1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/super.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct kmem_cache *f2fs_inode_cachep;
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41
42 const char *f2fs_fault_name[FAULT_MAX] = {
43 [FAULT_KMALLOC] = "kmalloc",
44 [FAULT_KVMALLOC] = "kvmalloc",
45 [FAULT_PAGE_ALLOC] = "page alloc",
46 [FAULT_PAGE_GET] = "page get",
47 [FAULT_ALLOC_BIO] = "alloc bio",
48 [FAULT_ALLOC_NID] = "alloc nid",
49 [FAULT_ORPHAN] = "orphan",
50 [FAULT_BLOCK] = "no more block",
51 [FAULT_DIR_DEPTH] = "too big dir depth",
52 [FAULT_EVICT_INODE] = "evict_inode fail",
53 [FAULT_TRUNCATE] = "truncate fail",
54 [FAULT_READ_IO] = "read IO error",
55 [FAULT_CHECKPOINT] = "checkpoint error",
56 [FAULT_DISCARD] = "discard error",
57 [FAULT_WRITE_IO] = "write IO error",
58 };
59
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned int rate,unsigned int type)60 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
61 unsigned int type)
62 {
63 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64
65 if (rate) {
66 atomic_set(&ffi->inject_ops, 0);
67 ffi->inject_rate = rate;
68 }
69
70 if (type)
71 ffi->inject_type = type;
72
73 if (!rate && !type)
74 memset(ffi, 0, sizeof(struct f2fs_fault_info));
75 }
76 #endif
77
78 /* f2fs-wide shrinker description */
79 static struct shrinker f2fs_shrinker_info = {
80 .scan_objects = f2fs_shrink_scan,
81 .count_objects = f2fs_shrink_count,
82 .seeks = DEFAULT_SEEKS,
83 };
84
85 enum {
86 Opt_gc_background,
87 Opt_disable_roll_forward,
88 Opt_norecovery,
89 Opt_discard,
90 Opt_nodiscard,
91 Opt_noheap,
92 Opt_heap,
93 Opt_user_xattr,
94 Opt_nouser_xattr,
95 Opt_acl,
96 Opt_noacl,
97 Opt_active_logs,
98 Opt_disable_ext_identify,
99 Opt_inline_xattr,
100 Opt_noinline_xattr,
101 Opt_inline_xattr_size,
102 Opt_inline_data,
103 Opt_inline_dentry,
104 Opt_noinline_dentry,
105 Opt_flush_merge,
106 Opt_noflush_merge,
107 Opt_nobarrier,
108 Opt_fastboot,
109 Opt_extent_cache,
110 Opt_noextent_cache,
111 Opt_noinline_data,
112 Opt_data_flush,
113 Opt_reserve_root,
114 Opt_resgid,
115 Opt_resuid,
116 Opt_mode,
117 Opt_io_size_bits,
118 Opt_fault_injection,
119 Opt_fault_type,
120 Opt_lazytime,
121 Opt_nolazytime,
122 Opt_quota,
123 Opt_noquota,
124 Opt_usrquota,
125 Opt_grpquota,
126 Opt_prjquota,
127 Opt_usrjquota,
128 Opt_grpjquota,
129 Opt_prjjquota,
130 Opt_offusrjquota,
131 Opt_offgrpjquota,
132 Opt_offprjjquota,
133 Opt_jqfmt_vfsold,
134 Opt_jqfmt_vfsv0,
135 Opt_jqfmt_vfsv1,
136 Opt_whint,
137 Opt_alloc,
138 Opt_fsync,
139 Opt_test_dummy_encryption,
140 Opt_inlinecrypt,
141 Opt_checkpoint_disable,
142 Opt_checkpoint_disable_cap,
143 Opt_checkpoint_disable_cap_perc,
144 Opt_checkpoint_enable,
145 Opt_compress_algorithm,
146 Opt_compress_log_size,
147 Opt_compress_extension,
148 Opt_err,
149 };
150
151 static match_table_t f2fs_tokens = {
152 {Opt_gc_background, "background_gc=%s"},
153 {Opt_disable_roll_forward, "disable_roll_forward"},
154 {Opt_norecovery, "norecovery"},
155 {Opt_discard, "discard"},
156 {Opt_nodiscard, "nodiscard"},
157 {Opt_noheap, "no_heap"},
158 {Opt_heap, "heap"},
159 {Opt_user_xattr, "user_xattr"},
160 {Opt_nouser_xattr, "nouser_xattr"},
161 {Opt_acl, "acl"},
162 {Opt_noacl, "noacl"},
163 {Opt_active_logs, "active_logs=%u"},
164 {Opt_disable_ext_identify, "disable_ext_identify"},
165 {Opt_inline_xattr, "inline_xattr"},
166 {Opt_noinline_xattr, "noinline_xattr"},
167 {Opt_inline_xattr_size, "inline_xattr_size=%u"},
168 {Opt_inline_data, "inline_data"},
169 {Opt_inline_dentry, "inline_dentry"},
170 {Opt_noinline_dentry, "noinline_dentry"},
171 {Opt_flush_merge, "flush_merge"},
172 {Opt_noflush_merge, "noflush_merge"},
173 {Opt_nobarrier, "nobarrier"},
174 {Opt_fastboot, "fastboot"},
175 {Opt_extent_cache, "extent_cache"},
176 {Opt_noextent_cache, "noextent_cache"},
177 {Opt_noinline_data, "noinline_data"},
178 {Opt_data_flush, "data_flush"},
179 {Opt_reserve_root, "reserve_root=%u"},
180 {Opt_resgid, "resgid=%u"},
181 {Opt_resuid, "resuid=%u"},
182 {Opt_mode, "mode=%s"},
183 {Opt_io_size_bits, "io_bits=%u"},
184 {Opt_fault_injection, "fault_injection=%u"},
185 {Opt_fault_type, "fault_type=%u"},
186 {Opt_lazytime, "lazytime"},
187 {Opt_nolazytime, "nolazytime"},
188 {Opt_quota, "quota"},
189 {Opt_noquota, "noquota"},
190 {Opt_usrquota, "usrquota"},
191 {Opt_grpquota, "grpquota"},
192 {Opt_prjquota, "prjquota"},
193 {Opt_usrjquota, "usrjquota=%s"},
194 {Opt_grpjquota, "grpjquota=%s"},
195 {Opt_prjjquota, "prjjquota=%s"},
196 {Opt_offusrjquota, "usrjquota="},
197 {Opt_offgrpjquota, "grpjquota="},
198 {Opt_offprjjquota, "prjjquota="},
199 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
200 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
201 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
202 {Opt_whint, "whint_mode=%s"},
203 {Opt_alloc, "alloc_mode=%s"},
204 {Opt_fsync, "fsync_mode=%s"},
205 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
206 {Opt_test_dummy_encryption, "test_dummy_encryption"},
207 {Opt_inlinecrypt, "inlinecrypt"},
208 {Opt_checkpoint_disable, "checkpoint=disable"},
209 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
210 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
211 {Opt_checkpoint_enable, "checkpoint=enable"},
212 {Opt_compress_algorithm, "compress_algorithm=%s"},
213 {Opt_compress_log_size, "compress_log_size=%u"},
214 {Opt_compress_extension, "compress_extension=%s"},
215 {Opt_err, NULL},
216 };
217
f2fs_printk(struct f2fs_sb_info * sbi,const char * fmt,...)218 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
219 {
220 struct va_format vaf;
221 va_list args;
222 int level;
223
224 va_start(args, fmt);
225
226 level = printk_get_level(fmt);
227 vaf.fmt = printk_skip_level(fmt);
228 vaf.va = &args;
229 printk("%c%cF2FS-fs (%s): %pV\n",
230 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
231
232 va_end(args);
233 }
234
235 #ifdef CONFIG_UNICODE
236 static const struct f2fs_sb_encodings {
237 __u16 magic;
238 char *name;
239 char *version;
240 } f2fs_sb_encoding_map[] = {
241 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
242 };
243
f2fs_sb_read_encoding(const struct f2fs_super_block * sb,const struct f2fs_sb_encodings ** encoding,__u16 * flags)244 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
245 const struct f2fs_sb_encodings **encoding,
246 __u16 *flags)
247 {
248 __u16 magic = le16_to_cpu(sb->s_encoding);
249 int i;
250
251 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
252 if (magic == f2fs_sb_encoding_map[i].magic)
253 break;
254
255 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
256 return -EINVAL;
257
258 *encoding = &f2fs_sb_encoding_map[i];
259 *flags = le16_to_cpu(sb->s_encoding_flags);
260
261 return 0;
262 }
263 #endif
264
limit_reserve_root(struct f2fs_sb_info * sbi)265 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
266 {
267 block_t limit = min((sbi->user_block_count >> 3),
268 sbi->user_block_count - sbi->reserved_blocks);
269
270 /* limit is 12.5% */
271 if (test_opt(sbi, RESERVE_ROOT) &&
272 F2FS_OPTION(sbi).root_reserved_blocks > limit) {
273 F2FS_OPTION(sbi).root_reserved_blocks = limit;
274 f2fs_info(sbi, "Reduce reserved blocks for root = %u",
275 F2FS_OPTION(sbi).root_reserved_blocks);
276 }
277 if (!test_opt(sbi, RESERVE_ROOT) &&
278 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
279 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
280 !gid_eq(F2FS_OPTION(sbi).s_resgid,
281 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
282 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
283 from_kuid_munged(&init_user_ns,
284 F2FS_OPTION(sbi).s_resuid),
285 from_kgid_munged(&init_user_ns,
286 F2FS_OPTION(sbi).s_resgid));
287 }
288
adjust_reserved_segment(struct f2fs_sb_info * sbi)289 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi)
290 {
291 unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec;
292 unsigned int avg_vblocks;
293 unsigned int wanted_reserved_segments;
294 block_t avail_user_block_count;
295
296 if (!F2FS_IO_ALIGNED(sbi))
297 return 0;
298
299 /* average valid block count in section in worst case */
300 avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi);
301
302 /*
303 * we need enough free space when migrating one section in worst case
304 */
305 wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) *
306 reserved_segments(sbi);
307 wanted_reserved_segments -= reserved_segments(sbi);
308
309 avail_user_block_count = sbi->user_block_count -
310 sbi->current_reserved_blocks -
311 F2FS_OPTION(sbi).root_reserved_blocks;
312
313 if (wanted_reserved_segments * sbi->blocks_per_seg >
314 avail_user_block_count) {
315 f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u",
316 wanted_reserved_segments,
317 avail_user_block_count >> sbi->log_blocks_per_seg);
318 return -ENOSPC;
319 }
320
321 SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments;
322
323 f2fs_info(sbi, "IO align feature needs additional reserved segment: %u",
324 wanted_reserved_segments);
325
326 return 0;
327 }
328
adjust_unusable_cap_perc(struct f2fs_sb_info * sbi)329 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
330 {
331 if (!F2FS_OPTION(sbi).unusable_cap_perc)
332 return;
333
334 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
335 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
336 else
337 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
338 F2FS_OPTION(sbi).unusable_cap_perc;
339
340 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
341 F2FS_OPTION(sbi).unusable_cap,
342 F2FS_OPTION(sbi).unusable_cap_perc);
343 }
344
init_once(void * foo)345 static void init_once(void *foo)
346 {
347 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
348
349 inode_init_once(&fi->vfs_inode);
350 }
351
352 #ifdef CONFIG_QUOTA
353 static const char * const quotatypes[] = INITQFNAMES;
354 #define QTYPE2NAME(t) (quotatypes[t])
f2fs_set_qf_name(struct super_block * sb,int qtype,substring_t * args)355 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
356 substring_t *args)
357 {
358 struct f2fs_sb_info *sbi = F2FS_SB(sb);
359 char *qname;
360 int ret = -EINVAL;
361
362 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
363 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
364 return -EINVAL;
365 }
366 if (f2fs_sb_has_quota_ino(sbi)) {
367 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
368 return 0;
369 }
370
371 qname = match_strdup(args);
372 if (!qname) {
373 f2fs_err(sbi, "Not enough memory for storing quotafile name");
374 return -ENOMEM;
375 }
376 if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
377 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
378 ret = 0;
379 else
380 f2fs_err(sbi, "%s quota file already specified",
381 QTYPE2NAME(qtype));
382 goto errout;
383 }
384 if (strchr(qname, '/')) {
385 f2fs_err(sbi, "quotafile must be on filesystem root");
386 goto errout;
387 }
388 F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
389 set_opt(sbi, QUOTA);
390 return 0;
391 errout:
392 kvfree(qname);
393 return ret;
394 }
395
f2fs_clear_qf_name(struct super_block * sb,int qtype)396 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
397 {
398 struct f2fs_sb_info *sbi = F2FS_SB(sb);
399
400 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
401 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
402 return -EINVAL;
403 }
404 kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
405 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
406 return 0;
407 }
408
f2fs_check_quota_options(struct f2fs_sb_info * sbi)409 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
410 {
411 /*
412 * We do the test below only for project quotas. 'usrquota' and
413 * 'grpquota' mount options are allowed even without quota feature
414 * to support legacy quotas in quota files.
415 */
416 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
417 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
418 return -1;
419 }
420 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
421 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
422 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
423 if (test_opt(sbi, USRQUOTA) &&
424 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
425 clear_opt(sbi, USRQUOTA);
426
427 if (test_opt(sbi, GRPQUOTA) &&
428 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
429 clear_opt(sbi, GRPQUOTA);
430
431 if (test_opt(sbi, PRJQUOTA) &&
432 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
433 clear_opt(sbi, PRJQUOTA);
434
435 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
436 test_opt(sbi, PRJQUOTA)) {
437 f2fs_err(sbi, "old and new quota format mixing");
438 return -1;
439 }
440
441 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
442 f2fs_err(sbi, "journaled quota format not specified");
443 return -1;
444 }
445 }
446
447 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
448 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
449 F2FS_OPTION(sbi).s_jquota_fmt = 0;
450 }
451 return 0;
452 }
453 #endif
454
f2fs_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)455 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
456 const char *opt,
457 const substring_t *arg,
458 bool is_remount)
459 {
460 struct f2fs_sb_info *sbi = F2FS_SB(sb);
461 #ifdef CONFIG_FS_ENCRYPTION
462 int err;
463
464 if (!f2fs_sb_has_encrypt(sbi)) {
465 f2fs_err(sbi, "Encrypt feature is off");
466 return -EINVAL;
467 }
468
469 /*
470 * This mount option is just for testing, and it's not worthwhile to
471 * implement the extra complexity (e.g. RCU protection) that would be
472 * needed to allow it to be set or changed during remount. We do allow
473 * it to be specified during remount, but only if there is no change.
474 */
475 if (is_remount && !F2FS_OPTION(sbi).dummy_enc_ctx.ctx) {
476 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
477 return -EINVAL;
478 }
479 err = fscrypt_set_test_dummy_encryption(
480 sb, arg, &F2FS_OPTION(sbi).dummy_enc_ctx);
481 if (err) {
482 if (err == -EEXIST)
483 f2fs_warn(sbi,
484 "Can't change test_dummy_encryption on remount");
485 else if (err == -EINVAL)
486 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
487 opt);
488 else
489 f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
490 opt, err);
491 return -EINVAL;
492 }
493 f2fs_warn(sbi, "Test dummy encryption mode enabled");
494 #else
495 f2fs_warn(sbi, "Test dummy encryption mount option ignored");
496 #endif
497 return 0;
498 }
499
parse_options(struct super_block * sb,char * options,bool is_remount)500 static int parse_options(struct super_block *sb, char *options, bool is_remount)
501 {
502 struct f2fs_sb_info *sbi = F2FS_SB(sb);
503 substring_t args[MAX_OPT_ARGS];
504 unsigned char (*ext)[F2FS_EXTENSION_LEN];
505 char *p, *name;
506 int arg = 0, ext_cnt;
507 kuid_t uid;
508 kgid_t gid;
509 int ret;
510
511 if (!options)
512 goto default_check;
513
514 while ((p = strsep(&options, ",")) != NULL) {
515 int token;
516 if (!*p)
517 continue;
518 /*
519 * Initialize args struct so we know whether arg was
520 * found; some options take optional arguments.
521 */
522 args[0].to = args[0].from = NULL;
523 token = match_token(p, f2fs_tokens, args);
524
525 switch (token) {
526 case Opt_gc_background:
527 name = match_strdup(&args[0]);
528
529 if (!name)
530 return -ENOMEM;
531 if (!strcmp(name, "on")) {
532 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
533 } else if (!strcmp(name, "off")) {
534 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
535 } else if (!strcmp(name, "sync")) {
536 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
537 } else {
538 kvfree(name);
539 return -EINVAL;
540 }
541 kvfree(name);
542 break;
543 case Opt_disable_roll_forward:
544 set_opt(sbi, DISABLE_ROLL_FORWARD);
545 break;
546 case Opt_norecovery:
547 /* this option mounts f2fs with ro */
548 set_opt(sbi, NORECOVERY);
549 if (!f2fs_readonly(sb))
550 return -EINVAL;
551 break;
552 case Opt_discard:
553 set_opt(sbi, DISCARD);
554 break;
555 case Opt_nodiscard:
556 if (f2fs_sb_has_blkzoned(sbi)) {
557 f2fs_warn(sbi, "discard is required for zoned block devices");
558 return -EINVAL;
559 }
560 clear_opt(sbi, DISCARD);
561 break;
562 case Opt_noheap:
563 set_opt(sbi, NOHEAP);
564 break;
565 case Opt_heap:
566 clear_opt(sbi, NOHEAP);
567 break;
568 #ifdef CONFIG_F2FS_FS_XATTR
569 case Opt_user_xattr:
570 set_opt(sbi, XATTR_USER);
571 break;
572 case Opt_nouser_xattr:
573 clear_opt(sbi, XATTR_USER);
574 break;
575 case Opt_inline_xattr:
576 set_opt(sbi, INLINE_XATTR);
577 break;
578 case Opt_noinline_xattr:
579 clear_opt(sbi, INLINE_XATTR);
580 break;
581 case Opt_inline_xattr_size:
582 if (args->from && match_int(args, &arg))
583 return -EINVAL;
584 set_opt(sbi, INLINE_XATTR_SIZE);
585 F2FS_OPTION(sbi).inline_xattr_size = arg;
586 break;
587 #else
588 case Opt_user_xattr:
589 f2fs_info(sbi, "user_xattr options not supported");
590 break;
591 case Opt_nouser_xattr:
592 f2fs_info(sbi, "nouser_xattr options not supported");
593 break;
594 case Opt_inline_xattr:
595 f2fs_info(sbi, "inline_xattr options not supported");
596 break;
597 case Opt_noinline_xattr:
598 f2fs_info(sbi, "noinline_xattr options not supported");
599 break;
600 #endif
601 #ifdef CONFIG_F2FS_FS_POSIX_ACL
602 case Opt_acl:
603 set_opt(sbi, POSIX_ACL);
604 break;
605 case Opt_noacl:
606 clear_opt(sbi, POSIX_ACL);
607 break;
608 #else
609 case Opt_acl:
610 f2fs_info(sbi, "acl options not supported");
611 break;
612 case Opt_noacl:
613 f2fs_info(sbi, "noacl options not supported");
614 break;
615 #endif
616 case Opt_active_logs:
617 if (args->from && match_int(args, &arg))
618 return -EINVAL;
619 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
620 return -EINVAL;
621 F2FS_OPTION(sbi).active_logs = arg;
622 break;
623 case Opt_disable_ext_identify:
624 set_opt(sbi, DISABLE_EXT_IDENTIFY);
625 break;
626 case Opt_inline_data:
627 set_opt(sbi, INLINE_DATA);
628 break;
629 case Opt_inline_dentry:
630 set_opt(sbi, INLINE_DENTRY);
631 break;
632 case Opt_noinline_dentry:
633 clear_opt(sbi, INLINE_DENTRY);
634 break;
635 case Opt_flush_merge:
636 set_opt(sbi, FLUSH_MERGE);
637 break;
638 case Opt_noflush_merge:
639 clear_opt(sbi, FLUSH_MERGE);
640 break;
641 case Opt_nobarrier:
642 set_opt(sbi, NOBARRIER);
643 break;
644 case Opt_fastboot:
645 set_opt(sbi, FASTBOOT);
646 break;
647 case Opt_extent_cache:
648 set_opt(sbi, EXTENT_CACHE);
649 break;
650 case Opt_noextent_cache:
651 clear_opt(sbi, EXTENT_CACHE);
652 break;
653 case Opt_noinline_data:
654 clear_opt(sbi, INLINE_DATA);
655 break;
656 case Opt_data_flush:
657 set_opt(sbi, DATA_FLUSH);
658 break;
659 case Opt_reserve_root:
660 if (args->from && match_int(args, &arg))
661 return -EINVAL;
662 if (test_opt(sbi, RESERVE_ROOT)) {
663 f2fs_info(sbi, "Preserve previous reserve_root=%u",
664 F2FS_OPTION(sbi).root_reserved_blocks);
665 } else {
666 F2FS_OPTION(sbi).root_reserved_blocks = arg;
667 set_opt(sbi, RESERVE_ROOT);
668 }
669 break;
670 case Opt_resuid:
671 if (args->from && match_int(args, &arg))
672 return -EINVAL;
673 uid = make_kuid(current_user_ns(), arg);
674 if (!uid_valid(uid)) {
675 f2fs_err(sbi, "Invalid uid value %d", arg);
676 return -EINVAL;
677 }
678 F2FS_OPTION(sbi).s_resuid = uid;
679 break;
680 case Opt_resgid:
681 if (args->from && match_int(args, &arg))
682 return -EINVAL;
683 gid = make_kgid(current_user_ns(), arg);
684 if (!gid_valid(gid)) {
685 f2fs_err(sbi, "Invalid gid value %d", arg);
686 return -EINVAL;
687 }
688 F2FS_OPTION(sbi).s_resgid = gid;
689 break;
690 case Opt_mode:
691 name = match_strdup(&args[0]);
692
693 if (!name)
694 return -ENOMEM;
695 if (!strcmp(name, "adaptive")) {
696 if (f2fs_sb_has_blkzoned(sbi)) {
697 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
698 kvfree(name);
699 return -EINVAL;
700 }
701 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
702 } else if (!strcmp(name, "lfs")) {
703 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
704 } else {
705 kvfree(name);
706 return -EINVAL;
707 }
708 kvfree(name);
709 break;
710 case Opt_io_size_bits:
711 if (args->from && match_int(args, &arg))
712 return -EINVAL;
713 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
714 f2fs_warn(sbi, "Not support %d, larger than %d",
715 1 << arg, BIO_MAX_PAGES);
716 return -EINVAL;
717 }
718 F2FS_OPTION(sbi).write_io_size_bits = arg;
719 break;
720 #ifdef CONFIG_F2FS_FAULT_INJECTION
721 case Opt_fault_injection:
722 if (args->from && match_int(args, &arg))
723 return -EINVAL;
724 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
725 set_opt(sbi, FAULT_INJECTION);
726 break;
727
728 case Opt_fault_type:
729 if (args->from && match_int(args, &arg))
730 return -EINVAL;
731 f2fs_build_fault_attr(sbi, 0, arg);
732 set_opt(sbi, FAULT_INJECTION);
733 break;
734 #else
735 case Opt_fault_injection:
736 f2fs_info(sbi, "fault_injection options not supported");
737 break;
738
739 case Opt_fault_type:
740 f2fs_info(sbi, "fault_type options not supported");
741 break;
742 #endif
743 case Opt_lazytime:
744 sb->s_flags |= SB_LAZYTIME;
745 break;
746 case Opt_nolazytime:
747 sb->s_flags &= ~SB_LAZYTIME;
748 break;
749 #ifdef CONFIG_QUOTA
750 case Opt_quota:
751 case Opt_usrquota:
752 set_opt(sbi, USRQUOTA);
753 break;
754 case Opt_grpquota:
755 set_opt(sbi, GRPQUOTA);
756 break;
757 case Opt_prjquota:
758 set_opt(sbi, PRJQUOTA);
759 break;
760 case Opt_usrjquota:
761 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
762 if (ret)
763 return ret;
764 break;
765 case Opt_grpjquota:
766 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
767 if (ret)
768 return ret;
769 break;
770 case Opt_prjjquota:
771 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
772 if (ret)
773 return ret;
774 break;
775 case Opt_offusrjquota:
776 ret = f2fs_clear_qf_name(sb, USRQUOTA);
777 if (ret)
778 return ret;
779 break;
780 case Opt_offgrpjquota:
781 ret = f2fs_clear_qf_name(sb, GRPQUOTA);
782 if (ret)
783 return ret;
784 break;
785 case Opt_offprjjquota:
786 ret = f2fs_clear_qf_name(sb, PRJQUOTA);
787 if (ret)
788 return ret;
789 break;
790 case Opt_jqfmt_vfsold:
791 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
792 break;
793 case Opt_jqfmt_vfsv0:
794 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
795 break;
796 case Opt_jqfmt_vfsv1:
797 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
798 break;
799 case Opt_noquota:
800 clear_opt(sbi, QUOTA);
801 clear_opt(sbi, USRQUOTA);
802 clear_opt(sbi, GRPQUOTA);
803 clear_opt(sbi, PRJQUOTA);
804 break;
805 #else
806 case Opt_quota:
807 case Opt_usrquota:
808 case Opt_grpquota:
809 case Opt_prjquota:
810 case Opt_usrjquota:
811 case Opt_grpjquota:
812 case Opt_prjjquota:
813 case Opt_offusrjquota:
814 case Opt_offgrpjquota:
815 case Opt_offprjjquota:
816 case Opt_jqfmt_vfsold:
817 case Opt_jqfmt_vfsv0:
818 case Opt_jqfmt_vfsv1:
819 case Opt_noquota:
820 f2fs_info(sbi, "quota operations not supported");
821 break;
822 #endif
823 case Opt_whint:
824 name = match_strdup(&args[0]);
825 if (!name)
826 return -ENOMEM;
827 if (!strcmp(name, "user-based")) {
828 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
829 } else if (!strcmp(name, "off")) {
830 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
831 } else if (!strcmp(name, "fs-based")) {
832 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
833 } else {
834 kvfree(name);
835 return -EINVAL;
836 }
837 kvfree(name);
838 break;
839 case Opt_alloc:
840 name = match_strdup(&args[0]);
841 if (!name)
842 return -ENOMEM;
843
844 if (!strcmp(name, "default")) {
845 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
846 } else if (!strcmp(name, "reuse")) {
847 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
848 } else {
849 kvfree(name);
850 return -EINVAL;
851 }
852 kvfree(name);
853 break;
854 case Opt_fsync:
855 name = match_strdup(&args[0]);
856 if (!name)
857 return -ENOMEM;
858 if (!strcmp(name, "posix")) {
859 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
860 } else if (!strcmp(name, "strict")) {
861 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
862 } else if (!strcmp(name, "nobarrier")) {
863 F2FS_OPTION(sbi).fsync_mode =
864 FSYNC_MODE_NOBARRIER;
865 } else {
866 kvfree(name);
867 return -EINVAL;
868 }
869 kvfree(name);
870 break;
871 case Opt_test_dummy_encryption:
872 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
873 is_remount);
874 if (ret)
875 return ret;
876 break;
877 case Opt_inlinecrypt:
878 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
879 F2FS_OPTION(sbi).inlinecrypt = true;
880 #else
881 f2fs_info(sbi, "inline encryption not supported");
882 #endif
883 break;
884 case Opt_checkpoint_disable_cap_perc:
885 if (args->from && match_int(args, &arg))
886 return -EINVAL;
887 if (arg < 0 || arg > 100)
888 return -EINVAL;
889 F2FS_OPTION(sbi).unusable_cap_perc = arg;
890 set_opt(sbi, DISABLE_CHECKPOINT);
891 break;
892 case Opt_checkpoint_disable_cap:
893 if (args->from && match_int(args, &arg))
894 return -EINVAL;
895 F2FS_OPTION(sbi).unusable_cap = arg;
896 set_opt(sbi, DISABLE_CHECKPOINT);
897 break;
898 case Opt_checkpoint_disable:
899 set_opt(sbi, DISABLE_CHECKPOINT);
900 break;
901 case Opt_checkpoint_enable:
902 clear_opt(sbi, DISABLE_CHECKPOINT);
903 break;
904 case Opt_compress_algorithm:
905 if (!f2fs_sb_has_compression(sbi)) {
906 f2fs_err(sbi, "Compression feature if off");
907 return -EINVAL;
908 }
909 name = match_strdup(&args[0]);
910 if (!name)
911 return -ENOMEM;
912 if (!strcmp(name, "lzo")) {
913 F2FS_OPTION(sbi).compress_algorithm =
914 COMPRESS_LZO;
915 } else if (!strcmp(name, "lz4")) {
916 F2FS_OPTION(sbi).compress_algorithm =
917 COMPRESS_LZ4;
918 } else if (!strcmp(name, "zstd")) {
919 F2FS_OPTION(sbi).compress_algorithm =
920 COMPRESS_ZSTD;
921 } else if (!strcmp(name, "lzo-rle")) {
922 F2FS_OPTION(sbi).compress_algorithm =
923 COMPRESS_LZORLE;
924 } else {
925 kfree(name);
926 return -EINVAL;
927 }
928 kfree(name);
929 break;
930 case Opt_compress_log_size:
931 if (!f2fs_sb_has_compression(sbi)) {
932 f2fs_err(sbi, "Compression feature is off");
933 return -EINVAL;
934 }
935 if (args->from && match_int(args, &arg))
936 return -EINVAL;
937 if (arg < MIN_COMPRESS_LOG_SIZE ||
938 arg > MAX_COMPRESS_LOG_SIZE) {
939 f2fs_err(sbi,
940 "Compress cluster log size is out of range");
941 return -EINVAL;
942 }
943 F2FS_OPTION(sbi).compress_log_size = arg;
944 break;
945 case Opt_compress_extension:
946 if (!f2fs_sb_has_compression(sbi)) {
947 f2fs_err(sbi, "Compression feature is off");
948 return -EINVAL;
949 }
950 name = match_strdup(&args[0]);
951 if (!name)
952 return -ENOMEM;
953
954 ext = F2FS_OPTION(sbi).extensions;
955 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
956
957 if (strlen(name) >= F2FS_EXTENSION_LEN ||
958 ext_cnt >= COMPRESS_EXT_NUM) {
959 f2fs_err(sbi,
960 "invalid extension length/number");
961 kfree(name);
962 return -EINVAL;
963 }
964
965 strcpy(ext[ext_cnt], name);
966 F2FS_OPTION(sbi).compress_ext_cnt++;
967 kfree(name);
968 break;
969 default:
970 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
971 p);
972 return -EINVAL;
973 }
974 }
975 default_check:
976 #ifdef CONFIG_QUOTA
977 if (f2fs_check_quota_options(sbi))
978 return -EINVAL;
979 #else
980 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
981 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
982 return -EINVAL;
983 }
984 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
985 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
986 return -EINVAL;
987 }
988 #endif
989 #ifndef CONFIG_UNICODE
990 if (f2fs_sb_has_casefold(sbi)) {
991 f2fs_err(sbi,
992 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
993 return -EINVAL;
994 }
995 #endif
996
997 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
998 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
999 F2FS_IO_SIZE_KB(sbi));
1000 return -EINVAL;
1001 }
1002
1003 if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1004 int min_size, max_size;
1005
1006 if (!f2fs_sb_has_extra_attr(sbi) ||
1007 !f2fs_sb_has_flexible_inline_xattr(sbi)) {
1008 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1009 return -EINVAL;
1010 }
1011 if (!test_opt(sbi, INLINE_XATTR)) {
1012 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1013 return -EINVAL;
1014 }
1015
1016 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1017 max_size = MAX_INLINE_XATTR_SIZE;
1018
1019 if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1020 F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1021 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1022 min_size, max_size);
1023 return -EINVAL;
1024 }
1025 }
1026
1027 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1028 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
1029 return -EINVAL;
1030 }
1031
1032 /* Not pass down write hints if the number of active logs is lesser
1033 * than NR_CURSEG_TYPE.
1034 */
1035 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
1036 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1037
1038 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1039 f2fs_err(sbi, "Allow to mount readonly mode only");
1040 return -EROFS;
1041 }
1042 return 0;
1043 }
1044
f2fs_alloc_inode(struct super_block * sb)1045 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1046 {
1047 struct f2fs_inode_info *fi;
1048
1049 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1050 if (!fi)
1051 return NULL;
1052
1053 init_once((void *) fi);
1054
1055 /* Initialize f2fs-specific inode info */
1056 atomic_set(&fi->dirty_pages, 0);
1057 atomic_set(&fi->i_compr_blocks, 0);
1058 init_rwsem(&fi->i_sem);
1059 spin_lock_init(&fi->i_size_lock);
1060 INIT_LIST_HEAD(&fi->dirty_list);
1061 INIT_LIST_HEAD(&fi->gdirty_list);
1062 INIT_LIST_HEAD(&fi->inmem_ilist);
1063 INIT_LIST_HEAD(&fi->inmem_pages);
1064 mutex_init(&fi->inmem_lock);
1065 init_rwsem(&fi->i_gc_rwsem[READ]);
1066 init_rwsem(&fi->i_gc_rwsem[WRITE]);
1067 init_rwsem(&fi->i_mmap_sem);
1068 init_rwsem(&fi->i_xattr_sem);
1069
1070 /* Will be used by directory only */
1071 fi->i_dir_level = F2FS_SB(sb)->dir_level;
1072
1073 return &fi->vfs_inode;
1074 }
1075
f2fs_drop_inode(struct inode * inode)1076 static int f2fs_drop_inode(struct inode *inode)
1077 {
1078 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1079 int ret;
1080
1081 /*
1082 * during filesystem shutdown, if checkpoint is disabled,
1083 * drop useless meta/node dirty pages.
1084 */
1085 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1086 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1087 inode->i_ino == F2FS_META_INO(sbi)) {
1088 trace_f2fs_drop_inode(inode, 1);
1089 return 1;
1090 }
1091 }
1092
1093 /*
1094 * This is to avoid a deadlock condition like below.
1095 * writeback_single_inode(inode)
1096 * - f2fs_write_data_page
1097 * - f2fs_gc -> iput -> evict
1098 * - inode_wait_for_writeback(inode)
1099 */
1100 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1101 if (!inode->i_nlink && !is_bad_inode(inode)) {
1102 /* to avoid evict_inode call simultaneously */
1103 atomic_inc(&inode->i_count);
1104 spin_unlock(&inode->i_lock);
1105
1106 /* some remained atomic pages should discarded */
1107 if (f2fs_is_atomic_file(inode))
1108 f2fs_drop_inmem_pages(inode);
1109
1110 /* should remain fi->extent_tree for writepage */
1111 f2fs_destroy_extent_node(inode);
1112
1113 sb_start_intwrite(inode->i_sb);
1114 f2fs_i_size_write(inode, 0);
1115
1116 f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1117 inode, NULL, 0, DATA);
1118 truncate_inode_pages_final(inode->i_mapping);
1119
1120 if (F2FS_HAS_BLOCKS(inode))
1121 f2fs_truncate(inode);
1122
1123 sb_end_intwrite(inode->i_sb);
1124
1125 spin_lock(&inode->i_lock);
1126 atomic_dec(&inode->i_count);
1127 }
1128 trace_f2fs_drop_inode(inode, 0);
1129 return 0;
1130 }
1131 ret = generic_drop_inode(inode);
1132 if (!ret)
1133 ret = fscrypt_drop_inode(inode);
1134 trace_f2fs_drop_inode(inode, ret);
1135 return ret;
1136 }
1137
f2fs_inode_dirtied(struct inode * inode,bool sync)1138 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1139 {
1140 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1141 int ret = 0;
1142
1143 spin_lock(&sbi->inode_lock[DIRTY_META]);
1144 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1145 ret = 1;
1146 } else {
1147 set_inode_flag(inode, FI_DIRTY_INODE);
1148 stat_inc_dirty_inode(sbi, DIRTY_META);
1149 }
1150 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1151 list_add_tail(&F2FS_I(inode)->gdirty_list,
1152 &sbi->inode_list[DIRTY_META]);
1153 inc_page_count(sbi, F2FS_DIRTY_IMETA);
1154 }
1155 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1156 return ret;
1157 }
1158
f2fs_inode_synced(struct inode * inode)1159 void f2fs_inode_synced(struct inode *inode)
1160 {
1161 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1162
1163 spin_lock(&sbi->inode_lock[DIRTY_META]);
1164 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1165 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1166 return;
1167 }
1168 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1169 list_del_init(&F2FS_I(inode)->gdirty_list);
1170 dec_page_count(sbi, F2FS_DIRTY_IMETA);
1171 }
1172 clear_inode_flag(inode, FI_DIRTY_INODE);
1173 clear_inode_flag(inode, FI_AUTO_RECOVER);
1174 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1175 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1176 }
1177
1178 /*
1179 * f2fs_dirty_inode() is called from __mark_inode_dirty()
1180 *
1181 * We should call set_dirty_inode to write the dirty inode through write_inode.
1182 */
f2fs_dirty_inode(struct inode * inode,int flags)1183 static void f2fs_dirty_inode(struct inode *inode, int flags)
1184 {
1185 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1186
1187 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1188 inode->i_ino == F2FS_META_INO(sbi))
1189 return;
1190
1191 if (flags == I_DIRTY_TIME)
1192 return;
1193
1194 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1195 clear_inode_flag(inode, FI_AUTO_RECOVER);
1196
1197 f2fs_inode_dirtied(inode, false);
1198 }
1199
f2fs_free_inode(struct inode * inode)1200 static void f2fs_free_inode(struct inode *inode)
1201 {
1202 fscrypt_free_inode(inode);
1203 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1204 }
1205
destroy_percpu_info(struct f2fs_sb_info * sbi)1206 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1207 {
1208 percpu_counter_destroy(&sbi->alloc_valid_block_count);
1209 percpu_counter_destroy(&sbi->total_valid_inode_count);
1210 }
1211
destroy_device_list(struct f2fs_sb_info * sbi)1212 static void destroy_device_list(struct f2fs_sb_info *sbi)
1213 {
1214 int i;
1215
1216 for (i = 0; i < sbi->s_ndevs; i++) {
1217 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1218 #ifdef CONFIG_BLK_DEV_ZONED
1219 kvfree(FDEV(i).blkz_seq);
1220 #endif
1221 }
1222 kvfree(sbi->devs);
1223 }
1224
f2fs_put_super(struct super_block * sb)1225 static void f2fs_put_super(struct super_block *sb)
1226 {
1227 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1228 int i;
1229 bool dropped;
1230
1231 /* unregister procfs/sysfs entries in advance to avoid race case */
1232 f2fs_unregister_sysfs(sbi);
1233
1234 f2fs_quota_off_umount(sb);
1235
1236 /* prevent remaining shrinker jobs */
1237 mutex_lock(&sbi->umount_mutex);
1238
1239 /*
1240 * We don't need to do checkpoint when superblock is clean.
1241 * But, the previous checkpoint was not done by umount, it needs to do
1242 * clean checkpoint again.
1243 */
1244 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1245 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1246 struct cp_control cpc = {
1247 .reason = CP_UMOUNT,
1248 };
1249 f2fs_write_checkpoint(sbi, &cpc);
1250 }
1251
1252 /* be sure to wait for any on-going discard commands */
1253 dropped = f2fs_issue_discard_timeout(sbi);
1254
1255 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1256 !sbi->discard_blks && !dropped) {
1257 struct cp_control cpc = {
1258 .reason = CP_UMOUNT | CP_TRIMMED,
1259 };
1260 f2fs_write_checkpoint(sbi, &cpc);
1261 }
1262
1263 /*
1264 * normally superblock is clean, so we need to release this.
1265 * In addition, EIO will skip do checkpoint, we need this as well.
1266 */
1267 f2fs_release_ino_entry(sbi, true);
1268
1269 f2fs_leave_shrinker(sbi);
1270 mutex_unlock(&sbi->umount_mutex);
1271
1272 /* our cp_error case, we can wait for any writeback page */
1273 f2fs_flush_merged_writes(sbi);
1274
1275 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1276
1277 f2fs_bug_on(sbi, sbi->fsync_node_num);
1278
1279 iput(sbi->node_inode);
1280 sbi->node_inode = NULL;
1281
1282 iput(sbi->meta_inode);
1283 sbi->meta_inode = NULL;
1284
1285 /*
1286 * iput() can update stat information, if f2fs_write_checkpoint()
1287 * above failed with error.
1288 */
1289 f2fs_destroy_stats(sbi);
1290
1291 /* destroy f2fs internal modules */
1292 f2fs_destroy_node_manager(sbi);
1293 f2fs_destroy_segment_manager(sbi);
1294
1295 f2fs_destroy_post_read_wq(sbi);
1296
1297 kvfree(sbi->ckpt);
1298
1299 sb->s_fs_info = NULL;
1300 if (sbi->s_chksum_driver)
1301 crypto_free_shash(sbi->s_chksum_driver);
1302 kvfree(sbi->raw_super);
1303
1304 destroy_device_list(sbi);
1305 f2fs_destroy_xattr_caches(sbi);
1306 mempool_destroy(sbi->write_io_dummy);
1307 #ifdef CONFIG_QUOTA
1308 for (i = 0; i < MAXQUOTAS; i++)
1309 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1310 #endif
1311 fscrypt_free_dummy_context(&F2FS_OPTION(sbi).dummy_enc_ctx);
1312 destroy_percpu_info(sbi);
1313 for (i = 0; i < NR_PAGE_TYPE; i++)
1314 kvfree(sbi->write_io[i]);
1315 #ifdef CONFIG_UNICODE
1316 utf8_unload(sb->s_encoding);
1317 #endif
1318 kvfree(sbi);
1319 }
1320
f2fs_sync_fs(struct super_block * sb,int sync)1321 int f2fs_sync_fs(struct super_block *sb, int sync)
1322 {
1323 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1324 int err = 0;
1325
1326 if (unlikely(f2fs_cp_error(sbi)))
1327 return 0;
1328 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1329 return 0;
1330
1331 trace_f2fs_sync_fs(sb, sync);
1332
1333 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1334 return -EAGAIN;
1335
1336 if (sync) {
1337 struct cp_control cpc;
1338
1339 cpc.reason = __get_cp_reason(sbi);
1340
1341 down_write(&sbi->gc_lock);
1342 err = f2fs_write_checkpoint(sbi, &cpc);
1343 up_write(&sbi->gc_lock);
1344 }
1345 f2fs_trace_ios(NULL, 1);
1346
1347 return err;
1348 }
1349
f2fs_freeze(struct super_block * sb)1350 static int f2fs_freeze(struct super_block *sb)
1351 {
1352 if (f2fs_readonly(sb))
1353 return 0;
1354
1355 /* IO error happened before */
1356 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1357 return -EIO;
1358
1359 /* must be clean, since sync_filesystem() was already called */
1360 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1361 return -EINVAL;
1362 return 0;
1363 }
1364
f2fs_unfreeze(struct super_block * sb)1365 static int f2fs_unfreeze(struct super_block *sb)
1366 {
1367 return 0;
1368 }
1369
1370 #ifdef CONFIG_QUOTA
f2fs_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)1371 static int f2fs_statfs_project(struct super_block *sb,
1372 kprojid_t projid, struct kstatfs *buf)
1373 {
1374 struct kqid qid;
1375 struct dquot *dquot;
1376 u64 limit;
1377 u64 curblock;
1378
1379 qid = make_kqid_projid(projid);
1380 dquot = dqget(sb, qid);
1381 if (IS_ERR(dquot))
1382 return PTR_ERR(dquot);
1383 spin_lock(&dquot->dq_dqb_lock);
1384
1385 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1386 dquot->dq_dqb.dqb_bhardlimit);
1387 if (limit)
1388 limit >>= sb->s_blocksize_bits;
1389
1390 if (limit && buf->f_blocks > limit) {
1391 curblock = (dquot->dq_dqb.dqb_curspace +
1392 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1393 buf->f_blocks = limit;
1394 buf->f_bfree = buf->f_bavail =
1395 (buf->f_blocks > curblock) ?
1396 (buf->f_blocks - curblock) : 0;
1397 }
1398
1399 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1400 dquot->dq_dqb.dqb_ihardlimit);
1401
1402 if (limit && buf->f_files > limit) {
1403 buf->f_files = limit;
1404 buf->f_ffree =
1405 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1406 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1407 }
1408
1409 spin_unlock(&dquot->dq_dqb_lock);
1410 dqput(dquot);
1411 return 0;
1412 }
1413 #endif
1414
f2fs_statfs(struct dentry * dentry,struct kstatfs * buf)1415 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1416 {
1417 struct super_block *sb = dentry->d_sb;
1418 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1419 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1420 block_t total_count, user_block_count, start_count;
1421 u64 avail_node_count;
1422
1423 total_count = le64_to_cpu(sbi->raw_super->block_count);
1424 user_block_count = sbi->user_block_count;
1425 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1426 buf->f_type = F2FS_SUPER_MAGIC;
1427 buf->f_bsize = sbi->blocksize;
1428
1429 buf->f_blocks = total_count - start_count;
1430 buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1431 sbi->current_reserved_blocks;
1432
1433 spin_lock(&sbi->stat_lock);
1434 if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1435 buf->f_bfree = 0;
1436 else
1437 buf->f_bfree -= sbi->unusable_block_count;
1438 spin_unlock(&sbi->stat_lock);
1439
1440 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1441 buf->f_bavail = buf->f_bfree -
1442 F2FS_OPTION(sbi).root_reserved_blocks;
1443 else
1444 buf->f_bavail = 0;
1445
1446 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1447
1448 if (avail_node_count > user_block_count) {
1449 buf->f_files = user_block_count;
1450 buf->f_ffree = buf->f_bavail;
1451 } else {
1452 buf->f_files = avail_node_count;
1453 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1454 buf->f_bavail);
1455 }
1456
1457 buf->f_namelen = F2FS_NAME_LEN;
1458 buf->f_fsid.val[0] = (u32)id;
1459 buf->f_fsid.val[1] = (u32)(id >> 32);
1460
1461 #ifdef CONFIG_QUOTA
1462 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1463 sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1464 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1465 }
1466 #endif
1467 return 0;
1468 }
1469
f2fs_show_quota_options(struct seq_file * seq,struct super_block * sb)1470 static inline void f2fs_show_quota_options(struct seq_file *seq,
1471 struct super_block *sb)
1472 {
1473 #ifdef CONFIG_QUOTA
1474 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1475
1476 if (F2FS_OPTION(sbi).s_jquota_fmt) {
1477 char *fmtname = "";
1478
1479 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1480 case QFMT_VFS_OLD:
1481 fmtname = "vfsold";
1482 break;
1483 case QFMT_VFS_V0:
1484 fmtname = "vfsv0";
1485 break;
1486 case QFMT_VFS_V1:
1487 fmtname = "vfsv1";
1488 break;
1489 }
1490 seq_printf(seq, ",jqfmt=%s", fmtname);
1491 }
1492
1493 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1494 seq_show_option(seq, "usrjquota",
1495 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1496
1497 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1498 seq_show_option(seq, "grpjquota",
1499 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1500
1501 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1502 seq_show_option(seq, "prjjquota",
1503 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1504 #endif
1505 }
1506
f2fs_show_compress_options(struct seq_file * seq,struct super_block * sb)1507 static inline void f2fs_show_compress_options(struct seq_file *seq,
1508 struct super_block *sb)
1509 {
1510 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1511 char *algtype = "";
1512 int i;
1513
1514 if (!f2fs_sb_has_compression(sbi))
1515 return;
1516
1517 switch (F2FS_OPTION(sbi).compress_algorithm) {
1518 case COMPRESS_LZO:
1519 algtype = "lzo";
1520 break;
1521 case COMPRESS_LZ4:
1522 algtype = "lz4";
1523 break;
1524 case COMPRESS_ZSTD:
1525 algtype = "zstd";
1526 break;
1527 case COMPRESS_LZORLE:
1528 algtype = "lzo-rle";
1529 break;
1530 }
1531 seq_printf(seq, ",compress_algorithm=%s", algtype);
1532
1533 seq_printf(seq, ",compress_log_size=%u",
1534 F2FS_OPTION(sbi).compress_log_size);
1535
1536 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1537 seq_printf(seq, ",compress_extension=%s",
1538 F2FS_OPTION(sbi).extensions[i]);
1539 }
1540 }
1541
f2fs_show_options(struct seq_file * seq,struct dentry * root)1542 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1543 {
1544 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1545
1546 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1547 seq_printf(seq, ",background_gc=%s", "sync");
1548 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1549 seq_printf(seq, ",background_gc=%s", "on");
1550 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1551 seq_printf(seq, ",background_gc=%s", "off");
1552
1553 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1554 seq_puts(seq, ",disable_roll_forward");
1555 if (test_opt(sbi, NORECOVERY))
1556 seq_puts(seq, ",norecovery");
1557 if (test_opt(sbi, DISCARD))
1558 seq_puts(seq, ",discard");
1559 else
1560 seq_puts(seq, ",nodiscard");
1561 if (test_opt(sbi, NOHEAP))
1562 seq_puts(seq, ",no_heap");
1563 else
1564 seq_puts(seq, ",heap");
1565 #ifdef CONFIG_F2FS_FS_XATTR
1566 if (test_opt(sbi, XATTR_USER))
1567 seq_puts(seq, ",user_xattr");
1568 else
1569 seq_puts(seq, ",nouser_xattr");
1570 if (test_opt(sbi, INLINE_XATTR))
1571 seq_puts(seq, ",inline_xattr");
1572 else
1573 seq_puts(seq, ",noinline_xattr");
1574 if (test_opt(sbi, INLINE_XATTR_SIZE))
1575 seq_printf(seq, ",inline_xattr_size=%u",
1576 F2FS_OPTION(sbi).inline_xattr_size);
1577 #endif
1578 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1579 if (test_opt(sbi, POSIX_ACL))
1580 seq_puts(seq, ",acl");
1581 else
1582 seq_puts(seq, ",noacl");
1583 #endif
1584 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1585 seq_puts(seq, ",disable_ext_identify");
1586 if (test_opt(sbi, INLINE_DATA))
1587 seq_puts(seq, ",inline_data");
1588 else
1589 seq_puts(seq, ",noinline_data");
1590 if (test_opt(sbi, INLINE_DENTRY))
1591 seq_puts(seq, ",inline_dentry");
1592 else
1593 seq_puts(seq, ",noinline_dentry");
1594 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1595 seq_puts(seq, ",flush_merge");
1596 if (test_opt(sbi, NOBARRIER))
1597 seq_puts(seq, ",nobarrier");
1598 if (test_opt(sbi, FASTBOOT))
1599 seq_puts(seq, ",fastboot");
1600 if (test_opt(sbi, EXTENT_CACHE))
1601 seq_puts(seq, ",extent_cache");
1602 else
1603 seq_puts(seq, ",noextent_cache");
1604 if (test_opt(sbi, DATA_FLUSH))
1605 seq_puts(seq, ",data_flush");
1606
1607 seq_puts(seq, ",mode=");
1608 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1609 seq_puts(seq, "adaptive");
1610 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1611 seq_puts(seq, "lfs");
1612 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1613 if (test_opt(sbi, RESERVE_ROOT))
1614 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1615 F2FS_OPTION(sbi).root_reserved_blocks,
1616 from_kuid_munged(&init_user_ns,
1617 F2FS_OPTION(sbi).s_resuid),
1618 from_kgid_munged(&init_user_ns,
1619 F2FS_OPTION(sbi).s_resgid));
1620 if (F2FS_IO_SIZE_BITS(sbi))
1621 seq_printf(seq, ",io_bits=%u",
1622 F2FS_OPTION(sbi).write_io_size_bits);
1623 #ifdef CONFIG_F2FS_FAULT_INJECTION
1624 if (test_opt(sbi, FAULT_INJECTION)) {
1625 seq_printf(seq, ",fault_injection=%u",
1626 F2FS_OPTION(sbi).fault_info.inject_rate);
1627 seq_printf(seq, ",fault_type=%u",
1628 F2FS_OPTION(sbi).fault_info.inject_type);
1629 }
1630 #endif
1631 #ifdef CONFIG_QUOTA
1632 if (test_opt(sbi, QUOTA))
1633 seq_puts(seq, ",quota");
1634 if (test_opt(sbi, USRQUOTA))
1635 seq_puts(seq, ",usrquota");
1636 if (test_opt(sbi, GRPQUOTA))
1637 seq_puts(seq, ",grpquota");
1638 if (test_opt(sbi, PRJQUOTA))
1639 seq_puts(seq, ",prjquota");
1640 #endif
1641 f2fs_show_quota_options(seq, sbi->sb);
1642 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1643 seq_printf(seq, ",whint_mode=%s", "user-based");
1644 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1645 seq_printf(seq, ",whint_mode=%s", "fs-based");
1646
1647 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1648
1649 #ifdef CONFIG_FS_ENCRYPTION
1650 if (F2FS_OPTION(sbi).inlinecrypt)
1651 seq_puts(seq, ",inlinecrypt");
1652 #endif
1653
1654 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1655 seq_printf(seq, ",alloc_mode=%s", "default");
1656 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1657 seq_printf(seq, ",alloc_mode=%s", "reuse");
1658
1659 if (test_opt(sbi, DISABLE_CHECKPOINT))
1660 seq_printf(seq, ",checkpoint=disable:%u",
1661 F2FS_OPTION(sbi).unusable_cap);
1662 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1663 seq_printf(seq, ",fsync_mode=%s", "posix");
1664 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1665 seq_printf(seq, ",fsync_mode=%s", "strict");
1666 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1667 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1668
1669 f2fs_show_compress_options(seq, sbi->sb);
1670 return 0;
1671 }
1672
default_options(struct f2fs_sb_info * sbi)1673 static void default_options(struct f2fs_sb_info *sbi)
1674 {
1675 /* init some FS parameters */
1676 if (f2fs_sb_has_readonly(sbi))
1677 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
1678 else
1679 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1680
1681 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1682 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1683 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1684 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1685 #ifdef CONFIG_FS_ENCRYPTION
1686 F2FS_OPTION(sbi).inlinecrypt = false;
1687 #endif
1688 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1689 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1690 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1691 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1692 F2FS_OPTION(sbi).compress_ext_cnt = 0;
1693 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1694
1695 set_opt(sbi, INLINE_XATTR);
1696 set_opt(sbi, INLINE_DATA);
1697 set_opt(sbi, INLINE_DENTRY);
1698 set_opt(sbi, EXTENT_CACHE);
1699 set_opt(sbi, NOHEAP);
1700 clear_opt(sbi, DISABLE_CHECKPOINT);
1701 F2FS_OPTION(sbi).unusable_cap = 0;
1702 sbi->sb->s_flags |= SB_LAZYTIME;
1703 set_opt(sbi, FLUSH_MERGE);
1704 set_opt(sbi, DISCARD);
1705 if (f2fs_sb_has_blkzoned(sbi))
1706 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1707 else
1708 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1709
1710 #ifdef CONFIG_F2FS_FS_XATTR
1711 set_opt(sbi, XATTR_USER);
1712 #endif
1713 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1714 set_opt(sbi, POSIX_ACL);
1715 #endif
1716
1717 f2fs_build_fault_attr(sbi, 0, 0);
1718 }
1719
1720 #ifdef CONFIG_QUOTA
1721 static int f2fs_enable_quotas(struct super_block *sb);
1722 #endif
1723
f2fs_disable_checkpoint(struct f2fs_sb_info * sbi)1724 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1725 {
1726 unsigned int s_flags = sbi->sb->s_flags;
1727 struct cp_control cpc;
1728 int err = 0;
1729 int ret;
1730 block_t unusable;
1731
1732 if (s_flags & SB_RDONLY) {
1733 f2fs_err(sbi, "checkpoint=disable on readonly fs");
1734 return -EINVAL;
1735 }
1736 sbi->sb->s_flags |= SB_ACTIVE;
1737
1738 f2fs_update_time(sbi, DISABLE_TIME);
1739
1740 while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1741 down_write(&sbi->gc_lock);
1742 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1743 if (err == -ENODATA) {
1744 err = 0;
1745 break;
1746 }
1747 if (err && err != -EAGAIN)
1748 break;
1749 }
1750
1751 ret = sync_filesystem(sbi->sb);
1752 if (ret || err) {
1753 err = ret ? ret: err;
1754 goto restore_flag;
1755 }
1756
1757 unusable = f2fs_get_unusable_blocks(sbi);
1758 if (f2fs_disable_cp_again(sbi, unusable)) {
1759 err = -EAGAIN;
1760 goto restore_flag;
1761 }
1762
1763 down_write(&sbi->gc_lock);
1764 cpc.reason = CP_PAUSE;
1765 set_sbi_flag(sbi, SBI_CP_DISABLED);
1766 err = f2fs_write_checkpoint(sbi, &cpc);
1767 if (err)
1768 goto out_unlock;
1769
1770 spin_lock(&sbi->stat_lock);
1771 sbi->unusable_block_count = unusable;
1772 spin_unlock(&sbi->stat_lock);
1773
1774 out_unlock:
1775 up_write(&sbi->gc_lock);
1776 restore_flag:
1777 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
1778 return err;
1779 }
1780
f2fs_enable_checkpoint(struct f2fs_sb_info * sbi)1781 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1782 {
1783 int retry = DEFAULT_RETRY_IO_COUNT;
1784
1785 /* we should flush all the data to keep data consistency */
1786 do {
1787 sync_inodes_sb(sbi->sb);
1788 cond_resched();
1789 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
1790 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
1791
1792 if (unlikely(retry < 0))
1793 f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
1794
1795 down_write(&sbi->gc_lock);
1796 f2fs_dirty_to_prefree(sbi);
1797
1798 clear_sbi_flag(sbi, SBI_CP_DISABLED);
1799 set_sbi_flag(sbi, SBI_IS_DIRTY);
1800 up_write(&sbi->gc_lock);
1801
1802 f2fs_sync_fs(sbi->sb, 1);
1803 }
1804
f2fs_remount(struct super_block * sb,int * flags,char * data)1805 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1806 {
1807 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1808 struct f2fs_mount_info org_mount_opt;
1809 unsigned long old_sb_flags;
1810 int err;
1811 bool need_restart_gc = false;
1812 bool need_stop_gc = false;
1813 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1814 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1815 bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1816 bool checkpoint_changed;
1817 #ifdef CONFIG_QUOTA
1818 int i, j;
1819 #endif
1820
1821 /*
1822 * Save the old mount options in case we
1823 * need to restore them.
1824 */
1825 org_mount_opt = sbi->mount_opt;
1826 old_sb_flags = sb->s_flags;
1827
1828 #ifdef CONFIG_QUOTA
1829 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1830 for (i = 0; i < MAXQUOTAS; i++) {
1831 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1832 org_mount_opt.s_qf_names[i] =
1833 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1834 GFP_KERNEL);
1835 if (!org_mount_opt.s_qf_names[i]) {
1836 for (j = 0; j < i; j++)
1837 kvfree(org_mount_opt.s_qf_names[j]);
1838 return -ENOMEM;
1839 }
1840 } else {
1841 org_mount_opt.s_qf_names[i] = NULL;
1842 }
1843 }
1844 #endif
1845
1846 /* recover superblocks we couldn't write due to previous RO mount */
1847 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1848 err = f2fs_commit_super(sbi, false);
1849 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1850 err);
1851 if (!err)
1852 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1853 }
1854
1855 default_options(sbi);
1856
1857 /* parse mount options */
1858 err = parse_options(sb, data, true);
1859 if (err)
1860 goto restore_opts;
1861 checkpoint_changed =
1862 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1863
1864 /*
1865 * Previous and new state of filesystem is RO,
1866 * so skip checking GC and FLUSH_MERGE conditions.
1867 */
1868 if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1869 goto skip;
1870
1871 if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) {
1872 err = -EROFS;
1873 goto restore_opts;
1874 }
1875
1876 #ifdef CONFIG_QUOTA
1877 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1878 err = dquot_suspend(sb, -1);
1879 if (err < 0)
1880 goto restore_opts;
1881 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1882 /* dquot_resume needs RW */
1883 sb->s_flags &= ~SB_RDONLY;
1884 if (sb_any_quota_suspended(sb)) {
1885 dquot_resume(sb, -1);
1886 } else if (f2fs_sb_has_quota_ino(sbi)) {
1887 err = f2fs_enable_quotas(sb);
1888 if (err)
1889 goto restore_opts;
1890 }
1891 }
1892 #endif
1893 /* disallow enable/disable extent_cache dynamically */
1894 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1895 err = -EINVAL;
1896 f2fs_warn(sbi, "switch extent_cache option is not allowed");
1897 goto restore_opts;
1898 }
1899
1900 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1901 err = -EINVAL;
1902 f2fs_warn(sbi, "switch io_bits option is not allowed");
1903 goto restore_opts;
1904 }
1905
1906 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1907 err = -EINVAL;
1908 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1909 goto restore_opts;
1910 }
1911
1912 /*
1913 * We stop the GC thread if FS is mounted as RO
1914 * or if background_gc = off is passed in mount
1915 * option. Also sync the filesystem.
1916 */
1917 if ((*flags & SB_RDONLY) ||
1918 F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) {
1919 if (sbi->gc_thread) {
1920 f2fs_stop_gc_thread(sbi);
1921 need_restart_gc = true;
1922 }
1923 } else if (!sbi->gc_thread) {
1924 err = f2fs_start_gc_thread(sbi);
1925 if (err)
1926 goto restore_opts;
1927 need_stop_gc = true;
1928 }
1929
1930 if (*flags & SB_RDONLY ||
1931 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1932 writeback_inodes_sb(sb, WB_REASON_SYNC);
1933 sync_inodes_sb(sb);
1934
1935 set_sbi_flag(sbi, SBI_IS_DIRTY);
1936 set_sbi_flag(sbi, SBI_IS_CLOSE);
1937 f2fs_sync_fs(sb, 1);
1938 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1939 }
1940
1941 if (checkpoint_changed) {
1942 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1943 err = f2fs_disable_checkpoint(sbi);
1944 if (err)
1945 goto restore_gc;
1946 } else {
1947 f2fs_enable_checkpoint(sbi);
1948 }
1949 }
1950
1951 /*
1952 * We stop issue flush thread if FS is mounted as RO
1953 * or if flush_merge is not passed in mount option.
1954 */
1955 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1956 clear_opt(sbi, FLUSH_MERGE);
1957 f2fs_destroy_flush_cmd_control(sbi, false);
1958 } else {
1959 err = f2fs_create_flush_cmd_control(sbi);
1960 if (err)
1961 goto restore_gc;
1962 }
1963 skip:
1964 #ifdef CONFIG_QUOTA
1965 /* Release old quota file names */
1966 for (i = 0; i < MAXQUOTAS; i++)
1967 kvfree(org_mount_opt.s_qf_names[i]);
1968 #endif
1969 /* Update the POSIXACL Flag */
1970 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1971 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1972
1973 limit_reserve_root(sbi);
1974 adjust_unusable_cap_perc(sbi);
1975 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1976 return 0;
1977 restore_gc:
1978 if (need_restart_gc) {
1979 if (f2fs_start_gc_thread(sbi))
1980 f2fs_warn(sbi, "background gc thread has stopped");
1981 } else if (need_stop_gc) {
1982 f2fs_stop_gc_thread(sbi);
1983 }
1984 restore_opts:
1985 #ifdef CONFIG_QUOTA
1986 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1987 for (i = 0; i < MAXQUOTAS; i++) {
1988 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1989 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1990 }
1991 #endif
1992 sbi->mount_opt = org_mount_opt;
1993 sb->s_flags = old_sb_flags;
1994 return err;
1995 }
1996
1997 #ifdef CONFIG_QUOTA
1998 /* Read data from quotafile */
f2fs_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)1999 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2000 size_t len, loff_t off)
2001 {
2002 struct inode *inode = sb_dqopt(sb)->files[type];
2003 struct address_space *mapping = inode->i_mapping;
2004 block_t blkidx = F2FS_BYTES_TO_BLK(off);
2005 int offset = off & (sb->s_blocksize - 1);
2006 int tocopy;
2007 size_t toread;
2008 loff_t i_size = i_size_read(inode);
2009 struct page *page;
2010
2011 if (off > i_size)
2012 return 0;
2013
2014 if (off + len > i_size)
2015 len = i_size - off;
2016 toread = len;
2017 while (toread > 0) {
2018 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2019 repeat:
2020 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2021 if (IS_ERR(page)) {
2022 if (PTR_ERR(page) == -ENOMEM) {
2023 congestion_wait(BLK_RW_ASYNC,
2024 DEFAULT_IO_TIMEOUT);
2025 goto repeat;
2026 }
2027 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2028 return PTR_ERR(page);
2029 }
2030
2031 lock_page(page);
2032
2033 if (unlikely(page->mapping != mapping)) {
2034 f2fs_put_page(page, 1);
2035 goto repeat;
2036 }
2037 if (unlikely(!PageUptodate(page))) {
2038 f2fs_put_page(page, 1);
2039 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2040 return -EIO;
2041 }
2042
2043 memcpy_from_page(data, page, offset, tocopy);
2044 f2fs_put_page(page, 1);
2045
2046 offset = 0;
2047 toread -= tocopy;
2048 data += tocopy;
2049 blkidx++;
2050 }
2051 return len;
2052 }
2053
2054 /* Write to quotafile */
f2fs_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)2055 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2056 const char *data, size_t len, loff_t off)
2057 {
2058 struct inode *inode = sb_dqopt(sb)->files[type];
2059 struct address_space *mapping = inode->i_mapping;
2060 const struct address_space_operations *a_ops = mapping->a_ops;
2061 int offset = off & (sb->s_blocksize - 1);
2062 size_t towrite = len;
2063 struct page *page;
2064 void *fsdata = NULL;
2065 int err = 0;
2066 int tocopy;
2067
2068 while (towrite > 0) {
2069 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2070 towrite);
2071 retry:
2072 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2073 &page, &fsdata);
2074 if (unlikely(err)) {
2075 if (err == -ENOMEM) {
2076 congestion_wait(BLK_RW_ASYNC,
2077 DEFAULT_IO_TIMEOUT);
2078 goto retry;
2079 }
2080 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2081 break;
2082 }
2083
2084 memcpy_to_page(page, offset, data, tocopy);
2085
2086 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2087 page, fsdata);
2088 offset = 0;
2089 towrite -= tocopy;
2090 off += tocopy;
2091 data += tocopy;
2092 cond_resched();
2093 }
2094
2095 if (len == towrite)
2096 return err;
2097 inode->i_mtime = inode->i_ctime = current_time(inode);
2098 f2fs_mark_inode_dirty_sync(inode, false);
2099 return len - towrite;
2100 }
2101
f2fs_get_dquots(struct inode * inode)2102 static struct dquot **f2fs_get_dquots(struct inode *inode)
2103 {
2104 return F2FS_I(inode)->i_dquot;
2105 }
2106
f2fs_get_reserved_space(struct inode * inode)2107 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2108 {
2109 return &F2FS_I(inode)->i_reserved_quota;
2110 }
2111
f2fs_quota_on_mount(struct f2fs_sb_info * sbi,int type)2112 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2113 {
2114 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2115 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2116 return 0;
2117 }
2118
2119 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2120 F2FS_OPTION(sbi).s_jquota_fmt, type);
2121 }
2122
f2fs_enable_quota_files(struct f2fs_sb_info * sbi,bool rdonly)2123 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2124 {
2125 int enabled = 0;
2126 int i, err;
2127
2128 if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2129 err = f2fs_enable_quotas(sbi->sb);
2130 if (err) {
2131 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2132 return 0;
2133 }
2134 return 1;
2135 }
2136
2137 for (i = 0; i < MAXQUOTAS; i++) {
2138 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2139 err = f2fs_quota_on_mount(sbi, i);
2140 if (!err) {
2141 enabled = 1;
2142 continue;
2143 }
2144 f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2145 err, i);
2146 }
2147 }
2148 return enabled;
2149 }
2150
f2fs_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)2151 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2152 unsigned int flags)
2153 {
2154 struct inode *qf_inode;
2155 unsigned long qf_inum;
2156 int err;
2157
2158 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2159
2160 qf_inum = f2fs_qf_ino(sb, type);
2161 if (!qf_inum)
2162 return -EPERM;
2163
2164 qf_inode = f2fs_iget(sb, qf_inum);
2165 if (IS_ERR(qf_inode)) {
2166 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2167 return PTR_ERR(qf_inode);
2168 }
2169
2170 /* Don't account quota for quota files to avoid recursion */
2171 qf_inode->i_flags |= S_NOQUOTA;
2172 err = dquot_enable(qf_inode, type, format_id, flags);
2173 iput(qf_inode);
2174 return err;
2175 }
2176
f2fs_enable_quotas(struct super_block * sb)2177 static int f2fs_enable_quotas(struct super_block *sb)
2178 {
2179 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2180 int type, err = 0;
2181 unsigned long qf_inum;
2182 bool quota_mopt[MAXQUOTAS] = {
2183 test_opt(sbi, USRQUOTA),
2184 test_opt(sbi, GRPQUOTA),
2185 test_opt(sbi, PRJQUOTA),
2186 };
2187
2188 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2189 f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2190 return 0;
2191 }
2192
2193 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2194
2195 for (type = 0; type < MAXQUOTAS; type++) {
2196 qf_inum = f2fs_qf_ino(sb, type);
2197 if (qf_inum) {
2198 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2199 DQUOT_USAGE_ENABLED |
2200 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2201 if (err) {
2202 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2203 type, err);
2204 for (type--; type >= 0; type--)
2205 dquot_quota_off(sb, type);
2206 set_sbi_flag(F2FS_SB(sb),
2207 SBI_QUOTA_NEED_REPAIR);
2208 return err;
2209 }
2210 }
2211 }
2212 return 0;
2213 }
2214
f2fs_quota_sync_file(struct f2fs_sb_info * sbi,int type)2215 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2216 {
2217 struct quota_info *dqopt = sb_dqopt(sbi->sb);
2218 struct address_space *mapping = dqopt->files[type]->i_mapping;
2219 int ret = 0;
2220
2221 ret = dquot_writeback_dquots(sbi->sb, type);
2222 if (ret)
2223 goto out;
2224
2225 ret = filemap_fdatawrite(mapping);
2226 if (ret)
2227 goto out;
2228
2229 /* if we are using journalled quota */
2230 if (is_journalled_quota(sbi))
2231 goto out;
2232
2233 ret = filemap_fdatawait(mapping);
2234
2235 truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2236 out:
2237 if (ret)
2238 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2239 return ret;
2240 }
2241
f2fs_quota_sync(struct super_block * sb,int type)2242 int f2fs_quota_sync(struct super_block *sb, int type)
2243 {
2244 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2245 struct quota_info *dqopt = sb_dqopt(sb);
2246 int cnt;
2247 int ret = 0;
2248
2249 /*
2250 * Now when everything is written we can discard the pagecache so
2251 * that userspace sees the changes.
2252 */
2253 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2254
2255 if (type != -1 && cnt != type)
2256 continue;
2257
2258 if (!sb_has_quota_active(sb, cnt))
2259 continue;
2260
2261 if (!f2fs_sb_has_quota_ino(sbi))
2262 inode_lock(dqopt->files[cnt]);
2263
2264 /*
2265 * do_quotactl
2266 * f2fs_quota_sync
2267 * down_read(quota_sem)
2268 * dquot_writeback_dquots()
2269 * f2fs_dquot_commit
2270 * block_operation
2271 * down_read(quota_sem)
2272 */
2273 f2fs_lock_op(sbi);
2274 down_read(&sbi->quota_sem);
2275
2276 ret = f2fs_quota_sync_file(sbi, cnt);
2277
2278 up_read(&sbi->quota_sem);
2279 f2fs_unlock_op(sbi);
2280
2281 if (!f2fs_sb_has_quota_ino(sbi))
2282 inode_unlock(dqopt->files[cnt]);
2283
2284 if (ret)
2285 break;
2286 }
2287 return ret;
2288 }
2289
f2fs_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)2290 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2291 const struct path *path)
2292 {
2293 struct inode *inode;
2294 int err;
2295
2296 /* if quota sysfile exists, deny enabling quota with specific file */
2297 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2298 f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2299 return -EBUSY;
2300 }
2301
2302 err = f2fs_quota_sync(sb, type);
2303 if (err)
2304 return err;
2305
2306 err = dquot_quota_on(sb, type, format_id, path);
2307 if (err)
2308 return err;
2309
2310 inode = d_inode(path->dentry);
2311
2312 inode_lock(inode);
2313 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2314 f2fs_set_inode_flags(inode);
2315 inode_unlock(inode);
2316 f2fs_mark_inode_dirty_sync(inode, false);
2317
2318 return 0;
2319 }
2320
__f2fs_quota_off(struct super_block * sb,int type)2321 static int __f2fs_quota_off(struct super_block *sb, int type)
2322 {
2323 struct inode *inode = sb_dqopt(sb)->files[type];
2324 int err;
2325
2326 if (!inode || !igrab(inode))
2327 return dquot_quota_off(sb, type);
2328
2329 err = f2fs_quota_sync(sb, type);
2330 if (err)
2331 goto out_put;
2332
2333 err = dquot_quota_off(sb, type);
2334 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2335 goto out_put;
2336
2337 inode_lock(inode);
2338 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2339 f2fs_set_inode_flags(inode);
2340 inode_unlock(inode);
2341 f2fs_mark_inode_dirty_sync(inode, false);
2342 out_put:
2343 iput(inode);
2344 return err;
2345 }
2346
f2fs_quota_off(struct super_block * sb,int type)2347 static int f2fs_quota_off(struct super_block *sb, int type)
2348 {
2349 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2350 int err;
2351
2352 err = __f2fs_quota_off(sb, type);
2353
2354 /*
2355 * quotactl can shutdown journalled quota, result in inconsistence
2356 * between quota record and fs data by following updates, tag the
2357 * flag to let fsck be aware of it.
2358 */
2359 if (is_journalled_quota(sbi))
2360 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2361 return err;
2362 }
2363
f2fs_quota_off_umount(struct super_block * sb)2364 void f2fs_quota_off_umount(struct super_block *sb)
2365 {
2366 int type;
2367 int err;
2368
2369 for (type = 0; type < MAXQUOTAS; type++) {
2370 err = __f2fs_quota_off(sb, type);
2371 if (err) {
2372 int ret = dquot_quota_off(sb, type);
2373
2374 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2375 type, err, ret);
2376 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2377 }
2378 }
2379 /*
2380 * In case of checkpoint=disable, we must flush quota blocks.
2381 * This can cause NULL exception for node_inode in end_io, since
2382 * put_super already dropped it.
2383 */
2384 sync_filesystem(sb);
2385 }
2386
f2fs_truncate_quota_inode_pages(struct super_block * sb)2387 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2388 {
2389 struct quota_info *dqopt = sb_dqopt(sb);
2390 int type;
2391
2392 for (type = 0; type < MAXQUOTAS; type++) {
2393 if (!dqopt->files[type])
2394 continue;
2395 f2fs_inode_synced(dqopt->files[type]);
2396 }
2397 }
2398
f2fs_dquot_commit(struct dquot * dquot)2399 static int f2fs_dquot_commit(struct dquot *dquot)
2400 {
2401 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2402 int ret;
2403
2404 down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2405 ret = dquot_commit(dquot);
2406 if (ret < 0)
2407 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2408 up_read(&sbi->quota_sem);
2409 return ret;
2410 }
2411
f2fs_dquot_acquire(struct dquot * dquot)2412 static int f2fs_dquot_acquire(struct dquot *dquot)
2413 {
2414 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2415 int ret;
2416
2417 down_read(&sbi->quota_sem);
2418 ret = dquot_acquire(dquot);
2419 if (ret < 0)
2420 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2421 up_read(&sbi->quota_sem);
2422 return ret;
2423 }
2424
f2fs_dquot_release(struct dquot * dquot)2425 static int f2fs_dquot_release(struct dquot *dquot)
2426 {
2427 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2428 int ret = dquot_release(dquot);
2429
2430 if (ret < 0)
2431 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2432 return ret;
2433 }
2434
f2fs_dquot_mark_dquot_dirty(struct dquot * dquot)2435 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2436 {
2437 struct super_block *sb = dquot->dq_sb;
2438 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2439 int ret = dquot_mark_dquot_dirty(dquot);
2440
2441 /* if we are using journalled quota */
2442 if (is_journalled_quota(sbi))
2443 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2444
2445 return ret;
2446 }
2447
f2fs_dquot_commit_info(struct super_block * sb,int type)2448 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2449 {
2450 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2451 int ret = dquot_commit_info(sb, type);
2452
2453 if (ret < 0)
2454 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2455 return ret;
2456 }
2457
f2fs_get_projid(struct inode * inode,kprojid_t * projid)2458 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2459 {
2460 *projid = F2FS_I(inode)->i_projid;
2461 return 0;
2462 }
2463
2464 static const struct dquot_operations f2fs_quota_operations = {
2465 .get_reserved_space = f2fs_get_reserved_space,
2466 .write_dquot = f2fs_dquot_commit,
2467 .acquire_dquot = f2fs_dquot_acquire,
2468 .release_dquot = f2fs_dquot_release,
2469 .mark_dirty = f2fs_dquot_mark_dquot_dirty,
2470 .write_info = f2fs_dquot_commit_info,
2471 .alloc_dquot = dquot_alloc,
2472 .destroy_dquot = dquot_destroy,
2473 .get_projid = f2fs_get_projid,
2474 .get_next_id = dquot_get_next_id,
2475 };
2476
2477 static const struct quotactl_ops f2fs_quotactl_ops = {
2478 .quota_on = f2fs_quota_on,
2479 .quota_off = f2fs_quota_off,
2480 .quota_sync = f2fs_quota_sync,
2481 .get_state = dquot_get_state,
2482 .set_info = dquot_set_dqinfo,
2483 .get_dqblk = dquot_get_dqblk,
2484 .set_dqblk = dquot_set_dqblk,
2485 .get_nextdqblk = dquot_get_next_dqblk,
2486 };
2487 #else
f2fs_quota_sync(struct super_block * sb,int type)2488 int f2fs_quota_sync(struct super_block *sb, int type)
2489 {
2490 return 0;
2491 }
2492
f2fs_quota_off_umount(struct super_block * sb)2493 void f2fs_quota_off_umount(struct super_block *sb)
2494 {
2495 }
2496 #endif
2497
2498 static const struct super_operations f2fs_sops = {
2499 .alloc_inode = f2fs_alloc_inode,
2500 .free_inode = f2fs_free_inode,
2501 .drop_inode = f2fs_drop_inode,
2502 .write_inode = f2fs_write_inode,
2503 .dirty_inode = f2fs_dirty_inode,
2504 .show_options = f2fs_show_options,
2505 #ifdef CONFIG_QUOTA
2506 .quota_read = f2fs_quota_read,
2507 .quota_write = f2fs_quota_write,
2508 .get_dquots = f2fs_get_dquots,
2509 #endif
2510 .evict_inode = f2fs_evict_inode,
2511 .put_super = f2fs_put_super,
2512 .sync_fs = f2fs_sync_fs,
2513 .freeze_fs = f2fs_freeze,
2514 .unfreeze_fs = f2fs_unfreeze,
2515 .statfs = f2fs_statfs,
2516 .remount_fs = f2fs_remount,
2517 };
2518
2519 #ifdef CONFIG_FS_ENCRYPTION
f2fs_get_context(struct inode * inode,void * ctx,size_t len)2520 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2521 {
2522 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2523 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2524 ctx, len, NULL);
2525 }
2526
f2fs_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)2527 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2528 void *fs_data)
2529 {
2530 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2531
2532 /*
2533 * Encrypting the root directory is not allowed because fsck
2534 * expects lost+found directory to exist and remain unencrypted
2535 * if LOST_FOUND feature is enabled.
2536 *
2537 */
2538 if (f2fs_sb_has_lost_found(sbi) &&
2539 inode->i_ino == F2FS_ROOT_INO(sbi))
2540 return -EPERM;
2541
2542 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2543 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2544 ctx, len, fs_data, XATTR_CREATE);
2545 }
2546
2547 static const union fscrypt_context *
f2fs_get_dummy_context(struct super_block * sb)2548 f2fs_get_dummy_context(struct super_block *sb)
2549 {
2550 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_ctx.ctx;
2551 }
2552
f2fs_has_stable_inodes(struct super_block * sb)2553 static bool f2fs_has_stable_inodes(struct super_block *sb)
2554 {
2555 return true;
2556 }
2557
f2fs_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)2558 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2559 int *ino_bits_ret, int *lblk_bits_ret)
2560 {
2561 *ino_bits_ret = 8 * sizeof(nid_t);
2562 *lblk_bits_ret = 8 * sizeof(block_t);
2563 }
2564
f2fs_inline_crypt_enabled(struct super_block * sb)2565 static bool f2fs_inline_crypt_enabled(struct super_block *sb)
2566 {
2567 return F2FS_OPTION(F2FS_SB(sb)).inlinecrypt;
2568 }
2569
f2fs_get_num_devices(struct super_block * sb)2570 static int f2fs_get_num_devices(struct super_block *sb)
2571 {
2572 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2573
2574 if (f2fs_is_multi_device(sbi))
2575 return sbi->s_ndevs;
2576 return 1;
2577 }
2578
f2fs_get_devices(struct super_block * sb,struct request_queue ** devs)2579 static void f2fs_get_devices(struct super_block *sb,
2580 struct request_queue **devs)
2581 {
2582 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2583 int i;
2584
2585 for (i = 0; i < sbi->s_ndevs; i++)
2586 devs[i] = bdev_get_queue(FDEV(i).bdev);
2587 }
2588
2589 static const struct fscrypt_operations f2fs_cryptops = {
2590 .key_prefix = "f2fs:",
2591 .get_context = f2fs_get_context,
2592 .set_context = f2fs_set_context,
2593 .get_dummy_context = f2fs_get_dummy_context,
2594 .empty_dir = f2fs_empty_dir,
2595 .max_namelen = F2FS_NAME_LEN,
2596 .has_stable_inodes = f2fs_has_stable_inodes,
2597 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits,
2598 .inline_crypt_enabled = f2fs_inline_crypt_enabled,
2599 .get_num_devices = f2fs_get_num_devices,
2600 .get_devices = f2fs_get_devices,
2601 };
2602 #endif
2603
f2fs_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)2604 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2605 u64 ino, u32 generation)
2606 {
2607 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2608 struct inode *inode;
2609
2610 if (f2fs_check_nid_range(sbi, ino))
2611 return ERR_PTR(-ESTALE);
2612
2613 /*
2614 * f2fs_iget isn't quite right if the inode is currently unallocated!
2615 * However f2fs_iget currently does appropriate checks to handle stale
2616 * inodes so everything is OK.
2617 */
2618 inode = f2fs_iget(sb, ino);
2619 if (IS_ERR(inode))
2620 return ERR_CAST(inode);
2621 if (unlikely(generation && inode->i_generation != generation)) {
2622 /* we didn't find the right inode.. */
2623 iput(inode);
2624 return ERR_PTR(-ESTALE);
2625 }
2626 return inode;
2627 }
2628
f2fs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2629 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2630 int fh_len, int fh_type)
2631 {
2632 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2633 f2fs_nfs_get_inode);
2634 }
2635
f2fs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)2636 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2637 int fh_len, int fh_type)
2638 {
2639 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2640 f2fs_nfs_get_inode);
2641 }
2642
2643 static const struct export_operations f2fs_export_ops = {
2644 .fh_to_dentry = f2fs_fh_to_dentry,
2645 .fh_to_parent = f2fs_fh_to_parent,
2646 .get_parent = f2fs_get_parent,
2647 };
2648
max_file_blocks(void)2649 static loff_t max_file_blocks(void)
2650 {
2651 loff_t result = 0;
2652 loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2653
2654 /*
2655 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2656 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2657 * space in inode.i_addr, it will be more safe to reassign
2658 * result as zero.
2659 */
2660
2661 /* two direct node blocks */
2662 result += (leaf_count * 2);
2663
2664 /* two indirect node blocks */
2665 leaf_count *= NIDS_PER_BLOCK;
2666 result += (leaf_count * 2);
2667
2668 /* one double indirect node block */
2669 leaf_count *= NIDS_PER_BLOCK;
2670 result += leaf_count;
2671
2672 return result;
2673 }
2674
__f2fs_commit_super(struct buffer_head * bh,struct f2fs_super_block * super)2675 static int __f2fs_commit_super(struct buffer_head *bh,
2676 struct f2fs_super_block *super)
2677 {
2678 lock_buffer(bh);
2679 if (super)
2680 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2681 set_buffer_dirty(bh);
2682 unlock_buffer(bh);
2683
2684 /* it's rare case, we can do fua all the time */
2685 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2686 }
2687
sanity_check_area_boundary(struct f2fs_sb_info * sbi,struct buffer_head * bh)2688 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2689 struct buffer_head *bh)
2690 {
2691 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2692 (bh->b_data + F2FS_SUPER_OFFSET);
2693 struct super_block *sb = sbi->sb;
2694 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2695 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2696 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2697 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2698 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2699 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2700 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2701 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2702 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2703 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2704 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2705 u32 segment_count = le32_to_cpu(raw_super->segment_count);
2706 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2707 u64 main_end_blkaddr = main_blkaddr +
2708 (segment_count_main << log_blocks_per_seg);
2709 u64 seg_end_blkaddr = segment0_blkaddr +
2710 (segment_count << log_blocks_per_seg);
2711
2712 if (segment0_blkaddr != cp_blkaddr) {
2713 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2714 segment0_blkaddr, cp_blkaddr);
2715 return true;
2716 }
2717
2718 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2719 sit_blkaddr) {
2720 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2721 cp_blkaddr, sit_blkaddr,
2722 segment_count_ckpt << log_blocks_per_seg);
2723 return true;
2724 }
2725
2726 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2727 nat_blkaddr) {
2728 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2729 sit_blkaddr, nat_blkaddr,
2730 segment_count_sit << log_blocks_per_seg);
2731 return true;
2732 }
2733
2734 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2735 ssa_blkaddr) {
2736 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2737 nat_blkaddr, ssa_blkaddr,
2738 segment_count_nat << log_blocks_per_seg);
2739 return true;
2740 }
2741
2742 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2743 main_blkaddr) {
2744 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2745 ssa_blkaddr, main_blkaddr,
2746 segment_count_ssa << log_blocks_per_seg);
2747 return true;
2748 }
2749
2750 if (main_end_blkaddr > seg_end_blkaddr) {
2751 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2752 main_blkaddr,
2753 segment0_blkaddr +
2754 (segment_count << log_blocks_per_seg),
2755 segment_count_main << log_blocks_per_seg);
2756 return true;
2757 } else if (main_end_blkaddr < seg_end_blkaddr) {
2758 int err = 0;
2759 char *res;
2760
2761 /* fix in-memory information all the time */
2762 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2763 segment0_blkaddr) >> log_blocks_per_seg);
2764
2765 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2766 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2767 res = "internally";
2768 } else {
2769 err = __f2fs_commit_super(bh, NULL);
2770 res = err ? "failed" : "done";
2771 }
2772 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2773 res, main_blkaddr,
2774 segment0_blkaddr +
2775 (segment_count << log_blocks_per_seg),
2776 segment_count_main << log_blocks_per_seg);
2777 if (err)
2778 return true;
2779 }
2780 return false;
2781 }
2782
sanity_check_raw_super(struct f2fs_sb_info * sbi,struct buffer_head * bh)2783 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2784 struct buffer_head *bh)
2785 {
2786 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
2787 block_t total_sections, blocks_per_seg;
2788 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2789 (bh->b_data + F2FS_SUPER_OFFSET);
2790 size_t crc_offset = 0;
2791 __u32 crc = 0;
2792
2793 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2794 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2795 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2796 return -EINVAL;
2797 }
2798
2799 /* Check checksum_offset and crc in superblock */
2800 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2801 crc_offset = le32_to_cpu(raw_super->checksum_offset);
2802 if (crc_offset !=
2803 offsetof(struct f2fs_super_block, crc)) {
2804 f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2805 crc_offset);
2806 return -EFSCORRUPTED;
2807 }
2808 crc = le32_to_cpu(raw_super->crc);
2809 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2810 f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2811 return -EFSCORRUPTED;
2812 }
2813 }
2814
2815 /* Currently, support only 4KB page cache size */
2816 if (F2FS_BLKSIZE != PAGE_SIZE) {
2817 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2818 PAGE_SIZE);
2819 return -EFSCORRUPTED;
2820 }
2821
2822 /* Currently, support only 4KB block size */
2823 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
2824 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
2825 le32_to_cpu(raw_super->log_blocksize),
2826 F2FS_BLKSIZE_BITS);
2827 return -EFSCORRUPTED;
2828 }
2829
2830 /* check log blocks per segment */
2831 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2832 f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2833 le32_to_cpu(raw_super->log_blocks_per_seg));
2834 return -EFSCORRUPTED;
2835 }
2836
2837 /* Currently, support 512/1024/2048/4096 bytes sector size */
2838 if (le32_to_cpu(raw_super->log_sectorsize) >
2839 F2FS_MAX_LOG_SECTOR_SIZE ||
2840 le32_to_cpu(raw_super->log_sectorsize) <
2841 F2FS_MIN_LOG_SECTOR_SIZE) {
2842 f2fs_info(sbi, "Invalid log sectorsize (%u)",
2843 le32_to_cpu(raw_super->log_sectorsize));
2844 return -EFSCORRUPTED;
2845 }
2846 if (le32_to_cpu(raw_super->log_sectors_per_block) +
2847 le32_to_cpu(raw_super->log_sectorsize) !=
2848 F2FS_MAX_LOG_SECTOR_SIZE) {
2849 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2850 le32_to_cpu(raw_super->log_sectors_per_block),
2851 le32_to_cpu(raw_super->log_sectorsize));
2852 return -EFSCORRUPTED;
2853 }
2854
2855 segment_count = le32_to_cpu(raw_super->segment_count);
2856 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2857 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2858 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2859 total_sections = le32_to_cpu(raw_super->section_count);
2860
2861 /* blocks_per_seg should be 512, given the above check */
2862 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2863
2864 if (segment_count > F2FS_MAX_SEGMENT ||
2865 segment_count < F2FS_MIN_SEGMENTS) {
2866 f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2867 return -EFSCORRUPTED;
2868 }
2869
2870 if (total_sections > segment_count_main || total_sections < 1 ||
2871 segs_per_sec > segment_count || !segs_per_sec) {
2872 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2873 segment_count, total_sections, segs_per_sec);
2874 return -EFSCORRUPTED;
2875 }
2876
2877 if ((segment_count / segs_per_sec) < total_sections) {
2878 f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2879 segment_count, segs_per_sec, total_sections);
2880 return -EFSCORRUPTED;
2881 }
2882
2883 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2884 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2885 segment_count, le64_to_cpu(raw_super->block_count));
2886 return -EFSCORRUPTED;
2887 }
2888
2889 if (RDEV(0).path[0]) {
2890 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2891 int i = 1;
2892
2893 while (i < MAX_DEVICES && RDEV(i).path[0]) {
2894 dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2895 i++;
2896 }
2897 if (segment_count != dev_seg_count) {
2898 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2899 segment_count, dev_seg_count);
2900 return -EFSCORRUPTED;
2901 }
2902 }
2903
2904 if (secs_per_zone > total_sections || !secs_per_zone) {
2905 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2906 secs_per_zone, total_sections);
2907 return -EFSCORRUPTED;
2908 }
2909 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2910 raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2911 (le32_to_cpu(raw_super->extension_count) +
2912 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2913 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2914 le32_to_cpu(raw_super->extension_count),
2915 raw_super->hot_ext_count,
2916 F2FS_MAX_EXTENSION);
2917 return -EFSCORRUPTED;
2918 }
2919
2920 if (le32_to_cpu(raw_super->cp_payload) >
2921 (blocks_per_seg - F2FS_CP_PACKS)) {
2922 f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2923 le32_to_cpu(raw_super->cp_payload),
2924 blocks_per_seg - F2FS_CP_PACKS);
2925 return -EFSCORRUPTED;
2926 }
2927
2928 /* check reserved ino info */
2929 if (le32_to_cpu(raw_super->node_ino) != 1 ||
2930 le32_to_cpu(raw_super->meta_ino) != 2 ||
2931 le32_to_cpu(raw_super->root_ino) != 3) {
2932 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2933 le32_to_cpu(raw_super->node_ino),
2934 le32_to_cpu(raw_super->meta_ino),
2935 le32_to_cpu(raw_super->root_ino));
2936 return -EFSCORRUPTED;
2937 }
2938
2939 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2940 if (sanity_check_area_boundary(sbi, bh))
2941 return -EFSCORRUPTED;
2942
2943 return 0;
2944 }
2945
f2fs_sanity_check_ckpt(struct f2fs_sb_info * sbi)2946 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2947 {
2948 unsigned int total, fsmeta;
2949 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2950 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2951 unsigned int ovp_segments, reserved_segments;
2952 unsigned int main_segs, blocks_per_seg;
2953 unsigned int sit_segs, nat_segs;
2954 unsigned int sit_bitmap_size, nat_bitmap_size;
2955 unsigned int log_blocks_per_seg;
2956 unsigned int segment_count_main;
2957 unsigned int cp_pack_start_sum, cp_payload;
2958 block_t user_block_count, valid_user_blocks;
2959 block_t avail_node_count, valid_node_count;
2960 int i, j;
2961
2962 total = le32_to_cpu(raw_super->segment_count);
2963 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2964 sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2965 fsmeta += sit_segs;
2966 nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2967 fsmeta += nat_segs;
2968 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2969 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2970
2971 if (unlikely(fsmeta >= total))
2972 return 1;
2973
2974 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2975 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2976
2977 if (!f2fs_sb_has_readonly(sbi) &&
2978 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
2979 ovp_segments == 0 || reserved_segments == 0)) {
2980 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2981 return 1;
2982 }
2983 user_block_count = le64_to_cpu(ckpt->user_block_count);
2984 segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
2985 (f2fs_sb_has_readonly(sbi) ? 1 : 0);
2986 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2987 if (!user_block_count || user_block_count >=
2988 segment_count_main << log_blocks_per_seg) {
2989 f2fs_err(sbi, "Wrong user_block_count: %u",
2990 user_block_count);
2991 return 1;
2992 }
2993
2994 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2995 if (valid_user_blocks > user_block_count) {
2996 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2997 valid_user_blocks, user_block_count);
2998 return 1;
2999 }
3000
3001 valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3002 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3003 if (valid_node_count > avail_node_count) {
3004 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3005 valid_node_count, avail_node_count);
3006 return 1;
3007 }
3008
3009 main_segs = le32_to_cpu(raw_super->segment_count_main);
3010 blocks_per_seg = sbi->blocks_per_seg;
3011
3012 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3013 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3014 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3015 return 1;
3016
3017 if (f2fs_sb_has_readonly(sbi))
3018 goto check_data;
3019
3020 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3021 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3022 le32_to_cpu(ckpt->cur_node_segno[j])) {
3023 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3024 i, j,
3025 le32_to_cpu(ckpt->cur_node_segno[i]));
3026 return 1;
3027 }
3028 }
3029 }
3030 check_data:
3031 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3032 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3033 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3034 return 1;
3035
3036 if (f2fs_sb_has_readonly(sbi))
3037 goto skip_cross;
3038
3039 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3040 if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3041 le32_to_cpu(ckpt->cur_data_segno[j])) {
3042 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3043 i, j,
3044 le32_to_cpu(ckpt->cur_data_segno[i]));
3045 return 1;
3046 }
3047 }
3048 }
3049 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3050 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3051 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3052 le32_to_cpu(ckpt->cur_data_segno[j])) {
3053 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3054 i, j,
3055 le32_to_cpu(ckpt->cur_node_segno[i]));
3056 return 1;
3057 }
3058 }
3059 }
3060 skip_cross:
3061 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3062 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3063
3064 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3065 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3066 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3067 sit_bitmap_size, nat_bitmap_size);
3068 return 1;
3069 }
3070
3071 cp_pack_start_sum = __start_sum_addr(sbi);
3072 cp_payload = __cp_payload(sbi);
3073 if (cp_pack_start_sum < cp_payload + 1 ||
3074 cp_pack_start_sum > blocks_per_seg - 1 -
3075 NR_CURSEG_TYPE) {
3076 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3077 cp_pack_start_sum);
3078 return 1;
3079 }
3080
3081 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3082 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3083 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3084 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3085 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3086 le32_to_cpu(ckpt->checksum_offset));
3087 return 1;
3088 }
3089
3090 if (unlikely(f2fs_cp_error(sbi))) {
3091 f2fs_err(sbi, "A bug case: need to run fsck");
3092 return 1;
3093 }
3094 return 0;
3095 }
3096
init_sb_info(struct f2fs_sb_info * sbi)3097 static void init_sb_info(struct f2fs_sb_info *sbi)
3098 {
3099 struct f2fs_super_block *raw_super = sbi->raw_super;
3100 int i;
3101
3102 sbi->log_sectors_per_block =
3103 le32_to_cpu(raw_super->log_sectors_per_block);
3104 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3105 sbi->blocksize = 1 << sbi->log_blocksize;
3106 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3107 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3108 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3109 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3110 sbi->total_sections = le32_to_cpu(raw_super->section_count);
3111 sbi->total_node_count =
3112 (le32_to_cpu(raw_super->segment_count_nat) / 2)
3113 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3114 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
3115 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
3116 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
3117 sbi->cur_victim_sec = NULL_SECNO;
3118 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3119 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3120 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3121 sbi->migration_granularity = sbi->segs_per_sec;
3122
3123 sbi->dir_level = DEF_DIR_LEVEL;
3124 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3125 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3126 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3127 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3128 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3129 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3130 DEF_UMOUNT_DISCARD_TIMEOUT;
3131 clear_sbi_flag(sbi, SBI_NEED_FSCK);
3132
3133 for (i = 0; i < NR_COUNT_TYPE; i++)
3134 atomic_set(&sbi->nr_pages[i], 0);
3135
3136 for (i = 0; i < META; i++)
3137 atomic_set(&sbi->wb_sync_req[i], 0);
3138
3139 INIT_LIST_HEAD(&sbi->s_list);
3140 mutex_init(&sbi->umount_mutex);
3141 init_rwsem(&sbi->io_order_lock);
3142 spin_lock_init(&sbi->cp_lock);
3143
3144 sbi->dirty_device = 0;
3145 spin_lock_init(&sbi->dev_lock);
3146
3147 init_rwsem(&sbi->sb_lock);
3148 init_rwsem(&sbi->pin_sem);
3149 }
3150
init_percpu_info(struct f2fs_sb_info * sbi)3151 static int init_percpu_info(struct f2fs_sb_info *sbi)
3152 {
3153 int err;
3154
3155 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3156 if (err)
3157 return err;
3158
3159 err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3160 GFP_KERNEL);
3161 if (err)
3162 percpu_counter_destroy(&sbi->alloc_valid_block_count);
3163
3164 return err;
3165 }
3166
3167 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_report_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)3168 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3169 void *data)
3170 {
3171 struct f2fs_dev_info *dev = data;
3172
3173 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL)
3174 set_bit(idx, dev->blkz_seq);
3175 return 0;
3176 }
3177
init_blkz_info(struct f2fs_sb_info * sbi,int devi)3178 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3179 {
3180 struct block_device *bdev = FDEV(devi).bdev;
3181 sector_t nr_sectors = bdev->bd_part->nr_sects;
3182 int ret;
3183
3184 if (!f2fs_sb_has_blkzoned(sbi))
3185 return 0;
3186
3187 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3188 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3189 return -EINVAL;
3190 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3191 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3192 __ilog2_u32(sbi->blocks_per_blkz))
3193 return -EINVAL;
3194 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3195 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3196 sbi->log_blocks_per_blkz;
3197 if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3198 FDEV(devi).nr_blkz++;
3199
3200 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3201 BITS_TO_LONGS(FDEV(devi).nr_blkz)
3202 * sizeof(unsigned long),
3203 GFP_KERNEL);
3204 if (!FDEV(devi).blkz_seq)
3205 return -ENOMEM;
3206
3207 /* Get block zones type */
3208 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3209 &FDEV(devi));
3210 if (ret < 0)
3211 return ret;
3212
3213 return 0;
3214 }
3215 #endif
3216
3217 /*
3218 * Read f2fs raw super block.
3219 * Because we have two copies of super block, so read both of them
3220 * to get the first valid one. If any one of them is broken, we pass
3221 * them recovery flag back to the caller.
3222 */
read_raw_super_block(struct f2fs_sb_info * sbi,struct f2fs_super_block ** raw_super,int * valid_super_block,int * recovery)3223 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3224 struct f2fs_super_block **raw_super,
3225 int *valid_super_block, int *recovery)
3226 {
3227 struct super_block *sb = sbi->sb;
3228 int block;
3229 struct buffer_head *bh;
3230 struct f2fs_super_block *super;
3231 int err = 0;
3232
3233 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3234 if (!super)
3235 return -ENOMEM;
3236
3237 for (block = 0; block < 2; block++) {
3238 bh = sb_bread(sb, block);
3239 if (!bh) {
3240 f2fs_err(sbi, "Unable to read %dth superblock",
3241 block + 1);
3242 err = -EIO;
3243 *recovery = 1;
3244 continue;
3245 }
3246
3247 /* sanity checking of raw super */
3248 err = sanity_check_raw_super(sbi, bh);
3249 if (err) {
3250 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3251 block + 1);
3252 brelse(bh);
3253 *recovery = 1;
3254 continue;
3255 }
3256
3257 if (!*raw_super) {
3258 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3259 sizeof(*super));
3260 *valid_super_block = block;
3261 *raw_super = super;
3262 }
3263 brelse(bh);
3264 }
3265
3266 /* No valid superblock */
3267 if (!*raw_super)
3268 kvfree(super);
3269 else
3270 err = 0;
3271
3272 return err;
3273 }
3274
f2fs_commit_super(struct f2fs_sb_info * sbi,bool recover)3275 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3276 {
3277 struct buffer_head *bh;
3278 __u32 crc = 0;
3279 int err;
3280
3281 if ((recover && f2fs_readonly(sbi->sb)) ||
3282 bdev_read_only(sbi->sb->s_bdev)) {
3283 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3284 return -EROFS;
3285 }
3286
3287 /* we should update superblock crc here */
3288 if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3289 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3290 offsetof(struct f2fs_super_block, crc));
3291 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3292 }
3293
3294 /* write back-up superblock first */
3295 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3296 if (!bh)
3297 return -EIO;
3298 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3299 brelse(bh);
3300
3301 /* if we are in recovery path, skip writing valid superblock */
3302 if (recover || err)
3303 return err;
3304
3305 /* write current valid superblock */
3306 bh = sb_bread(sbi->sb, sbi->valid_super_block);
3307 if (!bh)
3308 return -EIO;
3309 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3310 brelse(bh);
3311 return err;
3312 }
3313
f2fs_scan_devices(struct f2fs_sb_info * sbi)3314 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3315 {
3316 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3317 unsigned int max_devices = MAX_DEVICES;
3318 int i;
3319
3320 /* Initialize single device information */
3321 if (!RDEV(0).path[0]) {
3322 if (!bdev_is_zoned(sbi->sb->s_bdev))
3323 return 0;
3324 max_devices = 1;
3325 }
3326
3327 /*
3328 * Initialize multiple devices information, or single
3329 * zoned block device information.
3330 */
3331 sbi->devs = f2fs_kzalloc(sbi,
3332 array_size(max_devices,
3333 sizeof(struct f2fs_dev_info)),
3334 GFP_KERNEL);
3335 if (!sbi->devs)
3336 return -ENOMEM;
3337
3338 for (i = 0; i < max_devices; i++) {
3339
3340 if (i > 0 && !RDEV(i).path[0])
3341 break;
3342
3343 if (max_devices == 1) {
3344 /* Single zoned block device mount */
3345 FDEV(0).bdev =
3346 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3347 sbi->sb->s_mode, sbi->sb->s_type);
3348 } else {
3349 /* Multi-device mount */
3350 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3351 FDEV(i).total_segments =
3352 le32_to_cpu(RDEV(i).total_segments);
3353 if (i == 0) {
3354 FDEV(i).start_blk = 0;
3355 FDEV(i).end_blk = FDEV(i).start_blk +
3356 (FDEV(i).total_segments <<
3357 sbi->log_blocks_per_seg) - 1 +
3358 le32_to_cpu(raw_super->segment0_blkaddr);
3359 } else {
3360 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3361 FDEV(i).end_blk = FDEV(i).start_blk +
3362 (FDEV(i).total_segments <<
3363 sbi->log_blocks_per_seg) - 1;
3364 }
3365 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3366 sbi->sb->s_mode, sbi->sb->s_type);
3367 }
3368 if (IS_ERR(FDEV(i).bdev))
3369 return PTR_ERR(FDEV(i).bdev);
3370
3371 /* to release errored devices */
3372 sbi->s_ndevs = i + 1;
3373
3374 #ifdef CONFIG_BLK_DEV_ZONED
3375 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3376 !f2fs_sb_has_blkzoned(sbi)) {
3377 f2fs_err(sbi, "Zoned block device feature not enabled\n");
3378 return -EINVAL;
3379 }
3380 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3381 if (init_blkz_info(sbi, i)) {
3382 f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3383 return -EINVAL;
3384 }
3385 if (max_devices == 1)
3386 break;
3387 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3388 i, FDEV(i).path,
3389 FDEV(i).total_segments,
3390 FDEV(i).start_blk, FDEV(i).end_blk,
3391 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3392 "Host-aware" : "Host-managed");
3393 continue;
3394 }
3395 #endif
3396 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3397 i, FDEV(i).path,
3398 FDEV(i).total_segments,
3399 FDEV(i).start_blk, FDEV(i).end_blk);
3400 }
3401 f2fs_info(sbi,
3402 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3403 return 0;
3404 }
3405
f2fs_setup_casefold(struct f2fs_sb_info * sbi)3406 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3407 {
3408 #ifdef CONFIG_UNICODE
3409 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3410 const struct f2fs_sb_encodings *encoding_info;
3411 struct unicode_map *encoding;
3412 __u16 encoding_flags;
3413
3414 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3415 &encoding_flags)) {
3416 f2fs_err(sbi,
3417 "Encoding requested by superblock is unknown");
3418 return -EINVAL;
3419 }
3420
3421 encoding = utf8_load(encoding_info->version);
3422 if (IS_ERR(encoding)) {
3423 f2fs_err(sbi,
3424 "can't mount with superblock charset: %s-%s "
3425 "not supported by the kernel. flags: 0x%x.",
3426 encoding_info->name, encoding_info->version,
3427 encoding_flags);
3428 return PTR_ERR(encoding);
3429 }
3430 f2fs_info(sbi, "Using encoding defined by superblock: "
3431 "%s-%s with flags 0x%hx", encoding_info->name,
3432 encoding_info->version?:"\b", encoding_flags);
3433
3434 sbi->sb->s_encoding = encoding;
3435 sbi->sb->s_encoding_flags = encoding_flags;
3436 }
3437 #else
3438 if (f2fs_sb_has_casefold(sbi)) {
3439 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3440 return -EINVAL;
3441 }
3442 #endif
3443 return 0;
3444 }
3445
f2fs_tuning_parameters(struct f2fs_sb_info * sbi)3446 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3447 {
3448 struct f2fs_sm_info *sm_i = SM_I(sbi);
3449
3450 /* adjust parameters according to the volume size */
3451 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3452 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3453 sm_i->dcc_info->discard_granularity = 1;
3454 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3455 }
3456
3457 sbi->readdir_ra = 1;
3458 }
3459
f2fs_fill_super(struct super_block * sb,void * data,int silent)3460 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3461 {
3462 struct f2fs_sb_info *sbi;
3463 struct f2fs_super_block *raw_super;
3464 struct inode *root;
3465 int err;
3466 bool skip_recovery = false, need_fsck = false;
3467 char *options = NULL;
3468 int recovery, i, valid_super_block;
3469 struct curseg_info *seg_i;
3470 int retry_cnt = 1;
3471
3472 try_onemore:
3473 err = -EINVAL;
3474 raw_super = NULL;
3475 valid_super_block = -1;
3476 recovery = 0;
3477
3478 /* allocate memory for f2fs-specific super block info */
3479 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3480 if (!sbi)
3481 return -ENOMEM;
3482
3483 sbi->sb = sb;
3484
3485 /* Load the checksum driver */
3486 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3487 if (IS_ERR(sbi->s_chksum_driver)) {
3488 f2fs_err(sbi, "Cannot load crc32 driver.");
3489 err = PTR_ERR(sbi->s_chksum_driver);
3490 sbi->s_chksum_driver = NULL;
3491 goto free_sbi;
3492 }
3493
3494 /* set a block size */
3495 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3496 f2fs_err(sbi, "unable to set blocksize");
3497 goto free_sbi;
3498 }
3499
3500 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3501 &recovery);
3502 if (err)
3503 goto free_sbi;
3504
3505 sb->s_fs_info = sbi;
3506 sbi->raw_super = raw_super;
3507
3508 /* precompute checksum seed for metadata */
3509 if (f2fs_sb_has_inode_chksum(sbi))
3510 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3511 sizeof(raw_super->uuid));
3512
3513 /*
3514 * The BLKZONED feature indicates that the drive was formatted with
3515 * zone alignment optimization. This is optional for host-aware
3516 * devices, but mandatory for host-managed zoned block devices.
3517 */
3518 #ifndef CONFIG_BLK_DEV_ZONED
3519 if (f2fs_sb_has_blkzoned(sbi)) {
3520 f2fs_err(sbi, "Zoned block device support is not enabled");
3521 err = -EOPNOTSUPP;
3522 goto free_sb_buf;
3523 }
3524 #endif
3525 default_options(sbi);
3526 /* parse mount options */
3527 options = kstrdup((const char *)data, GFP_KERNEL);
3528 if (data && !options) {
3529 err = -ENOMEM;
3530 goto free_sb_buf;
3531 }
3532
3533 err = parse_options(sb, options, false);
3534 if (err)
3535 goto free_options;
3536
3537 sbi->max_file_blocks = max_file_blocks();
3538 sb->s_maxbytes = sbi->max_file_blocks <<
3539 le32_to_cpu(raw_super->log_blocksize);
3540 sb->s_max_links = F2FS_LINK_MAX;
3541
3542 err = f2fs_setup_casefold(sbi);
3543 if (err)
3544 goto free_options;
3545
3546 #ifdef CONFIG_QUOTA
3547 sb->dq_op = &f2fs_quota_operations;
3548 sb->s_qcop = &f2fs_quotactl_ops;
3549 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3550
3551 if (f2fs_sb_has_quota_ino(sbi)) {
3552 for (i = 0; i < MAXQUOTAS; i++) {
3553 if (f2fs_qf_ino(sbi->sb, i))
3554 sbi->nquota_files++;
3555 }
3556 }
3557 #endif
3558
3559 sb->s_op = &f2fs_sops;
3560 #ifdef CONFIG_FS_ENCRYPTION
3561 sb->s_cop = &f2fs_cryptops;
3562 #endif
3563 #ifdef CONFIG_FS_VERITY
3564 sb->s_vop = &f2fs_verityops;
3565 #endif
3566 sb->s_xattr = f2fs_xattr_handlers;
3567 sb->s_export_op = &f2fs_export_ops;
3568 sb->s_magic = F2FS_SUPER_MAGIC;
3569 sb->s_time_gran = 1;
3570 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3571 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3572 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3573 sb->s_iflags |= SB_I_CGROUPWB;
3574
3575 /* init f2fs-specific super block info */
3576 sbi->valid_super_block = valid_super_block;
3577 init_rwsem(&sbi->gc_lock);
3578 mutex_init(&sbi->writepages);
3579 mutex_init(&sbi->cp_mutex);
3580 init_rwsem(&sbi->node_write);
3581 init_rwsem(&sbi->node_change);
3582
3583 /* disallow all the data/node/meta page writes */
3584 set_sbi_flag(sbi, SBI_POR_DOING);
3585 spin_lock_init(&sbi->stat_lock);
3586
3587 /* init iostat info */
3588 spin_lock_init(&sbi->iostat_lock);
3589 sbi->iostat_enable = false;
3590 sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3591
3592 for (i = 0; i < NR_PAGE_TYPE; i++) {
3593 int n = (i == META) ? 1: NR_TEMP_TYPE;
3594 int j;
3595
3596 sbi->write_io[i] =
3597 f2fs_kmalloc(sbi,
3598 array_size(n,
3599 sizeof(struct f2fs_bio_info)),
3600 GFP_KERNEL);
3601 if (!sbi->write_io[i]) {
3602 err = -ENOMEM;
3603 goto free_bio_info;
3604 }
3605
3606 for (j = HOT; j < n; j++) {
3607 init_rwsem(&sbi->write_io[i][j].io_rwsem);
3608 sbi->write_io[i][j].sbi = sbi;
3609 sbi->write_io[i][j].bio = NULL;
3610 spin_lock_init(&sbi->write_io[i][j].io_lock);
3611 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3612 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3613 init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3614 }
3615 }
3616
3617 init_rwsem(&sbi->cp_rwsem);
3618 init_rwsem(&sbi->quota_sem);
3619 init_waitqueue_head(&sbi->cp_wait);
3620 init_sb_info(sbi);
3621
3622 err = init_percpu_info(sbi);
3623 if (err)
3624 goto free_bio_info;
3625
3626 if (F2FS_IO_ALIGNED(sbi)) {
3627 sbi->write_io_dummy =
3628 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3629 if (!sbi->write_io_dummy) {
3630 err = -ENOMEM;
3631 goto free_percpu;
3632 }
3633 }
3634
3635 /* init per sbi slab cache */
3636 err = f2fs_init_xattr_caches(sbi);
3637 if (err)
3638 goto free_io_dummy;
3639
3640 /* get an inode for meta space */
3641 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3642 if (IS_ERR(sbi->meta_inode)) {
3643 f2fs_err(sbi, "Failed to read F2FS meta data inode");
3644 err = PTR_ERR(sbi->meta_inode);
3645 goto free_xattr_cache;
3646 }
3647
3648 err = f2fs_get_valid_checkpoint(sbi);
3649 if (err) {
3650 f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3651 goto free_meta_inode;
3652 }
3653
3654 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3655 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3656 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3657 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3658 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3659 }
3660
3661 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3662 set_sbi_flag(sbi, SBI_NEED_FSCK);
3663
3664 /* Initialize device list */
3665 err = f2fs_scan_devices(sbi);
3666 if (err) {
3667 f2fs_err(sbi, "Failed to find devices");
3668 goto free_devices;
3669 }
3670
3671 err = f2fs_init_post_read_wq(sbi);
3672 if (err) {
3673 f2fs_err(sbi, "Failed to initialize post read workqueue");
3674 goto free_devices;
3675 }
3676
3677 sbi->total_valid_node_count =
3678 le32_to_cpu(sbi->ckpt->valid_node_count);
3679 percpu_counter_set(&sbi->total_valid_inode_count,
3680 le32_to_cpu(sbi->ckpt->valid_inode_count));
3681 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3682 sbi->total_valid_block_count =
3683 le64_to_cpu(sbi->ckpt->valid_block_count);
3684 sbi->last_valid_block_count = sbi->total_valid_block_count;
3685 sbi->reserved_blocks = 0;
3686 sbi->current_reserved_blocks = 0;
3687 limit_reserve_root(sbi);
3688 adjust_unusable_cap_perc(sbi);
3689
3690 for (i = 0; i < NR_INODE_TYPE; i++) {
3691 INIT_LIST_HEAD(&sbi->inode_list[i]);
3692 spin_lock_init(&sbi->inode_lock[i]);
3693 }
3694 mutex_init(&sbi->flush_lock);
3695
3696 f2fs_init_extent_cache_info(sbi);
3697
3698 f2fs_init_ino_entry_info(sbi);
3699
3700 f2fs_init_fsync_node_info(sbi);
3701
3702 /* setup f2fs internal modules */
3703 err = f2fs_build_segment_manager(sbi);
3704 if (err) {
3705 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3706 err);
3707 goto free_sm;
3708 }
3709 err = f2fs_build_node_manager(sbi);
3710 if (err) {
3711 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3712 err);
3713 goto free_nm;
3714 }
3715
3716 err = adjust_reserved_segment(sbi);
3717 if (err)
3718 goto free_nm;
3719
3720 /* For write statistics */
3721 if (sb->s_bdev->bd_part)
3722 sbi->sectors_written_start =
3723 (u64)part_stat_read(sb->s_bdev->bd_part,
3724 sectors[STAT_WRITE]);
3725
3726 /* Read accumulated write IO statistics if exists */
3727 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3728 if (__exist_node_summaries(sbi))
3729 sbi->kbytes_written =
3730 le64_to_cpu(seg_i->journal->info.kbytes_written);
3731
3732 f2fs_build_gc_manager(sbi);
3733
3734 err = f2fs_build_stats(sbi);
3735 if (err)
3736 goto free_nm;
3737
3738 /* get an inode for node space */
3739 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3740 if (IS_ERR(sbi->node_inode)) {
3741 f2fs_err(sbi, "Failed to read node inode");
3742 err = PTR_ERR(sbi->node_inode);
3743 goto free_stats;
3744 }
3745
3746 /* read root inode and dentry */
3747 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3748 if (IS_ERR(root)) {
3749 f2fs_err(sbi, "Failed to read root inode");
3750 err = PTR_ERR(root);
3751 goto free_node_inode;
3752 }
3753 if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3754 !root->i_size || !root->i_nlink) {
3755 iput(root);
3756 err = -EINVAL;
3757 goto free_node_inode;
3758 }
3759
3760 sb->s_root = d_make_root(root); /* allocate root dentry */
3761 if (!sb->s_root) {
3762 err = -ENOMEM;
3763 goto free_node_inode;
3764 }
3765
3766 err = f2fs_register_sysfs(sbi);
3767 if (err)
3768 goto free_root_inode;
3769
3770 #ifdef CONFIG_QUOTA
3771 /* Enable quota usage during mount */
3772 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3773 err = f2fs_enable_quotas(sb);
3774 if (err)
3775 f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3776 }
3777 #endif
3778 /* if there are any orphan inodes, free them */
3779 err = f2fs_recover_orphan_inodes(sbi);
3780 if (err)
3781 goto free_meta;
3782
3783 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3784 goto reset_checkpoint;
3785
3786 /* recover fsynced data */
3787 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3788 !test_opt(sbi, NORECOVERY)) {
3789 /*
3790 * mount should be failed, when device has readonly mode, and
3791 * previous checkpoint was not done by clean system shutdown.
3792 */
3793 if (f2fs_hw_is_readonly(sbi)) {
3794 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3795 err = -EROFS;
3796 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3797 goto free_meta;
3798 }
3799 f2fs_info(sbi, "write access unavailable, skipping recovery");
3800 goto reset_checkpoint;
3801 }
3802
3803 if (need_fsck)
3804 set_sbi_flag(sbi, SBI_NEED_FSCK);
3805
3806 if (skip_recovery)
3807 goto reset_checkpoint;
3808
3809 err = f2fs_recover_fsync_data(sbi, false);
3810 if (err < 0) {
3811 if (err != -ENOMEM)
3812 skip_recovery = true;
3813 need_fsck = true;
3814 f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3815 err);
3816 goto free_meta;
3817 }
3818 } else {
3819 err = f2fs_recover_fsync_data(sbi, true);
3820
3821 if (!f2fs_readonly(sb) && err > 0) {
3822 err = -EINVAL;
3823 f2fs_err(sbi, "Need to recover fsync data");
3824 goto free_meta;
3825 }
3826 }
3827
3828 /*
3829 * If the f2fs is not readonly and fsync data recovery succeeds,
3830 * check zoned block devices' write pointer consistency.
3831 */
3832 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3833 err = f2fs_check_write_pointer(sbi);
3834 if (err)
3835 goto free_meta;
3836 }
3837
3838 reset_checkpoint:
3839 /* f2fs_recover_fsync_data() cleared this already */
3840 clear_sbi_flag(sbi, SBI_POR_DOING);
3841
3842 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3843 err = f2fs_disable_checkpoint(sbi);
3844 if (err)
3845 goto sync_free_meta;
3846 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3847 f2fs_enable_checkpoint(sbi);
3848 }
3849
3850 /*
3851 * If filesystem is not mounted as read-only then
3852 * do start the gc_thread.
3853 */
3854 if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) {
3855 /* After POR, we can run background GC thread.*/
3856 err = f2fs_start_gc_thread(sbi);
3857 if (err)
3858 goto sync_free_meta;
3859 }
3860 kvfree(options);
3861
3862 /* recover broken superblock */
3863 if (recovery) {
3864 err = f2fs_commit_super(sbi, true);
3865 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3866 sbi->valid_super_block ? 1 : 2, err);
3867 }
3868
3869 f2fs_join_shrinker(sbi);
3870
3871 f2fs_tuning_parameters(sbi);
3872
3873 f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3874 cur_cp_version(F2FS_CKPT(sbi)));
3875 f2fs_update_time(sbi, CP_TIME);
3876 f2fs_update_time(sbi, REQ_TIME);
3877 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3878 return 0;
3879
3880 sync_free_meta:
3881 /* safe to flush all the data */
3882 sync_filesystem(sbi->sb);
3883 retry_cnt = 0;
3884
3885 free_meta:
3886 #ifdef CONFIG_QUOTA
3887 f2fs_truncate_quota_inode_pages(sb);
3888 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3889 f2fs_quota_off_umount(sbi->sb);
3890 #endif
3891 /*
3892 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3893 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3894 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3895 * falls into an infinite loop in f2fs_sync_meta_pages().
3896 */
3897 truncate_inode_pages_final(META_MAPPING(sbi));
3898 /* evict some inodes being cached by GC */
3899 evict_inodes(sb);
3900 f2fs_unregister_sysfs(sbi);
3901 free_root_inode:
3902 dput(sb->s_root);
3903 sb->s_root = NULL;
3904 free_node_inode:
3905 f2fs_release_ino_entry(sbi, true);
3906 truncate_inode_pages_final(NODE_MAPPING(sbi));
3907 iput(sbi->node_inode);
3908 sbi->node_inode = NULL;
3909 free_stats:
3910 f2fs_destroy_stats(sbi);
3911 free_nm:
3912 /* stop discard thread before destroying node manager */
3913 f2fs_stop_discard_thread(sbi);
3914 f2fs_destroy_node_manager(sbi);
3915 free_sm:
3916 f2fs_destroy_segment_manager(sbi);
3917 f2fs_destroy_post_read_wq(sbi);
3918 free_devices:
3919 destroy_device_list(sbi);
3920 kvfree(sbi->ckpt);
3921 free_meta_inode:
3922 make_bad_inode(sbi->meta_inode);
3923 iput(sbi->meta_inode);
3924 sbi->meta_inode = NULL;
3925 free_xattr_cache:
3926 f2fs_destroy_xattr_caches(sbi);
3927 free_io_dummy:
3928 mempool_destroy(sbi->write_io_dummy);
3929 free_percpu:
3930 destroy_percpu_info(sbi);
3931 free_bio_info:
3932 for (i = 0; i < NR_PAGE_TYPE; i++)
3933 kvfree(sbi->write_io[i]);
3934
3935 #ifdef CONFIG_UNICODE
3936 utf8_unload(sb->s_encoding);
3937 sb->s_encoding = NULL;
3938 #endif
3939 free_options:
3940 #ifdef CONFIG_QUOTA
3941 for (i = 0; i < MAXQUOTAS; i++)
3942 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3943 #endif
3944 fscrypt_free_dummy_context(&F2FS_OPTION(sbi).dummy_enc_ctx);
3945 kvfree(options);
3946 free_sb_buf:
3947 kvfree(raw_super);
3948 free_sbi:
3949 if (sbi->s_chksum_driver)
3950 crypto_free_shash(sbi->s_chksum_driver);
3951 kvfree(sbi);
3952
3953 /* give only one another chance */
3954 if (retry_cnt > 0 && skip_recovery) {
3955 retry_cnt--;
3956 shrink_dcache_sb(sb);
3957 goto try_onemore;
3958 }
3959 return err;
3960 }
3961
f2fs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)3962 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3963 const char *dev_name, void *data)
3964 {
3965 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3966 }
3967
kill_f2fs_super(struct super_block * sb)3968 static void kill_f2fs_super(struct super_block *sb)
3969 {
3970 if (sb->s_root) {
3971 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3972
3973 set_sbi_flag(sbi, SBI_IS_CLOSE);
3974 f2fs_stop_gc_thread(sbi);
3975 f2fs_stop_discard_thread(sbi);
3976
3977 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3978 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3979 struct cp_control cpc = {
3980 .reason = CP_UMOUNT,
3981 };
3982 f2fs_write_checkpoint(sbi, &cpc);
3983 }
3984
3985 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3986 sb->s_flags &= ~SB_RDONLY;
3987 }
3988 kill_block_super(sb);
3989 }
3990
3991 static struct file_system_type f2fs_fs_type = {
3992 .owner = THIS_MODULE,
3993 .name = "f2fs",
3994 .mount = f2fs_mount,
3995 .kill_sb = kill_f2fs_super,
3996 .fs_flags = FS_REQUIRES_DEV,
3997 };
3998 MODULE_ALIAS_FS("f2fs");
3999
init_inodecache(void)4000 static int __init init_inodecache(void)
4001 {
4002 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4003 sizeof(struct f2fs_inode_info), 0,
4004 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4005 if (!f2fs_inode_cachep)
4006 return -ENOMEM;
4007 return 0;
4008 }
4009
destroy_inodecache(void)4010 static void destroy_inodecache(void)
4011 {
4012 /*
4013 * Make sure all delayed rcu free inodes are flushed before we
4014 * destroy cache.
4015 */
4016 rcu_barrier();
4017 kmem_cache_destroy(f2fs_inode_cachep);
4018 }
4019
init_f2fs_fs(void)4020 static int __init init_f2fs_fs(void)
4021 {
4022 int err;
4023
4024 if (PAGE_SIZE != F2FS_BLKSIZE) {
4025 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4026 PAGE_SIZE, F2FS_BLKSIZE);
4027 return -EINVAL;
4028 }
4029
4030 f2fs_build_trace_ios();
4031
4032 err = init_inodecache();
4033 if (err)
4034 goto fail;
4035 err = f2fs_create_node_manager_caches();
4036 if (err)
4037 goto free_inodecache;
4038 err = f2fs_create_segment_manager_caches();
4039 if (err)
4040 goto free_node_manager_caches;
4041 err = f2fs_create_checkpoint_caches();
4042 if (err)
4043 goto free_segment_manager_caches;
4044 err = f2fs_create_extent_cache();
4045 if (err)
4046 goto free_checkpoint_caches;
4047 err = f2fs_init_sysfs();
4048 if (err)
4049 goto free_extent_cache;
4050 err = register_shrinker(&f2fs_shrinker_info);
4051 if (err)
4052 goto free_sysfs;
4053 err = register_filesystem(&f2fs_fs_type);
4054 if (err)
4055 goto free_shrinker;
4056 f2fs_create_root_stats();
4057 err = f2fs_init_post_read_processing();
4058 if (err)
4059 goto free_root_stats;
4060 err = f2fs_init_bio_entry_cache();
4061 if (err)
4062 goto free_post_read;
4063 err = f2fs_init_bioset();
4064 if (err)
4065 goto free_bio_enrty_cache;
4066 err = f2fs_init_compress_mempool();
4067 if (err)
4068 goto free_bioset;
4069 return 0;
4070 free_bioset:
4071 f2fs_destroy_bioset();
4072 free_bio_enrty_cache:
4073 f2fs_destroy_bio_entry_cache();
4074 free_post_read:
4075 f2fs_destroy_post_read_processing();
4076 free_root_stats:
4077 f2fs_destroy_root_stats();
4078 unregister_filesystem(&f2fs_fs_type);
4079 free_shrinker:
4080 unregister_shrinker(&f2fs_shrinker_info);
4081 free_sysfs:
4082 f2fs_exit_sysfs();
4083 free_extent_cache:
4084 f2fs_destroy_extent_cache();
4085 free_checkpoint_caches:
4086 f2fs_destroy_checkpoint_caches();
4087 free_segment_manager_caches:
4088 f2fs_destroy_segment_manager_caches();
4089 free_node_manager_caches:
4090 f2fs_destroy_node_manager_caches();
4091 free_inodecache:
4092 destroy_inodecache();
4093 fail:
4094 return err;
4095 }
4096
exit_f2fs_fs(void)4097 static void __exit exit_f2fs_fs(void)
4098 {
4099 f2fs_destroy_compress_mempool();
4100 f2fs_destroy_bioset();
4101 f2fs_destroy_bio_entry_cache();
4102 f2fs_destroy_post_read_processing();
4103 f2fs_destroy_root_stats();
4104 unregister_filesystem(&f2fs_fs_type);
4105 unregister_shrinker(&f2fs_shrinker_info);
4106 f2fs_exit_sysfs();
4107 f2fs_destroy_extent_cache();
4108 f2fs_destroy_checkpoint_caches();
4109 f2fs_destroy_segment_manager_caches();
4110 f2fs_destroy_node_manager_caches();
4111 destroy_inodecache();
4112 f2fs_destroy_trace_ios();
4113 }
4114
4115 module_init(init_f2fs_fs)
4116 module_exit(exit_f2fs_fs)
4117
4118 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4119 MODULE_DESCRIPTION("Flash Friendly File System");
4120 MODULE_LICENSE("GPL");
4121 MODULE_SOFTDEP("pre: crc32");
4122
4123