1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
6 *
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
9 *
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
11 *
12 * This work is based on the LPC-trie which is originally described in:
13 *
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
17 *
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20 *
21 * Code from fib_hash has been reused which includes the following header:
22 *
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
26 *
27 * IPv4 FIB: lookup engine and maintenance routines.
28 *
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30 *
31 * Substantial contributions to this work comes from:
32 *
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
37 */
38
39 #define VERSION "0.409"
40
41 #include <linux/cache.h>
42 #include <linux/uaccess.h>
43 #include <linux/bitops.h>
44 #include <linux/types.h>
45 #include <linux/kernel.h>
46 #include <linux/mm.h>
47 #include <linux/string.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/errno.h>
51 #include <linux/in.h>
52 #include <linux/inet.h>
53 #include <linux/inetdevice.h>
54 #include <linux/netdevice.h>
55 #include <linux/if_arp.h>
56 #include <linux/proc_fs.h>
57 #include <linux/rcupdate.h>
58 #include <linux/skbuff.h>
59 #include <linux/netlink.h>
60 #include <linux/init.h>
61 #include <linux/list.h>
62 #include <linux/slab.h>
63 #include <linux/export.h>
64 #include <linux/vmalloc.h>
65 #include <linux/notifier.h>
66 #include <net/net_namespace.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/tcp.h>
71 #include <net/sock.h>
72 #include <net/ip_fib.h>
73 #include <net/fib_notifier.h>
74 #include <trace/events/fib.h>
75 #include "fib_lookup.h"
76
call_fib_entry_notifier(struct notifier_block * nb,struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa)77 static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
78 enum fib_event_type event_type, u32 dst,
79 int dst_len, struct fib_alias *fa)
80 {
81 struct fib_entry_notifier_info info = {
82 .dst = dst,
83 .dst_len = dst_len,
84 .fi = fa->fa_info,
85 .tos = fa->fa_tos,
86 .type = fa->fa_type,
87 .tb_id = fa->tb_id,
88 };
89 return call_fib4_notifier(nb, net, event_type, &info.info);
90 }
91
call_fib_entry_notifiers(struct net * net,enum fib_event_type event_type,u32 dst,int dst_len,struct fib_alias * fa,struct netlink_ext_ack * extack)92 static int call_fib_entry_notifiers(struct net *net,
93 enum fib_event_type event_type, u32 dst,
94 int dst_len, struct fib_alias *fa,
95 struct netlink_ext_ack *extack)
96 {
97 struct fib_entry_notifier_info info = {
98 .info.extack = extack,
99 .dst = dst,
100 .dst_len = dst_len,
101 .fi = fa->fa_info,
102 .tos = fa->fa_tos,
103 .type = fa->fa_type,
104 .tb_id = fa->tb_id,
105 };
106 return call_fib4_notifiers(net, event_type, &info.info);
107 }
108
109 #define MAX_STAT_DEPTH 32
110
111 #define KEYLENGTH (8*sizeof(t_key))
112 #define KEY_MAX ((t_key)~0)
113
114 typedef unsigned int t_key;
115
116 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
117 #define IS_TNODE(n) ((n)->bits)
118 #define IS_LEAF(n) (!(n)->bits)
119
120 struct key_vector {
121 t_key key;
122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
124 unsigned char slen;
125 union {
126 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
127 struct hlist_head leaf;
128 /* This array is valid if (pos | bits) > 0 (TNODE) */
129 struct key_vector __rcu *tnode[0];
130 };
131 };
132
133 struct tnode {
134 struct rcu_head rcu;
135 t_key empty_children; /* KEYLENGTH bits needed */
136 t_key full_children; /* KEYLENGTH bits needed */
137 struct key_vector __rcu *parent;
138 struct key_vector kv[1];
139 #define tn_bits kv[0].bits
140 };
141
142 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
143 #define LEAF_SIZE TNODE_SIZE(1)
144
145 #ifdef CONFIG_IP_FIB_TRIE_STATS
146 struct trie_use_stats {
147 unsigned int gets;
148 unsigned int backtrack;
149 unsigned int semantic_match_passed;
150 unsigned int semantic_match_miss;
151 unsigned int null_node_hit;
152 unsigned int resize_node_skipped;
153 };
154 #endif
155
156 struct trie_stat {
157 unsigned int totdepth;
158 unsigned int maxdepth;
159 unsigned int tnodes;
160 unsigned int leaves;
161 unsigned int nullpointers;
162 unsigned int prefixes;
163 unsigned int nodesizes[MAX_STAT_DEPTH];
164 };
165
166 struct trie {
167 struct key_vector kv[1];
168 #ifdef CONFIG_IP_FIB_TRIE_STATS
169 struct trie_use_stats __percpu *stats;
170 #endif
171 };
172
173 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
174 static unsigned int tnode_free_size;
175
176 /*
177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
178 * especially useful before resizing the root node with PREEMPT_NONE configs;
179 * the value was obtained experimentally, aiming to avoid visible slowdown.
180 */
181 unsigned int sysctl_fib_sync_mem = 512 * 1024;
182 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
183 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
184
185 static struct kmem_cache *fn_alias_kmem __ro_after_init;
186 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
187
tn_info(struct key_vector * kv)188 static inline struct tnode *tn_info(struct key_vector *kv)
189 {
190 return container_of(kv, struct tnode, kv[0]);
191 }
192
193 /* caller must hold RTNL */
194 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
195 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
196
197 /* caller must hold RCU read lock or RTNL */
198 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
199 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
200
201 /* wrapper for rcu_assign_pointer */
node_set_parent(struct key_vector * n,struct key_vector * tp)202 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
203 {
204 if (n)
205 rcu_assign_pointer(tn_info(n)->parent, tp);
206 }
207
208 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
209
210 /* This provides us with the number of children in this node, in the case of a
211 * leaf this will return 0 meaning none of the children are accessible.
212 */
child_length(const struct key_vector * tn)213 static inline unsigned long child_length(const struct key_vector *tn)
214 {
215 return (1ul << tn->bits) & ~(1ul);
216 }
217
218 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
219
get_index(t_key key,struct key_vector * kv)220 static inline unsigned long get_index(t_key key, struct key_vector *kv)
221 {
222 unsigned long index = key ^ kv->key;
223
224 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
225 return 0;
226
227 return index >> kv->pos;
228 }
229
230 /* To understand this stuff, an understanding of keys and all their bits is
231 * necessary. Every node in the trie has a key associated with it, but not
232 * all of the bits in that key are significant.
233 *
234 * Consider a node 'n' and its parent 'tp'.
235 *
236 * If n is a leaf, every bit in its key is significant. Its presence is
237 * necessitated by path compression, since during a tree traversal (when
238 * searching for a leaf - unless we are doing an insertion) we will completely
239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
240 * a potentially successful search, that we have indeed been walking the
241 * correct key path.
242 *
243 * Note that we can never "miss" the correct key in the tree if present by
244 * following the wrong path. Path compression ensures that segments of the key
245 * that are the same for all keys with a given prefix are skipped, but the
246 * skipped part *is* identical for each node in the subtrie below the skipped
247 * bit! trie_insert() in this implementation takes care of that.
248 *
249 * if n is an internal node - a 'tnode' here, the various parts of its key
250 * have many different meanings.
251 *
252 * Example:
253 * _________________________________________________________________
254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
255 * -----------------------------------------------------------------
256 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
257 *
258 * _________________________________________________________________
259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
260 * -----------------------------------------------------------------
261 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
262 *
263 * tp->pos = 22
264 * tp->bits = 3
265 * n->pos = 13
266 * n->bits = 4
267 *
268 * First, let's just ignore the bits that come before the parent tp, that is
269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
270 * point we do not use them for anything.
271 *
272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
273 * index into the parent's child array. That is, they will be used to find
274 * 'n' among tp's children.
275 *
276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
277 * for the node n.
278 *
279 * All the bits we have seen so far are significant to the node n. The rest
280 * of the bits are really not needed or indeed known in n->key.
281 *
282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
283 * n's child array, and will of course be different for each child.
284 *
285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
286 * at this point.
287 */
288
289 static const int halve_threshold = 25;
290 static const int inflate_threshold = 50;
291 static const int halve_threshold_root = 15;
292 static const int inflate_threshold_root = 30;
293
__alias_free_mem(struct rcu_head * head)294 static void __alias_free_mem(struct rcu_head *head)
295 {
296 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
297 kmem_cache_free(fn_alias_kmem, fa);
298 }
299
alias_free_mem_rcu(struct fib_alias * fa)300 static inline void alias_free_mem_rcu(struct fib_alias *fa)
301 {
302 call_rcu(&fa->rcu, __alias_free_mem);
303 }
304
305 #define TNODE_KMALLOC_MAX \
306 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
307 #define TNODE_VMALLOC_MAX \
308 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
309
__node_free_rcu(struct rcu_head * head)310 static void __node_free_rcu(struct rcu_head *head)
311 {
312 struct tnode *n = container_of(head, struct tnode, rcu);
313
314 if (!n->tn_bits)
315 kmem_cache_free(trie_leaf_kmem, n);
316 else
317 kvfree(n);
318 }
319
320 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
321
tnode_alloc(int bits)322 static struct tnode *tnode_alloc(int bits)
323 {
324 size_t size;
325
326 /* verify bits is within bounds */
327 if (bits > TNODE_VMALLOC_MAX)
328 return NULL;
329
330 /* determine size and verify it is non-zero and didn't overflow */
331 size = TNODE_SIZE(1ul << bits);
332
333 if (size <= PAGE_SIZE)
334 return kzalloc(size, GFP_KERNEL);
335 else
336 return vzalloc(size);
337 }
338
empty_child_inc(struct key_vector * n)339 static inline void empty_child_inc(struct key_vector *n)
340 {
341 tn_info(n)->empty_children++;
342
343 if (!tn_info(n)->empty_children)
344 tn_info(n)->full_children++;
345 }
346
empty_child_dec(struct key_vector * n)347 static inline void empty_child_dec(struct key_vector *n)
348 {
349 if (!tn_info(n)->empty_children)
350 tn_info(n)->full_children--;
351
352 tn_info(n)->empty_children--;
353 }
354
leaf_new(t_key key,struct fib_alias * fa)355 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
356 {
357 struct key_vector *l;
358 struct tnode *kv;
359
360 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
361 if (!kv)
362 return NULL;
363
364 /* initialize key vector */
365 l = kv->kv;
366 l->key = key;
367 l->pos = 0;
368 l->bits = 0;
369 l->slen = fa->fa_slen;
370
371 /* link leaf to fib alias */
372 INIT_HLIST_HEAD(&l->leaf);
373 hlist_add_head(&fa->fa_list, &l->leaf);
374
375 return l;
376 }
377
tnode_new(t_key key,int pos,int bits)378 static struct key_vector *tnode_new(t_key key, int pos, int bits)
379 {
380 unsigned int shift = pos + bits;
381 struct key_vector *tn;
382 struct tnode *tnode;
383
384 /* verify bits and pos their msb bits clear and values are valid */
385 BUG_ON(!bits || (shift > KEYLENGTH));
386
387 tnode = tnode_alloc(bits);
388 if (!tnode)
389 return NULL;
390
391 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
392 sizeof(struct key_vector *) << bits);
393
394 if (bits == KEYLENGTH)
395 tnode->full_children = 1;
396 else
397 tnode->empty_children = 1ul << bits;
398
399 tn = tnode->kv;
400 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
401 tn->pos = pos;
402 tn->bits = bits;
403 tn->slen = pos;
404
405 return tn;
406 }
407
408 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
409 * and no bits are skipped. See discussion in dyntree paper p. 6
410 */
tnode_full(struct key_vector * tn,struct key_vector * n)411 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
412 {
413 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
414 }
415
416 /* Add a child at position i overwriting the old value.
417 * Update the value of full_children and empty_children.
418 */
put_child(struct key_vector * tn,unsigned long i,struct key_vector * n)419 static void put_child(struct key_vector *tn, unsigned long i,
420 struct key_vector *n)
421 {
422 struct key_vector *chi = get_child(tn, i);
423 int isfull, wasfull;
424
425 BUG_ON(i >= child_length(tn));
426
427 /* update emptyChildren, overflow into fullChildren */
428 if (!n && chi)
429 empty_child_inc(tn);
430 if (n && !chi)
431 empty_child_dec(tn);
432
433 /* update fullChildren */
434 wasfull = tnode_full(tn, chi);
435 isfull = tnode_full(tn, n);
436
437 if (wasfull && !isfull)
438 tn_info(tn)->full_children--;
439 else if (!wasfull && isfull)
440 tn_info(tn)->full_children++;
441
442 if (n && (tn->slen < n->slen))
443 tn->slen = n->slen;
444
445 rcu_assign_pointer(tn->tnode[i], n);
446 }
447
update_children(struct key_vector * tn)448 static void update_children(struct key_vector *tn)
449 {
450 unsigned long i;
451
452 /* update all of the child parent pointers */
453 for (i = child_length(tn); i;) {
454 struct key_vector *inode = get_child(tn, --i);
455
456 if (!inode)
457 continue;
458
459 /* Either update the children of a tnode that
460 * already belongs to us or update the child
461 * to point to ourselves.
462 */
463 if (node_parent(inode) == tn)
464 update_children(inode);
465 else
466 node_set_parent(inode, tn);
467 }
468 }
469
put_child_root(struct key_vector * tp,t_key key,struct key_vector * n)470 static inline void put_child_root(struct key_vector *tp, t_key key,
471 struct key_vector *n)
472 {
473 if (IS_TRIE(tp))
474 rcu_assign_pointer(tp->tnode[0], n);
475 else
476 put_child(tp, get_index(key, tp), n);
477 }
478
tnode_free_init(struct key_vector * tn)479 static inline void tnode_free_init(struct key_vector *tn)
480 {
481 tn_info(tn)->rcu.next = NULL;
482 }
483
tnode_free_append(struct key_vector * tn,struct key_vector * n)484 static inline void tnode_free_append(struct key_vector *tn,
485 struct key_vector *n)
486 {
487 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
488 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
489 }
490
tnode_free(struct key_vector * tn)491 static void tnode_free(struct key_vector *tn)
492 {
493 struct callback_head *head = &tn_info(tn)->rcu;
494
495 while (head) {
496 head = head->next;
497 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
498 node_free(tn);
499
500 tn = container_of(head, struct tnode, rcu)->kv;
501 }
502
503 if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
504 tnode_free_size = 0;
505 synchronize_rcu();
506 }
507 }
508
replace(struct trie * t,struct key_vector * oldtnode,struct key_vector * tn)509 static struct key_vector *replace(struct trie *t,
510 struct key_vector *oldtnode,
511 struct key_vector *tn)
512 {
513 struct key_vector *tp = node_parent(oldtnode);
514 unsigned long i;
515
516 /* setup the parent pointer out of and back into this node */
517 NODE_INIT_PARENT(tn, tp);
518 put_child_root(tp, tn->key, tn);
519
520 /* update all of the child parent pointers */
521 update_children(tn);
522
523 /* all pointers should be clean so we are done */
524 tnode_free(oldtnode);
525
526 /* resize children now that oldtnode is freed */
527 for (i = child_length(tn); i;) {
528 struct key_vector *inode = get_child(tn, --i);
529
530 /* resize child node */
531 if (tnode_full(tn, inode))
532 tn = resize(t, inode);
533 }
534
535 return tp;
536 }
537
inflate(struct trie * t,struct key_vector * oldtnode)538 static struct key_vector *inflate(struct trie *t,
539 struct key_vector *oldtnode)
540 {
541 struct key_vector *tn;
542 unsigned long i;
543 t_key m;
544
545 pr_debug("In inflate\n");
546
547 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
548 if (!tn)
549 goto notnode;
550
551 /* prepare oldtnode to be freed */
552 tnode_free_init(oldtnode);
553
554 /* Assemble all of the pointers in our cluster, in this case that
555 * represents all of the pointers out of our allocated nodes that
556 * point to existing tnodes and the links between our allocated
557 * nodes.
558 */
559 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
560 struct key_vector *inode = get_child(oldtnode, --i);
561 struct key_vector *node0, *node1;
562 unsigned long j, k;
563
564 /* An empty child */
565 if (!inode)
566 continue;
567
568 /* A leaf or an internal node with skipped bits */
569 if (!tnode_full(oldtnode, inode)) {
570 put_child(tn, get_index(inode->key, tn), inode);
571 continue;
572 }
573
574 /* drop the node in the old tnode free list */
575 tnode_free_append(oldtnode, inode);
576
577 /* An internal node with two children */
578 if (inode->bits == 1) {
579 put_child(tn, 2 * i + 1, get_child(inode, 1));
580 put_child(tn, 2 * i, get_child(inode, 0));
581 continue;
582 }
583
584 /* We will replace this node 'inode' with two new
585 * ones, 'node0' and 'node1', each with half of the
586 * original children. The two new nodes will have
587 * a position one bit further down the key and this
588 * means that the "significant" part of their keys
589 * (see the discussion near the top of this file)
590 * will differ by one bit, which will be "0" in
591 * node0's key and "1" in node1's key. Since we are
592 * moving the key position by one step, the bit that
593 * we are moving away from - the bit at position
594 * (tn->pos) - is the one that will differ between
595 * node0 and node1. So... we synthesize that bit in the
596 * two new keys.
597 */
598 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
599 if (!node1)
600 goto nomem;
601 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
602
603 tnode_free_append(tn, node1);
604 if (!node0)
605 goto nomem;
606 tnode_free_append(tn, node0);
607
608 /* populate child pointers in new nodes */
609 for (k = child_length(inode), j = k / 2; j;) {
610 put_child(node1, --j, get_child(inode, --k));
611 put_child(node0, j, get_child(inode, j));
612 put_child(node1, --j, get_child(inode, --k));
613 put_child(node0, j, get_child(inode, j));
614 }
615
616 /* link new nodes to parent */
617 NODE_INIT_PARENT(node1, tn);
618 NODE_INIT_PARENT(node0, tn);
619
620 /* link parent to nodes */
621 put_child(tn, 2 * i + 1, node1);
622 put_child(tn, 2 * i, node0);
623 }
624
625 /* setup the parent pointers into and out of this node */
626 return replace(t, oldtnode, tn);
627 nomem:
628 /* all pointers should be clean so we are done */
629 tnode_free(tn);
630 notnode:
631 return NULL;
632 }
633
halve(struct trie * t,struct key_vector * oldtnode)634 static struct key_vector *halve(struct trie *t,
635 struct key_vector *oldtnode)
636 {
637 struct key_vector *tn;
638 unsigned long i;
639
640 pr_debug("In halve\n");
641
642 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
643 if (!tn)
644 goto notnode;
645
646 /* prepare oldtnode to be freed */
647 tnode_free_init(oldtnode);
648
649 /* Assemble all of the pointers in our cluster, in this case that
650 * represents all of the pointers out of our allocated nodes that
651 * point to existing tnodes and the links between our allocated
652 * nodes.
653 */
654 for (i = child_length(oldtnode); i;) {
655 struct key_vector *node1 = get_child(oldtnode, --i);
656 struct key_vector *node0 = get_child(oldtnode, --i);
657 struct key_vector *inode;
658
659 /* At least one of the children is empty */
660 if (!node1 || !node0) {
661 put_child(tn, i / 2, node1 ? : node0);
662 continue;
663 }
664
665 /* Two nonempty children */
666 inode = tnode_new(node0->key, oldtnode->pos, 1);
667 if (!inode)
668 goto nomem;
669 tnode_free_append(tn, inode);
670
671 /* initialize pointers out of node */
672 put_child(inode, 1, node1);
673 put_child(inode, 0, node0);
674 NODE_INIT_PARENT(inode, tn);
675
676 /* link parent to node */
677 put_child(tn, i / 2, inode);
678 }
679
680 /* setup the parent pointers into and out of this node */
681 return replace(t, oldtnode, tn);
682 nomem:
683 /* all pointers should be clean so we are done */
684 tnode_free(tn);
685 notnode:
686 return NULL;
687 }
688
collapse(struct trie * t,struct key_vector * oldtnode)689 static struct key_vector *collapse(struct trie *t,
690 struct key_vector *oldtnode)
691 {
692 struct key_vector *n, *tp;
693 unsigned long i;
694
695 /* scan the tnode looking for that one child that might still exist */
696 for (n = NULL, i = child_length(oldtnode); !n && i;)
697 n = get_child(oldtnode, --i);
698
699 /* compress one level */
700 tp = node_parent(oldtnode);
701 put_child_root(tp, oldtnode->key, n);
702 node_set_parent(n, tp);
703
704 /* drop dead node */
705 node_free(oldtnode);
706
707 return tp;
708 }
709
update_suffix(struct key_vector * tn)710 static unsigned char update_suffix(struct key_vector *tn)
711 {
712 unsigned char slen = tn->pos;
713 unsigned long stride, i;
714 unsigned char slen_max;
715
716 /* only vector 0 can have a suffix length greater than or equal to
717 * tn->pos + tn->bits, the second highest node will have a suffix
718 * length at most of tn->pos + tn->bits - 1
719 */
720 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
721
722 /* search though the list of children looking for nodes that might
723 * have a suffix greater than the one we currently have. This is
724 * why we start with a stride of 2 since a stride of 1 would
725 * represent the nodes with suffix length equal to tn->pos
726 */
727 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
728 struct key_vector *n = get_child(tn, i);
729
730 if (!n || (n->slen <= slen))
731 continue;
732
733 /* update stride and slen based on new value */
734 stride <<= (n->slen - slen);
735 slen = n->slen;
736 i &= ~(stride - 1);
737
738 /* stop searching if we have hit the maximum possible value */
739 if (slen >= slen_max)
740 break;
741 }
742
743 tn->slen = slen;
744
745 return slen;
746 }
747
748 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
749 * the Helsinki University of Technology and Matti Tikkanen of Nokia
750 * Telecommunications, page 6:
751 * "A node is doubled if the ratio of non-empty children to all
752 * children in the *doubled* node is at least 'high'."
753 *
754 * 'high' in this instance is the variable 'inflate_threshold'. It
755 * is expressed as a percentage, so we multiply it with
756 * child_length() and instead of multiplying by 2 (since the
757 * child array will be doubled by inflate()) and multiplying
758 * the left-hand side by 100 (to handle the percentage thing) we
759 * multiply the left-hand side by 50.
760 *
761 * The left-hand side may look a bit weird: child_length(tn)
762 * - tn->empty_children is of course the number of non-null children
763 * in the current node. tn->full_children is the number of "full"
764 * children, that is non-null tnodes with a skip value of 0.
765 * All of those will be doubled in the resulting inflated tnode, so
766 * we just count them one extra time here.
767 *
768 * A clearer way to write this would be:
769 *
770 * to_be_doubled = tn->full_children;
771 * not_to_be_doubled = child_length(tn) - tn->empty_children -
772 * tn->full_children;
773 *
774 * new_child_length = child_length(tn) * 2;
775 *
776 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
777 * new_child_length;
778 * if (new_fill_factor >= inflate_threshold)
779 *
780 * ...and so on, tho it would mess up the while () loop.
781 *
782 * anyway,
783 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
784 * inflate_threshold
785 *
786 * avoid a division:
787 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
788 * inflate_threshold * new_child_length
789 *
790 * expand not_to_be_doubled and to_be_doubled, and shorten:
791 * 100 * (child_length(tn) - tn->empty_children +
792 * tn->full_children) >= inflate_threshold * new_child_length
793 *
794 * expand new_child_length:
795 * 100 * (child_length(tn) - tn->empty_children +
796 * tn->full_children) >=
797 * inflate_threshold * child_length(tn) * 2
798 *
799 * shorten again:
800 * 50 * (tn->full_children + child_length(tn) -
801 * tn->empty_children) >= inflate_threshold *
802 * child_length(tn)
803 *
804 */
should_inflate(struct key_vector * tp,struct key_vector * tn)805 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
806 {
807 unsigned long used = child_length(tn);
808 unsigned long threshold = used;
809
810 /* Keep root node larger */
811 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
812 used -= tn_info(tn)->empty_children;
813 used += tn_info(tn)->full_children;
814
815 /* if bits == KEYLENGTH then pos = 0, and will fail below */
816
817 return (used > 1) && tn->pos && ((50 * used) >= threshold);
818 }
819
should_halve(struct key_vector * tp,struct key_vector * tn)820 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
821 {
822 unsigned long used = child_length(tn);
823 unsigned long threshold = used;
824
825 /* Keep root node larger */
826 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
827 used -= tn_info(tn)->empty_children;
828
829 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
830
831 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
832 }
833
should_collapse(struct key_vector * tn)834 static inline bool should_collapse(struct key_vector *tn)
835 {
836 unsigned long used = child_length(tn);
837
838 used -= tn_info(tn)->empty_children;
839
840 /* account for bits == KEYLENGTH case */
841 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
842 used -= KEY_MAX;
843
844 /* One child or none, time to drop us from the trie */
845 return used < 2;
846 }
847
848 #define MAX_WORK 10
resize(struct trie * t,struct key_vector * tn)849 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
850 {
851 #ifdef CONFIG_IP_FIB_TRIE_STATS
852 struct trie_use_stats __percpu *stats = t->stats;
853 #endif
854 struct key_vector *tp = node_parent(tn);
855 unsigned long cindex = get_index(tn->key, tp);
856 int max_work = MAX_WORK;
857
858 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
859 tn, inflate_threshold, halve_threshold);
860
861 /* track the tnode via the pointer from the parent instead of
862 * doing it ourselves. This way we can let RCU fully do its
863 * thing without us interfering
864 */
865 BUG_ON(tn != get_child(tp, cindex));
866
867 /* Double as long as the resulting node has a number of
868 * nonempty nodes that are above the threshold.
869 */
870 while (should_inflate(tp, tn) && max_work) {
871 tp = inflate(t, tn);
872 if (!tp) {
873 #ifdef CONFIG_IP_FIB_TRIE_STATS
874 this_cpu_inc(stats->resize_node_skipped);
875 #endif
876 break;
877 }
878
879 max_work--;
880 tn = get_child(tp, cindex);
881 }
882
883 /* update parent in case inflate failed */
884 tp = node_parent(tn);
885
886 /* Return if at least one inflate is run */
887 if (max_work != MAX_WORK)
888 return tp;
889
890 /* Halve as long as the number of empty children in this
891 * node is above threshold.
892 */
893 while (should_halve(tp, tn) && max_work) {
894 tp = halve(t, tn);
895 if (!tp) {
896 #ifdef CONFIG_IP_FIB_TRIE_STATS
897 this_cpu_inc(stats->resize_node_skipped);
898 #endif
899 break;
900 }
901
902 max_work--;
903 tn = get_child(tp, cindex);
904 }
905
906 /* Only one child remains */
907 if (should_collapse(tn))
908 return collapse(t, tn);
909
910 /* update parent in case halve failed */
911 return node_parent(tn);
912 }
913
node_pull_suffix(struct key_vector * tn,unsigned char slen)914 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
915 {
916 unsigned char node_slen = tn->slen;
917
918 while ((node_slen > tn->pos) && (node_slen > slen)) {
919 slen = update_suffix(tn);
920 if (node_slen == slen)
921 break;
922
923 tn = node_parent(tn);
924 node_slen = tn->slen;
925 }
926 }
927
node_push_suffix(struct key_vector * tn,unsigned char slen)928 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
929 {
930 while (tn->slen < slen) {
931 tn->slen = slen;
932 tn = node_parent(tn);
933 }
934 }
935
936 /* rcu_read_lock needs to be hold by caller from readside */
fib_find_node(struct trie * t,struct key_vector ** tp,u32 key)937 static struct key_vector *fib_find_node(struct trie *t,
938 struct key_vector **tp, u32 key)
939 {
940 struct key_vector *pn, *n = t->kv;
941 unsigned long index = 0;
942
943 do {
944 pn = n;
945 n = get_child_rcu(n, index);
946
947 if (!n)
948 break;
949
950 index = get_cindex(key, n);
951
952 /* This bit of code is a bit tricky but it combines multiple
953 * checks into a single check. The prefix consists of the
954 * prefix plus zeros for the bits in the cindex. The index
955 * is the difference between the key and this value. From
956 * this we can actually derive several pieces of data.
957 * if (index >= (1ul << bits))
958 * we have a mismatch in skip bits and failed
959 * else
960 * we know the value is cindex
961 *
962 * This check is safe even if bits == KEYLENGTH due to the
963 * fact that we can only allocate a node with 32 bits if a
964 * long is greater than 32 bits.
965 */
966 if (index >= (1ul << n->bits)) {
967 n = NULL;
968 break;
969 }
970
971 /* keep searching until we find a perfect match leaf or NULL */
972 } while (IS_TNODE(n));
973
974 *tp = pn;
975
976 return n;
977 }
978
979 /* Return the first fib alias matching TOS with
980 * priority less than or equal to PRIO.
981 */
fib_find_alias(struct hlist_head * fah,u8 slen,u8 tos,u32 prio,u32 tb_id)982 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
983 u8 tos, u32 prio, u32 tb_id)
984 {
985 struct fib_alias *fa;
986
987 if (!fah)
988 return NULL;
989
990 hlist_for_each_entry(fa, fah, fa_list) {
991 if (fa->fa_slen < slen)
992 continue;
993 if (fa->fa_slen != slen)
994 break;
995 if (fa->tb_id > tb_id)
996 continue;
997 if (fa->tb_id != tb_id)
998 break;
999 if (fa->fa_tos > tos)
1000 continue;
1001 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1002 return fa;
1003 }
1004
1005 return NULL;
1006 }
1007
trie_rebalance(struct trie * t,struct key_vector * tn)1008 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1009 {
1010 while (!IS_TRIE(tn))
1011 tn = resize(t, tn);
1012 }
1013
fib_insert_node(struct trie * t,struct key_vector * tp,struct fib_alias * new,t_key key)1014 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1015 struct fib_alias *new, t_key key)
1016 {
1017 struct key_vector *n, *l;
1018
1019 l = leaf_new(key, new);
1020 if (!l)
1021 goto noleaf;
1022
1023 /* retrieve child from parent node */
1024 n = get_child(tp, get_index(key, tp));
1025
1026 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1027 *
1028 * Add a new tnode here
1029 * first tnode need some special handling
1030 * leaves us in position for handling as case 3
1031 */
1032 if (n) {
1033 struct key_vector *tn;
1034
1035 tn = tnode_new(key, __fls(key ^ n->key), 1);
1036 if (!tn)
1037 goto notnode;
1038
1039 /* initialize routes out of node */
1040 NODE_INIT_PARENT(tn, tp);
1041 put_child(tn, get_index(key, tn) ^ 1, n);
1042
1043 /* start adding routes into the node */
1044 put_child_root(tp, key, tn);
1045 node_set_parent(n, tn);
1046
1047 /* parent now has a NULL spot where the leaf can go */
1048 tp = tn;
1049 }
1050
1051 /* Case 3: n is NULL, and will just insert a new leaf */
1052 node_push_suffix(tp, new->fa_slen);
1053 NODE_INIT_PARENT(l, tp);
1054 put_child_root(tp, key, l);
1055 trie_rebalance(t, tp);
1056
1057 return 0;
1058 notnode:
1059 node_free(l);
1060 noleaf:
1061 return -ENOMEM;
1062 }
1063
1064 /* fib notifier for ADD is sent before calling fib_insert_alias with
1065 * the expectation that the only possible failure ENOMEM
1066 */
fib_insert_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * new,struct fib_alias * fa,t_key key)1067 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1068 struct key_vector *l, struct fib_alias *new,
1069 struct fib_alias *fa, t_key key)
1070 {
1071 if (!l)
1072 return fib_insert_node(t, tp, new, key);
1073
1074 if (fa) {
1075 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1076 } else {
1077 struct fib_alias *last;
1078
1079 hlist_for_each_entry(last, &l->leaf, fa_list) {
1080 if (new->fa_slen < last->fa_slen)
1081 break;
1082 if ((new->fa_slen == last->fa_slen) &&
1083 (new->tb_id > last->tb_id))
1084 break;
1085 fa = last;
1086 }
1087
1088 if (fa)
1089 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1090 else
1091 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1092 }
1093
1094 /* if we added to the tail node then we need to update slen */
1095 if (l->slen < new->fa_slen) {
1096 l->slen = new->fa_slen;
1097 node_push_suffix(tp, new->fa_slen);
1098 }
1099
1100 return 0;
1101 }
1102
fib_valid_key_len(u32 key,u8 plen,struct netlink_ext_ack * extack)1103 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1104 {
1105 if (plen > KEYLENGTH) {
1106 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1107 return false;
1108 }
1109
1110 if ((plen < KEYLENGTH) && (key << plen)) {
1111 NL_SET_ERR_MSG(extack,
1112 "Invalid prefix for given prefix length");
1113 return false;
1114 }
1115
1116 return true;
1117 }
1118
1119 /* Caller must hold RTNL. */
fib_table_insert(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1120 int fib_table_insert(struct net *net, struct fib_table *tb,
1121 struct fib_config *cfg, struct netlink_ext_ack *extack)
1122 {
1123 enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1124 struct trie *t = (struct trie *)tb->tb_data;
1125 struct fib_alias *fa, *new_fa;
1126 struct key_vector *l, *tp;
1127 u16 nlflags = NLM_F_EXCL;
1128 struct fib_info *fi;
1129 u8 plen = cfg->fc_dst_len;
1130 u8 slen = KEYLENGTH - plen;
1131 u8 tos = cfg->fc_tos;
1132 u32 key;
1133 int err;
1134
1135 key = ntohl(cfg->fc_dst);
1136
1137 if (!fib_valid_key_len(key, plen, extack))
1138 return -EINVAL;
1139
1140 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1141
1142 fi = fib_create_info(cfg, extack);
1143 if (IS_ERR(fi)) {
1144 err = PTR_ERR(fi);
1145 goto err;
1146 }
1147
1148 l = fib_find_node(t, &tp, key);
1149 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1150 tb->tb_id) : NULL;
1151
1152 /* Now fa, if non-NULL, points to the first fib alias
1153 * with the same keys [prefix,tos,priority], if such key already
1154 * exists or to the node before which we will insert new one.
1155 *
1156 * If fa is NULL, we will need to allocate a new one and
1157 * insert to the tail of the section matching the suffix length
1158 * of the new alias.
1159 */
1160
1161 if (fa && fa->fa_tos == tos &&
1162 fa->fa_info->fib_priority == fi->fib_priority) {
1163 struct fib_alias *fa_first, *fa_match;
1164
1165 err = -EEXIST;
1166 if (cfg->fc_nlflags & NLM_F_EXCL)
1167 goto out;
1168
1169 nlflags &= ~NLM_F_EXCL;
1170
1171 /* We have 2 goals:
1172 * 1. Find exact match for type, scope, fib_info to avoid
1173 * duplicate routes
1174 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1175 */
1176 fa_match = NULL;
1177 fa_first = fa;
1178 hlist_for_each_entry_from(fa, fa_list) {
1179 if ((fa->fa_slen != slen) ||
1180 (fa->tb_id != tb->tb_id) ||
1181 (fa->fa_tos != tos))
1182 break;
1183 if (fa->fa_info->fib_priority != fi->fib_priority)
1184 break;
1185 if (fa->fa_type == cfg->fc_type &&
1186 fa->fa_info == fi) {
1187 fa_match = fa;
1188 break;
1189 }
1190 }
1191
1192 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1193 struct fib_info *fi_drop;
1194 u8 state;
1195
1196 nlflags |= NLM_F_REPLACE;
1197 fa = fa_first;
1198 if (fa_match) {
1199 if (fa == fa_match)
1200 err = 0;
1201 goto out;
1202 }
1203 err = -ENOBUFS;
1204 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1205 if (!new_fa)
1206 goto out;
1207
1208 fi_drop = fa->fa_info;
1209 new_fa->fa_tos = fa->fa_tos;
1210 new_fa->fa_info = fi;
1211 new_fa->fa_type = cfg->fc_type;
1212 state = fa->fa_state;
1213 new_fa->fa_state = state & ~FA_S_ACCESSED;
1214 new_fa->fa_slen = fa->fa_slen;
1215 new_fa->tb_id = tb->tb_id;
1216 new_fa->fa_default = -1;
1217
1218 err = call_fib_entry_notifiers(net,
1219 FIB_EVENT_ENTRY_REPLACE,
1220 key, plen, new_fa,
1221 extack);
1222 if (err)
1223 goto out_free_new_fa;
1224
1225 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1226 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1227
1228 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1229
1230 alias_free_mem_rcu(fa);
1231
1232 fib_release_info(fi_drop);
1233 if (state & FA_S_ACCESSED)
1234 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1235
1236 goto succeeded;
1237 }
1238 /* Error if we find a perfect match which
1239 * uses the same scope, type, and nexthop
1240 * information.
1241 */
1242 if (fa_match)
1243 goto out;
1244
1245 if (cfg->fc_nlflags & NLM_F_APPEND) {
1246 event = FIB_EVENT_ENTRY_APPEND;
1247 nlflags |= NLM_F_APPEND;
1248 } else {
1249 fa = fa_first;
1250 }
1251 }
1252 err = -ENOENT;
1253 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1254 goto out;
1255
1256 nlflags |= NLM_F_CREATE;
1257 err = -ENOBUFS;
1258 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1259 if (!new_fa)
1260 goto out;
1261
1262 new_fa->fa_info = fi;
1263 new_fa->fa_tos = tos;
1264 new_fa->fa_type = cfg->fc_type;
1265 new_fa->fa_state = 0;
1266 new_fa->fa_slen = slen;
1267 new_fa->tb_id = tb->tb_id;
1268 new_fa->fa_default = -1;
1269
1270 err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1271 if (err)
1272 goto out_free_new_fa;
1273
1274 /* Insert new entry to the list. */
1275 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1276 if (err)
1277 goto out_fib_notif;
1278
1279 if (!plen)
1280 tb->tb_num_default++;
1281
1282 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1283 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1284 &cfg->fc_nlinfo, nlflags);
1285 succeeded:
1286 return 0;
1287
1288 out_fib_notif:
1289 /* notifier was sent that entry would be added to trie, but
1290 * the add failed and need to recover. Only failure for
1291 * fib_insert_alias is ENOMEM.
1292 */
1293 NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1294 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1295 plen, new_fa, NULL);
1296 out_free_new_fa:
1297 kmem_cache_free(fn_alias_kmem, new_fa);
1298 out:
1299 fib_release_info(fi);
1300 err:
1301 return err;
1302 }
1303
prefix_mismatch(t_key key,struct key_vector * n)1304 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1305 {
1306 t_key prefix = n->key;
1307
1308 return (key ^ prefix) & (prefix | -prefix);
1309 }
1310
1311 /* should be called with rcu_read_lock */
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1312 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1313 struct fib_result *res, int fib_flags)
1314 {
1315 struct trie *t = (struct trie *) tb->tb_data;
1316 #ifdef CONFIG_IP_FIB_TRIE_STATS
1317 struct trie_use_stats __percpu *stats = t->stats;
1318 #endif
1319 const t_key key = ntohl(flp->daddr);
1320 struct key_vector *n, *pn;
1321 struct fib_alias *fa;
1322 unsigned long index;
1323 t_key cindex;
1324
1325 pn = t->kv;
1326 cindex = 0;
1327
1328 n = get_child_rcu(pn, cindex);
1329 if (!n) {
1330 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1331 return -EAGAIN;
1332 }
1333
1334 #ifdef CONFIG_IP_FIB_TRIE_STATS
1335 this_cpu_inc(stats->gets);
1336 #endif
1337
1338 /* Step 1: Travel to the longest prefix match in the trie */
1339 for (;;) {
1340 index = get_cindex(key, n);
1341
1342 /* This bit of code is a bit tricky but it combines multiple
1343 * checks into a single check. The prefix consists of the
1344 * prefix plus zeros for the "bits" in the prefix. The index
1345 * is the difference between the key and this value. From
1346 * this we can actually derive several pieces of data.
1347 * if (index >= (1ul << bits))
1348 * we have a mismatch in skip bits and failed
1349 * else
1350 * we know the value is cindex
1351 *
1352 * This check is safe even if bits == KEYLENGTH due to the
1353 * fact that we can only allocate a node with 32 bits if a
1354 * long is greater than 32 bits.
1355 */
1356 if (index >= (1ul << n->bits))
1357 break;
1358
1359 /* we have found a leaf. Prefixes have already been compared */
1360 if (IS_LEAF(n))
1361 goto found;
1362
1363 /* only record pn and cindex if we are going to be chopping
1364 * bits later. Otherwise we are just wasting cycles.
1365 */
1366 if (n->slen > n->pos) {
1367 pn = n;
1368 cindex = index;
1369 }
1370
1371 n = get_child_rcu(n, index);
1372 if (unlikely(!n))
1373 goto backtrace;
1374 }
1375
1376 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1377 for (;;) {
1378 /* record the pointer where our next node pointer is stored */
1379 struct key_vector __rcu **cptr = n->tnode;
1380
1381 /* This test verifies that none of the bits that differ
1382 * between the key and the prefix exist in the region of
1383 * the lsb and higher in the prefix.
1384 */
1385 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1386 goto backtrace;
1387
1388 /* exit out and process leaf */
1389 if (unlikely(IS_LEAF(n)))
1390 break;
1391
1392 /* Don't bother recording parent info. Since we are in
1393 * prefix match mode we will have to come back to wherever
1394 * we started this traversal anyway
1395 */
1396
1397 while ((n = rcu_dereference(*cptr)) == NULL) {
1398 backtrace:
1399 #ifdef CONFIG_IP_FIB_TRIE_STATS
1400 if (!n)
1401 this_cpu_inc(stats->null_node_hit);
1402 #endif
1403 /* If we are at cindex 0 there are no more bits for
1404 * us to strip at this level so we must ascend back
1405 * up one level to see if there are any more bits to
1406 * be stripped there.
1407 */
1408 while (!cindex) {
1409 t_key pkey = pn->key;
1410
1411 /* If we don't have a parent then there is
1412 * nothing for us to do as we do not have any
1413 * further nodes to parse.
1414 */
1415 if (IS_TRIE(pn)) {
1416 trace_fib_table_lookup(tb->tb_id, flp,
1417 NULL, -EAGAIN);
1418 return -EAGAIN;
1419 }
1420 #ifdef CONFIG_IP_FIB_TRIE_STATS
1421 this_cpu_inc(stats->backtrack);
1422 #endif
1423 /* Get Child's index */
1424 pn = node_parent_rcu(pn);
1425 cindex = get_index(pkey, pn);
1426 }
1427
1428 /* strip the least significant bit from the cindex */
1429 cindex &= cindex - 1;
1430
1431 /* grab pointer for next child node */
1432 cptr = &pn->tnode[cindex];
1433 }
1434 }
1435
1436 found:
1437 /* this line carries forward the xor from earlier in the function */
1438 index = key ^ n->key;
1439
1440 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1441 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1442 struct fib_info *fi = fa->fa_info;
1443 int nhsel, err;
1444
1445 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1446 if (index >= (1ul << fa->fa_slen))
1447 continue;
1448 }
1449 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1450 continue;
1451 /* Paired with WRITE_ONCE() in fib_release_info() */
1452 if (READ_ONCE(fi->fib_dead))
1453 continue;
1454 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1455 continue;
1456 fib_alias_accessed(fa);
1457 err = fib_props[fa->fa_type].error;
1458 if (unlikely(err < 0)) {
1459 out_reject:
1460 #ifdef CONFIG_IP_FIB_TRIE_STATS
1461 this_cpu_inc(stats->semantic_match_passed);
1462 #endif
1463 trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1464 return err;
1465 }
1466 if (fi->fib_flags & RTNH_F_DEAD)
1467 continue;
1468
1469 if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) {
1470 err = fib_props[RTN_BLACKHOLE].error;
1471 goto out_reject;
1472 }
1473
1474 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1475 struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel);
1476
1477 if (nhc->nhc_flags & RTNH_F_DEAD)
1478 continue;
1479 if (ip_ignore_linkdown(nhc->nhc_dev) &&
1480 nhc->nhc_flags & RTNH_F_LINKDOWN &&
1481 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1482 continue;
1483 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1484 if (flp->flowi4_oif &&
1485 flp->flowi4_oif != nhc->nhc_oif)
1486 continue;
1487 }
1488
1489 if (!(fib_flags & FIB_LOOKUP_NOREF))
1490 refcount_inc(&fi->fib_clntref);
1491
1492 res->prefix = htonl(n->key);
1493 res->prefixlen = KEYLENGTH - fa->fa_slen;
1494 res->nh_sel = nhsel;
1495 res->nhc = nhc;
1496 res->type = fa->fa_type;
1497 res->scope = fi->fib_scope;
1498 res->fi = fi;
1499 res->table = tb;
1500 res->fa_head = &n->leaf;
1501 #ifdef CONFIG_IP_FIB_TRIE_STATS
1502 this_cpu_inc(stats->semantic_match_passed);
1503 #endif
1504 trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1505
1506 return err;
1507 }
1508 }
1509 #ifdef CONFIG_IP_FIB_TRIE_STATS
1510 this_cpu_inc(stats->semantic_match_miss);
1511 #endif
1512 goto backtrace;
1513 }
1514 EXPORT_SYMBOL_GPL(fib_table_lookup);
1515
fib_remove_alias(struct trie * t,struct key_vector * tp,struct key_vector * l,struct fib_alias * old)1516 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1517 struct key_vector *l, struct fib_alias *old)
1518 {
1519 /* record the location of the previous list_info entry */
1520 struct hlist_node **pprev = old->fa_list.pprev;
1521 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1522
1523 /* remove the fib_alias from the list */
1524 hlist_del_rcu(&old->fa_list);
1525
1526 /* if we emptied the list this leaf will be freed and we can sort
1527 * out parent suffix lengths as a part of trie_rebalance
1528 */
1529 if (hlist_empty(&l->leaf)) {
1530 if (tp->slen == l->slen)
1531 node_pull_suffix(tp, tp->pos);
1532 put_child_root(tp, l->key, NULL);
1533 node_free(l);
1534 trie_rebalance(t, tp);
1535 return;
1536 }
1537
1538 /* only access fa if it is pointing at the last valid hlist_node */
1539 if (*pprev)
1540 return;
1541
1542 /* update the trie with the latest suffix length */
1543 l->slen = fa->fa_slen;
1544 node_pull_suffix(tp, fa->fa_slen);
1545 }
1546
1547 /* Caller must hold RTNL. */
fib_table_delete(struct net * net,struct fib_table * tb,struct fib_config * cfg,struct netlink_ext_ack * extack)1548 int fib_table_delete(struct net *net, struct fib_table *tb,
1549 struct fib_config *cfg, struct netlink_ext_ack *extack)
1550 {
1551 struct trie *t = (struct trie *) tb->tb_data;
1552 struct fib_alias *fa, *fa_to_delete;
1553 struct key_vector *l, *tp;
1554 u8 plen = cfg->fc_dst_len;
1555 u8 slen = KEYLENGTH - plen;
1556 u8 tos = cfg->fc_tos;
1557 u32 key;
1558
1559 key = ntohl(cfg->fc_dst);
1560
1561 if (!fib_valid_key_len(key, plen, extack))
1562 return -EINVAL;
1563
1564 l = fib_find_node(t, &tp, key);
1565 if (!l)
1566 return -ESRCH;
1567
1568 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1569 if (!fa)
1570 return -ESRCH;
1571
1572 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1573
1574 fa_to_delete = NULL;
1575 hlist_for_each_entry_from(fa, fa_list) {
1576 struct fib_info *fi = fa->fa_info;
1577
1578 if ((fa->fa_slen != slen) ||
1579 (fa->tb_id != tb->tb_id) ||
1580 (fa->fa_tos != tos))
1581 break;
1582
1583 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1584 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1585 fa->fa_info->fib_scope == cfg->fc_scope) &&
1586 (!cfg->fc_prefsrc ||
1587 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1588 (!cfg->fc_protocol ||
1589 fi->fib_protocol == cfg->fc_protocol) &&
1590 fib_nh_match(cfg, fi, extack) == 0 &&
1591 fib_metrics_match(cfg, fi)) {
1592 fa_to_delete = fa;
1593 break;
1594 }
1595 }
1596
1597 if (!fa_to_delete)
1598 return -ESRCH;
1599
1600 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1601 fa_to_delete, extack);
1602 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1603 &cfg->fc_nlinfo, 0);
1604
1605 if (!plen)
1606 tb->tb_num_default--;
1607
1608 fib_remove_alias(t, tp, l, fa_to_delete);
1609
1610 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1611 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1612
1613 fib_release_info(fa_to_delete->fa_info);
1614 alias_free_mem_rcu(fa_to_delete);
1615 return 0;
1616 }
1617
1618 /* Scan for the next leaf starting at the provided key value */
leaf_walk_rcu(struct key_vector ** tn,t_key key)1619 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1620 {
1621 struct key_vector *pn, *n = *tn;
1622 unsigned long cindex;
1623
1624 /* this loop is meant to try and find the key in the trie */
1625 do {
1626 /* record parent and next child index */
1627 pn = n;
1628 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1629
1630 if (cindex >> pn->bits)
1631 break;
1632
1633 /* descend into the next child */
1634 n = get_child_rcu(pn, cindex++);
1635 if (!n)
1636 break;
1637
1638 /* guarantee forward progress on the keys */
1639 if (IS_LEAF(n) && (n->key >= key))
1640 goto found;
1641 } while (IS_TNODE(n));
1642
1643 /* this loop will search for the next leaf with a greater key */
1644 while (!IS_TRIE(pn)) {
1645 /* if we exhausted the parent node we will need to climb */
1646 if (cindex >= (1ul << pn->bits)) {
1647 t_key pkey = pn->key;
1648
1649 pn = node_parent_rcu(pn);
1650 cindex = get_index(pkey, pn) + 1;
1651 continue;
1652 }
1653
1654 /* grab the next available node */
1655 n = get_child_rcu(pn, cindex++);
1656 if (!n)
1657 continue;
1658
1659 /* no need to compare keys since we bumped the index */
1660 if (IS_LEAF(n))
1661 goto found;
1662
1663 /* Rescan start scanning in new node */
1664 pn = n;
1665 cindex = 0;
1666 }
1667
1668 *tn = pn;
1669 return NULL; /* Root of trie */
1670 found:
1671 /* if we are at the limit for keys just return NULL for the tnode */
1672 *tn = pn;
1673 return n;
1674 }
1675
fib_trie_free(struct fib_table * tb)1676 static void fib_trie_free(struct fib_table *tb)
1677 {
1678 struct trie *t = (struct trie *)tb->tb_data;
1679 struct key_vector *pn = t->kv;
1680 unsigned long cindex = 1;
1681 struct hlist_node *tmp;
1682 struct fib_alias *fa;
1683
1684 /* walk trie in reverse order and free everything */
1685 for (;;) {
1686 struct key_vector *n;
1687
1688 if (!(cindex--)) {
1689 t_key pkey = pn->key;
1690
1691 if (IS_TRIE(pn))
1692 break;
1693
1694 n = pn;
1695 pn = node_parent(pn);
1696
1697 /* drop emptied tnode */
1698 put_child_root(pn, n->key, NULL);
1699 node_free(n);
1700
1701 cindex = get_index(pkey, pn);
1702
1703 continue;
1704 }
1705
1706 /* grab the next available node */
1707 n = get_child(pn, cindex);
1708 if (!n)
1709 continue;
1710
1711 if (IS_TNODE(n)) {
1712 /* record pn and cindex for leaf walking */
1713 pn = n;
1714 cindex = 1ul << n->bits;
1715
1716 continue;
1717 }
1718
1719 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1720 hlist_del_rcu(&fa->fa_list);
1721 alias_free_mem_rcu(fa);
1722 }
1723
1724 put_child_root(pn, n->key, NULL);
1725 node_free(n);
1726 }
1727
1728 #ifdef CONFIG_IP_FIB_TRIE_STATS
1729 free_percpu(t->stats);
1730 #endif
1731 kfree(tb);
1732 }
1733
fib_trie_unmerge(struct fib_table * oldtb)1734 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1735 {
1736 struct trie *ot = (struct trie *)oldtb->tb_data;
1737 struct key_vector *l, *tp = ot->kv;
1738 struct fib_table *local_tb;
1739 struct fib_alias *fa;
1740 struct trie *lt;
1741 t_key key = 0;
1742
1743 if (oldtb->tb_data == oldtb->__data)
1744 return oldtb;
1745
1746 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1747 if (!local_tb)
1748 return NULL;
1749
1750 lt = (struct trie *)local_tb->tb_data;
1751
1752 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1753 struct key_vector *local_l = NULL, *local_tp;
1754
1755 hlist_for_each_entry(fa, &l->leaf, fa_list) {
1756 struct fib_alias *new_fa;
1757
1758 if (local_tb->tb_id != fa->tb_id)
1759 continue;
1760
1761 /* clone fa for new local table */
1762 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1763 if (!new_fa)
1764 goto out;
1765
1766 memcpy(new_fa, fa, sizeof(*fa));
1767
1768 /* insert clone into table */
1769 if (!local_l)
1770 local_l = fib_find_node(lt, &local_tp, l->key);
1771
1772 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1773 NULL, l->key)) {
1774 kmem_cache_free(fn_alias_kmem, new_fa);
1775 goto out;
1776 }
1777 }
1778
1779 /* stop loop if key wrapped back to 0 */
1780 key = l->key + 1;
1781 if (key < l->key)
1782 break;
1783 }
1784
1785 return local_tb;
1786 out:
1787 fib_trie_free(local_tb);
1788
1789 return NULL;
1790 }
1791
1792 /* Caller must hold RTNL */
fib_table_flush_external(struct fib_table * tb)1793 void fib_table_flush_external(struct fib_table *tb)
1794 {
1795 struct trie *t = (struct trie *)tb->tb_data;
1796 struct key_vector *pn = t->kv;
1797 unsigned long cindex = 1;
1798 struct hlist_node *tmp;
1799 struct fib_alias *fa;
1800
1801 /* walk trie in reverse order */
1802 for (;;) {
1803 unsigned char slen = 0;
1804 struct key_vector *n;
1805
1806 if (!(cindex--)) {
1807 t_key pkey = pn->key;
1808
1809 /* cannot resize the trie vector */
1810 if (IS_TRIE(pn))
1811 break;
1812
1813 /* update the suffix to address pulled leaves */
1814 if (pn->slen > pn->pos)
1815 update_suffix(pn);
1816
1817 /* resize completed node */
1818 pn = resize(t, pn);
1819 cindex = get_index(pkey, pn);
1820
1821 continue;
1822 }
1823
1824 /* grab the next available node */
1825 n = get_child(pn, cindex);
1826 if (!n)
1827 continue;
1828
1829 if (IS_TNODE(n)) {
1830 /* record pn and cindex for leaf walking */
1831 pn = n;
1832 cindex = 1ul << n->bits;
1833
1834 continue;
1835 }
1836
1837 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1838 /* if alias was cloned to local then we just
1839 * need to remove the local copy from main
1840 */
1841 if (tb->tb_id != fa->tb_id) {
1842 hlist_del_rcu(&fa->fa_list);
1843 alias_free_mem_rcu(fa);
1844 continue;
1845 }
1846
1847 /* record local slen */
1848 slen = fa->fa_slen;
1849 }
1850
1851 /* update leaf slen */
1852 n->slen = slen;
1853
1854 if (hlist_empty(&n->leaf)) {
1855 put_child_root(pn, n->key, NULL);
1856 node_free(n);
1857 }
1858 }
1859 }
1860
1861 /* Caller must hold RTNL. */
fib_table_flush(struct net * net,struct fib_table * tb,bool flush_all)1862 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1863 {
1864 struct trie *t = (struct trie *)tb->tb_data;
1865 struct key_vector *pn = t->kv;
1866 unsigned long cindex = 1;
1867 struct hlist_node *tmp;
1868 struct fib_alias *fa;
1869 int found = 0;
1870
1871 /* walk trie in reverse order */
1872 for (;;) {
1873 unsigned char slen = 0;
1874 struct key_vector *n;
1875
1876 if (!(cindex--)) {
1877 t_key pkey = pn->key;
1878
1879 /* cannot resize the trie vector */
1880 if (IS_TRIE(pn))
1881 break;
1882
1883 /* update the suffix to address pulled leaves */
1884 if (pn->slen > pn->pos)
1885 update_suffix(pn);
1886
1887 /* resize completed node */
1888 pn = resize(t, pn);
1889 cindex = get_index(pkey, pn);
1890
1891 continue;
1892 }
1893
1894 /* grab the next available node */
1895 n = get_child(pn, cindex);
1896 if (!n)
1897 continue;
1898
1899 if (IS_TNODE(n)) {
1900 /* record pn and cindex for leaf walking */
1901 pn = n;
1902 cindex = 1ul << n->bits;
1903
1904 continue;
1905 }
1906
1907 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1908 struct fib_info *fi = fa->fa_info;
1909
1910 if (!fi || tb->tb_id != fa->tb_id ||
1911 (!(fi->fib_flags & RTNH_F_DEAD) &&
1912 !fib_props[fa->fa_type].error)) {
1913 slen = fa->fa_slen;
1914 continue;
1915 }
1916
1917 /* Do not flush error routes if network namespace is
1918 * not being dismantled
1919 */
1920 if (!flush_all && fib_props[fa->fa_type].error) {
1921 slen = fa->fa_slen;
1922 continue;
1923 }
1924
1925 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1926 n->key,
1927 KEYLENGTH - fa->fa_slen, fa,
1928 NULL);
1929 hlist_del_rcu(&fa->fa_list);
1930 fib_release_info(fa->fa_info);
1931 alias_free_mem_rcu(fa);
1932 found++;
1933 }
1934
1935 /* update leaf slen */
1936 n->slen = slen;
1937
1938 if (hlist_empty(&n->leaf)) {
1939 put_child_root(pn, n->key, NULL);
1940 node_free(n);
1941 }
1942 }
1943
1944 pr_debug("trie_flush found=%d\n", found);
1945 return found;
1946 }
1947
1948 /* derived from fib_trie_free */
__fib_info_notify_update(struct net * net,struct fib_table * tb,struct nl_info * info)1949 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
1950 struct nl_info *info)
1951 {
1952 struct trie *t = (struct trie *)tb->tb_data;
1953 struct key_vector *pn = t->kv;
1954 unsigned long cindex = 1;
1955 struct fib_alias *fa;
1956
1957 for (;;) {
1958 struct key_vector *n;
1959
1960 if (!(cindex--)) {
1961 t_key pkey = pn->key;
1962
1963 if (IS_TRIE(pn))
1964 break;
1965
1966 pn = node_parent(pn);
1967 cindex = get_index(pkey, pn);
1968 continue;
1969 }
1970
1971 /* grab the next available node */
1972 n = get_child(pn, cindex);
1973 if (!n)
1974 continue;
1975
1976 if (IS_TNODE(n)) {
1977 /* record pn and cindex for leaf walking */
1978 pn = n;
1979 cindex = 1ul << n->bits;
1980
1981 continue;
1982 }
1983
1984 hlist_for_each_entry(fa, &n->leaf, fa_list) {
1985 struct fib_info *fi = fa->fa_info;
1986
1987 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
1988 continue;
1989
1990 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
1991 KEYLENGTH - fa->fa_slen, tb->tb_id,
1992 info, NLM_F_REPLACE);
1993
1994 /* call_fib_entry_notifiers will be removed when
1995 * in-kernel notifier is implemented and supported
1996 * for nexthop objects
1997 */
1998 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1999 n->key,
2000 KEYLENGTH - fa->fa_slen, fa,
2001 NULL);
2002 }
2003 }
2004 }
2005
fib_info_notify_update(struct net * net,struct nl_info * info)2006 void fib_info_notify_update(struct net *net, struct nl_info *info)
2007 {
2008 unsigned int h;
2009
2010 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2011 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2012 struct fib_table *tb;
2013
2014 hlist_for_each_entry_rcu(tb, head, tb_hlist,
2015 lockdep_rtnl_is_held())
2016 __fib_info_notify_update(net, tb, info);
2017 }
2018 }
2019
fib_leaf_notify(struct net * net,struct key_vector * l,struct fib_table * tb,struct notifier_block * nb)2020 static void fib_leaf_notify(struct net *net, struct key_vector *l,
2021 struct fib_table *tb, struct notifier_block *nb)
2022 {
2023 struct fib_alias *fa;
2024
2025 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2026 struct fib_info *fi = fa->fa_info;
2027
2028 if (!fi)
2029 continue;
2030
2031 /* local and main table can share the same trie,
2032 * so don't notify twice for the same entry.
2033 */
2034 if (tb->tb_id != fa->tb_id)
2035 continue;
2036
2037 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
2038 KEYLENGTH - fa->fa_slen, fa);
2039 }
2040 }
2041
fib_table_notify(struct net * net,struct fib_table * tb,struct notifier_block * nb)2042 static void fib_table_notify(struct net *net, struct fib_table *tb,
2043 struct notifier_block *nb)
2044 {
2045 struct trie *t = (struct trie *)tb->tb_data;
2046 struct key_vector *l, *tp = t->kv;
2047 t_key key = 0;
2048
2049 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2050 fib_leaf_notify(net, l, tb, nb);
2051
2052 key = l->key + 1;
2053 /* stop in case of wrap around */
2054 if (key < l->key)
2055 break;
2056 }
2057 }
2058
fib_notify(struct net * net,struct notifier_block * nb)2059 void fib_notify(struct net *net, struct notifier_block *nb)
2060 {
2061 unsigned int h;
2062
2063 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2064 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2065 struct fib_table *tb;
2066
2067 hlist_for_each_entry_rcu(tb, head, tb_hlist)
2068 fib_table_notify(net, tb, nb);
2069 }
2070 }
2071
__trie_free_rcu(struct rcu_head * head)2072 static void __trie_free_rcu(struct rcu_head *head)
2073 {
2074 struct fib_table *tb = container_of(head, struct fib_table, rcu);
2075 #ifdef CONFIG_IP_FIB_TRIE_STATS
2076 struct trie *t = (struct trie *)tb->tb_data;
2077
2078 if (tb->tb_data == tb->__data)
2079 free_percpu(t->stats);
2080 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2081 kfree(tb);
2082 }
2083
fib_free_table(struct fib_table * tb)2084 void fib_free_table(struct fib_table *tb)
2085 {
2086 call_rcu(&tb->rcu, __trie_free_rcu);
2087 }
2088
fn_trie_dump_leaf(struct key_vector * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2089 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2090 struct sk_buff *skb, struct netlink_callback *cb,
2091 struct fib_dump_filter *filter)
2092 {
2093 unsigned int flags = NLM_F_MULTI;
2094 __be32 xkey = htonl(l->key);
2095 int i, s_i, i_fa, s_fa, err;
2096 struct fib_alias *fa;
2097
2098 if (filter->filter_set ||
2099 !filter->dump_exceptions || !filter->dump_routes)
2100 flags |= NLM_F_DUMP_FILTERED;
2101
2102 s_i = cb->args[4];
2103 s_fa = cb->args[5];
2104 i = 0;
2105
2106 /* rcu_read_lock is hold by caller */
2107 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2108 struct fib_info *fi = fa->fa_info;
2109
2110 if (i < s_i)
2111 goto next;
2112
2113 i_fa = 0;
2114
2115 if (tb->tb_id != fa->tb_id)
2116 goto next;
2117
2118 if (filter->filter_set) {
2119 if (filter->rt_type && fa->fa_type != filter->rt_type)
2120 goto next;
2121
2122 if ((filter->protocol &&
2123 fi->fib_protocol != filter->protocol))
2124 goto next;
2125
2126 if (filter->dev &&
2127 !fib_info_nh_uses_dev(fi, filter->dev))
2128 goto next;
2129 }
2130
2131 if (filter->dump_routes) {
2132 if (!s_fa) {
2133 err = fib_dump_info(skb,
2134 NETLINK_CB(cb->skb).portid,
2135 cb->nlh->nlmsg_seq,
2136 RTM_NEWROUTE,
2137 tb->tb_id, fa->fa_type,
2138 xkey,
2139 KEYLENGTH - fa->fa_slen,
2140 fa->fa_tos, fi, flags);
2141 if (err < 0)
2142 goto stop;
2143 }
2144
2145 i_fa++;
2146 }
2147
2148 if (filter->dump_exceptions) {
2149 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2150 &i_fa, s_fa, flags);
2151 if (err < 0)
2152 goto stop;
2153 }
2154
2155 next:
2156 i++;
2157 }
2158
2159 cb->args[4] = i;
2160 return skb->len;
2161
2162 stop:
2163 cb->args[4] = i;
2164 cb->args[5] = i_fa;
2165 return err;
2166 }
2167
2168 /* rcu_read_lock needs to be hold by caller from readside */
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb,struct fib_dump_filter * filter)2169 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2170 struct netlink_callback *cb, struct fib_dump_filter *filter)
2171 {
2172 struct trie *t = (struct trie *)tb->tb_data;
2173 struct key_vector *l, *tp = t->kv;
2174 /* Dump starting at last key.
2175 * Note: 0.0.0.0/0 (ie default) is first key.
2176 */
2177 int count = cb->args[2];
2178 t_key key = cb->args[3];
2179
2180 /* First time here, count and key are both always 0. Count > 0
2181 * and key == 0 means the dump has wrapped around and we are done.
2182 */
2183 if (count && !key)
2184 return skb->len;
2185
2186 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2187 int err;
2188
2189 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2190 if (err < 0) {
2191 cb->args[3] = key;
2192 cb->args[2] = count;
2193 return err;
2194 }
2195
2196 ++count;
2197 key = l->key + 1;
2198
2199 memset(&cb->args[4], 0,
2200 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2201
2202 /* stop loop if key wrapped back to 0 */
2203 if (key < l->key)
2204 break;
2205 }
2206
2207 cb->args[3] = key;
2208 cb->args[2] = count;
2209
2210 return skb->len;
2211 }
2212
fib_trie_init(void)2213 void __init fib_trie_init(void)
2214 {
2215 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2216 sizeof(struct fib_alias),
2217 0, SLAB_PANIC, NULL);
2218
2219 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2220 LEAF_SIZE,
2221 0, SLAB_PANIC, NULL);
2222 }
2223
fib_trie_table(u32 id,struct fib_table * alias)2224 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2225 {
2226 struct fib_table *tb;
2227 struct trie *t;
2228 size_t sz = sizeof(*tb);
2229
2230 if (!alias)
2231 sz += sizeof(struct trie);
2232
2233 tb = kzalloc(sz, GFP_KERNEL);
2234 if (!tb)
2235 return NULL;
2236
2237 tb->tb_id = id;
2238 tb->tb_num_default = 0;
2239 tb->tb_data = (alias ? alias->__data : tb->__data);
2240
2241 if (alias)
2242 return tb;
2243
2244 t = (struct trie *) tb->tb_data;
2245 t->kv[0].pos = KEYLENGTH;
2246 t->kv[0].slen = KEYLENGTH;
2247 #ifdef CONFIG_IP_FIB_TRIE_STATS
2248 t->stats = alloc_percpu(struct trie_use_stats);
2249 if (!t->stats) {
2250 kfree(tb);
2251 tb = NULL;
2252 }
2253 #endif
2254
2255 return tb;
2256 }
2257
2258 #ifdef CONFIG_PROC_FS
2259 /* Depth first Trie walk iterator */
2260 struct fib_trie_iter {
2261 struct seq_net_private p;
2262 struct fib_table *tb;
2263 struct key_vector *tnode;
2264 unsigned int index;
2265 unsigned int depth;
2266 };
2267
fib_trie_get_next(struct fib_trie_iter * iter)2268 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2269 {
2270 unsigned long cindex = iter->index;
2271 struct key_vector *pn = iter->tnode;
2272 t_key pkey;
2273
2274 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2275 iter->tnode, iter->index, iter->depth);
2276
2277 while (!IS_TRIE(pn)) {
2278 while (cindex < child_length(pn)) {
2279 struct key_vector *n = get_child_rcu(pn, cindex++);
2280
2281 if (!n)
2282 continue;
2283
2284 if (IS_LEAF(n)) {
2285 iter->tnode = pn;
2286 iter->index = cindex;
2287 } else {
2288 /* push down one level */
2289 iter->tnode = n;
2290 iter->index = 0;
2291 ++iter->depth;
2292 }
2293
2294 return n;
2295 }
2296
2297 /* Current node exhausted, pop back up */
2298 pkey = pn->key;
2299 pn = node_parent_rcu(pn);
2300 cindex = get_index(pkey, pn) + 1;
2301 --iter->depth;
2302 }
2303
2304 /* record root node so further searches know we are done */
2305 iter->tnode = pn;
2306 iter->index = 0;
2307
2308 return NULL;
2309 }
2310
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2311 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2312 struct trie *t)
2313 {
2314 struct key_vector *n, *pn;
2315
2316 if (!t)
2317 return NULL;
2318
2319 pn = t->kv;
2320 n = rcu_dereference(pn->tnode[0]);
2321 if (!n)
2322 return NULL;
2323
2324 if (IS_TNODE(n)) {
2325 iter->tnode = n;
2326 iter->index = 0;
2327 iter->depth = 1;
2328 } else {
2329 iter->tnode = pn;
2330 iter->index = 0;
2331 iter->depth = 0;
2332 }
2333
2334 return n;
2335 }
2336
trie_collect_stats(struct trie * t,struct trie_stat * s)2337 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2338 {
2339 struct key_vector *n;
2340 struct fib_trie_iter iter;
2341
2342 memset(s, 0, sizeof(*s));
2343
2344 rcu_read_lock();
2345 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2346 if (IS_LEAF(n)) {
2347 struct fib_alias *fa;
2348
2349 s->leaves++;
2350 s->totdepth += iter.depth;
2351 if (iter.depth > s->maxdepth)
2352 s->maxdepth = iter.depth;
2353
2354 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2355 ++s->prefixes;
2356 } else {
2357 s->tnodes++;
2358 if (n->bits < MAX_STAT_DEPTH)
2359 s->nodesizes[n->bits]++;
2360 s->nullpointers += tn_info(n)->empty_children;
2361 }
2362 }
2363 rcu_read_unlock();
2364 }
2365
2366 /*
2367 * This outputs /proc/net/fib_triestats
2368 */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2369 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2370 {
2371 unsigned int i, max, pointers, bytes, avdepth;
2372
2373 if (stat->leaves)
2374 avdepth = stat->totdepth*100 / stat->leaves;
2375 else
2376 avdepth = 0;
2377
2378 seq_printf(seq, "\tAver depth: %u.%02d\n",
2379 avdepth / 100, avdepth % 100);
2380 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2381
2382 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2383 bytes = LEAF_SIZE * stat->leaves;
2384
2385 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2386 bytes += sizeof(struct fib_alias) * stat->prefixes;
2387
2388 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2389 bytes += TNODE_SIZE(0) * stat->tnodes;
2390
2391 max = MAX_STAT_DEPTH;
2392 while (max > 0 && stat->nodesizes[max-1] == 0)
2393 max--;
2394
2395 pointers = 0;
2396 for (i = 1; i < max; i++)
2397 if (stat->nodesizes[i] != 0) {
2398 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2399 pointers += (1<<i) * stat->nodesizes[i];
2400 }
2401 seq_putc(seq, '\n');
2402 seq_printf(seq, "\tPointers: %u\n", pointers);
2403
2404 bytes += sizeof(struct key_vector *) * pointers;
2405 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2406 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2407 }
2408
2409 #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats __percpu * stats)2410 static void trie_show_usage(struct seq_file *seq,
2411 const struct trie_use_stats __percpu *stats)
2412 {
2413 struct trie_use_stats s = { 0 };
2414 int cpu;
2415
2416 /* loop through all of the CPUs and gather up the stats */
2417 for_each_possible_cpu(cpu) {
2418 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2419
2420 s.gets += pcpu->gets;
2421 s.backtrack += pcpu->backtrack;
2422 s.semantic_match_passed += pcpu->semantic_match_passed;
2423 s.semantic_match_miss += pcpu->semantic_match_miss;
2424 s.null_node_hit += pcpu->null_node_hit;
2425 s.resize_node_skipped += pcpu->resize_node_skipped;
2426 }
2427
2428 seq_printf(seq, "\nCounters:\n---------\n");
2429 seq_printf(seq, "gets = %u\n", s.gets);
2430 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2431 seq_printf(seq, "semantic match passed = %u\n",
2432 s.semantic_match_passed);
2433 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2434 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2435 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2436 }
2437 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2438
fib_table_print(struct seq_file * seq,struct fib_table * tb)2439 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2440 {
2441 if (tb->tb_id == RT_TABLE_LOCAL)
2442 seq_puts(seq, "Local:\n");
2443 else if (tb->tb_id == RT_TABLE_MAIN)
2444 seq_puts(seq, "Main:\n");
2445 else
2446 seq_printf(seq, "Id %d:\n", tb->tb_id);
2447 }
2448
2449
fib_triestat_seq_show(struct seq_file * seq,void * v)2450 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2451 {
2452 struct net *net = (struct net *)seq->private;
2453 unsigned int h;
2454
2455 seq_printf(seq,
2456 "Basic info: size of leaf:"
2457 " %zd bytes, size of tnode: %zd bytes.\n",
2458 LEAF_SIZE, TNODE_SIZE(0));
2459
2460 rcu_read_lock();
2461 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2462 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2463 struct fib_table *tb;
2464
2465 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2466 struct trie *t = (struct trie *) tb->tb_data;
2467 struct trie_stat stat;
2468
2469 if (!t)
2470 continue;
2471
2472 fib_table_print(seq, tb);
2473
2474 trie_collect_stats(t, &stat);
2475 trie_show_stats(seq, &stat);
2476 #ifdef CONFIG_IP_FIB_TRIE_STATS
2477 trie_show_usage(seq, t->stats);
2478 #endif
2479 }
2480 cond_resched_rcu();
2481 }
2482 rcu_read_unlock();
2483
2484 return 0;
2485 }
2486
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2487 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2488 {
2489 struct fib_trie_iter *iter = seq->private;
2490 struct net *net = seq_file_net(seq);
2491 loff_t idx = 0;
2492 unsigned int h;
2493
2494 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2495 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2496 struct fib_table *tb;
2497
2498 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2499 struct key_vector *n;
2500
2501 for (n = fib_trie_get_first(iter,
2502 (struct trie *) tb->tb_data);
2503 n; n = fib_trie_get_next(iter))
2504 if (pos == idx++) {
2505 iter->tb = tb;
2506 return n;
2507 }
2508 }
2509 }
2510
2511 return NULL;
2512 }
2513
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2514 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2515 __acquires(RCU)
2516 {
2517 rcu_read_lock();
2518 return fib_trie_get_idx(seq, *pos);
2519 }
2520
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2521 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2522 {
2523 struct fib_trie_iter *iter = seq->private;
2524 struct net *net = seq_file_net(seq);
2525 struct fib_table *tb = iter->tb;
2526 struct hlist_node *tb_node;
2527 unsigned int h;
2528 struct key_vector *n;
2529
2530 ++*pos;
2531 /* next node in same table */
2532 n = fib_trie_get_next(iter);
2533 if (n)
2534 return n;
2535
2536 /* walk rest of this hash chain */
2537 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2538 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2539 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2540 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2541 if (n)
2542 goto found;
2543 }
2544
2545 /* new hash chain */
2546 while (++h < FIB_TABLE_HASHSZ) {
2547 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2548 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2549 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2550 if (n)
2551 goto found;
2552 }
2553 }
2554 return NULL;
2555
2556 found:
2557 iter->tb = tb;
2558 return n;
2559 }
2560
fib_trie_seq_stop(struct seq_file * seq,void * v)2561 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2562 __releases(RCU)
2563 {
2564 rcu_read_unlock();
2565 }
2566
seq_indent(struct seq_file * seq,int n)2567 static void seq_indent(struct seq_file *seq, int n)
2568 {
2569 while (n-- > 0)
2570 seq_puts(seq, " ");
2571 }
2572
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2573 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2574 {
2575 switch (s) {
2576 case RT_SCOPE_UNIVERSE: return "universe";
2577 case RT_SCOPE_SITE: return "site";
2578 case RT_SCOPE_LINK: return "link";
2579 case RT_SCOPE_HOST: return "host";
2580 case RT_SCOPE_NOWHERE: return "nowhere";
2581 default:
2582 snprintf(buf, len, "scope=%d", s);
2583 return buf;
2584 }
2585 }
2586
2587 static const char *const rtn_type_names[__RTN_MAX] = {
2588 [RTN_UNSPEC] = "UNSPEC",
2589 [RTN_UNICAST] = "UNICAST",
2590 [RTN_LOCAL] = "LOCAL",
2591 [RTN_BROADCAST] = "BROADCAST",
2592 [RTN_ANYCAST] = "ANYCAST",
2593 [RTN_MULTICAST] = "MULTICAST",
2594 [RTN_BLACKHOLE] = "BLACKHOLE",
2595 [RTN_UNREACHABLE] = "UNREACHABLE",
2596 [RTN_PROHIBIT] = "PROHIBIT",
2597 [RTN_THROW] = "THROW",
2598 [RTN_NAT] = "NAT",
2599 [RTN_XRESOLVE] = "XRESOLVE",
2600 };
2601
rtn_type(char * buf,size_t len,unsigned int t)2602 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2603 {
2604 if (t < __RTN_MAX && rtn_type_names[t])
2605 return rtn_type_names[t];
2606 snprintf(buf, len, "type %u", t);
2607 return buf;
2608 }
2609
2610 /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2611 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2612 {
2613 const struct fib_trie_iter *iter = seq->private;
2614 struct key_vector *n = v;
2615
2616 if (IS_TRIE(node_parent_rcu(n)))
2617 fib_table_print(seq, iter->tb);
2618
2619 if (IS_TNODE(n)) {
2620 __be32 prf = htonl(n->key);
2621
2622 seq_indent(seq, iter->depth-1);
2623 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2624 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2625 tn_info(n)->full_children,
2626 tn_info(n)->empty_children);
2627 } else {
2628 __be32 val = htonl(n->key);
2629 struct fib_alias *fa;
2630
2631 seq_indent(seq, iter->depth);
2632 seq_printf(seq, " |-- %pI4\n", &val);
2633
2634 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2635 char buf1[32], buf2[32];
2636
2637 seq_indent(seq, iter->depth + 1);
2638 seq_printf(seq, " /%zu %s %s",
2639 KEYLENGTH - fa->fa_slen,
2640 rtn_scope(buf1, sizeof(buf1),
2641 fa->fa_info->fib_scope),
2642 rtn_type(buf2, sizeof(buf2),
2643 fa->fa_type));
2644 if (fa->fa_tos)
2645 seq_printf(seq, " tos=%d", fa->fa_tos);
2646 seq_putc(seq, '\n');
2647 }
2648 }
2649
2650 return 0;
2651 }
2652
2653 static const struct seq_operations fib_trie_seq_ops = {
2654 .start = fib_trie_seq_start,
2655 .next = fib_trie_seq_next,
2656 .stop = fib_trie_seq_stop,
2657 .show = fib_trie_seq_show,
2658 };
2659
2660 struct fib_route_iter {
2661 struct seq_net_private p;
2662 struct fib_table *main_tb;
2663 struct key_vector *tnode;
2664 loff_t pos;
2665 t_key key;
2666 };
2667
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2668 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2669 loff_t pos)
2670 {
2671 struct key_vector *l, **tp = &iter->tnode;
2672 t_key key;
2673
2674 /* use cached location of previously found key */
2675 if (iter->pos > 0 && pos >= iter->pos) {
2676 key = iter->key;
2677 } else {
2678 iter->pos = 1;
2679 key = 0;
2680 }
2681
2682 pos -= iter->pos;
2683
2684 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2685 key = l->key + 1;
2686 iter->pos++;
2687 l = NULL;
2688
2689 /* handle unlikely case of a key wrap */
2690 if (!key)
2691 break;
2692 }
2693
2694 if (l)
2695 iter->key = l->key; /* remember it */
2696 else
2697 iter->pos = 0; /* forget it */
2698
2699 return l;
2700 }
2701
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2702 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2703 __acquires(RCU)
2704 {
2705 struct fib_route_iter *iter = seq->private;
2706 struct fib_table *tb;
2707 struct trie *t;
2708
2709 rcu_read_lock();
2710
2711 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2712 if (!tb)
2713 return NULL;
2714
2715 iter->main_tb = tb;
2716 t = (struct trie *)tb->tb_data;
2717 iter->tnode = t->kv;
2718
2719 if (*pos != 0)
2720 return fib_route_get_idx(iter, *pos);
2721
2722 iter->pos = 0;
2723 iter->key = KEY_MAX;
2724
2725 return SEQ_START_TOKEN;
2726 }
2727
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2728 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2729 {
2730 struct fib_route_iter *iter = seq->private;
2731 struct key_vector *l = NULL;
2732 t_key key = iter->key + 1;
2733
2734 ++*pos;
2735
2736 /* only allow key of 0 for start of sequence */
2737 if ((v == SEQ_START_TOKEN) || key)
2738 l = leaf_walk_rcu(&iter->tnode, key);
2739
2740 if (l) {
2741 iter->key = l->key;
2742 iter->pos++;
2743 } else {
2744 iter->pos = 0;
2745 }
2746
2747 return l;
2748 }
2749
fib_route_seq_stop(struct seq_file * seq,void * v)2750 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2751 __releases(RCU)
2752 {
2753 rcu_read_unlock();
2754 }
2755
fib_flag_trans(int type,__be32 mask,struct fib_info * fi)2756 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2757 {
2758 unsigned int flags = 0;
2759
2760 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2761 flags = RTF_REJECT;
2762 if (fi) {
2763 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2764
2765 if (nhc->nhc_gw.ipv4)
2766 flags |= RTF_GATEWAY;
2767 }
2768 if (mask == htonl(0xFFFFFFFF))
2769 flags |= RTF_HOST;
2770 flags |= RTF_UP;
2771 return flags;
2772 }
2773
2774 /*
2775 * This outputs /proc/net/route.
2776 * The format of the file is not supposed to be changed
2777 * and needs to be same as fib_hash output to avoid breaking
2778 * legacy utilities
2779 */
fib_route_seq_show(struct seq_file * seq,void * v)2780 static int fib_route_seq_show(struct seq_file *seq, void *v)
2781 {
2782 struct fib_route_iter *iter = seq->private;
2783 struct fib_table *tb = iter->main_tb;
2784 struct fib_alias *fa;
2785 struct key_vector *l = v;
2786 __be32 prefix;
2787
2788 if (v == SEQ_START_TOKEN) {
2789 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2790 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2791 "\tWindow\tIRTT");
2792 return 0;
2793 }
2794
2795 prefix = htonl(l->key);
2796
2797 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2798 struct fib_info *fi = fa->fa_info;
2799 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2800 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2801
2802 if ((fa->fa_type == RTN_BROADCAST) ||
2803 (fa->fa_type == RTN_MULTICAST))
2804 continue;
2805
2806 if (fa->tb_id != tb->tb_id)
2807 continue;
2808
2809 seq_setwidth(seq, 127);
2810
2811 if (fi) {
2812 struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2813 __be32 gw = 0;
2814
2815 if (nhc->nhc_gw_family == AF_INET)
2816 gw = nhc->nhc_gw.ipv4;
2817
2818 seq_printf(seq,
2819 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2820 "%d\t%08X\t%d\t%u\t%u",
2821 nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2822 prefix, gw, flags, 0, 0,
2823 fi->fib_priority,
2824 mask,
2825 (fi->fib_advmss ?
2826 fi->fib_advmss + 40 : 0),
2827 fi->fib_window,
2828 fi->fib_rtt >> 3);
2829 } else {
2830 seq_printf(seq,
2831 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2832 "%d\t%08X\t%d\t%u\t%u",
2833 prefix, 0, flags, 0, 0, 0,
2834 mask, 0, 0, 0);
2835 }
2836 seq_pad(seq, '\n');
2837 }
2838
2839 return 0;
2840 }
2841
2842 static const struct seq_operations fib_route_seq_ops = {
2843 .start = fib_route_seq_start,
2844 .next = fib_route_seq_next,
2845 .stop = fib_route_seq_stop,
2846 .show = fib_route_seq_show,
2847 };
2848
fib_proc_init(struct net * net)2849 int __net_init fib_proc_init(struct net *net)
2850 {
2851 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2852 sizeof(struct fib_trie_iter)))
2853 goto out1;
2854
2855 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2856 fib_triestat_seq_show, NULL))
2857 goto out2;
2858
2859 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2860 sizeof(struct fib_route_iter)))
2861 goto out3;
2862
2863 return 0;
2864
2865 out3:
2866 remove_proc_entry("fib_triestat", net->proc_net);
2867 out2:
2868 remove_proc_entry("fib_trie", net->proc_net);
2869 out1:
2870 return -ENOMEM;
2871 }
2872
fib_proc_exit(struct net * net)2873 void __net_exit fib_proc_exit(struct net *net)
2874 {
2875 remove_proc_entry("fib_trie", net->proc_net);
2876 remove_proc_entry("fib_triestat", net->proc_net);
2877 remove_proc_entry("route", net->proc_net);
2878 }
2879
2880 #endif /* CONFIG_PROC_FS */
2881