• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/crypto/hooks.c
4  *
5  * Encryption hooks for higher-level filesystem operations.
6  */
7 
8 #include <linux/key.h>
9 
10 #include "fscrypt_private.h"
11 
12 /**
13  * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
14  * @inode: the inode being opened
15  * @filp: the struct file being set up
16  *
17  * Currently, an encrypted regular file can only be opened if its encryption key
18  * is available; access to the raw encrypted contents is not supported.
19  * Therefore, we first set up the inode's encryption key (if not already done)
20  * and return an error if it's unavailable.
21  *
22  * We also verify that if the parent directory (from the path via which the file
23  * is being opened) is encrypted, then the inode being opened uses the same
24  * encryption policy.  This is needed as part of the enforcement that all files
25  * in an encrypted directory tree use the same encryption policy, as a
26  * protection against certain types of offline attacks.  Note that this check is
27  * needed even when opening an *unencrypted* file, since it's forbidden to have
28  * an unencrypted file in an encrypted directory.
29  *
30  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
31  */
fscrypt_file_open(struct inode * inode,struct file * filp)32 int fscrypt_file_open(struct inode *inode, struct file *filp)
33 {
34 	int err;
35 	struct dentry *dir;
36 
37 	err = fscrypt_require_key(inode);
38 	if (err)
39 		return err;
40 
41 	dir = dget_parent(file_dentry(filp));
42 	if (IS_ENCRYPTED(d_inode(dir)) &&
43 	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
44 		fscrypt_warn(inode,
45 			     "Inconsistent encryption context (parent directory: %lu)",
46 			     d_inode(dir)->i_ino);
47 		err = -EPERM;
48 	}
49 	dput(dir);
50 	return err;
51 }
52 EXPORT_SYMBOL_GPL(fscrypt_file_open);
53 
__fscrypt_prepare_link(struct inode * inode,struct inode * dir,struct dentry * dentry)54 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
55 			   struct dentry *dentry)
56 {
57 	int err;
58 
59 	err = fscrypt_require_key(dir);
60 	if (err)
61 		return err;
62 
63 	/* ... in case we looked up no-key name before key was added */
64 	if (fscrypt_is_nokey_name(dentry))
65 		return -ENOKEY;
66 
67 	if (!fscrypt_has_permitted_context(dir, inode))
68 		return -EXDEV;
69 
70 	return 0;
71 }
72 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
73 
__fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)74 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
75 			     struct inode *new_dir, struct dentry *new_dentry,
76 			     unsigned int flags)
77 {
78 	int err;
79 
80 	err = fscrypt_require_key(old_dir);
81 	if (err)
82 		return err;
83 
84 	err = fscrypt_require_key(new_dir);
85 	if (err)
86 		return err;
87 
88 	/* ... in case we looked up no-key name(s) before key was added */
89 	if (fscrypt_is_nokey_name(old_dentry) ||
90 	    fscrypt_is_nokey_name(new_dentry))
91 		return -ENOKEY;
92 
93 	if (old_dir != new_dir) {
94 		if (IS_ENCRYPTED(new_dir) &&
95 		    !fscrypt_has_permitted_context(new_dir,
96 						   d_inode(old_dentry)))
97 			return -EXDEV;
98 
99 		if ((flags & RENAME_EXCHANGE) &&
100 		    IS_ENCRYPTED(old_dir) &&
101 		    !fscrypt_has_permitted_context(old_dir,
102 						   d_inode(new_dentry)))
103 			return -EXDEV;
104 	}
105 	return 0;
106 }
107 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
108 
__fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)109 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
110 			     struct fscrypt_name *fname)
111 {
112 	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
113 
114 	if (err && err != -ENOENT)
115 		return err;
116 
117 	if (fname->is_ciphertext_name) {
118 		spin_lock(&dentry->d_lock);
119 		dentry->d_flags |= DCACHE_ENCRYPTED_NAME;
120 		spin_unlock(&dentry->d_lock);
121 	}
122 	return err;
123 }
124 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
125 
126 /**
127  * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
128  * @inode: the inode on which flags are being changed
129  * @oldflags: the old flags
130  * @flags: the new flags
131  *
132  * The caller should be holding i_rwsem for write.
133  *
134  * Return: 0 on success; -errno if the flags change isn't allowed or if
135  *	   another error occurs.
136  */
fscrypt_prepare_setflags(struct inode * inode,unsigned int oldflags,unsigned int flags)137 int fscrypt_prepare_setflags(struct inode *inode,
138 			     unsigned int oldflags, unsigned int flags)
139 {
140 	struct fscrypt_info *ci;
141 	struct fscrypt_master_key *mk;
142 	int err;
143 
144 	/*
145 	 * When the CASEFOLD flag is set on an encrypted directory, we must
146 	 * derive the secret key needed for the dirhash.  This is only possible
147 	 * if the directory uses a v2 encryption policy.
148 	 */
149 	if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
150 		err = fscrypt_require_key(inode);
151 		if (err)
152 			return err;
153 		ci = inode->i_crypt_info;
154 		if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
155 			return -EINVAL;
156 		mk = ci->ci_master_key->payload.data[0];
157 		down_read(&mk->mk_secret_sem);
158 		if (is_master_key_secret_present(&mk->mk_secret))
159 			err = fscrypt_derive_dirhash_key(ci, mk);
160 		else
161 			err = -ENOKEY;
162 		up_read(&mk->mk_secret_sem);
163 		return err;
164 	}
165 	return 0;
166 }
167 
__fscrypt_prepare_symlink(struct inode * dir,unsigned int len,unsigned int max_len,struct fscrypt_str * disk_link)168 int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
169 			      unsigned int max_len,
170 			      struct fscrypt_str *disk_link)
171 {
172 	int err;
173 
174 	/*
175 	 * To calculate the size of the encrypted symlink target we need to know
176 	 * the amount of NUL padding, which is determined by the flags set in
177 	 * the encryption policy which will be inherited from the directory.
178 	 * The easiest way to get access to this is to just load the directory's
179 	 * fscrypt_info, since we'll need it to create the dir_entry anyway.
180 	 *
181 	 * Note: in test_dummy_encryption mode, @dir may be unencrypted.
182 	 */
183 	err = fscrypt_get_encryption_info(dir);
184 	if (err)
185 		return err;
186 	if (!fscrypt_has_encryption_key(dir))
187 		return -ENOKEY;
188 
189 	/*
190 	 * Calculate the size of the encrypted symlink and verify it won't
191 	 * exceed max_len.  Note that for historical reasons, encrypted symlink
192 	 * targets are prefixed with the ciphertext length, despite this
193 	 * actually being redundant with i_size.  This decreases by 2 bytes the
194 	 * longest symlink target we can accept.
195 	 *
196 	 * We could recover 1 byte by not counting a null terminator, but
197 	 * counting it (even though it is meaningless for ciphertext) is simpler
198 	 * for now since filesystems will assume it is there and subtract it.
199 	 */
200 	if (!fscrypt_fname_encrypted_size(dir, len,
201 					  max_len - sizeof(struct fscrypt_symlink_data),
202 					  &disk_link->len))
203 		return -ENAMETOOLONG;
204 	disk_link->len += sizeof(struct fscrypt_symlink_data);
205 
206 	disk_link->name = NULL;
207 	return 0;
208 }
209 EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink);
210 
__fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)211 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
212 			      unsigned int len, struct fscrypt_str *disk_link)
213 {
214 	int err;
215 	struct qstr iname = QSTR_INIT(target, len);
216 	struct fscrypt_symlink_data *sd;
217 	unsigned int ciphertext_len;
218 
219 	err = fscrypt_require_key(inode);
220 	if (err)
221 		return err;
222 
223 	if (disk_link->name) {
224 		/* filesystem-provided buffer */
225 		sd = (struct fscrypt_symlink_data *)disk_link->name;
226 	} else {
227 		sd = kmalloc(disk_link->len, GFP_NOFS);
228 		if (!sd)
229 			return -ENOMEM;
230 	}
231 	ciphertext_len = disk_link->len - sizeof(*sd);
232 	sd->len = cpu_to_le16(ciphertext_len);
233 
234 	err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
235 				    ciphertext_len);
236 	if (err)
237 		goto err_free_sd;
238 
239 	/*
240 	 * Null-terminating the ciphertext doesn't make sense, but we still
241 	 * count the null terminator in the length, so we might as well
242 	 * initialize it just in case the filesystem writes it out.
243 	 */
244 	sd->encrypted_path[ciphertext_len] = '\0';
245 
246 	/* Cache the plaintext symlink target for later use by get_link() */
247 	err = -ENOMEM;
248 	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
249 	if (!inode->i_link)
250 		goto err_free_sd;
251 
252 	if (!disk_link->name)
253 		disk_link->name = (unsigned char *)sd;
254 	return 0;
255 
256 err_free_sd:
257 	if (!disk_link->name)
258 		kfree(sd);
259 	return err;
260 }
261 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
262 
263 /**
264  * fscrypt_get_symlink() - get the target of an encrypted symlink
265  * @inode: the symlink inode
266  * @caddr: the on-disk contents of the symlink
267  * @max_size: size of @caddr buffer
268  * @done: if successful, will be set up to free the returned target if needed
269  *
270  * If the symlink's encryption key is available, we decrypt its target.
271  * Otherwise, we encode its target for presentation.
272  *
273  * This may sleep, so the filesystem must have dropped out of RCU mode already.
274  *
275  * Return: the presentable symlink target or an ERR_PTR()
276  */
fscrypt_get_symlink(struct inode * inode,const void * caddr,unsigned int max_size,struct delayed_call * done)277 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
278 				unsigned int max_size,
279 				struct delayed_call *done)
280 {
281 	const struct fscrypt_symlink_data *sd;
282 	struct fscrypt_str cstr, pstr;
283 	bool has_key;
284 	int err;
285 
286 	/* This is for encrypted symlinks only */
287 	if (WARN_ON(!IS_ENCRYPTED(inode)))
288 		return ERR_PTR(-EINVAL);
289 
290 	/* If the decrypted target is already cached, just return it. */
291 	pstr.name = READ_ONCE(inode->i_link);
292 	if (pstr.name)
293 		return pstr.name;
294 
295 	/*
296 	 * Try to set up the symlink's encryption key, but we can continue
297 	 * regardless of whether the key is available or not.
298 	 */
299 	err = fscrypt_get_encryption_info(inode);
300 	if (err)
301 		return ERR_PTR(err);
302 	has_key = fscrypt_has_encryption_key(inode);
303 
304 	/*
305 	 * For historical reasons, encrypted symlink targets are prefixed with
306 	 * the ciphertext length, even though this is redundant with i_size.
307 	 */
308 
309 	if (max_size < sizeof(*sd))
310 		return ERR_PTR(-EUCLEAN);
311 	sd = caddr;
312 	cstr.name = (unsigned char *)sd->encrypted_path;
313 	cstr.len = le16_to_cpu(sd->len);
314 
315 	if (cstr.len == 0)
316 		return ERR_PTR(-EUCLEAN);
317 
318 	if (cstr.len + sizeof(*sd) - 1 > max_size)
319 		return ERR_PTR(-EUCLEAN);
320 
321 	err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
322 	if (err)
323 		return ERR_PTR(err);
324 
325 	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
326 	if (err)
327 		goto err_kfree;
328 
329 	err = -EUCLEAN;
330 	if (pstr.name[0] == '\0')
331 		goto err_kfree;
332 
333 	pstr.name[pstr.len] = '\0';
334 
335 	/*
336 	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
337 	 * symlink targets encoded without the key, since those become outdated
338 	 * once the key is added.  This pairs with the READ_ONCE() above and in
339 	 * the VFS path lookup code.
340 	 */
341 	if (!has_key ||
342 	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
343 		set_delayed_call(done, kfree_link, pstr.name);
344 
345 	return pstr.name;
346 
347 err_kfree:
348 	kfree(pstr.name);
349 	return ERR_PTR(err);
350 }
351 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
352 
353 /**
354  * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
355  * @path: the path for the encrypted symlink being queried
356  * @stat: the struct being filled with the symlink's attributes
357  *
358  * Override st_size of encrypted symlinks to be the length of the decrypted
359  * symlink target (or the no-key encoded symlink target, if the key is
360  * unavailable) rather than the length of the encrypted symlink target.  This is
361  * necessary for st_size to match the symlink target that userspace actually
362  * sees.  POSIX requires this, and some userspace programs depend on it.
363  *
364  * This requires reading the symlink target from disk if needed, setting up the
365  * inode's encryption key if possible, and then decrypting or encoding the
366  * symlink target.  This makes lstat() more heavyweight than is normally the
367  * case.  However, decrypted symlink targets will be cached in ->i_link, so
368  * usually the symlink won't have to be read and decrypted again later if/when
369  * it is actually followed, readlink() is called, or lstat() is called again.
370  *
371  * Return: 0 on success, -errno on failure
372  */
fscrypt_symlink_getattr(const struct path * path,struct kstat * stat)373 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
374 {
375 	struct dentry *dentry = path->dentry;
376 	struct inode *inode = d_inode(dentry);
377 	const char *link;
378 	DEFINE_DELAYED_CALL(done);
379 
380 	/*
381 	 * To get the symlink target that userspace will see (whether it's the
382 	 * decrypted target or the no-key encoded target), we can just get it in
383 	 * the same way the VFS does during path resolution and readlink().
384 	 */
385 	link = READ_ONCE(inode->i_link);
386 	if (!link) {
387 		link = inode->i_op->get_link(dentry, inode, &done);
388 		if (IS_ERR(link))
389 			return PTR_ERR(link);
390 	}
391 	stat->size = strlen(link);
392 	do_delayed_call(&done);
393 	return 0;
394 }
395 EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
396