1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33
f2fs_filemap_fault(struct vm_fault * vmf)34 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
35 {
36 struct inode *inode = file_inode(vmf->vma->vm_file);
37 vm_fault_t ret;
38
39 down_read(&F2FS_I(inode)->i_mmap_sem);
40 ret = filemap_fault(vmf);
41 up_read(&F2FS_I(inode)->i_mmap_sem);
42
43 if (!ret)
44 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
45 F2FS_BLKSIZE);
46
47 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
48
49 return ret;
50 }
51
f2fs_vm_page_mkwrite(struct vm_fault * vmf)52 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
53 {
54 struct page *page = vmf->page;
55 struct inode *inode = file_inode(vmf->vma->vm_file);
56 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
57 struct dnode_of_data dn;
58 bool need_alloc = true;
59 int err = 0;
60
61 if (unlikely(IS_IMMUTABLE(inode)))
62 return VM_FAULT_SIGBUS;
63
64 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
65 return VM_FAULT_SIGBUS;
66
67 if (unlikely(f2fs_cp_error(sbi))) {
68 err = -EIO;
69 goto err;
70 }
71
72 if (!f2fs_is_checkpoint_ready(sbi)) {
73 err = -ENOSPC;
74 goto err;
75 }
76
77 err = f2fs_convert_inline_inode(inode);
78 if (err)
79 goto err;
80
81 #ifdef CONFIG_F2FS_FS_COMPRESSION
82 if (f2fs_compressed_file(inode)) {
83 int ret = f2fs_is_compressed_cluster(inode, page->index);
84
85 if (ret < 0) {
86 err = ret;
87 goto err;
88 } else if (ret) {
89 need_alloc = false;
90 }
91 }
92 #endif
93 /* should do out of any locked page */
94 if (need_alloc)
95 f2fs_balance_fs(sbi, true);
96
97 sb_start_pagefault(inode->i_sb);
98
99 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
100
101 file_update_time(vmf->vma->vm_file);
102 down_read(&F2FS_I(inode)->i_mmap_sem);
103 lock_page(page);
104 if (unlikely(page->mapping != inode->i_mapping ||
105 page_offset(page) > i_size_read(inode) ||
106 !PageUptodate(page))) {
107 unlock_page(page);
108 err = -EFAULT;
109 goto out_sem;
110 }
111
112 if (need_alloc) {
113 /* block allocation */
114 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
115 set_new_dnode(&dn, inode, NULL, NULL, 0);
116 err = f2fs_get_block(&dn, page->index);
117 f2fs_put_dnode(&dn);
118 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
119 }
120
121 #ifdef CONFIG_F2FS_FS_COMPRESSION
122 if (!need_alloc) {
123 set_new_dnode(&dn, inode, NULL, NULL, 0);
124 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
125 f2fs_put_dnode(&dn);
126 }
127 #endif
128 if (err) {
129 unlock_page(page);
130 goto out_sem;
131 }
132
133 f2fs_wait_on_page_writeback(page, DATA, false, true);
134
135 /* wait for GCed page writeback via META_MAPPING */
136 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
137
138 /*
139 * check to see if the page is mapped already (no holes)
140 */
141 if (PageMappedToDisk(page))
142 goto out_sem;
143
144 /* page is wholly or partially inside EOF */
145 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
146 i_size_read(inode)) {
147 loff_t offset;
148
149 offset = i_size_read(inode) & ~PAGE_MASK;
150 zero_user_segment(page, offset, PAGE_SIZE);
151 }
152 set_page_dirty(page);
153 if (!PageUptodate(page))
154 SetPageUptodate(page);
155
156 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
157 f2fs_update_time(sbi, REQ_TIME);
158
159 trace_f2fs_vm_page_mkwrite(page, DATA);
160 out_sem:
161 up_read(&F2FS_I(inode)->i_mmap_sem);
162
163 sb_end_pagefault(inode->i_sb);
164 err:
165 return block_page_mkwrite_return(err);
166 }
167
168 static const struct vm_operations_struct f2fs_file_vm_ops = {
169 .fault = f2fs_filemap_fault,
170 .map_pages = filemap_map_pages,
171 .page_mkwrite = f2fs_vm_page_mkwrite,
172 };
173
get_parent_ino(struct inode * inode,nid_t * pino)174 static int get_parent_ino(struct inode *inode, nid_t *pino)
175 {
176 struct dentry *dentry;
177
178 /*
179 * Make sure to get the non-deleted alias. The alias associated with
180 * the open file descriptor being fsync()'ed may be deleted already.
181 */
182 dentry = d_find_alias(inode);
183 if (!dentry)
184 return 0;
185
186 *pino = parent_ino(dentry);
187 dput(dentry);
188 return 1;
189 }
190
need_do_checkpoint(struct inode * inode)191 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
192 {
193 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
194 enum cp_reason_type cp_reason = CP_NO_NEEDED;
195
196 if (!S_ISREG(inode->i_mode))
197 cp_reason = CP_NON_REGULAR;
198 else if (f2fs_compressed_file(inode))
199 cp_reason = CP_COMPRESSED;
200 else if (inode->i_nlink != 1)
201 cp_reason = CP_HARDLINK;
202 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
203 cp_reason = CP_SB_NEED_CP;
204 else if (file_wrong_pino(inode))
205 cp_reason = CP_WRONG_PINO;
206 else if (!f2fs_space_for_roll_forward(sbi))
207 cp_reason = CP_NO_SPC_ROLL;
208 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
209 cp_reason = CP_NODE_NEED_CP;
210 else if (test_opt(sbi, FASTBOOT))
211 cp_reason = CP_FASTBOOT_MODE;
212 else if (F2FS_OPTION(sbi).active_logs == 2)
213 cp_reason = CP_SPEC_LOG_NUM;
214 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
215 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
216 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
217 TRANS_DIR_INO))
218 cp_reason = CP_RECOVER_DIR;
219
220 return cp_reason;
221 }
222
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
224 {
225 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
226 bool ret = false;
227 /* But we need to avoid that there are some inode updates */
228 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
229 ret = true;
230 f2fs_put_page(i, 0);
231 return ret;
232 }
233
try_to_fix_pino(struct inode * inode)234 static void try_to_fix_pino(struct inode *inode)
235 {
236 struct f2fs_inode_info *fi = F2FS_I(inode);
237 nid_t pino;
238
239 down_write(&fi->i_sem);
240 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
241 get_parent_ino(inode, &pino)) {
242 f2fs_i_pino_write(inode, pino);
243 file_got_pino(inode);
244 }
245 up_write(&fi->i_sem);
246 }
247
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
249 int datasync, bool atomic)
250 {
251 struct inode *inode = file->f_mapping->host;
252 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
253 nid_t ino = inode->i_ino;
254 int ret = 0;
255 enum cp_reason_type cp_reason = 0;
256 struct writeback_control wbc = {
257 .sync_mode = WB_SYNC_ALL,
258 .nr_to_write = LONG_MAX,
259 .for_reclaim = 0,
260 };
261 unsigned int seq_id = 0;
262
263 if (unlikely(f2fs_readonly(inode->i_sb)))
264 return 0;
265
266 trace_f2fs_sync_file_enter(inode);
267
268 if (S_ISDIR(inode->i_mode))
269 goto go_write;
270
271 /* if fdatasync is triggered, let's do in-place-update */
272 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
273 set_inode_flag(inode, FI_NEED_IPU);
274 ret = file_write_and_wait_range(file, start, end);
275 clear_inode_flag(inode, FI_NEED_IPU);
276
277 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
278 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
279 return ret;
280 }
281
282 /* if the inode is dirty, let's recover all the time */
283 if (!f2fs_skip_inode_update(inode, datasync)) {
284 f2fs_write_inode(inode, NULL);
285 goto go_write;
286 }
287
288 /*
289 * if there is no written data, don't waste time to write recovery info.
290 */
291 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
292 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
293
294 /* it may call write_inode just prior to fsync */
295 if (need_inode_page_update(sbi, ino))
296 goto go_write;
297
298 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
299 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
300 goto flush_out;
301 goto out;
302 }
303 go_write:
304 /*
305 * Both of fdatasync() and fsync() are able to be recovered from
306 * sudden-power-off.
307 */
308 down_read(&F2FS_I(inode)->i_sem);
309 cp_reason = need_do_checkpoint(inode);
310 up_read(&F2FS_I(inode)->i_sem);
311
312 if (cp_reason) {
313 /* all the dirty node pages should be flushed for POR */
314 ret = f2fs_sync_fs(inode->i_sb, 1);
315
316 /*
317 * We've secured consistency through sync_fs. Following pino
318 * will be used only for fsynced inodes after checkpoint.
319 */
320 try_to_fix_pino(inode);
321 clear_inode_flag(inode, FI_APPEND_WRITE);
322 clear_inode_flag(inode, FI_UPDATE_WRITE);
323 goto out;
324 }
325 sync_nodes:
326 atomic_inc(&sbi->wb_sync_req[NODE]);
327 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
328 atomic_dec(&sbi->wb_sync_req[NODE]);
329 if (ret)
330 goto out;
331
332 /* if cp_error was enabled, we should avoid infinite loop */
333 if (unlikely(f2fs_cp_error(sbi))) {
334 ret = -EIO;
335 goto out;
336 }
337
338 if (f2fs_need_inode_block_update(sbi, ino)) {
339 f2fs_mark_inode_dirty_sync(inode, true);
340 f2fs_write_inode(inode, NULL);
341 goto sync_nodes;
342 }
343
344 /*
345 * If it's atomic_write, it's just fine to keep write ordering. So
346 * here we don't need to wait for node write completion, since we use
347 * node chain which serializes node blocks. If one of node writes are
348 * reordered, we can see simply broken chain, resulting in stopping
349 * roll-forward recovery. It means we'll recover all or none node blocks
350 * given fsync mark.
351 */
352 if (!atomic) {
353 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
354 if (ret)
355 goto out;
356 }
357
358 /* once recovery info is written, don't need to tack this */
359 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
360 clear_inode_flag(inode, FI_APPEND_WRITE);
361 flush_out:
362 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
363 ret = f2fs_issue_flush(sbi, inode->i_ino);
364 if (!ret) {
365 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
366 clear_inode_flag(inode, FI_UPDATE_WRITE);
367 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
368 }
369 f2fs_update_time(sbi, REQ_TIME);
370 out:
371 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
372 f2fs_trace_ios(NULL, 1);
373 return ret;
374 }
375
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)376 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
377 {
378 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
379 return -EIO;
380 return f2fs_do_sync_file(file, start, end, datasync, false);
381 }
382
__get_first_dirty_index(struct address_space * mapping,pgoff_t pgofs,int whence)383 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
384 pgoff_t pgofs, int whence)
385 {
386 struct page *page;
387 int nr_pages;
388
389 if (whence != SEEK_DATA)
390 return 0;
391
392 /* find first dirty page index */
393 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
394 1, &page);
395 if (!nr_pages)
396 return ULONG_MAX;
397 pgofs = page->index;
398 put_page(page);
399 return pgofs;
400 }
401
__found_offset(struct f2fs_sb_info * sbi,block_t blkaddr,pgoff_t dirty,pgoff_t pgofs,int whence)402 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
403 pgoff_t dirty, pgoff_t pgofs, int whence)
404 {
405 switch (whence) {
406 case SEEK_DATA:
407 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
408 __is_valid_data_blkaddr(blkaddr))
409 return true;
410 break;
411 case SEEK_HOLE:
412 if (blkaddr == NULL_ADDR)
413 return true;
414 break;
415 }
416 return false;
417 }
418
f2fs_seek_block(struct file * file,loff_t offset,int whence)419 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
420 {
421 struct inode *inode = file->f_mapping->host;
422 loff_t maxbytes = inode->i_sb->s_maxbytes;
423 struct dnode_of_data dn;
424 pgoff_t pgofs, end_offset, dirty;
425 loff_t data_ofs = offset;
426 loff_t isize;
427 int err = 0;
428
429 inode_lock(inode);
430
431 isize = i_size_read(inode);
432 if (offset >= isize)
433 goto fail;
434
435 /* handle inline data case */
436 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
437 if (whence == SEEK_HOLE)
438 data_ofs = isize;
439 goto found;
440 }
441
442 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
443
444 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
445
446 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
447 set_new_dnode(&dn, inode, NULL, NULL, 0);
448 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
449 if (err && err != -ENOENT) {
450 goto fail;
451 } else if (err == -ENOENT) {
452 /* direct node does not exists */
453 if (whence == SEEK_DATA) {
454 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
455 continue;
456 } else {
457 goto found;
458 }
459 }
460
461 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
462
463 /* find data/hole in dnode block */
464 for (; dn.ofs_in_node < end_offset;
465 dn.ofs_in_node++, pgofs++,
466 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
467 block_t blkaddr;
468
469 blkaddr = f2fs_data_blkaddr(&dn);
470
471 if (__is_valid_data_blkaddr(blkaddr) &&
472 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
473 blkaddr, DATA_GENERIC_ENHANCE)) {
474 f2fs_put_dnode(&dn);
475 goto fail;
476 }
477
478 if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
479 pgofs, whence)) {
480 f2fs_put_dnode(&dn);
481 goto found;
482 }
483 }
484 f2fs_put_dnode(&dn);
485 }
486
487 if (whence == SEEK_DATA)
488 goto fail;
489 found:
490 if (whence == SEEK_HOLE && data_ofs > isize)
491 data_ofs = isize;
492 inode_unlock(inode);
493 return vfs_setpos(file, data_ofs, maxbytes);
494 fail:
495 inode_unlock(inode);
496 return -ENXIO;
497 }
498
f2fs_llseek(struct file * file,loff_t offset,int whence)499 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
500 {
501 struct inode *inode = file->f_mapping->host;
502 loff_t maxbytes = inode->i_sb->s_maxbytes;
503
504 switch (whence) {
505 case SEEK_SET:
506 case SEEK_CUR:
507 case SEEK_END:
508 return generic_file_llseek_size(file, offset, whence,
509 maxbytes, i_size_read(inode));
510 case SEEK_DATA:
511 case SEEK_HOLE:
512 if (offset < 0)
513 return -ENXIO;
514 return f2fs_seek_block(file, offset, whence);
515 }
516
517 return -EINVAL;
518 }
519
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)520 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
521 {
522 struct inode *inode = file_inode(file);
523
524 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
525 return -EIO;
526
527 if (!f2fs_is_compress_backend_ready(inode))
528 return -EOPNOTSUPP;
529
530 file_accessed(file);
531 vma->vm_ops = &f2fs_file_vm_ops;
532 set_inode_flag(inode, FI_MMAP_FILE);
533 return 0;
534 }
535
f2fs_file_open(struct inode * inode,struct file * filp)536 static int f2fs_file_open(struct inode *inode, struct file *filp)
537 {
538 int err = fscrypt_file_open(inode, filp);
539
540 if (err)
541 return err;
542
543 if (!f2fs_is_compress_backend_ready(inode))
544 return -EOPNOTSUPP;
545
546 err = fsverity_file_open(inode, filp);
547 if (err)
548 return err;
549
550 filp->f_mode |= FMODE_NOWAIT;
551
552 return dquot_file_open(inode, filp);
553 }
554
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)555 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
556 {
557 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
558 struct f2fs_node *raw_node;
559 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
560 __le32 *addr;
561 int base = 0;
562 bool compressed_cluster = false;
563 int cluster_index = 0, valid_blocks = 0;
564 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
565 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
566
567 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
568 base = get_extra_isize(dn->inode);
569
570 raw_node = F2FS_NODE(dn->node_page);
571 addr = blkaddr_in_node(raw_node) + base + ofs;
572
573 /* Assumption: truncateion starts with cluster */
574 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
575 block_t blkaddr = le32_to_cpu(*addr);
576
577 if (f2fs_compressed_file(dn->inode) &&
578 !(cluster_index & (cluster_size - 1))) {
579 if (compressed_cluster)
580 f2fs_i_compr_blocks_update(dn->inode,
581 valid_blocks, false);
582 compressed_cluster = (blkaddr == COMPRESS_ADDR);
583 valid_blocks = 0;
584 }
585
586 if (blkaddr == NULL_ADDR)
587 continue;
588
589 dn->data_blkaddr = NULL_ADDR;
590 f2fs_set_data_blkaddr(dn);
591
592 if (__is_valid_data_blkaddr(blkaddr)) {
593 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
594 DATA_GENERIC_ENHANCE))
595 continue;
596 if (compressed_cluster)
597 valid_blocks++;
598 }
599
600 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
601 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
602
603 f2fs_invalidate_blocks(sbi, blkaddr);
604
605 if (!released || blkaddr != COMPRESS_ADDR)
606 nr_free++;
607 }
608
609 if (compressed_cluster)
610 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
611
612 if (nr_free) {
613 pgoff_t fofs;
614 /*
615 * once we invalidate valid blkaddr in range [ofs, ofs + count],
616 * we will invalidate all blkaddr in the whole range.
617 */
618 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
619 dn->inode) + ofs;
620 f2fs_update_extent_cache_range(dn, fofs, 0, len);
621 dec_valid_block_count(sbi, dn->inode, nr_free);
622 }
623 dn->ofs_in_node = ofs;
624
625 f2fs_update_time(sbi, REQ_TIME);
626 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
627 dn->ofs_in_node, nr_free);
628 }
629
f2fs_truncate_data_blocks(struct dnode_of_data * dn)630 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
631 {
632 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
633 }
634
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)635 static int truncate_partial_data_page(struct inode *inode, u64 from,
636 bool cache_only)
637 {
638 loff_t offset = from & (PAGE_SIZE - 1);
639 pgoff_t index = from >> PAGE_SHIFT;
640 struct address_space *mapping = inode->i_mapping;
641 struct page *page;
642
643 if (!offset && !cache_only)
644 return 0;
645
646 if (cache_only) {
647 page = find_lock_page(mapping, index);
648 if (page && PageUptodate(page))
649 goto truncate_out;
650 f2fs_put_page(page, 1);
651 return 0;
652 }
653
654 page = f2fs_get_lock_data_page(inode, index, true);
655 if (IS_ERR(page))
656 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
657 truncate_out:
658 f2fs_wait_on_page_writeback(page, DATA, true, true);
659 zero_user(page, offset, PAGE_SIZE - offset);
660
661 /* An encrypted inode should have a key and truncate the last page. */
662 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
663 if (!cache_only)
664 set_page_dirty(page);
665 f2fs_put_page(page, 1);
666 return 0;
667 }
668
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)669 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
670 {
671 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
672 struct dnode_of_data dn;
673 pgoff_t free_from;
674 int count = 0, err = 0;
675 struct page *ipage;
676 bool truncate_page = false;
677
678 trace_f2fs_truncate_blocks_enter(inode, from);
679
680 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
681
682 if (free_from >= sbi->max_file_blocks)
683 goto free_partial;
684
685 if (lock)
686 f2fs_lock_op(sbi);
687
688 ipage = f2fs_get_node_page(sbi, inode->i_ino);
689 if (IS_ERR(ipage)) {
690 err = PTR_ERR(ipage);
691 goto out;
692 }
693
694 if (f2fs_has_inline_data(inode)) {
695 f2fs_truncate_inline_inode(inode, ipage, from);
696 f2fs_put_page(ipage, 1);
697 truncate_page = true;
698 goto out;
699 }
700
701 set_new_dnode(&dn, inode, ipage, NULL, 0);
702 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
703 if (err) {
704 if (err == -ENOENT)
705 goto free_next;
706 goto out;
707 }
708
709 count = ADDRS_PER_PAGE(dn.node_page, inode);
710
711 count -= dn.ofs_in_node;
712 f2fs_bug_on(sbi, count < 0);
713
714 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
715 f2fs_truncate_data_blocks_range(&dn, count);
716 free_from += count;
717 }
718
719 f2fs_put_dnode(&dn);
720 free_next:
721 err = f2fs_truncate_inode_blocks(inode, free_from);
722 out:
723 if (lock)
724 f2fs_unlock_op(sbi);
725 free_partial:
726 /* lastly zero out the first data page */
727 if (!err)
728 err = truncate_partial_data_page(inode, from, truncate_page);
729
730 trace_f2fs_truncate_blocks_exit(inode, err);
731 return err;
732 }
733
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)734 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
735 {
736 u64 free_from = from;
737 int err;
738
739 #ifdef CONFIG_F2FS_FS_COMPRESSION
740 /*
741 * for compressed file, only support cluster size
742 * aligned truncation.
743 */
744 if (f2fs_compressed_file(inode))
745 free_from = round_up(from,
746 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
747 #endif
748
749 err = f2fs_do_truncate_blocks(inode, free_from, lock);
750 if (err)
751 return err;
752
753 #ifdef CONFIG_F2FS_FS_COMPRESSION
754 if (from != free_from)
755 err = f2fs_truncate_partial_cluster(inode, from, lock);
756 #endif
757
758 return err;
759 }
760
f2fs_truncate(struct inode * inode)761 int f2fs_truncate(struct inode *inode)
762 {
763 int err;
764
765 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
766 return -EIO;
767
768 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
769 S_ISLNK(inode->i_mode)))
770 return 0;
771
772 trace_f2fs_truncate(inode);
773
774 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
775 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
776 return -EIO;
777 }
778
779 err = dquot_initialize(inode);
780 if (err)
781 return err;
782
783 /* we should check inline_data size */
784 if (!f2fs_may_inline_data(inode)) {
785 err = f2fs_convert_inline_inode(inode);
786 if (err)
787 return err;
788 }
789
790 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
791 if (err)
792 return err;
793
794 inode->i_mtime = inode->i_ctime = current_time(inode);
795 f2fs_mark_inode_dirty_sync(inode, false);
796 return 0;
797 }
798
f2fs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)799 int f2fs_getattr(const struct path *path, struct kstat *stat,
800 u32 request_mask, unsigned int query_flags)
801 {
802 struct inode *inode = d_inode(path->dentry);
803 struct f2fs_inode_info *fi = F2FS_I(inode);
804 struct f2fs_inode *ri;
805 unsigned int flags;
806
807 if (f2fs_has_extra_attr(inode) &&
808 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
809 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
810 stat->result_mask |= STATX_BTIME;
811 stat->btime.tv_sec = fi->i_crtime.tv_sec;
812 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
813 }
814
815 flags = fi->i_flags;
816 if (flags & F2FS_COMPR_FL)
817 stat->attributes |= STATX_ATTR_COMPRESSED;
818 if (flags & F2FS_APPEND_FL)
819 stat->attributes |= STATX_ATTR_APPEND;
820 if (IS_ENCRYPTED(inode))
821 stat->attributes |= STATX_ATTR_ENCRYPTED;
822 if (flags & F2FS_IMMUTABLE_FL)
823 stat->attributes |= STATX_ATTR_IMMUTABLE;
824 if (flags & F2FS_NODUMP_FL)
825 stat->attributes |= STATX_ATTR_NODUMP;
826 if (IS_VERITY(inode))
827 stat->attributes |= STATX_ATTR_VERITY;
828
829 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
830 STATX_ATTR_APPEND |
831 STATX_ATTR_ENCRYPTED |
832 STATX_ATTR_IMMUTABLE |
833 STATX_ATTR_NODUMP |
834 STATX_ATTR_VERITY);
835
836 generic_fillattr(inode, stat);
837
838 /* we need to show initial sectors used for inline_data/dentries */
839 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
840 f2fs_has_inline_dentry(inode))
841 stat->blocks += (stat->size + 511) >> 9;
842
843 return 0;
844 }
845
846 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct inode * inode,const struct iattr * attr)847 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
848 {
849 unsigned int ia_valid = attr->ia_valid;
850
851 if (ia_valid & ATTR_UID)
852 inode->i_uid = attr->ia_uid;
853 if (ia_valid & ATTR_GID)
854 inode->i_gid = attr->ia_gid;
855 if (ia_valid & ATTR_ATIME)
856 inode->i_atime = attr->ia_atime;
857 if (ia_valid & ATTR_MTIME)
858 inode->i_mtime = attr->ia_mtime;
859 if (ia_valid & ATTR_CTIME)
860 inode->i_ctime = attr->ia_ctime;
861 if (ia_valid & ATTR_MODE) {
862 umode_t mode = attr->ia_mode;
863
864 if (!in_group_p(inode->i_gid) &&
865 !capable_wrt_inode_uidgid(inode, CAP_FSETID))
866 mode &= ~S_ISGID;
867 set_acl_inode(inode, mode);
868 }
869 }
870 #else
871 #define __setattr_copy setattr_copy
872 #endif
873
f2fs_setattr(struct dentry * dentry,struct iattr * attr)874 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
875 {
876 struct inode *inode = d_inode(dentry);
877 int err;
878
879 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
880 return -EIO;
881
882 if (unlikely(IS_IMMUTABLE(inode)))
883 return -EPERM;
884
885 if (unlikely(IS_APPEND(inode) &&
886 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
887 ATTR_GID | ATTR_TIMES_SET))))
888 return -EPERM;
889
890 if ((attr->ia_valid & ATTR_SIZE) &&
891 !f2fs_is_compress_backend_ready(inode))
892 return -EOPNOTSUPP;
893
894 err = setattr_prepare(dentry, attr);
895 if (err)
896 return err;
897
898 err = fscrypt_prepare_setattr(dentry, attr);
899 if (err)
900 return err;
901
902 err = fsverity_prepare_setattr(dentry, attr);
903 if (err)
904 return err;
905
906 if (is_quota_modification(inode, attr)) {
907 err = dquot_initialize(inode);
908 if (err)
909 return err;
910 }
911 if ((attr->ia_valid & ATTR_UID &&
912 !uid_eq(attr->ia_uid, inode->i_uid)) ||
913 (attr->ia_valid & ATTR_GID &&
914 !gid_eq(attr->ia_gid, inode->i_gid))) {
915 f2fs_lock_op(F2FS_I_SB(inode));
916 err = dquot_transfer(inode, attr);
917 if (err) {
918 set_sbi_flag(F2FS_I_SB(inode),
919 SBI_QUOTA_NEED_REPAIR);
920 f2fs_unlock_op(F2FS_I_SB(inode));
921 return err;
922 }
923 /*
924 * update uid/gid under lock_op(), so that dquot and inode can
925 * be updated atomically.
926 */
927 if (attr->ia_valid & ATTR_UID)
928 inode->i_uid = attr->ia_uid;
929 if (attr->ia_valid & ATTR_GID)
930 inode->i_gid = attr->ia_gid;
931 f2fs_mark_inode_dirty_sync(inode, true);
932 f2fs_unlock_op(F2FS_I_SB(inode));
933 }
934
935 if (attr->ia_valid & ATTR_SIZE) {
936 loff_t old_size = i_size_read(inode);
937
938 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
939 /*
940 * should convert inline inode before i_size_write to
941 * keep smaller than inline_data size with inline flag.
942 */
943 err = f2fs_convert_inline_inode(inode);
944 if (err)
945 return err;
946 }
947
948 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
949 down_write(&F2FS_I(inode)->i_mmap_sem);
950
951 truncate_setsize(inode, attr->ia_size);
952
953 if (attr->ia_size <= old_size)
954 err = f2fs_truncate(inode);
955 /*
956 * do not trim all blocks after i_size if target size is
957 * larger than i_size.
958 */
959 up_write(&F2FS_I(inode)->i_mmap_sem);
960 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
961 if (err)
962 return err;
963
964 spin_lock(&F2FS_I(inode)->i_size_lock);
965 inode->i_mtime = inode->i_ctime = current_time(inode);
966 F2FS_I(inode)->last_disk_size = i_size_read(inode);
967 spin_unlock(&F2FS_I(inode)->i_size_lock);
968 }
969
970 __setattr_copy(inode, attr);
971
972 if (attr->ia_valid & ATTR_MODE) {
973 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
974 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
975 inode->i_mode = F2FS_I(inode)->i_acl_mode;
976 clear_inode_flag(inode, FI_ACL_MODE);
977 }
978 }
979
980 /* file size may changed here */
981 f2fs_mark_inode_dirty_sync(inode, true);
982
983 /* inode change will produce dirty node pages flushed by checkpoint */
984 f2fs_balance_fs(F2FS_I_SB(inode), true);
985
986 return err;
987 }
988
989 const struct inode_operations f2fs_file_inode_operations = {
990 .getattr = f2fs_getattr,
991 .setattr = f2fs_setattr,
992 .get_acl = f2fs_get_acl,
993 .set_acl = f2fs_set_acl,
994 .listxattr = f2fs_listxattr,
995 .fiemap = f2fs_fiemap,
996 };
997
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)998 static int fill_zero(struct inode *inode, pgoff_t index,
999 loff_t start, loff_t len)
1000 {
1001 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1002 struct page *page;
1003
1004 if (!len)
1005 return 0;
1006
1007 f2fs_balance_fs(sbi, true);
1008
1009 f2fs_lock_op(sbi);
1010 page = f2fs_get_new_data_page(inode, NULL, index, false);
1011 f2fs_unlock_op(sbi);
1012
1013 if (IS_ERR(page))
1014 return PTR_ERR(page);
1015
1016 f2fs_wait_on_page_writeback(page, DATA, true, true);
1017 zero_user(page, start, len);
1018 set_page_dirty(page);
1019 f2fs_put_page(page, 1);
1020 return 0;
1021 }
1022
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1023 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1024 {
1025 int err;
1026
1027 while (pg_start < pg_end) {
1028 struct dnode_of_data dn;
1029 pgoff_t end_offset, count;
1030
1031 set_new_dnode(&dn, inode, NULL, NULL, 0);
1032 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1033 if (err) {
1034 if (err == -ENOENT) {
1035 pg_start = f2fs_get_next_page_offset(&dn,
1036 pg_start);
1037 continue;
1038 }
1039 return err;
1040 }
1041
1042 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1043 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1044
1045 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1046
1047 f2fs_truncate_data_blocks_range(&dn, count);
1048 f2fs_put_dnode(&dn);
1049
1050 pg_start += count;
1051 }
1052 return 0;
1053 }
1054
punch_hole(struct inode * inode,loff_t offset,loff_t len)1055 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1056 {
1057 pgoff_t pg_start, pg_end;
1058 loff_t off_start, off_end;
1059 int ret;
1060
1061 ret = f2fs_convert_inline_inode(inode);
1062 if (ret)
1063 return ret;
1064
1065 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1066 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1067
1068 off_start = offset & (PAGE_SIZE - 1);
1069 off_end = (offset + len) & (PAGE_SIZE - 1);
1070
1071 if (pg_start == pg_end) {
1072 ret = fill_zero(inode, pg_start, off_start,
1073 off_end - off_start);
1074 if (ret)
1075 return ret;
1076 } else {
1077 if (off_start) {
1078 ret = fill_zero(inode, pg_start++, off_start,
1079 PAGE_SIZE - off_start);
1080 if (ret)
1081 return ret;
1082 }
1083 if (off_end) {
1084 ret = fill_zero(inode, pg_end, 0, off_end);
1085 if (ret)
1086 return ret;
1087 }
1088
1089 if (pg_start < pg_end) {
1090 loff_t blk_start, blk_end;
1091 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1092
1093 f2fs_balance_fs(sbi, true);
1094
1095 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1096 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1097
1098 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1099 down_write(&F2FS_I(inode)->i_mmap_sem);
1100
1101 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1102
1103 f2fs_lock_op(sbi);
1104 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1105 f2fs_unlock_op(sbi);
1106
1107 up_write(&F2FS_I(inode)->i_mmap_sem);
1108 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1109 }
1110 }
1111
1112 return ret;
1113 }
1114
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1115 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1116 int *do_replace, pgoff_t off, pgoff_t len)
1117 {
1118 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1119 struct dnode_of_data dn;
1120 int ret, done, i;
1121
1122 next_dnode:
1123 set_new_dnode(&dn, inode, NULL, NULL, 0);
1124 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1125 if (ret && ret != -ENOENT) {
1126 return ret;
1127 } else if (ret == -ENOENT) {
1128 if (dn.max_level == 0)
1129 return -ENOENT;
1130 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1131 dn.ofs_in_node, len);
1132 blkaddr += done;
1133 do_replace += done;
1134 goto next;
1135 }
1136
1137 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1138 dn.ofs_in_node, len);
1139 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1140 *blkaddr = f2fs_data_blkaddr(&dn);
1141
1142 if (__is_valid_data_blkaddr(*blkaddr) &&
1143 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1144 DATA_GENERIC_ENHANCE)) {
1145 f2fs_put_dnode(&dn);
1146 return -EFSCORRUPTED;
1147 }
1148
1149 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1150
1151 if (f2fs_lfs_mode(sbi)) {
1152 f2fs_put_dnode(&dn);
1153 return -EOPNOTSUPP;
1154 }
1155
1156 /* do not invalidate this block address */
1157 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1158 *do_replace = 1;
1159 }
1160 }
1161 f2fs_put_dnode(&dn);
1162 next:
1163 len -= done;
1164 off += done;
1165 if (len)
1166 goto next_dnode;
1167 return 0;
1168 }
1169
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1170 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1171 int *do_replace, pgoff_t off, int len)
1172 {
1173 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1174 struct dnode_of_data dn;
1175 int ret, i;
1176
1177 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1178 if (*do_replace == 0)
1179 continue;
1180
1181 set_new_dnode(&dn, inode, NULL, NULL, 0);
1182 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1183 if (ret) {
1184 dec_valid_block_count(sbi, inode, 1);
1185 f2fs_invalidate_blocks(sbi, *blkaddr);
1186 } else {
1187 f2fs_update_data_blkaddr(&dn, *blkaddr);
1188 }
1189 f2fs_put_dnode(&dn);
1190 }
1191 return 0;
1192 }
1193
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1194 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1195 block_t *blkaddr, int *do_replace,
1196 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1197 {
1198 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1199 pgoff_t i = 0;
1200 int ret;
1201
1202 while (i < len) {
1203 if (blkaddr[i] == NULL_ADDR && !full) {
1204 i++;
1205 continue;
1206 }
1207
1208 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1209 struct dnode_of_data dn;
1210 struct node_info ni;
1211 size_t new_size;
1212 pgoff_t ilen;
1213
1214 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1215 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1216 if (ret)
1217 return ret;
1218
1219 ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1220 if (ret) {
1221 f2fs_put_dnode(&dn);
1222 return ret;
1223 }
1224
1225 ilen = min((pgoff_t)
1226 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1227 dn.ofs_in_node, len - i);
1228 do {
1229 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1230 f2fs_truncate_data_blocks_range(&dn, 1);
1231
1232 if (do_replace[i]) {
1233 f2fs_i_blocks_write(src_inode,
1234 1, false, false);
1235 f2fs_i_blocks_write(dst_inode,
1236 1, true, false);
1237 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1238 blkaddr[i], ni.version, true, false);
1239
1240 do_replace[i] = 0;
1241 }
1242 dn.ofs_in_node++;
1243 i++;
1244 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1245 if (dst_inode->i_size < new_size)
1246 f2fs_i_size_write(dst_inode, new_size);
1247 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1248
1249 f2fs_put_dnode(&dn);
1250 } else {
1251 struct page *psrc, *pdst;
1252
1253 psrc = f2fs_get_lock_data_page(src_inode,
1254 src + i, true);
1255 if (IS_ERR(psrc))
1256 return PTR_ERR(psrc);
1257 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1258 true);
1259 if (IS_ERR(pdst)) {
1260 f2fs_put_page(psrc, 1);
1261 return PTR_ERR(pdst);
1262 }
1263 f2fs_copy_page(psrc, pdst);
1264 set_page_dirty(pdst);
1265 f2fs_put_page(pdst, 1);
1266 f2fs_put_page(psrc, 1);
1267
1268 ret = f2fs_truncate_hole(src_inode,
1269 src + i, src + i + 1);
1270 if (ret)
1271 return ret;
1272 i++;
1273 }
1274 }
1275 return 0;
1276 }
1277
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1278 static int __exchange_data_block(struct inode *src_inode,
1279 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1280 pgoff_t len, bool full)
1281 {
1282 block_t *src_blkaddr;
1283 int *do_replace;
1284 pgoff_t olen;
1285 int ret;
1286
1287 while (len) {
1288 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1289
1290 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1291 array_size(olen, sizeof(block_t)),
1292 GFP_NOFS);
1293 if (!src_blkaddr)
1294 return -ENOMEM;
1295
1296 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1297 array_size(olen, sizeof(int)),
1298 GFP_NOFS);
1299 if (!do_replace) {
1300 kvfree(src_blkaddr);
1301 return -ENOMEM;
1302 }
1303
1304 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1305 do_replace, src, olen);
1306 if (ret)
1307 goto roll_back;
1308
1309 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1310 do_replace, src, dst, olen, full);
1311 if (ret)
1312 goto roll_back;
1313
1314 src += olen;
1315 dst += olen;
1316 len -= olen;
1317
1318 kvfree(src_blkaddr);
1319 kvfree(do_replace);
1320 }
1321 return 0;
1322
1323 roll_back:
1324 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1325 kvfree(src_blkaddr);
1326 kvfree(do_replace);
1327 return ret;
1328 }
1329
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1330 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1331 {
1332 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1333 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1334 pgoff_t start = offset >> PAGE_SHIFT;
1335 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1336 int ret;
1337
1338 f2fs_balance_fs(sbi, true);
1339
1340 /* avoid gc operation during block exchange */
1341 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1342 down_write(&F2FS_I(inode)->i_mmap_sem);
1343
1344 f2fs_lock_op(sbi);
1345 f2fs_drop_extent_tree(inode);
1346 truncate_pagecache(inode, offset);
1347 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1348 f2fs_unlock_op(sbi);
1349
1350 up_write(&F2FS_I(inode)->i_mmap_sem);
1351 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1352 return ret;
1353 }
1354
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1355 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1356 {
1357 loff_t new_size;
1358 int ret;
1359
1360 if (offset + len >= i_size_read(inode))
1361 return -EINVAL;
1362
1363 /* collapse range should be aligned to block size of f2fs. */
1364 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1365 return -EINVAL;
1366
1367 ret = f2fs_convert_inline_inode(inode);
1368 if (ret)
1369 return ret;
1370
1371 /* write out all dirty pages from offset */
1372 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1373 if (ret)
1374 return ret;
1375
1376 ret = f2fs_do_collapse(inode, offset, len);
1377 if (ret)
1378 return ret;
1379
1380 /* write out all moved pages, if possible */
1381 down_write(&F2FS_I(inode)->i_mmap_sem);
1382 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1383 truncate_pagecache(inode, offset);
1384
1385 new_size = i_size_read(inode) - len;
1386 truncate_pagecache(inode, new_size);
1387
1388 ret = f2fs_truncate_blocks(inode, new_size, true);
1389 up_write(&F2FS_I(inode)->i_mmap_sem);
1390 if (!ret)
1391 f2fs_i_size_write(inode, new_size);
1392 return ret;
1393 }
1394
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1395 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1396 pgoff_t end)
1397 {
1398 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1399 pgoff_t index = start;
1400 unsigned int ofs_in_node = dn->ofs_in_node;
1401 blkcnt_t count = 0;
1402 int ret;
1403
1404 for (; index < end; index++, dn->ofs_in_node++) {
1405 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1406 count++;
1407 }
1408
1409 dn->ofs_in_node = ofs_in_node;
1410 ret = f2fs_reserve_new_blocks(dn, count);
1411 if (ret)
1412 return ret;
1413
1414 dn->ofs_in_node = ofs_in_node;
1415 for (index = start; index < end; index++, dn->ofs_in_node++) {
1416 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1417 /*
1418 * f2fs_reserve_new_blocks will not guarantee entire block
1419 * allocation.
1420 */
1421 if (dn->data_blkaddr == NULL_ADDR) {
1422 ret = -ENOSPC;
1423 break;
1424 }
1425
1426 if (dn->data_blkaddr == NEW_ADDR)
1427 continue;
1428
1429 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1430 DATA_GENERIC_ENHANCE)) {
1431 ret = -EFSCORRUPTED;
1432 break;
1433 }
1434
1435 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1436 dn->data_blkaddr = NEW_ADDR;
1437 f2fs_set_data_blkaddr(dn);
1438 }
1439
1440 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1441
1442 return ret;
1443 }
1444
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1445 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1446 int mode)
1447 {
1448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1449 struct address_space *mapping = inode->i_mapping;
1450 pgoff_t index, pg_start, pg_end;
1451 loff_t new_size = i_size_read(inode);
1452 loff_t off_start, off_end;
1453 int ret = 0;
1454
1455 ret = inode_newsize_ok(inode, (len + offset));
1456 if (ret)
1457 return ret;
1458
1459 ret = f2fs_convert_inline_inode(inode);
1460 if (ret)
1461 return ret;
1462
1463 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1464 if (ret)
1465 return ret;
1466
1467 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1468 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1469
1470 off_start = offset & (PAGE_SIZE - 1);
1471 off_end = (offset + len) & (PAGE_SIZE - 1);
1472
1473 if (pg_start == pg_end) {
1474 ret = fill_zero(inode, pg_start, off_start,
1475 off_end - off_start);
1476 if (ret)
1477 return ret;
1478
1479 new_size = max_t(loff_t, new_size, offset + len);
1480 } else {
1481 if (off_start) {
1482 ret = fill_zero(inode, pg_start++, off_start,
1483 PAGE_SIZE - off_start);
1484 if (ret)
1485 return ret;
1486
1487 new_size = max_t(loff_t, new_size,
1488 (loff_t)pg_start << PAGE_SHIFT);
1489 }
1490
1491 for (index = pg_start; index < pg_end;) {
1492 struct dnode_of_data dn;
1493 unsigned int end_offset;
1494 pgoff_t end;
1495
1496 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1497 down_write(&F2FS_I(inode)->i_mmap_sem);
1498
1499 truncate_pagecache_range(inode,
1500 (loff_t)index << PAGE_SHIFT,
1501 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1502
1503 f2fs_lock_op(sbi);
1504
1505 set_new_dnode(&dn, inode, NULL, NULL, 0);
1506 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1507 if (ret) {
1508 f2fs_unlock_op(sbi);
1509 up_write(&F2FS_I(inode)->i_mmap_sem);
1510 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1511 goto out;
1512 }
1513
1514 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1515 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1516
1517 ret = f2fs_do_zero_range(&dn, index, end);
1518 f2fs_put_dnode(&dn);
1519
1520 f2fs_unlock_op(sbi);
1521 up_write(&F2FS_I(inode)->i_mmap_sem);
1522 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1523
1524 f2fs_balance_fs(sbi, dn.node_changed);
1525
1526 if (ret)
1527 goto out;
1528
1529 index = end;
1530 new_size = max_t(loff_t, new_size,
1531 (loff_t)index << PAGE_SHIFT);
1532 }
1533
1534 if (off_end) {
1535 ret = fill_zero(inode, pg_end, 0, off_end);
1536 if (ret)
1537 goto out;
1538
1539 new_size = max_t(loff_t, new_size, offset + len);
1540 }
1541 }
1542
1543 out:
1544 if (new_size > i_size_read(inode)) {
1545 if (mode & FALLOC_FL_KEEP_SIZE)
1546 file_set_keep_isize(inode);
1547 else
1548 f2fs_i_size_write(inode, new_size);
1549 }
1550 return ret;
1551 }
1552
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1553 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1554 {
1555 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1556 pgoff_t nr, pg_start, pg_end, delta, idx;
1557 loff_t new_size;
1558 int ret = 0;
1559
1560 new_size = i_size_read(inode) + len;
1561 ret = inode_newsize_ok(inode, new_size);
1562 if (ret)
1563 return ret;
1564
1565 if (offset >= i_size_read(inode))
1566 return -EINVAL;
1567
1568 /* insert range should be aligned to block size of f2fs. */
1569 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1570 return -EINVAL;
1571
1572 ret = f2fs_convert_inline_inode(inode);
1573 if (ret)
1574 return ret;
1575
1576 f2fs_balance_fs(sbi, true);
1577
1578 down_write(&F2FS_I(inode)->i_mmap_sem);
1579 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1580 up_write(&F2FS_I(inode)->i_mmap_sem);
1581 if (ret)
1582 return ret;
1583
1584 /* write out all dirty pages from offset */
1585 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1586 if (ret)
1587 return ret;
1588
1589 pg_start = offset >> PAGE_SHIFT;
1590 pg_end = (offset + len) >> PAGE_SHIFT;
1591 delta = pg_end - pg_start;
1592 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1593
1594 /* avoid gc operation during block exchange */
1595 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1596 down_write(&F2FS_I(inode)->i_mmap_sem);
1597 truncate_pagecache(inode, offset);
1598
1599 while (!ret && idx > pg_start) {
1600 nr = idx - pg_start;
1601 if (nr > delta)
1602 nr = delta;
1603 idx -= nr;
1604
1605 f2fs_lock_op(sbi);
1606 f2fs_drop_extent_tree(inode);
1607
1608 ret = __exchange_data_block(inode, inode, idx,
1609 idx + delta, nr, false);
1610 f2fs_unlock_op(sbi);
1611 }
1612 up_write(&F2FS_I(inode)->i_mmap_sem);
1613 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1614
1615 /* write out all moved pages, if possible */
1616 down_write(&F2FS_I(inode)->i_mmap_sem);
1617 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1618 truncate_pagecache(inode, offset);
1619 up_write(&F2FS_I(inode)->i_mmap_sem);
1620
1621 if (!ret)
1622 f2fs_i_size_write(inode, new_size);
1623 return ret;
1624 }
1625
expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1626 static int expand_inode_data(struct inode *inode, loff_t offset,
1627 loff_t len, int mode)
1628 {
1629 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1630 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1631 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1632 .m_may_create = true };
1633 pgoff_t pg_end;
1634 loff_t new_size = i_size_read(inode);
1635 loff_t off_end;
1636 int err;
1637
1638 err = inode_newsize_ok(inode, (len + offset));
1639 if (err)
1640 return err;
1641
1642 err = f2fs_convert_inline_inode(inode);
1643 if (err)
1644 return err;
1645
1646 f2fs_balance_fs(sbi, true);
1647
1648 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1649 off_end = (offset + len) & (PAGE_SIZE - 1);
1650
1651 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1652 map.m_len = pg_end - map.m_lblk;
1653 if (off_end)
1654 map.m_len++;
1655
1656 if (!map.m_len)
1657 return 0;
1658
1659 if (f2fs_is_pinned_file(inode)) {
1660 block_t len = (map.m_len >> sbi->log_blocks_per_seg) <<
1661 sbi->log_blocks_per_seg;
1662 block_t done = 0;
1663
1664 if (map.m_len % sbi->blocks_per_seg)
1665 len += sbi->blocks_per_seg;
1666
1667 map.m_len = sbi->blocks_per_seg;
1668 next_alloc:
1669 if (has_not_enough_free_secs(sbi, 0,
1670 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1671 down_write(&sbi->gc_lock);
1672 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1673 if (err && err != -ENODATA && err != -EAGAIN)
1674 goto out_err;
1675 }
1676
1677 down_write(&sbi->pin_sem);
1678 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1679
1680 f2fs_lock_op(sbi);
1681 f2fs_allocate_new_segments(sbi, CURSEG_COLD_DATA);
1682 f2fs_unlock_op(sbi);
1683
1684 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1685 up_write(&sbi->pin_sem);
1686
1687 done += map.m_len;
1688 len -= map.m_len;
1689 map.m_lblk += map.m_len;
1690 if (!err && len)
1691 goto next_alloc;
1692
1693 map.m_len = done;
1694 } else {
1695 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1696 }
1697 out_err:
1698 if (err) {
1699 pgoff_t last_off;
1700
1701 if (!map.m_len)
1702 return err;
1703
1704 last_off = map.m_lblk + map.m_len - 1;
1705
1706 /* update new size to the failed position */
1707 new_size = (last_off == pg_end) ? offset + len :
1708 (loff_t)(last_off + 1) << PAGE_SHIFT;
1709 } else {
1710 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1711 }
1712
1713 if (new_size > i_size_read(inode)) {
1714 if (mode & FALLOC_FL_KEEP_SIZE)
1715 file_set_keep_isize(inode);
1716 else
1717 f2fs_i_size_write(inode, new_size);
1718 }
1719
1720 return err;
1721 }
1722
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1723 static long f2fs_fallocate(struct file *file, int mode,
1724 loff_t offset, loff_t len)
1725 {
1726 struct inode *inode = file_inode(file);
1727 long ret = 0;
1728
1729 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1730 return -EIO;
1731 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1732 return -ENOSPC;
1733 if (!f2fs_is_compress_backend_ready(inode))
1734 return -EOPNOTSUPP;
1735
1736 /* f2fs only support ->fallocate for regular file */
1737 if (!S_ISREG(inode->i_mode))
1738 return -EINVAL;
1739
1740 if (IS_ENCRYPTED(inode) &&
1741 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1742 return -EOPNOTSUPP;
1743
1744 if (f2fs_compressed_file(inode) &&
1745 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1746 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1747 return -EOPNOTSUPP;
1748
1749 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1750 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1751 FALLOC_FL_INSERT_RANGE))
1752 return -EOPNOTSUPP;
1753
1754 inode_lock(inode);
1755
1756 ret = file_modified(file);
1757 if (ret)
1758 goto out;
1759
1760 if (mode & FALLOC_FL_PUNCH_HOLE) {
1761 if (offset >= inode->i_size)
1762 goto out;
1763
1764 ret = punch_hole(inode, offset, len);
1765 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1766 ret = f2fs_collapse_range(inode, offset, len);
1767 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1768 ret = f2fs_zero_range(inode, offset, len, mode);
1769 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1770 ret = f2fs_insert_range(inode, offset, len);
1771 } else {
1772 ret = expand_inode_data(inode, offset, len, mode);
1773 }
1774
1775 if (!ret) {
1776 inode->i_mtime = inode->i_ctime = current_time(inode);
1777 f2fs_mark_inode_dirty_sync(inode, false);
1778 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1779 }
1780
1781 out:
1782 inode_unlock(inode);
1783
1784 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1785 return ret;
1786 }
1787
f2fs_release_file(struct inode * inode,struct file * filp)1788 static int f2fs_release_file(struct inode *inode, struct file *filp)
1789 {
1790 /*
1791 * f2fs_relase_file is called at every close calls. So we should
1792 * not drop any inmemory pages by close called by other process.
1793 */
1794 if (!(filp->f_mode & FMODE_WRITE) ||
1795 atomic_read(&inode->i_writecount) != 1)
1796 return 0;
1797
1798 /* some remained atomic pages should discarded */
1799 if (f2fs_is_atomic_file(inode))
1800 f2fs_drop_inmem_pages(inode);
1801 if (f2fs_is_volatile_file(inode)) {
1802 set_inode_flag(inode, FI_DROP_CACHE);
1803 filemap_fdatawrite(inode->i_mapping);
1804 clear_inode_flag(inode, FI_DROP_CACHE);
1805 clear_inode_flag(inode, FI_VOLATILE_FILE);
1806 stat_dec_volatile_write(inode);
1807 }
1808 return 0;
1809 }
1810
f2fs_file_flush(struct file * file,fl_owner_t id)1811 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1812 {
1813 struct inode *inode = file_inode(file);
1814
1815 /*
1816 * If the process doing a transaction is crashed, we should do
1817 * roll-back. Otherwise, other reader/write can see corrupted database
1818 * until all the writers close its file. Since this should be done
1819 * before dropping file lock, it needs to do in ->flush.
1820 */
1821 if (f2fs_is_atomic_file(inode) &&
1822 F2FS_I(inode)->inmem_task == current)
1823 f2fs_drop_inmem_pages(inode);
1824 return 0;
1825 }
1826
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1827 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1828 {
1829 struct f2fs_inode_info *fi = F2FS_I(inode);
1830 u32 masked_flags = fi->i_flags & mask;
1831
1832 f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask));
1833
1834 /* Is it quota file? Do not allow user to mess with it */
1835 if (IS_NOQUOTA(inode))
1836 return -EPERM;
1837
1838 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1839 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1840 return -EOPNOTSUPP;
1841 if (!f2fs_empty_dir(inode))
1842 return -ENOTEMPTY;
1843 }
1844
1845 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1846 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1847 return -EOPNOTSUPP;
1848 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1849 return -EINVAL;
1850 }
1851
1852 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1853 if (masked_flags & F2FS_COMPR_FL) {
1854 if (f2fs_disable_compressed_file(inode))
1855 return -EINVAL;
1856 }
1857 if (iflags & F2FS_NOCOMP_FL)
1858 return -EINVAL;
1859 if (iflags & F2FS_COMPR_FL) {
1860 if (!f2fs_may_compress(inode))
1861 return -EINVAL;
1862 if (set_compress_context(inode))
1863 return -EOPNOTSUPP;
1864 }
1865 }
1866 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1867 if (masked_flags & F2FS_COMPR_FL)
1868 return -EINVAL;
1869 }
1870
1871 fi->i_flags = iflags | (fi->i_flags & ~mask);
1872 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1873 (fi->i_flags & F2FS_NOCOMP_FL));
1874
1875 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1876 set_inode_flag(inode, FI_PROJ_INHERIT);
1877 else
1878 clear_inode_flag(inode, FI_PROJ_INHERIT);
1879
1880 inode->i_ctime = current_time(inode);
1881 f2fs_set_inode_flags(inode);
1882 f2fs_mark_inode_dirty_sync(inode, true);
1883 return 0;
1884 }
1885
1886 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1887
1888 /*
1889 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1890 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1891 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1892 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1893 */
1894
1895 static const struct {
1896 u32 iflag;
1897 u32 fsflag;
1898 } f2fs_fsflags_map[] = {
1899 { F2FS_COMPR_FL, FS_COMPR_FL },
1900 { F2FS_SYNC_FL, FS_SYNC_FL },
1901 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1902 { F2FS_APPEND_FL, FS_APPEND_FL },
1903 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1904 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1905 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1906 { F2FS_INDEX_FL, FS_INDEX_FL },
1907 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1908 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1909 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1910 };
1911
1912 #define F2FS_GETTABLE_FS_FL ( \
1913 FS_COMPR_FL | \
1914 FS_SYNC_FL | \
1915 FS_IMMUTABLE_FL | \
1916 FS_APPEND_FL | \
1917 FS_NODUMP_FL | \
1918 FS_NOATIME_FL | \
1919 FS_NOCOMP_FL | \
1920 FS_INDEX_FL | \
1921 FS_DIRSYNC_FL | \
1922 FS_PROJINHERIT_FL | \
1923 FS_ENCRYPT_FL | \
1924 FS_INLINE_DATA_FL | \
1925 FS_NOCOW_FL | \
1926 FS_VERITY_FL | \
1927 FS_CASEFOLD_FL)
1928
1929 #define F2FS_SETTABLE_FS_FL ( \
1930 FS_COMPR_FL | \
1931 FS_SYNC_FL | \
1932 FS_IMMUTABLE_FL | \
1933 FS_APPEND_FL | \
1934 FS_NODUMP_FL | \
1935 FS_NOATIME_FL | \
1936 FS_NOCOMP_FL | \
1937 FS_DIRSYNC_FL | \
1938 FS_PROJINHERIT_FL | \
1939 FS_CASEFOLD_FL)
1940
1941 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)1942 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1943 {
1944 u32 fsflags = 0;
1945 int i;
1946
1947 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1948 if (iflags & f2fs_fsflags_map[i].iflag)
1949 fsflags |= f2fs_fsflags_map[i].fsflag;
1950
1951 return fsflags;
1952 }
1953
1954 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)1955 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1956 {
1957 u32 iflags = 0;
1958 int i;
1959
1960 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1961 if (fsflags & f2fs_fsflags_map[i].fsflag)
1962 iflags |= f2fs_fsflags_map[i].iflag;
1963
1964 return iflags;
1965 }
1966
f2fs_ioc_getflags(struct file * filp,unsigned long arg)1967 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1968 {
1969 struct inode *inode = file_inode(filp);
1970 struct f2fs_inode_info *fi = F2FS_I(inode);
1971 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1972
1973 if (IS_ENCRYPTED(inode))
1974 fsflags |= FS_ENCRYPT_FL;
1975 if (IS_VERITY(inode))
1976 fsflags |= FS_VERITY_FL;
1977 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1978 fsflags |= FS_INLINE_DATA_FL;
1979 if (is_inode_flag_set(inode, FI_PIN_FILE))
1980 fsflags |= FS_NOCOW_FL;
1981
1982 fsflags &= F2FS_GETTABLE_FS_FL;
1983
1984 return put_user(fsflags, (int __user *)arg);
1985 }
1986
f2fs_ioc_setflags(struct file * filp,unsigned long arg)1987 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1988 {
1989 struct inode *inode = file_inode(filp);
1990 struct f2fs_inode_info *fi = F2FS_I(inode);
1991 u32 fsflags, old_fsflags;
1992 u32 iflags;
1993 int ret;
1994
1995 if (!inode_owner_or_capable(inode))
1996 return -EACCES;
1997
1998 if (get_user(fsflags, (int __user *)arg))
1999 return -EFAULT;
2000
2001 if (fsflags & ~F2FS_GETTABLE_FS_FL)
2002 return -EOPNOTSUPP;
2003 fsflags &= F2FS_SETTABLE_FS_FL;
2004
2005 iflags = f2fs_fsflags_to_iflags(fsflags);
2006 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
2007 return -EOPNOTSUPP;
2008
2009 ret = mnt_want_write_file(filp);
2010 if (ret)
2011 return ret;
2012
2013 inode_lock(inode);
2014
2015 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
2016 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
2017 if (ret)
2018 goto out;
2019
2020 ret = f2fs_setflags_common(inode, iflags,
2021 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
2022 out:
2023 inode_unlock(inode);
2024 mnt_drop_write_file(filp);
2025 return ret;
2026 }
2027
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2028 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2029 {
2030 struct inode *inode = file_inode(filp);
2031
2032 return put_user(inode->i_generation, (int __user *)arg);
2033 }
2034
f2fs_ioc_start_atomic_write(struct file * filp)2035 static int f2fs_ioc_start_atomic_write(struct file *filp)
2036 {
2037 struct inode *inode = file_inode(filp);
2038 struct f2fs_inode_info *fi = F2FS_I(inode);
2039 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2040 int ret;
2041
2042 if (!inode_owner_or_capable(inode))
2043 return -EACCES;
2044
2045 if (!S_ISREG(inode->i_mode))
2046 return -EINVAL;
2047
2048 if (filp->f_flags & O_DIRECT)
2049 return -EINVAL;
2050
2051 ret = mnt_want_write_file(filp);
2052 if (ret)
2053 return ret;
2054
2055 inode_lock(inode);
2056
2057 f2fs_disable_compressed_file(inode);
2058
2059 if (f2fs_is_atomic_file(inode)) {
2060 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2061 ret = -EINVAL;
2062 goto out;
2063 }
2064
2065 ret = f2fs_convert_inline_inode(inode);
2066 if (ret)
2067 goto out;
2068
2069 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2070
2071 /*
2072 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2073 * f2fs_is_atomic_file.
2074 */
2075 if (get_dirty_pages(inode))
2076 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2077 inode->i_ino, get_dirty_pages(inode));
2078 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2079 if (ret) {
2080 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2081 goto out;
2082 }
2083
2084 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2085 if (list_empty(&fi->inmem_ilist))
2086 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2087 sbi->atomic_files++;
2088 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2089
2090 /* add inode in inmem_list first and set atomic_file */
2091 set_inode_flag(inode, FI_ATOMIC_FILE);
2092 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2093 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2094
2095 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2096 F2FS_I(inode)->inmem_task = current;
2097 stat_update_max_atomic_write(inode);
2098 out:
2099 inode_unlock(inode);
2100 mnt_drop_write_file(filp);
2101 return ret;
2102 }
2103
f2fs_ioc_commit_atomic_write(struct file * filp)2104 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2105 {
2106 struct inode *inode = file_inode(filp);
2107 int ret;
2108
2109 if (!inode_owner_or_capable(inode))
2110 return -EACCES;
2111
2112 ret = mnt_want_write_file(filp);
2113 if (ret)
2114 return ret;
2115
2116 f2fs_balance_fs(F2FS_I_SB(inode), true);
2117
2118 inode_lock(inode);
2119
2120 if (f2fs_is_volatile_file(inode)) {
2121 ret = -EINVAL;
2122 goto err_out;
2123 }
2124
2125 if (f2fs_is_atomic_file(inode)) {
2126 ret = f2fs_commit_inmem_pages(inode);
2127 if (ret)
2128 goto err_out;
2129
2130 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2131 if (!ret)
2132 f2fs_drop_inmem_pages(inode);
2133 } else {
2134 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2135 }
2136 err_out:
2137 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2138 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2139 ret = -EINVAL;
2140 }
2141 inode_unlock(inode);
2142 mnt_drop_write_file(filp);
2143 return ret;
2144 }
2145
f2fs_ioc_start_volatile_write(struct file * filp)2146 static int f2fs_ioc_start_volatile_write(struct file *filp)
2147 {
2148 struct inode *inode = file_inode(filp);
2149 int ret;
2150
2151 if (!inode_owner_or_capable(inode))
2152 return -EACCES;
2153
2154 if (!S_ISREG(inode->i_mode))
2155 return -EINVAL;
2156
2157 ret = mnt_want_write_file(filp);
2158 if (ret)
2159 return ret;
2160
2161 inode_lock(inode);
2162
2163 if (f2fs_is_volatile_file(inode))
2164 goto out;
2165
2166 ret = f2fs_convert_inline_inode(inode);
2167 if (ret)
2168 goto out;
2169
2170 stat_inc_volatile_write(inode);
2171 stat_update_max_volatile_write(inode);
2172
2173 set_inode_flag(inode, FI_VOLATILE_FILE);
2174 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2175 out:
2176 inode_unlock(inode);
2177 mnt_drop_write_file(filp);
2178 return ret;
2179 }
2180
f2fs_ioc_release_volatile_write(struct file * filp)2181 static int f2fs_ioc_release_volatile_write(struct file *filp)
2182 {
2183 struct inode *inode = file_inode(filp);
2184 int ret;
2185
2186 if (!inode_owner_or_capable(inode))
2187 return -EACCES;
2188
2189 ret = mnt_want_write_file(filp);
2190 if (ret)
2191 return ret;
2192
2193 inode_lock(inode);
2194
2195 if (!f2fs_is_volatile_file(inode))
2196 goto out;
2197
2198 if (!f2fs_is_first_block_written(inode)) {
2199 ret = truncate_partial_data_page(inode, 0, true);
2200 goto out;
2201 }
2202
2203 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2204 out:
2205 inode_unlock(inode);
2206 mnt_drop_write_file(filp);
2207 return ret;
2208 }
2209
f2fs_ioc_abort_volatile_write(struct file * filp)2210 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2211 {
2212 struct inode *inode = file_inode(filp);
2213 int ret;
2214
2215 if (!inode_owner_or_capable(inode))
2216 return -EACCES;
2217
2218 ret = mnt_want_write_file(filp);
2219 if (ret)
2220 return ret;
2221
2222 inode_lock(inode);
2223
2224 if (f2fs_is_atomic_file(inode))
2225 f2fs_drop_inmem_pages(inode);
2226 if (f2fs_is_volatile_file(inode)) {
2227 clear_inode_flag(inode, FI_VOLATILE_FILE);
2228 stat_dec_volatile_write(inode);
2229 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2230 }
2231
2232 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2233
2234 inode_unlock(inode);
2235
2236 mnt_drop_write_file(filp);
2237 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2238 return ret;
2239 }
2240
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2241 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2242 {
2243 struct inode *inode = file_inode(filp);
2244 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2245 struct super_block *sb = sbi->sb;
2246 __u32 in;
2247 int ret = 0;
2248
2249 if (!capable(CAP_SYS_ADMIN))
2250 return -EPERM;
2251
2252 if (get_user(in, (__u32 __user *)arg))
2253 return -EFAULT;
2254
2255 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2256 ret = mnt_want_write_file(filp);
2257 if (ret) {
2258 if (ret == -EROFS) {
2259 ret = 0;
2260 f2fs_stop_checkpoint(sbi, false);
2261 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2262 trace_f2fs_shutdown(sbi, in, ret);
2263 }
2264 return ret;
2265 }
2266 }
2267
2268 switch (in) {
2269 case F2FS_GOING_DOWN_FULLSYNC:
2270 sb = freeze_bdev(sb->s_bdev);
2271 if (IS_ERR(sb)) {
2272 ret = PTR_ERR(sb);
2273 goto out;
2274 }
2275 if (sb) {
2276 f2fs_stop_checkpoint(sbi, false);
2277 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2278 thaw_bdev(sb->s_bdev, sb);
2279 }
2280 break;
2281 case F2FS_GOING_DOWN_METASYNC:
2282 /* do checkpoint only */
2283 ret = f2fs_sync_fs(sb, 1);
2284 if (ret)
2285 goto out;
2286 f2fs_stop_checkpoint(sbi, false);
2287 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2288 break;
2289 case F2FS_GOING_DOWN_NOSYNC:
2290 f2fs_stop_checkpoint(sbi, false);
2291 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2292 break;
2293 case F2FS_GOING_DOWN_METAFLUSH:
2294 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2295 f2fs_stop_checkpoint(sbi, false);
2296 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2297 break;
2298 case F2FS_GOING_DOWN_NEED_FSCK:
2299 set_sbi_flag(sbi, SBI_NEED_FSCK);
2300 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2301 set_sbi_flag(sbi, SBI_IS_DIRTY);
2302 /* do checkpoint only */
2303 ret = f2fs_sync_fs(sb, 1);
2304 goto out;
2305 default:
2306 ret = -EINVAL;
2307 goto out;
2308 }
2309
2310 f2fs_stop_gc_thread(sbi);
2311 f2fs_stop_discard_thread(sbi);
2312
2313 f2fs_drop_discard_cmd(sbi);
2314 clear_opt(sbi, DISCARD);
2315
2316 f2fs_update_time(sbi, REQ_TIME);
2317 out:
2318 if (in != F2FS_GOING_DOWN_FULLSYNC)
2319 mnt_drop_write_file(filp);
2320
2321 trace_f2fs_shutdown(sbi, in, ret);
2322
2323 return ret;
2324 }
2325
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2326 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2327 {
2328 struct inode *inode = file_inode(filp);
2329 struct super_block *sb = inode->i_sb;
2330 struct request_queue *q = bdev_get_queue(sb->s_bdev);
2331 struct fstrim_range range;
2332 int ret;
2333
2334 if (!capable(CAP_SYS_ADMIN))
2335 return -EPERM;
2336
2337 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2338 return -EOPNOTSUPP;
2339
2340 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2341 sizeof(range)))
2342 return -EFAULT;
2343
2344 ret = mnt_want_write_file(filp);
2345 if (ret)
2346 return ret;
2347
2348 range.minlen = max((unsigned int)range.minlen,
2349 q->limits.discard_granularity);
2350 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2351 mnt_drop_write_file(filp);
2352 if (ret < 0)
2353 return ret;
2354
2355 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2356 sizeof(range)))
2357 return -EFAULT;
2358 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2359 return 0;
2360 }
2361
uuid_is_nonzero(__u8 u[16])2362 static bool uuid_is_nonzero(__u8 u[16])
2363 {
2364 int i;
2365
2366 for (i = 0; i < 16; i++)
2367 if (u[i])
2368 return true;
2369 return false;
2370 }
2371
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2372 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2373 {
2374 struct inode *inode = file_inode(filp);
2375
2376 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2377 return -EOPNOTSUPP;
2378
2379 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2380
2381 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2382 }
2383
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2384 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2385 {
2386 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2387 return -EOPNOTSUPP;
2388 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2389 }
2390
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2391 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2392 {
2393 struct inode *inode = file_inode(filp);
2394 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2395 int err;
2396
2397 if (!f2fs_sb_has_encrypt(sbi))
2398 return -EOPNOTSUPP;
2399
2400 err = mnt_want_write_file(filp);
2401 if (err)
2402 return err;
2403
2404 down_write(&sbi->sb_lock);
2405
2406 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2407 goto got_it;
2408
2409 /* update superblock with uuid */
2410 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2411
2412 err = f2fs_commit_super(sbi, false);
2413 if (err) {
2414 /* undo new data */
2415 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2416 goto out_err;
2417 }
2418 got_it:
2419 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2420 16))
2421 err = -EFAULT;
2422 out_err:
2423 up_write(&sbi->sb_lock);
2424 mnt_drop_write_file(filp);
2425 return err;
2426 }
2427
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2428 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2429 unsigned long arg)
2430 {
2431 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2432 return -EOPNOTSUPP;
2433
2434 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2435 }
2436
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2437 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2438 {
2439 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2440 return -EOPNOTSUPP;
2441
2442 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2443 }
2444
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2445 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2446 {
2447 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2448 return -EOPNOTSUPP;
2449
2450 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2451 }
2452
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2453 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2454 unsigned long arg)
2455 {
2456 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2457 return -EOPNOTSUPP;
2458
2459 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2460 }
2461
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2462 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2463 unsigned long arg)
2464 {
2465 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2466 return -EOPNOTSUPP;
2467
2468 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2469 }
2470
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2471 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2472 {
2473 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2474 return -EOPNOTSUPP;
2475
2476 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2477 }
2478
f2fs_ioc_gc(struct file * filp,unsigned long arg)2479 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2480 {
2481 struct inode *inode = file_inode(filp);
2482 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2483 __u32 sync;
2484 int ret;
2485
2486 if (!capable(CAP_SYS_ADMIN))
2487 return -EPERM;
2488
2489 if (get_user(sync, (__u32 __user *)arg))
2490 return -EFAULT;
2491
2492 if (f2fs_readonly(sbi->sb))
2493 return -EROFS;
2494
2495 ret = mnt_want_write_file(filp);
2496 if (ret)
2497 return ret;
2498
2499 if (!sync) {
2500 if (!down_write_trylock(&sbi->gc_lock)) {
2501 ret = -EBUSY;
2502 goto out;
2503 }
2504 } else {
2505 down_write(&sbi->gc_lock);
2506 }
2507
2508 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2509 out:
2510 mnt_drop_write_file(filp);
2511 return ret;
2512 }
2513
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2514 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2515 {
2516 struct inode *inode = file_inode(filp);
2517 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2518 struct f2fs_gc_range range;
2519 u64 end;
2520 int ret;
2521
2522 if (!capable(CAP_SYS_ADMIN))
2523 return -EPERM;
2524
2525 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2526 sizeof(range)))
2527 return -EFAULT;
2528
2529 if (f2fs_readonly(sbi->sb))
2530 return -EROFS;
2531
2532 end = range.start + range.len;
2533 if (end < range.start || range.start < MAIN_BLKADDR(sbi) ||
2534 end >= MAX_BLKADDR(sbi))
2535 return -EINVAL;
2536
2537 ret = mnt_want_write_file(filp);
2538 if (ret)
2539 return ret;
2540
2541 do_more:
2542 if (!range.sync) {
2543 if (!down_write_trylock(&sbi->gc_lock)) {
2544 ret = -EBUSY;
2545 goto out;
2546 }
2547 } else {
2548 down_write(&sbi->gc_lock);
2549 }
2550
2551 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2552 range.start += BLKS_PER_SEC(sbi);
2553 if (range.start <= end)
2554 goto do_more;
2555 out:
2556 mnt_drop_write_file(filp);
2557 return ret;
2558 }
2559
f2fs_ioc_write_checkpoint(struct file * filp,unsigned long arg)2560 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2561 {
2562 struct inode *inode = file_inode(filp);
2563 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2564 int ret;
2565
2566 if (!capable(CAP_SYS_ADMIN))
2567 return -EPERM;
2568
2569 if (f2fs_readonly(sbi->sb))
2570 return -EROFS;
2571
2572 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2573 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2574 return -EINVAL;
2575 }
2576
2577 ret = mnt_want_write_file(filp);
2578 if (ret)
2579 return ret;
2580
2581 ret = f2fs_sync_fs(sbi->sb, 1);
2582
2583 mnt_drop_write_file(filp);
2584 return ret;
2585 }
2586
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2587 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2588 struct file *filp,
2589 struct f2fs_defragment *range)
2590 {
2591 struct inode *inode = file_inode(filp);
2592 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2593 .m_seg_type = NO_CHECK_TYPE ,
2594 .m_may_create = false };
2595 struct extent_info ei = {0, 0, 0};
2596 pgoff_t pg_start, pg_end, next_pgofs;
2597 unsigned int blk_per_seg = sbi->blocks_per_seg;
2598 unsigned int total = 0, sec_num;
2599 block_t blk_end = 0;
2600 bool fragmented = false;
2601 int err;
2602
2603 /* if in-place-update policy is enabled, don't waste time here */
2604 if (f2fs_should_update_inplace(inode, NULL))
2605 return -EINVAL;
2606
2607 pg_start = range->start >> PAGE_SHIFT;
2608 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2609
2610 f2fs_balance_fs(sbi, true);
2611
2612 inode_lock(inode);
2613
2614 /* writeback all dirty pages in the range */
2615 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2616 range->start + range->len - 1);
2617 if (err)
2618 goto out;
2619
2620 /*
2621 * lookup mapping info in extent cache, skip defragmenting if physical
2622 * block addresses are continuous.
2623 */
2624 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2625 if (ei.fofs + ei.len >= pg_end)
2626 goto out;
2627 }
2628
2629 map.m_lblk = pg_start;
2630 map.m_next_pgofs = &next_pgofs;
2631
2632 /*
2633 * lookup mapping info in dnode page cache, skip defragmenting if all
2634 * physical block addresses are continuous even if there are hole(s)
2635 * in logical blocks.
2636 */
2637 while (map.m_lblk < pg_end) {
2638 map.m_len = pg_end - map.m_lblk;
2639 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2640 if (err)
2641 goto out;
2642
2643 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2644 map.m_lblk = next_pgofs;
2645 continue;
2646 }
2647
2648 if (blk_end && blk_end != map.m_pblk)
2649 fragmented = true;
2650
2651 /* record total count of block that we're going to move */
2652 total += map.m_len;
2653
2654 blk_end = map.m_pblk + map.m_len;
2655
2656 map.m_lblk += map.m_len;
2657 }
2658
2659 if (!fragmented) {
2660 total = 0;
2661 goto out;
2662 }
2663
2664 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2665
2666 /*
2667 * make sure there are enough free section for LFS allocation, this can
2668 * avoid defragment running in SSR mode when free section are allocated
2669 * intensively
2670 */
2671 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2672 err = -EAGAIN;
2673 goto out;
2674 }
2675
2676 map.m_lblk = pg_start;
2677 map.m_len = pg_end - pg_start;
2678 total = 0;
2679
2680 while (map.m_lblk < pg_end) {
2681 pgoff_t idx;
2682 int cnt = 0;
2683
2684 do_map:
2685 map.m_len = pg_end - map.m_lblk;
2686 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2687 if (err)
2688 goto clear_out;
2689
2690 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2691 map.m_lblk = next_pgofs;
2692 goto check;
2693 }
2694
2695 set_inode_flag(inode, FI_DO_DEFRAG);
2696
2697 idx = map.m_lblk;
2698 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2699 struct page *page;
2700
2701 page = f2fs_get_lock_data_page(inode, idx, true);
2702 if (IS_ERR(page)) {
2703 err = PTR_ERR(page);
2704 goto clear_out;
2705 }
2706
2707 set_page_dirty(page);
2708 f2fs_put_page(page, 1);
2709
2710 idx++;
2711 cnt++;
2712 total++;
2713 }
2714
2715 map.m_lblk = idx;
2716 check:
2717 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2718 goto do_map;
2719
2720 clear_inode_flag(inode, FI_DO_DEFRAG);
2721
2722 err = filemap_fdatawrite(inode->i_mapping);
2723 if (err)
2724 goto out;
2725 }
2726 clear_out:
2727 clear_inode_flag(inode, FI_DO_DEFRAG);
2728 out:
2729 inode_unlock(inode);
2730 if (!err)
2731 range->len = (u64)total << PAGE_SHIFT;
2732 return err;
2733 }
2734
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2735 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2736 {
2737 struct inode *inode = file_inode(filp);
2738 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2739 struct f2fs_defragment range;
2740 int err;
2741
2742 if (!capable(CAP_SYS_ADMIN))
2743 return -EPERM;
2744
2745 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2746 return -EINVAL;
2747
2748 if (f2fs_readonly(sbi->sb))
2749 return -EROFS;
2750
2751 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2752 sizeof(range)))
2753 return -EFAULT;
2754
2755 /* verify alignment of offset & size */
2756 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2757 return -EINVAL;
2758
2759 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2760 sbi->max_file_blocks))
2761 return -EINVAL;
2762
2763 err = mnt_want_write_file(filp);
2764 if (err)
2765 return err;
2766
2767 err = f2fs_defragment_range(sbi, filp, &range);
2768 mnt_drop_write_file(filp);
2769
2770 f2fs_update_time(sbi, REQ_TIME);
2771 if (err < 0)
2772 return err;
2773
2774 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2775 sizeof(range)))
2776 return -EFAULT;
2777
2778 return 0;
2779 }
2780
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2781 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2782 struct file *file_out, loff_t pos_out, size_t len)
2783 {
2784 struct inode *src = file_inode(file_in);
2785 struct inode *dst = file_inode(file_out);
2786 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2787 size_t olen = len, dst_max_i_size = 0;
2788 size_t dst_osize;
2789 int ret;
2790
2791 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2792 src->i_sb != dst->i_sb)
2793 return -EXDEV;
2794
2795 if (unlikely(f2fs_readonly(src->i_sb)))
2796 return -EROFS;
2797
2798 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2799 return -EINVAL;
2800
2801 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2802 return -EOPNOTSUPP;
2803
2804 if (src == dst) {
2805 if (pos_in == pos_out)
2806 return 0;
2807 if (pos_out > pos_in && pos_out < pos_in + len)
2808 return -EINVAL;
2809 }
2810
2811 inode_lock(src);
2812 if (src != dst) {
2813 ret = -EBUSY;
2814 if (!inode_trylock(dst))
2815 goto out;
2816 }
2817
2818 ret = -EINVAL;
2819 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2820 goto out_unlock;
2821 if (len == 0)
2822 olen = len = src->i_size - pos_in;
2823 if (pos_in + len == src->i_size)
2824 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2825 if (len == 0) {
2826 ret = 0;
2827 goto out_unlock;
2828 }
2829
2830 dst_osize = dst->i_size;
2831 if (pos_out + olen > dst->i_size)
2832 dst_max_i_size = pos_out + olen;
2833
2834 /* verify the end result is block aligned */
2835 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2836 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2837 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2838 goto out_unlock;
2839
2840 ret = f2fs_convert_inline_inode(src);
2841 if (ret)
2842 goto out_unlock;
2843
2844 ret = f2fs_convert_inline_inode(dst);
2845 if (ret)
2846 goto out_unlock;
2847
2848 /* write out all dirty pages from offset */
2849 ret = filemap_write_and_wait_range(src->i_mapping,
2850 pos_in, pos_in + len);
2851 if (ret)
2852 goto out_unlock;
2853
2854 ret = filemap_write_and_wait_range(dst->i_mapping,
2855 pos_out, pos_out + len);
2856 if (ret)
2857 goto out_unlock;
2858
2859 f2fs_balance_fs(sbi, true);
2860
2861 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2862 if (src != dst) {
2863 ret = -EBUSY;
2864 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2865 goto out_src;
2866 }
2867
2868 f2fs_lock_op(sbi);
2869 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2870 pos_out >> F2FS_BLKSIZE_BITS,
2871 len >> F2FS_BLKSIZE_BITS, false);
2872
2873 if (!ret) {
2874 if (dst_max_i_size)
2875 f2fs_i_size_write(dst, dst_max_i_size);
2876 else if (dst_osize != dst->i_size)
2877 f2fs_i_size_write(dst, dst_osize);
2878 }
2879 f2fs_unlock_op(sbi);
2880
2881 if (src != dst)
2882 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2883 out_src:
2884 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2885 out_unlock:
2886 if (src != dst)
2887 inode_unlock(dst);
2888 out:
2889 inode_unlock(src);
2890 return ret;
2891 }
2892
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2893 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2894 {
2895 struct f2fs_move_range range;
2896 struct fd dst;
2897 int err;
2898
2899 if (!(filp->f_mode & FMODE_READ) ||
2900 !(filp->f_mode & FMODE_WRITE))
2901 return -EBADF;
2902
2903 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2904 sizeof(range)))
2905 return -EFAULT;
2906
2907 dst = fdget(range.dst_fd);
2908 if (!dst.file)
2909 return -EBADF;
2910
2911 if (!(dst.file->f_mode & FMODE_WRITE)) {
2912 err = -EBADF;
2913 goto err_out;
2914 }
2915
2916 err = mnt_want_write_file(filp);
2917 if (err)
2918 goto err_out;
2919
2920 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2921 range.pos_out, range.len);
2922
2923 mnt_drop_write_file(filp);
2924 if (err)
2925 goto err_out;
2926
2927 if (copy_to_user((struct f2fs_move_range __user *)arg,
2928 &range, sizeof(range)))
2929 err = -EFAULT;
2930 err_out:
2931 fdput(dst);
2932 return err;
2933 }
2934
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2935 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2936 {
2937 struct inode *inode = file_inode(filp);
2938 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2939 struct sit_info *sm = SIT_I(sbi);
2940 unsigned int start_segno = 0, end_segno = 0;
2941 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2942 struct f2fs_flush_device range;
2943 int ret;
2944
2945 if (!capable(CAP_SYS_ADMIN))
2946 return -EPERM;
2947
2948 if (f2fs_readonly(sbi->sb))
2949 return -EROFS;
2950
2951 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2952 return -EINVAL;
2953
2954 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2955 sizeof(range)))
2956 return -EFAULT;
2957
2958 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2959 __is_large_section(sbi)) {
2960 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2961 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2962 return -EINVAL;
2963 }
2964
2965 ret = mnt_want_write_file(filp);
2966 if (ret)
2967 return ret;
2968
2969 if (range.dev_num != 0)
2970 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2971 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2972
2973 start_segno = sm->last_victim[FLUSH_DEVICE];
2974 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2975 start_segno = dev_start_segno;
2976 end_segno = min(start_segno + range.segments, dev_end_segno);
2977
2978 while (start_segno < end_segno) {
2979 if (!down_write_trylock(&sbi->gc_lock)) {
2980 ret = -EBUSY;
2981 goto out;
2982 }
2983 sm->last_victim[GC_CB] = end_segno + 1;
2984 sm->last_victim[GC_GREEDY] = end_segno + 1;
2985 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2986 ret = f2fs_gc(sbi, true, true, start_segno);
2987 if (ret == -EAGAIN)
2988 ret = 0;
2989 else if (ret < 0)
2990 break;
2991 start_segno++;
2992 }
2993 out:
2994 mnt_drop_write_file(filp);
2995 return ret;
2996 }
2997
f2fs_ioc_get_features(struct file * filp,unsigned long arg)2998 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2999 {
3000 struct inode *inode = file_inode(filp);
3001 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3002
3003 /* Must validate to set it with SQLite behavior in Android. */
3004 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3005
3006 return put_user(sb_feature, (u32 __user *)arg);
3007 }
3008
3009 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3010 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3011 {
3012 struct dquot *transfer_to[MAXQUOTAS] = {};
3013 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3014 struct super_block *sb = sbi->sb;
3015 int err;
3016
3017 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3018 if (IS_ERR(transfer_to[PRJQUOTA]))
3019 return PTR_ERR(transfer_to[PRJQUOTA]);
3020
3021 err = __dquot_transfer(inode, transfer_to);
3022 if (err)
3023 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3024 dqput(transfer_to[PRJQUOTA]);
3025 return err;
3026 }
3027
f2fs_ioc_setproject(struct file * filp,__u32 projid)3028 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3029 {
3030 struct inode *inode = file_inode(filp);
3031 struct f2fs_inode_info *fi = F2FS_I(inode);
3032 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3033 struct page *ipage;
3034 kprojid_t kprojid;
3035 int err;
3036
3037 if (!f2fs_sb_has_project_quota(sbi)) {
3038 if (projid != F2FS_DEF_PROJID)
3039 return -EOPNOTSUPP;
3040 else
3041 return 0;
3042 }
3043
3044 if (!f2fs_has_extra_attr(inode))
3045 return -EOPNOTSUPP;
3046
3047 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3048
3049 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3050 return 0;
3051
3052 err = -EPERM;
3053 /* Is it quota file? Do not allow user to mess with it */
3054 if (IS_NOQUOTA(inode))
3055 return err;
3056
3057 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3058 if (IS_ERR(ipage))
3059 return PTR_ERR(ipage);
3060
3061 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3062 i_projid)) {
3063 err = -EOVERFLOW;
3064 f2fs_put_page(ipage, 1);
3065 return err;
3066 }
3067 f2fs_put_page(ipage, 1);
3068
3069 err = dquot_initialize(inode);
3070 if (err)
3071 return err;
3072
3073 f2fs_lock_op(sbi);
3074 err = f2fs_transfer_project_quota(inode, kprojid);
3075 if (err)
3076 goto out_unlock;
3077
3078 F2FS_I(inode)->i_projid = kprojid;
3079 inode->i_ctime = current_time(inode);
3080 f2fs_mark_inode_dirty_sync(inode, true);
3081 out_unlock:
3082 f2fs_unlock_op(sbi);
3083 return err;
3084 }
3085 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3086 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3087 {
3088 return 0;
3089 }
3090
f2fs_ioc_setproject(struct file * filp,__u32 projid)3091 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3092 {
3093 if (projid != F2FS_DEF_PROJID)
3094 return -EOPNOTSUPP;
3095 return 0;
3096 }
3097 #endif
3098
3099 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
3100
3101 /*
3102 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
3103 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
3104 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
3105 */
3106
3107 static const struct {
3108 u32 iflag;
3109 u32 xflag;
3110 } f2fs_xflags_map[] = {
3111 { F2FS_SYNC_FL, FS_XFLAG_SYNC },
3112 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE },
3113 { F2FS_APPEND_FL, FS_XFLAG_APPEND },
3114 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP },
3115 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME },
3116 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT },
3117 };
3118
3119 #define F2FS_SUPPORTED_XFLAGS ( \
3120 FS_XFLAG_SYNC | \
3121 FS_XFLAG_IMMUTABLE | \
3122 FS_XFLAG_APPEND | \
3123 FS_XFLAG_NODUMP | \
3124 FS_XFLAG_NOATIME | \
3125 FS_XFLAG_PROJINHERIT)
3126
3127 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
f2fs_iflags_to_xflags(u32 iflags)3128 static inline u32 f2fs_iflags_to_xflags(u32 iflags)
3129 {
3130 u32 xflags = 0;
3131 int i;
3132
3133 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3134 if (iflags & f2fs_xflags_map[i].iflag)
3135 xflags |= f2fs_xflags_map[i].xflag;
3136
3137 return xflags;
3138 }
3139
3140 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
f2fs_xflags_to_iflags(u32 xflags)3141 static inline u32 f2fs_xflags_to_iflags(u32 xflags)
3142 {
3143 u32 iflags = 0;
3144 int i;
3145
3146 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3147 if (xflags & f2fs_xflags_map[i].xflag)
3148 iflags |= f2fs_xflags_map[i].iflag;
3149
3150 return iflags;
3151 }
3152
f2fs_fill_fsxattr(struct inode * inode,struct fsxattr * fa)3153 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
3154 {
3155 struct f2fs_inode_info *fi = F2FS_I(inode);
3156
3157 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
3158
3159 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3160 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3161 }
3162
f2fs_ioc_fsgetxattr(struct file * filp,unsigned long arg)3163 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
3164 {
3165 struct inode *inode = file_inode(filp);
3166 struct fsxattr fa;
3167
3168 f2fs_fill_fsxattr(inode, &fa);
3169
3170 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
3171 return -EFAULT;
3172 return 0;
3173 }
3174
f2fs_ioc_fssetxattr(struct file * filp,unsigned long arg)3175 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
3176 {
3177 struct inode *inode = file_inode(filp);
3178 struct fsxattr fa, old_fa;
3179 u32 iflags;
3180 int err;
3181
3182 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
3183 return -EFAULT;
3184
3185 /* Make sure caller has proper permission */
3186 if (!inode_owner_or_capable(inode))
3187 return -EACCES;
3188
3189 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
3190 return -EOPNOTSUPP;
3191
3192 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
3193 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3194 return -EOPNOTSUPP;
3195
3196 err = mnt_want_write_file(filp);
3197 if (err)
3198 return err;
3199
3200 inode_lock(inode);
3201
3202 f2fs_fill_fsxattr(inode, &old_fa);
3203 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
3204 if (err)
3205 goto out;
3206
3207 err = f2fs_setflags_common(inode, iflags,
3208 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
3209 if (err)
3210 goto out;
3211
3212 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3213 out:
3214 inode_unlock(inode);
3215 mnt_drop_write_file(filp);
3216 return err;
3217 }
3218
f2fs_pin_file_control(struct inode * inode,bool inc)3219 int f2fs_pin_file_control(struct inode *inode, bool inc)
3220 {
3221 struct f2fs_inode_info *fi = F2FS_I(inode);
3222 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3223
3224 /* Use i_gc_failures for normal file as a risk signal. */
3225 if (inc)
3226 f2fs_i_gc_failures_write(inode,
3227 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3228
3229 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3230 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3231 __func__, inode->i_ino,
3232 fi->i_gc_failures[GC_FAILURE_PIN]);
3233 clear_inode_flag(inode, FI_PIN_FILE);
3234 return -EAGAIN;
3235 }
3236 return 0;
3237 }
3238
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3239 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3240 {
3241 struct inode *inode = file_inode(filp);
3242 __u32 pin;
3243 int ret = 0;
3244
3245 if (get_user(pin, (__u32 __user *)arg))
3246 return -EFAULT;
3247
3248 if (!S_ISREG(inode->i_mode))
3249 return -EINVAL;
3250
3251 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3252 return -EROFS;
3253
3254 ret = mnt_want_write_file(filp);
3255 if (ret)
3256 return ret;
3257
3258 inode_lock(inode);
3259
3260 if (!pin) {
3261 clear_inode_flag(inode, FI_PIN_FILE);
3262 f2fs_i_gc_failures_write(inode, 0);
3263 goto done;
3264 }
3265
3266 if (f2fs_should_update_outplace(inode, NULL)) {
3267 ret = -EINVAL;
3268 goto out;
3269 }
3270
3271 if (f2fs_pin_file_control(inode, false)) {
3272 ret = -EAGAIN;
3273 goto out;
3274 }
3275
3276 ret = f2fs_convert_inline_inode(inode);
3277 if (ret)
3278 goto out;
3279
3280 if (f2fs_disable_compressed_file(inode)) {
3281 ret = -EOPNOTSUPP;
3282 goto out;
3283 }
3284
3285 set_inode_flag(inode, FI_PIN_FILE);
3286 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3287 done:
3288 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3289 out:
3290 inode_unlock(inode);
3291 mnt_drop_write_file(filp);
3292 return ret;
3293 }
3294
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3295 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3296 {
3297 struct inode *inode = file_inode(filp);
3298 __u32 pin = 0;
3299
3300 if (is_inode_flag_set(inode, FI_PIN_FILE))
3301 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3302 return put_user(pin, (u32 __user *)arg);
3303 }
3304
f2fs_precache_extents(struct inode * inode)3305 int f2fs_precache_extents(struct inode *inode)
3306 {
3307 struct f2fs_inode_info *fi = F2FS_I(inode);
3308 struct f2fs_map_blocks map;
3309 pgoff_t m_next_extent;
3310 loff_t end;
3311 int err;
3312
3313 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3314 return -EOPNOTSUPP;
3315
3316 map.m_lblk = 0;
3317 map.m_pblk = 0;
3318 map.m_next_pgofs = NULL;
3319 map.m_next_extent = &m_next_extent;
3320 map.m_seg_type = NO_CHECK_TYPE;
3321 map.m_may_create = false;
3322 end = F2FS_I_SB(inode)->max_file_blocks;
3323
3324 while (map.m_lblk < end) {
3325 map.m_len = end - map.m_lblk;
3326
3327 down_write(&fi->i_gc_rwsem[WRITE]);
3328 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3329 up_write(&fi->i_gc_rwsem[WRITE]);
3330 if (err)
3331 return err;
3332
3333 map.m_lblk = m_next_extent;
3334 }
3335
3336 return err;
3337 }
3338
f2fs_ioc_precache_extents(struct file * filp,unsigned long arg)3339 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3340 {
3341 return f2fs_precache_extents(file_inode(filp));
3342 }
3343
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3344 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3345 {
3346 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3347 __u64 block_count;
3348
3349 if (!capable(CAP_SYS_ADMIN))
3350 return -EPERM;
3351
3352 if (f2fs_readonly(sbi->sb))
3353 return -EROFS;
3354
3355 if (copy_from_user(&block_count, (void __user *)arg,
3356 sizeof(block_count)))
3357 return -EFAULT;
3358
3359 return f2fs_resize_fs(sbi, block_count);
3360 }
3361
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3362 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3363 {
3364 struct inode *inode = file_inode(filp);
3365
3366 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3367
3368 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3369 f2fs_warn(F2FS_I_SB(inode),
3370 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3371 inode->i_ino);
3372 return -EOPNOTSUPP;
3373 }
3374
3375 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3376 }
3377
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3378 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3379 {
3380 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3381 return -EOPNOTSUPP;
3382
3383 return fsverity_ioctl_measure(filp, (void __user *)arg);
3384 }
3385
f2fs_get_volume_name(struct file * filp,unsigned long arg)3386 static int f2fs_get_volume_name(struct file *filp, unsigned long arg)
3387 {
3388 struct inode *inode = file_inode(filp);
3389 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3390 char *vbuf;
3391 int count;
3392 int err = 0;
3393
3394 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3395 if (!vbuf)
3396 return -ENOMEM;
3397
3398 down_read(&sbi->sb_lock);
3399 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3400 ARRAY_SIZE(sbi->raw_super->volume_name),
3401 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3402 up_read(&sbi->sb_lock);
3403
3404 if (copy_to_user((char __user *)arg, vbuf,
3405 min(FSLABEL_MAX, count)))
3406 err = -EFAULT;
3407
3408 kvfree(vbuf);
3409 return err;
3410 }
3411
f2fs_set_volume_name(struct file * filp,unsigned long arg)3412 static int f2fs_set_volume_name(struct file *filp, unsigned long arg)
3413 {
3414 struct inode *inode = file_inode(filp);
3415 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3416 char *vbuf;
3417 int err = 0;
3418
3419 if (!capable(CAP_SYS_ADMIN))
3420 return -EPERM;
3421
3422 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3423 if (IS_ERR(vbuf))
3424 return PTR_ERR(vbuf);
3425
3426 err = mnt_want_write_file(filp);
3427 if (err)
3428 goto out;
3429
3430 down_write(&sbi->sb_lock);
3431
3432 memset(sbi->raw_super->volume_name, 0,
3433 sizeof(sbi->raw_super->volume_name));
3434 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3435 sbi->raw_super->volume_name,
3436 ARRAY_SIZE(sbi->raw_super->volume_name));
3437
3438 err = f2fs_commit_super(sbi, false);
3439
3440 up_write(&sbi->sb_lock);
3441
3442 mnt_drop_write_file(filp);
3443 out:
3444 kfree(vbuf);
3445 return err;
3446 }
3447
f2fs_get_compress_blocks(struct file * filp,unsigned long arg)3448 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3449 {
3450 struct inode *inode = file_inode(filp);
3451 __u64 blocks;
3452
3453 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3454 return -EOPNOTSUPP;
3455
3456 if (!f2fs_compressed_file(inode))
3457 return -EINVAL;
3458
3459 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3460 return put_user(blocks, (u64 __user *)arg);
3461 }
3462
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3463 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3464 {
3465 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3466 unsigned int released_blocks = 0;
3467 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3468 block_t blkaddr;
3469 int i;
3470
3471 for (i = 0; i < count; i++) {
3472 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3473 dn->ofs_in_node + i);
3474
3475 if (!__is_valid_data_blkaddr(blkaddr))
3476 continue;
3477 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3478 DATA_GENERIC_ENHANCE)))
3479 return -EFSCORRUPTED;
3480 }
3481
3482 while (count) {
3483 int compr_blocks = 0;
3484
3485 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3486 blkaddr = f2fs_data_blkaddr(dn);
3487
3488 if (i == 0) {
3489 if (blkaddr == COMPRESS_ADDR)
3490 continue;
3491 dn->ofs_in_node += cluster_size;
3492 goto next;
3493 }
3494
3495 if (__is_valid_data_blkaddr(blkaddr))
3496 compr_blocks++;
3497
3498 if (blkaddr != NEW_ADDR)
3499 continue;
3500
3501 dn->data_blkaddr = NULL_ADDR;
3502 f2fs_set_data_blkaddr(dn);
3503 }
3504
3505 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3506 dec_valid_block_count(sbi, dn->inode,
3507 cluster_size - compr_blocks);
3508
3509 released_blocks += cluster_size - compr_blocks;
3510 next:
3511 count -= cluster_size;
3512 }
3513
3514 return released_blocks;
3515 }
3516
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3517 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3518 {
3519 struct inode *inode = file_inode(filp);
3520 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3521 pgoff_t page_idx = 0, last_idx;
3522 unsigned int released_blocks = 0;
3523 int ret;
3524 int writecount;
3525
3526 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3527 return -EOPNOTSUPP;
3528
3529 if (!f2fs_compressed_file(inode))
3530 return -EINVAL;
3531
3532 if (f2fs_readonly(sbi->sb))
3533 return -EROFS;
3534
3535 ret = mnt_want_write_file(filp);
3536 if (ret)
3537 return ret;
3538
3539 f2fs_balance_fs(F2FS_I_SB(inode), true);
3540
3541 inode_lock(inode);
3542
3543 writecount = atomic_read(&inode->i_writecount);
3544 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || writecount) {
3545 ret = -EBUSY;
3546 goto out;
3547 }
3548
3549 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3550 ret = -EINVAL;
3551 goto out;
3552 }
3553
3554 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3555 if (ret)
3556 goto out;
3557
3558 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3559 inode->i_ctime = current_time(inode);
3560 f2fs_mark_inode_dirty_sync(inode, true);
3561
3562 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3563 goto out;
3564
3565 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3566 down_write(&F2FS_I(inode)->i_mmap_sem);
3567
3568 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3569
3570 while (page_idx < last_idx) {
3571 struct dnode_of_data dn;
3572 pgoff_t end_offset, count;
3573
3574 set_new_dnode(&dn, inode, NULL, NULL, 0);
3575 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3576 if (ret) {
3577 if (ret == -ENOENT) {
3578 page_idx = f2fs_get_next_page_offset(&dn,
3579 page_idx);
3580 ret = 0;
3581 continue;
3582 }
3583 break;
3584 }
3585
3586 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3587 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3588 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3589
3590 ret = release_compress_blocks(&dn, count);
3591
3592 f2fs_put_dnode(&dn);
3593
3594 if (ret < 0)
3595 break;
3596
3597 page_idx += count;
3598 released_blocks += ret;
3599 }
3600
3601 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3602 up_write(&F2FS_I(inode)->i_mmap_sem);
3603 out:
3604 inode_unlock(inode);
3605
3606 mnt_drop_write_file(filp);
3607
3608 if (ret >= 0) {
3609 ret = put_user(released_blocks, (u64 __user *)arg);
3610 } else if (released_blocks &&
3611 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3612 set_sbi_flag(sbi, SBI_NEED_FSCK);
3613 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3614 "iblocks=%llu, released=%u, compr_blocks=%u, "
3615 "run fsck to fix.",
3616 __func__, inode->i_ino, inode->i_blocks,
3617 released_blocks,
3618 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3619 }
3620
3621 return ret;
3622 }
3623
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3624 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3625 {
3626 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3627 unsigned int reserved_blocks = 0;
3628 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3629 block_t blkaddr;
3630 int i;
3631
3632 for (i = 0; i < count; i++) {
3633 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3634 dn->ofs_in_node + i);
3635
3636 if (!__is_valid_data_blkaddr(blkaddr))
3637 continue;
3638 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3639 DATA_GENERIC_ENHANCE)))
3640 return -EFSCORRUPTED;
3641 }
3642
3643 while (count) {
3644 int compr_blocks = 0;
3645 blkcnt_t reserved;
3646 int ret;
3647
3648 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3649 blkaddr = f2fs_data_blkaddr(dn);
3650
3651 if (i == 0) {
3652 if (blkaddr == COMPRESS_ADDR)
3653 continue;
3654 dn->ofs_in_node += cluster_size;
3655 goto next;
3656 }
3657
3658 if (__is_valid_data_blkaddr(blkaddr)) {
3659 compr_blocks++;
3660 continue;
3661 }
3662
3663 dn->data_blkaddr = NEW_ADDR;
3664 f2fs_set_data_blkaddr(dn);
3665 }
3666
3667 reserved = cluster_size - compr_blocks;
3668 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3669 if (ret)
3670 return ret;
3671
3672 if (reserved != cluster_size - compr_blocks)
3673 return -ENOSPC;
3674
3675 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3676
3677 reserved_blocks += reserved;
3678 next:
3679 count -= cluster_size;
3680 }
3681
3682 return reserved_blocks;
3683 }
3684
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3685 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3686 {
3687 struct inode *inode = file_inode(filp);
3688 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3689 pgoff_t page_idx = 0, last_idx;
3690 unsigned int reserved_blocks = 0;
3691 int ret;
3692
3693 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3694 return -EOPNOTSUPP;
3695
3696 if (!f2fs_compressed_file(inode))
3697 return -EINVAL;
3698
3699 if (f2fs_readonly(sbi->sb))
3700 return -EROFS;
3701
3702 ret = mnt_want_write_file(filp);
3703 if (ret)
3704 return ret;
3705
3706 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3707 goto out;
3708
3709 f2fs_balance_fs(F2FS_I_SB(inode), true);
3710
3711 inode_lock(inode);
3712
3713 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3714 ret = -EINVAL;
3715 goto unlock_inode;
3716 }
3717
3718 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3719 down_write(&F2FS_I(inode)->i_mmap_sem);
3720
3721 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3722
3723 while (page_idx < last_idx) {
3724 struct dnode_of_data dn;
3725 pgoff_t end_offset, count;
3726
3727 set_new_dnode(&dn, inode, NULL, NULL, 0);
3728 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3729 if (ret) {
3730 if (ret == -ENOENT) {
3731 page_idx = f2fs_get_next_page_offset(&dn,
3732 page_idx);
3733 ret = 0;
3734 continue;
3735 }
3736 break;
3737 }
3738
3739 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3740 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3741 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3742
3743 ret = reserve_compress_blocks(&dn, count);
3744
3745 f2fs_put_dnode(&dn);
3746
3747 if (ret < 0)
3748 break;
3749
3750 page_idx += count;
3751 reserved_blocks += ret;
3752 }
3753
3754 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3755 up_write(&F2FS_I(inode)->i_mmap_sem);
3756
3757 if (ret >= 0) {
3758 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3759 inode->i_ctime = current_time(inode);
3760 f2fs_mark_inode_dirty_sync(inode, true);
3761 }
3762 unlock_inode:
3763 inode_unlock(inode);
3764 out:
3765 mnt_drop_write_file(filp);
3766
3767 if (ret >= 0) {
3768 ret = put_user(reserved_blocks, (u64 __user *)arg);
3769 } else if (reserved_blocks &&
3770 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3771 set_sbi_flag(sbi, SBI_NEED_FSCK);
3772 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3773 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3774 "run fsck to fix.",
3775 __func__, inode->i_ino, inode->i_blocks,
3776 reserved_blocks,
3777 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3778 }
3779
3780 return ret;
3781 }
3782
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)3783 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
3784 {
3785 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
3786 return -EIO;
3787 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
3788 return -ENOSPC;
3789
3790 switch (cmd) {
3791 case F2FS_IOC_GETFLAGS:
3792 return f2fs_ioc_getflags(filp, arg);
3793 case F2FS_IOC_SETFLAGS:
3794 return f2fs_ioc_setflags(filp, arg);
3795 case F2FS_IOC_GETVERSION:
3796 return f2fs_ioc_getversion(filp, arg);
3797 case F2FS_IOC_START_ATOMIC_WRITE:
3798 return f2fs_ioc_start_atomic_write(filp);
3799 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3800 return f2fs_ioc_commit_atomic_write(filp);
3801 case F2FS_IOC_START_VOLATILE_WRITE:
3802 return f2fs_ioc_start_volatile_write(filp);
3803 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3804 return f2fs_ioc_release_volatile_write(filp);
3805 case F2FS_IOC_ABORT_VOLATILE_WRITE:
3806 return f2fs_ioc_abort_volatile_write(filp);
3807 case F2FS_IOC_SHUTDOWN:
3808 return f2fs_ioc_shutdown(filp, arg);
3809 case FITRIM:
3810 return f2fs_ioc_fitrim(filp, arg);
3811 case F2FS_IOC_SET_ENCRYPTION_POLICY:
3812 return f2fs_ioc_set_encryption_policy(filp, arg);
3813 case F2FS_IOC_GET_ENCRYPTION_POLICY:
3814 return f2fs_ioc_get_encryption_policy(filp, arg);
3815 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3816 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
3817 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3818 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
3819 case FS_IOC_ADD_ENCRYPTION_KEY:
3820 return f2fs_ioc_add_encryption_key(filp, arg);
3821 case FS_IOC_REMOVE_ENCRYPTION_KEY:
3822 return f2fs_ioc_remove_encryption_key(filp, arg);
3823 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3824 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
3825 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3826 return f2fs_ioc_get_encryption_key_status(filp, arg);
3827 case FS_IOC_GET_ENCRYPTION_NONCE:
3828 return f2fs_ioc_get_encryption_nonce(filp, arg);
3829 case F2FS_IOC_GARBAGE_COLLECT:
3830 return f2fs_ioc_gc(filp, arg);
3831 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3832 return f2fs_ioc_gc_range(filp, arg);
3833 case F2FS_IOC_WRITE_CHECKPOINT:
3834 return f2fs_ioc_write_checkpoint(filp, arg);
3835 case F2FS_IOC_DEFRAGMENT:
3836 return f2fs_ioc_defragment(filp, arg);
3837 case F2FS_IOC_MOVE_RANGE:
3838 return f2fs_ioc_move_range(filp, arg);
3839 case F2FS_IOC_FLUSH_DEVICE:
3840 return f2fs_ioc_flush_device(filp, arg);
3841 case F2FS_IOC_GET_FEATURES:
3842 return f2fs_ioc_get_features(filp, arg);
3843 case F2FS_IOC_FSGETXATTR:
3844 return f2fs_ioc_fsgetxattr(filp, arg);
3845 case F2FS_IOC_FSSETXATTR:
3846 return f2fs_ioc_fssetxattr(filp, arg);
3847 case F2FS_IOC_GET_PIN_FILE:
3848 return f2fs_ioc_get_pin_file(filp, arg);
3849 case F2FS_IOC_SET_PIN_FILE:
3850 return f2fs_ioc_set_pin_file(filp, arg);
3851 case F2FS_IOC_PRECACHE_EXTENTS:
3852 return f2fs_ioc_precache_extents(filp, arg);
3853 case F2FS_IOC_RESIZE_FS:
3854 return f2fs_ioc_resize_fs(filp, arg);
3855 case FS_IOC_ENABLE_VERITY:
3856 return f2fs_ioc_enable_verity(filp, arg);
3857 case FS_IOC_MEASURE_VERITY:
3858 return f2fs_ioc_measure_verity(filp, arg);
3859 case F2FS_IOC_GET_VOLUME_NAME:
3860 return f2fs_get_volume_name(filp, arg);
3861 case F2FS_IOC_SET_VOLUME_NAME:
3862 return f2fs_set_volume_name(filp, arg);
3863 case F2FS_IOC_GET_COMPRESS_BLOCKS:
3864 return f2fs_get_compress_blocks(filp, arg);
3865 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
3866 return f2fs_release_compress_blocks(filp, arg);
3867 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
3868 return f2fs_reserve_compress_blocks(filp, arg);
3869 default:
3870 return -ENOTTY;
3871 }
3872 }
3873
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)3874 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
3875 {
3876 struct file *file = iocb->ki_filp;
3877 struct inode *inode = file_inode(file);
3878 int ret;
3879
3880 if (!f2fs_is_compress_backend_ready(inode))
3881 return -EOPNOTSUPP;
3882
3883 ret = generic_file_read_iter(iocb, iter);
3884
3885 if (ret > 0)
3886 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
3887
3888 return ret;
3889 }
3890
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3891 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3892 {
3893 struct file *file = iocb->ki_filp;
3894 struct inode *inode = file_inode(file);
3895 ssize_t ret;
3896
3897 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
3898 ret = -EIO;
3899 goto out;
3900 }
3901
3902 if (!f2fs_is_compress_backend_ready(inode)) {
3903 ret = -EOPNOTSUPP;
3904 goto out;
3905 }
3906
3907 if (iocb->ki_flags & IOCB_NOWAIT) {
3908 if (!inode_trylock(inode)) {
3909 ret = -EAGAIN;
3910 goto out;
3911 }
3912 } else {
3913 inode_lock(inode);
3914 }
3915
3916 if (unlikely(IS_IMMUTABLE(inode))) {
3917 ret = -EPERM;
3918 goto unlock;
3919 }
3920
3921 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3922 ret = -EPERM;
3923 goto unlock;
3924 }
3925
3926 ret = generic_write_checks(iocb, from);
3927 if (ret > 0) {
3928 bool preallocated = false;
3929 size_t target_size = 0;
3930 int err;
3931
3932 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
3933 set_inode_flag(inode, FI_NO_PREALLOC);
3934
3935 if ((iocb->ki_flags & IOCB_NOWAIT)) {
3936 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
3937 iov_iter_count(from)) ||
3938 f2fs_has_inline_data(inode) ||
3939 f2fs_force_buffered_io(inode, iocb, from)) {
3940 clear_inode_flag(inode, FI_NO_PREALLOC);
3941 inode_unlock(inode);
3942 ret = -EAGAIN;
3943 goto out;
3944 }
3945 goto write;
3946 }
3947
3948 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
3949 goto write;
3950
3951 if (iocb->ki_flags & IOCB_DIRECT) {
3952 /*
3953 * Convert inline data for Direct I/O before entering
3954 * f2fs_direct_IO().
3955 */
3956 err = f2fs_convert_inline_inode(inode);
3957 if (err)
3958 goto out_err;
3959 /*
3960 * If force_buffere_io() is true, we have to allocate
3961 * blocks all the time, since f2fs_direct_IO will fall
3962 * back to buffered IO.
3963 */
3964 if (!f2fs_force_buffered_io(inode, iocb, from) &&
3965 allow_outplace_dio(inode, iocb, from))
3966 goto write;
3967 }
3968 preallocated = true;
3969 target_size = iocb->ki_pos + iov_iter_count(from);
3970
3971 err = f2fs_preallocate_blocks(iocb, from);
3972 if (err) {
3973 out_err:
3974 clear_inode_flag(inode, FI_NO_PREALLOC);
3975 inode_unlock(inode);
3976 ret = err;
3977 goto out;
3978 }
3979 write:
3980 ret = __generic_file_write_iter(iocb, from);
3981 clear_inode_flag(inode, FI_NO_PREALLOC);
3982
3983 /* if we couldn't write data, we should deallocate blocks. */
3984 if (preallocated && i_size_read(inode) < target_size)
3985 f2fs_truncate(inode);
3986
3987 if (ret > 0)
3988 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
3989 }
3990 unlock:
3991 inode_unlock(inode);
3992 out:
3993 trace_f2fs_file_write_iter(inode, iocb->ki_pos,
3994 iov_iter_count(from), ret);
3995 if (ret > 0)
3996 ret = generic_write_sync(iocb, ret);
3997 return ret;
3998 }
3999
4000 #ifdef CONFIG_COMPAT
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4001 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4002 {
4003 switch (cmd) {
4004 case F2FS_IOC32_GETFLAGS:
4005 cmd = F2FS_IOC_GETFLAGS;
4006 break;
4007 case F2FS_IOC32_SETFLAGS:
4008 cmd = F2FS_IOC_SETFLAGS;
4009 break;
4010 case F2FS_IOC32_GETVERSION:
4011 cmd = F2FS_IOC_GETVERSION;
4012 break;
4013 case F2FS_IOC_START_ATOMIC_WRITE:
4014 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4015 case F2FS_IOC_START_VOLATILE_WRITE:
4016 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4017 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4018 case F2FS_IOC_SHUTDOWN:
4019 case F2FS_IOC_SET_ENCRYPTION_POLICY:
4020 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
4021 case F2FS_IOC_GET_ENCRYPTION_POLICY:
4022 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4023 case FS_IOC_ADD_ENCRYPTION_KEY:
4024 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4025 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4026 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4027 case FS_IOC_GET_ENCRYPTION_NONCE:
4028 case F2FS_IOC_GARBAGE_COLLECT:
4029 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4030 case F2FS_IOC_WRITE_CHECKPOINT:
4031 case F2FS_IOC_DEFRAGMENT:
4032 case F2FS_IOC_MOVE_RANGE:
4033 case F2FS_IOC_FLUSH_DEVICE:
4034 case F2FS_IOC_GET_FEATURES:
4035 case F2FS_IOC_FSGETXATTR:
4036 case F2FS_IOC_FSSETXATTR:
4037 case F2FS_IOC_GET_PIN_FILE:
4038 case F2FS_IOC_SET_PIN_FILE:
4039 case F2FS_IOC_PRECACHE_EXTENTS:
4040 case F2FS_IOC_RESIZE_FS:
4041 case FS_IOC_ENABLE_VERITY:
4042 case FS_IOC_MEASURE_VERITY:
4043 case F2FS_IOC_GET_VOLUME_NAME:
4044 case F2FS_IOC_SET_VOLUME_NAME:
4045 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4046 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4047 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4048 break;
4049 default:
4050 return -ENOIOCTLCMD;
4051 }
4052 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4053 }
4054 #endif
4055
4056 const struct file_operations f2fs_file_operations = {
4057 .llseek = f2fs_llseek,
4058 .read_iter = f2fs_file_read_iter,
4059 .write_iter = f2fs_file_write_iter,
4060 .open = f2fs_file_open,
4061 .release = f2fs_release_file,
4062 .mmap = f2fs_file_mmap,
4063 .flush = f2fs_file_flush,
4064 .fsync = f2fs_sync_file,
4065 .fallocate = f2fs_fallocate,
4066 .unlocked_ioctl = f2fs_ioctl,
4067 #ifdef CONFIG_COMPAT
4068 .compat_ioctl = f2fs_compat_ioctl,
4069 #endif
4070 .splice_read = generic_file_splice_read,
4071 .splice_write = iter_file_splice_write,
4072 };
4073