• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		return -EFSCORRUPTED;
40 	}
41 	return 0;
42 }
43 
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 	struct f2fs_nm_info *nm_i = NM_I(sbi);
47 	struct sysinfo val;
48 	unsigned long avail_ram;
49 	unsigned long mem_size = 0;
50 	bool res = false;
51 
52 	si_meminfo(&val);
53 
54 	/* only uses low memory */
55 	avail_ram = val.totalram - val.totalhigh;
56 
57 	/*
58 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 	 */
60 	if (type == FREE_NIDS) {
61 		mem_size = (nm_i->nid_cnt[FREE_NID] *
62 				sizeof(struct free_nid)) >> PAGE_SHIFT;
63 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 	} else if (type == NAT_ENTRIES) {
65 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
67 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 		if (excess_cached_nats(sbi))
69 			res = false;
70 	} else if (type == DIRTY_DENTS) {
71 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 			return false;
73 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 	} else if (type == INO_ENTRIES) {
76 		int i;
77 
78 		for (i = 0; i < MAX_INO_ENTRY; i++)
79 			mem_size += sbi->im[i].ino_num *
80 						sizeof(struct ino_entry);
81 		mem_size >>= PAGE_SHIFT;
82 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 	} else if (type == EXTENT_CACHE) {
84 		mem_size = (atomic_read(&sbi->total_ext_tree) *
85 				sizeof(struct extent_tree) +
86 				atomic_read(&sbi->total_ext_node) *
87 				sizeof(struct extent_node)) >> PAGE_SHIFT;
88 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 	} else if (type == INMEM_PAGES) {
90 		/* it allows 20% / total_ram for inmemory pages */
91 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 		res = mem_size < (val.totalram / 5);
93 	} else {
94 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 			return true;
96 	}
97 	return res;
98 }
99 
clear_node_page_dirty(struct page * page)100 static void clear_node_page_dirty(struct page *page)
101 {
102 	if (PageDirty(page)) {
103 		f2fs_clear_page_cache_dirty_tag(page);
104 		clear_page_dirty_for_io(page);
105 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 	}
107 	ClearPageUptodate(page);
108 }
109 
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113 }
114 
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 	struct page *src_page;
118 	struct page *dst_page;
119 	pgoff_t dst_off;
120 	void *src_addr;
121 	void *dst_addr;
122 	struct f2fs_nm_info *nm_i = NM_I(sbi);
123 
124 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125 
126 	/* get current nat block page with lock */
127 	src_page = get_current_nat_page(sbi, nid);
128 	if (IS_ERR(src_page))
129 		return src_page;
130 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 	f2fs_bug_on(sbi, PageDirty(src_page));
132 
133 	src_addr = page_address(src_page);
134 	dst_addr = page_address(dst_page);
135 	memcpy(dst_addr, src_addr, PAGE_SIZE);
136 	set_page_dirty(dst_page);
137 	f2fs_put_page(src_page, 1);
138 
139 	set_to_next_nat(nm_i, nid);
140 
141 	return dst_page;
142 }
143 
__alloc_nat_entry(nid_t nid,bool no_fail)144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 	struct nat_entry *new;
147 
148 	if (no_fail)
149 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 	else
151 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 	if (new) {
153 		nat_set_nid(new, nid);
154 		nat_reset_flag(new);
155 	}
156 	return new;
157 }
158 
__free_nat_entry(struct nat_entry * e)159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 	kmem_cache_free(nat_entry_slab, e);
162 }
163 
164 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 	if (no_fail)
169 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 		return NULL;
172 
173 	if (raw_ne)
174 		node_info_from_raw_nat(&ne->ni, raw_ne);
175 
176 	spin_lock(&nm_i->nat_list_lock);
177 	list_add_tail(&ne->list, &nm_i->nat_entries);
178 	spin_unlock(&nm_i->nat_list_lock);
179 
180 	nm_i->nat_cnt[TOTAL_NAT]++;
181 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182 	return ne;
183 }
184 
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187 	struct nat_entry *ne;
188 
189 	ne = radix_tree_lookup(&nm_i->nat_root, n);
190 
191 	/* for recent accessed nat entry, move it to tail of lru list */
192 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 		spin_lock(&nm_i->nat_list_lock);
194 		if (!list_empty(&ne->list))
195 			list_move_tail(&ne->list, &nm_i->nat_entries);
196 		spin_unlock(&nm_i->nat_list_lock);
197 	}
198 
199 	return ne;
200 }
201 
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 		nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207 
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 	nm_i->nat_cnt[TOTAL_NAT]--;
212 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213 	__free_nat_entry(e);
214 }
215 
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 							struct nat_entry *ne)
218 {
219 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 	struct nat_entry_set *head;
221 
222 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 	if (!head) {
224 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225 
226 		INIT_LIST_HEAD(&head->entry_list);
227 		INIT_LIST_HEAD(&head->set_list);
228 		head->set = set;
229 		head->entry_cnt = 0;
230 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231 	}
232 	return head;
233 }
234 
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 						struct nat_entry *ne)
237 {
238 	struct nat_entry_set *head;
239 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240 
241 	if (!new_ne)
242 		head = __grab_nat_entry_set(nm_i, ne);
243 
244 	/*
245 	 * update entry_cnt in below condition:
246 	 * 1. update NEW_ADDR to valid block address;
247 	 * 2. update old block address to new one;
248 	 */
249 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 				!get_nat_flag(ne, IS_DIRTY)))
251 		head->entry_cnt++;
252 
253 	set_nat_flag(ne, IS_PREALLOC, new_ne);
254 
255 	if (get_nat_flag(ne, IS_DIRTY))
256 		goto refresh_list;
257 
258 	nm_i->nat_cnt[DIRTY_NAT]++;
259 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260 	set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262 	spin_lock(&nm_i->nat_list_lock);
263 	if (new_ne)
264 		list_del_init(&ne->list);
265 	else
266 		list_move_tail(&ne->list, &head->entry_list);
267 	spin_unlock(&nm_i->nat_list_lock);
268 }
269 
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271 		struct nat_entry_set *set, struct nat_entry *ne)
272 {
273 	spin_lock(&nm_i->nat_list_lock);
274 	list_move_tail(&ne->list, &nm_i->nat_entries);
275 	spin_unlock(&nm_i->nat_list_lock);
276 
277 	set_nat_flag(ne, IS_DIRTY, false);
278 	set->entry_cnt--;
279 	nm_i->nat_cnt[DIRTY_NAT]--;
280 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281 }
282 
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
285 {
286 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287 							start, nr);
288 }
289 
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291 {
292 	return NODE_MAPPING(sbi) == page->mapping &&
293 			IS_DNODE(page) && is_cold_node(page);
294 }
295 
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297 {
298 	spin_lock_init(&sbi->fsync_node_lock);
299 	INIT_LIST_HEAD(&sbi->fsync_node_list);
300 	sbi->fsync_seg_id = 0;
301 	sbi->fsync_node_num = 0;
302 }
303 
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305 							struct page *page)
306 {
307 	struct fsync_node_entry *fn;
308 	unsigned long flags;
309 	unsigned int seq_id;
310 
311 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312 
313 	get_page(page);
314 	fn->page = page;
315 	INIT_LIST_HEAD(&fn->list);
316 
317 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318 	list_add_tail(&fn->list, &sbi->fsync_node_list);
319 	fn->seq_id = sbi->fsync_seg_id++;
320 	seq_id = fn->seq_id;
321 	sbi->fsync_node_num++;
322 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323 
324 	return seq_id;
325 }
326 
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328 {
329 	struct fsync_node_entry *fn;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334 		if (fn->page == page) {
335 			list_del(&fn->list);
336 			sbi->fsync_node_num--;
337 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338 			kmem_cache_free(fsync_node_entry_slab, fn);
339 			put_page(page);
340 			return;
341 		}
342 	}
343 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344 	f2fs_bug_on(sbi, 1);
345 }
346 
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348 {
349 	unsigned long flags;
350 
351 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352 	sbi->fsync_seg_id = 0;
353 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 }
355 
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357 {
358 	struct f2fs_nm_info *nm_i = NM_I(sbi);
359 	struct nat_entry *e;
360 	bool need = false;
361 
362 	down_read(&nm_i->nat_tree_lock);
363 	e = __lookup_nat_cache(nm_i, nid);
364 	if (e) {
365 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366 				!get_nat_flag(e, HAS_FSYNCED_INODE))
367 			need = true;
368 	}
369 	up_read(&nm_i->nat_tree_lock);
370 	return need;
371 }
372 
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374 {
375 	struct f2fs_nm_info *nm_i = NM_I(sbi);
376 	struct nat_entry *e;
377 	bool is_cp = true;
378 
379 	down_read(&nm_i->nat_tree_lock);
380 	e = __lookup_nat_cache(nm_i, nid);
381 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382 		is_cp = false;
383 	up_read(&nm_i->nat_tree_lock);
384 	return is_cp;
385 }
386 
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388 {
389 	struct f2fs_nm_info *nm_i = NM_I(sbi);
390 	struct nat_entry *e;
391 	bool need_update = true;
392 
393 	down_read(&nm_i->nat_tree_lock);
394 	e = __lookup_nat_cache(nm_i, ino);
395 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396 			(get_nat_flag(e, IS_CHECKPOINTED) ||
397 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
398 		need_update = false;
399 	up_read(&nm_i->nat_tree_lock);
400 	return need_update;
401 }
402 
403 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405 						struct f2fs_nat_entry *ne)
406 {
407 	struct f2fs_nm_info *nm_i = NM_I(sbi);
408 	struct nat_entry *new, *e;
409 
410 	new = __alloc_nat_entry(nid, false);
411 	if (!new)
412 		return;
413 
414 	down_write(&nm_i->nat_tree_lock);
415 	e = __lookup_nat_cache(nm_i, nid);
416 	if (!e)
417 		e = __init_nat_entry(nm_i, new, ne, false);
418 	else
419 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420 				nat_get_blkaddr(e) !=
421 					le32_to_cpu(ne->block_addr) ||
422 				nat_get_version(e) != ne->version);
423 	up_write(&nm_i->nat_tree_lock);
424 	if (e != new)
425 		__free_nat_entry(new);
426 }
427 
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429 			block_t new_blkaddr, bool fsync_done)
430 {
431 	struct f2fs_nm_info *nm_i = NM_I(sbi);
432 	struct nat_entry *e;
433 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434 
435 	down_write(&nm_i->nat_tree_lock);
436 	e = __lookup_nat_cache(nm_i, ni->nid);
437 	if (!e) {
438 		e = __init_nat_entry(nm_i, new, NULL, true);
439 		copy_node_info(&e->ni, ni);
440 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441 	} else if (new_blkaddr == NEW_ADDR) {
442 		/*
443 		 * when nid is reallocated,
444 		 * previous nat entry can be remained in nat cache.
445 		 * So, reinitialize it with new information.
446 		 */
447 		copy_node_info(&e->ni, ni);
448 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449 	}
450 	/* let's free early to reduce memory consumption */
451 	if (e != new)
452 		__free_nat_entry(new);
453 
454 	/* sanity check */
455 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457 			new_blkaddr == NULL_ADDR);
458 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459 			new_blkaddr == NEW_ADDR);
460 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461 			new_blkaddr == NEW_ADDR);
462 
463 	/* increment version no as node is removed */
464 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465 		unsigned char version = nat_get_version(e);
466 		nat_set_version(e, inc_node_version(version));
467 	}
468 
469 	/* change address */
470 	nat_set_blkaddr(e, new_blkaddr);
471 	if (!__is_valid_data_blkaddr(new_blkaddr))
472 		set_nat_flag(e, IS_CHECKPOINTED, false);
473 	__set_nat_cache_dirty(nm_i, e);
474 
475 	/* update fsync_mark if its inode nat entry is still alive */
476 	if (ni->nid != ni->ino)
477 		e = __lookup_nat_cache(nm_i, ni->ino);
478 	if (e) {
479 		if (fsync_done && ni->nid == ni->ino)
480 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
481 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482 	}
483 	up_write(&nm_i->nat_tree_lock);
484 }
485 
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487 {
488 	struct f2fs_nm_info *nm_i = NM_I(sbi);
489 	int nr = nr_shrink;
490 
491 	if (!down_write_trylock(&nm_i->nat_tree_lock))
492 		return 0;
493 
494 	spin_lock(&nm_i->nat_list_lock);
495 	while (nr_shrink) {
496 		struct nat_entry *ne;
497 
498 		if (list_empty(&nm_i->nat_entries))
499 			break;
500 
501 		ne = list_first_entry(&nm_i->nat_entries,
502 					struct nat_entry, list);
503 		list_del(&ne->list);
504 		spin_unlock(&nm_i->nat_list_lock);
505 
506 		__del_from_nat_cache(nm_i, ne);
507 		nr_shrink--;
508 
509 		spin_lock(&nm_i->nat_list_lock);
510 	}
511 	spin_unlock(&nm_i->nat_list_lock);
512 
513 	up_write(&nm_i->nat_tree_lock);
514 	return nr - nr_shrink;
515 }
516 
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 						struct node_info *ni)
519 {
520 	struct f2fs_nm_info *nm_i = NM_I(sbi);
521 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 	struct f2fs_journal *journal = curseg->journal;
523 	nid_t start_nid = START_NID(nid);
524 	struct f2fs_nat_block *nat_blk;
525 	struct page *page = NULL;
526 	struct f2fs_nat_entry ne;
527 	struct nat_entry *e;
528 	pgoff_t index;
529 	block_t blkaddr;
530 	int i;
531 
532 	ni->nid = nid;
533 
534 	/* Check nat cache */
535 	down_read(&nm_i->nat_tree_lock);
536 	e = __lookup_nat_cache(nm_i, nid);
537 	if (e) {
538 		ni->ino = nat_get_ino(e);
539 		ni->blk_addr = nat_get_blkaddr(e);
540 		ni->version = nat_get_version(e);
541 		up_read(&nm_i->nat_tree_lock);
542 		return 0;
543 	}
544 
545 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546 
547 	/* Check current segment summary */
548 	down_read(&curseg->journal_rwsem);
549 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 	if (i >= 0) {
551 		ne = nat_in_journal(journal, i);
552 		node_info_from_raw_nat(ni, &ne);
553 	}
554 	up_read(&curseg->journal_rwsem);
555 	if (i >= 0) {
556 		up_read(&nm_i->nat_tree_lock);
557 		goto cache;
558 	}
559 
560 	/* Fill node_info from nat page */
561 	index = current_nat_addr(sbi, nid);
562 	up_read(&nm_i->nat_tree_lock);
563 
564 	page = f2fs_get_meta_page(sbi, index);
565 	if (IS_ERR(page))
566 		return PTR_ERR(page);
567 
568 	nat_blk = (struct f2fs_nat_block *)page_address(page);
569 	ne = nat_blk->entries[nid - start_nid];
570 	node_info_from_raw_nat(ni, &ne);
571 	f2fs_put_page(page, 1);
572 cache:
573 	blkaddr = le32_to_cpu(ne.block_addr);
574 	if (__is_valid_data_blkaddr(blkaddr) &&
575 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576 		return -EFAULT;
577 
578 	/* cache nat entry */
579 	cache_nat_entry(sbi, nid, &ne);
580 	return 0;
581 }
582 
583 /*
584  * readahead MAX_RA_NODE number of node pages.
585  */
f2fs_ra_node_pages(struct page * parent,int start,int n)586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589 	struct blk_plug plug;
590 	int i, end;
591 	nid_t nid;
592 
593 	blk_start_plug(&plug);
594 
595 	/* Then, try readahead for siblings of the desired node */
596 	end = start + n;
597 	end = min(end, NIDS_PER_BLOCK);
598 	for (i = start; i < end; i++) {
599 		nid = get_nid(parent, i, false);
600 		f2fs_ra_node_page(sbi, nid);
601 	}
602 
603 	blk_finish_plug(&plug);
604 }
605 
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608 	const long direct_index = ADDRS_PER_INODE(dn->inode);
609 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612 	int cur_level = dn->cur_level;
613 	int max_level = dn->max_level;
614 	pgoff_t base = 0;
615 
616 	if (!dn->max_level)
617 		return pgofs + 1;
618 
619 	while (max_level-- > cur_level)
620 		skipped_unit *= NIDS_PER_BLOCK;
621 
622 	switch (dn->max_level) {
623 	case 3:
624 		base += 2 * indirect_blks;
625 		/* fall through */
626 	case 2:
627 		base += 2 * direct_blks;
628 		/* fall through */
629 	case 1:
630 		base += direct_index;
631 		break;
632 	default:
633 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634 	}
635 
636 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638 
639 /*
640  * The maximum depth is four.
641  * Offset[0] will have raw inode offset.
642  */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])643 static int get_node_path(struct inode *inode, long block,
644 				int offset[4], unsigned int noffset[4])
645 {
646 	const long direct_index = ADDRS_PER_INODE(inode);
647 	const long direct_blks = ADDRS_PER_BLOCK(inode);
648 	const long dptrs_per_blk = NIDS_PER_BLOCK;
649 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651 	int n = 0;
652 	int level = 0;
653 
654 	noffset[0] = 0;
655 
656 	if (block < direct_index) {
657 		offset[n] = block;
658 		goto got;
659 	}
660 	block -= direct_index;
661 	if (block < direct_blks) {
662 		offset[n++] = NODE_DIR1_BLOCK;
663 		noffset[n] = 1;
664 		offset[n] = block;
665 		level = 1;
666 		goto got;
667 	}
668 	block -= direct_blks;
669 	if (block < direct_blks) {
670 		offset[n++] = NODE_DIR2_BLOCK;
671 		noffset[n] = 2;
672 		offset[n] = block;
673 		level = 1;
674 		goto got;
675 	}
676 	block -= direct_blks;
677 	if (block < indirect_blks) {
678 		offset[n++] = NODE_IND1_BLOCK;
679 		noffset[n] = 3;
680 		offset[n++] = block / direct_blks;
681 		noffset[n] = 4 + offset[n - 1];
682 		offset[n] = block % direct_blks;
683 		level = 2;
684 		goto got;
685 	}
686 	block -= indirect_blks;
687 	if (block < indirect_blks) {
688 		offset[n++] = NODE_IND2_BLOCK;
689 		noffset[n] = 4 + dptrs_per_blk;
690 		offset[n++] = block / direct_blks;
691 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692 		offset[n] = block % direct_blks;
693 		level = 2;
694 		goto got;
695 	}
696 	block -= indirect_blks;
697 	if (block < dindirect_blks) {
698 		offset[n++] = NODE_DIND_BLOCK;
699 		noffset[n] = 5 + (dptrs_per_blk * 2);
700 		offset[n++] = block / indirect_blks;
701 		noffset[n] = 6 + (dptrs_per_blk * 2) +
702 			      offset[n - 1] * (dptrs_per_blk + 1);
703 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
704 		noffset[n] = 7 + (dptrs_per_blk * 2) +
705 			      offset[n - 2] * (dptrs_per_blk + 1) +
706 			      offset[n - 1];
707 		offset[n] = block % direct_blks;
708 		level = 3;
709 		goto got;
710 	} else {
711 		return -E2BIG;
712 	}
713 got:
714 	return level;
715 }
716 
717 /*
718  * Caller should call f2fs_put_dnode(dn).
719  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
721  */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 	struct page *npage[4];
726 	struct page *parent = NULL;
727 	int offset[4];
728 	unsigned int noffset[4];
729 	nid_t nids[4];
730 	int level, i = 0;
731 	int err = 0;
732 
733 	level = get_node_path(dn->inode, index, offset, noffset);
734 	if (level < 0)
735 		return level;
736 
737 	nids[0] = dn->inode->i_ino;
738 	npage[0] = dn->inode_page;
739 
740 	if (!npage[0]) {
741 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 		if (IS_ERR(npage[0]))
743 			return PTR_ERR(npage[0]);
744 	}
745 
746 	/* if inline_data is set, should not report any block indices */
747 	if (f2fs_has_inline_data(dn->inode) && index) {
748 		err = -ENOENT;
749 		f2fs_put_page(npage[0], 1);
750 		goto release_out;
751 	}
752 
753 	parent = npage[0];
754 	if (level != 0)
755 		nids[1] = get_nid(parent, offset[0], true);
756 	dn->inode_page = npage[0];
757 	dn->inode_page_locked = true;
758 
759 	/* get indirect or direct nodes */
760 	for (i = 1; i <= level; i++) {
761 		bool done = false;
762 
763 		if (!nids[i] && mode == ALLOC_NODE) {
764 			/* alloc new node */
765 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 				err = -ENOSPC;
767 				goto release_pages;
768 			}
769 
770 			dn->nid = nids[i];
771 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 			if (IS_ERR(npage[i])) {
773 				f2fs_alloc_nid_failed(sbi, nids[i]);
774 				err = PTR_ERR(npage[i]);
775 				goto release_pages;
776 			}
777 
778 			set_nid(parent, offset[i - 1], nids[i], i == 1);
779 			f2fs_alloc_nid_done(sbi, nids[i]);
780 			done = true;
781 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 			if (IS_ERR(npage[i])) {
784 				err = PTR_ERR(npage[i]);
785 				goto release_pages;
786 			}
787 			done = true;
788 		}
789 		if (i == 1) {
790 			dn->inode_page_locked = false;
791 			unlock_page(parent);
792 		} else {
793 			f2fs_put_page(parent, 1);
794 		}
795 
796 		if (!done) {
797 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 			if (IS_ERR(npage[i])) {
799 				err = PTR_ERR(npage[i]);
800 				f2fs_put_page(npage[0], 0);
801 				goto release_out;
802 			}
803 		}
804 		if (i < level) {
805 			parent = npage[i];
806 			nids[i + 1] = get_nid(parent, offset[i], false);
807 		}
808 	}
809 	dn->nid = nids[level];
810 	dn->ofs_in_node = offset[level];
811 	dn->node_page = npage[level];
812 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
813 	return 0;
814 
815 release_pages:
816 	f2fs_put_page(parent, 1);
817 	if (i > 1)
818 		f2fs_put_page(npage[0], 0);
819 release_out:
820 	dn->inode_page = NULL;
821 	dn->node_page = NULL;
822 	if (err == -ENOENT) {
823 		dn->cur_level = i;
824 		dn->max_level = level;
825 		dn->ofs_in_node = offset[level];
826 	}
827 	return err;
828 }
829 
truncate_node(struct dnode_of_data * dn)830 static int truncate_node(struct dnode_of_data *dn)
831 {
832 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833 	struct node_info ni;
834 	int err;
835 	pgoff_t index;
836 
837 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
838 	if (err)
839 		return err;
840 
841 	/* Deallocate node address */
842 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
843 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
844 	set_node_addr(sbi, &ni, NULL_ADDR, false);
845 
846 	if (dn->nid == dn->inode->i_ino) {
847 		f2fs_remove_orphan_inode(sbi, dn->nid);
848 		dec_valid_inode_count(sbi);
849 		f2fs_inode_synced(dn->inode);
850 	}
851 
852 	clear_node_page_dirty(dn->node_page);
853 	set_sbi_flag(sbi, SBI_IS_DIRTY);
854 
855 	index = dn->node_page->index;
856 	f2fs_put_page(dn->node_page, 1);
857 
858 	invalidate_mapping_pages(NODE_MAPPING(sbi),
859 			index, index);
860 
861 	dn->node_page = NULL;
862 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
863 
864 	return 0;
865 }
866 
truncate_dnode(struct dnode_of_data * dn)867 static int truncate_dnode(struct dnode_of_data *dn)
868 {
869 	struct page *page;
870 	int err;
871 
872 	if (dn->nid == 0)
873 		return 1;
874 
875 	/* get direct node */
876 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
877 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
878 		return 1;
879 	else if (IS_ERR(page))
880 		return PTR_ERR(page);
881 
882 	/* Make dnode_of_data for parameter */
883 	dn->node_page = page;
884 	dn->ofs_in_node = 0;
885 	f2fs_truncate_data_blocks(dn);
886 	err = truncate_node(dn);
887 	if (err) {
888 		f2fs_put_page(page, 1);
889 		return err;
890 	}
891 
892 	return 1;
893 }
894 
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)895 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
896 						int ofs, int depth)
897 {
898 	struct dnode_of_data rdn = *dn;
899 	struct page *page;
900 	struct f2fs_node *rn;
901 	nid_t child_nid;
902 	unsigned int child_nofs;
903 	int freed = 0;
904 	int i, ret;
905 
906 	if (dn->nid == 0)
907 		return NIDS_PER_BLOCK + 1;
908 
909 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
910 
911 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
912 	if (IS_ERR(page)) {
913 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
914 		return PTR_ERR(page);
915 	}
916 
917 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
918 
919 	rn = F2FS_NODE(page);
920 	if (depth < 3) {
921 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
922 			child_nid = le32_to_cpu(rn->in.nid[i]);
923 			if (child_nid == 0)
924 				continue;
925 			rdn.nid = child_nid;
926 			ret = truncate_dnode(&rdn);
927 			if (ret < 0)
928 				goto out_err;
929 			if (set_nid(page, i, 0, false))
930 				dn->node_changed = true;
931 		}
932 	} else {
933 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
934 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
935 			child_nid = le32_to_cpu(rn->in.nid[i]);
936 			if (child_nid == 0) {
937 				child_nofs += NIDS_PER_BLOCK + 1;
938 				continue;
939 			}
940 			rdn.nid = child_nid;
941 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
942 			if (ret == (NIDS_PER_BLOCK + 1)) {
943 				if (set_nid(page, i, 0, false))
944 					dn->node_changed = true;
945 				child_nofs += ret;
946 			} else if (ret < 0 && ret != -ENOENT) {
947 				goto out_err;
948 			}
949 		}
950 		freed = child_nofs;
951 	}
952 
953 	if (!ofs) {
954 		/* remove current indirect node */
955 		dn->node_page = page;
956 		ret = truncate_node(dn);
957 		if (ret)
958 			goto out_err;
959 		freed++;
960 	} else {
961 		f2fs_put_page(page, 1);
962 	}
963 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
964 	return freed;
965 
966 out_err:
967 	f2fs_put_page(page, 1);
968 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
969 	return ret;
970 }
971 
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)972 static int truncate_partial_nodes(struct dnode_of_data *dn,
973 			struct f2fs_inode *ri, int *offset, int depth)
974 {
975 	struct page *pages[2];
976 	nid_t nid[3];
977 	nid_t child_nid;
978 	int err = 0;
979 	int i;
980 	int idx = depth - 2;
981 
982 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
983 	if (!nid[0])
984 		return 0;
985 
986 	/* get indirect nodes in the path */
987 	for (i = 0; i < idx + 1; i++) {
988 		/* reference count'll be increased */
989 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
990 		if (IS_ERR(pages[i])) {
991 			err = PTR_ERR(pages[i]);
992 			idx = i - 1;
993 			goto fail;
994 		}
995 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
996 	}
997 
998 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
999 
1000 	/* free direct nodes linked to a partial indirect node */
1001 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1002 		child_nid = get_nid(pages[idx], i, false);
1003 		if (!child_nid)
1004 			continue;
1005 		dn->nid = child_nid;
1006 		err = truncate_dnode(dn);
1007 		if (err < 0)
1008 			goto fail;
1009 		if (set_nid(pages[idx], i, 0, false))
1010 			dn->node_changed = true;
1011 	}
1012 
1013 	if (offset[idx + 1] == 0) {
1014 		dn->node_page = pages[idx];
1015 		dn->nid = nid[idx];
1016 		err = truncate_node(dn);
1017 		if (err)
1018 			goto fail;
1019 	} else {
1020 		f2fs_put_page(pages[idx], 1);
1021 	}
1022 	offset[idx]++;
1023 	offset[idx + 1] = 0;
1024 	idx--;
1025 fail:
1026 	for (i = idx; i >= 0; i--)
1027 		f2fs_put_page(pages[i], 1);
1028 
1029 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1030 
1031 	return err;
1032 }
1033 
1034 /*
1035  * All the block addresses of data and nodes should be nullified.
1036  */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1037 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1038 {
1039 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1040 	int err = 0, cont = 1;
1041 	int level, offset[4], noffset[4];
1042 	unsigned int nofs = 0;
1043 	struct f2fs_inode *ri;
1044 	struct dnode_of_data dn;
1045 	struct page *page;
1046 
1047 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1048 
1049 	level = get_node_path(inode, from, offset, noffset);
1050 	if (level < 0)
1051 		return level;
1052 
1053 	page = f2fs_get_node_page(sbi, inode->i_ino);
1054 	if (IS_ERR(page)) {
1055 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1056 		return PTR_ERR(page);
1057 	}
1058 
1059 	set_new_dnode(&dn, inode, page, NULL, 0);
1060 	unlock_page(page);
1061 
1062 	ri = F2FS_INODE(page);
1063 	switch (level) {
1064 	case 0:
1065 	case 1:
1066 		nofs = noffset[1];
1067 		break;
1068 	case 2:
1069 		nofs = noffset[1];
1070 		if (!offset[level - 1])
1071 			goto skip_partial;
1072 		err = truncate_partial_nodes(&dn, ri, offset, level);
1073 		if (err < 0 && err != -ENOENT)
1074 			goto fail;
1075 		nofs += 1 + NIDS_PER_BLOCK;
1076 		break;
1077 	case 3:
1078 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1079 		if (!offset[level - 1])
1080 			goto skip_partial;
1081 		err = truncate_partial_nodes(&dn, ri, offset, level);
1082 		if (err < 0 && err != -ENOENT)
1083 			goto fail;
1084 		break;
1085 	default:
1086 		BUG();
1087 	}
1088 
1089 skip_partial:
1090 	while (cont) {
1091 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1092 		switch (offset[0]) {
1093 		case NODE_DIR1_BLOCK:
1094 		case NODE_DIR2_BLOCK:
1095 			err = truncate_dnode(&dn);
1096 			break;
1097 
1098 		case NODE_IND1_BLOCK:
1099 		case NODE_IND2_BLOCK:
1100 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1101 			break;
1102 
1103 		case NODE_DIND_BLOCK:
1104 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1105 			cont = 0;
1106 			break;
1107 
1108 		default:
1109 			BUG();
1110 		}
1111 		if (err < 0 && err != -ENOENT)
1112 			goto fail;
1113 		if (offset[1] == 0 &&
1114 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1115 			lock_page(page);
1116 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1117 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1118 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1119 			set_page_dirty(page);
1120 			unlock_page(page);
1121 		}
1122 		offset[1] = 0;
1123 		offset[0]++;
1124 		nofs += err;
1125 	}
1126 fail:
1127 	f2fs_put_page(page, 0);
1128 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1129 	return err > 0 ? 0 : err;
1130 }
1131 
1132 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1133 int f2fs_truncate_xattr_node(struct inode *inode)
1134 {
1135 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1137 	struct dnode_of_data dn;
1138 	struct page *npage;
1139 	int err;
1140 
1141 	if (!nid)
1142 		return 0;
1143 
1144 	npage = f2fs_get_node_page(sbi, nid);
1145 	if (IS_ERR(npage))
1146 		return PTR_ERR(npage);
1147 
1148 	set_new_dnode(&dn, inode, NULL, npage, nid);
1149 	err = truncate_node(&dn);
1150 	if (err) {
1151 		f2fs_put_page(npage, 1);
1152 		return err;
1153 	}
1154 
1155 	f2fs_i_xnid_write(inode, 0);
1156 
1157 	return 0;
1158 }
1159 
1160 /*
1161  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1162  * f2fs_unlock_op().
1163  */
f2fs_remove_inode_page(struct inode * inode)1164 int f2fs_remove_inode_page(struct inode *inode)
1165 {
1166 	struct dnode_of_data dn;
1167 	int err;
1168 
1169 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1170 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1171 	if (err)
1172 		return err;
1173 
1174 	err = f2fs_truncate_xattr_node(inode);
1175 	if (err) {
1176 		f2fs_put_dnode(&dn);
1177 		return err;
1178 	}
1179 
1180 	/* remove potential inline_data blocks */
1181 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1182 				S_ISLNK(inode->i_mode))
1183 		f2fs_truncate_data_blocks_range(&dn, 1);
1184 
1185 	/* 0 is possible, after f2fs_new_inode() has failed */
1186 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1187 		f2fs_put_dnode(&dn);
1188 		return -EIO;
1189 	}
1190 
1191 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1192 		f2fs_warn(F2FS_I_SB(inode),
1193 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1194 			inode->i_ino, (unsigned long long)inode->i_blocks);
1195 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1196 	}
1197 
1198 	/* will put inode & node pages */
1199 	err = truncate_node(&dn);
1200 	if (err) {
1201 		f2fs_put_dnode(&dn);
1202 		return err;
1203 	}
1204 	return 0;
1205 }
1206 
f2fs_new_inode_page(struct inode * inode)1207 struct page *f2fs_new_inode_page(struct inode *inode)
1208 {
1209 	struct dnode_of_data dn;
1210 
1211 	/* allocate inode page for new inode */
1212 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1213 
1214 	/* caller should f2fs_put_page(page, 1); */
1215 	return f2fs_new_node_page(&dn, 0);
1216 }
1217 
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1218 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1219 {
1220 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1221 	struct node_info new_ni;
1222 	struct page *page;
1223 	int err;
1224 
1225 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1226 		return ERR_PTR(-EPERM);
1227 
1228 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1229 	if (!page)
1230 		return ERR_PTR(-ENOMEM);
1231 
1232 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1233 		goto fail;
1234 
1235 #ifdef CONFIG_F2FS_CHECK_FS
1236 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1237 	if (err) {
1238 		dec_valid_node_count(sbi, dn->inode, !ofs);
1239 		goto fail;
1240 	}
1241 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1242 		err = -EFSCORRUPTED;
1243 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1244 		goto fail;
1245 	}
1246 #endif
1247 	new_ni.nid = dn->nid;
1248 	new_ni.ino = dn->inode->i_ino;
1249 	new_ni.blk_addr = NULL_ADDR;
1250 	new_ni.flag = 0;
1251 	new_ni.version = 0;
1252 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1253 
1254 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1255 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1256 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1257 	if (!PageUptodate(page))
1258 		SetPageUptodate(page);
1259 	if (set_page_dirty(page))
1260 		dn->node_changed = true;
1261 
1262 	if (f2fs_has_xattr_block(ofs))
1263 		f2fs_i_xnid_write(dn->inode, dn->nid);
1264 
1265 	if (ofs == 0)
1266 		inc_valid_inode_count(sbi);
1267 	return page;
1268 
1269 fail:
1270 	clear_node_page_dirty(page);
1271 	f2fs_put_page(page, 1);
1272 	return ERR_PTR(err);
1273 }
1274 
1275 /*
1276  * Caller should do after getting the following values.
1277  * 0: f2fs_put_page(page, 0)
1278  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1279  */
read_node_page(struct page * page,int op_flags)1280 static int read_node_page(struct page *page, int op_flags)
1281 {
1282 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1283 	struct node_info ni;
1284 	struct f2fs_io_info fio = {
1285 		.sbi = sbi,
1286 		.type = NODE,
1287 		.op = REQ_OP_READ,
1288 		.op_flags = op_flags,
1289 		.page = page,
1290 		.encrypted_page = NULL,
1291 	};
1292 	int err;
1293 
1294 	if (PageUptodate(page)) {
1295 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1296 			ClearPageUptodate(page);
1297 			return -EFSBADCRC;
1298 		}
1299 		return LOCKED_PAGE;
1300 	}
1301 
1302 	err = f2fs_get_node_info(sbi, page->index, &ni);
1303 	if (err)
1304 		return err;
1305 
1306 	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1307 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1308 		ClearPageUptodate(page);
1309 		return -ENOENT;
1310 	}
1311 
1312 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1313 
1314 	err = f2fs_submit_page_bio(&fio);
1315 
1316 	if (!err)
1317 		f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1318 
1319 	return err;
1320 }
1321 
1322 /*
1323  * Readahead a node page
1324  */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1325 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1326 {
1327 	struct page *apage;
1328 	int err;
1329 
1330 	if (!nid)
1331 		return;
1332 	if (f2fs_check_nid_range(sbi, nid))
1333 		return;
1334 
1335 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1336 	if (apage)
1337 		return;
1338 
1339 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1340 	if (!apage)
1341 		return;
1342 
1343 	err = read_node_page(apage, REQ_RAHEAD);
1344 	f2fs_put_page(apage, err ? 1 : 0);
1345 }
1346 
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1347 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1348 					struct page *parent, int start)
1349 {
1350 	struct page *page;
1351 	int err;
1352 
1353 	if (!nid)
1354 		return ERR_PTR(-ENOENT);
1355 	if (f2fs_check_nid_range(sbi, nid))
1356 		return ERR_PTR(-EINVAL);
1357 repeat:
1358 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1359 	if (!page)
1360 		return ERR_PTR(-ENOMEM);
1361 
1362 	err = read_node_page(page, 0);
1363 	if (err < 0) {
1364 		f2fs_put_page(page, 1);
1365 		return ERR_PTR(err);
1366 	} else if (err == LOCKED_PAGE) {
1367 		err = 0;
1368 		goto page_hit;
1369 	}
1370 
1371 	if (parent)
1372 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1373 
1374 	lock_page(page);
1375 
1376 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1377 		f2fs_put_page(page, 1);
1378 		goto repeat;
1379 	}
1380 
1381 	if (unlikely(!PageUptodate(page))) {
1382 		err = -EIO;
1383 		goto out_err;
1384 	}
1385 
1386 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1387 		err = -EFSBADCRC;
1388 		goto out_err;
1389 	}
1390 page_hit:
1391 	if(unlikely(nid != nid_of_node(page))) {
1392 		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1393 			  nid, nid_of_node(page), ino_of_node(page),
1394 			  ofs_of_node(page), cpver_of_node(page),
1395 			  next_blkaddr_of_node(page));
1396 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1397 		err = -EINVAL;
1398 out_err:
1399 		ClearPageUptodate(page);
1400 		f2fs_put_page(page, 1);
1401 		return ERR_PTR(err);
1402 	}
1403 	return page;
1404 }
1405 
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1406 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1407 {
1408 	return __get_node_page(sbi, nid, NULL, 0);
1409 }
1410 
f2fs_get_node_page_ra(struct page * parent,int start)1411 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1412 {
1413 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1414 	nid_t nid = get_nid(parent, start, false);
1415 
1416 	return __get_node_page(sbi, nid, parent, start);
1417 }
1418 
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1419 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1420 {
1421 	struct inode *inode;
1422 	struct page *page;
1423 	int ret;
1424 
1425 	/* should flush inline_data before evict_inode */
1426 	inode = ilookup(sbi->sb, ino);
1427 	if (!inode)
1428 		return;
1429 
1430 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1431 					FGP_LOCK|FGP_NOWAIT, 0);
1432 	if (!page)
1433 		goto iput_out;
1434 
1435 	if (!PageUptodate(page))
1436 		goto page_out;
1437 
1438 	if (!PageDirty(page))
1439 		goto page_out;
1440 
1441 	if (!clear_page_dirty_for_io(page))
1442 		goto page_out;
1443 
1444 	ret = f2fs_write_inline_data(inode, page);
1445 	inode_dec_dirty_pages(inode);
1446 	f2fs_remove_dirty_inode(inode);
1447 	if (ret)
1448 		set_page_dirty(page);
1449 page_out:
1450 	f2fs_put_page(page, 1);
1451 iput_out:
1452 	iput(inode);
1453 }
1454 
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1455 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1456 {
1457 	pgoff_t index;
1458 	struct pagevec pvec;
1459 	struct page *last_page = NULL;
1460 	int nr_pages;
1461 
1462 	pagevec_init(&pvec);
1463 	index = 0;
1464 
1465 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1466 				PAGECACHE_TAG_DIRTY))) {
1467 		int i;
1468 
1469 		for (i = 0; i < nr_pages; i++) {
1470 			struct page *page = pvec.pages[i];
1471 
1472 			if (unlikely(f2fs_cp_error(sbi))) {
1473 				f2fs_put_page(last_page, 0);
1474 				pagevec_release(&pvec);
1475 				return ERR_PTR(-EIO);
1476 			}
1477 
1478 			if (!IS_DNODE(page) || !is_cold_node(page))
1479 				continue;
1480 			if (ino_of_node(page) != ino)
1481 				continue;
1482 
1483 			lock_page(page);
1484 
1485 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1486 continue_unlock:
1487 				unlock_page(page);
1488 				continue;
1489 			}
1490 			if (ino_of_node(page) != ino)
1491 				goto continue_unlock;
1492 
1493 			if (!PageDirty(page)) {
1494 				/* someone wrote it for us */
1495 				goto continue_unlock;
1496 			}
1497 
1498 			if (last_page)
1499 				f2fs_put_page(last_page, 0);
1500 
1501 			get_page(page);
1502 			last_page = page;
1503 			unlock_page(page);
1504 		}
1505 		pagevec_release(&pvec);
1506 		cond_resched();
1507 	}
1508 	return last_page;
1509 }
1510 
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1511 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1512 				struct writeback_control *wbc, bool do_balance,
1513 				enum iostat_type io_type, unsigned int *seq_id)
1514 {
1515 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1516 	nid_t nid;
1517 	struct node_info ni;
1518 	struct f2fs_io_info fio = {
1519 		.sbi = sbi,
1520 		.ino = ino_of_node(page),
1521 		.type = NODE,
1522 		.op = REQ_OP_WRITE,
1523 		.op_flags = wbc_to_write_flags(wbc),
1524 		.page = page,
1525 		.encrypted_page = NULL,
1526 		.submitted = false,
1527 		.io_type = io_type,
1528 		.io_wbc = wbc,
1529 	};
1530 	unsigned int seq;
1531 
1532 	trace_f2fs_writepage(page, NODE);
1533 
1534 	if (unlikely(f2fs_cp_error(sbi))) {
1535 		if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1536 			ClearPageUptodate(page);
1537 			dec_page_count(sbi, F2FS_DIRTY_NODES);
1538 			unlock_page(page);
1539 			return 0;
1540 		}
1541 		goto redirty_out;
1542 	}
1543 
1544 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1545 		goto redirty_out;
1546 
1547 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1548 			wbc->sync_mode == WB_SYNC_NONE &&
1549 			IS_DNODE(page) && is_cold_node(page))
1550 		goto redirty_out;
1551 
1552 	/* get old block addr of this node page */
1553 	nid = nid_of_node(page);
1554 	f2fs_bug_on(sbi, page->index != nid);
1555 
1556 	if (f2fs_get_node_info(sbi, nid, &ni))
1557 		goto redirty_out;
1558 
1559 	if (wbc->for_reclaim) {
1560 		if (!down_read_trylock(&sbi->node_write))
1561 			goto redirty_out;
1562 	} else {
1563 		down_read(&sbi->node_write);
1564 	}
1565 
1566 	/* This page is already truncated */
1567 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1568 		ClearPageUptodate(page);
1569 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1570 		up_read(&sbi->node_write);
1571 		unlock_page(page);
1572 		return 0;
1573 	}
1574 
1575 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1576 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1577 					DATA_GENERIC_ENHANCE)) {
1578 		up_read(&sbi->node_write);
1579 		goto redirty_out;
1580 	}
1581 
1582 	if (atomic && !test_opt(sbi, NOBARRIER))
1583 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1584 
1585 	/* should add to global list before clearing PAGECACHE status */
1586 	if (f2fs_in_warm_node_list(sbi, page)) {
1587 		seq = f2fs_add_fsync_node_entry(sbi, page);
1588 		if (seq_id)
1589 			*seq_id = seq;
1590 	}
1591 
1592 	set_page_writeback(page);
1593 	ClearPageError(page);
1594 
1595 	fio.old_blkaddr = ni.blk_addr;
1596 	f2fs_do_write_node_page(nid, &fio);
1597 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1598 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1599 	up_read(&sbi->node_write);
1600 
1601 	if (wbc->for_reclaim) {
1602 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1603 		submitted = NULL;
1604 	}
1605 
1606 	unlock_page(page);
1607 
1608 	if (unlikely(f2fs_cp_error(sbi))) {
1609 		f2fs_submit_merged_write(sbi, NODE);
1610 		submitted = NULL;
1611 	}
1612 	if (submitted)
1613 		*submitted = fio.submitted;
1614 
1615 	if (do_balance)
1616 		f2fs_balance_fs(sbi, false);
1617 	return 0;
1618 
1619 redirty_out:
1620 	redirty_page_for_writepage(wbc, page);
1621 	return AOP_WRITEPAGE_ACTIVATE;
1622 }
1623 
f2fs_move_node_page(struct page * node_page,int gc_type)1624 int f2fs_move_node_page(struct page *node_page, int gc_type)
1625 {
1626 	int err = 0;
1627 
1628 	if (gc_type == FG_GC) {
1629 		struct writeback_control wbc = {
1630 			.sync_mode = WB_SYNC_ALL,
1631 			.nr_to_write = 1,
1632 			.for_reclaim = 0,
1633 		};
1634 
1635 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1636 
1637 		set_page_dirty(node_page);
1638 
1639 		if (!clear_page_dirty_for_io(node_page)) {
1640 			err = -EAGAIN;
1641 			goto out_page;
1642 		}
1643 
1644 		if (__write_node_page(node_page, false, NULL,
1645 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1646 			err = -EAGAIN;
1647 			unlock_page(node_page);
1648 		}
1649 		goto release_page;
1650 	} else {
1651 		/* set page dirty and write it */
1652 		if (!PageWriteback(node_page))
1653 			set_page_dirty(node_page);
1654 	}
1655 out_page:
1656 	unlock_page(node_page);
1657 release_page:
1658 	f2fs_put_page(node_page, 0);
1659 	return err;
1660 }
1661 
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1662 static int f2fs_write_node_page(struct page *page,
1663 				struct writeback_control *wbc)
1664 {
1665 	return __write_node_page(page, false, NULL, wbc, false,
1666 						FS_NODE_IO, NULL);
1667 }
1668 
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1669 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1670 			struct writeback_control *wbc, bool atomic,
1671 			unsigned int *seq_id)
1672 {
1673 	pgoff_t index;
1674 	struct pagevec pvec;
1675 	int ret = 0;
1676 	struct page *last_page = NULL;
1677 	bool marked = false;
1678 	nid_t ino = inode->i_ino;
1679 	int nr_pages;
1680 	int nwritten = 0;
1681 
1682 	if (atomic) {
1683 		last_page = last_fsync_dnode(sbi, ino);
1684 		if (IS_ERR_OR_NULL(last_page))
1685 			return PTR_ERR_OR_ZERO(last_page);
1686 	}
1687 retry:
1688 	pagevec_init(&pvec);
1689 	index = 0;
1690 
1691 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1692 				PAGECACHE_TAG_DIRTY))) {
1693 		int i;
1694 
1695 		for (i = 0; i < nr_pages; i++) {
1696 			struct page *page = pvec.pages[i];
1697 			bool submitted = false;
1698 
1699 			if (unlikely(f2fs_cp_error(sbi))) {
1700 				f2fs_put_page(last_page, 0);
1701 				pagevec_release(&pvec);
1702 				ret = -EIO;
1703 				goto out;
1704 			}
1705 
1706 			if (!IS_DNODE(page) || !is_cold_node(page))
1707 				continue;
1708 			if (ino_of_node(page) != ino)
1709 				continue;
1710 
1711 			lock_page(page);
1712 
1713 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1714 continue_unlock:
1715 				unlock_page(page);
1716 				continue;
1717 			}
1718 			if (ino_of_node(page) != ino)
1719 				goto continue_unlock;
1720 
1721 			if (!PageDirty(page) && page != last_page) {
1722 				/* someone wrote it for us */
1723 				goto continue_unlock;
1724 			}
1725 
1726 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1727 
1728 			set_fsync_mark(page, 0);
1729 			set_dentry_mark(page, 0);
1730 
1731 			if (!atomic || page == last_page) {
1732 				set_fsync_mark(page, 1);
1733 				if (IS_INODE(page)) {
1734 					if (is_inode_flag_set(inode,
1735 								FI_DIRTY_INODE))
1736 						f2fs_update_inode(inode, page);
1737 					set_dentry_mark(page,
1738 						f2fs_need_dentry_mark(sbi, ino));
1739 				}
1740 				/*  may be written by other thread */
1741 				if (!PageDirty(page))
1742 					set_page_dirty(page);
1743 			}
1744 
1745 			if (!clear_page_dirty_for_io(page))
1746 				goto continue_unlock;
1747 
1748 			ret = __write_node_page(page, atomic &&
1749 						page == last_page,
1750 						&submitted, wbc, true,
1751 						FS_NODE_IO, seq_id);
1752 			if (ret) {
1753 				unlock_page(page);
1754 				f2fs_put_page(last_page, 0);
1755 				break;
1756 			} else if (submitted) {
1757 				nwritten++;
1758 			}
1759 
1760 			if (page == last_page) {
1761 				f2fs_put_page(page, 0);
1762 				marked = true;
1763 				break;
1764 			}
1765 		}
1766 		pagevec_release(&pvec);
1767 		cond_resched();
1768 
1769 		if (ret || marked)
1770 			break;
1771 	}
1772 	if (!ret && atomic && !marked) {
1773 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1774 			   ino, last_page->index);
1775 		lock_page(last_page);
1776 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1777 		set_page_dirty(last_page);
1778 		unlock_page(last_page);
1779 		goto retry;
1780 	}
1781 out:
1782 	if (nwritten)
1783 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1784 	return ret ? -EIO: 0;
1785 }
1786 
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1787 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1788 {
1789 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1790 	bool clean;
1791 
1792 	if (inode->i_ino != ino)
1793 		return 0;
1794 
1795 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1796 		return 0;
1797 
1798 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1799 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1800 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1801 
1802 	if (clean)
1803 		return 0;
1804 
1805 	inode = igrab(inode);
1806 	if (!inode)
1807 		return 0;
1808 	return 1;
1809 }
1810 
flush_dirty_inode(struct page * page)1811 static bool flush_dirty_inode(struct page *page)
1812 {
1813 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1814 	struct inode *inode;
1815 	nid_t ino = ino_of_node(page);
1816 
1817 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1818 	if (!inode)
1819 		return false;
1820 
1821 	f2fs_update_inode(inode, page);
1822 	unlock_page(page);
1823 
1824 	iput(inode);
1825 	return true;
1826 }
1827 
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1828 int f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1829 {
1830 	pgoff_t index = 0;
1831 	struct pagevec pvec;
1832 	int nr_pages;
1833 	int ret = 0;
1834 
1835 	pagevec_init(&pvec);
1836 
1837 	while ((nr_pages = pagevec_lookup_tag(&pvec,
1838 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1839 		int i;
1840 
1841 		for (i = 0; i < nr_pages; i++) {
1842 			struct page *page = pvec.pages[i];
1843 
1844 			if (!IS_DNODE(page))
1845 				continue;
1846 
1847 			lock_page(page);
1848 
1849 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1850 continue_unlock:
1851 				unlock_page(page);
1852 				continue;
1853 			}
1854 
1855 			if (!PageDirty(page)) {
1856 				/* someone wrote it for us */
1857 				goto continue_unlock;
1858 			}
1859 
1860 			/* flush inline_data, if it's async context. */
1861 			if (is_inline_node(page)) {
1862 				clear_inline_node(page);
1863 				unlock_page(page);
1864 				flush_inline_data(sbi, ino_of_node(page));
1865 				continue;
1866 			}
1867 			unlock_page(page);
1868 		}
1869 		pagevec_release(&pvec);
1870 		cond_resched();
1871 	}
1872 	return ret;
1873 }
1874 
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1875 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1876 				struct writeback_control *wbc,
1877 				bool do_balance, enum iostat_type io_type)
1878 {
1879 	pgoff_t index;
1880 	struct pagevec pvec;
1881 	int step = 0;
1882 	int nwritten = 0;
1883 	int ret = 0;
1884 	int nr_pages, done = 0;
1885 
1886 	pagevec_init(&pvec);
1887 
1888 next_step:
1889 	index = 0;
1890 
1891 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1892 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1893 		int i;
1894 
1895 		for (i = 0; i < nr_pages; i++) {
1896 			struct page *page = pvec.pages[i];
1897 			bool submitted = false;
1898 			bool may_dirty = true;
1899 
1900 			/* give a priority to WB_SYNC threads */
1901 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1902 					wbc->sync_mode == WB_SYNC_NONE) {
1903 				done = 1;
1904 				break;
1905 			}
1906 
1907 			/*
1908 			 * flushing sequence with step:
1909 			 * 0. indirect nodes
1910 			 * 1. dentry dnodes
1911 			 * 2. file dnodes
1912 			 */
1913 			if (step == 0 && IS_DNODE(page))
1914 				continue;
1915 			if (step == 1 && (!IS_DNODE(page) ||
1916 						is_cold_node(page)))
1917 				continue;
1918 			if (step == 2 && (!IS_DNODE(page) ||
1919 						!is_cold_node(page)))
1920 				continue;
1921 lock_node:
1922 			if (wbc->sync_mode == WB_SYNC_ALL)
1923 				lock_page(page);
1924 			else if (!trylock_page(page))
1925 				continue;
1926 
1927 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1928 continue_unlock:
1929 				unlock_page(page);
1930 				continue;
1931 			}
1932 
1933 			if (!PageDirty(page)) {
1934 				/* someone wrote it for us */
1935 				goto continue_unlock;
1936 			}
1937 
1938 			/* flush inline_data, if it's async context. */
1939 			if (do_balance && is_inline_node(page)) {
1940 				clear_inline_node(page);
1941 				unlock_page(page);
1942 				flush_inline_data(sbi, ino_of_node(page));
1943 				goto lock_node;
1944 			}
1945 
1946 			/* flush dirty inode */
1947 			if (IS_INODE(page) && may_dirty) {
1948 				may_dirty = false;
1949 				if (flush_dirty_inode(page))
1950 					goto lock_node;
1951 			}
1952 
1953 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1954 
1955 			if (!clear_page_dirty_for_io(page))
1956 				goto continue_unlock;
1957 
1958 			set_fsync_mark(page, 0);
1959 			set_dentry_mark(page, 0);
1960 
1961 			ret = __write_node_page(page, false, &submitted,
1962 						wbc, do_balance, io_type, NULL);
1963 			if (ret)
1964 				unlock_page(page);
1965 			else if (submitted)
1966 				nwritten++;
1967 
1968 			if (--wbc->nr_to_write == 0)
1969 				break;
1970 		}
1971 		pagevec_release(&pvec);
1972 		cond_resched();
1973 
1974 		if (wbc->nr_to_write == 0) {
1975 			step = 2;
1976 			break;
1977 		}
1978 	}
1979 
1980 	if (step < 2) {
1981 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1982 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
1983 			goto out;
1984 		step++;
1985 		goto next_step;
1986 	}
1987 out:
1988 	if (nwritten)
1989 		f2fs_submit_merged_write(sbi, NODE);
1990 
1991 	if (unlikely(f2fs_cp_error(sbi)))
1992 		return -EIO;
1993 	return ret;
1994 }
1995 
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)1996 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1997 						unsigned int seq_id)
1998 {
1999 	struct fsync_node_entry *fn;
2000 	struct page *page;
2001 	struct list_head *head = &sbi->fsync_node_list;
2002 	unsigned long flags;
2003 	unsigned int cur_seq_id = 0;
2004 	int ret2, ret = 0;
2005 
2006 	while (seq_id && cur_seq_id < seq_id) {
2007 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2008 		if (list_empty(head)) {
2009 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2010 			break;
2011 		}
2012 		fn = list_first_entry(head, struct fsync_node_entry, list);
2013 		if (fn->seq_id > seq_id) {
2014 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2015 			break;
2016 		}
2017 		cur_seq_id = fn->seq_id;
2018 		page = fn->page;
2019 		get_page(page);
2020 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2021 
2022 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2023 		if (TestClearPageError(page))
2024 			ret = -EIO;
2025 
2026 		put_page(page);
2027 
2028 		if (ret)
2029 			break;
2030 	}
2031 
2032 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2033 	if (!ret)
2034 		ret = ret2;
2035 
2036 	return ret;
2037 }
2038 
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2039 static int f2fs_write_node_pages(struct address_space *mapping,
2040 			    struct writeback_control *wbc)
2041 {
2042 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2043 	struct blk_plug plug;
2044 	long diff;
2045 
2046 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2047 		goto skip_write;
2048 
2049 	/* balancing f2fs's metadata in background */
2050 	f2fs_balance_fs_bg(sbi, true);
2051 
2052 	/* collect a number of dirty node pages and write together */
2053 	if (wbc->sync_mode != WB_SYNC_ALL &&
2054 			get_pages(sbi, F2FS_DIRTY_NODES) <
2055 					nr_pages_to_skip(sbi, NODE))
2056 		goto skip_write;
2057 
2058 	if (wbc->sync_mode == WB_SYNC_ALL)
2059 		atomic_inc(&sbi->wb_sync_req[NODE]);
2060 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2061 		/* to avoid potential deadlock */
2062 		if (current->plug)
2063 			blk_finish_plug(current->plug);
2064 		goto skip_write;
2065 	}
2066 
2067 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2068 
2069 	diff = nr_pages_to_write(sbi, NODE, wbc);
2070 	blk_start_plug(&plug);
2071 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2072 	blk_finish_plug(&plug);
2073 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2074 
2075 	if (wbc->sync_mode == WB_SYNC_ALL)
2076 		atomic_dec(&sbi->wb_sync_req[NODE]);
2077 	return 0;
2078 
2079 skip_write:
2080 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2081 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2082 	return 0;
2083 }
2084 
f2fs_set_node_page_dirty(struct page * page)2085 static int f2fs_set_node_page_dirty(struct page *page)
2086 {
2087 	trace_f2fs_set_page_dirty(page, NODE);
2088 
2089 	if (!PageUptodate(page))
2090 		SetPageUptodate(page);
2091 #ifdef CONFIG_F2FS_CHECK_FS
2092 	if (IS_INODE(page))
2093 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2094 #endif
2095 	if (!PageDirty(page)) {
2096 		__set_page_dirty_nobuffers(page);
2097 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2098 		f2fs_set_page_private(page, 0);
2099 		f2fs_trace_pid(page);
2100 		return 1;
2101 	}
2102 	return 0;
2103 }
2104 
2105 /*
2106  * Structure of the f2fs node operations
2107  */
2108 const struct address_space_operations f2fs_node_aops = {
2109 	.writepage	= f2fs_write_node_page,
2110 	.writepages	= f2fs_write_node_pages,
2111 	.set_page_dirty	= f2fs_set_node_page_dirty,
2112 	.invalidatepage	= f2fs_invalidate_page,
2113 	.releasepage	= f2fs_release_page,
2114 #ifdef CONFIG_MIGRATION
2115 	.migratepage    = f2fs_migrate_page,
2116 #endif
2117 };
2118 
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2119 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2120 						nid_t n)
2121 {
2122 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2123 }
2124 
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2125 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2126 			struct free_nid *i, enum nid_state state)
2127 {
2128 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2129 
2130 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2131 	if (err)
2132 		return err;
2133 
2134 	f2fs_bug_on(sbi, state != i->state);
2135 	nm_i->nid_cnt[state]++;
2136 	if (state == FREE_NID)
2137 		list_add_tail(&i->list, &nm_i->free_nid_list);
2138 	return 0;
2139 }
2140 
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2141 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2142 			struct free_nid *i, enum nid_state state)
2143 {
2144 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2145 
2146 	f2fs_bug_on(sbi, state != i->state);
2147 	nm_i->nid_cnt[state]--;
2148 	if (state == FREE_NID)
2149 		list_del(&i->list);
2150 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2151 }
2152 
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2153 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2154 			enum nid_state org_state, enum nid_state dst_state)
2155 {
2156 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2157 
2158 	f2fs_bug_on(sbi, org_state != i->state);
2159 	i->state = dst_state;
2160 	nm_i->nid_cnt[org_state]--;
2161 	nm_i->nid_cnt[dst_state]++;
2162 
2163 	switch (dst_state) {
2164 	case PREALLOC_NID:
2165 		list_del(&i->list);
2166 		break;
2167 	case FREE_NID:
2168 		list_add_tail(&i->list, &nm_i->free_nid_list);
2169 		break;
2170 	default:
2171 		BUG_ON(1);
2172 	}
2173 }
2174 
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2175 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2176 							bool set, bool build)
2177 {
2178 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2179 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2180 	unsigned int nid_ofs = nid - START_NID(nid);
2181 
2182 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2183 		return;
2184 
2185 	if (set) {
2186 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2187 			return;
2188 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2189 		nm_i->free_nid_count[nat_ofs]++;
2190 	} else {
2191 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2192 			return;
2193 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2194 		if (!build)
2195 			nm_i->free_nid_count[nat_ofs]--;
2196 	}
2197 }
2198 
2199 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2200 static bool add_free_nid(struct f2fs_sb_info *sbi,
2201 				nid_t nid, bool build, bool update)
2202 {
2203 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2204 	struct free_nid *i, *e;
2205 	struct nat_entry *ne;
2206 	int err = -EINVAL;
2207 	bool ret = false;
2208 
2209 	/* 0 nid should not be used */
2210 	if (unlikely(nid == 0))
2211 		return false;
2212 
2213 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2214 		return false;
2215 
2216 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2217 	i->nid = nid;
2218 	i->state = FREE_NID;
2219 
2220 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2221 
2222 	spin_lock(&nm_i->nid_list_lock);
2223 
2224 	if (build) {
2225 		/*
2226 		 *   Thread A             Thread B
2227 		 *  - f2fs_create
2228 		 *   - f2fs_new_inode
2229 		 *    - f2fs_alloc_nid
2230 		 *     - __insert_nid_to_list(PREALLOC_NID)
2231 		 *                     - f2fs_balance_fs_bg
2232 		 *                      - f2fs_build_free_nids
2233 		 *                       - __f2fs_build_free_nids
2234 		 *                        - scan_nat_page
2235 		 *                         - add_free_nid
2236 		 *                          - __lookup_nat_cache
2237 		 *  - f2fs_add_link
2238 		 *   - f2fs_init_inode_metadata
2239 		 *    - f2fs_new_inode_page
2240 		 *     - f2fs_new_node_page
2241 		 *      - set_node_addr
2242 		 *  - f2fs_alloc_nid_done
2243 		 *   - __remove_nid_from_list(PREALLOC_NID)
2244 		 *                         - __insert_nid_to_list(FREE_NID)
2245 		 */
2246 		ne = __lookup_nat_cache(nm_i, nid);
2247 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2248 				nat_get_blkaddr(ne) != NULL_ADDR))
2249 			goto err_out;
2250 
2251 		e = __lookup_free_nid_list(nm_i, nid);
2252 		if (e) {
2253 			if (e->state == FREE_NID)
2254 				ret = true;
2255 			goto err_out;
2256 		}
2257 	}
2258 	ret = true;
2259 	err = __insert_free_nid(sbi, i, FREE_NID);
2260 err_out:
2261 	if (update) {
2262 		update_free_nid_bitmap(sbi, nid, ret, build);
2263 		if (!build)
2264 			nm_i->available_nids++;
2265 	}
2266 	spin_unlock(&nm_i->nid_list_lock);
2267 	radix_tree_preload_end();
2268 
2269 	if (err)
2270 		kmem_cache_free(free_nid_slab, i);
2271 	return ret;
2272 }
2273 
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2274 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2275 {
2276 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2277 	struct free_nid *i;
2278 	bool need_free = false;
2279 
2280 	spin_lock(&nm_i->nid_list_lock);
2281 	i = __lookup_free_nid_list(nm_i, nid);
2282 	if (i && i->state == FREE_NID) {
2283 		__remove_free_nid(sbi, i, FREE_NID);
2284 		need_free = true;
2285 	}
2286 	spin_unlock(&nm_i->nid_list_lock);
2287 
2288 	if (need_free)
2289 		kmem_cache_free(free_nid_slab, i);
2290 }
2291 
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2292 static int scan_nat_page(struct f2fs_sb_info *sbi,
2293 			struct page *nat_page, nid_t start_nid)
2294 {
2295 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2296 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2297 	block_t blk_addr;
2298 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2299 	int i;
2300 
2301 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2302 
2303 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2304 
2305 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2306 		if (unlikely(start_nid >= nm_i->max_nid))
2307 			break;
2308 
2309 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2310 
2311 		if (blk_addr == NEW_ADDR)
2312 			return -EINVAL;
2313 
2314 		if (blk_addr == NULL_ADDR) {
2315 			add_free_nid(sbi, start_nid, true, true);
2316 		} else {
2317 			spin_lock(&NM_I(sbi)->nid_list_lock);
2318 			update_free_nid_bitmap(sbi, start_nid, false, true);
2319 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2320 		}
2321 	}
2322 
2323 	return 0;
2324 }
2325 
scan_curseg_cache(struct f2fs_sb_info * sbi)2326 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2327 {
2328 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2329 	struct f2fs_journal *journal = curseg->journal;
2330 	int i;
2331 
2332 	down_read(&curseg->journal_rwsem);
2333 	for (i = 0; i < nats_in_cursum(journal); i++) {
2334 		block_t addr;
2335 		nid_t nid;
2336 
2337 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2338 		nid = le32_to_cpu(nid_in_journal(journal, i));
2339 		if (addr == NULL_ADDR)
2340 			add_free_nid(sbi, nid, true, false);
2341 		else
2342 			remove_free_nid(sbi, nid);
2343 	}
2344 	up_read(&curseg->journal_rwsem);
2345 }
2346 
scan_free_nid_bits(struct f2fs_sb_info * sbi)2347 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2348 {
2349 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2350 	unsigned int i, idx;
2351 	nid_t nid;
2352 
2353 	down_read(&nm_i->nat_tree_lock);
2354 
2355 	for (i = 0; i < nm_i->nat_blocks; i++) {
2356 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2357 			continue;
2358 		if (!nm_i->free_nid_count[i])
2359 			continue;
2360 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2361 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2362 						NAT_ENTRY_PER_BLOCK, idx);
2363 			if (idx >= NAT_ENTRY_PER_BLOCK)
2364 				break;
2365 
2366 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2367 			add_free_nid(sbi, nid, true, false);
2368 
2369 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2370 				goto out;
2371 		}
2372 	}
2373 out:
2374 	scan_curseg_cache(sbi);
2375 
2376 	up_read(&nm_i->nat_tree_lock);
2377 }
2378 
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2379 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2380 						bool sync, bool mount)
2381 {
2382 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2383 	int i = 0, ret;
2384 	nid_t nid = nm_i->next_scan_nid;
2385 
2386 	if (unlikely(nid >= nm_i->max_nid))
2387 		nid = 0;
2388 
2389 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2390 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2391 
2392 	/* Enough entries */
2393 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2394 		return 0;
2395 
2396 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2397 		return 0;
2398 
2399 	if (!mount) {
2400 		/* try to find free nids in free_nid_bitmap */
2401 		scan_free_nid_bits(sbi);
2402 
2403 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2404 			return 0;
2405 	}
2406 
2407 	/* readahead nat pages to be scanned */
2408 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2409 							META_NAT, true);
2410 
2411 	down_read(&nm_i->nat_tree_lock);
2412 
2413 	while (1) {
2414 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2415 						nm_i->nat_block_bitmap)) {
2416 			struct page *page = get_current_nat_page(sbi, nid);
2417 
2418 			if (IS_ERR(page)) {
2419 				ret = PTR_ERR(page);
2420 			} else {
2421 				ret = scan_nat_page(sbi, page, nid);
2422 				f2fs_put_page(page, 1);
2423 			}
2424 
2425 			if (ret) {
2426 				up_read(&nm_i->nat_tree_lock);
2427 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2428 				return ret;
2429 			}
2430 		}
2431 
2432 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2433 		if (unlikely(nid >= nm_i->max_nid))
2434 			nid = 0;
2435 
2436 		if (++i >= FREE_NID_PAGES)
2437 			break;
2438 	}
2439 
2440 	/* go to the next free nat pages to find free nids abundantly */
2441 	nm_i->next_scan_nid = nid;
2442 
2443 	/* find free nids from current sum_pages */
2444 	scan_curseg_cache(sbi);
2445 
2446 	up_read(&nm_i->nat_tree_lock);
2447 
2448 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2449 					nm_i->ra_nid_pages, META_NAT, false);
2450 
2451 	return 0;
2452 }
2453 
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2454 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2455 {
2456 	int ret;
2457 
2458 	mutex_lock(&NM_I(sbi)->build_lock);
2459 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2460 	mutex_unlock(&NM_I(sbi)->build_lock);
2461 
2462 	return ret;
2463 }
2464 
2465 /*
2466  * If this function returns success, caller can obtain a new nid
2467  * from second parameter of this function.
2468  * The returned nid could be used ino as well as nid when inode is created.
2469  */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2470 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2471 {
2472 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2473 	struct free_nid *i = NULL;
2474 retry:
2475 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2476 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2477 		return false;
2478 	}
2479 
2480 	spin_lock(&nm_i->nid_list_lock);
2481 
2482 	if (unlikely(nm_i->available_nids == 0)) {
2483 		spin_unlock(&nm_i->nid_list_lock);
2484 		return false;
2485 	}
2486 
2487 	/* We should not use stale free nids created by f2fs_build_free_nids */
2488 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2489 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2490 		i = list_first_entry(&nm_i->free_nid_list,
2491 					struct free_nid, list);
2492 		*nid = i->nid;
2493 
2494 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2495 		nm_i->available_nids--;
2496 
2497 		update_free_nid_bitmap(sbi, *nid, false, false);
2498 
2499 		spin_unlock(&nm_i->nid_list_lock);
2500 		return true;
2501 	}
2502 	spin_unlock(&nm_i->nid_list_lock);
2503 
2504 	/* Let's scan nat pages and its caches to get free nids */
2505 	if (!f2fs_build_free_nids(sbi, true, false))
2506 		goto retry;
2507 	return false;
2508 }
2509 
2510 /*
2511  * f2fs_alloc_nid() should be called prior to this function.
2512  */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2513 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2514 {
2515 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2516 	struct free_nid *i;
2517 
2518 	spin_lock(&nm_i->nid_list_lock);
2519 	i = __lookup_free_nid_list(nm_i, nid);
2520 	f2fs_bug_on(sbi, !i);
2521 	__remove_free_nid(sbi, i, PREALLOC_NID);
2522 	spin_unlock(&nm_i->nid_list_lock);
2523 
2524 	kmem_cache_free(free_nid_slab, i);
2525 }
2526 
2527 /*
2528  * f2fs_alloc_nid() should be called prior to this function.
2529  */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2530 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2531 {
2532 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2533 	struct free_nid *i;
2534 	bool need_free = false;
2535 
2536 	if (!nid)
2537 		return;
2538 
2539 	spin_lock(&nm_i->nid_list_lock);
2540 	i = __lookup_free_nid_list(nm_i, nid);
2541 	f2fs_bug_on(sbi, !i);
2542 
2543 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2544 		__remove_free_nid(sbi, i, PREALLOC_NID);
2545 		need_free = true;
2546 	} else {
2547 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2548 	}
2549 
2550 	nm_i->available_nids++;
2551 
2552 	update_free_nid_bitmap(sbi, nid, true, false);
2553 
2554 	spin_unlock(&nm_i->nid_list_lock);
2555 
2556 	if (need_free)
2557 		kmem_cache_free(free_nid_slab, i);
2558 }
2559 
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2560 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2561 {
2562 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2563 	int nr = nr_shrink;
2564 
2565 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2566 		return 0;
2567 
2568 	if (!mutex_trylock(&nm_i->build_lock))
2569 		return 0;
2570 
2571 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2572 		struct free_nid *i, *next;
2573 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2574 
2575 		spin_lock(&nm_i->nid_list_lock);
2576 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2577 			if (!nr_shrink || !batch ||
2578 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2579 				break;
2580 			__remove_free_nid(sbi, i, FREE_NID);
2581 			kmem_cache_free(free_nid_slab, i);
2582 			nr_shrink--;
2583 			batch--;
2584 		}
2585 		spin_unlock(&nm_i->nid_list_lock);
2586 	}
2587 
2588 	mutex_unlock(&nm_i->build_lock);
2589 
2590 	return nr - nr_shrink;
2591 }
2592 
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2593 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2594 {
2595 	void *src_addr, *dst_addr;
2596 	size_t inline_size;
2597 	struct page *ipage;
2598 	struct f2fs_inode *ri;
2599 
2600 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2601 	if (IS_ERR(ipage))
2602 		return PTR_ERR(ipage);
2603 
2604 	ri = F2FS_INODE(page);
2605 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2606 		set_inode_flag(inode, FI_INLINE_XATTR);
2607 	} else {
2608 		clear_inode_flag(inode, FI_INLINE_XATTR);
2609 		goto update_inode;
2610 	}
2611 
2612 	dst_addr = inline_xattr_addr(inode, ipage);
2613 	src_addr = inline_xattr_addr(inode, page);
2614 	inline_size = inline_xattr_size(inode);
2615 
2616 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2617 	memcpy(dst_addr, src_addr, inline_size);
2618 update_inode:
2619 	f2fs_update_inode(inode, ipage);
2620 	f2fs_put_page(ipage, 1);
2621 	return 0;
2622 }
2623 
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2624 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2625 {
2626 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2627 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2628 	nid_t new_xnid;
2629 	struct dnode_of_data dn;
2630 	struct node_info ni;
2631 	struct page *xpage;
2632 	int err;
2633 
2634 	if (!prev_xnid)
2635 		goto recover_xnid;
2636 
2637 	/* 1: invalidate the previous xattr nid */
2638 	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2639 	if (err)
2640 		return err;
2641 
2642 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2643 	dec_valid_node_count(sbi, inode, false);
2644 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2645 
2646 recover_xnid:
2647 	/* 2: update xattr nid in inode */
2648 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2649 		return -ENOSPC;
2650 
2651 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2652 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2653 	if (IS_ERR(xpage)) {
2654 		f2fs_alloc_nid_failed(sbi, new_xnid);
2655 		return PTR_ERR(xpage);
2656 	}
2657 
2658 	f2fs_alloc_nid_done(sbi, new_xnid);
2659 	f2fs_update_inode_page(inode);
2660 
2661 	/* 3: update and set xattr node page dirty */
2662 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2663 
2664 	set_page_dirty(xpage);
2665 	f2fs_put_page(xpage, 1);
2666 
2667 	return 0;
2668 }
2669 
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2670 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2671 {
2672 	struct f2fs_inode *src, *dst;
2673 	nid_t ino = ino_of_node(page);
2674 	struct node_info old_ni, new_ni;
2675 	struct page *ipage;
2676 	int err;
2677 
2678 	err = f2fs_get_node_info(sbi, ino, &old_ni);
2679 	if (err)
2680 		return err;
2681 
2682 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2683 		return -EINVAL;
2684 retry:
2685 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2686 	if (!ipage) {
2687 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2688 		goto retry;
2689 	}
2690 
2691 	/* Should not use this inode from free nid list */
2692 	remove_free_nid(sbi, ino);
2693 
2694 	if (!PageUptodate(ipage))
2695 		SetPageUptodate(ipage);
2696 	fill_node_footer(ipage, ino, ino, 0, true);
2697 	set_cold_node(ipage, false);
2698 
2699 	src = F2FS_INODE(page);
2700 	dst = F2FS_INODE(ipage);
2701 
2702 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2703 	dst->i_size = 0;
2704 	dst->i_blocks = cpu_to_le64(1);
2705 	dst->i_links = cpu_to_le32(1);
2706 	dst->i_xattr_nid = 0;
2707 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2708 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2709 		dst->i_extra_isize = src->i_extra_isize;
2710 
2711 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2712 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2713 							i_inline_xattr_size))
2714 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2715 
2716 		if (f2fs_sb_has_project_quota(sbi) &&
2717 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2718 								i_projid))
2719 			dst->i_projid = src->i_projid;
2720 
2721 		if (f2fs_sb_has_inode_crtime(sbi) &&
2722 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2723 							i_crtime_nsec)) {
2724 			dst->i_crtime = src->i_crtime;
2725 			dst->i_crtime_nsec = src->i_crtime_nsec;
2726 		}
2727 	}
2728 
2729 	new_ni = old_ni;
2730 	new_ni.ino = ino;
2731 
2732 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2733 		WARN_ON(1);
2734 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2735 	inc_valid_inode_count(sbi);
2736 	set_page_dirty(ipage);
2737 	f2fs_put_page(ipage, 1);
2738 	return 0;
2739 }
2740 
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2741 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2742 			unsigned int segno, struct f2fs_summary_block *sum)
2743 {
2744 	struct f2fs_node *rn;
2745 	struct f2fs_summary *sum_entry;
2746 	block_t addr;
2747 	int i, idx, last_offset, nrpages;
2748 
2749 	/* scan the node segment */
2750 	last_offset = sbi->blocks_per_seg;
2751 	addr = START_BLOCK(sbi, segno);
2752 	sum_entry = &sum->entries[0];
2753 
2754 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2755 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2756 
2757 		/* readahead node pages */
2758 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2759 
2760 		for (idx = addr; idx < addr + nrpages; idx++) {
2761 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2762 
2763 			if (IS_ERR(page))
2764 				return PTR_ERR(page);
2765 
2766 			rn = F2FS_NODE(page);
2767 			sum_entry->nid = rn->footer.nid;
2768 			sum_entry->version = 0;
2769 			sum_entry->ofs_in_node = 0;
2770 			sum_entry++;
2771 			f2fs_put_page(page, 1);
2772 		}
2773 
2774 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2775 							addr + nrpages);
2776 	}
2777 	return 0;
2778 }
2779 
remove_nats_in_journal(struct f2fs_sb_info * sbi)2780 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2781 {
2782 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2783 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2784 	struct f2fs_journal *journal = curseg->journal;
2785 	int i;
2786 
2787 	down_write(&curseg->journal_rwsem);
2788 	for (i = 0; i < nats_in_cursum(journal); i++) {
2789 		struct nat_entry *ne;
2790 		struct f2fs_nat_entry raw_ne;
2791 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2792 
2793 		if (f2fs_check_nid_range(sbi, nid))
2794 			continue;
2795 
2796 		raw_ne = nat_in_journal(journal, i);
2797 
2798 		ne = __lookup_nat_cache(nm_i, nid);
2799 		if (!ne) {
2800 			ne = __alloc_nat_entry(nid, true);
2801 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2802 		}
2803 
2804 		/*
2805 		 * if a free nat in journal has not been used after last
2806 		 * checkpoint, we should remove it from available nids,
2807 		 * since later we will add it again.
2808 		 */
2809 		if (!get_nat_flag(ne, IS_DIRTY) &&
2810 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2811 			spin_lock(&nm_i->nid_list_lock);
2812 			nm_i->available_nids--;
2813 			spin_unlock(&nm_i->nid_list_lock);
2814 		}
2815 
2816 		__set_nat_cache_dirty(nm_i, ne);
2817 	}
2818 	update_nats_in_cursum(journal, -i);
2819 	up_write(&curseg->journal_rwsem);
2820 }
2821 
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2822 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2823 						struct list_head *head, int max)
2824 {
2825 	struct nat_entry_set *cur;
2826 
2827 	if (nes->entry_cnt >= max)
2828 		goto add_out;
2829 
2830 	list_for_each_entry(cur, head, set_list) {
2831 		if (cur->entry_cnt >= nes->entry_cnt) {
2832 			list_add(&nes->set_list, cur->set_list.prev);
2833 			return;
2834 		}
2835 	}
2836 add_out:
2837 	list_add_tail(&nes->set_list, head);
2838 }
2839 
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2840 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2841 						struct page *page)
2842 {
2843 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2844 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2845 	struct f2fs_nat_block *nat_blk = page_address(page);
2846 	int valid = 0;
2847 	int i = 0;
2848 
2849 	if (!enabled_nat_bits(sbi, NULL))
2850 		return;
2851 
2852 	if (nat_index == 0) {
2853 		valid = 1;
2854 		i = 1;
2855 	}
2856 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2857 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2858 			valid++;
2859 	}
2860 	if (valid == 0) {
2861 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2862 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2863 		return;
2864 	}
2865 
2866 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2867 	if (valid == NAT_ENTRY_PER_BLOCK)
2868 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2869 	else
2870 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2871 }
2872 
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2873 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2874 		struct nat_entry_set *set, struct cp_control *cpc)
2875 {
2876 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2877 	struct f2fs_journal *journal = curseg->journal;
2878 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2879 	bool to_journal = true;
2880 	struct f2fs_nat_block *nat_blk;
2881 	struct nat_entry *ne, *cur;
2882 	struct page *page = NULL;
2883 
2884 	/*
2885 	 * there are two steps to flush nat entries:
2886 	 * #1, flush nat entries to journal in current hot data summary block.
2887 	 * #2, flush nat entries to nat page.
2888 	 */
2889 	if (enabled_nat_bits(sbi, cpc) ||
2890 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2891 		to_journal = false;
2892 
2893 	if (to_journal) {
2894 		down_write(&curseg->journal_rwsem);
2895 	} else {
2896 		page = get_next_nat_page(sbi, start_nid);
2897 		if (IS_ERR(page))
2898 			return PTR_ERR(page);
2899 
2900 		nat_blk = page_address(page);
2901 		f2fs_bug_on(sbi, !nat_blk);
2902 	}
2903 
2904 	/* flush dirty nats in nat entry set */
2905 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2906 		struct f2fs_nat_entry *raw_ne;
2907 		nid_t nid = nat_get_nid(ne);
2908 		int offset;
2909 
2910 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2911 
2912 		if (to_journal) {
2913 			offset = f2fs_lookup_journal_in_cursum(journal,
2914 							NAT_JOURNAL, nid, 1);
2915 			f2fs_bug_on(sbi, offset < 0);
2916 			raw_ne = &nat_in_journal(journal, offset);
2917 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2918 		} else {
2919 			raw_ne = &nat_blk->entries[nid - start_nid];
2920 		}
2921 		raw_nat_from_node_info(raw_ne, &ne->ni);
2922 		nat_reset_flag(ne);
2923 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2924 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2925 			add_free_nid(sbi, nid, false, true);
2926 		} else {
2927 			spin_lock(&NM_I(sbi)->nid_list_lock);
2928 			update_free_nid_bitmap(sbi, nid, false, false);
2929 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2930 		}
2931 	}
2932 
2933 	if (to_journal) {
2934 		up_write(&curseg->journal_rwsem);
2935 	} else {
2936 		__update_nat_bits(sbi, start_nid, page);
2937 		f2fs_put_page(page, 1);
2938 	}
2939 
2940 	/* Allow dirty nats by node block allocation in write_begin */
2941 	if (!set->entry_cnt) {
2942 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2943 		kmem_cache_free(nat_entry_set_slab, set);
2944 	}
2945 	return 0;
2946 }
2947 
2948 /*
2949  * This function is called during the checkpointing process.
2950  */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)2951 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2952 {
2953 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2954 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2955 	struct f2fs_journal *journal = curseg->journal;
2956 	struct nat_entry_set *setvec[SETVEC_SIZE];
2957 	struct nat_entry_set *set, *tmp;
2958 	unsigned int found;
2959 	nid_t set_idx = 0;
2960 	LIST_HEAD(sets);
2961 	int err = 0;
2962 
2963 	/*
2964 	 * during unmount, let's flush nat_bits before checking
2965 	 * nat_cnt[DIRTY_NAT].
2966 	 */
2967 	if (enabled_nat_bits(sbi, cpc)) {
2968 		down_write(&nm_i->nat_tree_lock);
2969 		remove_nats_in_journal(sbi);
2970 		up_write(&nm_i->nat_tree_lock);
2971 	}
2972 
2973 	if (!nm_i->nat_cnt[DIRTY_NAT])
2974 		return 0;
2975 
2976 	down_write(&nm_i->nat_tree_lock);
2977 
2978 	/*
2979 	 * if there are no enough space in journal to store dirty nat
2980 	 * entries, remove all entries from journal and merge them
2981 	 * into nat entry set.
2982 	 */
2983 	if (enabled_nat_bits(sbi, cpc) ||
2984 		!__has_cursum_space(journal,
2985 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2986 		remove_nats_in_journal(sbi);
2987 
2988 	while ((found = __gang_lookup_nat_set(nm_i,
2989 					set_idx, SETVEC_SIZE, setvec))) {
2990 		unsigned idx;
2991 		set_idx = setvec[found - 1]->set + 1;
2992 		for (idx = 0; idx < found; idx++)
2993 			__adjust_nat_entry_set(setvec[idx], &sets,
2994 						MAX_NAT_JENTRIES(journal));
2995 	}
2996 
2997 	/* flush dirty nats in nat entry set */
2998 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
2999 		err = __flush_nat_entry_set(sbi, set, cpc);
3000 		if (err)
3001 			break;
3002 	}
3003 
3004 	up_write(&nm_i->nat_tree_lock);
3005 	/* Allow dirty nats by node block allocation in write_begin */
3006 
3007 	return err;
3008 }
3009 
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3010 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3011 {
3012 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3013 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3014 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3015 	unsigned int i;
3016 	__u64 cp_ver = cur_cp_version(ckpt);
3017 	block_t nat_bits_addr;
3018 
3019 	if (!enabled_nat_bits(sbi, NULL))
3020 		return 0;
3021 
3022 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3023 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3024 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3025 	if (!nm_i->nat_bits)
3026 		return -ENOMEM;
3027 
3028 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3029 						nm_i->nat_bits_blocks;
3030 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3031 		struct page *page;
3032 
3033 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3034 		if (IS_ERR(page))
3035 			return PTR_ERR(page);
3036 
3037 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3038 					page_address(page), F2FS_BLKSIZE);
3039 		f2fs_put_page(page, 1);
3040 	}
3041 
3042 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3043 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3044 		disable_nat_bits(sbi, true);
3045 		return 0;
3046 	}
3047 
3048 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3049 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3050 
3051 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3052 	return 0;
3053 }
3054 
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3055 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3056 {
3057 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3058 	unsigned int i = 0;
3059 	nid_t nid, last_nid;
3060 
3061 	if (!enabled_nat_bits(sbi, NULL))
3062 		return;
3063 
3064 	for (i = 0; i < nm_i->nat_blocks; i++) {
3065 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3066 		if (i >= nm_i->nat_blocks)
3067 			break;
3068 
3069 		__set_bit_le(i, nm_i->nat_block_bitmap);
3070 
3071 		nid = i * NAT_ENTRY_PER_BLOCK;
3072 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3073 
3074 		spin_lock(&NM_I(sbi)->nid_list_lock);
3075 		for (; nid < last_nid; nid++)
3076 			update_free_nid_bitmap(sbi, nid, true, true);
3077 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3078 	}
3079 
3080 	for (i = 0; i < nm_i->nat_blocks; i++) {
3081 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3082 		if (i >= nm_i->nat_blocks)
3083 			break;
3084 
3085 		__set_bit_le(i, nm_i->nat_block_bitmap);
3086 	}
3087 }
3088 
init_node_manager(struct f2fs_sb_info * sbi)3089 static int init_node_manager(struct f2fs_sb_info *sbi)
3090 {
3091 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3092 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3093 	unsigned char *version_bitmap;
3094 	unsigned int nat_segs;
3095 	int err;
3096 
3097 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3098 
3099 	/* segment_count_nat includes pair segment so divide to 2. */
3100 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3101 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3102 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3103 
3104 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3105 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3106 						F2FS_RESERVED_NODE_NUM;
3107 	nm_i->nid_cnt[FREE_NID] = 0;
3108 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3109 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3110 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3111 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3112 
3113 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3114 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3115 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3116 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3117 	INIT_LIST_HEAD(&nm_i->nat_entries);
3118 	spin_lock_init(&nm_i->nat_list_lock);
3119 
3120 	mutex_init(&nm_i->build_lock);
3121 	spin_lock_init(&nm_i->nid_list_lock);
3122 	init_rwsem(&nm_i->nat_tree_lock);
3123 
3124 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3125 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3126 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3127 	if (!version_bitmap)
3128 		return -EFAULT;
3129 
3130 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3131 					GFP_KERNEL);
3132 	if (!nm_i->nat_bitmap)
3133 		return -ENOMEM;
3134 
3135 	err = __get_nat_bitmaps(sbi);
3136 	if (err)
3137 		return err;
3138 
3139 #ifdef CONFIG_F2FS_CHECK_FS
3140 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3141 					GFP_KERNEL);
3142 	if (!nm_i->nat_bitmap_mir)
3143 		return -ENOMEM;
3144 #endif
3145 
3146 	return 0;
3147 }
3148 
init_free_nid_cache(struct f2fs_sb_info * sbi)3149 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3150 {
3151 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3152 	int i;
3153 
3154 	nm_i->free_nid_bitmap =
3155 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3156 					      nm_i->nat_blocks),
3157 			      GFP_KERNEL);
3158 	if (!nm_i->free_nid_bitmap)
3159 		return -ENOMEM;
3160 
3161 	for (i = 0; i < nm_i->nat_blocks; i++) {
3162 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3163 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3164 		if (!nm_i->free_nid_bitmap[i])
3165 			return -ENOMEM;
3166 	}
3167 
3168 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3169 								GFP_KERNEL);
3170 	if (!nm_i->nat_block_bitmap)
3171 		return -ENOMEM;
3172 
3173 	nm_i->free_nid_count =
3174 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3175 					      nm_i->nat_blocks),
3176 			      GFP_KERNEL);
3177 	if (!nm_i->free_nid_count)
3178 		return -ENOMEM;
3179 	return 0;
3180 }
3181 
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3182 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3183 {
3184 	int err;
3185 
3186 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3187 							GFP_KERNEL);
3188 	if (!sbi->nm_info)
3189 		return -ENOMEM;
3190 
3191 	err = init_node_manager(sbi);
3192 	if (err)
3193 		return err;
3194 
3195 	err = init_free_nid_cache(sbi);
3196 	if (err)
3197 		return err;
3198 
3199 	/* load free nid status from nat_bits table */
3200 	load_free_nid_bitmap(sbi);
3201 
3202 	return f2fs_build_free_nids(sbi, true, true);
3203 }
3204 
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3205 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3206 {
3207 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3208 	struct free_nid *i, *next_i;
3209 	struct nat_entry *natvec[NATVEC_SIZE];
3210 	struct nat_entry_set *setvec[SETVEC_SIZE];
3211 	nid_t nid = 0;
3212 	unsigned int found;
3213 
3214 	if (!nm_i)
3215 		return;
3216 
3217 	/* destroy free nid list */
3218 	spin_lock(&nm_i->nid_list_lock);
3219 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3220 		__remove_free_nid(sbi, i, FREE_NID);
3221 		spin_unlock(&nm_i->nid_list_lock);
3222 		kmem_cache_free(free_nid_slab, i);
3223 		spin_lock(&nm_i->nid_list_lock);
3224 	}
3225 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3226 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3227 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3228 	spin_unlock(&nm_i->nid_list_lock);
3229 
3230 	/* destroy nat cache */
3231 	down_write(&nm_i->nat_tree_lock);
3232 	while ((found = __gang_lookup_nat_cache(nm_i,
3233 					nid, NATVEC_SIZE, natvec))) {
3234 		unsigned idx;
3235 
3236 		nid = nat_get_nid(natvec[found - 1]) + 1;
3237 		for (idx = 0; idx < found; idx++) {
3238 			spin_lock(&nm_i->nat_list_lock);
3239 			list_del(&natvec[idx]->list);
3240 			spin_unlock(&nm_i->nat_list_lock);
3241 
3242 			__del_from_nat_cache(nm_i, natvec[idx]);
3243 		}
3244 	}
3245 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3246 
3247 	/* destroy nat set cache */
3248 	nid = 0;
3249 	while ((found = __gang_lookup_nat_set(nm_i,
3250 					nid, SETVEC_SIZE, setvec))) {
3251 		unsigned idx;
3252 
3253 		nid = setvec[found - 1]->set + 1;
3254 		for (idx = 0; idx < found; idx++) {
3255 			/* entry_cnt is not zero, when cp_error was occurred */
3256 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3257 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3258 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3259 		}
3260 	}
3261 	up_write(&nm_i->nat_tree_lock);
3262 
3263 	kvfree(nm_i->nat_block_bitmap);
3264 	if (nm_i->free_nid_bitmap) {
3265 		int i;
3266 
3267 		for (i = 0; i < nm_i->nat_blocks; i++)
3268 			kvfree(nm_i->free_nid_bitmap[i]);
3269 		kvfree(nm_i->free_nid_bitmap);
3270 	}
3271 	kvfree(nm_i->free_nid_count);
3272 
3273 	kvfree(nm_i->nat_bitmap);
3274 	kvfree(nm_i->nat_bits);
3275 #ifdef CONFIG_F2FS_CHECK_FS
3276 	kvfree(nm_i->nat_bitmap_mir);
3277 #endif
3278 	sbi->nm_info = NULL;
3279 	kvfree(nm_i);
3280 }
3281 
f2fs_create_node_manager_caches(void)3282 int __init f2fs_create_node_manager_caches(void)
3283 {
3284 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3285 			sizeof(struct nat_entry));
3286 	if (!nat_entry_slab)
3287 		goto fail;
3288 
3289 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3290 			sizeof(struct free_nid));
3291 	if (!free_nid_slab)
3292 		goto destroy_nat_entry;
3293 
3294 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3295 			sizeof(struct nat_entry_set));
3296 	if (!nat_entry_set_slab)
3297 		goto destroy_free_nid;
3298 
3299 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3300 			sizeof(struct fsync_node_entry));
3301 	if (!fsync_node_entry_slab)
3302 		goto destroy_nat_entry_set;
3303 	return 0;
3304 
3305 destroy_nat_entry_set:
3306 	kmem_cache_destroy(nat_entry_set_slab);
3307 destroy_free_nid:
3308 	kmem_cache_destroy(free_nid_slab);
3309 destroy_nat_entry:
3310 	kmem_cache_destroy(nat_entry_slab);
3311 fail:
3312 	return -ENOMEM;
3313 }
3314 
f2fs_destroy_node_manager_caches(void)3315 void f2fs_destroy_node_manager_caches(void)
3316 {
3317 	kmem_cache_destroy(fsync_node_entry_slab);
3318 	kmem_cache_destroy(nat_entry_set_slab);
3319 	kmem_cache_destroy(free_nid_slab);
3320 	kmem_cache_destroy(nat_entry_slab);
3321 }
3322