• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22 
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28 #include <trace/events/android_fs.h>
29 
30 #define NUM_PREALLOC_POST_READ_CTXS	128
31 
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36 
37 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
38 
f2fs_init_bioset(void)39 int __init f2fs_init_bioset(void)
40 {
41 	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 					0, BIOSET_NEED_BVECS))
43 		return -ENOMEM;
44 	return 0;
45 }
46 
f2fs_destroy_bioset(void)47 void f2fs_destroy_bioset(void)
48 {
49 	bioset_exit(&f2fs_bioset);
50 }
51 
__f2fs_bio_alloc(gfp_t gfp_mask,unsigned int nr_iovecs)52 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
53 						unsigned int nr_iovecs)
54 {
55 	return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
56 }
57 
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool noio)58 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
59 {
60 	if (noio) {
61 		/* No failure on bio allocation */
62 		return __f2fs_bio_alloc(GFP_NOIO, npages);
63 	}
64 
65 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
66 		f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
67 		return NULL;
68 	}
69 
70 	return __f2fs_bio_alloc(GFP_KERNEL, npages);
71 }
72 
__is_cp_guaranteed(struct page * page)73 static bool __is_cp_guaranteed(struct page *page)
74 {
75 	struct address_space *mapping = page->mapping;
76 	struct inode *inode;
77 	struct f2fs_sb_info *sbi;
78 
79 	if (!mapping)
80 		return false;
81 
82 	if (f2fs_is_compressed_page(page))
83 		return false;
84 
85 	inode = mapping->host;
86 	sbi = F2FS_I_SB(inode);
87 
88 	if (inode->i_ino == F2FS_META_INO(sbi) ||
89 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
90 			S_ISDIR(inode->i_mode) ||
91 			(S_ISREG(inode->i_mode) &&
92 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
93 			is_cold_data(page))
94 		return true;
95 	return false;
96 }
97 
__read_io_type(struct page * page)98 static enum count_type __read_io_type(struct page *page)
99 {
100 	struct address_space *mapping = page_file_mapping(page);
101 
102 	if (mapping) {
103 		struct inode *inode = mapping->host;
104 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
105 
106 		if (inode->i_ino == F2FS_META_INO(sbi))
107 			return F2FS_RD_META;
108 
109 		if (inode->i_ino == F2FS_NODE_INO(sbi))
110 			return F2FS_RD_NODE;
111 	}
112 	return F2FS_RD_DATA;
113 }
114 
115 /* postprocessing steps for read bios */
116 enum bio_post_read_step {
117 	STEP_DECRYPT,
118 	STEP_DECOMPRESS_NOWQ,		/* handle normal cluster data inplace */
119 	STEP_DECOMPRESS,		/* handle compressed cluster data in workqueue */
120 	STEP_VERITY,
121 };
122 
123 struct bio_post_read_ctx {
124 	struct bio *bio;
125 	struct f2fs_sb_info *sbi;
126 	struct work_struct work;
127 	unsigned int enabled_steps;
128 };
129 
__read_end_io(struct bio * bio,bool compr,bool verity)130 static void __read_end_io(struct bio *bio, bool compr, bool verity)
131 {
132 	struct page *page;
133 	struct bio_vec *bv;
134 	struct bvec_iter_all iter_all;
135 
136 	bio_for_each_segment_all(bv, bio, iter_all) {
137 		page = bv->bv_page;
138 
139 #ifdef CONFIG_F2FS_FS_COMPRESSION
140 		if (compr && f2fs_is_compressed_page(page)) {
141 			f2fs_decompress_pages(bio, page, verity);
142 			continue;
143 		}
144 		if (verity)
145 			continue;
146 #endif
147 
148 		/* PG_error was set if any post_read step failed */
149 		if (bio->bi_status || PageError(page)) {
150 			ClearPageUptodate(page);
151 			/* will re-read again later */
152 			ClearPageError(page);
153 		} else {
154 			SetPageUptodate(page);
155 		}
156 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
157 		unlock_page(page);
158 	}
159 }
160 
161 static void f2fs_release_read_bio(struct bio *bio);
__f2fs_read_end_io(struct bio * bio,bool compr,bool verity)162 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
163 {
164 	if (!compr)
165 		__read_end_io(bio, false, verity);
166 	f2fs_release_read_bio(bio);
167 }
168 
f2fs_decompress_bio(struct bio * bio,bool verity)169 static void f2fs_decompress_bio(struct bio *bio, bool verity)
170 {
171 	__read_end_io(bio, true, verity);
172 }
173 
174 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
175 
f2fs_decrypt_work(struct bio_post_read_ctx * ctx)176 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
177 {
178 	fscrypt_decrypt_bio(ctx->bio);
179 }
180 
f2fs_decompress_work(struct bio_post_read_ctx * ctx)181 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
182 {
183 	f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
184 }
185 
186 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_verify_pages(struct page ** rpages,unsigned int cluster_size)187 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
188 {
189 	f2fs_decompress_end_io(rpages, cluster_size, false, true);
190 }
191 
f2fs_verify_bio(struct bio * bio)192 static void f2fs_verify_bio(struct bio *bio)
193 {
194 	struct bio_vec *bv;
195 	struct bvec_iter_all iter_all;
196 
197 	bio_for_each_segment_all(bv, bio, iter_all) {
198 		struct page *page = bv->bv_page;
199 		struct decompress_io_ctx *dic;
200 
201 		dic = (struct decompress_io_ctx *)page_private(page);
202 
203 		if (dic) {
204 			if (refcount_dec_not_one(&dic->ref))
205 				continue;
206 			f2fs_verify_pages(dic->rpages,
207 						dic->cluster_size);
208 			f2fs_free_dic(dic);
209 			continue;
210 		}
211 
212 		if (bio->bi_status || PageError(page))
213 			goto clear_uptodate;
214 
215 		if (fsverity_verify_page(page)) {
216 			SetPageUptodate(page);
217 			goto unlock;
218 		}
219 clear_uptodate:
220 		ClearPageUptodate(page);
221 		ClearPageError(page);
222 unlock:
223 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
224 		unlock_page(page);
225 	}
226 }
227 #endif
228 
f2fs_verity_work(struct work_struct * work)229 static void f2fs_verity_work(struct work_struct *work)
230 {
231 	struct bio_post_read_ctx *ctx =
232 		container_of(work, struct bio_post_read_ctx, work);
233 	struct bio *bio = ctx->bio;
234 #ifdef CONFIG_F2FS_FS_COMPRESSION
235 	unsigned int enabled_steps = ctx->enabled_steps;
236 #endif
237 
238 	/*
239 	 * fsverity_verify_bio() may call readpages() again, and while verity
240 	 * will be disabled for this, decryption may still be needed, resulting
241 	 * in another bio_post_read_ctx being allocated.  So to prevent
242 	 * deadlocks we need to release the current ctx to the mempool first.
243 	 * This assumes that verity is the last post-read step.
244 	 */
245 	mempool_free(ctx, bio_post_read_ctx_pool);
246 	bio->bi_private = NULL;
247 
248 #ifdef CONFIG_F2FS_FS_COMPRESSION
249 	/* previous step is decompression */
250 	if (enabled_steps & (1 << STEP_DECOMPRESS)) {
251 		f2fs_verify_bio(bio);
252 		f2fs_release_read_bio(bio);
253 		return;
254 	}
255 #endif
256 
257 	fsverity_verify_bio(bio);
258 	__f2fs_read_end_io(bio, false, false);
259 }
260 
f2fs_post_read_work(struct work_struct * work)261 static void f2fs_post_read_work(struct work_struct *work)
262 {
263 	struct bio_post_read_ctx *ctx =
264 		container_of(work, struct bio_post_read_ctx, work);
265 
266 	if (ctx->enabled_steps & (1 << STEP_DECRYPT))
267 		f2fs_decrypt_work(ctx);
268 
269 	if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
270 		f2fs_decompress_work(ctx);
271 
272 	if (ctx->enabled_steps & (1 << STEP_VERITY)) {
273 		INIT_WORK(&ctx->work, f2fs_verity_work);
274 		fsverity_enqueue_verify_work(&ctx->work);
275 		return;
276 	}
277 
278 	__f2fs_read_end_io(ctx->bio,
279 		ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
280 }
281 
f2fs_enqueue_post_read_work(struct f2fs_sb_info * sbi,struct work_struct * work)282 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
283 						struct work_struct *work)
284 {
285 	queue_work(sbi->post_read_wq, work);
286 }
287 
bio_post_read_processing(struct bio_post_read_ctx * ctx)288 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
289 {
290 	/*
291 	 * We use different work queues for decryption and for verity because
292 	 * verity may require reading metadata pages that need decryption, and
293 	 * we shouldn't recurse to the same workqueue.
294 	 */
295 
296 	if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
297 		ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
298 		INIT_WORK(&ctx->work, f2fs_post_read_work);
299 		f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
300 		return;
301 	}
302 
303 	if (ctx->enabled_steps & (1 << STEP_VERITY)) {
304 		INIT_WORK(&ctx->work, f2fs_verity_work);
305 		fsverity_enqueue_verify_work(&ctx->work);
306 		return;
307 	}
308 
309 	__f2fs_read_end_io(ctx->bio, false, false);
310 }
311 
f2fs_bio_post_read_required(struct bio * bio)312 static bool f2fs_bio_post_read_required(struct bio *bio)
313 {
314 	return bio->bi_private;
315 }
316 
f2fs_read_end_io(struct bio * bio)317 static void f2fs_read_end_io(struct bio *bio)
318 {
319 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
320 
321 	if (time_to_inject(sbi, FAULT_READ_IO)) {
322 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
323 		bio->bi_status = BLK_STS_IOERR;
324 	}
325 
326 	if (f2fs_bio_post_read_required(bio)) {
327 		struct bio_post_read_ctx *ctx = bio->bi_private;
328 
329 		bio_post_read_processing(ctx);
330 		return;
331 	}
332 
333 	__f2fs_read_end_io(bio, false, false);
334 }
335 
f2fs_write_end_io(struct bio * bio)336 static void f2fs_write_end_io(struct bio *bio)
337 {
338 	struct f2fs_sb_info *sbi = bio->bi_private;
339 	struct bio_vec *bvec;
340 	struct bvec_iter_all iter_all;
341 
342 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
343 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
344 		bio->bi_status = BLK_STS_IOERR;
345 	}
346 
347 	bio_for_each_segment_all(bvec, bio, iter_all) {
348 		struct page *page = bvec->bv_page;
349 		enum count_type type = WB_DATA_TYPE(page);
350 
351 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
352 			set_page_private(page, (unsigned long)NULL);
353 			ClearPagePrivate(page);
354 			unlock_page(page);
355 			mempool_free(page, sbi->write_io_dummy);
356 
357 			if (unlikely(bio->bi_status))
358 				f2fs_stop_checkpoint(sbi, true);
359 			continue;
360 		}
361 
362 		fscrypt_finalize_bounce_page(&page);
363 
364 #ifdef CONFIG_F2FS_FS_COMPRESSION
365 		if (f2fs_is_compressed_page(page)) {
366 			f2fs_compress_write_end_io(bio, page);
367 			continue;
368 		}
369 #endif
370 
371 		if (unlikely(bio->bi_status)) {
372 			mapping_set_error(page->mapping, -EIO);
373 			if (type == F2FS_WB_CP_DATA)
374 				f2fs_stop_checkpoint(sbi, true);
375 		}
376 
377 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
378 					page->index != nid_of_node(page));
379 
380 		dec_page_count(sbi, type);
381 		if (f2fs_in_warm_node_list(sbi, page))
382 			f2fs_del_fsync_node_entry(sbi, page);
383 		clear_cold_data(page);
384 		end_page_writeback(page);
385 	}
386 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
387 				wq_has_sleeper(&sbi->cp_wait))
388 		wake_up(&sbi->cp_wait);
389 
390 	bio_put(bio);
391 }
392 
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)393 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
394 				block_t blk_addr, struct bio *bio)
395 {
396 	struct block_device *bdev = sbi->sb->s_bdev;
397 	int i;
398 
399 	if (f2fs_is_multi_device(sbi)) {
400 		for (i = 0; i < sbi->s_ndevs; i++) {
401 			if (FDEV(i).start_blk <= blk_addr &&
402 			    FDEV(i).end_blk >= blk_addr) {
403 				blk_addr -= FDEV(i).start_blk;
404 				bdev = FDEV(i).bdev;
405 				break;
406 			}
407 		}
408 	}
409 	if (bio) {
410 		bio_set_dev(bio, bdev);
411 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
412 	}
413 	return bdev;
414 }
415 
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)416 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
417 {
418 	int i;
419 
420 	if (!f2fs_is_multi_device(sbi))
421 		return 0;
422 
423 	for (i = 0; i < sbi->s_ndevs; i++)
424 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
425 			return i;
426 	return 0;
427 }
428 
429 /*
430  * Return true, if pre_bio's bdev is same as its target device.
431  */
__same_bdev(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)432 static bool __same_bdev(struct f2fs_sb_info *sbi,
433 				block_t blk_addr, struct bio *bio)
434 {
435 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
436 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
437 }
438 
__bio_alloc(struct f2fs_io_info * fio,int npages)439 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
440 {
441 	struct f2fs_sb_info *sbi = fio->sbi;
442 	struct bio *bio;
443 
444 	bio = f2fs_bio_alloc(sbi, npages, true);
445 
446 	f2fs_target_device(sbi, fio->new_blkaddr, bio);
447 	if (is_read_io(fio->op)) {
448 		bio->bi_end_io = f2fs_read_end_io;
449 		bio->bi_private = NULL;
450 	} else {
451 		bio->bi_end_io = f2fs_write_end_io;
452 		bio->bi_private = sbi;
453 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
454 						fio->type, fio->temp);
455 	}
456 	if (fio->io_wbc)
457 		wbc_init_bio(fio->io_wbc, bio);
458 
459 	return bio;
460 }
461 
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)462 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
463 				  pgoff_t first_idx,
464 				  const struct f2fs_io_info *fio,
465 				  gfp_t gfp_mask)
466 {
467 	/*
468 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
469 	 * read/write raw data without encryption.
470 	 */
471 	if (!fio || !fio->encrypted_page)
472 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
473 	else if (fscrypt_inode_should_skip_dm_default_key(inode))
474 		bio_set_skip_dm_default_key(bio);
475 }
476 
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)477 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
478 				     pgoff_t next_idx,
479 				     const struct f2fs_io_info *fio)
480 {
481 	/*
482 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
483 	 * read/write raw data without encryption.
484 	 */
485 	if (fio && fio->encrypted_page)
486 		return !bio_has_crypt_ctx(bio) &&
487 			(bio_should_skip_dm_default_key(bio) ==
488 			 fscrypt_inode_should_skip_dm_default_key(inode));
489 
490 	return fscrypt_mergeable_bio(bio, inode, next_idx);
491 }
492 
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)493 static inline void __submit_bio(struct f2fs_sb_info *sbi,
494 				struct bio *bio, enum page_type type)
495 {
496 	if (!is_read_io(bio_op(bio))) {
497 		unsigned int start;
498 
499 		if (type != DATA && type != NODE)
500 			goto submit_io;
501 
502 		if (f2fs_lfs_mode(sbi) && current->plug)
503 			blk_finish_plug(current->plug);
504 
505 		if (!F2FS_IO_ALIGNED(sbi))
506 			goto submit_io;
507 
508 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
509 		start %= F2FS_IO_SIZE(sbi);
510 
511 		if (start == 0)
512 			goto submit_io;
513 
514 		/* fill dummy pages */
515 		for (; start < F2FS_IO_SIZE(sbi); start++) {
516 			struct page *page =
517 				mempool_alloc(sbi->write_io_dummy,
518 					      GFP_NOIO | __GFP_NOFAIL);
519 			f2fs_bug_on(sbi, !page);
520 
521 			zero_user_segment(page, 0, PAGE_SIZE);
522 			SetPagePrivate(page);
523 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
524 			lock_page(page);
525 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
526 				f2fs_bug_on(sbi, 1);
527 		}
528 		/*
529 		 * In the NODE case, we lose next block address chain. So, we
530 		 * need to do checkpoint in f2fs_sync_file.
531 		 */
532 		if (type == NODE)
533 			set_sbi_flag(sbi, SBI_NEED_CP);
534 	}
535 submit_io:
536 	if (is_read_io(bio_op(bio)))
537 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
538 	else
539 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
540 	submit_bio(bio);
541 }
542 
f2fs_submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)543 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
544 				struct bio *bio, enum page_type type)
545 {
546 	__submit_bio(sbi, bio, type);
547 }
548 
__attach_io_flag(struct f2fs_io_info * fio)549 static void __attach_io_flag(struct f2fs_io_info *fio)
550 {
551 	struct f2fs_sb_info *sbi = fio->sbi;
552 	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
553 	unsigned int io_flag, fua_flag, meta_flag;
554 
555 	if (fio->type == DATA)
556 		io_flag = sbi->data_io_flag;
557 	else if (fio->type == NODE)
558 		io_flag = sbi->node_io_flag;
559 	else
560 		return;
561 
562 	fua_flag = io_flag & temp_mask;
563 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
564 
565 	/*
566 	 * data/node io flag bits per temp:
567 	 *      REQ_META     |      REQ_FUA      |
568 	 *    5 |    4 |   3 |    2 |    1 |   0 |
569 	 * Cold | Warm | Hot | Cold | Warm | Hot |
570 	 */
571 	if ((1 << fio->temp) & meta_flag)
572 		fio->op_flags |= REQ_META;
573 	if ((1 << fio->temp) & fua_flag)
574 		fio->op_flags |= REQ_FUA;
575 }
576 
__submit_merged_bio(struct f2fs_bio_info * io)577 static void __submit_merged_bio(struct f2fs_bio_info *io)
578 {
579 	struct f2fs_io_info *fio = &io->fio;
580 
581 	if (!io->bio)
582 		return;
583 
584 	__attach_io_flag(fio);
585 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
586 
587 	if (is_read_io(fio->op))
588 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
589 	else
590 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
591 
592 	__submit_bio(io->sbi, io->bio, fio->type);
593 	io->bio = NULL;
594 }
595 
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)596 static bool __has_merged_page(struct bio *bio, struct inode *inode,
597 						struct page *page, nid_t ino)
598 {
599 	struct bio_vec *bvec;
600 	struct bvec_iter_all iter_all;
601 
602 	if (!bio)
603 		return false;
604 
605 	if (!inode && !page && !ino)
606 		return true;
607 
608 	bio_for_each_segment_all(bvec, bio, iter_all) {
609 		struct page *target = bvec->bv_page;
610 
611 		if (fscrypt_is_bounce_page(target)) {
612 			target = fscrypt_pagecache_page(target);
613 			if (IS_ERR(target))
614 				continue;
615 		}
616 		if (f2fs_is_compressed_page(target)) {
617 			target = f2fs_compress_control_page(target);
618 			if (IS_ERR(target))
619 				continue;
620 		}
621 
622 		if (inode && inode == target->mapping->host)
623 			return true;
624 		if (page && page == target)
625 			return true;
626 		if (ino && ino == ino_of_node(target))
627 			return true;
628 	}
629 
630 	return false;
631 }
632 
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)633 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
634 				enum page_type type, enum temp_type temp)
635 {
636 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
637 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
638 
639 	down_write(&io->io_rwsem);
640 
641 	/* change META to META_FLUSH in the checkpoint procedure */
642 	if (type >= META_FLUSH) {
643 		io->fio.type = META_FLUSH;
644 		io->fio.op = REQ_OP_WRITE;
645 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
646 		if (!test_opt(sbi, NOBARRIER))
647 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
648 	}
649 	__submit_merged_bio(io);
650 	up_write(&io->io_rwsem);
651 }
652 
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)653 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
654 				struct inode *inode, struct page *page,
655 				nid_t ino, enum page_type type, bool force)
656 {
657 	enum temp_type temp;
658 	bool ret = true;
659 
660 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
661 		if (!force)	{
662 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
663 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
664 
665 			down_read(&io->io_rwsem);
666 			ret = __has_merged_page(io->bio, inode, page, ino);
667 			up_read(&io->io_rwsem);
668 		}
669 		if (ret)
670 			__f2fs_submit_merged_write(sbi, type, temp);
671 
672 		/* TODO: use HOT temp only for meta pages now. */
673 		if (type >= META)
674 			break;
675 	}
676 }
677 
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)678 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
679 {
680 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
681 }
682 
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)683 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
684 				struct inode *inode, struct page *page,
685 				nid_t ino, enum page_type type)
686 {
687 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
688 }
689 
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)690 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
691 {
692 	f2fs_submit_merged_write(sbi, DATA);
693 	f2fs_submit_merged_write(sbi, NODE);
694 	f2fs_submit_merged_write(sbi, META);
695 }
696 
697 /*
698  * Fill the locked page with data located in the block address.
699  * A caller needs to unlock the page on failure.
700  */
f2fs_submit_page_bio(struct f2fs_io_info * fio)701 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
702 {
703 	struct bio *bio;
704 	struct page *page = fio->encrypted_page ?
705 			fio->encrypted_page : fio->page;
706 
707 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
708 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
709 			META_GENERIC : DATA_GENERIC_ENHANCE)))
710 		return -EFSCORRUPTED;
711 
712 	trace_f2fs_submit_page_bio(page, fio);
713 	f2fs_trace_ios(fio, 0);
714 
715 	/* Allocate a new bio */
716 	bio = __bio_alloc(fio, 1);
717 
718 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
719 			       fio->page->index, fio, GFP_NOIO);
720 
721 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
722 		bio_put(bio);
723 		return -EFAULT;
724 	}
725 
726 	if (fio->io_wbc && !is_read_io(fio->op))
727 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
728 
729 	__attach_io_flag(fio);
730 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
731 
732 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
733 			__read_io_type(page): WB_DATA_TYPE(fio->page));
734 
735 	__submit_bio(fio->sbi, bio, fio->type);
736 	return 0;
737 }
738 
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)739 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
740 				block_t last_blkaddr, block_t cur_blkaddr)
741 {
742 	if (last_blkaddr + 1 != cur_blkaddr)
743 		return false;
744 	return __same_bdev(sbi, cur_blkaddr, bio);
745 }
746 
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)747 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
748 						struct f2fs_io_info *fio)
749 {
750 	if (io->fio.op != fio->op)
751 		return false;
752 	return io->fio.op_flags == fio->op_flags;
753 }
754 
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)755 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
756 					struct f2fs_bio_info *io,
757 					struct f2fs_io_info *fio,
758 					block_t last_blkaddr,
759 					block_t cur_blkaddr)
760 {
761 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
762 		unsigned int filled_blocks =
763 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
764 		unsigned int io_size = F2FS_IO_SIZE(sbi);
765 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
766 
767 		/* IOs in bio is aligned and left space of vectors is not enough */
768 		if (!(filled_blocks % io_size) && left_vecs < io_size)
769 			return false;
770 	}
771 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
772 		return false;
773 	return io_type_is_mergeable(io, fio);
774 }
775 
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)776 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
777 				struct page *page, enum temp_type temp)
778 {
779 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
780 	struct bio_entry *be;
781 
782 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
783 	be->bio = bio;
784 	bio_get(bio);
785 
786 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
787 		f2fs_bug_on(sbi, 1);
788 
789 	down_write(&io->bio_list_lock);
790 	list_add_tail(&be->list, &io->bio_list);
791 	up_write(&io->bio_list_lock);
792 }
793 
del_bio_entry(struct bio_entry * be)794 static void del_bio_entry(struct bio_entry *be)
795 {
796 	list_del(&be->list);
797 	kmem_cache_free(bio_entry_slab, be);
798 }
799 
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)800 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
801 							struct page *page)
802 {
803 	struct f2fs_sb_info *sbi = fio->sbi;
804 	enum temp_type temp;
805 	bool found = false;
806 	int ret = -EAGAIN;
807 
808 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
809 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
810 		struct list_head *head = &io->bio_list;
811 		struct bio_entry *be;
812 
813 		down_write(&io->bio_list_lock);
814 		list_for_each_entry(be, head, list) {
815 			if (be->bio != *bio)
816 				continue;
817 
818 			found = true;
819 
820 			if (page_is_mergeable(sbi, *bio, *fio->last_block,
821 					fio->new_blkaddr) &&
822 			    f2fs_crypt_mergeable_bio(*bio,
823 					fio->page->mapping->host,
824 					fio->page->index, fio) &&
825 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
826 					PAGE_SIZE) {
827 				ret = 0;
828 				break;
829 			}
830 
831 			/* page can't be merged into bio; submit the bio */
832 			del_bio_entry(be);
833 			__submit_bio(sbi, *bio, DATA);
834 			break;
835 		}
836 		up_write(&io->bio_list_lock);
837 	}
838 
839 	if (ret) {
840 		bio_put(*bio);
841 		*bio = NULL;
842 	}
843 
844 	return ret;
845 }
846 
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)847 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
848 					struct bio **bio, struct page *page)
849 {
850 	enum temp_type temp;
851 	bool found = false;
852 	struct bio *target = bio ? *bio : NULL;
853 
854 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
855 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
856 		struct list_head *head = &io->bio_list;
857 		struct bio_entry *be;
858 
859 		if (list_empty(head))
860 			continue;
861 
862 		down_read(&io->bio_list_lock);
863 		list_for_each_entry(be, head, list) {
864 			if (target)
865 				found = (target == be->bio);
866 			else
867 				found = __has_merged_page(be->bio, NULL,
868 								page, 0);
869 			if (found)
870 				break;
871 		}
872 		up_read(&io->bio_list_lock);
873 
874 		if (!found)
875 			continue;
876 
877 		found = false;
878 
879 		down_write(&io->bio_list_lock);
880 		list_for_each_entry(be, head, list) {
881 			if (target)
882 				found = (target == be->bio);
883 			else
884 				found = __has_merged_page(be->bio, NULL,
885 								page, 0);
886 			if (found) {
887 				target = be->bio;
888 				del_bio_entry(be);
889 				break;
890 			}
891 		}
892 		up_write(&io->bio_list_lock);
893 	}
894 
895 	if (found)
896 		__submit_bio(sbi, target, DATA);
897 	if (bio && *bio) {
898 		bio_put(*bio);
899 		*bio = NULL;
900 	}
901 }
902 
f2fs_merge_page_bio(struct f2fs_io_info * fio)903 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
904 {
905 	struct bio *bio = *fio->bio;
906 	struct page *page = fio->encrypted_page ?
907 			fio->encrypted_page : fio->page;
908 
909 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
910 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
911 		return -EFSCORRUPTED;
912 
913 	trace_f2fs_submit_page_bio(page, fio);
914 	f2fs_trace_ios(fio, 0);
915 
916 alloc_new:
917 	if (!bio) {
918 		bio = __bio_alloc(fio, BIO_MAX_PAGES);
919 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
920 				       fio->page->index, fio,
921 				       GFP_NOIO);
922 		__attach_io_flag(fio);
923 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
924 
925 		add_bio_entry(fio->sbi, bio, page, fio->temp);
926 	} else {
927 		if (add_ipu_page(fio, &bio, page))
928 			goto alloc_new;
929 	}
930 
931 	if (fio->io_wbc)
932 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
933 
934 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
935 
936 	*fio->last_block = fio->new_blkaddr;
937 	*fio->bio = bio;
938 
939 	return 0;
940 }
941 
f2fs_submit_page_write(struct f2fs_io_info * fio)942 void f2fs_submit_page_write(struct f2fs_io_info *fio)
943 {
944 	struct f2fs_sb_info *sbi = fio->sbi;
945 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
946 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
947 	struct page *bio_page;
948 
949 	f2fs_bug_on(sbi, is_read_io(fio->op));
950 
951 	down_write(&io->io_rwsem);
952 next:
953 	if (fio->in_list) {
954 		spin_lock(&io->io_lock);
955 		if (list_empty(&io->io_list)) {
956 			spin_unlock(&io->io_lock);
957 			goto out;
958 		}
959 		fio = list_first_entry(&io->io_list,
960 						struct f2fs_io_info, list);
961 		list_del(&fio->list);
962 		spin_unlock(&io->io_lock);
963 	}
964 
965 	verify_fio_blkaddr(fio);
966 
967 	if (fio->encrypted_page)
968 		bio_page = fio->encrypted_page;
969 	else if (fio->compressed_page)
970 		bio_page = fio->compressed_page;
971 	else
972 		bio_page = fio->page;
973 
974 	/* set submitted = true as a return value */
975 	fio->submitted = true;
976 
977 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
978 
979 	if (io->bio &&
980 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
981 			      fio->new_blkaddr) ||
982 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
983 				       fio->page->index, fio)))
984 		__submit_merged_bio(io);
985 alloc_new:
986 	if (io->bio == NULL) {
987 		if (F2FS_IO_ALIGNED(sbi) &&
988 				(fio->type == DATA || fio->type == NODE) &&
989 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
990 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
991 			fio->retry = true;
992 			goto skip;
993 		}
994 		io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
995 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
996 				       fio->page->index, fio,
997 				       GFP_NOIO);
998 		io->fio = *fio;
999 	}
1000 
1001 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1002 		__submit_merged_bio(io);
1003 		goto alloc_new;
1004 	}
1005 
1006 	if (fio->io_wbc)
1007 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1008 
1009 	io->last_block_in_bio = fio->new_blkaddr;
1010 	f2fs_trace_ios(fio, 0);
1011 
1012 	trace_f2fs_submit_page_write(fio->page, fio);
1013 skip:
1014 	if (fio->in_list)
1015 		goto next;
1016 out:
1017 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1018 				!f2fs_is_checkpoint_ready(sbi))
1019 		__submit_merged_bio(io);
1020 	up_write(&io->io_rwsem);
1021 }
1022 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)1023 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
1024 {
1025 	return fsverity_active(inode) &&
1026 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
1027 }
1028 
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag,pgoff_t first_idx,bool for_write)1029 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1030 				      unsigned nr_pages, unsigned op_flag,
1031 				      pgoff_t first_idx, bool for_write)
1032 {
1033 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034 	struct bio *bio;
1035 	struct bio_post_read_ctx *ctx;
1036 	unsigned int post_read_steps = 0;
1037 
1038 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
1039 								for_write);
1040 	if (!bio)
1041 		return ERR_PTR(-ENOMEM);
1042 
1043 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1044 
1045 	f2fs_target_device(sbi, blkaddr, bio);
1046 	bio->bi_end_io = f2fs_read_end_io;
1047 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1048 
1049 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1050 		post_read_steps |= 1 << STEP_DECRYPT;
1051 	if (f2fs_compressed_file(inode))
1052 		post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ;
1053 	if (f2fs_need_verity(inode, first_idx))
1054 		post_read_steps |= 1 << STEP_VERITY;
1055 
1056 	if (post_read_steps) {
1057 		/* Due to the mempool, this never fails. */
1058 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1059 		ctx->bio = bio;
1060 		ctx->sbi = sbi;
1061 		ctx->enabled_steps = post_read_steps;
1062 		bio->bi_private = ctx;
1063 	}
1064 
1065 	return bio;
1066 }
1067 
f2fs_release_read_bio(struct bio * bio)1068 static void f2fs_release_read_bio(struct bio *bio)
1069 {
1070 	if (bio->bi_private)
1071 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1072 	bio_put(bio);
1073 }
1074 
1075 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,bool for_write)1076 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1077 						block_t blkaddr, bool for_write)
1078 {
1079 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1080 	struct bio *bio;
1081 
1082 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index, for_write);
1083 	if (IS_ERR(bio))
1084 		return PTR_ERR(bio);
1085 
1086 	/* wait for GCed page writeback via META_MAPPING */
1087 	f2fs_wait_on_block_writeback(inode, blkaddr);
1088 
1089 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1090 		bio_put(bio);
1091 		return -EFAULT;
1092 	}
1093 	ClearPageError(page);
1094 	inc_page_count(sbi, F2FS_RD_DATA);
1095 	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1096 	__submit_bio(sbi, bio, DATA);
1097 	return 0;
1098 }
1099 
__set_data_blkaddr(struct dnode_of_data * dn)1100 static void __set_data_blkaddr(struct dnode_of_data *dn)
1101 {
1102 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1103 	__le32 *addr_array;
1104 	int base = 0;
1105 
1106 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1107 		base = get_extra_isize(dn->inode);
1108 
1109 	/* Get physical address of data block */
1110 	addr_array = blkaddr_in_node(rn);
1111 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1112 }
1113 
1114 /*
1115  * Lock ordering for the change of data block address:
1116  * ->data_page
1117  *  ->node_page
1118  *    update block addresses in the node page
1119  */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1120 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1121 {
1122 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1123 	__set_data_blkaddr(dn);
1124 	if (set_page_dirty(dn->node_page))
1125 		dn->node_changed = true;
1126 }
1127 
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1128 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1129 {
1130 	dn->data_blkaddr = blkaddr;
1131 	f2fs_set_data_blkaddr(dn);
1132 	f2fs_update_extent_cache(dn);
1133 }
1134 
1135 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1136 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1137 {
1138 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1139 	int err;
1140 
1141 	if (!count)
1142 		return 0;
1143 
1144 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1145 		return -EPERM;
1146 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1147 		return err;
1148 
1149 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1150 						dn->ofs_in_node, count);
1151 
1152 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1153 
1154 	for (; count > 0; dn->ofs_in_node++) {
1155 		block_t blkaddr = f2fs_data_blkaddr(dn);
1156 		if (blkaddr == NULL_ADDR) {
1157 			dn->data_blkaddr = NEW_ADDR;
1158 			__set_data_blkaddr(dn);
1159 			count--;
1160 		}
1161 	}
1162 
1163 	if (set_page_dirty(dn->node_page))
1164 		dn->node_changed = true;
1165 	return 0;
1166 }
1167 
1168 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1169 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1170 {
1171 	unsigned int ofs_in_node = dn->ofs_in_node;
1172 	int ret;
1173 
1174 	ret = f2fs_reserve_new_blocks(dn, 1);
1175 	dn->ofs_in_node = ofs_in_node;
1176 	return ret;
1177 }
1178 
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1179 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1180 {
1181 	bool need_put = dn->inode_page ? false : true;
1182 	int err;
1183 
1184 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1185 	if (err)
1186 		return err;
1187 
1188 	if (dn->data_blkaddr == NULL_ADDR)
1189 		err = f2fs_reserve_new_block(dn);
1190 	if (err || need_put)
1191 		f2fs_put_dnode(dn);
1192 	return err;
1193 }
1194 
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)1195 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1196 {
1197 	struct extent_info ei  = {0,0,0};
1198 	struct inode *inode = dn->inode;
1199 
1200 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1201 		dn->data_blkaddr = ei.blk + index - ei.fofs;
1202 		return 0;
1203 	}
1204 
1205 	return f2fs_reserve_block(dn, index);
1206 }
1207 
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)1208 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1209 						int op_flags, bool for_write)
1210 {
1211 	struct address_space *mapping = inode->i_mapping;
1212 	struct dnode_of_data dn;
1213 	struct page *page;
1214 	struct extent_info ei = {0,0,0};
1215 	int err;
1216 
1217 	page = f2fs_grab_cache_page(mapping, index, for_write);
1218 	if (!page)
1219 		return ERR_PTR(-ENOMEM);
1220 
1221 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1222 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1223 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1224 						DATA_GENERIC_ENHANCE_READ)) {
1225 			err = -EFSCORRUPTED;
1226 			goto put_err;
1227 		}
1228 		goto got_it;
1229 	}
1230 
1231 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1232 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1233 	if (err)
1234 		goto put_err;
1235 	f2fs_put_dnode(&dn);
1236 
1237 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1238 		err = -ENOENT;
1239 		goto put_err;
1240 	}
1241 	if (dn.data_blkaddr != NEW_ADDR &&
1242 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1243 						dn.data_blkaddr,
1244 						DATA_GENERIC_ENHANCE)) {
1245 		err = -EFSCORRUPTED;
1246 		goto put_err;
1247 	}
1248 got_it:
1249 	if (PageUptodate(page)) {
1250 		unlock_page(page);
1251 		return page;
1252 	}
1253 
1254 	/*
1255 	 * A new dentry page is allocated but not able to be written, since its
1256 	 * new inode page couldn't be allocated due to -ENOSPC.
1257 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1258 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1259 	 * f2fs_init_inode_metadata.
1260 	 */
1261 	if (dn.data_blkaddr == NEW_ADDR) {
1262 		zero_user_segment(page, 0, PAGE_SIZE);
1263 		if (!PageUptodate(page))
1264 			SetPageUptodate(page);
1265 		unlock_page(page);
1266 		return page;
1267 	}
1268 
1269 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, for_write);
1270 	if (err)
1271 		goto put_err;
1272 	return page;
1273 
1274 put_err:
1275 	f2fs_put_page(page, 1);
1276 	return ERR_PTR(err);
1277 }
1278 
f2fs_find_data_page(struct inode * inode,pgoff_t index)1279 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1280 {
1281 	struct address_space *mapping = inode->i_mapping;
1282 	struct page *page;
1283 
1284 	page = find_get_page(mapping, index);
1285 	if (page && PageUptodate(page))
1286 		return page;
1287 	f2fs_put_page(page, 0);
1288 
1289 	page = f2fs_get_read_data_page(inode, index, 0, false);
1290 	if (IS_ERR(page))
1291 		return page;
1292 
1293 	if (PageUptodate(page))
1294 		return page;
1295 
1296 	wait_on_page_locked(page);
1297 	if (unlikely(!PageUptodate(page))) {
1298 		f2fs_put_page(page, 0);
1299 		return ERR_PTR(-EIO);
1300 	}
1301 	return page;
1302 }
1303 
1304 /*
1305  * If it tries to access a hole, return an error.
1306  * Because, the callers, functions in dir.c and GC, should be able to know
1307  * whether this page exists or not.
1308  */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1309 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1310 							bool for_write)
1311 {
1312 	struct address_space *mapping = inode->i_mapping;
1313 	struct page *page;
1314 repeat:
1315 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1316 	if (IS_ERR(page))
1317 		return page;
1318 
1319 	/* wait for read completion */
1320 	lock_page(page);
1321 	if (unlikely(page->mapping != mapping)) {
1322 		f2fs_put_page(page, 1);
1323 		goto repeat;
1324 	}
1325 	if (unlikely(!PageUptodate(page))) {
1326 		f2fs_put_page(page, 1);
1327 		return ERR_PTR(-EIO);
1328 	}
1329 	return page;
1330 }
1331 
1332 /*
1333  * Caller ensures that this data page is never allocated.
1334  * A new zero-filled data page is allocated in the page cache.
1335  *
1336  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1337  * f2fs_unlock_op().
1338  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1339  * ipage should be released by this function.
1340  */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1341 struct page *f2fs_get_new_data_page(struct inode *inode,
1342 		struct page *ipage, pgoff_t index, bool new_i_size)
1343 {
1344 	struct address_space *mapping = inode->i_mapping;
1345 	struct page *page;
1346 	struct dnode_of_data dn;
1347 	int err;
1348 
1349 	page = f2fs_grab_cache_page(mapping, index, true);
1350 	if (!page) {
1351 		/*
1352 		 * before exiting, we should make sure ipage will be released
1353 		 * if any error occur.
1354 		 */
1355 		f2fs_put_page(ipage, 1);
1356 		return ERR_PTR(-ENOMEM);
1357 	}
1358 
1359 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1360 	err = f2fs_reserve_block(&dn, index);
1361 	if (err) {
1362 		f2fs_put_page(page, 1);
1363 		return ERR_PTR(err);
1364 	}
1365 	if (!ipage)
1366 		f2fs_put_dnode(&dn);
1367 
1368 	if (PageUptodate(page))
1369 		goto got_it;
1370 
1371 	if (dn.data_blkaddr == NEW_ADDR) {
1372 		zero_user_segment(page, 0, PAGE_SIZE);
1373 		if (!PageUptodate(page))
1374 			SetPageUptodate(page);
1375 	} else {
1376 		f2fs_put_page(page, 1);
1377 
1378 		/* if ipage exists, blkaddr should be NEW_ADDR */
1379 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1380 		page = f2fs_get_lock_data_page(inode, index, true);
1381 		if (IS_ERR(page))
1382 			return page;
1383 	}
1384 got_it:
1385 	if (new_i_size && i_size_read(inode) <
1386 				((loff_t)(index + 1) << PAGE_SHIFT))
1387 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1388 	return page;
1389 }
1390 
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1391 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1392 {
1393 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1394 	struct f2fs_summary sum;
1395 	struct node_info ni;
1396 	block_t old_blkaddr;
1397 	blkcnt_t count = 1;
1398 	int err;
1399 
1400 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1401 		return -EPERM;
1402 
1403 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1404 	if (err)
1405 		return err;
1406 
1407 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1408 	if (dn->data_blkaddr != NULL_ADDR)
1409 		goto alloc;
1410 
1411 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1412 		return err;
1413 
1414 alloc:
1415 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1416 	old_blkaddr = dn->data_blkaddr;
1417 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1418 					&sum, seg_type, NULL, false);
1419 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1420 		invalidate_mapping_pages(META_MAPPING(sbi),
1421 					old_blkaddr, old_blkaddr);
1422 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1423 
1424 	/*
1425 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1426 	 * data from unwritten block via dio_read.
1427 	 */
1428 	return 0;
1429 }
1430 
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * from)1431 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1432 {
1433 	struct inode *inode = file_inode(iocb->ki_filp);
1434 	struct f2fs_map_blocks map;
1435 	int flag;
1436 	int err = 0;
1437 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1438 
1439 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1440 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1441 	if (map.m_len > map.m_lblk)
1442 		map.m_len -= map.m_lblk;
1443 	else
1444 		map.m_len = 0;
1445 
1446 	map.m_next_pgofs = NULL;
1447 	map.m_next_extent = NULL;
1448 	map.m_seg_type = NO_CHECK_TYPE;
1449 	map.m_may_create = true;
1450 
1451 	if (direct_io) {
1452 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1453 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1454 					F2FS_GET_BLOCK_PRE_AIO :
1455 					F2FS_GET_BLOCK_PRE_DIO;
1456 		goto map_blocks;
1457 	}
1458 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1459 		err = f2fs_convert_inline_inode(inode);
1460 		if (err)
1461 			return err;
1462 	}
1463 	if (f2fs_has_inline_data(inode))
1464 		return err;
1465 
1466 	flag = F2FS_GET_BLOCK_PRE_AIO;
1467 
1468 map_blocks:
1469 	err = f2fs_map_blocks(inode, &map, 1, flag);
1470 	if (map.m_len > 0 && err == -ENOSPC) {
1471 		if (!direct_io)
1472 			set_inode_flag(inode, FI_NO_PREALLOC);
1473 		err = 0;
1474 	}
1475 	return err;
1476 }
1477 
__do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)1478 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1479 {
1480 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1481 		if (lock)
1482 			down_read(&sbi->node_change);
1483 		else
1484 			up_read(&sbi->node_change);
1485 	} else {
1486 		if (lock)
1487 			f2fs_lock_op(sbi);
1488 		else
1489 			f2fs_unlock_op(sbi);
1490 	}
1491 }
1492 
1493 /*
1494  * f2fs_map_blocks() tries to find or build mapping relationship which
1495  * maps continuous logical blocks to physical blocks, and return such
1496  * info via f2fs_map_blocks structure.
1497  */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1498 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1499 						int create, int flag)
1500 {
1501 	unsigned int maxblocks = map->m_len;
1502 	struct dnode_of_data dn;
1503 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1504 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1505 	pgoff_t pgofs, end_offset, end;
1506 	int err = 0, ofs = 1;
1507 	unsigned int ofs_in_node, last_ofs_in_node;
1508 	blkcnt_t prealloc;
1509 	struct extent_info ei = {0,0,0};
1510 	block_t blkaddr;
1511 	unsigned int start_pgofs;
1512 
1513 	if (!maxblocks)
1514 		return 0;
1515 
1516 	map->m_len = 0;
1517 	map->m_flags = 0;
1518 
1519 	/* it only supports block size == page size */
1520 	pgofs =	(pgoff_t)map->m_lblk;
1521 	end = pgofs + maxblocks;
1522 
1523 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1524 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1525 							map->m_may_create)
1526 			goto next_dnode;
1527 
1528 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1529 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1530 		map->m_flags = F2FS_MAP_MAPPED;
1531 		if (map->m_next_extent)
1532 			*map->m_next_extent = pgofs + map->m_len;
1533 
1534 		/* for hardware encryption, but to avoid potential issue in future */
1535 		if (flag == F2FS_GET_BLOCK_DIO)
1536 			f2fs_wait_on_block_writeback_range(inode,
1537 						map->m_pblk, map->m_len);
1538 		goto out;
1539 	}
1540 
1541 next_dnode:
1542 	if (map->m_may_create)
1543 		__do_map_lock(sbi, flag, true);
1544 
1545 	/* When reading holes, we need its node page */
1546 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1547 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1548 	if (err) {
1549 		if (flag == F2FS_GET_BLOCK_BMAP)
1550 			map->m_pblk = 0;
1551 
1552 		if (err == -ENOENT) {
1553 			/*
1554 			 * There is one exceptional case that read_node_page()
1555 			 * may return -ENOENT due to filesystem has been
1556 			 * shutdown or cp_error, so force to convert error
1557 			 * number to EIO for such case.
1558 			 */
1559 			if (map->m_may_create &&
1560 				(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1561 				f2fs_cp_error(sbi))) {
1562 				err = -EIO;
1563 				goto unlock_out;
1564 			}
1565 
1566 			err = 0;
1567 			if (map->m_next_pgofs)
1568 				*map->m_next_pgofs =
1569 					f2fs_get_next_page_offset(&dn, pgofs);
1570 			if (map->m_next_extent)
1571 				*map->m_next_extent =
1572 					f2fs_get_next_page_offset(&dn, pgofs);
1573 		}
1574 		goto unlock_out;
1575 	}
1576 
1577 	start_pgofs = pgofs;
1578 	prealloc = 0;
1579 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1580 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1581 
1582 next_block:
1583 	blkaddr = f2fs_data_blkaddr(&dn);
1584 
1585 	if (__is_valid_data_blkaddr(blkaddr) &&
1586 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1587 		err = -EFSCORRUPTED;
1588 		goto sync_out;
1589 	}
1590 
1591 	if (__is_valid_data_blkaddr(blkaddr)) {
1592 		/* use out-place-update for driect IO under LFS mode */
1593 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1594 							map->m_may_create) {
1595 			err = __allocate_data_block(&dn, map->m_seg_type);
1596 			if (err)
1597 				goto sync_out;
1598 			blkaddr = dn.data_blkaddr;
1599 			set_inode_flag(inode, FI_APPEND_WRITE);
1600 		}
1601 	} else {
1602 		if (create) {
1603 			if (unlikely(f2fs_cp_error(sbi))) {
1604 				err = -EIO;
1605 				goto sync_out;
1606 			}
1607 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1608 				if (blkaddr == NULL_ADDR) {
1609 					prealloc++;
1610 					last_ofs_in_node = dn.ofs_in_node;
1611 				}
1612 			} else {
1613 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1614 					flag != F2FS_GET_BLOCK_DIO);
1615 				err = __allocate_data_block(&dn,
1616 							map->m_seg_type);
1617 				if (!err)
1618 					set_inode_flag(inode, FI_APPEND_WRITE);
1619 			}
1620 			if (err)
1621 				goto sync_out;
1622 			map->m_flags |= F2FS_MAP_NEW;
1623 			blkaddr = dn.data_blkaddr;
1624 		} else {
1625 			if (flag == F2FS_GET_BLOCK_BMAP) {
1626 				map->m_pblk = 0;
1627 				goto sync_out;
1628 			}
1629 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1630 				goto sync_out;
1631 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1632 						blkaddr == NULL_ADDR) {
1633 				if (map->m_next_pgofs)
1634 					*map->m_next_pgofs = pgofs + 1;
1635 				goto sync_out;
1636 			}
1637 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1638 				/* for defragment case */
1639 				if (map->m_next_pgofs)
1640 					*map->m_next_pgofs = pgofs + 1;
1641 				goto sync_out;
1642 			}
1643 		}
1644 	}
1645 
1646 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1647 		goto skip;
1648 
1649 	if (map->m_len == 0) {
1650 		/* preallocated unwritten block should be mapped for fiemap. */
1651 		if (blkaddr == NEW_ADDR)
1652 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1653 		map->m_flags |= F2FS_MAP_MAPPED;
1654 
1655 		map->m_pblk = blkaddr;
1656 		map->m_len = 1;
1657 	} else if ((map->m_pblk != NEW_ADDR &&
1658 			blkaddr == (map->m_pblk + ofs)) ||
1659 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1660 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1661 		ofs++;
1662 		map->m_len++;
1663 	} else {
1664 		goto sync_out;
1665 	}
1666 
1667 skip:
1668 	dn.ofs_in_node++;
1669 	pgofs++;
1670 
1671 	/* preallocate blocks in batch for one dnode page */
1672 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1673 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1674 
1675 		dn.ofs_in_node = ofs_in_node;
1676 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1677 		if (err)
1678 			goto sync_out;
1679 
1680 		map->m_len += dn.ofs_in_node - ofs_in_node;
1681 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1682 			err = -ENOSPC;
1683 			goto sync_out;
1684 		}
1685 		dn.ofs_in_node = end_offset;
1686 	}
1687 
1688 	if (pgofs >= end)
1689 		goto sync_out;
1690 	else if (dn.ofs_in_node < end_offset)
1691 		goto next_block;
1692 
1693 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1694 		if (map->m_flags & F2FS_MAP_MAPPED) {
1695 			unsigned int ofs = start_pgofs - map->m_lblk;
1696 
1697 			f2fs_update_extent_cache_range(&dn,
1698 				start_pgofs, map->m_pblk + ofs,
1699 				map->m_len - ofs);
1700 		}
1701 	}
1702 
1703 	f2fs_put_dnode(&dn);
1704 
1705 	if (map->m_may_create) {
1706 		__do_map_lock(sbi, flag, false);
1707 		f2fs_balance_fs(sbi, dn.node_changed);
1708 	}
1709 	goto next_dnode;
1710 
1711 sync_out:
1712 
1713 	/* for hardware encryption, but to avoid potential issue in future */
1714 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1715 		f2fs_wait_on_block_writeback_range(inode,
1716 						map->m_pblk, map->m_len);
1717 
1718 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1719 		if (map->m_flags & F2FS_MAP_MAPPED) {
1720 			unsigned int ofs = start_pgofs - map->m_lblk;
1721 
1722 			f2fs_update_extent_cache_range(&dn,
1723 				start_pgofs, map->m_pblk + ofs,
1724 				map->m_len - ofs);
1725 		}
1726 		if (map->m_next_extent)
1727 			*map->m_next_extent = pgofs + 1;
1728 	}
1729 	f2fs_put_dnode(&dn);
1730 unlock_out:
1731 	if (map->m_may_create) {
1732 		__do_map_lock(sbi, flag, false);
1733 		f2fs_balance_fs(sbi, dn.node_changed);
1734 	}
1735 out:
1736 	trace_f2fs_map_blocks(inode, map, err);
1737 	return err;
1738 }
1739 
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1740 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1741 {
1742 	struct f2fs_map_blocks map;
1743 	block_t last_lblk;
1744 	int err;
1745 
1746 	if (pos + len > i_size_read(inode))
1747 		return false;
1748 
1749 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1750 	map.m_next_pgofs = NULL;
1751 	map.m_next_extent = NULL;
1752 	map.m_seg_type = NO_CHECK_TYPE;
1753 	map.m_may_create = false;
1754 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1755 
1756 	while (map.m_lblk < last_lblk) {
1757 		map.m_len = last_lblk - map.m_lblk;
1758 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1759 		if (err || map.m_len == 0)
1760 			return false;
1761 		map.m_lblk += map.m_len;
1762 	}
1763 	return true;
1764 }
1765 
__get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create,int flag,pgoff_t * next_pgofs,int seg_type,bool may_write)1766 static int __get_data_block(struct inode *inode, sector_t iblock,
1767 			struct buffer_head *bh, int create, int flag,
1768 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1769 {
1770 	struct f2fs_map_blocks map;
1771 	int err;
1772 
1773 	map.m_lblk = iblock;
1774 	map.m_len = bh->b_size >> inode->i_blkbits;
1775 	map.m_next_pgofs = next_pgofs;
1776 	map.m_next_extent = NULL;
1777 	map.m_seg_type = seg_type;
1778 	map.m_may_create = may_write;
1779 
1780 	err = f2fs_map_blocks(inode, &map, create, flag);
1781 	if (!err) {
1782 		map_bh(bh, inode->i_sb, map.m_pblk);
1783 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1784 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1785 	}
1786 	return err;
1787 }
1788 
get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create,int flag,pgoff_t * next_pgofs)1789 static int get_data_block(struct inode *inode, sector_t iblock,
1790 			struct buffer_head *bh_result, int create, int flag,
1791 			pgoff_t *next_pgofs)
1792 {
1793 	return __get_data_block(inode, iblock, bh_result, create,
1794 							flag, next_pgofs,
1795 							NO_CHECK_TYPE, create);
1796 }
1797 
get_data_block_dio_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1798 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1799 			struct buffer_head *bh_result, int create)
1800 {
1801 	return __get_data_block(inode, iblock, bh_result, create,
1802 				F2FS_GET_BLOCK_DIO, NULL,
1803 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1804 				IS_SWAPFILE(inode) ? false : true);
1805 }
1806 
get_data_block_dio(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1807 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1808 			struct buffer_head *bh_result, int create)
1809 {
1810 	return __get_data_block(inode, iblock, bh_result, create,
1811 				F2FS_GET_BLOCK_DIO, NULL,
1812 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1813 				false);
1814 }
1815 
get_data_block_bmap(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1816 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1817 			struct buffer_head *bh_result, int create)
1818 {
1819 	/* Block number less than F2FS MAX BLOCKS */
1820 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1821 		return -EFBIG;
1822 
1823 	return __get_data_block(inode, iblock, bh_result, create,
1824 						F2FS_GET_BLOCK_BMAP, NULL,
1825 						NO_CHECK_TYPE, create);
1826 }
1827 
logical_to_blk(struct inode * inode,loff_t offset)1828 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1829 {
1830 	return (offset >> inode->i_blkbits);
1831 }
1832 
blk_to_logical(struct inode * inode,sector_t blk)1833 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1834 {
1835 	return (blk << inode->i_blkbits);
1836 }
1837 
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1838 static int f2fs_xattr_fiemap(struct inode *inode,
1839 				struct fiemap_extent_info *fieinfo)
1840 {
1841 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1842 	struct page *page;
1843 	struct node_info ni;
1844 	__u64 phys = 0, len;
1845 	__u32 flags;
1846 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1847 	int err = 0;
1848 
1849 	if (f2fs_has_inline_xattr(inode)) {
1850 		int offset;
1851 
1852 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1853 						inode->i_ino, false);
1854 		if (!page)
1855 			return -ENOMEM;
1856 
1857 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1858 		if (err) {
1859 			f2fs_put_page(page, 1);
1860 			return err;
1861 		}
1862 
1863 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1864 		offset = offsetof(struct f2fs_inode, i_addr) +
1865 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1866 					get_inline_xattr_addrs(inode));
1867 
1868 		phys += offset;
1869 		len = inline_xattr_size(inode);
1870 
1871 		f2fs_put_page(page, 1);
1872 
1873 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1874 
1875 		if (!xnid)
1876 			flags |= FIEMAP_EXTENT_LAST;
1877 
1878 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1879 		if (err || err == 1)
1880 			return err;
1881 	}
1882 
1883 	if (xnid) {
1884 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1885 		if (!page)
1886 			return -ENOMEM;
1887 
1888 		err = f2fs_get_node_info(sbi, xnid, &ni);
1889 		if (err) {
1890 			f2fs_put_page(page, 1);
1891 			return err;
1892 		}
1893 
1894 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1895 		len = inode->i_sb->s_blocksize;
1896 
1897 		f2fs_put_page(page, 1);
1898 
1899 		flags = FIEMAP_EXTENT_LAST;
1900 	}
1901 
1902 	if (phys)
1903 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1904 
1905 	return (err < 0 ? err : 0);
1906 }
1907 
max_inode_blocks(struct inode * inode)1908 static loff_t max_inode_blocks(struct inode *inode)
1909 {
1910 	loff_t result = ADDRS_PER_INODE(inode);
1911 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1912 
1913 	/* two direct node blocks */
1914 	result += (leaf_count * 2);
1915 
1916 	/* two indirect node blocks */
1917 	leaf_count *= NIDS_PER_BLOCK;
1918 	result += (leaf_count * 2);
1919 
1920 	/* one double indirect node block */
1921 	leaf_count *= NIDS_PER_BLOCK;
1922 	result += leaf_count;
1923 
1924 	return result;
1925 }
1926 
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1927 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1928 		u64 start, u64 len)
1929 {
1930 	struct buffer_head map_bh;
1931 	sector_t start_blk, last_blk;
1932 	pgoff_t next_pgofs;
1933 	u64 logical = 0, phys = 0, size = 0;
1934 	u32 flags = 0;
1935 	int ret = 0;
1936 	bool compr_cluster = false;
1937 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1938 
1939 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1940 		ret = f2fs_precache_extents(inode);
1941 		if (ret)
1942 			return ret;
1943 	}
1944 
1945 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1946 	if (ret)
1947 		return ret;
1948 
1949 	inode_lock(inode);
1950 
1951 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1952 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1953 		goto out;
1954 	}
1955 
1956 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1957 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1958 		if (ret != -EAGAIN)
1959 			goto out;
1960 	}
1961 
1962 	if (logical_to_blk(inode, len) == 0)
1963 		len = blk_to_logical(inode, 1);
1964 
1965 	start_blk = logical_to_blk(inode, start);
1966 	last_blk = logical_to_blk(inode, start + len - 1);
1967 
1968 next:
1969 	memset(&map_bh, 0, sizeof(struct buffer_head));
1970 	map_bh.b_size = len;
1971 
1972 	if (compr_cluster)
1973 		map_bh.b_size = blk_to_logical(inode, cluster_size - 1);
1974 
1975 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1976 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1977 	if (ret)
1978 		goto out;
1979 
1980 	/* HOLE */
1981 	if (!buffer_mapped(&map_bh)) {
1982 		start_blk = next_pgofs;
1983 
1984 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1985 						max_inode_blocks(inode)))
1986 			goto prep_next;
1987 
1988 		flags |= FIEMAP_EXTENT_LAST;
1989 	}
1990 
1991 	if (size) {
1992 		if (IS_ENCRYPTED(inode))
1993 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1994 
1995 		ret = fiemap_fill_next_extent(fieinfo, logical,
1996 				phys, size, flags);
1997 		if (ret)
1998 			goto out;
1999 		size = 0;
2000 	}
2001 
2002 	if (start_blk > last_blk)
2003 		goto out;
2004 
2005 	if (compr_cluster) {
2006 		compr_cluster = false;
2007 
2008 
2009 		logical = blk_to_logical(inode, start_blk - 1);
2010 		phys = blk_to_logical(inode, map_bh.b_blocknr);
2011 		size = blk_to_logical(inode, cluster_size);
2012 
2013 		flags |= FIEMAP_EXTENT_ENCODED;
2014 
2015 		start_blk += cluster_size - 1;
2016 
2017 		if (start_blk > last_blk)
2018 			goto out;
2019 
2020 		goto prep_next;
2021 	}
2022 
2023 	if (map_bh.b_blocknr == COMPRESS_ADDR) {
2024 		compr_cluster = true;
2025 		start_blk++;
2026 		goto prep_next;
2027 	}
2028 
2029 	logical = blk_to_logical(inode, start_blk);
2030 	phys = blk_to_logical(inode, map_bh.b_blocknr);
2031 	size = map_bh.b_size;
2032 	flags = 0;
2033 	if (buffer_unwritten(&map_bh))
2034 		flags = FIEMAP_EXTENT_UNWRITTEN;
2035 
2036 	start_blk += logical_to_blk(inode, size);
2037 
2038 prep_next:
2039 	cond_resched();
2040 	if (fatal_signal_pending(current))
2041 		ret = -EINTR;
2042 	else
2043 		goto next;
2044 out:
2045 	if (ret == 1)
2046 		ret = 0;
2047 
2048 	inode_unlock(inode);
2049 	return ret;
2050 }
2051 
f2fs_readpage_limit(struct inode * inode)2052 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2053 {
2054 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
2055 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2056 		return inode->i_sb->s_maxbytes;
2057 
2058 	return i_size_read(inode);
2059 }
2060 
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2061 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2062 					unsigned nr_pages,
2063 					struct f2fs_map_blocks *map,
2064 					struct bio **bio_ret,
2065 					sector_t *last_block_in_bio,
2066 					bool is_readahead)
2067 {
2068 	struct bio *bio = *bio_ret;
2069 	const unsigned blkbits = inode->i_blkbits;
2070 	const unsigned blocksize = 1 << blkbits;
2071 	sector_t block_in_file;
2072 	sector_t last_block;
2073 	sector_t last_block_in_file;
2074 	sector_t block_nr;
2075 	int ret = 0;
2076 
2077 	block_in_file = (sector_t)page_index(page);
2078 	last_block = block_in_file + nr_pages;
2079 	last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
2080 							blkbits;
2081 	if (last_block > last_block_in_file)
2082 		last_block = last_block_in_file;
2083 
2084 	/* just zeroing out page which is beyond EOF */
2085 	if (block_in_file >= last_block)
2086 		goto zero_out;
2087 	/*
2088 	 * Map blocks using the previous result first.
2089 	 */
2090 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2091 			block_in_file > map->m_lblk &&
2092 			block_in_file < (map->m_lblk + map->m_len))
2093 		goto got_it;
2094 
2095 	/*
2096 	 * Then do more f2fs_map_blocks() calls until we are
2097 	 * done with this page.
2098 	 */
2099 	map->m_lblk = block_in_file;
2100 	map->m_len = last_block - block_in_file;
2101 
2102 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2103 	if (ret)
2104 		goto out;
2105 got_it:
2106 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2107 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2108 		SetPageMappedToDisk(page);
2109 
2110 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2111 					!cleancache_get_page(page))) {
2112 			SetPageUptodate(page);
2113 			goto confused;
2114 		}
2115 
2116 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2117 						DATA_GENERIC_ENHANCE_READ)) {
2118 			ret = -EFSCORRUPTED;
2119 			goto out;
2120 		}
2121 	} else {
2122 zero_out:
2123 		zero_user_segment(page, 0, PAGE_SIZE);
2124 		if (f2fs_need_verity(inode, page->index) &&
2125 		    !fsverity_verify_page(page)) {
2126 			ret = -EIO;
2127 			goto out;
2128 		}
2129 		if (!PageUptodate(page))
2130 			SetPageUptodate(page);
2131 		unlock_page(page);
2132 		goto out;
2133 	}
2134 
2135 	/*
2136 	 * This page will go to BIO.  Do we need to send this
2137 	 * BIO off first?
2138 	 */
2139 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2140 				       *last_block_in_bio, block_nr) ||
2141 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2142 submit_and_realloc:
2143 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2144 		bio = NULL;
2145 	}
2146 	if (bio == NULL) {
2147 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2148 				is_readahead ? REQ_RAHEAD : 0, page->index,
2149 				false);
2150 		if (IS_ERR(bio)) {
2151 			ret = PTR_ERR(bio);
2152 			bio = NULL;
2153 			goto out;
2154 		}
2155 	}
2156 
2157 	/*
2158 	 * If the page is under writeback, we need to wait for
2159 	 * its completion to see the correct decrypted data.
2160 	 */
2161 	f2fs_wait_on_block_writeback(inode, block_nr);
2162 
2163 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2164 		goto submit_and_realloc;
2165 
2166 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2167 	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2168 	ClearPageError(page);
2169 	*last_block_in_bio = block_nr;
2170 	goto out;
2171 confused:
2172 	if (bio) {
2173 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2174 		bio = NULL;
2175 	}
2176 	unlock_page(page);
2177 out:
2178 	*bio_ret = bio;
2179 	return ret;
2180 }
2181 
2182 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2183 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2184 				unsigned nr_pages, sector_t *last_block_in_bio,
2185 				bool is_readahead, bool for_write)
2186 {
2187 	struct dnode_of_data dn;
2188 	struct inode *inode = cc->inode;
2189 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2190 	struct bio *bio = *bio_ret;
2191 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2192 	sector_t last_block_in_file;
2193 	const unsigned blkbits = inode->i_blkbits;
2194 	const unsigned blocksize = 1 << blkbits;
2195 	struct decompress_io_ctx *dic = NULL;
2196 	int i;
2197 	int ret = 0;
2198 
2199 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2200 
2201 	last_block_in_file = (f2fs_readpage_limit(inode) +
2202 					blocksize - 1) >> blkbits;
2203 
2204 	/* get rid of pages beyond EOF */
2205 	for (i = 0; i < cc->cluster_size; i++) {
2206 		struct page *page = cc->rpages[i];
2207 
2208 		if (!page)
2209 			continue;
2210 		if ((sector_t)page->index >= last_block_in_file) {
2211 			zero_user_segment(page, 0, PAGE_SIZE);
2212 			if (!PageUptodate(page))
2213 				SetPageUptodate(page);
2214 		} else if (!PageUptodate(page)) {
2215 			continue;
2216 		}
2217 		unlock_page(page);
2218 		cc->rpages[i] = NULL;
2219 		cc->nr_rpages--;
2220 	}
2221 
2222 	/* we are done since all pages are beyond EOF */
2223 	if (f2fs_cluster_is_empty(cc))
2224 		goto out;
2225 
2226 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2227 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2228 	if (ret)
2229 		goto out;
2230 
2231 	/* cluster was overwritten as normal cluster */
2232 	if (dn.data_blkaddr != COMPRESS_ADDR)
2233 		goto out;
2234 
2235 	for (i = 1; i < cc->cluster_size; i++) {
2236 		block_t blkaddr;
2237 
2238 		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2239 						dn.ofs_in_node + i);
2240 
2241 		if (!__is_valid_data_blkaddr(blkaddr))
2242 			break;
2243 
2244 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2245 			ret = -EFAULT;
2246 			goto out_put_dnode;
2247 		}
2248 		cc->nr_cpages++;
2249 	}
2250 
2251 	/* nothing to decompress */
2252 	if (cc->nr_cpages == 0) {
2253 		ret = 0;
2254 		goto out_put_dnode;
2255 	}
2256 
2257 	dic = f2fs_alloc_dic(cc);
2258 	if (IS_ERR(dic)) {
2259 		ret = PTR_ERR(dic);
2260 		goto out_put_dnode;
2261 	}
2262 
2263 	for (i = 0; i < dic->nr_cpages; i++) {
2264 		struct page *page = dic->cpages[i];
2265 		block_t blkaddr;
2266 		struct bio_post_read_ctx *ctx;
2267 
2268 		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2269 						dn.ofs_in_node + i + 1);
2270 
2271 		if (bio && (!page_is_mergeable(sbi, bio,
2272 					*last_block_in_bio, blkaddr) ||
2273 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2274 submit_and_realloc:
2275 			__submit_bio(sbi, bio, DATA);
2276 			bio = NULL;
2277 		}
2278 
2279 		if (!bio) {
2280 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2281 					is_readahead ? REQ_RAHEAD : 0,
2282 					page->index, for_write);
2283 			if (IS_ERR(bio)) {
2284 				ret = PTR_ERR(bio);
2285 				dic->failed = true;
2286 				if (refcount_sub_and_test(dic->nr_cpages - i,
2287 							&dic->ref)) {
2288 					f2fs_decompress_end_io(dic->rpages,
2289 							cc->cluster_size, true,
2290 							false);
2291 					f2fs_free_dic(dic);
2292 				}
2293 				f2fs_put_dnode(&dn);
2294 				*bio_ret = NULL;
2295 				return ret;
2296 			}
2297 		}
2298 
2299 		f2fs_wait_on_block_writeback(inode, blkaddr);
2300 
2301 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2302 			goto submit_and_realloc;
2303 
2304 		/* tag STEP_DECOMPRESS to handle IO in wq */
2305 		ctx = bio->bi_private;
2306 		if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS)))
2307 			ctx->enabled_steps |= 1 << STEP_DECOMPRESS;
2308 
2309 		inc_page_count(sbi, F2FS_RD_DATA);
2310 		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2311 		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2312 		ClearPageError(page);
2313 		*last_block_in_bio = blkaddr;
2314 	}
2315 
2316 	f2fs_put_dnode(&dn);
2317 
2318 	*bio_ret = bio;
2319 	return 0;
2320 
2321 out_put_dnode:
2322 	f2fs_put_dnode(&dn);
2323 out:
2324 	f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2325 	*bio_ret = bio;
2326 	return ret;
2327 }
2328 #endif
2329 
2330 /*
2331  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2332  * Major change was from block_size == page_size in f2fs by default.
2333  *
2334  * Note that the aops->readpages() function is ONLY used for read-ahead. If
2335  * this function ever deviates from doing just read-ahead, it should either
2336  * use ->readpage() or do the necessary surgery to decouple ->readpages()
2337  * from read-ahead.
2338  */
f2fs_mpage_readpages(struct address_space * mapping,struct list_head * pages,struct page * page,unsigned nr_pages,bool is_readahead)2339 int f2fs_mpage_readpages(struct address_space *mapping,
2340 			struct list_head *pages, struct page *page,
2341 			unsigned nr_pages, bool is_readahead)
2342 {
2343 	struct bio *bio = NULL;
2344 	sector_t last_block_in_bio = 0;
2345 	struct inode *inode = mapping->host;
2346 	struct f2fs_map_blocks map;
2347 #ifdef CONFIG_F2FS_FS_COMPRESSION
2348 	struct compress_ctx cc = {
2349 		.inode = inode,
2350 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2351 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2352 		.cluster_idx = NULL_CLUSTER,
2353 		.rpages = NULL,
2354 		.cpages = NULL,
2355 		.nr_rpages = 0,
2356 		.nr_cpages = 0,
2357 	};
2358 #endif
2359 	unsigned max_nr_pages = nr_pages;
2360 	int ret = 0;
2361 
2362 	/* this is real from f2fs_merkle_tree_readahead() in old kernel only. */
2363 	if (!nr_pages)
2364 		return 0;
2365 
2366 	map.m_pblk = 0;
2367 	map.m_lblk = 0;
2368 	map.m_len = 0;
2369 	map.m_flags = 0;
2370 	map.m_next_pgofs = NULL;
2371 	map.m_next_extent = NULL;
2372 	map.m_seg_type = NO_CHECK_TYPE;
2373 	map.m_may_create = false;
2374 
2375 	for (; nr_pages; nr_pages--) {
2376 		if (pages) {
2377 			page = list_last_entry(pages, struct page, lru);
2378 
2379 			prefetchw(&page->flags);
2380 			list_del(&page->lru);
2381 			if (add_to_page_cache_lru(page, mapping,
2382 						  page_index(page),
2383 						  readahead_gfp_mask(mapping)))
2384 				goto next_page;
2385 		}
2386 
2387 #ifdef CONFIG_F2FS_FS_COMPRESSION
2388 		if (f2fs_compressed_file(inode)) {
2389 			/* there are remained comressed pages, submit them */
2390 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2391 				ret = f2fs_read_multi_pages(&cc, &bio,
2392 							max_nr_pages,
2393 							&last_block_in_bio,
2394 							is_readahead, false);
2395 				f2fs_destroy_compress_ctx(&cc);
2396 				if (ret)
2397 					goto set_error_page;
2398 			}
2399 			ret = f2fs_is_compressed_cluster(inode, page->index);
2400 			if (ret < 0)
2401 				goto set_error_page;
2402 			else if (!ret)
2403 				goto read_single_page;
2404 
2405 			ret = f2fs_init_compress_ctx(&cc);
2406 			if (ret)
2407 				goto set_error_page;
2408 
2409 			f2fs_compress_ctx_add_page(&cc, page);
2410 
2411 			goto next_page;
2412 		}
2413 read_single_page:
2414 #endif
2415 
2416 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2417 					&bio, &last_block_in_bio, is_readahead);
2418 		if (ret) {
2419 #ifdef CONFIG_F2FS_FS_COMPRESSION
2420 set_error_page:
2421 #endif
2422 			SetPageError(page);
2423 			zero_user_segment(page, 0, PAGE_SIZE);
2424 			unlock_page(page);
2425 		}
2426 next_page:
2427 		if (pages)
2428 			put_page(page);
2429 
2430 #ifdef CONFIG_F2FS_FS_COMPRESSION
2431 		if (f2fs_compressed_file(inode)) {
2432 			/* last page */
2433 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2434 				ret = f2fs_read_multi_pages(&cc, &bio,
2435 							max_nr_pages,
2436 							&last_block_in_bio,
2437 							is_readahead, false);
2438 				f2fs_destroy_compress_ctx(&cc);
2439 			}
2440 		}
2441 #endif
2442 	}
2443 	BUG_ON(pages && !list_empty(pages));
2444 	if (bio)
2445 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2446 	return pages ? 0 : ret;
2447 }
2448 
f2fs_read_data_page(struct file * file,struct page * page)2449 static int f2fs_read_data_page(struct file *file, struct page *page)
2450 {
2451 	struct inode *inode = page_file_mapping(page)->host;
2452 	int ret = -EAGAIN;
2453 
2454 	trace_f2fs_readpage(page, DATA);
2455 
2456 	if (!f2fs_is_compress_backend_ready(inode)) {
2457 		unlock_page(page);
2458 		return -EOPNOTSUPP;
2459 	}
2460 
2461 	/* If the file has inline data, try to read it directly */
2462 	if (f2fs_has_inline_data(inode))
2463 		ret = f2fs_read_inline_data(inode, page);
2464 	if (ret == -EAGAIN)
2465 		ret = f2fs_mpage_readpages(page_file_mapping(page),
2466 						NULL, page, 1, false);
2467 	return ret;
2468 }
2469 
f2fs_read_data_pages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)2470 static int f2fs_read_data_pages(struct file *file,
2471 			struct address_space *mapping,
2472 			struct list_head *pages, unsigned nr_pages)
2473 {
2474 	struct inode *inode = mapping->host;
2475 	struct page *page = list_last_entry(pages, struct page, lru);
2476 
2477 	trace_f2fs_readpages(inode, page, nr_pages);
2478 
2479 	if (!f2fs_is_compress_backend_ready(inode))
2480 		return 0;
2481 
2482 	/* If the file has inline data, skip readpages */
2483 	if (f2fs_has_inline_data(inode))
2484 		return 0;
2485 
2486 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
2487 }
2488 
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2489 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2490 {
2491 	struct inode *inode = fio->page->mapping->host;
2492 	struct page *mpage, *page;
2493 	gfp_t gfp_flags = GFP_NOFS;
2494 
2495 	if (!f2fs_encrypted_file(inode))
2496 		return 0;
2497 
2498 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2499 
2500 	/* wait for GCed page writeback via META_MAPPING */
2501 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2502 
2503 	if (fscrypt_inode_uses_inline_crypto(inode))
2504 		return 0;
2505 
2506 retry_encrypt:
2507 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2508 					PAGE_SIZE, 0, gfp_flags);
2509 	if (IS_ERR(fio->encrypted_page)) {
2510 		/* flush pending IOs and wait for a while in the ENOMEM case */
2511 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2512 			f2fs_flush_merged_writes(fio->sbi);
2513 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2514 			gfp_flags |= __GFP_NOFAIL;
2515 			goto retry_encrypt;
2516 		}
2517 		return PTR_ERR(fio->encrypted_page);
2518 	}
2519 
2520 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2521 	if (mpage) {
2522 		if (PageUptodate(mpage))
2523 			memcpy(page_address(mpage),
2524 				page_address(fio->encrypted_page), PAGE_SIZE);
2525 		f2fs_put_page(mpage, 1);
2526 	}
2527 	return 0;
2528 }
2529 
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2530 static inline bool check_inplace_update_policy(struct inode *inode,
2531 				struct f2fs_io_info *fio)
2532 {
2533 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2534 	unsigned int policy = SM_I(sbi)->ipu_policy;
2535 
2536 	if (policy & (0x1 << F2FS_IPU_FORCE))
2537 		return true;
2538 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2539 		return true;
2540 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2541 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2542 		return true;
2543 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2544 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2545 		return true;
2546 
2547 	/*
2548 	 * IPU for rewrite async pages
2549 	 */
2550 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2551 			fio && fio->op == REQ_OP_WRITE &&
2552 			!(fio->op_flags & REQ_SYNC) &&
2553 			!IS_ENCRYPTED(inode))
2554 		return true;
2555 
2556 	/* this is only set during fdatasync */
2557 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2558 			is_inode_flag_set(inode, FI_NEED_IPU))
2559 		return true;
2560 
2561 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2562 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2563 		return true;
2564 
2565 	return false;
2566 }
2567 
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2568 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2569 {
2570 	if (f2fs_is_pinned_file(inode))
2571 		return true;
2572 
2573 	/* if this is cold file, we should overwrite to avoid fragmentation */
2574 	if (file_is_cold(inode))
2575 		return true;
2576 
2577 	return check_inplace_update_policy(inode, fio);
2578 }
2579 
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2580 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2581 {
2582 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2583 
2584 	/* The below cases were checked when setting it. */
2585 	if (f2fs_is_pinned_file(inode))
2586 		return false;
2587 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2588 		return true;
2589 	if (f2fs_lfs_mode(sbi))
2590 		return true;
2591 	if (S_ISDIR(inode->i_mode))
2592 		return true;
2593 	if (IS_NOQUOTA(inode))
2594 		return true;
2595 	if (f2fs_is_atomic_file(inode))
2596 		return true;
2597 	if (fio) {
2598 		if (is_cold_data(fio->page))
2599 			return true;
2600 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2601 			return true;
2602 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2603 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2604 			return true;
2605 	}
2606 	return false;
2607 }
2608 
need_inplace_update(struct f2fs_io_info * fio)2609 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2610 {
2611 	struct inode *inode = fio->page->mapping->host;
2612 
2613 	if (f2fs_should_update_outplace(inode, fio))
2614 		return false;
2615 
2616 	return f2fs_should_update_inplace(inode, fio);
2617 }
2618 
f2fs_do_write_data_page(struct f2fs_io_info * fio)2619 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2620 {
2621 	struct page *page = fio->page;
2622 	struct inode *inode = page->mapping->host;
2623 	struct dnode_of_data dn;
2624 	struct extent_info ei = {0,0,0};
2625 	struct node_info ni;
2626 	bool ipu_force = false;
2627 	int err = 0;
2628 
2629 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2630 	if (need_inplace_update(fio) &&
2631 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2632 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2633 
2634 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2635 						DATA_GENERIC_ENHANCE))
2636 			return -EFSCORRUPTED;
2637 
2638 		ipu_force = true;
2639 		fio->need_lock = LOCK_DONE;
2640 		goto got_it;
2641 	}
2642 
2643 	/* Deadlock due to between page->lock and f2fs_lock_op */
2644 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2645 		return -EAGAIN;
2646 
2647 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2648 	if (err)
2649 		goto out;
2650 
2651 	fio->old_blkaddr = dn.data_blkaddr;
2652 
2653 	/* This page is already truncated */
2654 	if (fio->old_blkaddr == NULL_ADDR) {
2655 		ClearPageUptodate(page);
2656 		clear_cold_data(page);
2657 		goto out_writepage;
2658 	}
2659 got_it:
2660 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2661 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2662 						DATA_GENERIC_ENHANCE)) {
2663 		err = -EFSCORRUPTED;
2664 		goto out_writepage;
2665 	}
2666 	/*
2667 	 * If current allocation needs SSR,
2668 	 * it had better in-place writes for updated data.
2669 	 */
2670 	if (ipu_force ||
2671 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2672 					need_inplace_update(fio))) {
2673 		err = f2fs_encrypt_one_page(fio);
2674 		if (err)
2675 			goto out_writepage;
2676 
2677 		set_page_writeback(page);
2678 		ClearPageError(page);
2679 		f2fs_put_dnode(&dn);
2680 		if (fio->need_lock == LOCK_REQ)
2681 			f2fs_unlock_op(fio->sbi);
2682 		err = f2fs_inplace_write_data(fio);
2683 		if (err) {
2684 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2685 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2686 			if (PageWriteback(page))
2687 				end_page_writeback(page);
2688 		} else {
2689 			set_inode_flag(inode, FI_UPDATE_WRITE);
2690 		}
2691 		trace_f2fs_do_write_data_page(fio->page, IPU);
2692 		return err;
2693 	}
2694 
2695 	if (fio->need_lock == LOCK_RETRY) {
2696 		if (!f2fs_trylock_op(fio->sbi)) {
2697 			err = -EAGAIN;
2698 			goto out_writepage;
2699 		}
2700 		fio->need_lock = LOCK_REQ;
2701 	}
2702 
2703 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2704 	if (err)
2705 		goto out_writepage;
2706 
2707 	fio->version = ni.version;
2708 
2709 	err = f2fs_encrypt_one_page(fio);
2710 	if (err)
2711 		goto out_writepage;
2712 
2713 	set_page_writeback(page);
2714 	ClearPageError(page);
2715 
2716 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2717 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2718 
2719 	/* LFS mode write path */
2720 	f2fs_outplace_write_data(&dn, fio);
2721 	trace_f2fs_do_write_data_page(page, OPU);
2722 	set_inode_flag(inode, FI_APPEND_WRITE);
2723 	if (page->index == 0)
2724 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2725 out_writepage:
2726 	f2fs_put_dnode(&dn);
2727 out:
2728 	if (fio->need_lock == LOCK_REQ)
2729 		f2fs_unlock_op(fio->sbi);
2730 	return err;
2731 }
2732 
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks)2733 int f2fs_write_single_data_page(struct page *page, int *submitted,
2734 				struct bio **bio,
2735 				sector_t *last_block,
2736 				struct writeback_control *wbc,
2737 				enum iostat_type io_type,
2738 				int compr_blocks)
2739 {
2740 	struct inode *inode = page->mapping->host;
2741 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2742 	loff_t i_size = i_size_read(inode);
2743 	const pgoff_t end_index = ((unsigned long long)i_size)
2744 							>> PAGE_SHIFT;
2745 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2746 	unsigned offset = 0;
2747 	bool need_balance_fs = false;
2748 	int err = 0;
2749 	struct f2fs_io_info fio = {
2750 		.sbi = sbi,
2751 		.ino = inode->i_ino,
2752 		.type = DATA,
2753 		.op = REQ_OP_WRITE,
2754 		.op_flags = wbc_to_write_flags(wbc),
2755 		.old_blkaddr = NULL_ADDR,
2756 		.page = page,
2757 		.encrypted_page = NULL,
2758 		.submitted = false,
2759 		.compr_blocks = compr_blocks,
2760 		.need_lock = LOCK_RETRY,
2761 		.io_type = io_type,
2762 		.io_wbc = wbc,
2763 		.bio = bio,
2764 		.last_block = last_block,
2765 	};
2766 
2767 	trace_f2fs_writepage(page, DATA);
2768 
2769 	/* we should bypass data pages to proceed the kworkder jobs */
2770 	if (unlikely(f2fs_cp_error(sbi))) {
2771 		mapping_set_error(page->mapping, -EIO);
2772 		/*
2773 		 * don't drop any dirty dentry pages for keeping lastest
2774 		 * directory structure.
2775 		 */
2776 		if (S_ISDIR(inode->i_mode) &&
2777 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2778 			goto redirty_out;
2779 		goto out;
2780 	}
2781 
2782 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2783 		goto redirty_out;
2784 
2785 	if (page->index < end_index ||
2786 			f2fs_verity_in_progress(inode) ||
2787 			compr_blocks)
2788 		goto write;
2789 
2790 	/*
2791 	 * If the offset is out-of-range of file size,
2792 	 * this page does not have to be written to disk.
2793 	 */
2794 	offset = i_size & (PAGE_SIZE - 1);
2795 	if ((page->index >= end_index + 1) || !offset)
2796 		goto out;
2797 
2798 	zero_user_segment(page, offset, PAGE_SIZE);
2799 write:
2800 	if (f2fs_is_drop_cache(inode))
2801 		goto out;
2802 	/* we should not write 0'th page having journal header */
2803 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2804 			(!wbc->for_reclaim &&
2805 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2806 		goto redirty_out;
2807 
2808 	/* Dentry/quota blocks are controlled by checkpoint */
2809 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2810 		fio.need_lock = LOCK_DONE;
2811 		err = f2fs_do_write_data_page(&fio);
2812 		goto done;
2813 	}
2814 
2815 	if (!wbc->for_reclaim)
2816 		need_balance_fs = true;
2817 	else if (has_not_enough_free_secs(sbi, 0, 0))
2818 		goto redirty_out;
2819 	else
2820 		set_inode_flag(inode, FI_HOT_DATA);
2821 
2822 	err = -EAGAIN;
2823 	if (f2fs_has_inline_data(inode)) {
2824 		err = f2fs_write_inline_data(inode, page);
2825 		if (!err)
2826 			goto out;
2827 	}
2828 
2829 	if (err == -EAGAIN) {
2830 		err = f2fs_do_write_data_page(&fio);
2831 		if (err == -EAGAIN) {
2832 			fio.need_lock = LOCK_REQ;
2833 			err = f2fs_do_write_data_page(&fio);
2834 		}
2835 	}
2836 
2837 	if (err) {
2838 		file_set_keep_isize(inode);
2839 	} else {
2840 		spin_lock(&F2FS_I(inode)->i_size_lock);
2841 		if (F2FS_I(inode)->last_disk_size < psize)
2842 			F2FS_I(inode)->last_disk_size = psize;
2843 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2844 	}
2845 
2846 done:
2847 	if (err && err != -ENOENT)
2848 		goto redirty_out;
2849 
2850 out:
2851 	inode_dec_dirty_pages(inode);
2852 	if (err) {
2853 		ClearPageUptodate(page);
2854 		clear_cold_data(page);
2855 	}
2856 
2857 	if (wbc->for_reclaim) {
2858 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2859 		clear_inode_flag(inode, FI_HOT_DATA);
2860 		f2fs_remove_dirty_inode(inode);
2861 		submitted = NULL;
2862 	}
2863 	unlock_page(page);
2864 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2865 					!F2FS_I(inode)->cp_task)
2866 		f2fs_balance_fs(sbi, need_balance_fs);
2867 
2868 	if (unlikely(f2fs_cp_error(sbi))) {
2869 		f2fs_submit_merged_write(sbi, DATA);
2870 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2871 		submitted = NULL;
2872 	}
2873 
2874 	if (submitted)
2875 		*submitted = fio.submitted ? 1 : 0;
2876 
2877 	return 0;
2878 
2879 redirty_out:
2880 	redirty_page_for_writepage(wbc, page);
2881 	/*
2882 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2883 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2884 	 * file_write_and_wait_range() will see EIO error, which is critical
2885 	 * to return value of fsync() followed by atomic_write failure to user.
2886 	 */
2887 	if (!err || wbc->for_reclaim)
2888 		return AOP_WRITEPAGE_ACTIVATE;
2889 	unlock_page(page);
2890 	return err;
2891 }
2892 
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2893 static int f2fs_write_data_page(struct page *page,
2894 					struct writeback_control *wbc)
2895 {
2896 #ifdef CONFIG_F2FS_FS_COMPRESSION
2897 	struct inode *inode = page->mapping->host;
2898 
2899 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2900 		goto out;
2901 
2902 	if (f2fs_compressed_file(inode)) {
2903 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2904 			redirty_page_for_writepage(wbc, page);
2905 			return AOP_WRITEPAGE_ACTIVATE;
2906 		}
2907 	}
2908 out:
2909 #endif
2910 
2911 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2912 						wbc, FS_DATA_IO, 0);
2913 }
2914 
2915 /*
2916  * This function was copied from write_cche_pages from mm/page-writeback.c.
2917  * The major change is making write step of cold data page separately from
2918  * warm/hot data page.
2919  */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2920 static int f2fs_write_cache_pages(struct address_space *mapping,
2921 					struct writeback_control *wbc,
2922 					enum iostat_type io_type)
2923 {
2924 	int ret = 0;
2925 	int done = 0, retry = 0;
2926 	struct pagevec pvec;
2927 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2928 	struct bio *bio = NULL;
2929 	sector_t last_block;
2930 #ifdef CONFIG_F2FS_FS_COMPRESSION
2931 	struct inode *inode = mapping->host;
2932 	struct compress_ctx cc = {
2933 		.inode = inode,
2934 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2935 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2936 		.cluster_idx = NULL_CLUSTER,
2937 		.rpages = NULL,
2938 		.nr_rpages = 0,
2939 		.cpages = NULL,
2940 		.rbuf = NULL,
2941 		.cbuf = NULL,
2942 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2943 		.private = NULL,
2944 	};
2945 #endif
2946 	int nr_pages;
2947 	pgoff_t uninitialized_var(writeback_index);
2948 	pgoff_t index;
2949 	pgoff_t end;		/* Inclusive */
2950 	pgoff_t done_index;
2951 	int range_whole = 0;
2952 	xa_mark_t tag;
2953 	int nwritten = 0;
2954 	int submitted = 0;
2955 	int i;
2956 
2957 	pagevec_init(&pvec);
2958 
2959 	if (get_dirty_pages(mapping->host) <=
2960 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2961 		set_inode_flag(mapping->host, FI_HOT_DATA);
2962 	else
2963 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2964 
2965 	if (wbc->range_cyclic) {
2966 		writeback_index = mapping->writeback_index; /* prev offset */
2967 		index = writeback_index;
2968 		end = -1;
2969 	} else {
2970 		index = wbc->range_start >> PAGE_SHIFT;
2971 		end = wbc->range_end >> PAGE_SHIFT;
2972 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2973 			range_whole = 1;
2974 	}
2975 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2976 		tag = PAGECACHE_TAG_TOWRITE;
2977 	else
2978 		tag = PAGECACHE_TAG_DIRTY;
2979 retry:
2980 	retry = 0;
2981 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2982 		tag_pages_for_writeback(mapping, index, end);
2983 	done_index = index;
2984 	while (!done && !retry && (index <= end)) {
2985 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2986 				tag);
2987 		if (nr_pages == 0)
2988 			break;
2989 
2990 		for (i = 0; i < nr_pages; i++) {
2991 			struct page *page = pvec.pages[i];
2992 			bool need_readd;
2993 readd:
2994 			need_readd = false;
2995 #ifdef CONFIG_F2FS_FS_COMPRESSION
2996 			if (f2fs_compressed_file(inode)) {
2997 				ret = f2fs_init_compress_ctx(&cc);
2998 				if (ret) {
2999 					done = 1;
3000 					break;
3001 				}
3002 
3003 				if (!f2fs_cluster_can_merge_page(&cc,
3004 								page->index)) {
3005 					ret = f2fs_write_multi_pages(&cc,
3006 						&submitted, wbc, io_type);
3007 					if (!ret)
3008 						need_readd = true;
3009 					goto result;
3010 				}
3011 
3012 				if (unlikely(f2fs_cp_error(sbi)))
3013 					goto lock_page;
3014 
3015 				if (f2fs_cluster_is_empty(&cc)) {
3016 					void *fsdata = NULL;
3017 					struct page *pagep;
3018 					int ret2;
3019 
3020 					ret2 = f2fs_prepare_compress_overwrite(
3021 							inode, &pagep,
3022 							page->index, &fsdata);
3023 					if (ret2 < 0) {
3024 						ret = ret2;
3025 						done = 1;
3026 						break;
3027 					} else if (ret2 &&
3028 						!f2fs_compress_write_end(inode,
3029 								fsdata, page->index,
3030 								1)) {
3031 						retry = 1;
3032 						break;
3033 					}
3034 				} else {
3035 					goto lock_page;
3036 				}
3037 			}
3038 #endif
3039 			/* give a priority to WB_SYNC threads */
3040 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3041 					wbc->sync_mode == WB_SYNC_NONE) {
3042 				done = 1;
3043 				break;
3044 			}
3045 #ifdef CONFIG_F2FS_FS_COMPRESSION
3046 lock_page:
3047 #endif
3048 			done_index = page->index;
3049 retry_write:
3050 			lock_page(page);
3051 
3052 			if (unlikely(page->mapping != mapping)) {
3053 continue_unlock:
3054 				unlock_page(page);
3055 				continue;
3056 			}
3057 
3058 			if (!PageDirty(page)) {
3059 				/* someone wrote it for us */
3060 				goto continue_unlock;
3061 			}
3062 
3063 			if (PageWriteback(page)) {
3064 				if (wbc->sync_mode != WB_SYNC_NONE)
3065 					f2fs_wait_on_page_writeback(page,
3066 							DATA, true, true);
3067 				else
3068 					goto continue_unlock;
3069 			}
3070 
3071 			if (!clear_page_dirty_for_io(page))
3072 				goto continue_unlock;
3073 
3074 #ifdef CONFIG_F2FS_FS_COMPRESSION
3075 			if (f2fs_compressed_file(inode)) {
3076 				get_page(page);
3077 				f2fs_compress_ctx_add_page(&cc, page);
3078 				continue;
3079 			}
3080 #endif
3081 			ret = f2fs_write_single_data_page(page, &submitted,
3082 					&bio, &last_block, wbc, io_type, 0);
3083 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3084 				unlock_page(page);
3085 #ifdef CONFIG_F2FS_FS_COMPRESSION
3086 result:
3087 #endif
3088 			nwritten += submitted;
3089 			wbc->nr_to_write -= submitted;
3090 
3091 			if (unlikely(ret)) {
3092 				/*
3093 				 * keep nr_to_write, since vfs uses this to
3094 				 * get # of written pages.
3095 				 */
3096 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3097 					ret = 0;
3098 					goto next;
3099 				} else if (ret == -EAGAIN) {
3100 					ret = 0;
3101 					if (wbc->sync_mode == WB_SYNC_ALL) {
3102 						cond_resched();
3103 						congestion_wait(BLK_RW_ASYNC,
3104 							DEFAULT_IO_TIMEOUT);
3105 						goto retry_write;
3106 					}
3107 					goto next;
3108 				}
3109 				done_index = page->index + 1;
3110 				done = 1;
3111 				break;
3112 			}
3113 
3114 			if (wbc->nr_to_write <= 0 &&
3115 					wbc->sync_mode == WB_SYNC_NONE) {
3116 				done = 1;
3117 				break;
3118 			}
3119 next:
3120 			if (need_readd)
3121 				goto readd;
3122 		}
3123 		pagevec_release(&pvec);
3124 		cond_resched();
3125 	}
3126 #ifdef CONFIG_F2FS_FS_COMPRESSION
3127 	/* flush remained pages in compress cluster */
3128 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3129 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3130 		nwritten += submitted;
3131 		wbc->nr_to_write -= submitted;
3132 		if (ret) {
3133 			done = 1;
3134 			retry = 0;
3135 		}
3136 	}
3137 #endif
3138 	if (retry) {
3139 		index = 0;
3140 		end = -1;
3141 		goto retry;
3142 	}
3143 	if (wbc->range_cyclic && !done)
3144 		done_index = 0;
3145 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3146 		mapping->writeback_index = done_index;
3147 
3148 	if (nwritten)
3149 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3150 								NULL, 0, DATA);
3151 	/* submit cached bio of IPU write */
3152 	if (bio)
3153 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3154 
3155 	return ret;
3156 }
3157 
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3158 static inline bool __should_serialize_io(struct inode *inode,
3159 					struct writeback_control *wbc)
3160 {
3161 	/* to avoid deadlock in path of data flush */
3162 	if (F2FS_I(inode)->cp_task)
3163 		return false;
3164 
3165 	if (!S_ISREG(inode->i_mode))
3166 		return false;
3167 	if (IS_NOQUOTA(inode))
3168 		return false;
3169 
3170 	if (f2fs_compressed_file(inode))
3171 		return true;
3172 	if (wbc->sync_mode != WB_SYNC_ALL)
3173 		return true;
3174 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3175 		return true;
3176 	return false;
3177 }
3178 
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3179 static int __f2fs_write_data_pages(struct address_space *mapping,
3180 						struct writeback_control *wbc,
3181 						enum iostat_type io_type)
3182 {
3183 	struct inode *inode = mapping->host;
3184 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3185 	struct blk_plug plug;
3186 	int ret;
3187 	bool locked = false;
3188 
3189 	/* deal with chardevs and other special file */
3190 	if (!mapping->a_ops->writepage)
3191 		return 0;
3192 
3193 	/* skip writing if there is no dirty page in this inode */
3194 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3195 		return 0;
3196 
3197 	/* during POR, we don't need to trigger writepage at all. */
3198 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3199 		goto skip_write;
3200 
3201 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3202 			wbc->sync_mode == WB_SYNC_NONE &&
3203 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3204 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3205 		goto skip_write;
3206 
3207 	/* skip writing during file defragment */
3208 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3209 		goto skip_write;
3210 
3211 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3212 
3213 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3214 	if (wbc->sync_mode == WB_SYNC_ALL)
3215 		atomic_inc(&sbi->wb_sync_req[DATA]);
3216 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3217 		/* to avoid potential deadlock */
3218 		if (current->plug)
3219 			blk_finish_plug(current->plug);
3220 		goto skip_write;
3221 	}
3222 
3223 	if (__should_serialize_io(inode, wbc)) {
3224 		mutex_lock(&sbi->writepages);
3225 		locked = true;
3226 	}
3227 
3228 	blk_start_plug(&plug);
3229 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3230 	blk_finish_plug(&plug);
3231 
3232 	if (locked)
3233 		mutex_unlock(&sbi->writepages);
3234 
3235 	if (wbc->sync_mode == WB_SYNC_ALL)
3236 		atomic_dec(&sbi->wb_sync_req[DATA]);
3237 	/*
3238 	 * if some pages were truncated, we cannot guarantee its mapping->host
3239 	 * to detect pending bios.
3240 	 */
3241 
3242 	f2fs_remove_dirty_inode(inode);
3243 	return ret;
3244 
3245 skip_write:
3246 	wbc->pages_skipped += get_dirty_pages(inode);
3247 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3248 	return 0;
3249 }
3250 
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3251 static int f2fs_write_data_pages(struct address_space *mapping,
3252 			    struct writeback_control *wbc)
3253 {
3254 	struct inode *inode = mapping->host;
3255 
3256 	return __f2fs_write_data_pages(mapping, wbc,
3257 			F2FS_I(inode)->cp_task == current ?
3258 			FS_CP_DATA_IO : FS_DATA_IO);
3259 }
3260 
f2fs_write_failed(struct address_space * mapping,loff_t to)3261 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3262 {
3263 	struct inode *inode = mapping->host;
3264 	loff_t i_size = i_size_read(inode);
3265 
3266 	if (IS_NOQUOTA(inode))
3267 		return;
3268 
3269 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3270 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3271 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3272 		down_write(&F2FS_I(inode)->i_mmap_sem);
3273 
3274 		truncate_pagecache(inode, i_size);
3275 		f2fs_truncate_blocks(inode, i_size, true);
3276 
3277 		up_write(&F2FS_I(inode)->i_mmap_sem);
3278 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3279 	}
3280 }
3281 
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3282 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3283 			struct page *page, loff_t pos, unsigned len,
3284 			block_t *blk_addr, bool *node_changed)
3285 {
3286 	struct inode *inode = page->mapping->host;
3287 	pgoff_t index = page->index;
3288 	struct dnode_of_data dn;
3289 	struct page *ipage;
3290 	bool locked = false;
3291 	struct extent_info ei = {0,0,0};
3292 	int err = 0;
3293 	int flag;
3294 
3295 	/*
3296 	 * we already allocated all the blocks, so we don't need to get
3297 	 * the block addresses when there is no need to fill the page.
3298 	 */
3299 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3300 	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3301 	    !f2fs_verity_in_progress(inode))
3302 		return 0;
3303 
3304 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3305 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3306 		flag = F2FS_GET_BLOCK_DEFAULT;
3307 	else
3308 		flag = F2FS_GET_BLOCK_PRE_AIO;
3309 
3310 	if (f2fs_has_inline_data(inode) ||
3311 			(pos & PAGE_MASK) >= i_size_read(inode)) {
3312 		__do_map_lock(sbi, flag, true);
3313 		locked = true;
3314 	}
3315 
3316 restart:
3317 	/* check inline_data */
3318 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3319 	if (IS_ERR(ipage)) {
3320 		err = PTR_ERR(ipage);
3321 		goto unlock_out;
3322 	}
3323 
3324 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3325 
3326 	if (f2fs_has_inline_data(inode)) {
3327 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3328 			f2fs_do_read_inline_data(page, ipage);
3329 			set_inode_flag(inode, FI_DATA_EXIST);
3330 			if (inode->i_nlink)
3331 				set_inline_node(ipage);
3332 		} else {
3333 			err = f2fs_convert_inline_page(&dn, page);
3334 			if (err)
3335 				goto out;
3336 			if (dn.data_blkaddr == NULL_ADDR)
3337 				err = f2fs_get_block(&dn, index);
3338 		}
3339 	} else if (locked) {
3340 		err = f2fs_get_block(&dn, index);
3341 	} else {
3342 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3343 			dn.data_blkaddr = ei.blk + index - ei.fofs;
3344 		} else {
3345 			/* hole case */
3346 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3347 			if (err || dn.data_blkaddr == NULL_ADDR) {
3348 				f2fs_put_dnode(&dn);
3349 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3350 								true);
3351 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3352 				locked = true;
3353 				goto restart;
3354 			}
3355 		}
3356 	}
3357 
3358 	/* convert_inline_page can make node_changed */
3359 	*blk_addr = dn.data_blkaddr;
3360 	*node_changed = dn.node_changed;
3361 out:
3362 	f2fs_put_dnode(&dn);
3363 unlock_out:
3364 	if (locked)
3365 		__do_map_lock(sbi, flag, false);
3366 	return err;
3367 }
3368 
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3369 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3370 		loff_t pos, unsigned len, unsigned flags,
3371 		struct page **pagep, void **fsdata)
3372 {
3373 	struct inode *inode = mapping->host;
3374 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3375 	struct page *page = NULL;
3376 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3377 	bool need_balance = false, drop_atomic = false;
3378 	block_t blkaddr = NULL_ADDR;
3379 	int err = 0;
3380 
3381 	/*
3382 	 * Should avoid quota operations which can make deadlock:
3383 	 * kswapd -> f2fs_evict_inode -> dquot_drop ->
3384 	 *   f2fs_dquot_commit -> f2fs_write_begin ->
3385 	 *   d_obtain_alias -> __d_alloc -> kmem_cache_alloc(GFP_KERNEL)
3386 	 */
3387 	if (trace_android_fs_datawrite_start_enabled() && !IS_NOQUOTA(inode)) {
3388 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3389 
3390 		path = android_fstrace_get_pathname(pathbuf,
3391 						    MAX_TRACE_PATHBUF_LEN,
3392 						    inode);
3393 		trace_android_fs_datawrite_start(inode, pos, len,
3394 						 current->pid, path,
3395 						 current->comm);
3396 	}
3397 	trace_f2fs_write_begin(inode, pos, len, flags);
3398 
3399 	if (!f2fs_is_checkpoint_ready(sbi)) {
3400 		err = -ENOSPC;
3401 		goto fail;
3402 	}
3403 
3404 	if ((f2fs_is_atomic_file(inode) &&
3405 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3406 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3407 		err = -ENOMEM;
3408 		drop_atomic = true;
3409 		goto fail;
3410 	}
3411 
3412 	/*
3413 	 * We should check this at this moment to avoid deadlock on inode page
3414 	 * and #0 page. The locking rule for inline_data conversion should be:
3415 	 * lock_page(page #0) -> lock_page(inode_page)
3416 	 */
3417 	if (index != 0) {
3418 		err = f2fs_convert_inline_inode(inode);
3419 		if (err)
3420 			goto fail;
3421 	}
3422 
3423 #ifdef CONFIG_F2FS_FS_COMPRESSION
3424 	if (f2fs_compressed_file(inode)) {
3425 		int ret;
3426 
3427 		*fsdata = NULL;
3428 
3429 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3430 							index, fsdata);
3431 		if (ret < 0) {
3432 			err = ret;
3433 			goto fail;
3434 		} else if (ret) {
3435 			return 0;
3436 		}
3437 	}
3438 #endif
3439 
3440 repeat:
3441 	/*
3442 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3443 	 * wait_for_stable_page. Will wait that below with our IO control.
3444 	 */
3445 	page = f2fs_pagecache_get_page(mapping, index,
3446 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3447 	if (!page) {
3448 		err = -ENOMEM;
3449 		goto fail;
3450 	}
3451 
3452 	/* TODO: cluster can be compressed due to race with .writepage */
3453 
3454 	*pagep = page;
3455 
3456 	err = prepare_write_begin(sbi, page, pos, len,
3457 					&blkaddr, &need_balance);
3458 	if (err)
3459 		goto fail;
3460 
3461 	if (need_balance && !IS_NOQUOTA(inode) &&
3462 			has_not_enough_free_secs(sbi, 0, 0)) {
3463 		unlock_page(page);
3464 		f2fs_balance_fs(sbi, true);
3465 		lock_page(page);
3466 		if (page->mapping != mapping) {
3467 			/* The page got truncated from under us */
3468 			f2fs_put_page(page, 1);
3469 			goto repeat;
3470 		}
3471 	}
3472 
3473 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3474 
3475 	if (len == PAGE_SIZE || PageUptodate(page))
3476 		return 0;
3477 
3478 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3479 	    !f2fs_verity_in_progress(inode)) {
3480 		zero_user_segment(page, len, PAGE_SIZE);
3481 		return 0;
3482 	}
3483 
3484 	if (blkaddr == NEW_ADDR) {
3485 		zero_user_segment(page, 0, PAGE_SIZE);
3486 		SetPageUptodate(page);
3487 	} else {
3488 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3489 				DATA_GENERIC_ENHANCE_READ)) {
3490 			err = -EFSCORRUPTED;
3491 			goto fail;
3492 		}
3493 		err = f2fs_submit_page_read(inode, page, blkaddr, true);
3494 		if (err)
3495 			goto fail;
3496 
3497 		lock_page(page);
3498 		if (unlikely(page->mapping != mapping)) {
3499 			f2fs_put_page(page, 1);
3500 			goto repeat;
3501 		}
3502 		if (unlikely(!PageUptodate(page))) {
3503 			err = -EIO;
3504 			goto fail;
3505 		}
3506 	}
3507 	return 0;
3508 
3509 fail:
3510 	f2fs_put_page(page, 1);
3511 	f2fs_write_failed(mapping, pos + len);
3512 	if (drop_atomic)
3513 		f2fs_drop_inmem_pages_all(sbi, false);
3514 	return err;
3515 }
3516 
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3517 static int f2fs_write_end(struct file *file,
3518 			struct address_space *mapping,
3519 			loff_t pos, unsigned len, unsigned copied,
3520 			struct page *page, void *fsdata)
3521 {
3522 	struct inode *inode = page->mapping->host;
3523 
3524 	trace_android_fs_datawrite_end(inode, pos, len);
3525 	trace_f2fs_write_end(inode, pos, len, copied);
3526 
3527 	/*
3528 	 * This should be come from len == PAGE_SIZE, and we expect copied
3529 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3530 	 * let generic_perform_write() try to copy data again through copied=0.
3531 	 */
3532 	if (!PageUptodate(page)) {
3533 		if (unlikely(copied != len))
3534 			copied = 0;
3535 		else
3536 			SetPageUptodate(page);
3537 	}
3538 
3539 #ifdef CONFIG_F2FS_FS_COMPRESSION
3540 	/* overwrite compressed file */
3541 	if (f2fs_compressed_file(inode) && fsdata) {
3542 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3543 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3544 		return copied;
3545 	}
3546 #endif
3547 
3548 	if (!copied)
3549 		goto unlock_out;
3550 
3551 	set_page_dirty(page);
3552 
3553 	if (pos + copied > i_size_read(inode) &&
3554 	    !f2fs_verity_in_progress(inode))
3555 		f2fs_i_size_write(inode, pos + copied);
3556 unlock_out:
3557 	f2fs_put_page(page, 1);
3558 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3559 	return copied;
3560 }
3561 
check_direct_IO(struct inode * inode,struct iov_iter * iter,loff_t offset)3562 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3563 			   loff_t offset)
3564 {
3565 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3566 	unsigned blkbits = i_blkbits;
3567 	unsigned blocksize_mask = (1 << blkbits) - 1;
3568 	unsigned long align = offset | iov_iter_alignment(iter);
3569 	struct block_device *bdev = inode->i_sb->s_bdev;
3570 
3571 	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3572 		return 1;
3573 
3574 	if (align & blocksize_mask) {
3575 		if (bdev)
3576 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
3577 		blocksize_mask = (1 << blkbits) - 1;
3578 		if (align & blocksize_mask)
3579 			return -EINVAL;
3580 		return 1;
3581 	}
3582 	return 0;
3583 }
3584 
f2fs_dio_end_io(struct bio * bio)3585 static void f2fs_dio_end_io(struct bio *bio)
3586 {
3587 	struct f2fs_private_dio *dio = bio->bi_private;
3588 
3589 	dec_page_count(F2FS_I_SB(dio->inode),
3590 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3591 
3592 	bio->bi_private = dio->orig_private;
3593 	bio->bi_end_io = dio->orig_end_io;
3594 
3595 	kvfree(dio);
3596 
3597 	bio_endio(bio);
3598 }
3599 
f2fs_dio_submit_bio(struct bio * bio,struct inode * inode,loff_t file_offset)3600 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3601 							loff_t file_offset)
3602 {
3603 	struct f2fs_private_dio *dio;
3604 	bool write = (bio_op(bio) == REQ_OP_WRITE);
3605 
3606 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
3607 			sizeof(struct f2fs_private_dio), GFP_NOFS);
3608 	if (!dio)
3609 		goto out;
3610 
3611 	dio->inode = inode;
3612 	dio->orig_end_io = bio->bi_end_io;
3613 	dio->orig_private = bio->bi_private;
3614 	dio->write = write;
3615 
3616 	bio->bi_end_io = f2fs_dio_end_io;
3617 	bio->bi_private = dio;
3618 
3619 	inc_page_count(F2FS_I_SB(inode),
3620 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3621 
3622 	submit_bio(bio);
3623 	return;
3624 out:
3625 	bio->bi_status = BLK_STS_IOERR;
3626 	bio_endio(bio);
3627 }
3628 
f2fs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3629 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3630 {
3631 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3632 	struct inode *inode = mapping->host;
3633 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3634 	struct f2fs_inode_info *fi = F2FS_I(inode);
3635 	size_t count = iov_iter_count(iter);
3636 	loff_t offset = iocb->ki_pos;
3637 	int rw = iov_iter_rw(iter);
3638 	int err;
3639 	enum rw_hint hint = iocb->ki_hint;
3640 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
3641 	bool do_opu;
3642 
3643 	err = check_direct_IO(inode, iter, offset);
3644 	if (err)
3645 		return err < 0 ? err : 0;
3646 
3647 	if (f2fs_force_buffered_io(inode, iocb, iter))
3648 		return 0;
3649 
3650 	do_opu = allow_outplace_dio(inode, iocb, iter);
3651 
3652 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3653 
3654 	if (trace_android_fs_dataread_start_enabled() &&
3655 	    (rw == READ)) {
3656 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3657 
3658 		path = android_fstrace_get_pathname(pathbuf,
3659 						    MAX_TRACE_PATHBUF_LEN,
3660 						    inode);
3661 		trace_android_fs_dataread_start(inode, offset,
3662 						count, current->pid, path,
3663 						current->comm);
3664 	}
3665 	if (trace_android_fs_datawrite_start_enabled() &&
3666 	    (rw == WRITE)) {
3667 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3668 
3669 		path = android_fstrace_get_pathname(pathbuf,
3670 						    MAX_TRACE_PATHBUF_LEN,
3671 						    inode);
3672 		trace_android_fs_datawrite_start(inode, offset, count,
3673 						 current->pid, path,
3674 						 current->comm);
3675 	}
3676 
3677 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3678 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
3679 
3680 	if (iocb->ki_flags & IOCB_NOWAIT) {
3681 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3682 			iocb->ki_hint = hint;
3683 			err = -EAGAIN;
3684 			goto out;
3685 		}
3686 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3687 			up_read(&fi->i_gc_rwsem[rw]);
3688 			iocb->ki_hint = hint;
3689 			err = -EAGAIN;
3690 			goto out;
3691 		}
3692 	} else {
3693 		down_read(&fi->i_gc_rwsem[rw]);
3694 		if (do_opu)
3695 			down_read(&fi->i_gc_rwsem[READ]);
3696 	}
3697 
3698 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3699 			iter, rw == WRITE ? get_data_block_dio_write :
3700 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
3701 			rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3702 			DIO_SKIP_HOLES);
3703 
3704 	if (do_opu)
3705 		up_read(&fi->i_gc_rwsem[READ]);
3706 
3707 	up_read(&fi->i_gc_rwsem[rw]);
3708 
3709 	if (rw == WRITE) {
3710 		if (whint_mode == WHINT_MODE_OFF)
3711 			iocb->ki_hint = hint;
3712 		if (err > 0) {
3713 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3714 									err);
3715 			if (!do_opu)
3716 				set_inode_flag(inode, FI_UPDATE_WRITE);
3717 		} else if (err < 0) {
3718 			f2fs_write_failed(mapping, offset + count);
3719 		}
3720 	} else {
3721 		if (err > 0)
3722 			f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3723 	}
3724 
3725 out:
3726 	if (trace_android_fs_dataread_start_enabled() &&
3727 	    (rw == READ))
3728 		trace_android_fs_dataread_end(inode, offset, count);
3729 	if (trace_android_fs_datawrite_start_enabled() &&
3730 	    (rw == WRITE))
3731 		trace_android_fs_datawrite_end(inode, offset, count);
3732 
3733 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3734 
3735 	return err;
3736 }
3737 
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)3738 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3739 							unsigned int length)
3740 {
3741 	struct inode *inode = page->mapping->host;
3742 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3743 
3744 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3745 		(offset % PAGE_SIZE || length != PAGE_SIZE))
3746 		return;
3747 
3748 	if (PageDirty(page)) {
3749 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3750 			dec_page_count(sbi, F2FS_DIRTY_META);
3751 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3752 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3753 		} else {
3754 			inode_dec_dirty_pages(inode);
3755 			f2fs_remove_dirty_inode(inode);
3756 		}
3757 	}
3758 
3759 	clear_cold_data(page);
3760 
3761 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3762 		return f2fs_drop_inmem_page(inode, page);
3763 
3764 	f2fs_clear_page_private(page);
3765 }
3766 
f2fs_release_page(struct page * page,gfp_t wait)3767 int f2fs_release_page(struct page *page, gfp_t wait)
3768 {
3769 	/* If this is dirty page, keep PagePrivate */
3770 	if (PageDirty(page))
3771 		return 0;
3772 
3773 	/* This is atomic written page, keep Private */
3774 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3775 		return 0;
3776 
3777 	clear_cold_data(page);
3778 	f2fs_clear_page_private(page);
3779 	return 1;
3780 }
3781 
f2fs_set_data_page_dirty(struct page * page)3782 static int f2fs_set_data_page_dirty(struct page *page)
3783 {
3784 	struct inode *inode = page_file_mapping(page)->host;
3785 
3786 	trace_f2fs_set_page_dirty(page, DATA);
3787 
3788 	if (!PageUptodate(page))
3789 		SetPageUptodate(page);
3790 	if (PageSwapCache(page))
3791 		return __set_page_dirty_nobuffers(page);
3792 
3793 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3794 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3795 			f2fs_register_inmem_page(inode, page);
3796 			return 1;
3797 		}
3798 		/*
3799 		 * Previously, this page has been registered, we just
3800 		 * return here.
3801 		 */
3802 		return 0;
3803 	}
3804 
3805 	if (!PageDirty(page)) {
3806 		__set_page_dirty_nobuffers(page);
3807 		f2fs_update_dirty_page(inode, page);
3808 		return 1;
3809 	}
3810 	return 0;
3811 }
3812 
3813 
f2fs_bmap_compress(struct inode * inode,sector_t block)3814 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3815 {
3816 #ifdef CONFIG_F2FS_FS_COMPRESSION
3817 	struct dnode_of_data dn;
3818 	sector_t start_idx, blknr = 0;
3819 	int ret;
3820 
3821 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3822 
3823 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3824 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3825 	if (ret)
3826 		return 0;
3827 
3828 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3829 		dn.ofs_in_node += block - start_idx;
3830 		blknr = f2fs_data_blkaddr(&dn);
3831 		if (!__is_valid_data_blkaddr(blknr))
3832 			blknr = 0;
3833 	}
3834 
3835 	f2fs_put_dnode(&dn);
3836 
3837 	return blknr;
3838 #else
3839 	return -EOPNOTSUPP;
3840 #endif
3841 }
3842 
3843 
f2fs_bmap(struct address_space * mapping,sector_t block)3844 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3845 {
3846 	struct inode *inode = mapping->host;
3847 
3848 	if (f2fs_has_inline_data(inode))
3849 		return 0;
3850 
3851 	/* make sure allocating whole blocks */
3852 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3853 		filemap_write_and_wait(mapping);
3854 
3855 	if (f2fs_compressed_file(inode))
3856 		return f2fs_bmap_compress(inode, block);
3857 
3858 	return generic_block_bmap(mapping, block, get_data_block_bmap);
3859 }
3860 
3861 #ifdef CONFIG_MIGRATION
3862 #include <linux/migrate.h>
3863 
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)3864 int f2fs_migrate_page(struct address_space *mapping,
3865 		struct page *newpage, struct page *page, enum migrate_mode mode)
3866 {
3867 	int rc, extra_count;
3868 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3869 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3870 
3871 	BUG_ON(PageWriteback(page));
3872 
3873 	/* migrating an atomic written page is safe with the inmem_lock hold */
3874 	if (atomic_written) {
3875 		if (mode != MIGRATE_SYNC)
3876 			return -EBUSY;
3877 		if (!mutex_trylock(&fi->inmem_lock))
3878 			return -EAGAIN;
3879 	}
3880 
3881 	/* one extra reference was held for atomic_write page */
3882 	extra_count = atomic_written ? 1 : 0;
3883 	rc = migrate_page_move_mapping(mapping, newpage,
3884 				page, extra_count);
3885 	if (rc != MIGRATEPAGE_SUCCESS) {
3886 		if (atomic_written)
3887 			mutex_unlock(&fi->inmem_lock);
3888 		return rc;
3889 	}
3890 
3891 	if (atomic_written) {
3892 		struct inmem_pages *cur;
3893 		list_for_each_entry(cur, &fi->inmem_pages, list)
3894 			if (cur->page == page) {
3895 				cur->page = newpage;
3896 				break;
3897 			}
3898 		mutex_unlock(&fi->inmem_lock);
3899 		put_page(page);
3900 		get_page(newpage);
3901 	}
3902 
3903 	if (PagePrivate(page)) {
3904 		f2fs_set_page_private(newpage, page_private(page));
3905 		f2fs_clear_page_private(page);
3906 	}
3907 
3908 	if (mode != MIGRATE_SYNC_NO_COPY)
3909 		migrate_page_copy(newpage, page);
3910 	else
3911 		migrate_page_states(newpage, page);
3912 
3913 	return MIGRATEPAGE_SUCCESS;
3914 }
3915 #endif
3916 
3917 #ifdef CONFIG_SWAP
3918 /* Copied from generic_swapfile_activate() to check any holes */
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3919 static int check_swap_activate(struct swap_info_struct *sis,
3920 				struct file *swap_file, sector_t *span)
3921 {
3922 	struct address_space *mapping = swap_file->f_mapping;
3923 	struct inode *inode = mapping->host;
3924 	unsigned blocks_per_page;
3925 	unsigned long page_no;
3926 	unsigned blkbits;
3927 	sector_t probe_block;
3928 	sector_t last_block;
3929 	sector_t lowest_block = -1;
3930 	sector_t highest_block = 0;
3931 	int nr_extents = 0;
3932 	int ret;
3933 
3934 	blkbits = inode->i_blkbits;
3935 	blocks_per_page = PAGE_SIZE >> blkbits;
3936 
3937 	/*
3938 	 * Map all the blocks into the extent list.  This code doesn't try
3939 	 * to be very smart.
3940 	 */
3941 	probe_block = 0;
3942 	page_no = 0;
3943 	last_block = i_size_read(inode) >> blkbits;
3944 	while ((probe_block + blocks_per_page) <= last_block &&
3945 			page_no < sis->max) {
3946 		unsigned block_in_page;
3947 		sector_t first_block;
3948 
3949 		cond_resched();
3950 
3951 		first_block = bmap(inode, probe_block);
3952 		if (first_block == 0)
3953 			goto bad_bmap;
3954 
3955 		/*
3956 		 * It must be PAGE_SIZE aligned on-disk
3957 		 */
3958 		if (first_block & (blocks_per_page - 1)) {
3959 			probe_block++;
3960 			goto reprobe;
3961 		}
3962 
3963 		for (block_in_page = 1; block_in_page < blocks_per_page;
3964 					block_in_page++) {
3965 			sector_t block;
3966 
3967 			block = bmap(inode, probe_block + block_in_page);
3968 			if (block == 0)
3969 				goto bad_bmap;
3970 			if (block != first_block + block_in_page) {
3971 				/* Discontiguity */
3972 				probe_block++;
3973 				goto reprobe;
3974 			}
3975 		}
3976 
3977 		first_block >>= (PAGE_SHIFT - blkbits);
3978 		if (page_no) {	/* exclude the header page */
3979 			if (first_block < lowest_block)
3980 				lowest_block = first_block;
3981 			if (first_block > highest_block)
3982 				highest_block = first_block;
3983 		}
3984 
3985 		/*
3986 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3987 		 */
3988 		ret = add_swap_extent(sis, page_no, 1, first_block);
3989 		if (ret < 0)
3990 			goto out;
3991 		nr_extents += ret;
3992 		page_no++;
3993 		probe_block += blocks_per_page;
3994 reprobe:
3995 		continue;
3996 	}
3997 	ret = nr_extents;
3998 	*span = 1 + highest_block - lowest_block;
3999 	if (page_no == 0)
4000 		page_no = 1;	/* force Empty message */
4001 	sis->max = page_no;
4002 	sis->pages = page_no - 1;
4003 	sis->highest_bit = page_no - 1;
4004 out:
4005 	return ret;
4006 bad_bmap:
4007 	pr_err("swapon: swapfile has holes\n");
4008 	return -EINVAL;
4009 }
4010 
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4011 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4012 				sector_t *span)
4013 {
4014 	struct inode *inode = file_inode(file);
4015 	int ret;
4016 
4017 	if (!S_ISREG(inode->i_mode))
4018 		return -EINVAL;
4019 
4020 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4021 		return -EROFS;
4022 
4023 	ret = f2fs_convert_inline_inode(inode);
4024 	if (ret)
4025 		return ret;
4026 
4027 	if (f2fs_disable_compressed_file(inode))
4028 		return -EINVAL;
4029 
4030 	ret = check_swap_activate(sis, file, span);
4031 	if (ret < 0)
4032 		return ret;
4033 
4034 	set_inode_flag(inode, FI_PIN_FILE);
4035 	f2fs_precache_extents(inode);
4036 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4037 	return ret;
4038 }
4039 
f2fs_swap_deactivate(struct file * file)4040 static void f2fs_swap_deactivate(struct file *file)
4041 {
4042 	struct inode *inode = file_inode(file);
4043 
4044 	clear_inode_flag(inode, FI_PIN_FILE);
4045 }
4046 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4047 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4048 				sector_t *span)
4049 {
4050 	return -EOPNOTSUPP;
4051 }
4052 
f2fs_swap_deactivate(struct file * file)4053 static void f2fs_swap_deactivate(struct file *file)
4054 {
4055 }
4056 #endif
4057 
4058 const struct address_space_operations f2fs_dblock_aops = {
4059 	.readpage	= f2fs_read_data_page,
4060 	.readpages	= f2fs_read_data_pages,
4061 	.writepage	= f2fs_write_data_page,
4062 	.writepages	= f2fs_write_data_pages,
4063 	.write_begin	= f2fs_write_begin,
4064 	.write_end	= f2fs_write_end,
4065 	.set_page_dirty	= f2fs_set_data_page_dirty,
4066 	.invalidatepage	= f2fs_invalidate_page,
4067 	.releasepage	= f2fs_release_page,
4068 	.direct_IO	= f2fs_direct_IO,
4069 	.bmap		= f2fs_bmap,
4070 	.swap_activate  = f2fs_swap_activate,
4071 	.swap_deactivate = f2fs_swap_deactivate,
4072 #ifdef CONFIG_MIGRATION
4073 	.migratepage    = f2fs_migrate_page,
4074 #endif
4075 };
4076 
f2fs_clear_page_cache_dirty_tag(struct page * page)4077 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4078 {
4079 	struct address_space *mapping = page_mapping(page);
4080 	unsigned long flags;
4081 
4082 	xa_lock_irqsave(&mapping->i_pages, flags);
4083 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4084 						PAGECACHE_TAG_DIRTY);
4085 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4086 }
4087 
f2fs_init_post_read_processing(void)4088 int __init f2fs_init_post_read_processing(void)
4089 {
4090 	bio_post_read_ctx_cache =
4091 		kmem_cache_create("f2fs_bio_post_read_ctx",
4092 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4093 	if (!bio_post_read_ctx_cache)
4094 		goto fail;
4095 	bio_post_read_ctx_pool =
4096 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4097 					 bio_post_read_ctx_cache);
4098 	if (!bio_post_read_ctx_pool)
4099 		goto fail_free_cache;
4100 	return 0;
4101 
4102 fail_free_cache:
4103 	kmem_cache_destroy(bio_post_read_ctx_cache);
4104 fail:
4105 	return -ENOMEM;
4106 }
4107 
f2fs_destroy_post_read_processing(void)4108 void f2fs_destroy_post_read_processing(void)
4109 {
4110 	mempool_destroy(bio_post_read_ctx_pool);
4111 	kmem_cache_destroy(bio_post_read_ctx_cache);
4112 }
4113 
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4114 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4115 {
4116 	if (!f2fs_sb_has_encrypt(sbi) &&
4117 		!f2fs_sb_has_verity(sbi) &&
4118 		!f2fs_sb_has_compression(sbi))
4119 		return 0;
4120 
4121 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4122 						 WQ_UNBOUND | WQ_HIGHPRI,
4123 						 num_online_cpus());
4124 	if (!sbi->post_read_wq)
4125 		return -ENOMEM;
4126 	return 0;
4127 }
4128 
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4129 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4130 {
4131 	if (sbi->post_read_wq)
4132 		destroy_workqueue(sbi->post_read_wq);
4133 }
4134 
f2fs_init_bio_entry_cache(void)4135 int __init f2fs_init_bio_entry_cache(void)
4136 {
4137 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4138 			sizeof(struct bio_entry));
4139 	if (!bio_entry_slab)
4140 		return -ENOMEM;
4141 	return 0;
4142 }
4143 
f2fs_destroy_bio_entry_cache(void)4144 void f2fs_destroy_bio_entry_cache(void)
4145 {
4146 	kmem_cache_destroy(bio_entry_slab);
4147 }
4148