• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5  *     & Swedish University of Agricultural Sciences.
6  *
7  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
8  *     Agricultural Sciences.
9  *
10  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
11  *
12  * This work is based on the LPC-trie which is originally described in:
13  *
14  * An experimental study of compression methods for dynamic tries
15  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
17  *
18  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20  *
21  * Code from fib_hash has been reused which includes the following header:
22  *
23  * INET		An implementation of the TCP/IP protocol suite for the LINUX
24  *		operating system.  INET is implemented using the  BSD Socket
25  *		interface as the means of communication with the user level.
26  *
27  *		IPv4 FIB: lookup engine and maintenance routines.
28  *
29  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30  *
31  * Substantial contributions to this work comes from:
32  *
33  *		David S. Miller, <davem@davemloft.net>
34  *		Stephen Hemminger <shemminger@osdl.org>
35  *		Paul E. McKenney <paulmck@us.ibm.com>
36  *		Patrick McHardy <kaber@trash.net>
37  */
38 
39 #define VERSION "0.409"
40 
41 #include <linux/cache.h>
42 #include <linux/uaccess.h>
43 #include <linux/bitops.h>
44 #include <linux/types.h>
45 #include <linux/kernel.h>
46 #include <linux/mm.h>
47 #include <linux/string.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/errno.h>
51 #include <linux/in.h>
52 #include <linux/inet.h>
53 #include <linux/inetdevice.h>
54 #include <linux/netdevice.h>
55 #include <linux/if_arp.h>
56 #include <linux/proc_fs.h>
57 #include <linux/rcupdate.h>
58 #include <linux/skbuff.h>
59 #include <linux/netlink.h>
60 #include <linux/init.h>
61 #include <linux/list.h>
62 #include <linux/slab.h>
63 #include <linux/export.h>
64 #include <linux/vmalloc.h>
65 #include <linux/notifier.h>
66 #include <net/net_namespace.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/tcp.h>
71 #include <net/sock.h>
72 #include <net/ip_fib.h>
73 #include <net/fib_notifier.h>
74 #include <trace/events/fib.h>
75 #include "fib_lookup.h"
76 
call_fib_entry_notifier(struct notifier_block * nb,struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa)77 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
78 				   enum fib_event_type event_type, u32 dst,
79 				   int dst_len, struct fib_alias *fa)
80 {
81 	struct fib_entry_notifier_info info = {
82 		.dst = dst,
83 		.dst_len = dst_len,
84 		.fi = fa->fa_info,
85 		.tos = fa->fa_tos,
86 		.type = fa->fa_type,
87 		.tb_id = fa->tb_id,
88 	};
89 	return call_fib4_notifier(nb, net, event_type, &info.info);
90 }
91 
call_fib_entry_notifiers(struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)92 static int call_fib_entry_notifiers(struct net *net,
93 				    enum fib_event_type event_type, u32 dst,
94 				    int dst_len, struct fib_alias *fa,
95 				    struct netlink_ext_ack *extack)
96 {
97 	struct fib_entry_notifier_info info = {
98 		.info.extack = extack,
99 		.dst = dst,
100 		.dst_len = dst_len,
101 		.fi = fa->fa_info,
102 		.tos = fa->fa_tos,
103 		.type = fa->fa_type,
104 		.tb_id = fa->tb_id,
105 	};
106 	return call_fib4_notifiers(net, event_type, &info.info);
107 }
108 
109 #define MAX_STAT_DEPTH 32
110 
111 #define KEYLENGTH	(8*sizeof(t_key))
112 #define KEY_MAX		((t_key)~0)
113 
114 typedef unsigned int t_key;
115 
116 #define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
117 #define IS_TNODE(n)	((n)->bits)
118 #define IS_LEAF(n)	(!(n)->bits)
119 
120 struct key_vector {
121 	t_key key;
122 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
123 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
124 	unsigned char slen;
125 	union {
126 		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
127 		struct hlist_head leaf;
128 		/* This array is valid if (pos | bits) > 0 (TNODE) */
129 		struct key_vector __rcu *tnode[0];
130 	};
131 };
132 
133 struct tnode {
134 	struct rcu_head rcu;
135 	t_key empty_children;		/* KEYLENGTH bits needed */
136 	t_key full_children;		/* KEYLENGTH bits needed */
137 	struct key_vector __rcu *parent;
138 	struct key_vector kv[1];
139 #define tn_bits kv[0].bits
140 };
141 
142 #define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
143 #define LEAF_SIZE	TNODE_SIZE(1)
144 
145 #ifdef CONFIG_IP_FIB_TRIE_STATS
146 struct trie_use_stats {
147 	unsigned int gets;
148 	unsigned int backtrack;
149 	unsigned int semantic_match_passed;
150 	unsigned int semantic_match_miss;
151 	unsigned int null_node_hit;
152 	unsigned int resize_node_skipped;
153 };
154 #endif
155 
156 struct trie_stat {
157 	unsigned int totdepth;
158 	unsigned int maxdepth;
159 	unsigned int tnodes;
160 	unsigned int leaves;
161 	unsigned int nullpointers;
162 	unsigned int prefixes;
163 	unsigned int nodesizes[MAX_STAT_DEPTH];
164 };
165 
166 struct trie {
167 	struct key_vector kv[1];
168 #ifdef CONFIG_IP_FIB_TRIE_STATS
169 	struct trie_use_stats __percpu *stats;
170 #endif
171 };
172 
173 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
174 static unsigned int tnode_free_size;
175 
176 /*
177  * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
178  * especially useful before resizing the root node with PREEMPT_NONE configs;
179  * the value was obtained experimentally, aiming to avoid visible slowdown.
180  */
181 unsigned int sysctl_fib_sync_mem = 512 * 1024;
182 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
183 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
184 
185 static struct kmem_cache *fn_alias_kmem __ro_after_init;
186 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
187 
tn_info(struct key_vector * kv)188 static inline struct tnode *tn_info(struct key_vector *kv)
189 {
190 	return container_of(kv, struct tnode, kv[0]);
191 }
192 
193 /* caller must hold RTNL */
194 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
195 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
196 
197 /* caller must hold RCU read lock or RTNL */
198 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
199 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
200 
201 /* wrapper for rcu_assign_pointer */
node_set_parent(struct key_vector * n,struct key_vector * tp)202 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
203 {
204 	if (n)
205 		rcu_assign_pointer(tn_info(n)->parent, tp);
206 }
207 
208 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
209 
210 /* This provides us with the number of children in this node, in the case of a
211  * leaf this will return 0 meaning none of the children are accessible.
212  */
child_length(const struct key_vector * tn)213 static inline unsigned long child_length(const struct key_vector *tn)
214 {
215 	return (1ul << tn->bits) & ~(1ul);
216 }
217 
218 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
219 
get_index(t_key key,struct key_vector * kv)220 static inline unsigned long get_index(t_key key, struct key_vector *kv)
221 {
222 	unsigned long index = key ^ kv->key;
223 
224 	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
225 		return 0;
226 
227 	return index >> kv->pos;
228 }
229 
230 /* To understand this stuff, an understanding of keys and all their bits is
231  * necessary. Every node in the trie has a key associated with it, but not
232  * all of the bits in that key are significant.
233  *
234  * Consider a node 'n' and its parent 'tp'.
235  *
236  * If n is a leaf, every bit in its key is significant. Its presence is
237  * necessitated by path compression, since during a tree traversal (when
238  * searching for a leaf - unless we are doing an insertion) we will completely
239  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
240  * a potentially successful search, that we have indeed been walking the
241  * correct key path.
242  *
243  * Note that we can never "miss" the correct key in the tree if present by
244  * following the wrong path. Path compression ensures that segments of the key
245  * that are the same for all keys with a given prefix are skipped, but the
246  * skipped part *is* identical for each node in the subtrie below the skipped
247  * bit! trie_insert() in this implementation takes care of that.
248  *
249  * if n is an internal node - a 'tnode' here, the various parts of its key
250  * have many different meanings.
251  *
252  * Example:
253  * _________________________________________________________________
254  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
255  * -----------------------------------------------------------------
256  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
257  *
258  * _________________________________________________________________
259  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
260  * -----------------------------------------------------------------
261  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
262  *
263  * tp->pos = 22
264  * tp->bits = 3
265  * n->pos = 13
266  * n->bits = 4
267  *
268  * First, let's just ignore the bits that come before the parent tp, that is
269  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
270  * point we do not use them for anything.
271  *
272  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
273  * index into the parent's child array. That is, they will be used to find
274  * 'n' among tp's children.
275  *
276  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
277  * for the node n.
278  *
279  * All the bits we have seen so far are significant to the node n. The rest
280  * of the bits are really not needed or indeed known in n->key.
281  *
282  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
283  * n's child array, and will of course be different for each child.
284  *
285  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
286  * at this point.
287  */
288 
289 static const int halve_threshold = 25;
290 static const int inflate_threshold = 50;
291 static const int halve_threshold_root = 15;
292 static const int inflate_threshold_root = 30;
293 
__alias_free_mem(struct rcu_head * head)294 static void __alias_free_mem(struct rcu_head *head)
295 {
296 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
297 	kmem_cache_free(fn_alias_kmem, fa);
298 }
299 
alias_free_mem_rcu(struct fib_alias * fa)300 static inline void alias_free_mem_rcu(struct fib_alias *fa)
301 {
302 	call_rcu(&fa->rcu, __alias_free_mem);
303 }
304 
305 #define TNODE_KMALLOC_MAX \
306 	ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
307 #define TNODE_VMALLOC_MAX \
308 	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
309 
__node_free_rcu(struct rcu_head * head)310 static void __node_free_rcu(struct rcu_head *head)
311 {
312 	struct tnode *n = container_of(head, struct tnode, rcu);
313 
314 	if (!n->tn_bits)
315 		kmem_cache_free(trie_leaf_kmem, n);
316 	else
317 		kvfree(n);
318 }
319 
320 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
321 
tnode_alloc(int bits)322 static struct tnode *tnode_alloc(int bits)
323 {
324 	size_t size;
325 
326 	/* verify bits is within bounds */
327 	if (bits > TNODE_VMALLOC_MAX)
328 		return NULL;
329 
330 	/* determine size and verify it is non-zero and didn't overflow */
331 	size = TNODE_SIZE(1ul << bits);
332 
333 	if (size <= PAGE_SIZE)
334 		return kzalloc(size, GFP_KERNEL);
335 	else
336 		return vzalloc(size);
337 }
338 
empty_child_inc(struct key_vector * n)339 static inline void empty_child_inc(struct key_vector *n)
340 {
341 	tn_info(n)->empty_children++;
342 
343 	if (!tn_info(n)->empty_children)
344 		tn_info(n)->full_children++;
345 }
346 
empty_child_dec(struct key_vector * n)347 static inline void empty_child_dec(struct key_vector *n)
348 {
349 	if (!tn_info(n)->empty_children)
350 		tn_info(n)->full_children--;
351 
352 	tn_info(n)->empty_children--;
353 }
354 
leaf_new(t_key key,struct fib_alias * fa)355 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
356 {
357 	struct key_vector *l;
358 	struct tnode *kv;
359 
360 	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
361 	if (!kv)
362 		return NULL;
363 
364 	/* initialize key vector */
365 	l = kv->kv;
366 	l->key = key;
367 	l->pos = 0;
368 	l->bits = 0;
369 	l->slen = fa->fa_slen;
370 
371 	/* link leaf to fib alias */
372 	INIT_HLIST_HEAD(&l->leaf);
373 	hlist_add_head(&fa->fa_list, &l->leaf);
374 
375 	return l;
376 }
377 
tnode_new(t_key key,int pos,int bits)378 static struct key_vector *tnode_new(t_key key, int pos, int bits)
379 {
380 	unsigned int shift = pos + bits;
381 	struct key_vector *tn;
382 	struct tnode *tnode;
383 
384 	/* verify bits and pos their msb bits clear and values are valid */
385 	BUG_ON(!bits || (shift > KEYLENGTH));
386 
387 	tnode = tnode_alloc(bits);
388 	if (!tnode)
389 		return NULL;
390 
391 	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
392 		 sizeof(struct key_vector *) << bits);
393 
394 	if (bits == KEYLENGTH)
395 		tnode->full_children = 1;
396 	else
397 		tnode->empty_children = 1ul << bits;
398 
399 	tn = tnode->kv;
400 	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
401 	tn->pos = pos;
402 	tn->bits = bits;
403 	tn->slen = pos;
404 
405 	return tn;
406 }
407 
408 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
409  * and no bits are skipped. See discussion in dyntree paper p. 6
410  */
tnode_full(struct key_vector * tn,struct key_vector * n)411 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
412 {
413 	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
414 }
415 
416 /* Add a child at position i overwriting the old value.
417  * Update the value of full_children and empty_children.
418  */
put_child(struct key_vector * tn,unsigned long i,struct key_vector * n)419 static void put_child(struct key_vector *tn, unsigned long i,
420 		      struct key_vector *n)
421 {
422 	struct key_vector *chi = get_child(tn, i);
423 	int isfull, wasfull;
424 
425 	BUG_ON(i >= child_length(tn));
426 
427 	/* update emptyChildren, overflow into fullChildren */
428 	if (!n && chi)
429 		empty_child_inc(tn);
430 	if (n && !chi)
431 		empty_child_dec(tn);
432 
433 	/* update fullChildren */
434 	wasfull = tnode_full(tn, chi);
435 	isfull = tnode_full(tn, n);
436 
437 	if (wasfull && !isfull)
438 		tn_info(tn)->full_children--;
439 	else if (!wasfull && isfull)
440 		tn_info(tn)->full_children++;
441 
442 	if (n && (tn->slen < n->slen))
443 		tn->slen = n->slen;
444 
445 	rcu_assign_pointer(tn->tnode[i], n);
446 }
447 
update_children(struct key_vector * tn)448 static void update_children(struct key_vector *tn)
449 {
450 	unsigned long i;
451 
452 	/* update all of the child parent pointers */
453 	for (i = child_length(tn); i;) {
454 		struct key_vector *inode = get_child(tn, --i);
455 
456 		if (!inode)
457 			continue;
458 
459 		/* Either update the children of a tnode that
460 		 * already belongs to us or update the child
461 		 * to point to ourselves.
462 		 */
463 		if (node_parent(inode) == tn)
464 			update_children(inode);
465 		else
466 			node_set_parent(inode, tn);
467 	}
468 }
469 
put_child_root(struct key_vector * tp,t_key key,struct key_vector * n)470 static inline void put_child_root(struct key_vector *tp, t_key key,
471 				  struct key_vector *n)
472 {
473 	if (IS_TRIE(tp))
474 		rcu_assign_pointer(tp->tnode[0], n);
475 	else
476 		put_child(tp, get_index(key, tp), n);
477 }
478 
tnode_free_init(struct key_vector * tn)479 static inline void tnode_free_init(struct key_vector *tn)
480 {
481 	tn_info(tn)->rcu.next = NULL;
482 }
483 
tnode_free_append(struct key_vector * tn,struct key_vector * n)484 static inline void tnode_free_append(struct key_vector *tn,
485 				     struct key_vector *n)
486 {
487 	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
488 	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
489 }
490 
tnode_free(struct key_vector * tn)491 static void tnode_free(struct key_vector *tn)
492 {
493 	struct callback_head *head = &tn_info(tn)->rcu;
494 
495 	while (head) {
496 		head = head->next;
497 		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
498 		node_free(tn);
499 
500 		tn = container_of(head, struct tnode, rcu)->kv;
501 	}
502 
503 	if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
504 		tnode_free_size = 0;
505 		synchronize_rcu();
506 	}
507 }
508 
replace(struct trie * t,struct key_vector * oldtnode,struct key_vector * tn)509 static struct key_vector *replace(struct trie *t,
510 				  struct key_vector *oldtnode,
511 				  struct key_vector *tn)
512 {
513 	struct key_vector *tp = node_parent(oldtnode);
514 	unsigned long i;
515 
516 	/* setup the parent pointer out of and back into this node */
517 	NODE_INIT_PARENT(tn, tp);
518 	put_child_root(tp, tn->key, tn);
519 
520 	/* update all of the child parent pointers */
521 	update_children(tn);
522 
523 	/* all pointers should be clean so we are done */
524 	tnode_free(oldtnode);
525 
526 	/* resize children now that oldtnode is freed */
527 	for (i = child_length(tn); i;) {
528 		struct key_vector *inode = get_child(tn, --i);
529 
530 		/* resize child node */
531 		if (tnode_full(tn, inode))
532 			tn = resize(t, inode);
533 	}
534 
535 	return tp;
536 }
537 
inflate(struct trie * t,struct key_vector * oldtnode)538 static struct key_vector *inflate(struct trie *t,
539 				  struct key_vector *oldtnode)
540 {
541 	struct key_vector *tn;
542 	unsigned long i;
543 	t_key m;
544 
545 	pr_debug("In inflate\n");
546 
547 	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
548 	if (!tn)
549 		goto notnode;
550 
551 	/* prepare oldtnode to be freed */
552 	tnode_free_init(oldtnode);
553 
554 	/* Assemble all of the pointers in our cluster, in this case that
555 	 * represents all of the pointers out of our allocated nodes that
556 	 * point to existing tnodes and the links between our allocated
557 	 * nodes.
558 	 */
559 	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
560 		struct key_vector *inode = get_child(oldtnode, --i);
561 		struct key_vector *node0, *node1;
562 		unsigned long j, k;
563 
564 		/* An empty child */
565 		if (!inode)
566 			continue;
567 
568 		/* A leaf or an internal node with skipped bits */
569 		if (!tnode_full(oldtnode, inode)) {
570 			put_child(tn, get_index(inode->key, tn), inode);
571 			continue;
572 		}
573 
574 		/* drop the node in the old tnode free list */
575 		tnode_free_append(oldtnode, inode);
576 
577 		/* An internal node with two children */
578 		if (inode->bits == 1) {
579 			put_child(tn, 2 * i + 1, get_child(inode, 1));
580 			put_child(tn, 2 * i, get_child(inode, 0));
581 			continue;
582 		}
583 
584 		/* We will replace this node 'inode' with two new
585 		 * ones, 'node0' and 'node1', each with half of the
586 		 * original children. The two new nodes will have
587 		 * a position one bit further down the key and this
588 		 * means that the "significant" part of their keys
589 		 * (see the discussion near the top of this file)
590 		 * will differ by one bit, which will be "0" in
591 		 * node0's key and "1" in node1's key. Since we are
592 		 * moving the key position by one step, the bit that
593 		 * we are moving away from - the bit at position
594 		 * (tn->pos) - is the one that will differ between
595 		 * node0 and node1. So... we synthesize that bit in the
596 		 * two new keys.
597 		 */
598 		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
599 		if (!node1)
600 			goto nomem;
601 		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
602 
603 		tnode_free_append(tn, node1);
604 		if (!node0)
605 			goto nomem;
606 		tnode_free_append(tn, node0);
607 
608 		/* populate child pointers in new nodes */
609 		for (k = child_length(inode), j = k / 2; j;) {
610 			put_child(node1, --j, get_child(inode, --k));
611 			put_child(node0, j, get_child(inode, j));
612 			put_child(node1, --j, get_child(inode, --k));
613 			put_child(node0, j, get_child(inode, j));
614 		}
615 
616 		/* link new nodes to parent */
617 		NODE_INIT_PARENT(node1, tn);
618 		NODE_INIT_PARENT(node0, tn);
619 
620 		/* link parent to nodes */
621 		put_child(tn, 2 * i + 1, node1);
622 		put_child(tn, 2 * i, node0);
623 	}
624 
625 	/* setup the parent pointers into and out of this node */
626 	return replace(t, oldtnode, tn);
627 nomem:
628 	/* all pointers should be clean so we are done */
629 	tnode_free(tn);
630 notnode:
631 	return NULL;
632 }
633 
halve(struct trie * t,struct key_vector * oldtnode)634 static struct key_vector *halve(struct trie *t,
635 				struct key_vector *oldtnode)
636 {
637 	struct key_vector *tn;
638 	unsigned long i;
639 
640 	pr_debug("In halve\n");
641 
642 	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
643 	if (!tn)
644 		goto notnode;
645 
646 	/* prepare oldtnode to be freed */
647 	tnode_free_init(oldtnode);
648 
649 	/* Assemble all of the pointers in our cluster, in this case that
650 	 * represents all of the pointers out of our allocated nodes that
651 	 * point to existing tnodes and the links between our allocated
652 	 * nodes.
653 	 */
654 	for (i = child_length(oldtnode); i;) {
655 		struct key_vector *node1 = get_child(oldtnode, --i);
656 		struct key_vector *node0 = get_child(oldtnode, --i);
657 		struct key_vector *inode;
658 
659 		/* At least one of the children is empty */
660 		if (!node1 || !node0) {
661 			put_child(tn, i / 2, node1 ? : node0);
662 			continue;
663 		}
664 
665 		/* Two nonempty children */
666 		inode = tnode_new(node0->key, oldtnode->pos, 1);
667 		if (!inode)
668 			goto nomem;
669 		tnode_free_append(tn, inode);
670 
671 		/* initialize pointers out of node */
672 		put_child(inode, 1, node1);
673 		put_child(inode, 0, node0);
674 		NODE_INIT_PARENT(inode, tn);
675 
676 		/* link parent to node */
677 		put_child(tn, i / 2, inode);
678 	}
679 
680 	/* setup the parent pointers into and out of this node */
681 	return replace(t, oldtnode, tn);
682 nomem:
683 	/* all pointers should be clean so we are done */
684 	tnode_free(tn);
685 notnode:
686 	return NULL;
687 }
688 
collapse(struct trie * t,struct key_vector * oldtnode)689 static struct key_vector *collapse(struct trie *t,
690 				   struct key_vector *oldtnode)
691 {
692 	struct key_vector *n, *tp;
693 	unsigned long i;
694 
695 	/* scan the tnode looking for that one child that might still exist */
696 	for (n = NULL, i = child_length(oldtnode); !n && i;)
697 		n = get_child(oldtnode, --i);
698 
699 	/* compress one level */
700 	tp = node_parent(oldtnode);
701 	put_child_root(tp, oldtnode->key, n);
702 	node_set_parent(n, tp);
703 
704 	/* drop dead node */
705 	node_free(oldtnode);
706 
707 	return tp;
708 }
709 
update_suffix(struct key_vector * tn)710 static unsigned char update_suffix(struct key_vector *tn)
711 {
712 	unsigned char slen = tn->pos;
713 	unsigned long stride, i;
714 	unsigned char slen_max;
715 
716 	/* only vector 0 can have a suffix length greater than or equal to
717 	 * tn->pos + tn->bits, the second highest node will have a suffix
718 	 * length at most of tn->pos + tn->bits - 1
719 	 */
720 	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
721 
722 	/* search though the list of children looking for nodes that might
723 	 * have a suffix greater than the one we currently have.  This is
724 	 * why we start with a stride of 2 since a stride of 1 would
725 	 * represent the nodes with suffix length equal to tn->pos
726 	 */
727 	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
728 		struct key_vector *n = get_child(tn, i);
729 
730 		if (!n || (n->slen <= slen))
731 			continue;
732 
733 		/* update stride and slen based on new value */
734 		stride <<= (n->slen - slen);
735 		slen = n->slen;
736 		i &= ~(stride - 1);
737 
738 		/* stop searching if we have hit the maximum possible value */
739 		if (slen >= slen_max)
740 			break;
741 	}
742 
743 	tn->slen = slen;
744 
745 	return slen;
746 }
747 
748 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
749  * the Helsinki University of Technology and Matti Tikkanen of Nokia
750  * Telecommunications, page 6:
751  * "A node is doubled if the ratio of non-empty children to all
752  * children in the *doubled* node is at least 'high'."
753  *
754  * 'high' in this instance is the variable 'inflate_threshold'. It
755  * is expressed as a percentage, so we multiply it with
756  * child_length() and instead of multiplying by 2 (since the
757  * child array will be doubled by inflate()) and multiplying
758  * the left-hand side by 100 (to handle the percentage thing) we
759  * multiply the left-hand side by 50.
760  *
761  * The left-hand side may look a bit weird: child_length(tn)
762  * - tn->empty_children is of course the number of non-null children
763  * in the current node. tn->full_children is the number of "full"
764  * children, that is non-null tnodes with a skip value of 0.
765  * All of those will be doubled in the resulting inflated tnode, so
766  * we just count them one extra time here.
767  *
768  * A clearer way to write this would be:
769  *
770  * to_be_doubled = tn->full_children;
771  * not_to_be_doubled = child_length(tn) - tn->empty_children -
772  *     tn->full_children;
773  *
774  * new_child_length = child_length(tn) * 2;
775  *
776  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
777  *      new_child_length;
778  * if (new_fill_factor >= inflate_threshold)
779  *
780  * ...and so on, tho it would mess up the while () loop.
781  *
782  * anyway,
783  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
784  *      inflate_threshold
785  *
786  * avoid a division:
787  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
788  *      inflate_threshold * new_child_length
789  *
790  * expand not_to_be_doubled and to_be_doubled, and shorten:
791  * 100 * (child_length(tn) - tn->empty_children +
792  *    tn->full_children) >= inflate_threshold * new_child_length
793  *
794  * expand new_child_length:
795  * 100 * (child_length(tn) - tn->empty_children +
796  *    tn->full_children) >=
797  *      inflate_threshold * child_length(tn) * 2
798  *
799  * shorten again:
800  * 50 * (tn->full_children + child_length(tn) -
801  *    tn->empty_children) >= inflate_threshold *
802  *    child_length(tn)
803  *
804  */
should_inflate(struct key_vector * tp,struct key_vector * tn)805 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
806 {
807 	unsigned long used = child_length(tn);
808 	unsigned long threshold = used;
809 
810 	/* Keep root node larger */
811 	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
812 	used -= tn_info(tn)->empty_children;
813 	used += tn_info(tn)->full_children;
814 
815 	/* if bits == KEYLENGTH then pos = 0, and will fail below */
816 
817 	return (used > 1) && tn->pos && ((50 * used) >= threshold);
818 }
819 
should_halve(struct key_vector * tp,struct key_vector * tn)820 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
821 {
822 	unsigned long used = child_length(tn);
823 	unsigned long threshold = used;
824 
825 	/* Keep root node larger */
826 	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
827 	used -= tn_info(tn)->empty_children;
828 
829 	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
830 
831 	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
832 }
833 
should_collapse(struct key_vector * tn)834 static inline bool should_collapse(struct key_vector *tn)
835 {
836 	unsigned long used = child_length(tn);
837 
838 	used -= tn_info(tn)->empty_children;
839 
840 	/* account for bits == KEYLENGTH case */
841 	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
842 		used -= KEY_MAX;
843 
844 	/* One child or none, time to drop us from the trie */
845 	return used < 2;
846 }
847 
848 #define MAX_WORK 10
resize(struct trie * t,struct key_vector * tn)849 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
850 {
851 #ifdef CONFIG_IP_FIB_TRIE_STATS
852 	struct trie_use_stats __percpu *stats = t->stats;
853 #endif
854 	struct key_vector *tp = node_parent(tn);
855 	unsigned long cindex = get_index(tn->key, tp);
856 	int max_work = MAX_WORK;
857 
858 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
859 		 tn, inflate_threshold, halve_threshold);
860 
861 	/* track the tnode via the pointer from the parent instead of
862 	 * doing it ourselves.  This way we can let RCU fully do its
863 	 * thing without us interfering
864 	 */
865 	BUG_ON(tn != get_child(tp, cindex));
866 
867 	/* Double as long as the resulting node has a number of
868 	 * nonempty nodes that are above the threshold.
869 	 */
870 	while (should_inflate(tp, tn) && max_work) {
871 		tp = inflate(t, tn);
872 		if (!tp) {
873 #ifdef CONFIG_IP_FIB_TRIE_STATS
874 			this_cpu_inc(stats->resize_node_skipped);
875 #endif
876 			break;
877 		}
878 
879 		max_work--;
880 		tn = get_child(tp, cindex);
881 	}
882 
883 	/* update parent in case inflate failed */
884 	tp = node_parent(tn);
885 
886 	/* Return if at least one inflate is run */
887 	if (max_work != MAX_WORK)
888 		return tp;
889 
890 	/* Halve as long as the number of empty children in this
891 	 * node is above threshold.
892 	 */
893 	while (should_halve(tp, tn) && max_work) {
894 		tp = halve(t, tn);
895 		if (!tp) {
896 #ifdef CONFIG_IP_FIB_TRIE_STATS
897 			this_cpu_inc(stats->resize_node_skipped);
898 #endif
899 			break;
900 		}
901 
902 		max_work--;
903 		tn = get_child(tp, cindex);
904 	}
905 
906 	/* Only one child remains */
907 	if (should_collapse(tn))
908 		return collapse(t, tn);
909 
910 	/* update parent in case halve failed */
911 	return node_parent(tn);
912 }
913 
node_pull_suffix(struct key_vector * tn,unsigned char slen)914 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
915 {
916 	unsigned char node_slen = tn->slen;
917 
918 	while ((node_slen > tn->pos) && (node_slen > slen)) {
919 		slen = update_suffix(tn);
920 		if (node_slen == slen)
921 			break;
922 
923 		tn = node_parent(tn);
924 		node_slen = tn->slen;
925 	}
926 }
927 
node_push_suffix(struct key_vector * tn,unsigned char slen)928 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
929 {
930 	while (tn->slen < slen) {
931 		tn->slen = slen;
932 		tn = node_parent(tn);
933 	}
934 }
935 
936 /* rcu_read_lock needs to be hold by caller from readside */
fib_find_node(struct trie * t,struct key_vector ** tp,u32 key)937 static struct key_vector *fib_find_node(struct trie *t,
938 					struct key_vector **tp, u32 key)
939 {
940 	struct key_vector *pn, *n = t->kv;
941 	unsigned long index = 0;
942 
943 	do {
944 		pn = n;
945 		n = get_child_rcu(n, index);
946 
947 		if (!n)
948 			break;
949 
950 		index = get_cindex(key, n);
951 
952 		/* This bit of code is a bit tricky but it combines multiple
953 		 * checks into a single check.  The prefix consists of the
954 		 * prefix plus zeros for the bits in the cindex. The index
955 		 * is the difference between the key and this value.  From
956 		 * this we can actually derive several pieces of data.
957 		 *   if (index >= (1ul << bits))
958 		 *     we have a mismatch in skip bits and failed
959 		 *   else
960 		 *     we know the value is cindex
961 		 *
962 		 * This check is safe even if bits == KEYLENGTH due to the
963 		 * fact that we can only allocate a node with 32 bits if a
964 		 * long is greater than 32 bits.
965 		 */
966 		if (index >= (1ul << n->bits)) {
967 			n = NULL;
968 			break;
969 		}
970 
971 		/* keep searching until we find a perfect match leaf or NULL */
972 	} while (IS_TNODE(n));
973 
974 	*tp = pn;
975 
976 	return n;
977 }
978 
979 /* Return the first fib alias matching TOS with
980  * priority less than or equal to PRIO.
981  */
fib_find_alias(struct hlist_head * fah,u8 slen,u8 tos,u32 prio,u32 tb_id)982 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
983 					u8 tos, u32 prio, u32 tb_id)
984 {
985 	struct fib_alias *fa;
986 
987 	if (!fah)
988 		return NULL;
989 
990 	hlist_for_each_entry(fa, fah, fa_list) {
991 		if (fa->fa_slen < slen)
992 			continue;
993 		if (fa->fa_slen != slen)
994 			break;
995 		if (fa->tb_id > tb_id)
996 			continue;
997 		if (fa->tb_id != tb_id)
998 			break;
999 		if (fa->fa_tos > tos)
1000 			continue;
1001 		if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1002 			return fa;
1003 	}
1004 
1005 	return NULL;
1006 }
1007 
trie_rebalance(struct trie * t,struct key_vector * tn)1008 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1009 {
1010 	while (!IS_TRIE(tn))
1011 		tn = resize(t, tn);
1012 }
1013 
fib_insert_node(struct trie * t,struct key_vector * tp,struct fib_alias * new,t_key key)1014 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1015 			   struct fib_alias *new, t_key key)
1016 {
1017 	struct key_vector *n, *l;
1018 
1019 	l = leaf_new(key, new);
1020 	if (!l)
1021 		goto noleaf;
1022 
1023 	/* retrieve child from parent node */
1024 	n = get_child(tp, get_index(key, tp));
1025 
1026 	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1027 	 *
1028 	 *  Add a new tnode here
1029 	 *  first tnode need some special handling
1030 	 *  leaves us in position for handling as case 3
1031 	 */
1032 	if (n) {
1033 		struct key_vector *tn;
1034 
1035 		tn = tnode_new(key, __fls(key ^ n->key), 1);
1036 		if (!tn)
1037 			goto notnode;
1038 
1039 		/* initialize routes out of node */
1040 		NODE_INIT_PARENT(tn, tp);
1041 		put_child(tn, get_index(key, tn) ^ 1, n);
1042 
1043 		/* start adding routes into the node */
1044 		put_child_root(tp, key, tn);
1045 		node_set_parent(n, tn);
1046 
1047 		/* parent now has a NULL spot where the leaf can go */
1048 		tp = tn;
1049 	}
1050 
1051 	/* Case 3: n is NULL, and will just insert a new leaf */
1052 	node_push_suffix(tp, new->fa_slen);
1053 	NODE_INIT_PARENT(l, tp);
1054 	put_child_root(tp, key, l);
1055 	trie_rebalance(t, tp);
1056 
1057 	return 0;
1058 notnode:
1059 	node_free(l);
1060 noleaf:
1061 	return -ENOMEM;
1062 }
1063 
1064 /* fib notifier for ADD is sent before calling fib_insert_alias with
1065  * the expectation that the only possible failure ENOMEM
1066  */
fib_insert_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * new,struct fib_alias * fa,t_key key)1067 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1068 			    struct key_vector *l, struct fib_alias *new,
1069 			    struct fib_alias *fa, t_key key)
1070 {
1071 	if (!l)
1072 		return fib_insert_node(t, tp, new, key);
1073 
1074 	if (fa) {
1075 		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1076 	} else {
1077 		struct fib_alias *last;
1078 
1079 		hlist_for_each_entry(last, &l->leaf, fa_list) {
1080 			if (new->fa_slen < last->fa_slen)
1081 				break;
1082 			if ((new->fa_slen == last->fa_slen) &&
1083 			    (new->tb_id > last->tb_id))
1084 				break;
1085 			fa = last;
1086 		}
1087 
1088 		if (fa)
1089 			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1090 		else
1091 			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1092 	}
1093 
1094 	/* if we added to the tail node then we need to update slen */
1095 	if (l->slen < new->fa_slen) {
1096 		l->slen = new->fa_slen;
1097 		node_push_suffix(tp, new->fa_slen);
1098 	}
1099 
1100 	return 0;
1101 }
1102 
fib_valid_key_len(u32 key,u8 plen,struct netlink_ext_ack * extack)1103 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1104 {
1105 	if (plen > KEYLENGTH) {
1106 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1107 		return false;
1108 	}
1109 
1110 	if ((plen < KEYLENGTH) && (key << plen)) {
1111 		NL_SET_ERR_MSG(extack,
1112 			       "Invalid prefix for given prefix length");
1113 		return false;
1114 	}
1115 
1116 	return true;
1117 }
1118 
1119 /* Caller must hold RTNL. */
fib_table_insert(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1120 int fib_table_insert(struct net *net, struct fib_table *tb,
1121 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1122 {
1123 	enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1124 	struct trie *t = (struct trie *)tb->tb_data;
1125 	struct fib_alias *fa, *new_fa;
1126 	struct key_vector *l, *tp;
1127 	u16 nlflags = NLM_F_EXCL;
1128 	struct fib_info *fi;
1129 	u8 plen = cfg->fc_dst_len;
1130 	u8 slen = KEYLENGTH - plen;
1131 	u8 tos = cfg->fc_tos;
1132 	u32 key;
1133 	int err;
1134 
1135 	key = ntohl(cfg->fc_dst);
1136 
1137 	if (!fib_valid_key_len(key, plen, extack))
1138 		return -EINVAL;
1139 
1140 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1141 
1142 	fi = fib_create_info(cfg, extack);
1143 	if (IS_ERR(fi)) {
1144 		err = PTR_ERR(fi);
1145 		goto err;
1146 	}
1147 
1148 	l = fib_find_node(t, &tp, key);
1149 	fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1150 				tb->tb_id) : NULL;
1151 
1152 	/* Now fa, if non-NULL, points to the first fib alias
1153 	 * with the same keys [prefix,tos,priority], if such key already
1154 	 * exists or to the node before which we will insert new one.
1155 	 *
1156 	 * If fa is NULL, we will need to allocate a new one and
1157 	 * insert to the tail of the section matching the suffix length
1158 	 * of the new alias.
1159 	 */
1160 
1161 	if (fa && fa->fa_tos == tos &&
1162 	    fa->fa_info->fib_priority == fi->fib_priority) {
1163 		struct fib_alias *fa_first, *fa_match;
1164 
1165 		err = -EEXIST;
1166 		if (cfg->fc_nlflags & NLM_F_EXCL)
1167 			goto out;
1168 
1169 		nlflags &= ~NLM_F_EXCL;
1170 
1171 		/* We have 2 goals:
1172 		 * 1. Find exact match for type, scope, fib_info to avoid
1173 		 * duplicate routes
1174 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1175 		 */
1176 		fa_match = NULL;
1177 		fa_first = fa;
1178 		hlist_for_each_entry_from(fa, fa_list) {
1179 			if ((fa->fa_slen != slen) ||
1180 			    (fa->tb_id != tb->tb_id) ||
1181 			    (fa->fa_tos != tos))
1182 				break;
1183 			if (fa->fa_info->fib_priority != fi->fib_priority)
1184 				break;
1185 			if (fa->fa_type == cfg->fc_type &&
1186 			    fa->fa_info == fi) {
1187 				fa_match = fa;
1188 				break;
1189 			}
1190 		}
1191 
1192 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1193 			struct fib_info *fi_drop;
1194 			u8 state;
1195 
1196 			nlflags |= NLM_F_REPLACE;
1197 			fa = fa_first;
1198 			if (fa_match) {
1199 				if (fa == fa_match)
1200 					err = 0;
1201 				goto out;
1202 			}
1203 			err = -ENOBUFS;
1204 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1205 			if (!new_fa)
1206 				goto out;
1207 
1208 			fi_drop = fa->fa_info;
1209 			new_fa->fa_tos = fa->fa_tos;
1210 			new_fa->fa_info = fi;
1211 			new_fa->fa_type = cfg->fc_type;
1212 			state = fa->fa_state;
1213 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1214 			new_fa->fa_slen = fa->fa_slen;
1215 			new_fa->tb_id = tb->tb_id;
1216 			new_fa->fa_default = -1;
1217 
1218 			err = call_fib_entry_notifiers(net,
1219 						       FIB_EVENT_ENTRY_REPLACE,
1220 						       key, plen, new_fa,
1221 						       extack);
1222 			if (err)
1223 				goto out_free_new_fa;
1224 
1225 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1226 				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1227 
1228 			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1229 
1230 			alias_free_mem_rcu(fa);
1231 
1232 			fib_release_info(fi_drop);
1233 			if (state & FA_S_ACCESSED)
1234 				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1235 
1236 			goto succeeded;
1237 		}
1238 		/* Error if we find a perfect match which
1239 		 * uses the same scope, type, and nexthop
1240 		 * information.
1241 		 */
1242 		if (fa_match)
1243 			goto out;
1244 
1245 		if (cfg->fc_nlflags & NLM_F_APPEND) {
1246 			event = FIB_EVENT_ENTRY_APPEND;
1247 			nlflags |= NLM_F_APPEND;
1248 		} else {
1249 			fa = fa_first;
1250 		}
1251 	}
1252 	err = -ENOENT;
1253 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1254 		goto out;
1255 
1256 	nlflags |= NLM_F_CREATE;
1257 	err = -ENOBUFS;
1258 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1259 	if (!new_fa)
1260 		goto out;
1261 
1262 	new_fa->fa_info = fi;
1263 	new_fa->fa_tos = tos;
1264 	new_fa->fa_type = cfg->fc_type;
1265 	new_fa->fa_state = 0;
1266 	new_fa->fa_slen = slen;
1267 	new_fa->tb_id = tb->tb_id;
1268 	new_fa->fa_default = -1;
1269 
1270 	err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1271 	if (err)
1272 		goto out_free_new_fa;
1273 
1274 	/* Insert new entry to the list. */
1275 	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1276 	if (err)
1277 		goto out_fib_notif;
1278 
1279 	if (!plen)
1280 		tb->tb_num_default++;
1281 
1282 	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1283 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1284 		  &cfg->fc_nlinfo, nlflags);
1285 succeeded:
1286 	return 0;
1287 
1288 out_fib_notif:
1289 	/* notifier was sent that entry would be added to trie, but
1290 	 * the add failed and need to recover. Only failure for
1291 	 * fib_insert_alias is ENOMEM.
1292 	 */
1293 	NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1294 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1295 				 plen, new_fa, NULL);
1296 out_free_new_fa:
1297 	kmem_cache_free(fn_alias_kmem, new_fa);
1298 out:
1299 	fib_release_info(fi);
1300 err:
1301 	return err;
1302 }
1303 
prefix_mismatch(t_key key,struct key_vector * n)1304 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1305 {
1306 	t_key prefix = n->key;
1307 
1308 	return (key ^ prefix) & (prefix | -prefix);
1309 }
1310 
1311 /* should be called with rcu_read_lock */
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1312 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1313 		     struct fib_result *res, int fib_flags)
1314 {
1315 	struct trie *t = (struct trie *) tb->tb_data;
1316 #ifdef CONFIG_IP_FIB_TRIE_STATS
1317 	struct trie_use_stats __percpu *stats = t->stats;
1318 #endif
1319 	const t_key key = ntohl(flp->daddr);
1320 	struct key_vector *n, *pn;
1321 	struct fib_alias *fa;
1322 	unsigned long index;
1323 	t_key cindex;
1324 
1325 	pn = t->kv;
1326 	cindex = 0;
1327 
1328 	n = get_child_rcu(pn, cindex);
1329 	if (!n) {
1330 		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1331 		return -EAGAIN;
1332 	}
1333 
1334 #ifdef CONFIG_IP_FIB_TRIE_STATS
1335 	this_cpu_inc(stats->gets);
1336 #endif
1337 
1338 	/* Step 1: Travel to the longest prefix match in the trie */
1339 	for (;;) {
1340 		index = get_cindex(key, n);
1341 
1342 		/* This bit of code is a bit tricky but it combines multiple
1343 		 * checks into a single check.  The prefix consists of the
1344 		 * prefix plus zeros for the "bits" in the prefix. The index
1345 		 * is the difference between the key and this value.  From
1346 		 * this we can actually derive several pieces of data.
1347 		 *   if (index >= (1ul << bits))
1348 		 *     we have a mismatch in skip bits and failed
1349 		 *   else
1350 		 *     we know the value is cindex
1351 		 *
1352 		 * This check is safe even if bits == KEYLENGTH due to the
1353 		 * fact that we can only allocate a node with 32 bits if a
1354 		 * long is greater than 32 bits.
1355 		 */
1356 		if (index >= (1ul << n->bits))
1357 			break;
1358 
1359 		/* we have found a leaf. Prefixes have already been compared */
1360 		if (IS_LEAF(n))
1361 			goto found;
1362 
1363 		/* only record pn and cindex if we are going to be chopping
1364 		 * bits later.  Otherwise we are just wasting cycles.
1365 		 */
1366 		if (n->slen > n->pos) {
1367 			pn = n;
1368 			cindex = index;
1369 		}
1370 
1371 		n = get_child_rcu(n, index);
1372 		if (unlikely(!n))
1373 			goto backtrace;
1374 	}
1375 
1376 	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1377 	for (;;) {
1378 		/* record the pointer where our next node pointer is stored */
1379 		struct key_vector __rcu **cptr = n->tnode;
1380 
1381 		/* This test verifies that none of the bits that differ
1382 		 * between the key and the prefix exist in the region of
1383 		 * the lsb and higher in the prefix.
1384 		 */
1385 		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1386 			goto backtrace;
1387 
1388 		/* exit out and process leaf */
1389 		if (unlikely(IS_LEAF(n)))
1390 			break;
1391 
1392 		/* Don't bother recording parent info.  Since we are in
1393 		 * prefix match mode we will have to come back to wherever
1394 		 * we started this traversal anyway
1395 		 */
1396 
1397 		while ((n = rcu_dereference(*cptr)) == NULL) {
1398 backtrace:
1399 #ifdef CONFIG_IP_FIB_TRIE_STATS
1400 			if (!n)
1401 				this_cpu_inc(stats->null_node_hit);
1402 #endif
1403 			/* If we are at cindex 0 there are no more bits for
1404 			 * us to strip at this level so we must ascend back
1405 			 * up one level to see if there are any more bits to
1406 			 * be stripped there.
1407 			 */
1408 			while (!cindex) {
1409 				t_key pkey = pn->key;
1410 
1411 				/* If we don't have a parent then there is
1412 				 * nothing for us to do as we do not have any
1413 				 * further nodes to parse.
1414 				 */
1415 				if (IS_TRIE(pn)) {
1416 					trace_fib_table_lookup(tb->tb_id, flp,
1417 							       NULL, -EAGAIN);
1418 					return -EAGAIN;
1419 				}
1420 #ifdef CONFIG_IP_FIB_TRIE_STATS
1421 				this_cpu_inc(stats->backtrack);
1422 #endif
1423 				/* Get Child's index */
1424 				pn = node_parent_rcu(pn);
1425 				cindex = get_index(pkey, pn);
1426 			}
1427 
1428 			/* strip the least significant bit from the cindex */
1429 			cindex &= cindex - 1;
1430 
1431 			/* grab pointer for next child node */
1432 			cptr = &pn->tnode[cindex];
1433 		}
1434 	}
1435 
1436 found:
1437 	/* this line carries forward the xor from earlier in the function */
1438 	index = key ^ n->key;
1439 
1440 	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1441 	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1442 		struct fib_info *fi = fa->fa_info;
1443 		int nhsel, err;
1444 
1445 		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1446 			if (index >= (1ul << fa->fa_slen))
1447 				continue;
1448 		}
1449 		if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1450 			continue;
1451 		/* Paired with WRITE_ONCE() in fib_release_info() */
1452 		if (READ_ONCE(fi->fib_dead))
1453 			continue;
1454 		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1455 			continue;
1456 		fib_alias_accessed(fa);
1457 		err = fib_props[fa->fa_type].error;
1458 		if (unlikely(err < 0)) {
1459 out_reject:
1460 #ifdef CONFIG_IP_FIB_TRIE_STATS
1461 			this_cpu_inc(stats->semantic_match_passed);
1462 #endif
1463 			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1464 			return err;
1465 		}
1466 		if (fi->fib_flags & RTNH_F_DEAD)
1467 			continue;
1468 
1469 		if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) {
1470 			err = fib_props[RTN_BLACKHOLE].error;
1471 			goto out_reject;
1472 		}
1473 
1474 		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1475 			struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel);
1476 
1477 			if (nhc->nhc_flags & RTNH_F_DEAD)
1478 				continue;
1479 			if (ip_ignore_linkdown(nhc->nhc_dev) &&
1480 			    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1481 			    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1482 				continue;
1483 			if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1484 				if (flp->flowi4_oif &&
1485 				    flp->flowi4_oif != nhc->nhc_oif)
1486 					continue;
1487 			}
1488 
1489 			if (!(fib_flags & FIB_LOOKUP_NOREF))
1490 				refcount_inc(&fi->fib_clntref);
1491 
1492 			res->prefix = htonl(n->key);
1493 			res->prefixlen = KEYLENGTH - fa->fa_slen;
1494 			res->nh_sel = nhsel;
1495 			res->nhc = nhc;
1496 			res->type = fa->fa_type;
1497 			res->scope = fi->fib_scope;
1498 			res->fi = fi;
1499 			res->table = tb;
1500 			res->fa_head = &n->leaf;
1501 #ifdef CONFIG_IP_FIB_TRIE_STATS
1502 			this_cpu_inc(stats->semantic_match_passed);
1503 #endif
1504 			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1505 
1506 			return err;
1507 		}
1508 	}
1509 #ifdef CONFIG_IP_FIB_TRIE_STATS
1510 	this_cpu_inc(stats->semantic_match_miss);
1511 #endif
1512 	goto backtrace;
1513 }
1514 EXPORT_SYMBOL_GPL(fib_table_lookup);
1515 
fib_remove_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * old)1516 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1517 			     struct key_vector *l, struct fib_alias *old)
1518 {
1519 	/* record the location of the previous list_info entry */
1520 	struct hlist_node **pprev = old->fa_list.pprev;
1521 	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1522 
1523 	/* remove the fib_alias from the list */
1524 	hlist_del_rcu(&old->fa_list);
1525 
1526 	/* if we emptied the list this leaf will be freed and we can sort
1527 	 * out parent suffix lengths as a part of trie_rebalance
1528 	 */
1529 	if (hlist_empty(&l->leaf)) {
1530 		if (tp->slen == l->slen)
1531 			node_pull_suffix(tp, tp->pos);
1532 		put_child_root(tp, l->key, NULL);
1533 		node_free(l);
1534 		trie_rebalance(t, tp);
1535 		return;
1536 	}
1537 
1538 	/* only access fa if it is pointing at the last valid hlist_node */
1539 	if (*pprev)
1540 		return;
1541 
1542 	/* update the trie with the latest suffix length */
1543 	l->slen = fa->fa_slen;
1544 	node_pull_suffix(tp, fa->fa_slen);
1545 }
1546 
1547 /* Caller must hold RTNL. */
fib_table_delete(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1548 int fib_table_delete(struct net *net, struct fib_table *tb,
1549 		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1550 {
1551 	struct trie *t = (struct trie *) tb->tb_data;
1552 	struct fib_alias *fa, *fa_to_delete;
1553 	struct key_vector *l, *tp;
1554 	u8 plen = cfg->fc_dst_len;
1555 	u8 slen = KEYLENGTH - plen;
1556 	u8 tos = cfg->fc_tos;
1557 	u32 key;
1558 
1559 	key = ntohl(cfg->fc_dst);
1560 
1561 	if (!fib_valid_key_len(key, plen, extack))
1562 		return -EINVAL;
1563 
1564 	l = fib_find_node(t, &tp, key);
1565 	if (!l)
1566 		return -ESRCH;
1567 
1568 	fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1569 	if (!fa)
1570 		return -ESRCH;
1571 
1572 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1573 
1574 	fa_to_delete = NULL;
1575 	hlist_for_each_entry_from(fa, fa_list) {
1576 		struct fib_info *fi = fa->fa_info;
1577 
1578 		if ((fa->fa_slen != slen) ||
1579 		    (fa->tb_id != tb->tb_id) ||
1580 		    (fa->fa_tos != tos))
1581 			break;
1582 
1583 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1584 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1585 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1586 		    (!cfg->fc_prefsrc ||
1587 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1588 		    (!cfg->fc_protocol ||
1589 		     fi->fib_protocol == cfg->fc_protocol) &&
1590 		    fib_nh_match(cfg, fi, extack) == 0 &&
1591 		    fib_metrics_match(cfg, fi)) {
1592 			fa_to_delete = fa;
1593 			break;
1594 		}
1595 	}
1596 
1597 	if (!fa_to_delete)
1598 		return -ESRCH;
1599 
1600 	call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1601 				 fa_to_delete, extack);
1602 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1603 		  &cfg->fc_nlinfo, 0);
1604 
1605 	if (!plen)
1606 		tb->tb_num_default--;
1607 
1608 	fib_remove_alias(t, tp, l, fa_to_delete);
1609 
1610 	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1611 		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1612 
1613 	fib_release_info(fa_to_delete->fa_info);
1614 	alias_free_mem_rcu(fa_to_delete);
1615 	return 0;
1616 }
1617 
1618 /* Scan for the next leaf starting at the provided key value */
leaf_walk_rcu(struct key_vector ** tn,t_key key)1619 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1620 {
1621 	struct key_vector *pn, *n = *tn;
1622 	unsigned long cindex;
1623 
1624 	/* this loop is meant to try and find the key in the trie */
1625 	do {
1626 		/* record parent and next child index */
1627 		pn = n;
1628 		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1629 
1630 		if (cindex >> pn->bits)
1631 			break;
1632 
1633 		/* descend into the next child */
1634 		n = get_child_rcu(pn, cindex++);
1635 		if (!n)
1636 			break;
1637 
1638 		/* guarantee forward progress on the keys */
1639 		if (IS_LEAF(n) && (n->key >= key))
1640 			goto found;
1641 	} while (IS_TNODE(n));
1642 
1643 	/* this loop will search for the next leaf with a greater key */
1644 	while (!IS_TRIE(pn)) {
1645 		/* if we exhausted the parent node we will need to climb */
1646 		if (cindex >= (1ul << pn->bits)) {
1647 			t_key pkey = pn->key;
1648 
1649 			pn = node_parent_rcu(pn);
1650 			cindex = get_index(pkey, pn) + 1;
1651 			continue;
1652 		}
1653 
1654 		/* grab the next available node */
1655 		n = get_child_rcu(pn, cindex++);
1656 		if (!n)
1657 			continue;
1658 
1659 		/* no need to compare keys since we bumped the index */
1660 		if (IS_LEAF(n))
1661 			goto found;
1662 
1663 		/* Rescan start scanning in new node */
1664 		pn = n;
1665 		cindex = 0;
1666 	}
1667 
1668 	*tn = pn;
1669 	return NULL; /* Root of trie */
1670 found:
1671 	/* if we are at the limit for keys just return NULL for the tnode */
1672 	*tn = pn;
1673 	return n;
1674 }
1675 
fib_trie_free(struct fib_table * tb)1676 static void fib_trie_free(struct fib_table *tb)
1677 {
1678 	struct trie *t = (struct trie *)tb->tb_data;
1679 	struct key_vector *pn = t->kv;
1680 	unsigned long cindex = 1;
1681 	struct hlist_node *tmp;
1682 	struct fib_alias *fa;
1683 
1684 	/* walk trie in reverse order and free everything */
1685 	for (;;) {
1686 		struct key_vector *n;
1687 
1688 		if (!(cindex--)) {
1689 			t_key pkey = pn->key;
1690 
1691 			if (IS_TRIE(pn))
1692 				break;
1693 
1694 			n = pn;
1695 			pn = node_parent(pn);
1696 
1697 			/* drop emptied tnode */
1698 			put_child_root(pn, n->key, NULL);
1699 			node_free(n);
1700 
1701 			cindex = get_index(pkey, pn);
1702 
1703 			continue;
1704 		}
1705 
1706 		/* grab the next available node */
1707 		n = get_child(pn, cindex);
1708 		if (!n)
1709 			continue;
1710 
1711 		if (IS_TNODE(n)) {
1712 			/* record pn and cindex for leaf walking */
1713 			pn = n;
1714 			cindex = 1ul << n->bits;
1715 
1716 			continue;
1717 		}
1718 
1719 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1720 			hlist_del_rcu(&fa->fa_list);
1721 			alias_free_mem_rcu(fa);
1722 		}
1723 
1724 		put_child_root(pn, n->key, NULL);
1725 		node_free(n);
1726 	}
1727 
1728 #ifdef CONFIG_IP_FIB_TRIE_STATS
1729 	free_percpu(t->stats);
1730 #endif
1731 	kfree(tb);
1732 }
1733 
fib_trie_unmerge(struct fib_table * oldtb)1734 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1735 {
1736 	struct trie *ot = (struct trie *)oldtb->tb_data;
1737 	struct key_vector *l, *tp = ot->kv;
1738 	struct fib_table *local_tb;
1739 	struct fib_alias *fa;
1740 	struct trie *lt;
1741 	t_key key = 0;
1742 
1743 	if (oldtb->tb_data == oldtb->__data)
1744 		return oldtb;
1745 
1746 	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1747 	if (!local_tb)
1748 		return NULL;
1749 
1750 	lt = (struct trie *)local_tb->tb_data;
1751 
1752 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1753 		struct key_vector *local_l = NULL, *local_tp;
1754 
1755 		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1756 			struct fib_alias *new_fa;
1757 
1758 			if (local_tb->tb_id != fa->tb_id)
1759 				continue;
1760 
1761 			/* clone fa for new local table */
1762 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1763 			if (!new_fa)
1764 				goto out;
1765 
1766 			memcpy(new_fa, fa, sizeof(*fa));
1767 
1768 			/* insert clone into table */
1769 			if (!local_l)
1770 				local_l = fib_find_node(lt, &local_tp, l->key);
1771 
1772 			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1773 					     NULL, l->key)) {
1774 				kmem_cache_free(fn_alias_kmem, new_fa);
1775 				goto out;
1776 			}
1777 		}
1778 
1779 		/* stop loop if key wrapped back to 0 */
1780 		key = l->key + 1;
1781 		if (key < l->key)
1782 			break;
1783 	}
1784 
1785 	return local_tb;
1786 out:
1787 	fib_trie_free(local_tb);
1788 
1789 	return NULL;
1790 }
1791 
1792 /* Caller must hold RTNL */
fib_table_flush_external(struct fib_table * tb)1793 void fib_table_flush_external(struct fib_table *tb)
1794 {
1795 	struct trie *t = (struct trie *)tb->tb_data;
1796 	struct key_vector *pn = t->kv;
1797 	unsigned long cindex = 1;
1798 	struct hlist_node *tmp;
1799 	struct fib_alias *fa;
1800 
1801 	/* walk trie in reverse order */
1802 	for (;;) {
1803 		unsigned char slen = 0;
1804 		struct key_vector *n;
1805 
1806 		if (!(cindex--)) {
1807 			t_key pkey = pn->key;
1808 
1809 			/* cannot resize the trie vector */
1810 			if (IS_TRIE(pn))
1811 				break;
1812 
1813 			/* update the suffix to address pulled leaves */
1814 			if (pn->slen > pn->pos)
1815 				update_suffix(pn);
1816 
1817 			/* resize completed node */
1818 			pn = resize(t, pn);
1819 			cindex = get_index(pkey, pn);
1820 
1821 			continue;
1822 		}
1823 
1824 		/* grab the next available node */
1825 		n = get_child(pn, cindex);
1826 		if (!n)
1827 			continue;
1828 
1829 		if (IS_TNODE(n)) {
1830 			/* record pn and cindex for leaf walking */
1831 			pn = n;
1832 			cindex = 1ul << n->bits;
1833 
1834 			continue;
1835 		}
1836 
1837 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1838 			/* if alias was cloned to local then we just
1839 			 * need to remove the local copy from main
1840 			 */
1841 			if (tb->tb_id != fa->tb_id) {
1842 				hlist_del_rcu(&fa->fa_list);
1843 				alias_free_mem_rcu(fa);
1844 				continue;
1845 			}
1846 
1847 			/* record local slen */
1848 			slen = fa->fa_slen;
1849 		}
1850 
1851 		/* update leaf slen */
1852 		n->slen = slen;
1853 
1854 		if (hlist_empty(&n->leaf)) {
1855 			put_child_root(pn, n->key, NULL);
1856 			node_free(n);
1857 		}
1858 	}
1859 }
1860 
1861 /* Caller must hold RTNL. */
fib_table_flush(struct net * net,struct fib_table * tb,bool flush_all)1862 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1863 {
1864 	struct trie *t = (struct trie *)tb->tb_data;
1865 	struct key_vector *pn = t->kv;
1866 	unsigned long cindex = 1;
1867 	struct hlist_node *tmp;
1868 	struct fib_alias *fa;
1869 	int found = 0;
1870 
1871 	/* walk trie in reverse order */
1872 	for (;;) {
1873 		unsigned char slen = 0;
1874 		struct key_vector *n;
1875 
1876 		if (!(cindex--)) {
1877 			t_key pkey = pn->key;
1878 
1879 			/* cannot resize the trie vector */
1880 			if (IS_TRIE(pn))
1881 				break;
1882 
1883 			/* update the suffix to address pulled leaves */
1884 			if (pn->slen > pn->pos)
1885 				update_suffix(pn);
1886 
1887 			/* resize completed node */
1888 			pn = resize(t, pn);
1889 			cindex = get_index(pkey, pn);
1890 
1891 			continue;
1892 		}
1893 
1894 		/* grab the next available node */
1895 		n = get_child(pn, cindex);
1896 		if (!n)
1897 			continue;
1898 
1899 		if (IS_TNODE(n)) {
1900 			/* record pn and cindex for leaf walking */
1901 			pn = n;
1902 			cindex = 1ul << n->bits;
1903 
1904 			continue;
1905 		}
1906 
1907 		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1908 			struct fib_info *fi = fa->fa_info;
1909 
1910 			if (!fi || tb->tb_id != fa->tb_id ||
1911 			    (!(fi->fib_flags & RTNH_F_DEAD) &&
1912 			     !fib_props[fa->fa_type].error)) {
1913 				slen = fa->fa_slen;
1914 				continue;
1915 			}
1916 
1917 			/* Do not flush error routes if network namespace is
1918 			 * not being dismantled
1919 			 */
1920 			if (!flush_all && fib_props[fa->fa_type].error) {
1921 				slen = fa->fa_slen;
1922 				continue;
1923 			}
1924 
1925 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1926 						 n->key,
1927 						 KEYLENGTH - fa->fa_slen, fa,
1928 						 NULL);
1929 			hlist_del_rcu(&fa->fa_list);
1930 			fib_release_info(fa->fa_info);
1931 			alias_free_mem_rcu(fa);
1932 			found++;
1933 		}
1934 
1935 		/* update leaf slen */
1936 		n->slen = slen;
1937 
1938 		if (hlist_empty(&n->leaf)) {
1939 			put_child_root(pn, n->key, NULL);
1940 			node_free(n);
1941 		}
1942 	}
1943 
1944 	pr_debug("trie_flush found=%d\n", found);
1945 	return found;
1946 }
1947 
1948 /* derived from fib_trie_free */
__fib_info_notify_update(struct net * net,struct fib_table * tb,struct nl_info * info)1949 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
1950 				     struct nl_info *info)
1951 {
1952 	struct trie *t = (struct trie *)tb->tb_data;
1953 	struct key_vector *pn = t->kv;
1954 	unsigned long cindex = 1;
1955 	struct fib_alias *fa;
1956 
1957 	for (;;) {
1958 		struct key_vector *n;
1959 
1960 		if (!(cindex--)) {
1961 			t_key pkey = pn->key;
1962 
1963 			if (IS_TRIE(pn))
1964 				break;
1965 
1966 			pn = node_parent(pn);
1967 			cindex = get_index(pkey, pn);
1968 			continue;
1969 		}
1970 
1971 		/* grab the next available node */
1972 		n = get_child(pn, cindex);
1973 		if (!n)
1974 			continue;
1975 
1976 		if (IS_TNODE(n)) {
1977 			/* record pn and cindex for leaf walking */
1978 			pn = n;
1979 			cindex = 1ul << n->bits;
1980 
1981 			continue;
1982 		}
1983 
1984 		hlist_for_each_entry(fa, &n->leaf, fa_list) {
1985 			struct fib_info *fi = fa->fa_info;
1986 
1987 			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
1988 				continue;
1989 
1990 			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
1991 				  KEYLENGTH - fa->fa_slen, tb->tb_id,
1992 				  info, NLM_F_REPLACE);
1993 
1994 			/* call_fib_entry_notifiers will be removed when
1995 			 * in-kernel notifier is implemented and supported
1996 			 * for nexthop objects
1997 			 */
1998 			call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1999 						 n->key,
2000 						 KEYLENGTH - fa->fa_slen, fa,
2001 						 NULL);
2002 		}
2003 	}
2004 }
2005 
fib_info_notify_update(struct net * net,struct nl_info * info)2006 void fib_info_notify_update(struct net *net, struct nl_info *info)
2007 {
2008 	unsigned int h;
2009 
2010 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2011 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2012 		struct fib_table *tb;
2013 
2014 		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2015 					 lockdep_rtnl_is_held())
2016 			__fib_info_notify_update(net, tb, info);
2017 	}
2018 }
2019 
fib_leaf_notify(struct net * net,struct key_vector * l,struct fib_table * tb,struct notifier_block * nb)2020 static void fib_leaf_notify(struct net *net, struct key_vector *l,
2021 			    struct fib_table *tb, struct notifier_block *nb)
2022 {
2023 	struct fib_alias *fa;
2024 
2025 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2026 		struct fib_info *fi = fa->fa_info;
2027 
2028 		if (!fi)
2029 			continue;
2030 
2031 		/* local and main table can share the same trie,
2032 		 * so don't notify twice for the same entry.
2033 		 */
2034 		if (tb->tb_id != fa->tb_id)
2035 			continue;
2036 
2037 		call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
2038 					KEYLENGTH - fa->fa_slen, fa);
2039 	}
2040 }
2041 
fib_table_notify(struct net * net,struct fib_table * tb,struct notifier_block * nb)2042 static void fib_table_notify(struct net *net, struct fib_table *tb,
2043 			     struct notifier_block *nb)
2044 {
2045 	struct trie *t = (struct trie *)tb->tb_data;
2046 	struct key_vector *l, *tp = t->kv;
2047 	t_key key = 0;
2048 
2049 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2050 		fib_leaf_notify(net, l, tb, nb);
2051 
2052 		key = l->key + 1;
2053 		/* stop in case of wrap around */
2054 		if (key < l->key)
2055 			break;
2056 	}
2057 }
2058 
fib_notify(struct net * net,struct notifier_block * nb)2059 void fib_notify(struct net *net, struct notifier_block *nb)
2060 {
2061 	unsigned int h;
2062 
2063 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2064 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2065 		struct fib_table *tb;
2066 
2067 		hlist_for_each_entry_rcu(tb, head, tb_hlist)
2068 			fib_table_notify(net, tb, nb);
2069 	}
2070 }
2071 
__trie_free_rcu(struct rcu_head * head)2072 static void __trie_free_rcu(struct rcu_head *head)
2073 {
2074 	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2075 #ifdef CONFIG_IP_FIB_TRIE_STATS
2076 	struct trie *t = (struct trie *)tb->tb_data;
2077 
2078 	if (tb->tb_data == tb->__data)
2079 		free_percpu(t->stats);
2080 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2081 	kfree(tb);
2082 }
2083 
fib_free_table(struct fib_table * tb)2084 void fib_free_table(struct fib_table *tb)
2085 {
2086 	call_rcu(&tb->rcu, __trie_free_rcu);
2087 }
2088 
fn_trie_dump_leaf(struct key_vector * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2089 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2090 			     struct sk_buff *skb, struct netlink_callback *cb,
2091 			     struct fib_dump_filter *filter)
2092 {
2093 	unsigned int flags = NLM_F_MULTI;
2094 	__be32 xkey = htonl(l->key);
2095 	int i, s_i, i_fa, s_fa, err;
2096 	struct fib_alias *fa;
2097 
2098 	if (filter->filter_set ||
2099 	    !filter->dump_exceptions || !filter->dump_routes)
2100 		flags |= NLM_F_DUMP_FILTERED;
2101 
2102 	s_i = cb->args[4];
2103 	s_fa = cb->args[5];
2104 	i = 0;
2105 
2106 	/* rcu_read_lock is hold by caller */
2107 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2108 		struct fib_info *fi = fa->fa_info;
2109 
2110 		if (i < s_i)
2111 			goto next;
2112 
2113 		i_fa = 0;
2114 
2115 		if (tb->tb_id != fa->tb_id)
2116 			goto next;
2117 
2118 		if (filter->filter_set) {
2119 			if (filter->rt_type && fa->fa_type != filter->rt_type)
2120 				goto next;
2121 
2122 			if ((filter->protocol &&
2123 			     fi->fib_protocol != filter->protocol))
2124 				goto next;
2125 
2126 			if (filter->dev &&
2127 			    !fib_info_nh_uses_dev(fi, filter->dev))
2128 				goto next;
2129 		}
2130 
2131 		if (filter->dump_routes) {
2132 			if (!s_fa) {
2133 				err = fib_dump_info(skb,
2134 						    NETLINK_CB(cb->skb).portid,
2135 						    cb->nlh->nlmsg_seq,
2136 						    RTM_NEWROUTE,
2137 						    tb->tb_id, fa->fa_type,
2138 						    xkey,
2139 						    KEYLENGTH - fa->fa_slen,
2140 						    fa->fa_tos, fi, flags);
2141 				if (err < 0)
2142 					goto stop;
2143 			}
2144 
2145 			i_fa++;
2146 		}
2147 
2148 		if (filter->dump_exceptions) {
2149 			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2150 						 &i_fa, s_fa, flags);
2151 			if (err < 0)
2152 				goto stop;
2153 		}
2154 
2155 next:
2156 		i++;
2157 	}
2158 
2159 	cb->args[4] = i;
2160 	return skb->len;
2161 
2162 stop:
2163 	cb->args[4] = i;
2164 	cb->args[5] = i_fa;
2165 	return err;
2166 }
2167 
2168 /* rcu_read_lock needs to be hold by caller from readside */
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2169 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2170 		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2171 {
2172 	struct trie *t = (struct trie *)tb->tb_data;
2173 	struct key_vector *l, *tp = t->kv;
2174 	/* Dump starting at last key.
2175 	 * Note: 0.0.0.0/0 (ie default) is first key.
2176 	 */
2177 	int count = cb->args[2];
2178 	t_key key = cb->args[3];
2179 
2180 	/* First time here, count and key are both always 0. Count > 0
2181 	 * and key == 0 means the dump has wrapped around and we are done.
2182 	 */
2183 	if (count && !key)
2184 		return skb->len;
2185 
2186 	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2187 		int err;
2188 
2189 		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2190 		if (err < 0) {
2191 			cb->args[3] = key;
2192 			cb->args[2] = count;
2193 			return err;
2194 		}
2195 
2196 		++count;
2197 		key = l->key + 1;
2198 
2199 		memset(&cb->args[4], 0,
2200 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2201 
2202 		/* stop loop if key wrapped back to 0 */
2203 		if (key < l->key)
2204 			break;
2205 	}
2206 
2207 	cb->args[3] = key;
2208 	cb->args[2] = count;
2209 
2210 	return skb->len;
2211 }
2212 
fib_trie_init(void)2213 void __init fib_trie_init(void)
2214 {
2215 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2216 					  sizeof(struct fib_alias),
2217 					  0, SLAB_PANIC, NULL);
2218 
2219 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2220 					   LEAF_SIZE,
2221 					   0, SLAB_PANIC, NULL);
2222 }
2223 
fib_trie_table(u32 id,struct fib_table * alias)2224 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2225 {
2226 	struct fib_table *tb;
2227 	struct trie *t;
2228 	size_t sz = sizeof(*tb);
2229 
2230 	if (!alias)
2231 		sz += sizeof(struct trie);
2232 
2233 	tb = kzalloc(sz, GFP_KERNEL);
2234 	if (!tb)
2235 		return NULL;
2236 
2237 	tb->tb_id = id;
2238 	tb->tb_num_default = 0;
2239 	tb->tb_data = (alias ? alias->__data : tb->__data);
2240 
2241 	if (alias)
2242 		return tb;
2243 
2244 	t = (struct trie *) tb->tb_data;
2245 	t->kv[0].pos = KEYLENGTH;
2246 	t->kv[0].slen = KEYLENGTH;
2247 #ifdef CONFIG_IP_FIB_TRIE_STATS
2248 	t->stats = alloc_percpu(struct trie_use_stats);
2249 	if (!t->stats) {
2250 		kfree(tb);
2251 		tb = NULL;
2252 	}
2253 #endif
2254 
2255 	return tb;
2256 }
2257 
2258 #ifdef CONFIG_PROC_FS
2259 /* Depth first Trie walk iterator */
2260 struct fib_trie_iter {
2261 	struct seq_net_private p;
2262 	struct fib_table *tb;
2263 	struct key_vector *tnode;
2264 	unsigned int index;
2265 	unsigned int depth;
2266 };
2267 
fib_trie_get_next(struct fib_trie_iter * iter)2268 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2269 {
2270 	unsigned long cindex = iter->index;
2271 	struct key_vector *pn = iter->tnode;
2272 	t_key pkey;
2273 
2274 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2275 		 iter->tnode, iter->index, iter->depth);
2276 
2277 	while (!IS_TRIE(pn)) {
2278 		while (cindex < child_length(pn)) {
2279 			struct key_vector *n = get_child_rcu(pn, cindex++);
2280 
2281 			if (!n)
2282 				continue;
2283 
2284 			if (IS_LEAF(n)) {
2285 				iter->tnode = pn;
2286 				iter->index = cindex;
2287 			} else {
2288 				/* push down one level */
2289 				iter->tnode = n;
2290 				iter->index = 0;
2291 				++iter->depth;
2292 			}
2293 
2294 			return n;
2295 		}
2296 
2297 		/* Current node exhausted, pop back up */
2298 		pkey = pn->key;
2299 		pn = node_parent_rcu(pn);
2300 		cindex = get_index(pkey, pn) + 1;
2301 		--iter->depth;
2302 	}
2303 
2304 	/* record root node so further searches know we are done */
2305 	iter->tnode = pn;
2306 	iter->index = 0;
2307 
2308 	return NULL;
2309 }
2310 
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2311 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2312 					     struct trie *t)
2313 {
2314 	struct key_vector *n, *pn;
2315 
2316 	if (!t)
2317 		return NULL;
2318 
2319 	pn = t->kv;
2320 	n = rcu_dereference(pn->tnode[0]);
2321 	if (!n)
2322 		return NULL;
2323 
2324 	if (IS_TNODE(n)) {
2325 		iter->tnode = n;
2326 		iter->index = 0;
2327 		iter->depth = 1;
2328 	} else {
2329 		iter->tnode = pn;
2330 		iter->index = 0;
2331 		iter->depth = 0;
2332 	}
2333 
2334 	return n;
2335 }
2336 
trie_collect_stats(struct trie * t,struct trie_stat * s)2337 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2338 {
2339 	struct key_vector *n;
2340 	struct fib_trie_iter iter;
2341 
2342 	memset(s, 0, sizeof(*s));
2343 
2344 	rcu_read_lock();
2345 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2346 		if (IS_LEAF(n)) {
2347 			struct fib_alias *fa;
2348 
2349 			s->leaves++;
2350 			s->totdepth += iter.depth;
2351 			if (iter.depth > s->maxdepth)
2352 				s->maxdepth = iter.depth;
2353 
2354 			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2355 				++s->prefixes;
2356 		} else {
2357 			s->tnodes++;
2358 			if (n->bits < MAX_STAT_DEPTH)
2359 				s->nodesizes[n->bits]++;
2360 			s->nullpointers += tn_info(n)->empty_children;
2361 		}
2362 	}
2363 	rcu_read_unlock();
2364 }
2365 
2366 /*
2367  *	This outputs /proc/net/fib_triestats
2368  */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2369 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2370 {
2371 	unsigned int i, max, pointers, bytes, avdepth;
2372 
2373 	if (stat->leaves)
2374 		avdepth = stat->totdepth*100 / stat->leaves;
2375 	else
2376 		avdepth = 0;
2377 
2378 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2379 		   avdepth / 100, avdepth % 100);
2380 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2381 
2382 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2383 	bytes = LEAF_SIZE * stat->leaves;
2384 
2385 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2386 	bytes += sizeof(struct fib_alias) * stat->prefixes;
2387 
2388 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2389 	bytes += TNODE_SIZE(0) * stat->tnodes;
2390 
2391 	max = MAX_STAT_DEPTH;
2392 	while (max > 0 && stat->nodesizes[max-1] == 0)
2393 		max--;
2394 
2395 	pointers = 0;
2396 	for (i = 1; i < max; i++)
2397 		if (stat->nodesizes[i] != 0) {
2398 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2399 			pointers += (1<<i) * stat->nodesizes[i];
2400 		}
2401 	seq_putc(seq, '\n');
2402 	seq_printf(seq, "\tPointers: %u\n", pointers);
2403 
2404 	bytes += sizeof(struct key_vector *) * pointers;
2405 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2406 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2407 }
2408 
2409 #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats __percpu * stats)2410 static void trie_show_usage(struct seq_file *seq,
2411 			    const struct trie_use_stats __percpu *stats)
2412 {
2413 	struct trie_use_stats s = { 0 };
2414 	int cpu;
2415 
2416 	/* loop through all of the CPUs and gather up the stats */
2417 	for_each_possible_cpu(cpu) {
2418 		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2419 
2420 		s.gets += pcpu->gets;
2421 		s.backtrack += pcpu->backtrack;
2422 		s.semantic_match_passed += pcpu->semantic_match_passed;
2423 		s.semantic_match_miss += pcpu->semantic_match_miss;
2424 		s.null_node_hit += pcpu->null_node_hit;
2425 		s.resize_node_skipped += pcpu->resize_node_skipped;
2426 	}
2427 
2428 	seq_printf(seq, "\nCounters:\n---------\n");
2429 	seq_printf(seq, "gets = %u\n", s.gets);
2430 	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2431 	seq_printf(seq, "semantic match passed = %u\n",
2432 		   s.semantic_match_passed);
2433 	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2434 	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2435 	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2436 }
2437 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2438 
fib_table_print(struct seq_file * seq,struct fib_table * tb)2439 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2440 {
2441 	if (tb->tb_id == RT_TABLE_LOCAL)
2442 		seq_puts(seq, "Local:\n");
2443 	else if (tb->tb_id == RT_TABLE_MAIN)
2444 		seq_puts(seq, "Main:\n");
2445 	else
2446 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2447 }
2448 
2449 
fib_triestat_seq_show(struct seq_file * seq,void * v)2450 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2451 {
2452 	struct net *net = (struct net *)seq->private;
2453 	unsigned int h;
2454 
2455 	seq_printf(seq,
2456 		   "Basic info: size of leaf:"
2457 		   " %zd bytes, size of tnode: %zd bytes.\n",
2458 		   LEAF_SIZE, TNODE_SIZE(0));
2459 
2460 	rcu_read_lock();
2461 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2462 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2463 		struct fib_table *tb;
2464 
2465 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2466 			struct trie *t = (struct trie *) tb->tb_data;
2467 			struct trie_stat stat;
2468 
2469 			if (!t)
2470 				continue;
2471 
2472 			fib_table_print(seq, tb);
2473 
2474 			trie_collect_stats(t, &stat);
2475 			trie_show_stats(seq, &stat);
2476 #ifdef CONFIG_IP_FIB_TRIE_STATS
2477 			trie_show_usage(seq, t->stats);
2478 #endif
2479 		}
2480 		cond_resched_rcu();
2481 	}
2482 	rcu_read_unlock();
2483 
2484 	return 0;
2485 }
2486 
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2487 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2488 {
2489 	struct fib_trie_iter *iter = seq->private;
2490 	struct net *net = seq_file_net(seq);
2491 	loff_t idx = 0;
2492 	unsigned int h;
2493 
2494 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2495 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2496 		struct fib_table *tb;
2497 
2498 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2499 			struct key_vector *n;
2500 
2501 			for (n = fib_trie_get_first(iter,
2502 						    (struct trie *) tb->tb_data);
2503 			     n; n = fib_trie_get_next(iter))
2504 				if (pos == idx++) {
2505 					iter->tb = tb;
2506 					return n;
2507 				}
2508 		}
2509 	}
2510 
2511 	return NULL;
2512 }
2513 
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2514 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2515 	__acquires(RCU)
2516 {
2517 	rcu_read_lock();
2518 	return fib_trie_get_idx(seq, *pos);
2519 }
2520 
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2521 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2522 {
2523 	struct fib_trie_iter *iter = seq->private;
2524 	struct net *net = seq_file_net(seq);
2525 	struct fib_table *tb = iter->tb;
2526 	struct hlist_node *tb_node;
2527 	unsigned int h;
2528 	struct key_vector *n;
2529 
2530 	++*pos;
2531 	/* next node in same table */
2532 	n = fib_trie_get_next(iter);
2533 	if (n)
2534 		return n;
2535 
2536 	/* walk rest of this hash chain */
2537 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2538 	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2539 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2540 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2541 		if (n)
2542 			goto found;
2543 	}
2544 
2545 	/* new hash chain */
2546 	while (++h < FIB_TABLE_HASHSZ) {
2547 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2548 		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2549 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2550 			if (n)
2551 				goto found;
2552 		}
2553 	}
2554 	return NULL;
2555 
2556 found:
2557 	iter->tb = tb;
2558 	return n;
2559 }
2560 
fib_trie_seq_stop(struct seq_file * seq,void * v)2561 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2562 	__releases(RCU)
2563 {
2564 	rcu_read_unlock();
2565 }
2566 
seq_indent(struct seq_file * seq,int n)2567 static void seq_indent(struct seq_file *seq, int n)
2568 {
2569 	while (n-- > 0)
2570 		seq_puts(seq, "   ");
2571 }
2572 
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2573 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2574 {
2575 	switch (s) {
2576 	case RT_SCOPE_UNIVERSE: return "universe";
2577 	case RT_SCOPE_SITE:	return "site";
2578 	case RT_SCOPE_LINK:	return "link";
2579 	case RT_SCOPE_HOST:	return "host";
2580 	case RT_SCOPE_NOWHERE:	return "nowhere";
2581 	default:
2582 		snprintf(buf, len, "scope=%d", s);
2583 		return buf;
2584 	}
2585 }
2586 
2587 static const char *const rtn_type_names[__RTN_MAX] = {
2588 	[RTN_UNSPEC] = "UNSPEC",
2589 	[RTN_UNICAST] = "UNICAST",
2590 	[RTN_LOCAL] = "LOCAL",
2591 	[RTN_BROADCAST] = "BROADCAST",
2592 	[RTN_ANYCAST] = "ANYCAST",
2593 	[RTN_MULTICAST] = "MULTICAST",
2594 	[RTN_BLACKHOLE] = "BLACKHOLE",
2595 	[RTN_UNREACHABLE] = "UNREACHABLE",
2596 	[RTN_PROHIBIT] = "PROHIBIT",
2597 	[RTN_THROW] = "THROW",
2598 	[RTN_NAT] = "NAT",
2599 	[RTN_XRESOLVE] = "XRESOLVE",
2600 };
2601 
rtn_type(char * buf,size_t len,unsigned int t)2602 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2603 {
2604 	if (t < __RTN_MAX && rtn_type_names[t])
2605 		return rtn_type_names[t];
2606 	snprintf(buf, len, "type %u", t);
2607 	return buf;
2608 }
2609 
2610 /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2611 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2612 {
2613 	const struct fib_trie_iter *iter = seq->private;
2614 	struct key_vector *n = v;
2615 
2616 	if (IS_TRIE(node_parent_rcu(n)))
2617 		fib_table_print(seq, iter->tb);
2618 
2619 	if (IS_TNODE(n)) {
2620 		__be32 prf = htonl(n->key);
2621 
2622 		seq_indent(seq, iter->depth-1);
2623 		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2624 			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2625 			   tn_info(n)->full_children,
2626 			   tn_info(n)->empty_children);
2627 	} else {
2628 		__be32 val = htonl(n->key);
2629 		struct fib_alias *fa;
2630 
2631 		seq_indent(seq, iter->depth);
2632 		seq_printf(seq, "  |-- %pI4\n", &val);
2633 
2634 		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2635 			char buf1[32], buf2[32];
2636 
2637 			seq_indent(seq, iter->depth + 1);
2638 			seq_printf(seq, "  /%zu %s %s",
2639 				   KEYLENGTH - fa->fa_slen,
2640 				   rtn_scope(buf1, sizeof(buf1),
2641 					     fa->fa_info->fib_scope),
2642 				   rtn_type(buf2, sizeof(buf2),
2643 					    fa->fa_type));
2644 			if (fa->fa_tos)
2645 				seq_printf(seq, " tos=%d", fa->fa_tos);
2646 			seq_putc(seq, '\n');
2647 		}
2648 	}
2649 
2650 	return 0;
2651 }
2652 
2653 static const struct seq_operations fib_trie_seq_ops = {
2654 	.start  = fib_trie_seq_start,
2655 	.next   = fib_trie_seq_next,
2656 	.stop   = fib_trie_seq_stop,
2657 	.show   = fib_trie_seq_show,
2658 };
2659 
2660 struct fib_route_iter {
2661 	struct seq_net_private p;
2662 	struct fib_table *main_tb;
2663 	struct key_vector *tnode;
2664 	loff_t	pos;
2665 	t_key	key;
2666 };
2667 
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2668 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2669 					    loff_t pos)
2670 {
2671 	struct key_vector *l, **tp = &iter->tnode;
2672 	t_key key;
2673 
2674 	/* use cached location of previously found key */
2675 	if (iter->pos > 0 && pos >= iter->pos) {
2676 		key = iter->key;
2677 	} else {
2678 		iter->pos = 1;
2679 		key = 0;
2680 	}
2681 
2682 	pos -= iter->pos;
2683 
2684 	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2685 		key = l->key + 1;
2686 		iter->pos++;
2687 		l = NULL;
2688 
2689 		/* handle unlikely case of a key wrap */
2690 		if (!key)
2691 			break;
2692 	}
2693 
2694 	if (l)
2695 		iter->key = l->key;	/* remember it */
2696 	else
2697 		iter->pos = 0;		/* forget it */
2698 
2699 	return l;
2700 }
2701 
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2702 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2703 	__acquires(RCU)
2704 {
2705 	struct fib_route_iter *iter = seq->private;
2706 	struct fib_table *tb;
2707 	struct trie *t;
2708 
2709 	rcu_read_lock();
2710 
2711 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2712 	if (!tb)
2713 		return NULL;
2714 
2715 	iter->main_tb = tb;
2716 	t = (struct trie *)tb->tb_data;
2717 	iter->tnode = t->kv;
2718 
2719 	if (*pos != 0)
2720 		return fib_route_get_idx(iter, *pos);
2721 
2722 	iter->pos = 0;
2723 	iter->key = KEY_MAX;
2724 
2725 	return SEQ_START_TOKEN;
2726 }
2727 
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2728 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2729 {
2730 	struct fib_route_iter *iter = seq->private;
2731 	struct key_vector *l = NULL;
2732 	t_key key = iter->key + 1;
2733 
2734 	++*pos;
2735 
2736 	/* only allow key of 0 for start of sequence */
2737 	if ((v == SEQ_START_TOKEN) || key)
2738 		l = leaf_walk_rcu(&iter->tnode, key);
2739 
2740 	if (l) {
2741 		iter->key = l->key;
2742 		iter->pos++;
2743 	} else {
2744 		iter->pos = 0;
2745 	}
2746 
2747 	return l;
2748 }
2749 
fib_route_seq_stop(struct seq_file * seq,void * v)2750 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2751 	__releases(RCU)
2752 {
2753 	rcu_read_unlock();
2754 }
2755 
fib_flag_trans(int type,__be32 mask,struct fib_info * fi)2756 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2757 {
2758 	unsigned int flags = 0;
2759 
2760 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2761 		flags = RTF_REJECT;
2762 	if (fi) {
2763 		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2764 
2765 		if (nhc->nhc_gw.ipv4)
2766 			flags |= RTF_GATEWAY;
2767 	}
2768 	if (mask == htonl(0xFFFFFFFF))
2769 		flags |= RTF_HOST;
2770 	flags |= RTF_UP;
2771 	return flags;
2772 }
2773 
2774 /*
2775  *	This outputs /proc/net/route.
2776  *	The format of the file is not supposed to be changed
2777  *	and needs to be same as fib_hash output to avoid breaking
2778  *	legacy utilities
2779  */
fib_route_seq_show(struct seq_file * seq,void * v)2780 static int fib_route_seq_show(struct seq_file *seq, void *v)
2781 {
2782 	struct fib_route_iter *iter = seq->private;
2783 	struct fib_table *tb = iter->main_tb;
2784 	struct fib_alias *fa;
2785 	struct key_vector *l = v;
2786 	__be32 prefix;
2787 
2788 	if (v == SEQ_START_TOKEN) {
2789 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2790 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2791 			   "\tWindow\tIRTT");
2792 		return 0;
2793 	}
2794 
2795 	prefix = htonl(l->key);
2796 
2797 	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2798 		struct fib_info *fi = fa->fa_info;
2799 		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2800 		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2801 
2802 		if ((fa->fa_type == RTN_BROADCAST) ||
2803 		    (fa->fa_type == RTN_MULTICAST))
2804 			continue;
2805 
2806 		if (fa->tb_id != tb->tb_id)
2807 			continue;
2808 
2809 		seq_setwidth(seq, 127);
2810 
2811 		if (fi) {
2812 			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2813 			__be32 gw = 0;
2814 
2815 			if (nhc->nhc_gw_family == AF_INET)
2816 				gw = nhc->nhc_gw.ipv4;
2817 
2818 			seq_printf(seq,
2819 				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2820 				   "%d\t%08X\t%d\t%u\t%u",
2821 				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2822 				   prefix, gw, flags, 0, 0,
2823 				   fi->fib_priority,
2824 				   mask,
2825 				   (fi->fib_advmss ?
2826 				    fi->fib_advmss + 40 : 0),
2827 				   fi->fib_window,
2828 				   fi->fib_rtt >> 3);
2829 		} else {
2830 			seq_printf(seq,
2831 				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2832 				   "%d\t%08X\t%d\t%u\t%u",
2833 				   prefix, 0, flags, 0, 0, 0,
2834 				   mask, 0, 0, 0);
2835 		}
2836 		seq_pad(seq, '\n');
2837 	}
2838 
2839 	return 0;
2840 }
2841 
2842 static const struct seq_operations fib_route_seq_ops = {
2843 	.start  = fib_route_seq_start,
2844 	.next   = fib_route_seq_next,
2845 	.stop   = fib_route_seq_stop,
2846 	.show   = fib_route_seq_show,
2847 };
2848 
fib_proc_init(struct net * net)2849 int __net_init fib_proc_init(struct net *net)
2850 {
2851 	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2852 			sizeof(struct fib_trie_iter)))
2853 		goto out1;
2854 
2855 	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2856 			fib_triestat_seq_show, NULL))
2857 		goto out2;
2858 
2859 	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2860 			sizeof(struct fib_route_iter)))
2861 		goto out3;
2862 
2863 	return 0;
2864 
2865 out3:
2866 	remove_proc_entry("fib_triestat", net->proc_net);
2867 out2:
2868 	remove_proc_entry("fib_trie", net->proc_net);
2869 out1:
2870 	return -ENOMEM;
2871 }
2872 
fib_proc_exit(struct net * net)2873 void __net_exit fib_proc_exit(struct net *net)
2874 {
2875 	remove_proc_entry("fib_trie", net->proc_net);
2876 	remove_proc_entry("fib_triestat", net->proc_net);
2877 	remove_proc_entry("route", net->proc_net);
2878 }
2879 
2880 #endif /* CONFIG_PROC_FS */
2881