• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_param_specs[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32oct("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 static const struct fs_parameter_description hugetlb_fs_parameters = {
89 	.name		= "hugetlbfs",
90 	.specs		= hugetlb_param_specs,
91 };
92 
93 #ifdef CONFIG_NUMA
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)94 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
95 					struct inode *inode, pgoff_t index)
96 {
97 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
98 							index);
99 }
100 
hugetlb_drop_vma_policy(struct vm_area_struct * vma)101 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
102 {
103 	mpol_cond_put(vma->vm_policy);
104 }
105 #else
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)106 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
107 					struct inode *inode, pgoff_t index)
108 {
109 }
110 
hugetlb_drop_vma_policy(struct vm_area_struct * vma)111 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
112 {
113 }
114 #endif
115 
huge_pagevec_release(struct pagevec * pvec)116 static void huge_pagevec_release(struct pagevec *pvec)
117 {
118 	int i;
119 
120 	for (i = 0; i < pagevec_count(pvec); ++i)
121 		put_page(pvec->pages[i]);
122 
123 	pagevec_reinit(pvec);
124 }
125 
126 /*
127  * Mask used when checking the page offset value passed in via system
128  * calls.  This value will be converted to a loff_t which is signed.
129  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
130  * value.  The extra bit (- 1 in the shift value) is to take the sign
131  * bit into account.
132  */
133 #define PGOFF_LOFFT_MAX \
134 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
135 
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)136 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
137 {
138 	struct inode *inode = file_inode(file);
139 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
140 	loff_t len, vma_len;
141 	int ret;
142 	struct hstate *h = hstate_file(file);
143 
144 	/*
145 	 * vma address alignment (but not the pgoff alignment) has
146 	 * already been checked by prepare_hugepage_range.  If you add
147 	 * any error returns here, do so after setting VM_HUGETLB, so
148 	 * is_vm_hugetlb_page tests below unmap_region go the right
149 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
150 	 * and ia64).
151 	 */
152 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
153 	vma->vm_ops = &hugetlb_vm_ops;
154 
155 	ret = seal_check_future_write(info->seals, vma);
156 	if (ret)
157 		return ret;
158 
159 	/*
160 	 * page based offset in vm_pgoff could be sufficiently large to
161 	 * overflow a loff_t when converted to byte offset.  This can
162 	 * only happen on architectures where sizeof(loff_t) ==
163 	 * sizeof(unsigned long).  So, only check in those instances.
164 	 */
165 	if (sizeof(unsigned long) == sizeof(loff_t)) {
166 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
167 			return -EINVAL;
168 	}
169 
170 	/* must be huge page aligned */
171 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
172 		return -EINVAL;
173 
174 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
175 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
176 	/* check for overflow */
177 	if (len < vma_len)
178 		return -EINVAL;
179 
180 	inode_lock(inode);
181 	file_accessed(file);
182 
183 	ret = -ENOMEM;
184 	if (hugetlb_reserve_pages(inode,
185 				vma->vm_pgoff >> huge_page_order(h),
186 				len >> huge_page_shift(h), vma,
187 				vma->vm_flags))
188 		goto out;
189 
190 	ret = 0;
191 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
192 		i_size_write(inode, len);
193 out:
194 	inode_unlock(inode);
195 
196 	return ret;
197 }
198 
199 /*
200  * Called under down_write(mmap_sem).
201  */
202 
203 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
204 static unsigned long
hugetlb_get_unmapped_area_bottomup(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)205 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
206 		unsigned long len, unsigned long pgoff, unsigned long flags)
207 {
208 	struct hstate *h = hstate_file(file);
209 	struct vm_unmapped_area_info info;
210 
211 	info.flags = 0;
212 	info.length = len;
213 	info.low_limit = current->mm->mmap_base;
214 	info.high_limit = arch_get_mmap_end(addr);
215 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
216 	info.align_offset = 0;
217 	return vm_unmapped_area(&info);
218 }
219 
220 static unsigned long
hugetlb_get_unmapped_area_topdown(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)221 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
222 		unsigned long len, unsigned long pgoff, unsigned long flags)
223 {
224 	struct hstate *h = hstate_file(file);
225 	struct vm_unmapped_area_info info;
226 
227 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
228 	info.length = len;
229 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
230 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
231 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
232 	info.align_offset = 0;
233 	addr = vm_unmapped_area(&info);
234 
235 	/*
236 	 * A failed mmap() very likely causes application failure,
237 	 * so fall back to the bottom-up function here. This scenario
238 	 * can happen with large stack limits and large mmap()
239 	 * allocations.
240 	 */
241 	if (unlikely(offset_in_page(addr))) {
242 		VM_BUG_ON(addr != -ENOMEM);
243 		info.flags = 0;
244 		info.low_limit = current->mm->mmap_base;
245 		info.high_limit = arch_get_mmap_end(addr);
246 		addr = vm_unmapped_area(&info);
247 	}
248 
249 	return addr;
250 }
251 
252 static unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)253 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
254 		unsigned long len, unsigned long pgoff, unsigned long flags)
255 {
256 	struct mm_struct *mm = current->mm;
257 	struct vm_area_struct *vma;
258 	struct hstate *h = hstate_file(file);
259 	const unsigned long mmap_end = arch_get_mmap_end(addr);
260 
261 	if (len & ~huge_page_mask(h))
262 		return -EINVAL;
263 	if (len > TASK_SIZE)
264 		return -ENOMEM;
265 
266 	if (flags & MAP_FIXED) {
267 		if (prepare_hugepage_range(file, addr, len))
268 			return -EINVAL;
269 		return addr;
270 	}
271 
272 	if (addr) {
273 		addr = ALIGN(addr, huge_page_size(h));
274 		vma = find_vma(mm, addr);
275 		if (mmap_end - len >= addr &&
276 		    (!vma || addr + len <= vm_start_gap(vma)))
277 			return addr;
278 	}
279 
280 	/*
281 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
282 	 * If architectures have special needs, they should define their own
283 	 * version of hugetlb_get_unmapped_area.
284 	 */
285 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
286 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
287 				pgoff, flags);
288 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
289 			pgoff, flags);
290 }
291 #endif
292 
293 static size_t
hugetlbfs_read_actor(struct page * page,unsigned long offset,struct iov_iter * to,unsigned long size)294 hugetlbfs_read_actor(struct page *page, unsigned long offset,
295 			struct iov_iter *to, unsigned long size)
296 {
297 	size_t copied = 0;
298 	int i, chunksize;
299 
300 	/* Find which 4k chunk and offset with in that chunk */
301 	i = offset >> PAGE_SHIFT;
302 	offset = offset & ~PAGE_MASK;
303 
304 	while (size) {
305 		size_t n;
306 		chunksize = PAGE_SIZE;
307 		if (offset)
308 			chunksize -= offset;
309 		if (chunksize > size)
310 			chunksize = size;
311 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
312 		copied += n;
313 		if (n != chunksize)
314 			return copied;
315 		offset = 0;
316 		size -= chunksize;
317 		i++;
318 	}
319 	return copied;
320 }
321 
322 /*
323  * Support for read() - Find the page attached to f_mapping and copy out the
324  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
325  * since it has PAGE_SIZE assumptions.
326  */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)327 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
328 {
329 	struct file *file = iocb->ki_filp;
330 	struct hstate *h = hstate_file(file);
331 	struct address_space *mapping = file->f_mapping;
332 	struct inode *inode = mapping->host;
333 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
334 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
335 	unsigned long end_index;
336 	loff_t isize;
337 	ssize_t retval = 0;
338 
339 	while (iov_iter_count(to)) {
340 		struct page *page;
341 		size_t nr, copied;
342 
343 		/* nr is the maximum number of bytes to copy from this page */
344 		nr = huge_page_size(h);
345 		isize = i_size_read(inode);
346 		if (!isize)
347 			break;
348 		end_index = (isize - 1) >> huge_page_shift(h);
349 		if (index > end_index)
350 			break;
351 		if (index == end_index) {
352 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
353 			if (nr <= offset)
354 				break;
355 		}
356 		nr = nr - offset;
357 
358 		/* Find the page */
359 		page = find_lock_page(mapping, index);
360 		if (unlikely(page == NULL)) {
361 			/*
362 			 * We have a HOLE, zero out the user-buffer for the
363 			 * length of the hole or request.
364 			 */
365 			copied = iov_iter_zero(nr, to);
366 		} else {
367 			unlock_page(page);
368 
369 			/*
370 			 * We have the page, copy it to user space buffer.
371 			 */
372 			copied = hugetlbfs_read_actor(page, offset, to, nr);
373 			put_page(page);
374 		}
375 		offset += copied;
376 		retval += copied;
377 		if (copied != nr && iov_iter_count(to)) {
378 			if (!retval)
379 				retval = -EFAULT;
380 			break;
381 		}
382 		index += offset >> huge_page_shift(h);
383 		offset &= ~huge_page_mask(h);
384 	}
385 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
386 	return retval;
387 }
388 
hugetlbfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)389 static int hugetlbfs_write_begin(struct file *file,
390 			struct address_space *mapping,
391 			loff_t pos, unsigned len, unsigned flags,
392 			struct page **pagep, void **fsdata)
393 {
394 	return -EINVAL;
395 }
396 
hugetlbfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)397 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
398 			loff_t pos, unsigned len, unsigned copied,
399 			struct page *page, void *fsdata)
400 {
401 	BUG();
402 	return -EINVAL;
403 }
404 
remove_huge_page(struct page * page)405 static void remove_huge_page(struct page *page)
406 {
407 	ClearPageDirty(page);
408 	ClearPageUptodate(page);
409 	delete_from_page_cache(page);
410 }
411 
412 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end)413 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
414 {
415 	struct vm_area_struct *vma;
416 
417 	/*
418 	 * end == 0 indicates that the entire range after
419 	 * start should be unmapped.
420 	 */
421 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
422 		unsigned long v_offset;
423 		unsigned long v_end;
424 
425 		/*
426 		 * Can the expression below overflow on 32-bit arches?
427 		 * No, because the interval tree returns us only those vmas
428 		 * which overlap the truncated area starting at pgoff,
429 		 * and no vma on a 32-bit arch can span beyond the 4GB.
430 		 */
431 		if (vma->vm_pgoff < start)
432 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
433 		else
434 			v_offset = 0;
435 
436 		if (!end)
437 			v_end = vma->vm_end;
438 		else {
439 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
440 							+ vma->vm_start;
441 			if (v_end > vma->vm_end)
442 				v_end = vma->vm_end;
443 		}
444 
445 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
446 									NULL);
447 	}
448 }
449 
450 /*
451  * remove_inode_hugepages handles two distinct cases: truncation and hole
452  * punch.  There are subtle differences in operation for each case.
453  *
454  * truncation is indicated by end of range being LLONG_MAX
455  *	In this case, we first scan the range and release found pages.
456  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
457  *	maps and global counts.  Page faults can not race with truncation
458  *	in this routine.  hugetlb_no_page() prevents page faults in the
459  *	truncated range.  It checks i_size before allocation, and again after
460  *	with the page table lock for the page held.  The same lock must be
461  *	acquired to unmap a page.
462  * hole punch is indicated if end is not LLONG_MAX
463  *	In the hole punch case we scan the range and release found pages.
464  *	Only when releasing a page is the associated region/reserv map
465  *	deleted.  The region/reserv map for ranges without associated
466  *	pages are not modified.  Page faults can race with hole punch.
467  *	This is indicated if we find a mapped page.
468  * Note: If the passed end of range value is beyond the end of file, but
469  * not LLONG_MAX this routine still performs a hole punch operation.
470  */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)471 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
472 				   loff_t lend)
473 {
474 	struct hstate *h = hstate_inode(inode);
475 	struct address_space *mapping = &inode->i_data;
476 	const pgoff_t start = lstart >> huge_page_shift(h);
477 	const pgoff_t end = lend >> huge_page_shift(h);
478 	struct vm_area_struct pseudo_vma;
479 	struct pagevec pvec;
480 	pgoff_t next, index;
481 	int i, freed = 0;
482 	bool truncate_op = (lend == LLONG_MAX);
483 
484 	vma_init(&pseudo_vma, current->mm);
485 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
486 	pagevec_init(&pvec);
487 	next = start;
488 	while (next < end) {
489 		/*
490 		 * When no more pages are found, we are done.
491 		 */
492 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
493 			break;
494 
495 		for (i = 0; i < pagevec_count(&pvec); ++i) {
496 			struct page *page = pvec.pages[i];
497 			u32 hash;
498 
499 			index = page->index;
500 			hash = hugetlb_fault_mutex_hash(h, mapping, index);
501 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
502 
503 			/*
504 			 * If page is mapped, it was faulted in after being
505 			 * unmapped in caller.  Unmap (again) now after taking
506 			 * the fault mutex.  The mutex will prevent faults
507 			 * until we finish removing the page.
508 			 *
509 			 * This race can only happen in the hole punch case.
510 			 * Getting here in a truncate operation is a bug.
511 			 */
512 			if (unlikely(page_mapped(page))) {
513 				BUG_ON(truncate_op);
514 
515 				i_mmap_lock_write(mapping);
516 				hugetlb_vmdelete_list(&mapping->i_mmap,
517 					index * pages_per_huge_page(h),
518 					(index + 1) * pages_per_huge_page(h));
519 				i_mmap_unlock_write(mapping);
520 			}
521 
522 			lock_page(page);
523 			/*
524 			 * We must free the huge page and remove from page
525 			 * cache (remove_huge_page) BEFORE removing the
526 			 * region/reserve map (hugetlb_unreserve_pages).  In
527 			 * rare out of memory conditions, removal of the
528 			 * region/reserve map could fail. Correspondingly,
529 			 * the subpool and global reserve usage count can need
530 			 * to be adjusted.
531 			 */
532 			VM_BUG_ON(PagePrivate(page));
533 			remove_huge_page(page);
534 			freed++;
535 			if (!truncate_op) {
536 				if (unlikely(hugetlb_unreserve_pages(inode,
537 							index, index + 1, 1)))
538 					hugetlb_fix_reserve_counts(inode);
539 			}
540 
541 			unlock_page(page);
542 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
543 		}
544 		huge_pagevec_release(&pvec);
545 		cond_resched();
546 	}
547 
548 	if (truncate_op)
549 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
550 }
551 
hugetlbfs_evict_inode(struct inode * inode)552 static void hugetlbfs_evict_inode(struct inode *inode)
553 {
554 	struct resv_map *resv_map;
555 
556 	remove_inode_hugepages(inode, 0, LLONG_MAX);
557 
558 	/*
559 	 * Get the resv_map from the address space embedded in the inode.
560 	 * This is the address space which points to any resv_map allocated
561 	 * at inode creation time.  If this is a device special inode,
562 	 * i_mapping may not point to the original address space.
563 	 */
564 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
565 	/* Only regular and link inodes have associated reserve maps */
566 	if (resv_map)
567 		resv_map_release(&resv_map->refs);
568 	clear_inode(inode);
569 }
570 
hugetlb_vmtruncate(struct inode * inode,loff_t offset)571 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
572 {
573 	pgoff_t pgoff;
574 	struct address_space *mapping = inode->i_mapping;
575 	struct hstate *h = hstate_inode(inode);
576 
577 	BUG_ON(offset & ~huge_page_mask(h));
578 	pgoff = offset >> PAGE_SHIFT;
579 
580 	i_size_write(inode, offset);
581 	i_mmap_lock_write(mapping);
582 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
583 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
584 	i_mmap_unlock_write(mapping);
585 	remove_inode_hugepages(inode, offset, LLONG_MAX);
586 	return 0;
587 }
588 
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)589 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
590 {
591 	struct hstate *h = hstate_inode(inode);
592 	loff_t hpage_size = huge_page_size(h);
593 	loff_t hole_start, hole_end;
594 
595 	/*
596 	 * For hole punch round up the beginning offset of the hole and
597 	 * round down the end.
598 	 */
599 	hole_start = round_up(offset, hpage_size);
600 	hole_end = round_down(offset + len, hpage_size);
601 
602 	if (hole_end > hole_start) {
603 		struct address_space *mapping = inode->i_mapping;
604 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
605 
606 		inode_lock(inode);
607 
608 		/* protected by i_mutex */
609 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
610 			inode_unlock(inode);
611 			return -EPERM;
612 		}
613 
614 		i_mmap_lock_write(mapping);
615 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
616 			hugetlb_vmdelete_list(&mapping->i_mmap,
617 						hole_start >> PAGE_SHIFT,
618 						hole_end  >> PAGE_SHIFT);
619 		i_mmap_unlock_write(mapping);
620 		remove_inode_hugepages(inode, hole_start, hole_end);
621 		inode_unlock(inode);
622 	}
623 
624 	return 0;
625 }
626 
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)627 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
628 				loff_t len)
629 {
630 	struct inode *inode = file_inode(file);
631 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
632 	struct address_space *mapping = inode->i_mapping;
633 	struct hstate *h = hstate_inode(inode);
634 	struct vm_area_struct pseudo_vma;
635 	struct mm_struct *mm = current->mm;
636 	loff_t hpage_size = huge_page_size(h);
637 	unsigned long hpage_shift = huge_page_shift(h);
638 	pgoff_t start, index, end;
639 	int error;
640 	u32 hash;
641 
642 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
643 		return -EOPNOTSUPP;
644 
645 	if (mode & FALLOC_FL_PUNCH_HOLE)
646 		return hugetlbfs_punch_hole(inode, offset, len);
647 
648 	/*
649 	 * Default preallocate case.
650 	 * For this range, start is rounded down and end is rounded up
651 	 * as well as being converted to page offsets.
652 	 */
653 	start = offset >> hpage_shift;
654 	end = (offset + len + hpage_size - 1) >> hpage_shift;
655 
656 	inode_lock(inode);
657 
658 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
659 	error = inode_newsize_ok(inode, offset + len);
660 	if (error)
661 		goto out;
662 
663 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
664 		error = -EPERM;
665 		goto out;
666 	}
667 
668 	/*
669 	 * Initialize a pseudo vma as this is required by the huge page
670 	 * allocation routines.  If NUMA is configured, use page index
671 	 * as input to create an allocation policy.
672 	 */
673 	vma_init(&pseudo_vma, mm);
674 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
675 	pseudo_vma.vm_file = file;
676 
677 	for (index = start; index < end; index++) {
678 		/*
679 		 * This is supposed to be the vaddr where the page is being
680 		 * faulted in, but we have no vaddr here.
681 		 */
682 		struct page *page;
683 		unsigned long addr;
684 		int avoid_reserve = 0;
685 
686 		cond_resched();
687 
688 		/*
689 		 * fallocate(2) manpage permits EINTR; we may have been
690 		 * interrupted because we are using up too much memory.
691 		 */
692 		if (signal_pending(current)) {
693 			error = -EINTR;
694 			break;
695 		}
696 
697 		/* Set numa allocation policy based on index */
698 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
699 
700 		/* addr is the offset within the file (zero based) */
701 		addr = index * hpage_size;
702 
703 		/* mutex taken here, fault path and hole punch */
704 		hash = hugetlb_fault_mutex_hash(h, mapping, index);
705 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
706 
707 		/* See if already present in mapping to avoid alloc/free */
708 		page = find_get_page(mapping, index);
709 		if (page) {
710 			put_page(page);
711 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
712 			hugetlb_drop_vma_policy(&pseudo_vma);
713 			continue;
714 		}
715 
716 		/* Allocate page and add to page cache */
717 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
718 		hugetlb_drop_vma_policy(&pseudo_vma);
719 		if (IS_ERR(page)) {
720 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
721 			error = PTR_ERR(page);
722 			goto out;
723 		}
724 		clear_huge_page(page, addr, pages_per_huge_page(h));
725 		__SetPageUptodate(page);
726 		error = huge_add_to_page_cache(page, mapping, index);
727 		if (unlikely(error)) {
728 			put_page(page);
729 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
730 			goto out;
731 		}
732 
733 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
734 
735 		set_page_huge_active(page);
736 		/*
737 		 * unlock_page because locked by add_to_page_cache()
738 		 * put_page() due to reference from alloc_huge_page()
739 		 */
740 		unlock_page(page);
741 		put_page(page);
742 	}
743 
744 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
745 		i_size_write(inode, offset + len);
746 	inode->i_ctime = current_time(inode);
747 out:
748 	inode_unlock(inode);
749 	return error;
750 }
751 
hugetlbfs_setattr(struct dentry * dentry,struct iattr * attr)752 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
753 {
754 	struct inode *inode = d_inode(dentry);
755 	struct hstate *h = hstate_inode(inode);
756 	int error;
757 	unsigned int ia_valid = attr->ia_valid;
758 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
759 
760 	BUG_ON(!inode);
761 
762 	error = setattr_prepare(dentry, attr);
763 	if (error)
764 		return error;
765 
766 	if (ia_valid & ATTR_SIZE) {
767 		loff_t oldsize = inode->i_size;
768 		loff_t newsize = attr->ia_size;
769 
770 		if (newsize & ~huge_page_mask(h))
771 			return -EINVAL;
772 		/* protected by i_mutex */
773 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
774 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
775 			return -EPERM;
776 		error = hugetlb_vmtruncate(inode, newsize);
777 		if (error)
778 			return error;
779 	}
780 
781 	setattr_copy(inode, attr);
782 	mark_inode_dirty(inode);
783 	return 0;
784 }
785 
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)786 static struct inode *hugetlbfs_get_root(struct super_block *sb,
787 					struct hugetlbfs_fs_context *ctx)
788 {
789 	struct inode *inode;
790 
791 	inode = new_inode(sb);
792 	if (inode) {
793 		inode->i_ino = get_next_ino();
794 		inode->i_mode = S_IFDIR | ctx->mode;
795 		inode->i_uid = ctx->uid;
796 		inode->i_gid = ctx->gid;
797 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
798 		inode->i_op = &hugetlbfs_dir_inode_operations;
799 		inode->i_fop = &simple_dir_operations;
800 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
801 		inc_nlink(inode);
802 		lockdep_annotate_inode_mutex_key(inode);
803 	}
804 	return inode;
805 }
806 
807 /*
808  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
809  * be taken from reclaim -- unlike regular filesystems. This needs an
810  * annotation because huge_pmd_share() does an allocation under hugetlb's
811  * i_mmap_rwsem.
812  */
813 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
814 
hugetlbfs_get_inode(struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev)815 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
816 					struct inode *dir,
817 					umode_t mode, dev_t dev)
818 {
819 	struct inode *inode;
820 	struct resv_map *resv_map = NULL;
821 
822 	/*
823 	 * Reserve maps are only needed for inodes that can have associated
824 	 * page allocations.
825 	 */
826 	if (S_ISREG(mode) || S_ISLNK(mode)) {
827 		resv_map = resv_map_alloc();
828 		if (!resv_map)
829 			return NULL;
830 	}
831 
832 	inode = new_inode(sb);
833 	if (inode) {
834 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
835 
836 		inode->i_ino = get_next_ino();
837 		inode_init_owner(inode, dir, mode);
838 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
839 				&hugetlbfs_i_mmap_rwsem_key);
840 		inode->i_mapping->a_ops = &hugetlbfs_aops;
841 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
842 		inode->i_mapping->private_data = resv_map;
843 		info->seals = F_SEAL_SEAL;
844 		switch (mode & S_IFMT) {
845 		default:
846 			init_special_inode(inode, mode, dev);
847 			break;
848 		case S_IFREG:
849 			inode->i_op = &hugetlbfs_inode_operations;
850 			inode->i_fop = &hugetlbfs_file_operations;
851 			break;
852 		case S_IFDIR:
853 			inode->i_op = &hugetlbfs_dir_inode_operations;
854 			inode->i_fop = &simple_dir_operations;
855 
856 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
857 			inc_nlink(inode);
858 			break;
859 		case S_IFLNK:
860 			inode->i_op = &page_symlink_inode_operations;
861 			inode_nohighmem(inode);
862 			break;
863 		}
864 		lockdep_annotate_inode_mutex_key(inode);
865 	} else {
866 		if (resv_map)
867 			kref_put(&resv_map->refs, resv_map_release);
868 	}
869 
870 	return inode;
871 }
872 
873 /*
874  * File creation. Allocate an inode, and we're done..
875  */
hugetlbfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)876 static int hugetlbfs_mknod(struct inode *dir,
877 			struct dentry *dentry, umode_t mode, dev_t dev)
878 {
879 	struct inode *inode;
880 	int error = -ENOSPC;
881 
882 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
883 	if (inode) {
884 		dir->i_ctime = dir->i_mtime = current_time(dir);
885 		d_instantiate(dentry, inode);
886 		dget(dentry);	/* Extra count - pin the dentry in core */
887 		error = 0;
888 	}
889 	return error;
890 }
891 
hugetlbfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)892 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
893 {
894 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
895 	if (!retval)
896 		inc_nlink(dir);
897 	return retval;
898 }
899 
hugetlbfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)900 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
901 {
902 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
903 }
904 
hugetlbfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)905 static int hugetlbfs_symlink(struct inode *dir,
906 			struct dentry *dentry, const char *symname)
907 {
908 	struct inode *inode;
909 	int error = -ENOSPC;
910 
911 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
912 	if (inode) {
913 		int l = strlen(symname)+1;
914 		error = page_symlink(inode, symname, l);
915 		if (!error) {
916 			d_instantiate(dentry, inode);
917 			dget(dentry);
918 		} else
919 			iput(inode);
920 	}
921 	dir->i_ctime = dir->i_mtime = current_time(dir);
922 
923 	return error;
924 }
925 
926 /*
927  * mark the head page dirty
928  */
hugetlbfs_set_page_dirty(struct page * page)929 static int hugetlbfs_set_page_dirty(struct page *page)
930 {
931 	struct page *head = compound_head(page);
932 
933 	SetPageDirty(head);
934 	return 0;
935 }
936 
hugetlbfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)937 static int hugetlbfs_migrate_page(struct address_space *mapping,
938 				struct page *newpage, struct page *page,
939 				enum migrate_mode mode)
940 {
941 	int rc;
942 
943 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
944 	if (rc != MIGRATEPAGE_SUCCESS)
945 		return rc;
946 
947 	/*
948 	 * page_private is subpool pointer in hugetlb pages.  Transfer to
949 	 * new page.  PagePrivate is not associated with page_private for
950 	 * hugetlb pages and can not be set here as only page_huge_active
951 	 * pages can be migrated.
952 	 */
953 	if (page_private(page)) {
954 		set_page_private(newpage, page_private(page));
955 		set_page_private(page, 0);
956 	}
957 
958 	if (mode != MIGRATE_SYNC_NO_COPY)
959 		migrate_page_copy(newpage, page);
960 	else
961 		migrate_page_states(newpage, page);
962 
963 	return MIGRATEPAGE_SUCCESS;
964 }
965 
hugetlbfs_error_remove_page(struct address_space * mapping,struct page * page)966 static int hugetlbfs_error_remove_page(struct address_space *mapping,
967 				struct page *page)
968 {
969 	struct inode *inode = mapping->host;
970 	pgoff_t index = page->index;
971 
972 	remove_huge_page(page);
973 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
974 		hugetlb_fix_reserve_counts(inode);
975 
976 	return 0;
977 }
978 
979 /*
980  * Display the mount options in /proc/mounts.
981  */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)982 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
983 {
984 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
985 	struct hugepage_subpool *spool = sbinfo->spool;
986 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
987 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
988 	char mod;
989 
990 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
991 		seq_printf(m, ",uid=%u",
992 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
993 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
994 		seq_printf(m, ",gid=%u",
995 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
996 	if (sbinfo->mode != 0755)
997 		seq_printf(m, ",mode=%o", sbinfo->mode);
998 	if (sbinfo->max_inodes != -1)
999 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1000 
1001 	hpage_size /= 1024;
1002 	mod = 'K';
1003 	if (hpage_size >= 1024) {
1004 		hpage_size /= 1024;
1005 		mod = 'M';
1006 	}
1007 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1008 	if (spool) {
1009 		if (spool->max_hpages != -1)
1010 			seq_printf(m, ",size=%llu",
1011 				   (unsigned long long)spool->max_hpages << hpage_shift);
1012 		if (spool->min_hpages != -1)
1013 			seq_printf(m, ",min_size=%llu",
1014 				   (unsigned long long)spool->min_hpages << hpage_shift);
1015 	}
1016 	return 0;
1017 }
1018 
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1019 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1020 {
1021 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1022 	struct hstate *h = hstate_inode(d_inode(dentry));
1023 
1024 	buf->f_type = HUGETLBFS_MAGIC;
1025 	buf->f_bsize = huge_page_size(h);
1026 	if (sbinfo) {
1027 		spin_lock(&sbinfo->stat_lock);
1028 		/* If no limits set, just report 0 for max/free/used
1029 		 * blocks, like simple_statfs() */
1030 		if (sbinfo->spool) {
1031 			long free_pages;
1032 
1033 			spin_lock(&sbinfo->spool->lock);
1034 			buf->f_blocks = sbinfo->spool->max_hpages;
1035 			free_pages = sbinfo->spool->max_hpages
1036 				- sbinfo->spool->used_hpages;
1037 			buf->f_bavail = buf->f_bfree = free_pages;
1038 			spin_unlock(&sbinfo->spool->lock);
1039 			buf->f_files = sbinfo->max_inodes;
1040 			buf->f_ffree = sbinfo->free_inodes;
1041 		}
1042 		spin_unlock(&sbinfo->stat_lock);
1043 	}
1044 	buf->f_namelen = NAME_MAX;
1045 	return 0;
1046 }
1047 
hugetlbfs_put_super(struct super_block * sb)1048 static void hugetlbfs_put_super(struct super_block *sb)
1049 {
1050 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1051 
1052 	if (sbi) {
1053 		sb->s_fs_info = NULL;
1054 
1055 		if (sbi->spool)
1056 			hugepage_put_subpool(sbi->spool);
1057 
1058 		kfree(sbi);
1059 	}
1060 }
1061 
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1062 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1063 {
1064 	if (sbinfo->free_inodes >= 0) {
1065 		spin_lock(&sbinfo->stat_lock);
1066 		if (unlikely(!sbinfo->free_inodes)) {
1067 			spin_unlock(&sbinfo->stat_lock);
1068 			return 0;
1069 		}
1070 		sbinfo->free_inodes--;
1071 		spin_unlock(&sbinfo->stat_lock);
1072 	}
1073 
1074 	return 1;
1075 }
1076 
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1077 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1078 {
1079 	if (sbinfo->free_inodes >= 0) {
1080 		spin_lock(&sbinfo->stat_lock);
1081 		sbinfo->free_inodes++;
1082 		spin_unlock(&sbinfo->stat_lock);
1083 	}
1084 }
1085 
1086 
1087 static struct kmem_cache *hugetlbfs_inode_cachep;
1088 
hugetlbfs_alloc_inode(struct super_block * sb)1089 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1090 {
1091 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1092 	struct hugetlbfs_inode_info *p;
1093 
1094 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1095 		return NULL;
1096 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1097 	if (unlikely(!p)) {
1098 		hugetlbfs_inc_free_inodes(sbinfo);
1099 		return NULL;
1100 	}
1101 
1102 	/*
1103 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1104 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1105 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1106 	 * in case of a quick call to destroy.
1107 	 *
1108 	 * Note that the policy is initialized even if we are creating a
1109 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1110 	 */
1111 	mpol_shared_policy_init(&p->policy, NULL);
1112 
1113 	return &p->vfs_inode;
1114 }
1115 
hugetlbfs_free_inode(struct inode * inode)1116 static void hugetlbfs_free_inode(struct inode *inode)
1117 {
1118 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1119 }
1120 
hugetlbfs_destroy_inode(struct inode * inode)1121 static void hugetlbfs_destroy_inode(struct inode *inode)
1122 {
1123 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1124 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1125 }
1126 
1127 static const struct address_space_operations hugetlbfs_aops = {
1128 	.write_begin	= hugetlbfs_write_begin,
1129 	.write_end	= hugetlbfs_write_end,
1130 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1131 	.migratepage    = hugetlbfs_migrate_page,
1132 	.error_remove_page	= hugetlbfs_error_remove_page,
1133 };
1134 
1135 
init_once(void * foo)1136 static void init_once(void *foo)
1137 {
1138 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1139 
1140 	inode_init_once(&ei->vfs_inode);
1141 }
1142 
1143 const struct file_operations hugetlbfs_file_operations = {
1144 	.read_iter		= hugetlbfs_read_iter,
1145 	.mmap			= hugetlbfs_file_mmap,
1146 	.fsync			= noop_fsync,
1147 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1148 	.llseek			= default_llseek,
1149 	.fallocate		= hugetlbfs_fallocate,
1150 };
1151 
1152 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1153 	.create		= hugetlbfs_create,
1154 	.lookup		= simple_lookup,
1155 	.link		= simple_link,
1156 	.unlink		= simple_unlink,
1157 	.symlink	= hugetlbfs_symlink,
1158 	.mkdir		= hugetlbfs_mkdir,
1159 	.rmdir		= simple_rmdir,
1160 	.mknod		= hugetlbfs_mknod,
1161 	.rename		= simple_rename,
1162 	.setattr	= hugetlbfs_setattr,
1163 };
1164 
1165 static const struct inode_operations hugetlbfs_inode_operations = {
1166 	.setattr	= hugetlbfs_setattr,
1167 };
1168 
1169 static const struct super_operations hugetlbfs_ops = {
1170 	.alloc_inode    = hugetlbfs_alloc_inode,
1171 	.free_inode     = hugetlbfs_free_inode,
1172 	.destroy_inode  = hugetlbfs_destroy_inode,
1173 	.evict_inode	= hugetlbfs_evict_inode,
1174 	.statfs		= hugetlbfs_statfs,
1175 	.put_super	= hugetlbfs_put_super,
1176 	.show_options	= hugetlbfs_show_options,
1177 };
1178 
1179 /*
1180  * Convert size option passed from command line to number of huge pages
1181  * in the pool specified by hstate.  Size option could be in bytes
1182  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1183  */
1184 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1185 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1186 			 enum hugetlbfs_size_type val_type)
1187 {
1188 	if (val_type == NO_SIZE)
1189 		return -1;
1190 
1191 	if (val_type == SIZE_PERCENT) {
1192 		size_opt <<= huge_page_shift(h);
1193 		size_opt *= h->max_huge_pages;
1194 		do_div(size_opt, 100);
1195 	}
1196 
1197 	size_opt >>= huge_page_shift(h);
1198 	return size_opt;
1199 }
1200 
1201 /*
1202  * Parse one mount parameter.
1203  */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1204 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1205 {
1206 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1207 	struct fs_parse_result result;
1208 	struct hstate *h;
1209 	char *rest;
1210 	unsigned long ps;
1211 	int opt;
1212 
1213 	opt = fs_parse(fc, &hugetlb_fs_parameters, param, &result);
1214 	if (opt < 0)
1215 		return opt;
1216 
1217 	switch (opt) {
1218 	case Opt_uid:
1219 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1220 		if (!uid_valid(ctx->uid))
1221 			goto bad_val;
1222 		return 0;
1223 
1224 	case Opt_gid:
1225 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1226 		if (!gid_valid(ctx->gid))
1227 			goto bad_val;
1228 		return 0;
1229 
1230 	case Opt_mode:
1231 		ctx->mode = result.uint_32 & 01777U;
1232 		return 0;
1233 
1234 	case Opt_size:
1235 		/* memparse() will accept a K/M/G without a digit */
1236 		if (!param->string || !isdigit(param->string[0]))
1237 			goto bad_val;
1238 		ctx->max_size_opt = memparse(param->string, &rest);
1239 		ctx->max_val_type = SIZE_STD;
1240 		if (*rest == '%')
1241 			ctx->max_val_type = SIZE_PERCENT;
1242 		return 0;
1243 
1244 	case Opt_nr_inodes:
1245 		/* memparse() will accept a K/M/G without a digit */
1246 		if (!param->string || !isdigit(param->string[0]))
1247 			goto bad_val;
1248 		ctx->nr_inodes = memparse(param->string, &rest);
1249 		return 0;
1250 
1251 	case Opt_pagesize:
1252 		ps = memparse(param->string, &rest);
1253 		h = size_to_hstate(ps);
1254 		if (!h) {
1255 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1256 			return -EINVAL;
1257 		}
1258 		ctx->hstate = h;
1259 		return 0;
1260 
1261 	case Opt_min_size:
1262 		/* memparse() will accept a K/M/G without a digit */
1263 		if (!param->string || !isdigit(param->string[0]))
1264 			goto bad_val;
1265 		ctx->min_size_opt = memparse(param->string, &rest);
1266 		ctx->min_val_type = SIZE_STD;
1267 		if (*rest == '%')
1268 			ctx->min_val_type = SIZE_PERCENT;
1269 		return 0;
1270 
1271 	default:
1272 		return -EINVAL;
1273 	}
1274 
1275 bad_val:
1276 	return invalf(fc, "hugetlbfs: Bad value '%s' for mount option '%s'\n",
1277 		      param->string, param->key);
1278 }
1279 
1280 /*
1281  * Validate the parsed options.
1282  */
hugetlbfs_validate(struct fs_context * fc)1283 static int hugetlbfs_validate(struct fs_context *fc)
1284 {
1285 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1286 
1287 	/*
1288 	 * Use huge page pool size (in hstate) to convert the size
1289 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1290 	 */
1291 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1292 						   ctx->max_size_opt,
1293 						   ctx->max_val_type);
1294 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1295 						   ctx->min_size_opt,
1296 						   ctx->min_val_type);
1297 
1298 	/*
1299 	 * If max_size was specified, then min_size must be smaller
1300 	 */
1301 	if (ctx->max_val_type > NO_SIZE &&
1302 	    ctx->min_hpages > ctx->max_hpages) {
1303 		pr_err("Minimum size can not be greater than maximum size\n");
1304 		return -EINVAL;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1311 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1312 {
1313 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1314 	struct hugetlbfs_sb_info *sbinfo;
1315 
1316 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1317 	if (!sbinfo)
1318 		return -ENOMEM;
1319 	sb->s_fs_info = sbinfo;
1320 	spin_lock_init(&sbinfo->stat_lock);
1321 	sbinfo->hstate		= ctx->hstate;
1322 	sbinfo->max_inodes	= ctx->nr_inodes;
1323 	sbinfo->free_inodes	= ctx->nr_inodes;
1324 	sbinfo->spool		= NULL;
1325 	sbinfo->uid		= ctx->uid;
1326 	sbinfo->gid		= ctx->gid;
1327 	sbinfo->mode		= ctx->mode;
1328 
1329 	/*
1330 	 * Allocate and initialize subpool if maximum or minimum size is
1331 	 * specified.  Any needed reservations (for minimim size) are taken
1332 	 * taken when the subpool is created.
1333 	 */
1334 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1335 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1336 						     ctx->max_hpages,
1337 						     ctx->min_hpages);
1338 		if (!sbinfo->spool)
1339 			goto out_free;
1340 	}
1341 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1342 	sb->s_blocksize = huge_page_size(ctx->hstate);
1343 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1344 	sb->s_magic = HUGETLBFS_MAGIC;
1345 	sb->s_op = &hugetlbfs_ops;
1346 	sb->s_time_gran = 1;
1347 
1348 	/*
1349 	 * Due to the special and limited functionality of hugetlbfs, it does
1350 	 * not work well as a stacking filesystem.
1351 	 */
1352 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1353 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1354 	if (!sb->s_root)
1355 		goto out_free;
1356 	return 0;
1357 out_free:
1358 	kfree(sbinfo->spool);
1359 	kfree(sbinfo);
1360 	return -ENOMEM;
1361 }
1362 
hugetlbfs_get_tree(struct fs_context * fc)1363 static int hugetlbfs_get_tree(struct fs_context *fc)
1364 {
1365 	int err = hugetlbfs_validate(fc);
1366 	if (err)
1367 		return err;
1368 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1369 }
1370 
hugetlbfs_fs_context_free(struct fs_context * fc)1371 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1372 {
1373 	kfree(fc->fs_private);
1374 }
1375 
1376 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1377 	.free		= hugetlbfs_fs_context_free,
1378 	.parse_param	= hugetlbfs_parse_param,
1379 	.get_tree	= hugetlbfs_get_tree,
1380 };
1381 
hugetlbfs_init_fs_context(struct fs_context * fc)1382 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1383 {
1384 	struct hugetlbfs_fs_context *ctx;
1385 
1386 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1387 	if (!ctx)
1388 		return -ENOMEM;
1389 
1390 	ctx->max_hpages	= -1; /* No limit on size by default */
1391 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1392 	ctx->uid	= current_fsuid();
1393 	ctx->gid	= current_fsgid();
1394 	ctx->mode	= 0755;
1395 	ctx->hstate	= &default_hstate;
1396 	ctx->min_hpages	= -1; /* No default minimum size */
1397 	ctx->max_val_type = NO_SIZE;
1398 	ctx->min_val_type = NO_SIZE;
1399 	fc->fs_private = ctx;
1400 	fc->ops	= &hugetlbfs_fs_context_ops;
1401 	return 0;
1402 }
1403 
1404 static struct file_system_type hugetlbfs_fs_type = {
1405 	.name			= "hugetlbfs",
1406 	.init_fs_context	= hugetlbfs_init_fs_context,
1407 	.parameters		= &hugetlb_fs_parameters,
1408 	.kill_sb		= kill_litter_super,
1409 };
1410 
1411 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1412 
can_do_hugetlb_shm(void)1413 static int can_do_hugetlb_shm(void)
1414 {
1415 	kgid_t shm_group;
1416 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1417 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1418 }
1419 
get_hstate_idx(int page_size_log)1420 static int get_hstate_idx(int page_size_log)
1421 {
1422 	struct hstate *h = hstate_sizelog(page_size_log);
1423 
1424 	if (!h)
1425 		return -1;
1426 	return h - hstates;
1427 }
1428 
1429 /*
1430  * Note that size should be aligned to proper hugepage size in caller side,
1431  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1432  */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,struct user_struct ** user,int creat_flags,int page_size_log)1433 struct file *hugetlb_file_setup(const char *name, size_t size,
1434 				vm_flags_t acctflag, struct user_struct **user,
1435 				int creat_flags, int page_size_log)
1436 {
1437 	struct inode *inode;
1438 	struct vfsmount *mnt;
1439 	int hstate_idx;
1440 	struct file *file;
1441 
1442 	hstate_idx = get_hstate_idx(page_size_log);
1443 	if (hstate_idx < 0)
1444 		return ERR_PTR(-ENODEV);
1445 
1446 	*user = NULL;
1447 	mnt = hugetlbfs_vfsmount[hstate_idx];
1448 	if (!mnt)
1449 		return ERR_PTR(-ENOENT);
1450 
1451 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1452 		*user = current_user();
1453 		if (user_shm_lock(size, *user)) {
1454 			task_lock(current);
1455 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1456 				current->comm, current->pid);
1457 			task_unlock(current);
1458 		} else {
1459 			*user = NULL;
1460 			return ERR_PTR(-EPERM);
1461 		}
1462 	}
1463 
1464 	file = ERR_PTR(-ENOSPC);
1465 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1466 	if (!inode)
1467 		goto out;
1468 	if (creat_flags == HUGETLB_SHMFS_INODE)
1469 		inode->i_flags |= S_PRIVATE;
1470 
1471 	inode->i_size = size;
1472 	clear_nlink(inode);
1473 
1474 	if (hugetlb_reserve_pages(inode, 0,
1475 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1476 			acctflag))
1477 		file = ERR_PTR(-ENOMEM);
1478 	else
1479 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1480 					&hugetlbfs_file_operations);
1481 	if (!IS_ERR(file))
1482 		return file;
1483 
1484 	iput(inode);
1485 out:
1486 	if (*user) {
1487 		user_shm_unlock(size, *user);
1488 		*user = NULL;
1489 	}
1490 	return file;
1491 }
1492 
mount_one_hugetlbfs(struct hstate * h)1493 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1494 {
1495 	struct fs_context *fc;
1496 	struct vfsmount *mnt;
1497 
1498 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1499 	if (IS_ERR(fc)) {
1500 		mnt = ERR_CAST(fc);
1501 	} else {
1502 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1503 		ctx->hstate = h;
1504 		mnt = fc_mount(fc);
1505 		put_fs_context(fc);
1506 	}
1507 	if (IS_ERR(mnt))
1508 		pr_err("Cannot mount internal hugetlbfs for page size %uK",
1509 		       1U << (h->order + PAGE_SHIFT - 10));
1510 	return mnt;
1511 }
1512 
init_hugetlbfs_fs(void)1513 static int __init init_hugetlbfs_fs(void)
1514 {
1515 	struct vfsmount *mnt;
1516 	struct hstate *h;
1517 	int error;
1518 	int i;
1519 
1520 	if (!hugepages_supported()) {
1521 		pr_info("disabling because there are no supported hugepage sizes\n");
1522 		return -ENOTSUPP;
1523 	}
1524 
1525 	error = -ENOMEM;
1526 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1527 					sizeof(struct hugetlbfs_inode_info),
1528 					0, SLAB_ACCOUNT, init_once);
1529 	if (hugetlbfs_inode_cachep == NULL)
1530 		goto out;
1531 
1532 	error = register_filesystem(&hugetlbfs_fs_type);
1533 	if (error)
1534 		goto out_free;
1535 
1536 	/* default hstate mount is required */
1537 	mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1538 	if (IS_ERR(mnt)) {
1539 		error = PTR_ERR(mnt);
1540 		goto out_unreg;
1541 	}
1542 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1543 
1544 	/* other hstates are optional */
1545 	i = 0;
1546 	for_each_hstate(h) {
1547 		if (i == default_hstate_idx) {
1548 			i++;
1549 			continue;
1550 		}
1551 
1552 		mnt = mount_one_hugetlbfs(h);
1553 		if (IS_ERR(mnt))
1554 			hugetlbfs_vfsmount[i] = NULL;
1555 		else
1556 			hugetlbfs_vfsmount[i] = mnt;
1557 		i++;
1558 	}
1559 
1560 	return 0;
1561 
1562  out_unreg:
1563 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1564  out_free:
1565 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1566  out:
1567 	return error;
1568 }
1569 fs_initcall(init_hugetlbfs_fs)
1570