /* We create slab caches for groupinfo data structures based on the
345 * superblock block size. There will be one per mounted filesystem for
346 * each unique s_blocksize_bits */
347 #define NR_GRPINFO_CACHES 8
348 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
349
350 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
351 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
352 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
353 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
354 };
355
356 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
357 ext4_group_t group);
358 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
359 ext4_group_t group);
360
mb_correct_addr_and_bit(int * bit,void * addr)361 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
362 {
363 #if BITS_PER_LONG == 64
364 *bit += ((unsigned long) addr & 7UL) << 3;
365 addr = (void *) ((unsigned long) addr & ~7UL);
366 #elif BITS_PER_LONG == 32
367 *bit += ((unsigned long) addr & 3UL) << 3;
368 addr = (void *) ((unsigned long) addr & ~3UL);
369 #else
370 #error "how many bits you are?!"
371 #endif
372 return addr;
373 }
374
mb_test_bit(int bit,void * addr)375 static inline int mb_test_bit(int bit, void *addr)
376 {
377 /*
378 * ext4_test_bit on architecture like powerpc
379 * needs unsigned long aligned address
380 */
381 addr = mb_correct_addr_and_bit(&bit, addr);
382 return ext4_test_bit(bit, addr);
383 }
384
mb_set_bit(int bit,void * addr)385 static inline void mb_set_bit(int bit, void *addr)
386 {
387 addr = mb_correct_addr_and_bit(&bit, addr);
388 ext4_set_bit(bit, addr);
389 }
390
mb_clear_bit(int bit,void * addr)391 static inline void mb_clear_bit(int bit, void *addr)
392 {
393 addr = mb_correct_addr_and_bit(&bit, addr);
394 ext4_clear_bit(bit, addr);
395 }
396
mb_test_and_clear_bit(int bit,void * addr)397 static inline int mb_test_and_clear_bit(int bit, void *addr)
398 {
399 addr = mb_correct_addr_and_bit(&bit, addr);
400 return ext4_test_and_clear_bit(bit, addr);
401 }
402
mb_find_next_zero_bit(void * addr,int max,int start)403 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
404 {
405 int fix = 0, ret, tmpmax;
406 addr = mb_correct_addr_and_bit(&fix, addr);
407 tmpmax = max + fix;
408 start += fix;
409
410 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
411 if (ret > max)
412 return max;
413 return ret;
414 }
415
mb_find_next_bit(void * addr,int max,int start)416 static inline int mb_find_next_bit(void *addr, int max, int start)
417 {
418 int fix = 0, ret, tmpmax;
419 addr = mb_correct_addr_and_bit(&fix, addr);
420 tmpmax = max + fix;
421 start += fix;
422
423 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
424 if (ret > max)
425 return max;
426 return ret;
427 }
428
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)429 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
430 {
431 char *bb;
432
433 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
434 BUG_ON(max == NULL);
435
436 if (order > e4b->bd_blkbits + 1) {
437 *max = 0;
438 return NULL;
439 }
440
441 /* at order 0 we see each particular block */
442 if (order == 0) {
443 *max = 1 << (e4b->bd_blkbits + 3);
444 return e4b->bd_bitmap;
445 }
446
447 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
448 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
449
450 return bb;
451 }
452
453 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)454 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
455 int first, int count)
456 {
457 int i;
458 struct super_block *sb = e4b->bd_sb;
459
460 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
461 return;
462 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
463 for (i = 0; i < count; i++) {
464 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
465 ext4_fsblk_t blocknr;
466
467 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
468 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
469 ext4_grp_locked_error(sb, e4b->bd_group,
470 inode ? inode->i_ino : 0,
471 blocknr,
472 "freeing block already freed "
473 "(bit %u)",
474 first + i);
475 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
476 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
477 }
478 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
479 }
480 }
481
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)482 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
483 {
484 int i;
485
486 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
487 return;
488 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
489 for (i = 0; i < count; i++) {
490 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
491 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
492 }
493 }
494
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)495 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
496 {
497 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
498 unsigned char *b1, *b2;
499 int i;
500 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
501 b2 = (unsigned char *) bitmap;
502 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
503 if (b1[i] != b2[i]) {
504 ext4_msg(e4b->bd_sb, KERN_ERR,
505 "corruption in group %u "
506 "at byte %u(%u): %x in copy != %x "
507 "on disk/prealloc",
508 e4b->bd_group, i, i * 8, b1[i], b2[i]);
509 BUG();
510 }
511 }
512 }
513 }
514
515 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)516 static inline void mb_free_blocks_double(struct inode *inode,
517 struct ext4_buddy *e4b, int first, int count)
518 {
519 return;
520 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)521 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
522 int first, int count)
523 {
524 return;
525 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)526 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
527 {
528 return;
529 }
530 #endif
531
532 #ifdef AGGRESSIVE_CHECK
533
534 #define MB_CHECK_ASSERT(assert) \
535 do { \
536 if (!(assert)) { \
537 printk(KERN_EMERG \
538 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
539 function, file, line, # assert); \
540 BUG(); \
541 } \
542 } while (0)
543
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)544 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
545 const char *function, int line)
546 {
547 struct super_block *sb = e4b->bd_sb;
548 int order = e4b->bd_blkbits + 1;
549 int max;
550 int max2;
551 int i;
552 int j;
553 int k;
554 int count;
555 struct ext4_group_info *grp;
556 int fragments = 0;
557 int fstart;
558 struct list_head *cur;
559 void *buddy;
560 void *buddy2;
561
562 {
563 static int mb_check_counter;
564 if (mb_check_counter++ % 100 != 0)
565 return 0;
566 }
567
568 while (order > 1) {
569 buddy = mb_find_buddy(e4b, order, &max);
570 MB_CHECK_ASSERT(buddy);
571 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
572 MB_CHECK_ASSERT(buddy2);
573 MB_CHECK_ASSERT(buddy != buddy2);
574 MB_CHECK_ASSERT(max * 2 == max2);
575
576 count = 0;
577 for (i = 0; i < max; i++) {
578
579 if (mb_test_bit(i, buddy)) {
580 /* only single bit in buddy2 may be 1 */
581 if (!mb_test_bit(i << 1, buddy2)) {
582 MB_CHECK_ASSERT(
583 mb_test_bit((i<<1)+1, buddy2));
584 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
585 MB_CHECK_ASSERT(
586 mb_test_bit(i << 1, buddy2));
587 }
588 continue;
589 }
590
591 /* both bits in buddy2 must be 1 */
592 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
593 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
594
595 for (j = 0; j < (1 << order); j++) {
596 k = (i * (1 << order)) + j;
597 MB_CHECK_ASSERT(
598 !mb_test_bit(k, e4b->bd_bitmap));
599 }
600 count++;
601 }
602 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
603 order--;
604 }
605
606 fstart = -1;
607 buddy = mb_find_buddy(e4b, 0, &max);
608 for (i = 0; i < max; i++) {
609 if (!mb_test_bit(i, buddy)) {
610 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
611 if (fstart == -1) {
612 fragments++;
613 fstart = i;
614 }
615 continue;
616 }
617 fstart = -1;
618 /* check used bits only */
619 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
620 buddy2 = mb_find_buddy(e4b, j, &max2);
621 k = i >> j;
622 MB_CHECK_ASSERT(k < max2);
623 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
624 }
625 }
626 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
627 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
628
629 grp = ext4_get_group_info(sb, e4b->bd_group);
630 list_for_each(cur, &grp->bb_prealloc_list) {
631 ext4_group_t groupnr;
632 struct ext4_prealloc_space *pa;
633 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
634 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
635 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
636 for (i = 0; i < pa->pa_len; i++)
637 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
638 }
639 return 0;
640 }
641 #undef MB_CHECK_ASSERT
642 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
643 __FILE__, __func__, __LINE__)
644 #else
645 #define mb_check_buddy(e4b)
646 #endif
647
648 /*
649 * Divide blocks started from @first with length @len into
650 * smaller chunks with power of 2 blocks.
651 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
652 * then increase bb_counters[] for corresponded chunk size.
653 */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)654 static void ext4_mb_mark_free_simple(struct super_block *sb,
655 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
656 struct ext4_group_info *grp)
657 {
658 struct ext4_sb_info *sbi = EXT4_SB(sb);
659 ext4_grpblk_t min;
660 ext4_grpblk_t max;
661 ext4_grpblk_t chunk;
662 unsigned int border;
663
664 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
665
666 border = 2 << sb->s_blocksize_bits;
667
668 while (len > 0) {
669 /* find how many blocks can be covered since this position */
670 max = ffs(first | border) - 1;
671
672 /* find how many blocks of power 2 we need to mark */
673 min = fls(len) - 1;
674
675 if (max < min)
676 min = max;
677 chunk = 1 << min;
678
679 /* mark multiblock chunks only */
680 grp->bb_counters[min]++;
681 if (min > 0)
682 mb_clear_bit(first >> min,
683 buddy + sbi->s_mb_offsets[min]);
684
685 len -= chunk;
686 first += chunk;
687 }
688 }
689
690 /*
691 * Cache the order of the largest free extent we have available in this block
692 * group.
693 */
694 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)695 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
696 {
697 int i;
698 int bits;
699
700 grp->bb_largest_free_order = -1; /* uninit */
701
702 bits = sb->s_blocksize_bits + 1;
703 for (i = bits; i >= 0; i--) {
704 if (grp->bb_counters[i] > 0) {
705 grp->bb_largest_free_order = i;
706 break;
707 }
708 }
709 }
710
711 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)712 void ext4_mb_generate_buddy(struct super_block *sb,
713 void *buddy, void *bitmap, ext4_group_t group)
714 {
715 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
716 struct ext4_sb_info *sbi = EXT4_SB(sb);
717 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
718 ext4_grpblk_t i = 0;
719 ext4_grpblk_t first;
720 ext4_grpblk_t len;
721 unsigned free = 0;
722 unsigned fragments = 0;
723 unsigned long long period = get_cycles();
724
725 /* initialize buddy from bitmap which is aggregation
726 * of on-disk bitmap and preallocations */
727 i = mb_find_next_zero_bit(bitmap, max, 0);
728 grp->bb_first_free = i;
729 while (i < max) {
730 fragments++;
731 first = i;
732 i = mb_find_next_bit(bitmap, max, i);
733 len = i - first;
734 free += len;
735 if (len > 1)
736 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
737 else
738 grp->bb_counters[0]++;
739 if (i < max)
740 i = mb_find_next_zero_bit(bitmap, max, i);
741 }
742 grp->bb_fragments = fragments;
743
744 if (free != grp->bb_free) {
745 ext4_grp_locked_error(sb, group, 0, 0,
746 "block bitmap and bg descriptor "
747 "inconsistent: %u vs %u free clusters",
748 free, grp->bb_free);
749 /*
750 * If we intend to continue, we consider group descriptor
751 * corrupt and update bb_free using bitmap value
752 */
753 grp->bb_free = free;
754 ext4_mark_group_bitmap_corrupted(sb, group,
755 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
756 }
757 mb_set_largest_free_order(sb, grp);
758
759 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
760
761 period = get_cycles() - period;
762 spin_lock(&sbi->s_bal_lock);
763 sbi->s_mb_buddies_generated++;
764 sbi->s_mb_generation_time += period;
765 spin_unlock(&sbi->s_bal_lock);
766 }
767
mb_regenerate_buddy(struct ext4_buddy * e4b)768 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
769 {
770 int count;
771 int order = 1;
772 void *buddy;
773
774 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
775 ext4_set_bits(buddy, 0, count);
776 }
777 e4b->bd_info->bb_fragments = 0;
778 memset(e4b->bd_info->bb_counters, 0,
779 sizeof(*e4b->bd_info->bb_counters) *
780 (e4b->bd_sb->s_blocksize_bits + 2));
781
782 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
783 e4b->bd_bitmap, e4b->bd_group);
784 }
785
786 /* The buddy information is attached the buddy cache inode
787 * for convenience. The information regarding each group
788 * is loaded via ext4_mb_load_buddy. The information involve
789 * block bitmap and buddy information. The information are
790 * stored in the inode as
791 *
792 * { page }
793 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
794 *
795 *
796 * one block each for bitmap and buddy information.
797 * So for each group we take up 2 blocks. A page can
798 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
799 * So it can have information regarding groups_per_page which
800 * is blocks_per_page/2
801 *
802 * Locking note: This routine takes the block group lock of all groups
803 * for this page; do not hold this lock when calling this routine!
804 */
805
ext4_mb_init_cache(struct page * page,char * incore,gfp_t gfp)806 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
807 {
808 ext4_group_t ngroups;
809 int blocksize;
810 int blocks_per_page;
811 int groups_per_page;
812 int err = 0;
813 int i;
814 ext4_group_t first_group, group;
815 int first_block;
816 struct super_block *sb;
817 struct buffer_head *bhs;
818 struct buffer_head **bh = NULL;
819 struct inode *inode;
820 char *data;
821 char *bitmap;
822 struct ext4_group_info *grinfo;
823
824 mb_debug(1, "init page %lu\n", page->index);
825
826 inode = page->mapping->host;
827 sb = inode->i_sb;
828 ngroups = ext4_get_groups_count(sb);
829 blocksize = i_blocksize(inode);
830 blocks_per_page = PAGE_SIZE / blocksize;
831
832 groups_per_page = blocks_per_page >> 1;
833 if (groups_per_page == 0)
834 groups_per_page = 1;
835
836 /* allocate buffer_heads to read bitmaps */
837 if (groups_per_page > 1) {
838 i = sizeof(struct buffer_head *) * groups_per_page;
839 bh = kzalloc(i, gfp);
840 if (bh == NULL) {
841 err = -ENOMEM;
842 goto out;
843 }
844 } else
845 bh = &bhs;
846
847 first_group = page->index * blocks_per_page / 2;
848
849 /* read all groups the page covers into the cache */
850 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
851 if (group >= ngroups)
852 break;
853
854 grinfo = ext4_get_group_info(sb, group);
855 /*
856 * If page is uptodate then we came here after online resize
857 * which added some new uninitialized group info structs, so
858 * we must skip all initialized uptodate buddies on the page,
859 * which may be currently in use by an allocating task.
860 */
861 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
862 bh[i] = NULL;
863 continue;
864 }
865 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
866 if (IS_ERR(bh[i])) {
867 err = PTR_ERR(bh[i]);
868 bh[i] = NULL;
869 goto out;
870 }
871 mb_debug(1, "read bitmap for group %u\n", group);
872 }
873
874 /* wait for I/O completion */
875 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
876 int err2;
877
878 if (!bh[i])
879 continue;
880 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
881 if (!err)
882 err = err2;
883 }
884
885 first_block = page->index * blocks_per_page;
886 for (i = 0; i < blocks_per_page; i++) {
887 group = (first_block + i) >> 1;
888 if (group >= ngroups)
889 break;
890
891 if (!bh[group - first_group])
892 /* skip initialized uptodate buddy */
893 continue;
894
895 if (!buffer_verified(bh[group - first_group]))
896 /* Skip faulty bitmaps */
897 continue;
898 err = 0;
899
900 /*
901 * data carry information regarding this
902 * particular group in the format specified
903 * above
904 *
905 */
906 data = page_address(page) + (i * blocksize);
907 bitmap = bh[group - first_group]->b_data;
908
909 /*
910 * We place the buddy block and bitmap block
911 * close together
912 */
913 if ((first_block + i) & 1) {
914 /* this is block of buddy */
915 BUG_ON(incore == NULL);
916 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
917 group, page->index, i * blocksize);
918 trace_ext4_mb_buddy_bitmap_load(sb, group);
919 grinfo = ext4_get_group_info(sb, group);
920 grinfo->bb_fragments = 0;
921 memset(grinfo->bb_counters, 0,
922 sizeof(*grinfo->bb_counters) *
923 (sb->s_blocksize_bits+2));
924 /*
925 * incore got set to the group block bitmap below
926 */
927 ext4_lock_group(sb, group);
928 /* init the buddy */
929 memset(data, 0xff, blocksize);
930 ext4_mb_generate_buddy(sb, data, incore, group);
931 ext4_unlock_group(sb, group);
932 incore = NULL;
933 } else {
934 /* this is block of bitmap */
935 BUG_ON(incore != NULL);
936 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
937 group, page->index, i * blocksize);
938 trace_ext4_mb_bitmap_load(sb, group);
939
940 /* see comments in ext4_mb_put_pa() */
941 ext4_lock_group(sb, group);
942 memcpy(data, bitmap, blocksize);
943
944 /* mark all preallocated blks used in in-core bitmap */
945 ext4_mb_generate_from_pa(sb, data, group);
946 ext4_mb_generate_from_freelist(sb, data, group);
947 ext4_unlock_group(sb, group);
948
949 /* set incore so that the buddy information can be
950 * generated using this
951 */
952 incore = data;
953 }
954 }
955 SetPageUptodate(page);
956
957 out:
958 if (bh) {
959 for (i = 0; i < groups_per_page; i++)
960 brelse(bh[i]);
961 if (bh != &bhs)
962 kfree(bh);
963 }
964 return err;
965 }
966
967 /*
968 * Lock the buddy and bitmap pages. This make sure other parallel init_group
969 * on the same buddy page doesn't happen whild holding the buddy page lock.
970 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
971 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
972 */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)973 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
974 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
975 {
976 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
977 int block, pnum, poff;
978 int blocks_per_page;
979 struct page *page;
980
981 e4b->bd_buddy_page = NULL;
982 e4b->bd_bitmap_page = NULL;
983
984 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
985 /*
986 * the buddy cache inode stores the block bitmap
987 * and buddy information in consecutive blocks.
988 * So for each group we need two blocks.
989 */
990 block = group * 2;
991 pnum = block / blocks_per_page;
992 poff = block % blocks_per_page;
993 page = find_or_create_page(inode->i_mapping, pnum, gfp);
994 if (!page)
995 return -ENOMEM;
996 BUG_ON(page->mapping != inode->i_mapping);
997 e4b->bd_bitmap_page = page;
998 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
999
1000 if (blocks_per_page >= 2) {
1001 /* buddy and bitmap are on the same page */
1002 return 0;
1003 }
1004
1005 block++;
1006 pnum = block / blocks_per_page;
1007 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1008 if (!page)
1009 return -ENOMEM;
1010 BUG_ON(page->mapping != inode->i_mapping);
1011 e4b->bd_buddy_page = page;
1012 return 0;
1013 }
1014
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1015 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1016 {
1017 if (e4b->bd_bitmap_page) {
1018 unlock_page(e4b->bd_bitmap_page);
1019 put_page(e4b->bd_bitmap_page);
1020 }
1021 if (e4b->bd_buddy_page) {
1022 unlock_page(e4b->bd_buddy_page);
1023 put_page(e4b->bd_buddy_page);
1024 }
1025 }
1026
1027 /*
1028 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1029 * block group lock of all groups for this page; do not hold the BG lock when
1030 * calling this routine!
1031 */
1032 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1033 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1034 {
1035
1036 struct ext4_group_info *this_grp;
1037 struct ext4_buddy e4b;
1038 struct page *page;
1039 int ret = 0;
1040
1041 might_sleep();
1042 mb_debug(1, "init group %u\n", group);
1043 this_grp = ext4_get_group_info(sb, group);
1044 /*
1045 * This ensures that we don't reinit the buddy cache
1046 * page which map to the group from which we are already
1047 * allocating. If we are looking at the buddy cache we would
1048 * have taken a reference using ext4_mb_load_buddy and that
1049 * would have pinned buddy page to page cache.
1050 * The call to ext4_mb_get_buddy_page_lock will mark the
1051 * page accessed.
1052 */
1053 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1054 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1055 /*
1056 * somebody initialized the group
1057 * return without doing anything
1058 */
1059 goto err;
1060 }
1061
1062 page = e4b.bd_bitmap_page;
1063 ret = ext4_mb_init_cache(page, NULL, gfp);
1064 if (ret)
1065 goto err;
1066 if (!PageUptodate(page)) {
1067 ret = -EIO;
1068 goto err;
1069 }
1070
1071 if (e4b.bd_buddy_page == NULL) {
1072 /*
1073 * If both the bitmap and buddy are in
1074 * the same page we don't need to force
1075 * init the buddy
1076 */
1077 ret = 0;
1078 goto err;
1079 }
1080 /* init buddy cache */
1081 page = e4b.bd_buddy_page;
1082 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1083 if (ret)
1084 goto err;
1085 if (!PageUptodate(page)) {
1086 ret = -EIO;
1087 goto err;
1088 }
1089 err:
1090 ext4_mb_put_buddy_page_lock(&e4b);
1091 return ret;
1092 }
1093
1094 /*
1095 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1096 * block group lock of all groups for this page; do not hold the BG lock when
1097 * calling this routine!
1098 */
1099 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1100 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1101 struct ext4_buddy *e4b, gfp_t gfp)
1102 {
1103 int blocks_per_page;
1104 int block;
1105 int pnum;
1106 int poff;
1107 struct page *page;
1108 int ret;
1109 struct ext4_group_info *grp;
1110 struct ext4_sb_info *sbi = EXT4_SB(sb);
1111 struct inode *inode = sbi->s_buddy_cache;
1112
1113 might_sleep();
1114 mb_debug(1, "load group %u\n", group);
1115
1116 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1117 grp = ext4_get_group_info(sb, group);
1118
1119 e4b->bd_blkbits = sb->s_blocksize_bits;
1120 e4b->bd_info = grp;
1121 e4b->bd_sb = sb;
1122 e4b->bd_group = group;
1123 e4b->bd_buddy_page = NULL;
1124 e4b->bd_bitmap_page = NULL;
1125
1126 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1127 /*
1128 * we need full data about the group
1129 * to make a good selection
1130 */
1131 ret = ext4_mb_init_group(sb, group, gfp);
1132 if (ret)
1133 return ret;
1134 }
1135
1136 /*
1137 * the buddy cache inode stores the block bitmap
1138 * and buddy information in consecutive blocks.
1139 * So for each group we need two blocks.
1140 */
1141 block = group * 2;
1142 pnum = block / blocks_per_page;
1143 poff = block % blocks_per_page;
1144
1145 /* we could use find_or_create_page(), but it locks page
1146 * what we'd like to avoid in fast path ... */
1147 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1148 if (page == NULL || !PageUptodate(page)) {
1149 if (page)
1150 /*
1151 * drop the page reference and try
1152 * to get the page with lock. If we
1153 * are not uptodate that implies
1154 * somebody just created the page but
1155 * is yet to initialize the same. So
1156 * wait for it to initialize.
1157 */
1158 put_page(page);
1159 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1160 if (page) {
1161 BUG_ON(page->mapping != inode->i_mapping);
1162 if (!PageUptodate(page)) {
1163 ret = ext4_mb_init_cache(page, NULL, gfp);
1164 if (ret) {
1165 unlock_page(page);
1166 goto err;
1167 }
1168 mb_cmp_bitmaps(e4b, page_address(page) +
1169 (poff * sb->s_blocksize));
1170 }
1171 unlock_page(page);
1172 }
1173 }
1174 if (page == NULL) {
1175 ret = -ENOMEM;
1176 goto err;
1177 }
1178 if (!PageUptodate(page)) {
1179 ret = -EIO;
1180 goto err;
1181 }
1182
1183 /* Pages marked accessed already */
1184 e4b->bd_bitmap_page = page;
1185 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1186
1187 block++;
1188 pnum = block / blocks_per_page;
1189 poff = block % blocks_per_page;
1190
1191 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1192 if (page == NULL || !PageUptodate(page)) {
1193 if (page)
1194 put_page(page);
1195 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1196 if (page) {
1197 BUG_ON(page->mapping != inode->i_mapping);
1198 if (!PageUptodate(page)) {
1199 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1200 gfp);
1201 if (ret) {
1202 unlock_page(page);
1203 goto err;
1204 }
1205 }
1206 unlock_page(page);
1207 }
1208 }
1209 if (page == NULL) {
1210 ret = -ENOMEM;
1211 goto err;
1212 }
1213 if (!PageUptodate(page)) {
1214 ret = -EIO;
1215 goto err;
1216 }
1217
1218 /* Pages marked accessed already */
1219 e4b->bd_buddy_page = page;
1220 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221
1222 BUG_ON(e4b->bd_bitmap_page == NULL);
1223 BUG_ON(e4b->bd_buddy_page == NULL);
1224
1225 return 0;
1226
1227 err:
1228 if (page)
1229 put_page(page);
1230 if (e4b->bd_bitmap_page)
1231 put_page(e4b->bd_bitmap_page);
1232 if (e4b->bd_buddy_page)
1233 put_page(e4b->bd_buddy_page);
1234 e4b->bd_buddy = NULL;
1235 e4b->bd_bitmap = NULL;
1236 return ret;
1237 }
1238
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1239 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1240 struct ext4_buddy *e4b)
1241 {
1242 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1243 }
1244
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1245 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1246 {
1247 if (e4b->bd_bitmap_page)
1248 put_page(e4b->bd_bitmap_page);
1249 if (e4b->bd_buddy_page)
1250 put_page(e4b->bd_buddy_page);
1251 }
1252
1253
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1254 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1255 {
1256 int order = 1;
1257 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1258 void *bb;
1259
1260 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1261 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1262
1263 bb = e4b->bd_buddy;
1264 while (order <= e4b->bd_blkbits + 1) {
1265 block = block >> 1;
1266 if (!mb_test_bit(block, bb)) {
1267 /* this block is part of buddy of order 'order' */
1268 return order;
1269 }
1270 bb += bb_incr;
1271 bb_incr >>= 1;
1272 order++;
1273 }
1274 return 0;
1275 }
1276
mb_clear_bits(void * bm,int cur,int len)1277 static void mb_clear_bits(void *bm, int cur, int len)
1278 {
1279 __u32 *addr;
1280
1281 len = cur + len;
1282 while (cur < len) {
1283 if ((cur & 31) == 0 && (len - cur) >= 32) {
1284 /* fast path: clear whole word at once */
1285 addr = bm + (cur >> 3);
1286 *addr = 0;
1287 cur += 32;
1288 continue;
1289 }
1290 mb_clear_bit(cur, bm);
1291 cur++;
1292 }
1293 }
1294
1295 /* clear bits in given range
1296 * will return first found zero bit if any, -1 otherwise
1297 */
mb_test_and_clear_bits(void * bm,int cur,int len)1298 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1299 {
1300 __u32 *addr;
1301 int zero_bit = -1;
1302
1303 len = cur + len;
1304 while (cur < len) {
1305 if ((cur & 31) == 0 && (len - cur) >= 32) {
1306 /* fast path: clear whole word at once */
1307 addr = bm + (cur >> 3);
1308 if (*addr != (__u32)(-1) && zero_bit == -1)
1309 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1310 *addr = 0;
1311 cur += 32;
1312 continue;
1313 }
1314 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1315 zero_bit = cur;
1316 cur++;
1317 }
1318
1319 return zero_bit;
1320 }
1321
ext4_set_bits(void * bm,int cur,int len)1322 void ext4_set_bits(void *bm, int cur, int len)
1323 {
1324 __u32 *addr;
1325
1326 len = cur + len;
1327 while (cur < len) {
1328 if ((cur & 31) == 0 && (len - cur) >= 32) {
1329 /* fast path: set whole word at once */
1330 addr = bm + (cur >> 3);
1331 *addr = 0xffffffff;
1332 cur += 32;
1333 continue;
1334 }
1335 mb_set_bit(cur, bm);
1336 cur++;
1337 }
1338 }
1339
1340 /*
1341 * _________________________________________________________________ */
1342
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1343 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1344 {
1345 if (mb_test_bit(*bit + side, bitmap)) {
1346 mb_clear_bit(*bit, bitmap);
1347 (*bit) -= side;
1348 return 1;
1349 }
1350 else {
1351 (*bit) += side;
1352 mb_set_bit(*bit, bitmap);
1353 return -1;
1354 }
1355 }
1356
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1357 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1358 {
1359 int max;
1360 int order = 1;
1361 void *buddy = mb_find_buddy(e4b, order, &max);
1362
1363 while (buddy) {
1364 void *buddy2;
1365
1366 /* Bits in range [first; last] are known to be set since
1367 * corresponding blocks were allocated. Bits in range
1368 * (first; last) will stay set because they form buddies on
1369 * upper layer. We just deal with borders if they don't
1370 * align with upper layer and then go up.
1371 * Releasing entire group is all about clearing
1372 * single bit of highest order buddy.
1373 */
1374
1375 /* Example:
1376 * ---------------------------------
1377 * | 1 | 1 | 1 | 1 |
1378 * ---------------------------------
1379 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1380 * ---------------------------------
1381 * 0 1 2 3 4 5 6 7
1382 * \_____________________/
1383 *
1384 * Neither [1] nor [6] is aligned to above layer.
1385 * Left neighbour [0] is free, so mark it busy,
1386 * decrease bb_counters and extend range to
1387 * [0; 6]
1388 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1389 * mark [6] free, increase bb_counters and shrink range to
1390 * [0; 5].
1391 * Then shift range to [0; 2], go up and do the same.
1392 */
1393
1394
1395 if (first & 1)
1396 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1397 if (!(last & 1))
1398 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1399 if (first > last)
1400 break;
1401 order++;
1402
1403 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1404 mb_clear_bits(buddy, first, last - first + 1);
1405 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1406 break;
1407 }
1408 first >>= 1;
1409 last >>= 1;
1410 buddy = buddy2;
1411 }
1412 }
1413
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1414 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1415 int first, int count)
1416 {
1417 int left_is_free = 0;
1418 int right_is_free = 0;
1419 int block;
1420 int last = first + count - 1;
1421 struct super_block *sb = e4b->bd_sb;
1422
1423 if (WARN_ON(count == 0))
1424 return;
1425 BUG_ON(last >= (sb->s_blocksize << 3));
1426 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1427 /* Don't bother if the block group is corrupt. */
1428 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1429 return;
1430
1431 mb_check_buddy(e4b);
1432 mb_free_blocks_double(inode, e4b, first, count);
1433
1434 e4b->bd_info->bb_free += count;
1435 if (first < e4b->bd_info->bb_first_free)
1436 e4b->bd_info->bb_first_free = first;
1437
1438 /* access memory sequentially: check left neighbour,
1439 * clear range and then check right neighbour
1440 */
1441 if (first != 0)
1442 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1443 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1444 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1445 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1446
1447 if (unlikely(block != -1)) {
1448 struct ext4_sb_info *sbi = EXT4_SB(sb);
1449 ext4_fsblk_t blocknr;
1450
1451 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1452 blocknr += EXT4_C2B(sbi, block);
1453 ext4_grp_locked_error(sb, e4b->bd_group,
1454 inode ? inode->i_ino : 0,
1455 blocknr,
1456 "freeing already freed block "
1457 "(bit %u); block bitmap corrupt.",
1458 block);
1459 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1460 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1461 mb_regenerate_buddy(e4b);
1462 goto done;
1463 }
1464
1465 /* let's maintain fragments counter */
1466 if (left_is_free && right_is_free)
1467 e4b->bd_info->bb_fragments--;
1468 else if (!left_is_free && !right_is_free)
1469 e4b->bd_info->bb_fragments++;
1470
1471 /* buddy[0] == bd_bitmap is a special case, so handle
1472 * it right away and let mb_buddy_mark_free stay free of
1473 * zero order checks.
1474 * Check if neighbours are to be coaleasced,
1475 * adjust bitmap bb_counters and borders appropriately.
1476 */
1477 if (first & 1) {
1478 first += !left_is_free;
1479 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1480 }
1481 if (!(last & 1)) {
1482 last -= !right_is_free;
1483 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1484 }
1485
1486 if (first <= last)
1487 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1488
1489 done:
1490 mb_set_largest_free_order(sb, e4b->bd_info);
1491 mb_check_buddy(e4b);
1492 }
1493
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1494 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1495 int needed, struct ext4_free_extent *ex)
1496 {
1497 int next = block;
1498 int max, order;
1499 void *buddy;
1500
1501 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1502 BUG_ON(ex == NULL);
1503
1504 buddy = mb_find_buddy(e4b, 0, &max);
1505 BUG_ON(buddy == NULL);
1506 BUG_ON(block >= max);
1507 if (mb_test_bit(block, buddy)) {
1508 ex->fe_len = 0;
1509 ex->fe_start = 0;
1510 ex->fe_group = 0;
1511 return 0;
1512 }
1513
1514 /* find actual order */
1515 order = mb_find_order_for_block(e4b, block);
1516 block = block >> order;
1517
1518 ex->fe_len = 1 << order;
1519 ex->fe_start = block << order;
1520 ex->fe_group = e4b->bd_group;
1521
1522 /* calc difference from given start */
1523 next = next - ex->fe_start;
1524 ex->fe_len -= next;
1525 ex->fe_start += next;
1526
1527 while (needed > ex->fe_len &&
1528 mb_find_buddy(e4b, order, &max)) {
1529
1530 if (block + 1 >= max)
1531 break;
1532
1533 next = (block + 1) * (1 << order);
1534 if (mb_test_bit(next, e4b->bd_bitmap))
1535 break;
1536
1537 order = mb_find_order_for_block(e4b, next);
1538
1539 block = next >> order;
1540 ex->fe_len += 1 << order;
1541 }
1542
1543 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1544 /* Should never happen! (but apparently sometimes does?!?) */
1545 WARN_ON(1);
1546 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1547 "corruption or bug in mb_find_extent "
1548 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1549 block, order, needed, ex->fe_group, ex->fe_start,
1550 ex->fe_len, ex->fe_logical);
1551 ex->fe_len = 0;
1552 ex->fe_start = 0;
1553 ex->fe_group = 0;
1554 }
1555 return ex->fe_len;
1556 }
1557
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1558 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1559 {
1560 int ord;
1561 int mlen = 0;
1562 int max = 0;
1563 int cur;
1564 int start = ex->fe_start;
1565 int len = ex->fe_len;
1566 unsigned ret = 0;
1567 int len0 = len;
1568 void *buddy;
1569
1570 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1571 BUG_ON(e4b->bd_group != ex->fe_group);
1572 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1573 mb_check_buddy(e4b);
1574 mb_mark_used_double(e4b, start, len);
1575
1576 e4b->bd_info->bb_free -= len;
1577 if (e4b->bd_info->bb_first_free == start)
1578 e4b->bd_info->bb_first_free += len;
1579
1580 /* let's maintain fragments counter */
1581 if (start != 0)
1582 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1583 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1584 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1585 if (mlen && max)
1586 e4b->bd_info->bb_fragments++;
1587 else if (!mlen && !max)
1588 e4b->bd_info->bb_fragments--;
1589
1590 /* let's maintain buddy itself */
1591 while (len) {
1592 ord = mb_find_order_for_block(e4b, start);
1593
1594 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1595 /* the whole chunk may be allocated at once! */
1596 mlen = 1 << ord;
1597 buddy = mb_find_buddy(e4b, ord, &max);
1598 BUG_ON((start >> ord) >= max);
1599 mb_set_bit(start >> ord, buddy);
1600 e4b->bd_info->bb_counters[ord]--;
1601 start += mlen;
1602 len -= mlen;
1603 BUG_ON(len < 0);
1604 continue;
1605 }
1606
1607 /* store for history */
1608 if (ret == 0)
1609 ret = len | (ord << 16);
1610
1611 /* we have to split large buddy */
1612 BUG_ON(ord <= 0);
1613 buddy = mb_find_buddy(e4b, ord, &max);
1614 mb_set_bit(start >> ord, buddy);
1615 e4b->bd_info->bb_counters[ord]--;
1616
1617 ord--;
1618 cur = (start >> ord) & ~1U;
1619 buddy = mb_find_buddy(e4b, ord, &max);
1620 mb_clear_bit(cur, buddy);
1621 mb_clear_bit(cur + 1, buddy);
1622 e4b->bd_info->bb_counters[ord]++;
1623 e4b->bd_info->bb_counters[ord]++;
1624 }
1625 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1626
1627 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1628 mb_check_buddy(e4b);
1629
1630 return ret;
1631 }
1632
1633 /*
1634 * Must be called under group lock!
1635 */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1636 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1637 struct ext4_buddy *e4b)
1638 {
1639 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1640 int ret;
1641
1642 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1643 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1644
1645 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1646 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1647 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1648
1649 /* preallocation can change ac_b_ex, thus we store actually
1650 * allocated blocks for history */
1651 ac->ac_f_ex = ac->ac_b_ex;
1652
1653 ac->ac_status = AC_STATUS_FOUND;
1654 ac->ac_tail = ret & 0xffff;
1655 ac->ac_buddy = ret >> 16;
1656
1657 /*
1658 * take the page reference. We want the page to be pinned
1659 * so that we don't get a ext4_mb_init_cache_call for this
1660 * group until we update the bitmap. That would mean we
1661 * double allocate blocks. The reference is dropped
1662 * in ext4_mb_release_context
1663 */
1664 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1665 get_page(ac->ac_bitmap_page);
1666 ac->ac_buddy_page = e4b->bd_buddy_page;
1667 get_page(ac->ac_buddy_page);
1668 /* store last allocated for subsequent stream allocation */
1669 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1670 spin_lock(&sbi->s_md_lock);
1671 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1672 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1673 spin_unlock(&sbi->s_md_lock);
1674 }
1675 }
1676
1677 /*
1678 * regular allocator, for general purposes allocation
1679 */
1680
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1681 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1682 struct ext4_buddy *e4b,
1683 int finish_group)
1684 {
1685 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1686 struct ext4_free_extent *bex = &ac->ac_b_ex;
1687 struct ext4_free_extent *gex = &ac->ac_g_ex;
1688 struct ext4_free_extent ex;
1689 int max;
1690
1691 if (ac->ac_status == AC_STATUS_FOUND)
1692 return;
1693 /*
1694 * We don't want to scan for a whole year
1695 */
1696 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1697 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1698 ac->ac_status = AC_STATUS_BREAK;
1699 return;
1700 }
1701
1702 /*
1703 * Haven't found good chunk so far, let's continue
1704 */
1705 if (bex->fe_len < gex->fe_len)
1706 return;
1707
1708 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1709 && bex->fe_group == e4b->bd_group) {
1710 /* recheck chunk's availability - we don't know
1711 * when it was found (within this lock-unlock
1712 * period or not) */
1713 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1714 if (max >= gex->fe_len) {
1715 ext4_mb_use_best_found(ac, e4b);
1716 return;
1717 }
1718 }
1719 }
1720
1721 /*
1722 * The routine checks whether found extent is good enough. If it is,
1723 * then the extent gets marked used and flag is set to the context
1724 * to stop scanning. Otherwise, the extent is compared with the
1725 * previous found extent and if new one is better, then it's stored
1726 * in the context. Later, the best found extent will be used, if
1727 * mballoc can't find good enough extent.
1728 *
1729 * FIXME: real allocation policy is to be designed yet!
1730 */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1731 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1732 struct ext4_free_extent *ex,
1733 struct ext4_buddy *e4b)
1734 {
1735 struct ext4_free_extent *bex = &ac->ac_b_ex;
1736 struct ext4_free_extent *gex = &ac->ac_g_ex;
1737
1738 BUG_ON(ex->fe_len <= 0);
1739 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1740 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1741 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1742
1743 ac->ac_found++;
1744
1745 /*
1746 * The special case - take what you catch first
1747 */
1748 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1749 *bex = *ex;
1750 ext4_mb_use_best_found(ac, e4b);
1751 return;
1752 }
1753
1754 /*
1755 * Let's check whether the chuck is good enough
1756 */
1757 if (ex->fe_len == gex->fe_len) {
1758 *bex = *ex;
1759 ext4_mb_use_best_found(ac, e4b);
1760 return;
1761 }
1762
1763 /*
1764 * If this is first found extent, just store it in the context
1765 */
1766 if (bex->fe_len == 0) {
1767 *bex = *ex;
1768 return;
1769 }
1770
1771 /*
1772 * If new found extent is better, store it in the context
1773 */
1774 if (bex->fe_len < gex->fe_len) {
1775 /* if the request isn't satisfied, any found extent
1776 * larger than previous best one is better */
1777 if (ex->fe_len > bex->fe_len)
1778 *bex = *ex;
1779 } else if (ex->fe_len > gex->fe_len) {
1780 /* if the request is satisfied, then we try to find
1781 * an extent that still satisfy the request, but is
1782 * smaller than previous one */
1783 if (ex->fe_len < bex->fe_len)
1784 *bex = *ex;
1785 }
1786
1787 ext4_mb_check_limits(ac, e4b, 0);
1788 }
1789
1790 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1791 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1792 struct ext4_buddy *e4b)
1793 {
1794 struct ext4_free_extent ex = ac->ac_b_ex;
1795 ext4_group_t group = ex.fe_group;
1796 int max;
1797 int err;
1798
1799 BUG_ON(ex.fe_len <= 0);
1800 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1801 if (err)
1802 return err;
1803
1804 ext4_lock_group(ac->ac_sb, group);
1805 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1806 goto out;
1807
1808 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1809
1810 if (max > 0) {
1811 ac->ac_b_ex = ex;
1812 ext4_mb_use_best_found(ac, e4b);
1813 }
1814
1815 out:
1816 ext4_unlock_group(ac->ac_sb, group);
1817 ext4_mb_unload_buddy(e4b);
1818
1819 return 0;
1820 }
1821
1822 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1823 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1824 struct ext4_buddy *e4b)
1825 {
1826 ext4_group_t group = ac->ac_g_ex.fe_group;
1827 int max;
1828 int err;
1829 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1830 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1831 struct ext4_free_extent ex;
1832
1833 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1834 return 0;
1835 if (grp->bb_free == 0)
1836 return 0;
1837
1838 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1839 if (err)
1840 return err;
1841
1842 ext4_lock_group(ac->ac_sb, group);
1843 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1844 goto out;
1845
1846 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1847 ac->ac_g_ex.fe_len, &ex);
1848 ex.fe_logical = 0xDEADFA11; /* debug value */
1849
1850 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1851 ext4_fsblk_t start;
1852
1853 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1854 ex.fe_start;
1855 /* use do_div to get remainder (would be 64-bit modulo) */
1856 if (do_div(start, sbi->s_stripe) == 0) {
1857 ac->ac_found++;
1858 ac->ac_b_ex = ex;
1859 ext4_mb_use_best_found(ac, e4b);
1860 }
1861 } else if (max >= ac->ac_g_ex.fe_len) {
1862 BUG_ON(ex.fe_len <= 0);
1863 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1864 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1865 ac->ac_found++;
1866 ac->ac_b_ex = ex;
1867 ext4_mb_use_best_found(ac, e4b);
1868 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1869 /* Sometimes, caller may want to merge even small
1870 * number of blocks to an existing extent */
1871 BUG_ON(ex.fe_len <= 0);
1872 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1873 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1874 ac->ac_found++;
1875 ac->ac_b_ex = ex;
1876 ext4_mb_use_best_found(ac, e4b);
1877 }
1878 out:
1879 ext4_unlock_group(ac->ac_sb, group);
1880 ext4_mb_unload_buddy(e4b);
1881
1882 return 0;
1883 }
1884
1885 /*
1886 * The routine scans buddy structures (not bitmap!) from given order
1887 * to max order and tries to find big enough chunk to satisfy the req
1888 */
1889 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1890 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1891 struct ext4_buddy *e4b)
1892 {
1893 struct super_block *sb = ac->ac_sb;
1894 struct ext4_group_info *grp = e4b->bd_info;
1895 void *buddy;
1896 int i;
1897 int k;
1898 int max;
1899
1900 BUG_ON(ac->ac_2order <= 0);
1901 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1902 if (grp->bb_counters[i] == 0)
1903 continue;
1904
1905 buddy = mb_find_buddy(e4b, i, &max);
1906 BUG_ON(buddy == NULL);
1907
1908 k = mb_find_next_zero_bit(buddy, max, 0);
1909 if (k >= max) {
1910 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1911 "%d free clusters of order %d. But found 0",
1912 grp->bb_counters[i], i);
1913 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1914 e4b->bd_group,
1915 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1916 break;
1917 }
1918 ac->ac_found++;
1919
1920 ac->ac_b_ex.fe_len = 1 << i;
1921 ac->ac_b_ex.fe_start = k << i;
1922 ac->ac_b_ex.fe_group = e4b->bd_group;
1923
1924 ext4_mb_use_best_found(ac, e4b);
1925
1926 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1927
1928 if (EXT4_SB(sb)->s_mb_stats)
1929 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1930
1931 break;
1932 }
1933 }
1934
1935 /*
1936 * The routine scans the group and measures all found extents.
1937 * In order to optimize scanning, caller must pass number of
1938 * free blocks in the group, so the routine can know upper limit.
1939 */
1940 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1941 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1942 struct ext4_buddy *e4b)
1943 {
1944 struct super_block *sb = ac->ac_sb;
1945 void *bitmap = e4b->bd_bitmap;
1946 struct ext4_free_extent ex;
1947 int i;
1948 int free;
1949
1950 free = e4b->bd_info->bb_free;
1951 if (WARN_ON(free <= 0))
1952 return;
1953
1954 i = e4b->bd_info->bb_first_free;
1955
1956 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1957 i = mb_find_next_zero_bit(bitmap,
1958 EXT4_CLUSTERS_PER_GROUP(sb), i);
1959 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1960 /*
1961 * IF we have corrupt bitmap, we won't find any
1962 * free blocks even though group info says we
1963 * we have free blocks
1964 */
1965 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1966 "%d free clusters as per "
1967 "group info. But bitmap says 0",
1968 free);
1969 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1970 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1971 break;
1972 }
1973
1974 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1975 if (WARN_ON(ex.fe_len <= 0))
1976 break;
1977 if (free < ex.fe_len) {
1978 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1979 "%d free clusters as per "
1980 "group info. But got %d blocks",
1981 free, ex.fe_len);
1982 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1983 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1984 /*
1985 * The number of free blocks differs. This mostly
1986 * indicate that the bitmap is corrupt. So exit
1987 * without claiming the space.
1988 */
1989 break;
1990 }
1991 ex.fe_logical = 0xDEADC0DE; /* debug value */
1992 ext4_mb_measure_extent(ac, &ex, e4b);
1993
1994 i += ex.fe_len;
1995 free -= ex.fe_len;
1996 }
1997
1998 ext4_mb_check_limits(ac, e4b, 1);
1999 }
2000
2001 /*
2002 * This is a special case for storages like raid5
2003 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2004 */
2005 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2006 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2007 struct ext4_buddy *e4b)
2008 {
2009 struct super_block *sb = ac->ac_sb;
2010 struct ext4_sb_info *sbi = EXT4_SB(sb);
2011 void *bitmap = e4b->bd_bitmap;
2012 struct ext4_free_extent ex;
2013 ext4_fsblk_t first_group_block;
2014 ext4_fsblk_t a;
2015 ext4_grpblk_t i;
2016 int max;
2017
2018 BUG_ON(sbi->s_stripe == 0);
2019
2020 /* find first stripe-aligned block in group */
2021 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2022
2023 a = first_group_block + sbi->s_stripe - 1;
2024 do_div(a, sbi->s_stripe);
2025 i = (a * sbi->s_stripe) - first_group_block;
2026
2027 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2028 if (!mb_test_bit(i, bitmap)) {
2029 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2030 if (max >= sbi->s_stripe) {
2031 ac->ac_found++;
2032 ex.fe_logical = 0xDEADF00D; /* debug value */
2033 ac->ac_b_ex = ex;
2034 ext4_mb_use_best_found(ac, e4b);
2035 break;
2036 }
2037 }
2038 i += sbi->s_stripe;
2039 }
2040 }
2041
2042 /*
2043 * This is now called BEFORE we load the buddy bitmap.
2044 * Returns either 1 or 0 indicating that the group is either suitable
2045 * for the allocation or not. In addition it can also return negative
2046 * error code when something goes wrong.
2047 */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2048 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2049 ext4_group_t group, int cr)
2050 {
2051 unsigned free, fragments;
2052 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2053 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2054
2055 BUG_ON(cr < 0 || cr >= 4);
2056
2057 free = grp->bb_free;
2058 if (free == 0)
2059 return 0;
2060 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2061 return 0;
2062
2063 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2064 return 0;
2065
2066 /* We only do this if the grp has never been initialized */
2067 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2068 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2069 if (ret)
2070 return ret;
2071 }
2072
2073 fragments = grp->bb_fragments;
2074 if (fragments == 0)
2075 return 0;
2076
2077 switch (cr) {
2078 case 0:
2079 BUG_ON(ac->ac_2order == 0);
2080
2081 /* Avoid using the first bg of a flexgroup for data files */
2082 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2083 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2084 ((group % flex_size) == 0))
2085 return 0;
2086
2087 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2088 (free / fragments) >= ac->ac_g_ex.fe_len)
2089 return 1;
2090
2091 if (grp->bb_largest_free_order < ac->ac_2order)
2092 return 0;
2093
2094 return 1;
2095 case 1:
2096 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2097 return 1;
2098 break;
2099 case 2:
2100 if (free >= ac->ac_g_ex.fe_len)
2101 return 1;
2102 break;
2103 case 3:
2104 return 1;
2105 default:
2106 BUG();
2107 }
2108
2109 return 0;
2110 }
2111
2112 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2113 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2114 {
2115 ext4_group_t ngroups, group, i;
2116 int cr;
2117 int err = 0, first_err = 0;
2118 struct ext4_sb_info *sbi;
2119 struct super_block *sb;
2120 struct ext4_buddy e4b;
2121
2122 sb = ac->ac_sb;
2123 sbi = EXT4_SB(sb);
2124 ngroups = ext4_get_groups_count(sb);
2125 /* non-extent files are limited to low blocks/groups */
2126 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2127 ngroups = sbi->s_blockfile_groups;
2128
2129 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2130
2131 /* first, try the goal */
2132 err = ext4_mb_find_by_goal(ac, &e4b);
2133 if (err || ac->ac_status == AC_STATUS_FOUND)
2134 goto out;
2135
2136 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2137 goto out;
2138
2139 /*
2140 * ac->ac2_order is set only if the fe_len is a power of 2
2141 * if ac2_order is set we also set criteria to 0 so that we
2142 * try exact allocation using buddy.
2143 */
2144 i = fls(ac->ac_g_ex.fe_len);
2145 ac->ac_2order = 0;
2146 /*
2147 * We search using buddy data only if the order of the request
2148 * is greater than equal to the sbi_s_mb_order2_reqs
2149 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2150 * We also support searching for power-of-two requests only for
2151 * requests upto maximum buddy size we have constructed.
2152 */
2153 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2154 /*
2155 * This should tell if fe_len is exactly power of 2
2156 */
2157 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2158 ac->ac_2order = array_index_nospec(i - 1,
2159 sb->s_blocksize_bits + 2);
2160 }
2161
2162 /* if stream allocation is enabled, use global goal */
2163 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2164 /* TBD: may be hot point */
2165 spin_lock(&sbi->s_md_lock);
2166 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2167 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2168 spin_unlock(&sbi->s_md_lock);
2169 }
2170
2171 /* Let's just scan groups to find more-less suitable blocks */
2172 cr = ac->ac_2order ? 0 : 1;
2173 /*
2174 * cr == 0 try to get exact allocation,
2175 * cr == 3 try to get anything
2176 */
2177 repeat:
2178 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2179 ac->ac_criteria = cr;
2180 /*
2181 * searching for the right group start
2182 * from the goal value specified
2183 */
2184 group = ac->ac_g_ex.fe_group;
2185
2186 for (i = 0; i < ngroups; group++, i++) {
2187 int ret = 0;
2188 cond_resched();
2189 /*
2190 * Artificially restricted ngroups for non-extent
2191 * files makes group > ngroups possible on first loop.
2192 */
2193 if (group >= ngroups)
2194 group = 0;
2195
2196 /* This now checks without needing the buddy page */
2197 ret = ext4_mb_good_group(ac, group, cr);
2198 if (ret <= 0) {
2199 if (!first_err)
2200 first_err = ret;
2201 continue;
2202 }
2203
2204 err = ext4_mb_load_buddy(sb, group, &e4b);
2205 if (err)
2206 goto out;
2207
2208 ext4_lock_group(sb, group);
2209
2210 /*
2211 * We need to check again after locking the
2212 * block group
2213 */
2214 ret = ext4_mb_good_group(ac, group, cr);
2215 if (ret <= 0) {
2216 ext4_unlock_group(sb, group);
2217 ext4_mb_unload_buddy(&e4b);
2218 if (!first_err)
2219 first_err = ret;
2220 continue;
2221 }
2222
2223 ac->ac_groups_scanned++;
2224 if (cr == 0)
2225 ext4_mb_simple_scan_group(ac, &e4b);
2226 else if (cr == 1 && sbi->s_stripe &&
2227 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2228 ext4_mb_scan_aligned(ac, &e4b);
2229 else
2230 ext4_mb_complex_scan_group(ac, &e4b);
2231
2232 ext4_unlock_group(sb, group);
2233 ext4_mb_unload_buddy(&e4b);
2234
2235 if (ac->ac_status != AC_STATUS_CONTINUE)
2236 break;
2237 }
2238 }
2239
2240 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2241 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2242 /*
2243 * We've been searching too long. Let's try to allocate
2244 * the best chunk we've found so far
2245 */
2246
2247 ext4_mb_try_best_found(ac, &e4b);
2248 if (ac->ac_status != AC_STATUS_FOUND) {
2249 /*
2250 * Someone more lucky has already allocated it.
2251 * The only thing we can do is just take first
2252 * found block(s)
2253 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2254 */
2255 ac->ac_b_ex.fe_group = 0;
2256 ac->ac_b_ex.fe_start = 0;
2257 ac->ac_b_ex.fe_len = 0;
2258 ac->ac_status = AC_STATUS_CONTINUE;
2259 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2260 cr = 3;
2261 atomic_inc(&sbi->s_mb_lost_chunks);
2262 goto repeat;
2263 }
2264 }
2265 out:
2266 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2267 err = first_err;
2268 return err;
2269 }
2270
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2271 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2272 {
2273 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2274 ext4_group_t group;
2275
2276 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2277 return NULL;
2278 group = *pos + 1;
2279 return (void *) ((unsigned long) group);
2280 }
2281
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2282 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2283 {
2284 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2285 ext4_group_t group;
2286
2287 ++*pos;
2288 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2289 return NULL;
2290 group = *pos + 1;
2291 return (void *) ((unsigned long) group);
2292 }
2293
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2294 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2295 {
2296 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2297 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2298 int i;
2299 int err, buddy_loaded = 0;
2300 struct ext4_buddy e4b;
2301 struct ext4_group_info *grinfo;
2302 unsigned char blocksize_bits = min_t(unsigned char,
2303 sb->s_blocksize_bits,
2304 EXT4_MAX_BLOCK_LOG_SIZE);
2305 struct sg {
2306 struct ext4_group_info info;
2307 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2308 } sg;
2309
2310 group--;
2311 if (group == 0)
2312 seq_puts(seq, "#group: free frags first ["
2313 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2314 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2315
2316 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2317 sizeof(struct ext4_group_info);
2318
2319 grinfo = ext4_get_group_info(sb, group);
2320 /* Load the group info in memory only if not already loaded. */
2321 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2322 err = ext4_mb_load_buddy(sb, group, &e4b);
2323 if (err) {
2324 seq_printf(seq, "#%-5u: I/O error\n", group);
2325 return 0;
2326 }
2327 buddy_loaded = 1;
2328 }
2329
2330 memcpy(&sg, ext4_get_group_info(sb, group), i);
2331
2332 if (buddy_loaded)
2333 ext4_mb_unload_buddy(&e4b);
2334
2335 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2336 sg.info.bb_fragments, sg.info.bb_first_free);
2337 for (i = 0; i <= 13; i++)
2338 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2339 sg.info.bb_counters[i] : 0);
2340 seq_printf(seq, " ]\n");
2341
2342 return 0;
2343 }
2344
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2345 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2346 {
2347 }
2348
2349 const struct seq_operations ext4_mb_seq_groups_ops = {
2350 .start = ext4_mb_seq_groups_start,
2351 .next = ext4_mb_seq_groups_next,
2352 .stop = ext4_mb_seq_groups_stop,
2353 .show = ext4_mb_seq_groups_show,
2354 };
2355
get_groupinfo_cache(int blocksize_bits)2356 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2357 {
2358 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2359 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2360
2361 BUG_ON(!cachep);
2362 return cachep;
2363 }
2364
2365 /*
2366 * Allocate the top-level s_group_info array for the specified number
2367 * of groups
2368 */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)2369 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2370 {
2371 struct ext4_sb_info *sbi = EXT4_SB(sb);
2372 unsigned size;
2373 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2374
2375 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2376 EXT4_DESC_PER_BLOCK_BITS(sb);
2377 if (size <= sbi->s_group_info_size)
2378 return 0;
2379
2380 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2381 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2382 if (!new_groupinfo) {
2383 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2384 return -ENOMEM;
2385 }
2386 rcu_read_lock();
2387 old_groupinfo = rcu_dereference(sbi->s_group_info);
2388 if (old_groupinfo)
2389 memcpy(new_groupinfo, old_groupinfo,
2390 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2391 rcu_read_unlock();
2392 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2393 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2394 if (old_groupinfo)
2395 ext4_kvfree_array_rcu(old_groupinfo);
2396 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2397 sbi->s_group_info_size);
2398 return 0;
2399 }
2400
2401 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2402 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2403 struct ext4_group_desc *desc)
2404 {
2405 int i;
2406 int metalen = 0;
2407 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2408 struct ext4_sb_info *sbi = EXT4_SB(sb);
2409 struct ext4_group_info **meta_group_info;
2410 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2411
2412 /*
2413 * First check if this group is the first of a reserved block.
2414 * If it's true, we have to allocate a new table of pointers
2415 * to ext4_group_info structures
2416 */
2417 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2418 metalen = sizeof(*meta_group_info) <<
2419 EXT4_DESC_PER_BLOCK_BITS(sb);
2420 meta_group_info = kmalloc(metalen, GFP_NOFS);
2421 if (meta_group_info == NULL) {
2422 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2423 "for a buddy group");
2424 goto exit_meta_group_info;
2425 }
2426 rcu_read_lock();
2427 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2428 rcu_read_unlock();
2429 }
2430
2431 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2432 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2433
2434 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2435 if (meta_group_info[i] == NULL) {
2436 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2437 goto exit_group_info;
2438 }
2439 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2440 &(meta_group_info[i]->bb_state));
2441
2442 /*
2443 * initialize bb_free to be able to skip
2444 * empty groups without initialization
2445 */
2446 if (ext4_has_group_desc_csum(sb) &&
2447 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2448 meta_group_info[i]->bb_free =
2449 ext4_free_clusters_after_init(sb, group, desc);
2450 } else {
2451 meta_group_info[i]->bb_free =
2452 ext4_free_group_clusters(sb, desc);
2453 }
2454
2455 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2456 init_rwsem(&meta_group_info[i]->alloc_sem);
2457 meta_group_info[i]->bb_free_root = RB_ROOT;
2458 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2459
2460 #ifdef DOUBLE_CHECK
2461 {
2462 struct buffer_head *bh;
2463 meta_group_info[i]->bb_bitmap =
2464 kmalloc(sb->s_blocksize, GFP_NOFS);
2465 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2466 bh = ext4_read_block_bitmap(sb, group);
2467 BUG_ON(IS_ERR_OR_NULL(bh));
2468 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2469 sb->s_blocksize);
2470 put_bh(bh);
2471 }
2472 #endif
2473
2474 return 0;
2475
2476 exit_group_info:
2477 /* If a meta_group_info table has been allocated, release it now */
2478 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2479 struct ext4_group_info ***group_info;
2480
2481 rcu_read_lock();
2482 group_info = rcu_dereference(sbi->s_group_info);
2483 kfree(group_info[idx]);
2484 group_info[idx] = NULL;
2485 rcu_read_unlock();
2486 }
2487 exit_meta_group_info:
2488 return -ENOMEM;
2489 } /* ext4_mb_add_groupinfo */
2490
ext4_mb_init_backend(struct super_block * sb)2491 static int ext4_mb_init_backend(struct super_block *sb)
2492 {
2493 ext4_group_t ngroups = ext4_get_groups_count(sb);
2494 ext4_group_t i;
2495 struct ext4_sb_info *sbi = EXT4_SB(sb);
2496 int err;
2497 struct ext4_group_desc *desc;
2498 struct ext4_group_info ***group_info;
2499 struct kmem_cache *cachep;
2500
2501 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2502 if (err)
2503 return err;
2504
2505 sbi->s_buddy_cache = new_inode(sb);
2506 if (sbi->s_buddy_cache == NULL) {
2507 ext4_msg(sb, KERN_ERR, "can't get new inode");
2508 goto err_freesgi;
2509 }
2510 /* To avoid potentially colliding with an valid on-disk inode number,
2511 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2512 * not in the inode hash, so it should never be found by iget(), but
2513 * this will avoid confusion if it ever shows up during debugging. */
2514 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2515 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2516 for (i = 0; i < ngroups; i++) {
2517 cond_resched();
2518 desc = ext4_get_group_desc(sb, i, NULL);
2519 if (desc == NULL) {
2520 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2521 goto err_freebuddy;
2522 }
2523 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2524 goto err_freebuddy;
2525 }
2526
2527 return 0;
2528
2529 err_freebuddy:
2530 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2531 while (i-- > 0)
2532 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2533 i = sbi->s_group_info_size;
2534 rcu_read_lock();
2535 group_info = rcu_dereference(sbi->s_group_info);
2536 while (i-- > 0)
2537 kfree(group_info[i]);
2538 rcu_read_unlock();
2539 iput(sbi->s_buddy_cache);
2540 err_freesgi:
2541 rcu_read_lock();
2542 kvfree(rcu_dereference(sbi->s_group_info));
2543 rcu_read_unlock();
2544 return -ENOMEM;
2545 }
2546
ext4_groupinfo_destroy_slabs(void)2547 static void ext4_groupinfo_destroy_slabs(void)
2548 {
2549 int i;
2550
2551 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2552 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2553 ext4_groupinfo_caches[i] = NULL;
2554 }
2555 }
2556
ext4_groupinfo_create_slab(size_t size)2557 static int ext4_groupinfo_create_slab(size_t size)
2558 {
2559 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2560 int slab_size;
2561 int blocksize_bits = order_base_2(size);
2562 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2563 struct kmem_cache *cachep;
2564
2565 if (cache_index >= NR_GRPINFO_CACHES)
2566 return -EINVAL;
2567
2568 if (unlikely(cache_index < 0))
2569 cache_index = 0;
2570
2571 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2572 if (ext4_groupinfo_caches[cache_index]) {
2573 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2574 return 0; /* Already created */
2575 }
2576
2577 slab_size = offsetof(struct ext4_group_info,
2578 bb_counters[blocksize_bits + 2]);
2579
2580 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2581 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2582 NULL);
2583
2584 ext4_groupinfo_caches[cache_index] = cachep;
2585
2586 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2587 if (!cachep) {
2588 printk(KERN_EMERG
2589 "EXT4-fs: no memory for groupinfo slab cache\n");
2590 return -ENOMEM;
2591 }
2592
2593 return 0;
2594 }
2595
ext4_mb_init(struct super_block * sb)2596 int ext4_mb_init(struct super_block *sb)
2597 {
2598 struct ext4_sb_info *sbi = EXT4_SB(sb);
2599 unsigned i, j;
2600 unsigned offset, offset_incr;
2601 unsigned max;
2602 int ret;
2603
2604 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2605
2606 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2607 if (sbi->s_mb_offsets == NULL) {
2608 ret = -ENOMEM;
2609 goto out;
2610 }
2611
2612 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2613 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2614 if (sbi->s_mb_maxs == NULL) {
2615 ret = -ENOMEM;
2616 goto out;
2617 }
2618
2619 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2620 if (ret < 0)
2621 goto out;
2622
2623 /* order 0 is regular bitmap */
2624 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2625 sbi->s_mb_offsets[0] = 0;
2626
2627 i = 1;
2628 offset = 0;
2629 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2630 max = sb->s_blocksize << 2;
2631 do {
2632 sbi->s_mb_offsets[i] = offset;
2633 sbi->s_mb_maxs[i] = max;
2634 offset += offset_incr;
2635 offset_incr = offset_incr >> 1;
2636 max = max >> 1;
2637 i++;
2638 } while (i <= sb->s_blocksize_bits + 1);
2639
2640 spin_lock_init(&sbi->s_md_lock);
2641 spin_lock_init(&sbi->s_bal_lock);
2642 sbi->s_mb_free_pending = 0;
2643 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2644
2645 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2646 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2647 sbi->s_mb_stats = MB_DEFAULT_STATS;
2648 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2649 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2650 /*
2651 * The default group preallocation is 512, which for 4k block
2652 * sizes translates to 2 megabytes. However for bigalloc file
2653 * systems, this is probably too big (i.e, if the cluster size
2654 * is 1 megabyte, then group preallocation size becomes half a
2655 * gigabyte!). As a default, we will keep a two megabyte
2656 * group pralloc size for cluster sizes up to 64k, and after
2657 * that, we will force a minimum group preallocation size of
2658 * 32 clusters. This translates to 8 megs when the cluster
2659 * size is 256k, and 32 megs when the cluster size is 1 meg,
2660 * which seems reasonable as a default.
2661 */
2662 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2663 sbi->s_cluster_bits, 32);
2664 /*
2665 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2666 * to the lowest multiple of s_stripe which is bigger than
2667 * the s_mb_group_prealloc as determined above. We want
2668 * the preallocation size to be an exact multiple of the
2669 * RAID stripe size so that preallocations don't fragment
2670 * the stripes.
2671 */
2672 if (sbi->s_stripe > 1) {
2673 sbi->s_mb_group_prealloc = roundup(
2674 sbi->s_mb_group_prealloc, sbi->s_stripe);
2675 }
2676
2677 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2678 if (sbi->s_locality_groups == NULL) {
2679 ret = -ENOMEM;
2680 goto out;
2681 }
2682 for_each_possible_cpu(i) {
2683 struct ext4_locality_group *lg;
2684 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2685 mutex_init(&lg->lg_mutex);
2686 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2687 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2688 spin_lock_init(&lg->lg_prealloc_lock);
2689 }
2690
2691 /* init file for buddy data */
2692 ret = ext4_mb_init_backend(sb);
2693 if (ret != 0)
2694 goto out_free_locality_groups;
2695
2696 return 0;
2697
2698 out_free_locality_groups:
2699 free_percpu(sbi->s_locality_groups);
2700 sbi->s_locality_groups = NULL;
2701 out:
2702 kfree(sbi->s_mb_offsets);
2703 sbi->s_mb_offsets = NULL;
2704 kfree(sbi->s_mb_maxs);
2705 sbi->s_mb_maxs = NULL;
2706 return ret;
2707 }
2708
2709 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2710 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2711 {
2712 struct ext4_prealloc_space *pa;
2713 struct list_head *cur, *tmp;
2714 int count = 0;
2715
2716 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2717 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2718 list_del(&pa->pa_group_list);
2719 count++;
2720 kmem_cache_free(ext4_pspace_cachep, pa);
2721 }
2722 if (count)
2723 mb_debug(1, "mballoc: %u PAs left\n", count);
2724
2725 }
2726
ext4_mb_release(struct super_block * sb)2727 int ext4_mb_release(struct super_block *sb)
2728 {
2729 ext4_group_t ngroups = ext4_get_groups_count(sb);
2730 ext4_group_t i;
2731 int num_meta_group_infos;
2732 struct ext4_group_info *grinfo, ***group_info;
2733 struct ext4_sb_info *sbi = EXT4_SB(sb);
2734 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2735
2736 if (sbi->s_group_info) {
2737 for (i = 0; i < ngroups; i++) {
2738 cond_resched();
2739 grinfo = ext4_get_group_info(sb, i);
2740 #ifdef DOUBLE_CHECK
2741 kfree(grinfo->bb_bitmap);
2742 #endif
2743 ext4_lock_group(sb, i);
2744 ext4_mb_cleanup_pa(grinfo);
2745 ext4_unlock_group(sb, i);
2746 kmem_cache_free(cachep, grinfo);
2747 }
2748 num_meta_group_infos = (ngroups +
2749 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2750 EXT4_DESC_PER_BLOCK_BITS(sb);
2751 rcu_read_lock();
2752 group_info = rcu_dereference(sbi->s_group_info);
2753 for (i = 0; i < num_meta_group_infos; i++)
2754 kfree(group_info[i]);
2755 kvfree(group_info);
2756 rcu_read_unlock();
2757 }
2758 kfree(sbi->s_mb_offsets);
2759 kfree(sbi->s_mb_maxs);
2760 iput(sbi->s_buddy_cache);
2761 if (sbi->s_mb_stats) {
2762 ext4_msg(sb, KERN_INFO,
2763 "mballoc: %u blocks %u reqs (%u success)",
2764 atomic_read(&sbi->s_bal_allocated),
2765 atomic_read(&sbi->s_bal_reqs),
2766 atomic_read(&sbi->s_bal_success));
2767 ext4_msg(sb, KERN_INFO,
2768 "mballoc: %u extents scanned, %u goal hits, "
2769 "%u 2^N hits, %u breaks, %u lost",
2770 atomic_read(&sbi->s_bal_ex_scanned),
2771 atomic_read(&sbi->s_bal_goals),
2772 atomic_read(&sbi->s_bal_2orders),
2773 atomic_read(&sbi->s_bal_breaks),
2774 atomic_read(&sbi->s_mb_lost_chunks));
2775 ext4_msg(sb, KERN_INFO,
2776 "mballoc: %lu generated and it took %Lu",
2777 sbi->s_mb_buddies_generated,
2778 sbi->s_mb_generation_time);
2779 ext4_msg(sb, KERN_INFO,
2780 "mballoc: %u preallocated, %u discarded",
2781 atomic_read(&sbi->s_mb_preallocated),
2782 atomic_read(&sbi->s_mb_discarded));
2783 }
2784
2785 free_percpu(sbi->s_locality_groups);
2786
2787 return 0;
2788 }
2789
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count,struct bio ** biop)2790 static inline int ext4_issue_discard(struct super_block *sb,
2791 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2792 struct bio **biop)
2793 {
2794 ext4_fsblk_t discard_block;
2795
2796 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2797 ext4_group_first_block_no(sb, block_group));
2798 count = EXT4_C2B(EXT4_SB(sb), count);
2799 trace_ext4_discard_blocks(sb,
2800 (unsigned long long) discard_block, count);
2801 if (biop) {
2802 return __blkdev_issue_discard(sb->s_bdev,
2803 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
2804 (sector_t)count << (sb->s_blocksize_bits - 9),
2805 GFP_NOFS, 0, biop);
2806 } else
2807 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2808 }
2809
ext4_free_data_in_buddy(struct super_block * sb,struct ext4_free_data * entry)2810 static void ext4_free_data_in_buddy(struct super_block *sb,
2811 struct ext4_free_data *entry)
2812 {
2813 struct ext4_buddy e4b;
2814 struct ext4_group_info *db;
2815 int err, count = 0, count2 = 0;
2816
2817 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2818 entry->efd_count, entry->efd_group, entry);
2819
2820 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2821 /* we expect to find existing buddy because it's pinned */
2822 BUG_ON(err != 0);
2823
2824 spin_lock(&EXT4_SB(sb)->s_md_lock);
2825 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2826 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2827
2828 db = e4b.bd_info;
2829 /* there are blocks to put in buddy to make them really free */
2830 count += entry->efd_count;
2831 count2++;
2832 ext4_lock_group(sb, entry->efd_group);
2833 /* Take it out of per group rb tree */
2834 rb_erase(&entry->efd_node, &(db->bb_free_root));
2835 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2836
2837 /*
2838 * Clear the trimmed flag for the group so that the next
2839 * ext4_trim_fs can trim it.
2840 * If the volume is mounted with -o discard, online discard
2841 * is supported and the free blocks will be trimmed online.
2842 */
2843 if (!test_opt(sb, DISCARD))
2844 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2845
2846 if (!db->bb_free_root.rb_node) {
2847 /* No more items in the per group rb tree
2848 * balance refcounts from ext4_mb_free_metadata()
2849 */
2850 put_page(e4b.bd_buddy_page);
2851 put_page(e4b.bd_bitmap_page);
2852 }
2853 ext4_unlock_group(sb, entry->efd_group);
2854 kmem_cache_free(ext4_free_data_cachep, entry);
2855 ext4_mb_unload_buddy(&e4b);
2856
2857 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2858 }
2859
2860 /*
2861 * This function is called by the jbd2 layer once the commit has finished,
2862 * so we know we can free the blocks that were released with that commit.
2863 */
ext4_process_freed_data(struct super_block * sb,tid_t commit_tid)2864 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2865 {
2866 struct ext4_sb_info *sbi = EXT4_SB(sb);
2867 struct ext4_free_data *entry, *tmp;
2868 struct bio *discard_bio = NULL;
2869 struct list_head freed_data_list;
2870 struct list_head *cut_pos = NULL;
2871 int err;
2872
2873 INIT_LIST_HEAD(&freed_data_list);
2874
2875 spin_lock(&sbi->s_md_lock);
2876 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2877 if (entry->efd_tid != commit_tid)
2878 break;
2879 cut_pos = &entry->efd_list;
2880 }
2881 if (cut_pos)
2882 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2883 cut_pos);
2884 spin_unlock(&sbi->s_md_lock);
2885
2886 if (test_opt(sb, DISCARD)) {
2887 list_for_each_entry(entry, &freed_data_list, efd_list) {
2888 err = ext4_issue_discard(sb, entry->efd_group,
2889 entry->efd_start_cluster,
2890 entry->efd_count,
2891 &discard_bio);
2892 if (err && err != -EOPNOTSUPP) {
2893 ext4_msg(sb, KERN_WARNING, "discard request in"
2894 " group:%d block:%d count:%d failed"
2895 " with %d", entry->efd_group,
2896 entry->efd_start_cluster,
2897 entry->efd_count, err);
2898 } else if (err == -EOPNOTSUPP)
2899 break;
2900 }
2901
2902 if (discard_bio) {
2903 submit_bio_wait(discard_bio);
2904 bio_put(discard_bio);
2905 }
2906 }
2907
2908 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2909 ext4_free_data_in_buddy(sb, entry);
2910 }
2911
ext4_init_mballoc(void)2912 int __init ext4_init_mballoc(void)
2913 {
2914 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2915 SLAB_RECLAIM_ACCOUNT);
2916 if (ext4_pspace_cachep == NULL)
2917 return -ENOMEM;
2918
2919 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2920 SLAB_RECLAIM_ACCOUNT);
2921 if (ext4_ac_cachep == NULL) {
2922 kmem_cache_destroy(ext4_pspace_cachep);
2923 return -ENOMEM;
2924 }
2925
2926 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2927 SLAB_RECLAIM_ACCOUNT);
2928 if (ext4_free_data_cachep == NULL) {
2929 kmem_cache_destroy(ext4_pspace_cachep);
2930 kmem_cache_destroy(ext4_ac_cachep);
2931 return -ENOMEM;
2932 }
2933 return 0;
2934 }
2935
ext4_exit_mballoc(void)2936 void ext4_exit_mballoc(void)
2937 {
2938 /*
2939 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2940 * before destroying the slab cache.
2941 */
2942 rcu_barrier();
2943 kmem_cache_destroy(ext4_pspace_cachep);
2944 kmem_cache_destroy(ext4_ac_cachep);
2945 kmem_cache_destroy(ext4_free_data_cachep);
2946 ext4_groupinfo_destroy_slabs();
2947 }
2948
2949
2950 /*
2951 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2952 * Returns 0 if success or error code
2953 */
2954 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)2955 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2956 handle_t *handle, unsigned int reserv_clstrs)
2957 {
2958 struct buffer_head *bitmap_bh = NULL;
2959 struct ext4_group_desc *gdp;
2960 struct buffer_head *gdp_bh;
2961 struct ext4_sb_info *sbi;
2962 struct super_block *sb;
2963 ext4_fsblk_t block;
2964 int err, len;
2965
2966 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2967 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2968
2969 sb = ac->ac_sb;
2970 sbi = EXT4_SB(sb);
2971
2972 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2973 if (IS_ERR(bitmap_bh)) {
2974 err = PTR_ERR(bitmap_bh);
2975 bitmap_bh = NULL;
2976 goto out_err;
2977 }
2978
2979 BUFFER_TRACE(bitmap_bh, "getting write access");
2980 err = ext4_journal_get_write_access(handle, bitmap_bh);
2981 if (err)
2982 goto out_err;
2983
2984 err = -EIO;
2985 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2986 if (!gdp)
2987 goto out_err;
2988
2989 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2990 ext4_free_group_clusters(sb, gdp));
2991
2992 BUFFER_TRACE(gdp_bh, "get_write_access");
2993 err = ext4_journal_get_write_access(handle, gdp_bh);
2994 if (err)
2995 goto out_err;
2996
2997 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2998
2999 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3000 if (!ext4_data_block_valid(sbi, block, len)) {
3001 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3002 "fs metadata", block, block+len);
3003 /* File system mounted not to panic on error
3004 * Fix the bitmap and return EFSCORRUPTED
3005 * We leak some of the blocks here.
3006 */
3007 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3008 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3009 ac->ac_b_ex.fe_len);
3010 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3011 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3012 if (!err)
3013 err = -EFSCORRUPTED;
3014 goto out_err;
3015 }
3016
3017 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3018 #ifdef AGGRESSIVE_CHECK
3019 {
3020 int i;
3021 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3022 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3023 bitmap_bh->b_data));
3024 }
3025 }
3026 #endif
3027 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3028 ac->ac_b_ex.fe_len);
3029 if (ext4_has_group_desc_csum(sb) &&
3030 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3031 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3032 ext4_free_group_clusters_set(sb, gdp,
3033 ext4_free_clusters_after_init(sb,
3034 ac->ac_b_ex.fe_group, gdp));
3035 }
3036 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3037 ext4_free_group_clusters_set(sb, gdp, len);
3038 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3039 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3040
3041 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3042 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3043 /*
3044 * Now reduce the dirty block count also. Should not go negative
3045 */
3046 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3047 /* release all the reserved blocks if non delalloc */
3048 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3049 reserv_clstrs);
3050
3051 if (sbi->s_log_groups_per_flex) {
3052 ext4_group_t flex_group = ext4_flex_group(sbi,
3053 ac->ac_b_ex.fe_group);
3054 atomic64_sub(ac->ac_b_ex.fe_len,
3055 &sbi_array_rcu_deref(sbi, s_flex_groups,
3056 flex_group)->free_clusters);
3057 }
3058
3059 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3060 if (err)
3061 goto out_err;
3062 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3063
3064 out_err:
3065 brelse(bitmap_bh);
3066 return err;
3067 }
3068
3069 /*
3070 * here we normalize request for locality group
3071 * Group request are normalized to s_mb_group_prealloc, which goes to
3072 * s_strip if we set the same via mount option.
3073 * s_mb_group_prealloc can be configured via
3074 * /sys/fs/ext4/<partition>/mb_group_prealloc
3075 *
3076 * XXX: should we try to preallocate more than the group has now?
3077 */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3078 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3079 {
3080 struct super_block *sb = ac->ac_sb;
3081 struct ext4_locality_group *lg = ac->ac_lg;
3082
3083 BUG_ON(lg == NULL);
3084 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3085 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3086 current->pid, ac->ac_g_ex.fe_len);
3087 }
3088
3089 /*
3090 * Normalization means making request better in terms of
3091 * size and alignment
3092 */
3093 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3094 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3095 struct ext4_allocation_request *ar)
3096 {
3097 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3098 struct ext4_super_block *es = sbi->s_es;
3099 int bsbits, max;
3100 loff_t size, start_off, end;
3101 loff_t orig_size __maybe_unused;
3102 ext4_lblk_t start;
3103 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3104 struct ext4_prealloc_space *pa;
3105
3106 /* do normalize only data requests, metadata requests
3107 do not need preallocation */
3108 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3109 return;
3110
3111 /* sometime caller may want exact blocks */
3112 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3113 return;
3114
3115 /* caller may indicate that preallocation isn't
3116 * required (it's a tail, for example) */
3117 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3118 return;
3119
3120 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3121 ext4_mb_normalize_group_request(ac);
3122 return ;
3123 }
3124
3125 bsbits = ac->ac_sb->s_blocksize_bits;
3126
3127 /* first, let's learn actual file size
3128 * given current request is allocated */
3129 size = extent_logical_end(sbi, &ac->ac_o_ex);
3130 size = size << bsbits;
3131 if (size < i_size_read(ac->ac_inode))
3132 size = i_size_read(ac->ac_inode);
3133 orig_size = size;
3134
3135 /* max size of free chunks */
3136 max = 2 << bsbits;
3137
3138 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3139 (req <= (size) || max <= (chunk_size))
3140
3141 /* first, try to predict filesize */
3142 /* XXX: should this table be tunable? */
3143 start_off = 0;
3144 if (size <= 16 * 1024) {
3145 size = 16 * 1024;
3146 } else if (size <= 32 * 1024) {
3147 size = 32 * 1024;
3148 } else if (size <= 64 * 1024) {
3149 size = 64 * 1024;
3150 } else if (size <= 128 * 1024) {
3151 size = 128 * 1024;
3152 } else if (size <= 256 * 1024) {
3153 size = 256 * 1024;
3154 } else if (size <= 512 * 1024) {
3155 size = 512 * 1024;
3156 } else if (size <= 1024 * 1024) {
3157 size = 1024 * 1024;
3158 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3159 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3160 (21 - bsbits)) << 21;
3161 size = 2 * 1024 * 1024;
3162 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3163 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3164 (22 - bsbits)) << 22;
3165 size = 4 * 1024 * 1024;
3166 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3167 (8<<20)>>bsbits, max, 8 * 1024)) {
3168 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3169 (23 - bsbits)) << 23;
3170 size = 8 * 1024 * 1024;
3171 } else {
3172 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3173 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3174 ac->ac_o_ex.fe_len) << bsbits;
3175 }
3176 size = size >> bsbits;
3177 start = start_off >> bsbits;
3178
3179 /*
3180 * For tiny groups (smaller than 8MB) the chosen allocation
3181 * alignment may be larger than group size. Make sure the
3182 * alignment does not move allocation to a different group which
3183 * makes mballoc fail assertions later.
3184 */
3185 start = max(start, rounddown(ac->ac_o_ex.fe_logical,
3186 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
3187
3188 /* avoid unnecessary preallocation that may trigger assertions */
3189 if (start + size > EXT_MAX_BLOCKS)
3190 size = EXT_MAX_BLOCKS - start;
3191
3192 /* don't cover already allocated blocks in selected range */
3193 if (ar->pleft && start <= ar->lleft) {
3194 size -= ar->lleft + 1 - start;
3195 start = ar->lleft + 1;
3196 }
3197 if (ar->pright && start + size - 1 >= ar->lright)
3198 size -= start + size - ar->lright;
3199
3200 /*
3201 * Trim allocation request for filesystems with artificially small
3202 * groups.
3203 */
3204 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3205 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3206
3207 end = start + size;
3208
3209 /* check we don't cross already preallocated blocks */
3210 rcu_read_lock();
3211 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3212 loff_t pa_end;
3213
3214 if (pa->pa_deleted)
3215 continue;
3216 spin_lock(&pa->pa_lock);
3217 if (pa->pa_deleted) {
3218 spin_unlock(&pa->pa_lock);
3219 continue;
3220 }
3221
3222 pa_end = pa_logical_end(EXT4_SB(ac->ac_sb), pa);
3223
3224 /* PA must not overlap original request */
3225 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3226 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3227
3228 /* skip PAs this normalized request doesn't overlap with */
3229 if (pa->pa_lstart >= end || pa_end <= start) {
3230 spin_unlock(&pa->pa_lock);
3231 continue;
3232 }
3233 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3234
3235 /* adjust start or end to be adjacent to this pa */
3236 if (pa_end <= ac->ac_o_ex.fe_logical) {
3237 BUG_ON(pa_end < start);
3238 start = pa_end;
3239 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3240 BUG_ON(pa->pa_lstart > end);
3241 end = pa->pa_lstart;
3242 }
3243 spin_unlock(&pa->pa_lock);
3244 }
3245 rcu_read_unlock();
3246 size = end - start;
3247
3248 /* XXX: extra loop to check we really don't overlap preallocations */
3249 rcu_read_lock();
3250 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3251 loff_t pa_end;
3252
3253 spin_lock(&pa->pa_lock);
3254 if (pa->pa_deleted == 0) {
3255 pa_end = pa_logical_end(EXT4_SB(ac->ac_sb), pa);
3256 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3257 }
3258 spin_unlock(&pa->pa_lock);
3259 }
3260 rcu_read_unlock();
3261
3262 if (start + size <= ac->ac_o_ex.fe_logical &&
3263 start > ac->ac_o_ex.fe_logical) {
3264 ext4_msg(ac->ac_sb, KERN_ERR,
3265 "start %lu, size %lu, fe_logical %lu",
3266 (unsigned long) start, (unsigned long) size,
3267 (unsigned long) ac->ac_o_ex.fe_logical);
3268 BUG();
3269 }
3270 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3271
3272 /* now prepare goal request */
3273
3274 /* XXX: is it better to align blocks WRT to logical
3275 * placement or satisfy big request as is */
3276 ac->ac_g_ex.fe_logical = start;
3277 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3278
3279 /* define goal start in order to merge */
3280 if (ar->pright && (ar->lright == (start + size)) &&
3281 ar->pright >= size &&
3282 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
3283 /* merge to the right */
3284 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3285 &ac->ac_g_ex.fe_group,
3286 &ac->ac_g_ex.fe_start);
3287 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3288 }
3289 if (ar->pleft && (ar->lleft + 1 == start) &&
3290 ar->pleft + 1 < ext4_blocks_count(es)) {
3291 /* merge to the left */
3292 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3293 &ac->ac_g_ex.fe_group,
3294 &ac->ac_g_ex.fe_start);
3295 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3296 }
3297
3298 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3299 (unsigned) orig_size, (unsigned) start);
3300 }
3301
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3302 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3303 {
3304 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3305
3306 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3307 atomic_inc(&sbi->s_bal_reqs);
3308 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3309 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3310 atomic_inc(&sbi->s_bal_success);
3311 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3312 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3313 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3314 atomic_inc(&sbi->s_bal_goals);
3315 if (ac->ac_found > sbi->s_mb_max_to_scan)
3316 atomic_inc(&sbi->s_bal_breaks);
3317 }
3318
3319 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3320 trace_ext4_mballoc_alloc(ac);
3321 else
3322 trace_ext4_mballoc_prealloc(ac);
3323 }
3324
3325 /*
3326 * Called on failure; free up any blocks from the inode PA for this
3327 * context. We don't need this for MB_GROUP_PA because we only change
3328 * pa_free in ext4_mb_release_context(), but on failure, we've already
3329 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3330 */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3331 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3332 {
3333 struct ext4_prealloc_space *pa = ac->ac_pa;
3334 struct ext4_buddy e4b;
3335 int err;
3336
3337 if (pa == NULL) {
3338 if (ac->ac_f_ex.fe_len == 0)
3339 return;
3340 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3341 if (err) {
3342 /*
3343 * This should never happen since we pin the
3344 * pages in the ext4_allocation_context so
3345 * ext4_mb_load_buddy() should never fail.
3346 */
3347 WARN(1, "mb_load_buddy failed (%d)", err);
3348 return;
3349 }
3350 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3351 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3352 ac->ac_f_ex.fe_len);
3353 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3354 ext4_mb_unload_buddy(&e4b);
3355 return;
3356 }
3357 if (pa->pa_type == MB_INODE_PA)
3358 pa->pa_free += ac->ac_b_ex.fe_len;
3359 }
3360
3361 /*
3362 * use blocks preallocated to inode
3363 */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3364 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3365 struct ext4_prealloc_space *pa)
3366 {
3367 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3368 ext4_fsblk_t start;
3369 ext4_fsblk_t end;
3370 int len;
3371
3372 /* found preallocated blocks, use them */
3373 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3374 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3375 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3376 len = EXT4_NUM_B2C(sbi, end - start);
3377 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3378 &ac->ac_b_ex.fe_start);
3379 ac->ac_b_ex.fe_len = len;
3380 ac->ac_status = AC_STATUS_FOUND;
3381 ac->ac_pa = pa;
3382
3383 BUG_ON(start < pa->pa_pstart);
3384 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3385 BUG_ON(pa->pa_free < len);
3386 BUG_ON(ac->ac_b_ex.fe_len <= 0);
3387 pa->pa_free -= len;
3388
3389 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3390 }
3391
3392 /*
3393 * use blocks preallocated to locality group
3394 */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3395 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3396 struct ext4_prealloc_space *pa)
3397 {
3398 unsigned int len = ac->ac_o_ex.fe_len;
3399
3400 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3401 &ac->ac_b_ex.fe_group,
3402 &ac->ac_b_ex.fe_start);
3403 ac->ac_b_ex.fe_len = len;
3404 ac->ac_status = AC_STATUS_FOUND;
3405 ac->ac_pa = pa;
3406
3407 /* we don't correct pa_pstart or pa_plen here to avoid
3408 * possible race when the group is being loaded concurrently
3409 * instead we correct pa later, after blocks are marked
3410 * in on-disk bitmap -- see ext4_mb_release_context()
3411 * Other CPUs are prevented from allocating from this pa by lg_mutex
3412 */
3413 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3414 }
3415
3416 /*
3417 * Return the prealloc space that have minimal distance
3418 * from the goal block. @cpa is the prealloc
3419 * space that is having currently known minimal distance
3420 * from the goal block.
3421 */
3422 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3423 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3424 struct ext4_prealloc_space *pa,
3425 struct ext4_prealloc_space *cpa)
3426 {
3427 ext4_fsblk_t cur_distance, new_distance;
3428
3429 if (cpa == NULL) {
3430 atomic_inc(&pa->pa_count);
3431 return pa;
3432 }
3433 cur_distance = abs(goal_block - cpa->pa_pstart);
3434 new_distance = abs(goal_block - pa->pa_pstart);
3435
3436 if (cur_distance <= new_distance)
3437 return cpa;
3438
3439 /* drop the previous reference */
3440 atomic_dec(&cpa->pa_count);
3441 atomic_inc(&pa->pa_count);
3442 return pa;
3443 }
3444
3445 /*
3446 * search goal blocks in preallocated space
3447 */
3448 static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3449 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3450 {
3451 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3452 int order, i;
3453 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3454 struct ext4_locality_group *lg;
3455 struct ext4_prealloc_space *pa, *cpa = NULL;
3456 ext4_fsblk_t goal_block;
3457
3458 /* only data can be preallocated */
3459 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3460 return 0;
3461
3462 /* first, try per-file preallocation */
3463 rcu_read_lock();
3464 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3465
3466 /* all fields in this condition don't change,
3467 * so we can skip locking for them */
3468 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3469 ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, pa))
3470 continue;
3471
3472 /* non-extent files can't have physical blocks past 2^32 */
3473 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3474 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3475 EXT4_MAX_BLOCK_FILE_PHYS))
3476 continue;
3477
3478 /* found preallocated blocks, use them */
3479 spin_lock(&pa->pa_lock);
3480 if (pa->pa_deleted == 0 && pa->pa_free) {
3481 atomic_inc(&pa->pa_count);
3482 ext4_mb_use_inode_pa(ac, pa);
3483 spin_unlock(&pa->pa_lock);
3484 ac->ac_criteria = 10;
3485 rcu_read_unlock();
3486 return 1;
3487 }
3488 spin_unlock(&pa->pa_lock);
3489 }
3490 rcu_read_unlock();
3491
3492 /* can we use group allocation? */
3493 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3494 return 0;
3495
3496 /* inode may have no locality group for some reason */
3497 lg = ac->ac_lg;
3498 if (lg == NULL)
3499 return 0;
3500 order = fls(ac->ac_o_ex.fe_len) - 1;
3501 if (order > PREALLOC_TB_SIZE - 1)
3502 /* The max size of hash table is PREALLOC_TB_SIZE */
3503 order = PREALLOC_TB_SIZE - 1;
3504
3505 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3506 /*
3507 * search for the prealloc space that is having
3508 * minimal distance from the goal block.
3509 */
3510 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3511 rcu_read_lock();
3512 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3513 pa_inode_list) {
3514 spin_lock(&pa->pa_lock);
3515 if (pa->pa_deleted == 0 &&
3516 pa->pa_free >= ac->ac_o_ex.fe_len) {
3517
3518 cpa = ext4_mb_check_group_pa(goal_block,
3519 pa, cpa);
3520 }
3521 spin_unlock(&pa->pa_lock);
3522 }
3523 rcu_read_unlock();
3524 }
3525 if (cpa) {
3526 ext4_mb_use_group_pa(ac, cpa);
3527 ac->ac_criteria = 20;
3528 return 1;
3529 }
3530 return 0;
3531 }
3532
3533 /*
3534 * the function goes through all block freed in the group
3535 * but not yet committed and marks them used in in-core bitmap.
3536 * buddy must be generated from this bitmap
3537 * Need to be called with the ext4 group lock held
3538 */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3539 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3540 ext4_group_t group)
3541 {
3542 struct rb_node *n;
3543 struct ext4_group_info *grp;
3544 struct ext4_free_data *entry;
3545
3546 grp = ext4_get_group_info(sb, group);
3547 n = rb_first(&(grp->bb_free_root));
3548
3549 while (n) {
3550 entry = rb_entry(n, struct ext4_free_data, efd_node);
3551 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3552 n = rb_next(n);
3553 }
3554 return;
3555 }
3556
3557 /*
3558 * the function goes through all preallocation in this group and marks them
3559 * used in in-core bitmap. buddy must be generated from this bitmap
3560 * Need to be called with ext4 group lock held
3561 */
3562 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3563 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3564 ext4_group_t group)
3565 {
3566 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3567 struct ext4_prealloc_space *pa;
3568 struct list_head *cur;
3569 ext4_group_t groupnr;
3570 ext4_grpblk_t start;
3571 int preallocated = 0;
3572 int len;
3573
3574 /* all form of preallocation discards first load group,
3575 * so the only competing code is preallocation use.
3576 * we don't need any locking here
3577 * notice we do NOT ignore preallocations with pa_deleted
3578 * otherwise we could leave used blocks available for
3579 * allocation in buddy when concurrent ext4_mb_put_pa()
3580 * is dropping preallocation
3581 */
3582 list_for_each(cur, &grp->bb_prealloc_list) {
3583 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3584 spin_lock(&pa->pa_lock);
3585 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3586 &groupnr, &start);
3587 len = pa->pa_len;
3588 spin_unlock(&pa->pa_lock);
3589 if (unlikely(len == 0))
3590 continue;
3591 BUG_ON(groupnr != group);
3592 ext4_set_bits(bitmap, start, len);
3593 preallocated += len;
3594 }
3595 mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3596 }
3597
ext4_mb_pa_callback(struct rcu_head * head)3598 static void ext4_mb_pa_callback(struct rcu_head *head)
3599 {
3600 struct ext4_prealloc_space *pa;
3601 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3602
3603 BUG_ON(atomic_read(&pa->pa_count));
3604 BUG_ON(pa->pa_deleted == 0);
3605 kmem_cache_free(ext4_pspace_cachep, pa);
3606 }
3607
3608 /*
3609 * drops a reference to preallocated space descriptor
3610 * if this was the last reference and the space is consumed
3611 */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3612 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3613 struct super_block *sb, struct ext4_prealloc_space *pa)
3614 {
3615 ext4_group_t grp;
3616 ext4_fsblk_t grp_blk;
3617
3618 /* in this short window concurrent discard can set pa_deleted */
3619 spin_lock(&pa->pa_lock);
3620 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3621 spin_unlock(&pa->pa_lock);
3622 return;
3623 }
3624
3625 if (pa->pa_deleted == 1) {
3626 spin_unlock(&pa->pa_lock);
3627 return;
3628 }
3629
3630 pa->pa_deleted = 1;
3631 spin_unlock(&pa->pa_lock);
3632
3633 grp_blk = pa->pa_pstart;
3634 /*
3635 * If doing group-based preallocation, pa_pstart may be in the
3636 * next group when pa is used up
3637 */
3638 if (pa->pa_type == MB_GROUP_PA)
3639 grp_blk--;
3640
3641 grp = ext4_get_group_number(sb, grp_blk);
3642
3643 /*
3644 * possible race:
3645 *
3646 * P1 (buddy init) P2 (regular allocation)
3647 * find block B in PA
3648 * copy on-disk bitmap to buddy
3649 * mark B in on-disk bitmap
3650 * drop PA from group
3651 * mark all PAs in buddy
3652 *
3653 * thus, P1 initializes buddy with B available. to prevent this
3654 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3655 * against that pair
3656 */
3657 ext4_lock_group(sb, grp);
3658 list_del(&pa->pa_group_list);
3659 ext4_unlock_group(sb, grp);
3660
3661 spin_lock(pa->pa_obj_lock);
3662 list_del_rcu(&pa->pa_inode_list);
3663 spin_unlock(pa->pa_obj_lock);
3664
3665 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3666 }
3667
3668 /*
3669 * creates new preallocated space for given inode
3670 */
3671 static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3672 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3673 {
3674 struct super_block *sb = ac->ac_sb;
3675 struct ext4_sb_info *sbi = EXT4_SB(sb);
3676 struct ext4_prealloc_space *pa;
3677 struct ext4_group_info *grp;
3678 struct ext4_inode_info *ei;
3679
3680 /* preallocate only when found space is larger then requested */
3681 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3682 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3683 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3684
3685 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3686 if (pa == NULL)
3687 return -ENOMEM;
3688
3689 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3690 struct ext4_free_extent ex = {
3691 .fe_logical = ac->ac_g_ex.fe_logical,
3692 .fe_len = ac->ac_g_ex.fe_len,
3693 };
3694 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
3695 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
3696
3697 /*
3698 * We can't allocate as much as normalizer wants, so we try
3699 * to get proper lstart to cover the original request, except
3700 * when the goal doesn't cover the original request as below:
3701 *
3702 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
3703 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
3704 */
3705 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3706 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3707
3708 /*
3709 * Use the below logic for adjusting best extent as it keeps
3710 * fragmentation in check while ensuring logical range of best
3711 * extent doesn't overflow out of goal extent:
3712 *
3713 * 1. Check if best ex can be kept at end of goal and still
3714 * cover original start
3715 * 2. Else, check if best ex can be kept at start of goal and
3716 * still cover original end
3717 * 3. Else, keep the best ex at start of original request.
3718 */
3719 ex.fe_len = ac->ac_b_ex.fe_len;
3720
3721 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
3722 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
3723 goto adjust_bex;
3724
3725 ex.fe_logical = ac->ac_g_ex.fe_logical;
3726 if (o_ex_end <= extent_logical_end(sbi, &ex))
3727 goto adjust_bex;
3728
3729 ex.fe_logical = ac->ac_o_ex.fe_logical;
3730 adjust_bex:
3731 ac->ac_b_ex.fe_logical = ex.fe_logical;
3732
3733 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3734 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
3735 }
3736
3737 /* preallocation can change ac_b_ex, thus we store actually
3738 * allocated blocks for history */
3739 ac->ac_f_ex = ac->ac_b_ex;
3740
3741 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3742 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3743 pa->pa_len = ac->ac_b_ex.fe_len;
3744 pa->pa_free = pa->pa_len;
3745 atomic_set(&pa->pa_count, 1);
3746 spin_lock_init(&pa->pa_lock);
3747 INIT_LIST_HEAD(&pa->pa_inode_list);
3748 INIT_LIST_HEAD(&pa->pa_group_list);
3749 pa->pa_deleted = 0;
3750 pa->pa_type = MB_INODE_PA;
3751
3752 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3753 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3754 trace_ext4_mb_new_inode_pa(ac, pa);
3755
3756 ext4_mb_use_inode_pa(ac, pa);
3757 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3758
3759 ei = EXT4_I(ac->ac_inode);
3760 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3761
3762 pa->pa_obj_lock = &ei->i_prealloc_lock;
3763 pa->pa_inode = ac->ac_inode;
3764
3765 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3766 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3767 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3768
3769 spin_lock(pa->pa_obj_lock);
3770 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3771 spin_unlock(pa->pa_obj_lock);
3772
3773 return 0;
3774 }
3775
3776 /*
3777 * creates new preallocated space for locality group inodes belongs to
3778 */
3779 static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3780 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3781 {
3782 struct super_block *sb = ac->ac_sb;
3783 struct ext4_locality_group *lg;
3784 struct ext4_prealloc_space *pa;
3785 struct ext4_group_info *grp;
3786
3787 /* preallocate only when found space is larger then requested */
3788 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3789 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3790 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3791
3792 BUG_ON(ext4_pspace_cachep == NULL);
3793 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3794 if (pa == NULL)
3795 return -ENOMEM;
3796
3797 /* preallocation can change ac_b_ex, thus we store actually
3798 * allocated blocks for history */
3799 ac->ac_f_ex = ac->ac_b_ex;
3800
3801 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3802 pa->pa_lstart = pa->pa_pstart;
3803 pa->pa_len = ac->ac_b_ex.fe_len;
3804 pa->pa_free = pa->pa_len;
3805 atomic_set(&pa->pa_count, 1);
3806 spin_lock_init(&pa->pa_lock);
3807 INIT_LIST_HEAD(&pa->pa_inode_list);
3808 INIT_LIST_HEAD(&pa->pa_group_list);
3809 pa->pa_deleted = 0;
3810 pa->pa_type = MB_GROUP_PA;
3811
3812 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3813 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3814 trace_ext4_mb_new_group_pa(ac, pa);
3815
3816 ext4_mb_use_group_pa(ac, pa);
3817 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3818
3819 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3820 lg = ac->ac_lg;
3821 BUG_ON(lg == NULL);
3822
3823 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3824 pa->pa_inode = NULL;
3825
3826 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3827 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3828 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3829
3830 /*
3831 * We will later add the new pa to the right bucket
3832 * after updating the pa_free in ext4_mb_release_context
3833 */
3834 return 0;
3835 }
3836
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3837 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3838 {
3839 int err;
3840
3841 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3842 err = ext4_mb_new_group_pa(ac);
3843 else
3844 err = ext4_mb_new_inode_pa(ac);
3845 return err;
3846 }
3847
3848 /*
3849 * finds all unused blocks in on-disk bitmap, frees them in
3850 * in-core bitmap and buddy.
3851 * @pa must be unlinked from inode and group lists, so that
3852 * nobody else can find/use it.
3853 * the caller MUST hold group/inode locks.
3854 * TODO: optimize the case when there are no in-core structures yet
3855 */
3856 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)3857 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3858 struct ext4_prealloc_space *pa)
3859 {
3860 struct super_block *sb = e4b->bd_sb;
3861 struct ext4_sb_info *sbi = EXT4_SB(sb);
3862 unsigned int end;
3863 unsigned int next;
3864 ext4_group_t group;
3865 ext4_grpblk_t bit;
3866 unsigned long long grp_blk_start;
3867 int free = 0;
3868
3869 BUG_ON(pa->pa_deleted == 0);
3870 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3871 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3872 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3873 end = bit + pa->pa_len;
3874
3875 while (bit < end) {
3876 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3877 if (bit >= end)
3878 break;
3879 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3880 mb_debug(1, " free preallocated %u/%u in group %u\n",
3881 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3882 (unsigned) next - bit, (unsigned) group);
3883 free += next - bit;
3884
3885 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3886 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3887 EXT4_C2B(sbi, bit)),
3888 next - bit);
3889 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3890 bit = next + 1;
3891 }
3892 if (free != pa->pa_free) {
3893 ext4_msg(e4b->bd_sb, KERN_CRIT,
3894 "pa %p: logic %lu, phys. %lu, len %lu",
3895 pa, (unsigned long) pa->pa_lstart,
3896 (unsigned long) pa->pa_pstart,
3897 (unsigned long) pa->pa_len);
3898 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3899 free, pa->pa_free);
3900 /*
3901 * pa is already deleted so we use the value obtained
3902 * from the bitmap and continue.
3903 */
3904 }
3905 atomic_add(free, &sbi->s_mb_discarded);
3906
3907 return 0;
3908 }
3909
3910 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)3911 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3912 struct ext4_prealloc_space *pa)
3913 {
3914 struct super_block *sb = e4b->bd_sb;
3915 ext4_group_t group;
3916 ext4_grpblk_t bit;
3917
3918 trace_ext4_mb_release_group_pa(sb, pa);
3919 BUG_ON(pa->pa_deleted == 0);
3920 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3921 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
3922 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
3923 e4b->bd_group, group, pa->pa_pstart);
3924 return 0;
3925 }
3926 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3927 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3928 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3929
3930 return 0;
3931 }
3932
3933 /*
3934 * releases all preallocations in given group
3935 *
3936 * first, we need to decide discard policy:
3937 * - when do we discard
3938 * 1) ENOSPC
3939 * - how many do we discard
3940 * 1) how many requested
3941 */
3942 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3943 ext4_mb_discard_group_preallocations(struct super_block *sb,
3944 ext4_group_t group, int needed)
3945 {
3946 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3947 struct buffer_head *bitmap_bh = NULL;
3948 struct ext4_prealloc_space *pa, *tmp;
3949 struct list_head list;
3950 struct ext4_buddy e4b;
3951 int err;
3952 int busy = 0;
3953 int free = 0;
3954
3955 mb_debug(1, "discard preallocation for group %u\n", group);
3956
3957 if (list_empty(&grp->bb_prealloc_list))
3958 return 0;
3959
3960 bitmap_bh = ext4_read_block_bitmap(sb, group);
3961 if (IS_ERR(bitmap_bh)) {
3962 err = PTR_ERR(bitmap_bh);
3963 ext4_error(sb, "Error %d reading block bitmap for %u",
3964 err, group);
3965 return 0;
3966 }
3967
3968 err = ext4_mb_load_buddy(sb, group, &e4b);
3969 if (err) {
3970 ext4_warning(sb, "Error %d loading buddy information for %u",
3971 err, group);
3972 put_bh(bitmap_bh);
3973 return 0;
3974 }
3975
3976 if (needed == 0)
3977 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3978
3979 INIT_LIST_HEAD(&list);
3980 repeat:
3981 ext4_lock_group(sb, group);
3982 list_for_each_entry_safe(pa, tmp,
3983 &grp->bb_prealloc_list, pa_group_list) {
3984 spin_lock(&pa->pa_lock);
3985 if (atomic_read(&pa->pa_count)) {
3986 spin_unlock(&pa->pa_lock);
3987 busy = 1;
3988 continue;
3989 }
3990 if (pa->pa_deleted) {
3991 spin_unlock(&pa->pa_lock);
3992 continue;
3993 }
3994
3995 /* seems this one can be freed ... */
3996 pa->pa_deleted = 1;
3997
3998 /* we can trust pa_free ... */
3999 free += pa->pa_free;
4000
4001 spin_unlock(&pa->pa_lock);
4002
4003 list_del(&pa->pa_group_list);
4004 list_add(&pa->u.pa_tmp_list, &list);
4005 }
4006
4007 /* if we still need more blocks and some PAs were used, try again */
4008 if (free < needed && busy) {
4009 busy = 0;
4010 ext4_unlock_group(sb, group);
4011 cond_resched();
4012 goto repeat;
4013 }
4014
4015 /* found anything to free? */
4016 if (list_empty(&list)) {
4017 BUG_ON(free != 0);
4018 goto out;
4019 }
4020
4021 /* now free all selected PAs */
4022 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4023
4024 /* remove from object (inode or locality group) */
4025 spin_lock(pa->pa_obj_lock);
4026 list_del_rcu(&pa->pa_inode_list);
4027 spin_unlock(pa->pa_obj_lock);
4028
4029 if (pa->pa_type == MB_GROUP_PA)
4030 ext4_mb_release_group_pa(&e4b, pa);
4031 else
4032 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4033
4034 list_del(&pa->u.pa_tmp_list);
4035 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4036 }
4037
4038 out:
4039 ext4_unlock_group(sb, group);
4040 ext4_mb_unload_buddy(&e4b);
4041 put_bh(bitmap_bh);
4042 return free;
4043 }
4044
4045 /*
4046 * releases all non-used preallocated blocks for given inode
4047 *
4048 * It's important to discard preallocations under i_data_sem
4049 * We don't want another block to be served from the prealloc
4050 * space when we are discarding the inode prealloc space.
4051 *
4052 * FIXME!! Make sure it is valid at all the call sites
4053 */
ext4_discard_preallocations(struct inode * inode)4054 void ext4_discard_preallocations(struct inode *inode)
4055 {
4056 struct ext4_inode_info *ei = EXT4_I(inode);
4057 struct super_block *sb = inode->i_sb;
4058 struct buffer_head *bitmap_bh = NULL;
4059 struct ext4_prealloc_space *pa, *tmp;
4060 ext4_group_t group = 0;
4061 struct list_head list;
4062 struct ext4_buddy e4b;
4063 int err;
4064
4065 if (!S_ISREG(inode->i_mode)) {
4066 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4067 return;
4068 }
4069
4070 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4071 trace_ext4_discard_preallocations(inode);
4072
4073 INIT_LIST_HEAD(&list);
4074
4075 repeat:
4076 /* first, collect all pa's in the inode */
4077 spin_lock(&ei->i_prealloc_lock);
4078 while (!list_empty(&ei->i_prealloc_list)) {
4079 pa = list_entry(ei->i_prealloc_list.next,
4080 struct ext4_prealloc_space, pa_inode_list);
4081 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4082 spin_lock(&pa->pa_lock);
4083 if (atomic_read(&pa->pa_count)) {
4084 /* this shouldn't happen often - nobody should
4085 * use preallocation while we're discarding it */
4086 spin_unlock(&pa->pa_lock);
4087 spin_unlock(&ei->i_prealloc_lock);
4088 ext4_msg(sb, KERN_ERR,
4089 "uh-oh! used pa while discarding");
4090 WARN_ON(1);
4091 schedule_timeout_uninterruptible(HZ);
4092 goto repeat;
4093
4094 }
4095 if (pa->pa_deleted == 0) {
4096 pa->pa_deleted = 1;
4097 spin_unlock(&pa->pa_lock);
4098 list_del_rcu(&pa->pa_inode_list);
4099 list_add(&pa->u.pa_tmp_list, &list);
4100 continue;
4101 }
4102
4103 /* someone is deleting pa right now */
4104 spin_unlock(&pa->pa_lock);
4105 spin_unlock(&ei->i_prealloc_lock);
4106
4107 /* we have to wait here because pa_deleted
4108 * doesn't mean pa is already unlinked from
4109 * the list. as we might be called from
4110 * ->clear_inode() the inode will get freed
4111 * and concurrent thread which is unlinking
4112 * pa from inode's list may access already
4113 * freed memory, bad-bad-bad */
4114
4115 /* XXX: if this happens too often, we can
4116 * add a flag to force wait only in case
4117 * of ->clear_inode(), but not in case of
4118 * regular truncate */
4119 schedule_timeout_uninterruptible(HZ);
4120 goto repeat;
4121 }
4122 spin_unlock(&ei->i_prealloc_lock);
4123
4124 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4125 BUG_ON(pa->pa_type != MB_INODE_PA);
4126 group = ext4_get_group_number(sb, pa->pa_pstart);
4127
4128 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4129 GFP_NOFS|__GFP_NOFAIL);
4130 if (err) {
4131 ext4_error(sb, "Error %d loading buddy information for %u",
4132 err, group);
4133 continue;
4134 }
4135
4136 bitmap_bh = ext4_read_block_bitmap(sb, group);
4137 if (IS_ERR(bitmap_bh)) {
4138 err = PTR_ERR(bitmap_bh);
4139 ext4_error(sb, "Error %d reading block bitmap for %u",
4140 err, group);
4141 ext4_mb_unload_buddy(&e4b);
4142 continue;
4143 }
4144
4145 ext4_lock_group(sb, group);
4146 list_del(&pa->pa_group_list);
4147 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4148 ext4_unlock_group(sb, group);
4149
4150 ext4_mb_unload_buddy(&e4b);
4151 put_bh(bitmap_bh);
4152
4153 list_del(&pa->u.pa_tmp_list);
4154 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4155 }
4156 }
4157
4158 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_ac(struct ext4_allocation_context * ac)4159 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4160 {
4161 struct super_block *sb = ac->ac_sb;
4162 ext4_group_t ngroups, i;
4163
4164 if (!ext4_mballoc_debug ||
4165 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4166 return;
4167
4168 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4169 " Allocation context details:");
4170 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4171 ac->ac_status, ac->ac_flags);
4172 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4173 "goal %lu/%lu/%lu@%lu, "
4174 "best %lu/%lu/%lu@%lu cr %d",
4175 (unsigned long)ac->ac_o_ex.fe_group,
4176 (unsigned long)ac->ac_o_ex.fe_start,
4177 (unsigned long)ac->ac_o_ex.fe_len,
4178 (unsigned long)ac->ac_o_ex.fe_logical,
4179 (unsigned long)ac->ac_g_ex.fe_group,
4180 (unsigned long)ac->ac_g_ex.fe_start,
4181 (unsigned long)ac->ac_g_ex.fe_len,
4182 (unsigned long)ac->ac_g_ex.fe_logical,
4183 (unsigned long)ac->ac_b_ex.fe_group,
4184 (unsigned long)ac->ac_b_ex.fe_start,
4185 (unsigned long)ac->ac_b_ex.fe_len,
4186 (unsigned long)ac->ac_b_ex.fe_logical,
4187 (int)ac->ac_criteria);
4188 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4189 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4190 ngroups = ext4_get_groups_count(sb);
4191 for (i = 0; i < ngroups; i++) {
4192 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4193 struct ext4_prealloc_space *pa;
4194 ext4_grpblk_t start;
4195 struct list_head *cur;
4196 ext4_lock_group(sb, i);
4197 list_for_each(cur, &grp->bb_prealloc_list) {
4198 pa = list_entry(cur, struct ext4_prealloc_space,
4199 pa_group_list);
4200 spin_lock(&pa->pa_lock);
4201 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4202 NULL, &start);
4203 spin_unlock(&pa->pa_lock);
4204 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4205 start, pa->pa_len);
4206 }
4207 ext4_unlock_group(sb, i);
4208
4209 if (grp->bb_free == 0)
4210 continue;
4211 printk(KERN_ERR "%u: %d/%d \n",
4212 i, grp->bb_free, grp->bb_fragments);
4213 }
4214 printk(KERN_ERR "\n");
4215 }
4216 #else
ext4_mb_show_ac(struct ext4_allocation_context * ac)4217 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4218 {
4219 return;
4220 }
4221 #endif
4222
4223 /*
4224 * We use locality group preallocation for small size file. The size of the
4225 * file is determined by the current size or the resulting size after
4226 * allocation which ever is larger
4227 *
4228 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4229 */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4230 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4231 {
4232 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4233 int bsbits = ac->ac_sb->s_blocksize_bits;
4234 loff_t size, isize;
4235
4236 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4237 return;
4238
4239 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4240 return;
4241
4242 size = extent_logical_end(sbi, &ac->ac_o_ex);
4243 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4244 >> bsbits;
4245
4246 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4247 !inode_is_open_for_write(ac->ac_inode)) {
4248 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4249 return;
4250 }
4251
4252 if (sbi->s_mb_group_prealloc <= 0) {
4253 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4254 return;
4255 }
4256
4257 /* don't use group allocation for large files */
4258 size = max(size, isize);
4259 if (size > sbi->s_mb_stream_request) {
4260 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4261 return;
4262 }
4263
4264 BUG_ON(ac->ac_lg != NULL);
4265 /*
4266 * locality group prealloc space are per cpu. The reason for having
4267 * per cpu locality group is to reduce the contention between block
4268 * request from multiple CPUs.
4269 */
4270 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4271
4272 /* we're going to use group allocation */
4273 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4274
4275 /* serialize all allocations in the group */
4276 mutex_lock(&ac->ac_lg->lg_mutex);
4277 }
4278
4279 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4280 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4281 struct ext4_allocation_request *ar)
4282 {
4283 struct super_block *sb = ar->inode->i_sb;
4284 struct ext4_sb_info *sbi = EXT4_SB(sb);
4285 struct ext4_super_block *es = sbi->s_es;
4286 ext4_group_t group;
4287 unsigned int len;
4288 ext4_fsblk_t goal;
4289 ext4_grpblk_t block;
4290
4291 /* we can't allocate > group size */
4292 len = ar->len;
4293
4294 /* just a dirty hack to filter too big requests */
4295 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4296 len = EXT4_CLUSTERS_PER_GROUP(sb);
4297
4298 /* start searching from the goal */
4299 goal = ar->goal;
4300 if (goal < le32_to_cpu(es->s_first_data_block) ||
4301 goal >= ext4_blocks_count(es))
4302 goal = le32_to_cpu(es->s_first_data_block);
4303 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4304
4305 /* set up allocation goals */
4306 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4307 ac->ac_status = AC_STATUS_CONTINUE;
4308 ac->ac_sb = sb;
4309 ac->ac_inode = ar->inode;
4310 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4311 ac->ac_o_ex.fe_group = group;
4312 ac->ac_o_ex.fe_start = block;
4313 ac->ac_o_ex.fe_len = len;
4314 ac->ac_g_ex = ac->ac_o_ex;
4315 ac->ac_flags = ar->flags;
4316
4317 /* we have to define context: we'll we work with a file or
4318 * locality group. this is a policy, actually */
4319 ext4_mb_group_or_file(ac);
4320
4321 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4322 "left: %u/%u, right %u/%u to %swritable\n",
4323 (unsigned) ar->len, (unsigned) ar->logical,
4324 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4325 (unsigned) ar->lleft, (unsigned) ar->pleft,
4326 (unsigned) ar->lright, (unsigned) ar->pright,
4327 inode_is_open_for_write(ar->inode) ? "" : "non-");
4328 return 0;
4329
4330 }
4331
4332 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4333 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4334 struct ext4_locality_group *lg,
4335 int order, int total_entries)
4336 {
4337 ext4_group_t group = 0;
4338 struct ext4_buddy e4b;
4339 struct list_head discard_list;
4340 struct ext4_prealloc_space *pa, *tmp;
4341
4342 mb_debug(1, "discard locality group preallocation\n");
4343
4344 INIT_LIST_HEAD(&discard_list);
4345
4346 spin_lock(&lg->lg_prealloc_lock);
4347 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4348 pa_inode_list) {
4349 spin_lock(&pa->pa_lock);
4350 if (atomic_read(&pa->pa_count)) {
4351 /*
4352 * This is the pa that we just used
4353 * for block allocation. So don't
4354 * free that
4355 */
4356 spin_unlock(&pa->pa_lock);
4357 continue;
4358 }
4359 if (pa->pa_deleted) {
4360 spin_unlock(&pa->pa_lock);
4361 continue;
4362 }
4363 /* only lg prealloc space */
4364 BUG_ON(pa->pa_type != MB_GROUP_PA);
4365
4366 /* seems this one can be freed ... */
4367 pa->pa_deleted = 1;
4368 spin_unlock(&pa->pa_lock);
4369
4370 list_del_rcu(&pa->pa_inode_list);
4371 list_add(&pa->u.pa_tmp_list, &discard_list);
4372
4373 total_entries--;
4374 if (total_entries <= 5) {
4375 /*
4376 * we want to keep only 5 entries
4377 * allowing it to grow to 8. This
4378 * mak sure we don't call discard
4379 * soon for this list.
4380 */
4381 break;
4382 }
4383 }
4384 spin_unlock(&lg->lg_prealloc_lock);
4385
4386 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4387 int err;
4388
4389 group = ext4_get_group_number(sb, pa->pa_pstart);
4390 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4391 GFP_NOFS|__GFP_NOFAIL);
4392 if (err) {
4393 ext4_error(sb, "Error %d loading buddy information for %u",
4394 err, group);
4395 continue;
4396 }
4397 ext4_lock_group(sb, group);
4398 list_del(&pa->pa_group_list);
4399 ext4_mb_release_group_pa(&e4b, pa);
4400 ext4_unlock_group(sb, group);
4401
4402 ext4_mb_unload_buddy(&e4b);
4403 list_del(&pa->u.pa_tmp_list);
4404 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4405 }
4406 }
4407
4408 /*
4409 * We have incremented pa_count. So it cannot be freed at this
4410 * point. Also we hold lg_mutex. So no parallel allocation is
4411 * possible from this lg. That means pa_free cannot be updated.
4412 *
4413 * A parallel ext4_mb_discard_group_preallocations is possible.
4414 * which can cause the lg_prealloc_list to be updated.
4415 */
4416
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4417 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4418 {
4419 int order, added = 0, lg_prealloc_count = 1;
4420 struct super_block *sb = ac->ac_sb;
4421 struct ext4_locality_group *lg = ac->ac_lg;
4422 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4423
4424 order = fls(pa->pa_free) - 1;
4425 if (order > PREALLOC_TB_SIZE - 1)
4426 /* The max size of hash table is PREALLOC_TB_SIZE */
4427 order = PREALLOC_TB_SIZE - 1;
4428 /* Add the prealloc space to lg */
4429 spin_lock(&lg->lg_prealloc_lock);
4430 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4431 pa_inode_list) {
4432 spin_lock(&tmp_pa->pa_lock);
4433 if (tmp_pa->pa_deleted) {
4434 spin_unlock(&tmp_pa->pa_lock);
4435 continue;
4436 }
4437 if (!added && pa->pa_free < tmp_pa->pa_free) {
4438 /* Add to the tail of the previous entry */
4439 list_add_tail_rcu(&pa->pa_inode_list,
4440 &tmp_pa->pa_inode_list);
4441 added = 1;
4442 /*
4443 * we want to count the total
4444 * number of entries in the list
4445 */
4446 }
4447 spin_unlock(&tmp_pa->pa_lock);
4448 lg_prealloc_count++;
4449 }
4450 if (!added)
4451 list_add_tail_rcu(&pa->pa_inode_list,
4452 &lg->lg_prealloc_list[order]);
4453 spin_unlock(&lg->lg_prealloc_lock);
4454
4455 /* Now trim the list to be not more than 8 elements */
4456 if (lg_prealloc_count > 8) {
4457 ext4_mb_discard_lg_preallocations(sb, lg,
4458 order, lg_prealloc_count);
4459 return;
4460 }
4461 return ;
4462 }
4463
4464 /*
4465 * release all resource we used in allocation
4466 */
ext4_mb_release_context(struct ext4_allocation_context * ac)4467 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4468 {
4469 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4470 struct ext4_prealloc_space *pa = ac->ac_pa;
4471 if (pa) {
4472 if (pa->pa_type == MB_GROUP_PA) {
4473 /* see comment in ext4_mb_use_group_pa() */
4474 spin_lock(&pa->pa_lock);
4475 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4476 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4477 pa->pa_free -= ac->ac_b_ex.fe_len;
4478 pa->pa_len -= ac->ac_b_ex.fe_len;
4479 spin_unlock(&pa->pa_lock);
4480 }
4481 }
4482 if (pa) {
4483 /*
4484 * We want to add the pa to the right bucket.
4485 * Remove it from the list and while adding
4486 * make sure the list to which we are adding
4487 * doesn't grow big.
4488 */
4489 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4490 spin_lock(pa->pa_obj_lock);
4491 list_del_rcu(&pa->pa_inode_list);
4492 spin_unlock(pa->pa_obj_lock);
4493 ext4_mb_add_n_trim(ac);
4494 }
4495 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4496 }
4497 if (ac->ac_bitmap_page)
4498 put_page(ac->ac_bitmap_page);
4499 if (ac->ac_buddy_page)
4500 put_page(ac->ac_buddy_page);
4501 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4502 mutex_unlock(&ac->ac_lg->lg_mutex);
4503 ext4_mb_collect_stats(ac);
4504 return 0;
4505 }
4506
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4507 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4508 {
4509 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4510 int ret;
4511 int freed = 0;
4512
4513 trace_ext4_mb_discard_preallocations(sb, needed);
4514 for (i = 0; i < ngroups && needed > 0; i++) {
4515 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4516 freed += ret;
4517 needed -= ret;
4518 }
4519
4520 return freed;
4521 }
4522
4523 /*
4524 * Main entry point into mballoc to allocate blocks
4525 * it tries to use preallocation first, then falls back
4526 * to usual allocation
4527 */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4528 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4529 struct ext4_allocation_request *ar, int *errp)
4530 {
4531 int freed;
4532 struct ext4_allocation_context *ac = NULL;
4533 struct ext4_sb_info *sbi;
4534 struct super_block *sb;
4535 ext4_fsblk_t block = 0;
4536 unsigned int inquota = 0;
4537 unsigned int reserv_clstrs = 0;
4538
4539 might_sleep();
4540 sb = ar->inode->i_sb;
4541 sbi = EXT4_SB(sb);
4542
4543 trace_ext4_request_blocks(ar);
4544
4545 /* Allow to use superuser reservation for quota file */
4546 if (ext4_is_quota_file(ar->inode))
4547 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4548
4549 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4550 /* Without delayed allocation we need to verify
4551 * there is enough free blocks to do block allocation
4552 * and verify allocation doesn't exceed the quota limits.
4553 */
4554 while (ar->len &&
4555 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4556
4557 /* let others to free the space */
4558 cond_resched();
4559 ar->len = ar->len >> 1;
4560 }
4561 if (!ar->len) {
4562 *errp = -ENOSPC;
4563 return 0;
4564 }
4565 reserv_clstrs = ar->len;
4566 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4567 dquot_alloc_block_nofail(ar->inode,
4568 EXT4_C2B(sbi, ar->len));
4569 } else {
4570 while (ar->len &&
4571 dquot_alloc_block(ar->inode,
4572 EXT4_C2B(sbi, ar->len))) {
4573
4574 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4575 ar->len--;
4576 }
4577 }
4578 inquota = ar->len;
4579 if (ar->len == 0) {
4580 *errp = -EDQUOT;
4581 goto out;
4582 }
4583 }
4584
4585 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4586 if (!ac) {
4587 ar->len = 0;
4588 *errp = -ENOMEM;
4589 goto out;
4590 }
4591
4592 *errp = ext4_mb_initialize_context(ac, ar);
4593 if (*errp) {
4594 ar->len = 0;
4595 goto out;
4596 }
4597
4598 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4599 if (!ext4_mb_use_preallocated(ac)) {
4600 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4601 ext4_mb_normalize_request(ac, ar);
4602 repeat:
4603 /* allocate space in core */
4604 *errp = ext4_mb_regular_allocator(ac);
4605 if (*errp)
4606 goto discard_and_exit;
4607
4608 /* as we've just preallocated more space than
4609 * user requested originally, we store allocated
4610 * space in a special descriptor */
4611 if (ac->ac_status == AC_STATUS_FOUND &&
4612 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4613 *errp = ext4_mb_new_preallocation(ac);
4614 if (*errp) {
4615 discard_and_exit:
4616 ext4_discard_allocated_blocks(ac);
4617 goto errout;
4618 }
4619 }
4620 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4621 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4622 if (*errp) {
4623 ext4_discard_allocated_blocks(ac);
4624 goto errout;
4625 } else {
4626 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4627 ar->len = ac->ac_b_ex.fe_len;
4628 }
4629 } else {
4630 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4631 if (freed)
4632 goto repeat;
4633 *errp = -ENOSPC;
4634 }
4635
4636 errout:
4637 if (*errp) {
4638 ac->ac_b_ex.fe_len = 0;
4639 ar->len = 0;
4640 ext4_mb_show_ac(ac);
4641 }
4642 ext4_mb_release_context(ac);
4643 out:
4644 if (ac)
4645 kmem_cache_free(ext4_ac_cachep, ac);
4646 if (inquota && ar->len < inquota)
4647 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4648 if (!ar->len) {
4649 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4650 /* release all the reserved blocks if non delalloc */
4651 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4652 reserv_clstrs);
4653 }
4654
4655 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4656
4657 return block;
4658 }
4659
4660 /*
4661 * We can merge two free data extents only if the physical blocks
4662 * are contiguous, AND the extents were freed by the same transaction,
4663 * AND the blocks are associated with the same group.
4664 */
ext4_try_merge_freed_extent(struct ext4_sb_info * sbi,struct ext4_free_data * entry,struct ext4_free_data * new_entry,struct rb_root * entry_rb_root)4665 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4666 struct ext4_free_data *entry,
4667 struct ext4_free_data *new_entry,
4668 struct rb_root *entry_rb_root)
4669 {
4670 if ((entry->efd_tid != new_entry->efd_tid) ||
4671 (entry->efd_group != new_entry->efd_group))
4672 return;
4673 if (entry->efd_start_cluster + entry->efd_count ==
4674 new_entry->efd_start_cluster) {
4675 new_entry->efd_start_cluster = entry->efd_start_cluster;
4676 new_entry->efd_count += entry->efd_count;
4677 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4678 entry->efd_start_cluster) {
4679 new_entry->efd_count += entry->efd_count;
4680 } else
4681 return;
4682 spin_lock(&sbi->s_md_lock);
4683 list_del(&entry->efd_list);
4684 spin_unlock(&sbi->s_md_lock);
4685 rb_erase(&entry->efd_node, entry_rb_root);
4686 kmem_cache_free(ext4_free_data_cachep, entry);
4687 }
4688
4689 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4690 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4691 struct ext4_free_data *new_entry)
4692 {
4693 ext4_group_t group = e4b->bd_group;
4694 ext4_grpblk_t cluster;
4695 ext4_grpblk_t clusters = new_entry->efd_count;
4696 struct ext4_free_data *entry;
4697 struct ext4_group_info *db = e4b->bd_info;
4698 struct super_block *sb = e4b->bd_sb;
4699 struct ext4_sb_info *sbi = EXT4_SB(sb);
4700 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4701 struct rb_node *parent = NULL, *new_node;
4702
4703 BUG_ON(!ext4_handle_valid(handle));
4704 BUG_ON(e4b->bd_bitmap_page == NULL);
4705 BUG_ON(e4b->bd_buddy_page == NULL);
4706
4707 new_node = &new_entry->efd_node;
4708 cluster = new_entry->efd_start_cluster;
4709
4710 if (!*n) {
4711 /* first free block exent. We need to
4712 protect buddy cache from being freed,
4713 * otherwise we'll refresh it from
4714 * on-disk bitmap and lose not-yet-available
4715 * blocks */
4716 get_page(e4b->bd_buddy_page);
4717 get_page(e4b->bd_bitmap_page);
4718 }
4719 while (*n) {
4720 parent = *n;
4721 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4722 if (cluster < entry->efd_start_cluster)
4723 n = &(*n)->rb_left;
4724 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4725 n = &(*n)->rb_right;
4726 else {
4727 ext4_grp_locked_error(sb, group, 0,
4728 ext4_group_first_block_no(sb, group) +
4729 EXT4_C2B(sbi, cluster),
4730 "Block already on to-be-freed list");
4731 kmem_cache_free(ext4_free_data_cachep, new_entry);
4732 return 0;
4733 }
4734 }
4735
4736 rb_link_node(new_node, parent, n);
4737 rb_insert_color(new_node, &db->bb_free_root);
4738
4739 /* Now try to see the extent can be merged to left and right */
4740 node = rb_prev(new_node);
4741 if (node) {
4742 entry = rb_entry(node, struct ext4_free_data, efd_node);
4743 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4744 &(db->bb_free_root));
4745 }
4746
4747 node = rb_next(new_node);
4748 if (node) {
4749 entry = rb_entry(node, struct ext4_free_data, efd_node);
4750 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4751 &(db->bb_free_root));
4752 }
4753
4754 spin_lock(&sbi->s_md_lock);
4755 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4756 sbi->s_mb_free_pending += clusters;
4757 spin_unlock(&sbi->s_md_lock);
4758 return 0;
4759 }
4760
4761 /**
4762 * ext4_free_blocks() -- Free given blocks and update quota
4763 * @handle: handle for this transaction
4764 * @inode: inode
4765 * @bh: optional buffer of the block to be freed
4766 * @block: starting physical block to be freed
4767 * @count: number of blocks to be freed
4768 * @flags: flags used by ext4_free_blocks
4769 */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)4770 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4771 struct buffer_head *bh, ext4_fsblk_t block,
4772 unsigned long count, int flags)
4773 {
4774 struct buffer_head *bitmap_bh = NULL;
4775 struct super_block *sb = inode->i_sb;
4776 struct ext4_group_desc *gdp;
4777 unsigned int overflow;
4778 ext4_grpblk_t bit;
4779 struct buffer_head *gd_bh;
4780 ext4_group_t block_group;
4781 struct ext4_sb_info *sbi;
4782 struct ext4_buddy e4b;
4783 unsigned int count_clusters;
4784 int err = 0;
4785 int ret;
4786
4787 might_sleep();
4788 if (bh) {
4789 if (block)
4790 BUG_ON(block != bh->b_blocknr);
4791 else
4792 block = bh->b_blocknr;
4793 }
4794
4795 sbi = EXT4_SB(sb);
4796 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4797 !ext4_data_block_valid(sbi, block, count)) {
4798 ext4_error(sb, "Freeing blocks not in datazone - "
4799 "block = %llu, count = %lu", block, count);
4800 goto error_return;
4801 }
4802
4803 ext4_debug("freeing block %llu\n", block);
4804 trace_ext4_free_blocks(inode, block, count, flags);
4805
4806 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4807 BUG_ON(count > 1);
4808
4809 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4810 inode, bh, block);
4811 }
4812
4813 /*
4814 * If the extent to be freed does not begin on a cluster
4815 * boundary, we need to deal with partial clusters at the
4816 * beginning and end of the extent. Normally we will free
4817 * blocks at the beginning or the end unless we are explicitly
4818 * requested to avoid doing so.
4819 */
4820 overflow = EXT4_PBLK_COFF(sbi, block);
4821 if (overflow) {
4822 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4823 overflow = sbi->s_cluster_ratio - overflow;
4824 block += overflow;
4825 if (count > overflow)
4826 count -= overflow;
4827 else
4828 return;
4829 } else {
4830 block -= overflow;
4831 count += overflow;
4832 }
4833 }
4834 overflow = EXT4_LBLK_COFF(sbi, count);
4835 if (overflow) {
4836 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4837 if (count > overflow)
4838 count -= overflow;
4839 else
4840 return;
4841 } else
4842 count += sbi->s_cluster_ratio - overflow;
4843 }
4844
4845 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4846 int i;
4847 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4848
4849 for (i = 0; i < count; i++) {
4850 cond_resched();
4851 if (is_metadata)
4852 bh = sb_find_get_block(inode->i_sb, block + i);
4853 ext4_forget(handle, is_metadata, inode, bh, block + i);
4854 }
4855 }
4856
4857 do_more:
4858 overflow = 0;
4859 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4860
4861 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4862 ext4_get_group_info(sb, block_group))))
4863 return;
4864
4865 /*
4866 * Check to see if we are freeing blocks across a group
4867 * boundary.
4868 */
4869 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4870 overflow = EXT4_C2B(sbi, bit) + count -
4871 EXT4_BLOCKS_PER_GROUP(sb);
4872 count -= overflow;
4873 }
4874 count_clusters = EXT4_NUM_B2C(sbi, count);
4875 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4876 if (IS_ERR(bitmap_bh)) {
4877 err = PTR_ERR(bitmap_bh);
4878 bitmap_bh = NULL;
4879 goto error_return;
4880 }
4881 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4882 if (!gdp) {
4883 err = -EIO;
4884 goto error_return;
4885 }
4886
4887 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4888 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4889 in_range(block, ext4_inode_table(sb, gdp),
4890 sbi->s_itb_per_group) ||
4891 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4892 sbi->s_itb_per_group)) {
4893
4894 ext4_error(sb, "Freeing blocks in system zone - "
4895 "Block = %llu, count = %lu", block, count);
4896 /* err = 0. ext4_std_error should be a no op */
4897 goto error_return;
4898 }
4899
4900 BUFFER_TRACE(bitmap_bh, "getting write access");
4901 err = ext4_journal_get_write_access(handle, bitmap_bh);
4902 if (err)
4903 goto error_return;
4904
4905 /*
4906 * We are about to modify some metadata. Call the journal APIs
4907 * to unshare ->b_data if a currently-committing transaction is
4908 * using it
4909 */
4910 BUFFER_TRACE(gd_bh, "get_write_access");
4911 err = ext4_journal_get_write_access(handle, gd_bh);
4912 if (err)
4913 goto error_return;
4914 #ifdef AGGRESSIVE_CHECK
4915 {
4916 int i;
4917 for (i = 0; i < count_clusters; i++)
4918 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4919 }
4920 #endif
4921 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4922
4923 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4924 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4925 GFP_NOFS|__GFP_NOFAIL);
4926 if (err)
4927 goto error_return;
4928
4929 /*
4930 * We need to make sure we don't reuse the freed block until after the
4931 * transaction is committed. We make an exception if the inode is to be
4932 * written in writeback mode since writeback mode has weak data
4933 * consistency guarantees.
4934 */
4935 if (ext4_handle_valid(handle) &&
4936 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4937 !ext4_should_writeback_data(inode))) {
4938 struct ext4_free_data *new_entry;
4939 /*
4940 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4941 * to fail.
4942 */
4943 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4944 GFP_NOFS|__GFP_NOFAIL);
4945 new_entry->efd_start_cluster = bit;
4946 new_entry->efd_group = block_group;
4947 new_entry->efd_count = count_clusters;
4948 new_entry->efd_tid = handle->h_transaction->t_tid;
4949
4950 ext4_lock_group(sb, block_group);
4951 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4952 ext4_mb_free_metadata(handle, &e4b, new_entry);
4953 } else {
4954 /* need to update group_info->bb_free and bitmap
4955 * with group lock held. generate_buddy look at
4956 * them with group lock_held
4957 */
4958 if (test_opt(sb, DISCARD)) {
4959 err = ext4_issue_discard(sb, block_group, bit,
4960 count_clusters, NULL);
4961 if (err && err != -EOPNOTSUPP)
4962 ext4_msg(sb, KERN_WARNING, "discard request in"
4963 " group:%d block:%d count:%lu failed"
4964 " with %d", block_group, bit, count,
4965 err);
4966 } else
4967 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4968
4969 ext4_lock_group(sb, block_group);
4970 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4971 mb_free_blocks(inode, &e4b, bit, count_clusters);
4972 }
4973
4974 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4975 ext4_free_group_clusters_set(sb, gdp, ret);
4976 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4977 ext4_group_desc_csum_set(sb, block_group, gdp);
4978 ext4_unlock_group(sb, block_group);
4979
4980 if (sbi->s_log_groups_per_flex) {
4981 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4982 atomic64_add(count_clusters,
4983 &sbi_array_rcu_deref(sbi, s_flex_groups,
4984 flex_group)->free_clusters);
4985 }
4986
4987 /*
4988 * on a bigalloc file system, defer the s_freeclusters_counter
4989 * update to the caller (ext4_remove_space and friends) so they
4990 * can determine if a cluster freed here should be rereserved
4991 */
4992 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
4993 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4994 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4995 percpu_counter_add(&sbi->s_freeclusters_counter,
4996 count_clusters);
4997 }
4998
4999 ext4_mb_unload_buddy(&e4b);
5000
5001 /* We dirtied the bitmap block */
5002 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5003 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5004
5005 /* And the group descriptor block */
5006 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5007 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5008 if (!err)
5009 err = ret;
5010
5011 if (overflow && !err) {
5012 block += count;
5013 count = overflow;
5014 put_bh(bitmap_bh);
5015 goto do_more;
5016 }
5017 error_return:
5018 brelse(bitmap_bh);
5019 ext4_std_error(sb, err);
5020 return;
5021 }
5022
5023 /**
5024 * ext4_group_add_blocks() -- Add given blocks to an existing group
5025 * @handle: handle to this transaction
5026 * @sb: super block
5027 * @block: start physical block to add to the block group
5028 * @count: number of blocks to free
5029 *
5030 * This marks the blocks as free in the bitmap and buddy.
5031 */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)5032 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
5033 ext4_fsblk_t block, unsigned long count)
5034 {
5035 struct buffer_head *bitmap_bh = NULL;
5036 struct buffer_head *gd_bh;
5037 ext4_group_t block_group;
5038 ext4_grpblk_t bit;
5039 unsigned int i;
5040 struct ext4_group_desc *desc;
5041 struct ext4_sb_info *sbi = EXT4_SB(sb);
5042 struct ext4_buddy e4b;
5043 int err = 0, ret, free_clusters_count;
5044 ext4_grpblk_t clusters_freed;
5045 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5046 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5047 unsigned long cluster_count = last_cluster - first_cluster + 1;
5048
5049 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5050
5051 if (count == 0)
5052 return 0;
5053
5054 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5055 /*
5056 * Check to see if we are freeing blocks across a group
5057 * boundary.
5058 */
5059 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5060 ext4_warning(sb, "too many blocks added to group %u",
5061 block_group);
5062 err = -EINVAL;
5063 goto error_return;
5064 }
5065
5066 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5067 if (IS_ERR(bitmap_bh)) {
5068 err = PTR_ERR(bitmap_bh);
5069 bitmap_bh = NULL;
5070 goto error_return;
5071 }
5072
5073 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5074 if (!desc) {
5075 err = -EIO;
5076 goto error_return;
5077 }
5078
5079 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5080 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5081 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5082 in_range(block + count - 1, ext4_inode_table(sb, desc),
5083 sbi->s_itb_per_group)) {
5084 ext4_error(sb, "Adding blocks in system zones - "
5085 "Block = %llu, count = %lu",
5086 block, count);
5087 err = -EINVAL;
5088 goto error_return;
5089 }
5090
5091 BUFFER_TRACE(bitmap_bh, "getting write access");
5092 err = ext4_journal_get_write_access(handle, bitmap_bh);
5093 if (err)
5094 goto error_return;
5095
5096 /*
5097 * We are about to modify some metadata. Call the journal APIs
5098 * to unshare ->b_data if a currently-committing transaction is
5099 * using it
5100 */
5101 BUFFER_TRACE(gd_bh, "get_write_access");
5102 err = ext4_journal_get_write_access(handle, gd_bh);
5103 if (err)
5104 goto error_return;
5105
5106 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5107 BUFFER_TRACE(bitmap_bh, "clear bit");
5108 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5109 ext4_error(sb, "bit already cleared for block %llu",
5110 (ext4_fsblk_t)(block + i));
5111 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5112 } else {
5113 clusters_freed++;
5114 }
5115 }
5116
5117 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5118 if (err)
5119 goto error_return;
5120
5121 /*
5122 * need to update group_info->bb_free and bitmap
5123 * with group lock held. generate_buddy look at
5124 * them with group lock_held
5125 */
5126 ext4_lock_group(sb, block_group);
5127 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5128 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5129 free_clusters_count = clusters_freed +
5130 ext4_free_group_clusters(sb, desc);
5131 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5132 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5133 ext4_group_desc_csum_set(sb, block_group, desc);
5134 ext4_unlock_group(sb, block_group);
5135 percpu_counter_add(&sbi->s_freeclusters_counter,
5136 clusters_freed);
5137
5138 if (sbi->s_log_groups_per_flex) {
5139 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5140 atomic64_add(clusters_freed,
5141 &sbi_array_rcu_deref(sbi, s_flex_groups,
5142 flex_group)->free_clusters);
5143 }
5144
5145 ext4_mb_unload_buddy(&e4b);
5146
5147 /* We dirtied the bitmap block */
5148 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5149 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5150
5151 /* And the group descriptor block */
5152 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5153 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5154 if (!err)
5155 err = ret;
5156
5157 error_return:
5158 brelse(bitmap_bh);
5159 ext4_std_error(sb, err);
5160 return err;
5161 }
5162
5163 /**
5164 * ext4_trim_extent -- function to TRIM one single free extent in the group
5165 * @sb: super block for the file system
5166 * @start: starting block of the free extent in the alloc. group
5167 * @count: number of blocks to TRIM
5168 * @e4b: ext4 buddy for the group
5169 *
5170 * Trim "count" blocks starting at "start" in the "group". To assure that no
5171 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5172 * be called with under the group lock.
5173 */
ext4_trim_extent(struct super_block * sb,int start,int count,struct ext4_buddy * e4b)5174 static int ext4_trim_extent(struct super_block *sb,
5175 int start, int count, struct ext4_buddy *e4b)
5176 __releases(bitlock)
5177 __acquires(bitlock)
5178 {
5179 struct ext4_free_extent ex;
5180 ext4_group_t group = e4b->bd_group;
5181 int ret = 0;
5182
5183 trace_ext4_trim_extent(sb, group, start, count);
5184
5185 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5186
5187 ex.fe_start = start;
5188 ex.fe_group = group;
5189 ex.fe_len = count;
5190
5191 /*
5192 * Mark blocks used, so no one can reuse them while
5193 * being trimmed.
5194 */
5195 mb_mark_used(e4b, &ex);
5196 ext4_unlock_group(sb, group);
5197 ret = ext4_issue_discard(sb, group, start, count, NULL);
5198 ext4_lock_group(sb, group);
5199 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5200 return ret;
5201 }
5202
ext4_last_grp_cluster(struct super_block * sb,ext4_group_t grp)5203 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
5204 ext4_group_t grp)
5205 {
5206 unsigned long nr_clusters_in_group;
5207
5208 if (grp < (ext4_get_groups_count(sb) - 1))
5209 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
5210 else
5211 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
5212 ext4_group_first_block_no(sb, grp))
5213 >> EXT4_CLUSTER_BITS(sb);
5214
5215 return nr_clusters_in_group - 1;
5216 }
5217
ext4_trim_interrupted(void)5218 static bool ext4_trim_interrupted(void)
5219 {
5220 return fatal_signal_pending(current) || freezing(current);
5221 }
5222
ext4_try_to_trim_range(struct super_block * sb,struct ext4_buddy * e4b,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)5223 static int ext4_try_to_trim_range(struct super_block *sb,
5224 struct ext4_buddy *e4b, ext4_grpblk_t start,
5225 ext4_grpblk_t max, ext4_grpblk_t minblocks)
5226 {
5227 ext4_grpblk_t next, count, free_count, last, origin_start;
5228 bool set_trimmed = false;
5229 void *bitmap;
5230
5231 last = ext4_last_grp_cluster(sb, e4b->bd_group);
5232 bitmap = e4b->bd_bitmap;
5233 if (start == 0 && max >= last)
5234 set_trimmed = true;
5235 origin_start = start;
5236 start = max(e4b->bd_info->bb_first_free, start);
5237 count = 0;
5238 free_count = 0;
5239
5240 while (start <= max) {
5241 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5242 if (start > max)
5243 break;
5244
5245 next = mb_find_next_bit(bitmap, last + 1, start);
5246 if (origin_start == 0 && next >= last)
5247 set_trimmed = true;
5248
5249 if ((next - start) >= minblocks) {
5250 int ret = ext4_trim_extent(sb, start, next - start, e4b);
5251
5252 if (ret && ret != -EOPNOTSUPP)
5253 return count;
5254 count += next - start;
5255 }
5256 free_count += next - start;
5257 start = next + 1;
5258
5259 if (ext4_trim_interrupted())
5260 return count;
5261
5262 if (need_resched()) {
5263 ext4_unlock_group(sb, e4b->bd_group);
5264 cond_resched();
5265 ext4_lock_group(sb, e4b->bd_group);
5266 }
5267
5268 if ((e4b->bd_info->bb_free - free_count) < minblocks)
5269 break;
5270 }
5271
5272 if (set_trimmed)
5273 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
5274
5275 return count;
5276 }
5277
5278 /**
5279 * ext4_trim_all_free -- function to trim all free space in alloc. group
5280 * @sb: super block for file system
5281 * @group: group to be trimmed
5282 * @start: first group block to examine
5283 * @max: last group block to examine
5284 * @minblocks: minimum extent block count
5285 *
5286 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5287 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5288 * the extent.
5289 *
5290 *
5291 * ext4_trim_all_free walks through group's block bitmap searching for free
5292 * extents. When the free extent is found, mark it as used in group buddy
5293 * bitmap. Then issue a TRIM command on this extent and free the extent in
5294 * the group buddy bitmap. This is done until whole group is scanned.
5295 */
5296 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)5297 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5298 ext4_grpblk_t start, ext4_grpblk_t max,
5299 ext4_grpblk_t minblocks)
5300 {
5301 struct ext4_buddy e4b;
5302 int ret;
5303
5304 trace_ext4_trim_all_free(sb, group, start, max);
5305
5306 ret = ext4_mb_load_buddy(sb, group, &e4b);
5307 if (ret) {
5308 ext4_warning(sb, "Error %d loading buddy information for %u",
5309 ret, group);
5310 return ret;
5311 }
5312
5313 ext4_lock_group(sb, group);
5314
5315 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
5316 minblocks < EXT4_SB(sb)->s_last_trim_minblks)
5317 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
5318 else
5319 ret = 0;
5320
5321 ext4_unlock_group(sb, group);
5322 ext4_mb_unload_buddy(&e4b);
5323
5324 ext4_debug("trimmed %d blocks in the group %d\n",
5325 ret, group);
5326
5327 return ret;
5328 }
5329
5330 /**
5331 * ext4_trim_fs() -- trim ioctl handle function
5332 * @sb: superblock for filesystem
5333 * @range: fstrim_range structure
5334 *
5335 * start: First Byte to trim
5336 * len: number of Bytes to trim from start
5337 * minlen: minimum extent length in Bytes
5338 * ext4_trim_fs goes through all allocation groups containing Bytes from
5339 * start to start+len. For each such a group ext4_trim_all_free function
5340 * is invoked to trim all free space.
5341 */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)5342 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5343 {
5344 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5345 struct ext4_group_info *grp;
5346 ext4_group_t group, first_group, last_group;
5347 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5348 uint64_t start, end, minlen, trimmed = 0;
5349 ext4_fsblk_t first_data_blk =
5350 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5351 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5352 int ret = 0;
5353
5354 start = range->start >> sb->s_blocksize_bits;
5355 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5356 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5357 range->minlen >> sb->s_blocksize_bits);
5358
5359 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5360 start >= max_blks ||
5361 range->len < sb->s_blocksize)
5362 return -EINVAL;
5363 /* No point to try to trim less than discard granularity */
5364 if (range->minlen < q->limits.discard_granularity) {
5365 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5366 q->limits.discard_granularity >> sb->s_blocksize_bits);
5367 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
5368 goto out;
5369 }
5370 if (end >= max_blks - 1)
5371 end = max_blks - 1;
5372 if (end <= first_data_blk)
5373 goto out;
5374 if (start < first_data_blk)
5375 start = first_data_blk;
5376
5377 /* Determine first and last group to examine based on start and end */
5378 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5379 &first_group, &first_cluster);
5380 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5381 &last_group, &last_cluster);
5382
5383 /* end now represents the last cluster to discard in this group */
5384 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5385
5386 for (group = first_group; group <= last_group; group++) {
5387 if (ext4_trim_interrupted())
5388 break;
5389 grp = ext4_get_group_info(sb, group);
5390 /* We only do this if the grp has never been initialized */
5391 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5392 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5393 if (ret)
5394 break;
5395 }
5396
5397 /*
5398 * For all the groups except the last one, last cluster will
5399 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5400 * change it for the last group, note that last_cluster is
5401 * already computed earlier by ext4_get_group_no_and_offset()
5402 */
5403 if (group == last_group)
5404 end = last_cluster;
5405 if (grp->bb_free >= minlen) {
5406 cnt = ext4_trim_all_free(sb, group, first_cluster,
5407 end, minlen);
5408 if (cnt < 0) {
5409 ret = cnt;
5410 break;
5411 }
5412 trimmed += cnt;
5413 }
5414
5415 /*
5416 * For every group except the first one, we are sure
5417 * that the first cluster to discard will be cluster #0.
5418 */
5419 first_cluster = 0;
5420 }
5421
5422 if (!ret)
5423 EXT4_SB(sb)->s_last_trim_minblks = minlen;
5424
5425 out:
5426 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5427 return ret;
5428 }
5429
5430 /* Iterate all the free extents in the group. */
5431 int
ext4_mballoc_query_range(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t end,ext4_mballoc_query_range_fn formatter,void * priv)5432 ext4_mballoc_query_range(
5433 struct super_block *sb,
5434 ext4_group_t group,
5435 ext4_grpblk_t start,
5436 ext4_grpblk_t end,
5437 ext4_mballoc_query_range_fn formatter,
5438 void *priv)
5439 {
5440 void *bitmap;
5441 ext4_grpblk_t next;
5442 struct ext4_buddy e4b;
5443 int error;
5444
5445 error = ext4_mb_load_buddy(sb, group, &e4b);
5446 if (error)
5447 return error;
5448 bitmap = e4b.bd_bitmap;
5449
5450 ext4_lock_group(sb, group);
5451
5452 start = max(e4b.bd_info->bb_first_free, start);
5453 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5454 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5455
5456 while (start <= end) {
5457 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5458 if (start > end)
5459 break;
5460 next = mb_find_next_bit(bitmap, end + 1, start);
5461
5462 ext4_unlock_group(sb, group);
5463 error = formatter(sb, group, start, next - start, priv);
5464 if (error)
5465 goto out_unload;
5466 ext4_lock_group(sb, group);
5467
5468 start = next + 1;
5469 }
5470
5471 ext4_unlock_group(sb, group);
5472 out_unload:
5473 ext4_mb_unload_buddy(&e4b);
5474
5475 return error;
5476 }
5477