1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26
27 #define FSCRYPT_NEED_OPS
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_MAX,
60 };
61
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
64
65 struct f2fs_fault_info {
66 atomic_t inject_ops;
67 unsigned int inject_rate;
68 unsigned int inject_type;
69 };
70
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74
75 /*
76 * For mount options
77 */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
79 #define F2FS_MOUNT_DISCARD 0x00000004
80 #define F2FS_MOUNT_NOHEAP 0x00000008
81 #define F2FS_MOUNT_XATTR_USER 0x00000010
82 #define F2FS_MOUNT_POSIX_ACL 0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
85 #define F2FS_MOUNT_INLINE_DATA 0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
88 #define F2FS_MOUNT_NOBARRIER 0x00000800
89 #define F2FS_MOUNT_FASTBOOT 0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
93 #define F2FS_MOUNT_USRQUOTA 0x00080000
94 #define F2FS_MOUNT_GRPQUOTA 0x00100000
95 #define F2FS_MOUNT_PRJQUOTA 0x00200000
96 #define F2FS_MOUNT_QUOTA 0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
100 #define F2FS_MOUNT_NORECOVERY 0x04000000
101
102 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
103 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
104 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
105 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
106
107 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
108 typecheck(unsigned long long, b) && \
109 ((long long)((a) - (b)) > 0))
110
111 typedef u32 block_t; /*
112 * should not change u32, since it is the on-disk block
113 * address format, __le32.
114 */
115 typedef u32 nid_t;
116
117 #define COMPRESS_EXT_NUM 16
118
119 struct f2fs_mount_info {
120 unsigned int opt;
121 int write_io_size_bits; /* Write IO size bits */
122 block_t root_reserved_blocks; /* root reserved blocks */
123 kuid_t s_resuid; /* reserved blocks for uid */
124 kgid_t s_resgid; /* reserved blocks for gid */
125 int active_logs; /* # of active logs */
126 int inline_xattr_size; /* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 struct f2fs_fault_info fault_info; /* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 /* Names of quota files with journalled quota */
132 char *s_qf_names[MAXQUOTAS];
133 int s_jquota_fmt; /* Format of quota to use */
134 #endif
135 /* For which write hints are passed down to block layer */
136 int whint_mode;
137 int alloc_mode; /* segment allocation policy */
138 int fsync_mode; /* fsync policy */
139 int fs_mode; /* fs mode: LFS or ADAPTIVE */
140 int bggc_mode; /* bggc mode: off, on or sync */
141 struct fscrypt_dummy_context dummy_enc_ctx; /* test dummy encryption */
142 #ifdef CONFIG_FS_ENCRYPTION
143 bool inlinecrypt; /* inline encryption enabled */
144 #endif
145 block_t unusable_cap_perc; /* percentage for cap */
146 block_t unusable_cap; /* Amount of space allowed to be
147 * unusable when disabling checkpoint
148 */
149
150 /* For compression */
151 unsigned char compress_algorithm; /* algorithm type */
152 unsigned compress_log_size; /* cluster log size */
153 unsigned char compress_ext_cnt; /* extension count */
154 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
155 };
156
157 #define F2FS_FEATURE_ENCRYPT 0x0001
158 #define F2FS_FEATURE_BLKZONED 0x0002
159 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
160 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
161 #define F2FS_FEATURE_PRJQUOTA 0x0010
162 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
163 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
164 #define F2FS_FEATURE_QUOTA_INO 0x0080
165 #define F2FS_FEATURE_INODE_CRTIME 0x0100
166 #define F2FS_FEATURE_LOST_FOUND 0x0200
167 #define F2FS_FEATURE_VERITY 0x0400
168 #define F2FS_FEATURE_SB_CHKSUM 0x0800
169 #define F2FS_FEATURE_CASEFOLD 0x1000
170 #define F2FS_FEATURE_COMPRESSION 0x2000
171 #define F2FS_FEATURE_RO 0x4000
172
173 #define __F2FS_HAS_FEATURE(raw_super, mask) \
174 ((raw_super->feature & cpu_to_le32(mask)) != 0)
175 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
176 #define F2FS_SET_FEATURE(sbi, mask) \
177 (sbi->raw_super->feature |= cpu_to_le32(mask))
178 #define F2FS_CLEAR_FEATURE(sbi, mask) \
179 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
180
181 /*
182 * Default values for user and/or group using reserved blocks
183 */
184 #define F2FS_DEF_RESUID 0
185 #define F2FS_DEF_RESGID 0
186
187 /*
188 * For checkpoint manager
189 */
190 enum {
191 NAT_BITMAP,
192 SIT_BITMAP
193 };
194
195 #define CP_UMOUNT 0x00000001
196 #define CP_FASTBOOT 0x00000002
197 #define CP_SYNC 0x00000004
198 #define CP_RECOVERY 0x00000008
199 #define CP_DISCARD 0x00000010
200 #define CP_TRIMMED 0x00000020
201 #define CP_PAUSE 0x00000040
202 #define CP_RESIZE 0x00000080
203
204 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
205 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
206 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
207 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
208 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
209 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
210 #define DEF_CP_INTERVAL 60 /* 60 secs */
211 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
212 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
213 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
214 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
215
216 struct cp_control {
217 int reason;
218 __u64 trim_start;
219 __u64 trim_end;
220 __u64 trim_minlen;
221 };
222
223 /*
224 * indicate meta/data type
225 */
226 enum {
227 META_CP,
228 META_NAT,
229 META_SIT,
230 META_SSA,
231 META_MAX,
232 META_POR,
233 DATA_GENERIC, /* check range only */
234 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
235 DATA_GENERIC_ENHANCE_READ, /*
236 * strong check on range and segment
237 * bitmap but no warning due to race
238 * condition of read on truncated area
239 * by extent_cache
240 */
241 DATA_GENERIC_ENHANCE_UPDATE, /*
242 * strong check on range and segment
243 * bitmap for update case
244 */
245 META_GENERIC,
246 };
247
248 /* for the list of ino */
249 enum {
250 ORPHAN_INO, /* for orphan ino list */
251 APPEND_INO, /* for append ino list */
252 UPDATE_INO, /* for update ino list */
253 TRANS_DIR_INO, /* for trasactions dir ino list */
254 FLUSH_INO, /* for multiple device flushing */
255 MAX_INO_ENTRY, /* max. list */
256 };
257
258 struct ino_entry {
259 struct list_head list; /* list head */
260 nid_t ino; /* inode number */
261 unsigned int dirty_device; /* dirty device bitmap */
262 };
263
264 /* for the list of inodes to be GCed */
265 struct inode_entry {
266 struct list_head list; /* list head */
267 struct inode *inode; /* vfs inode pointer */
268 };
269
270 struct fsync_node_entry {
271 struct list_head list; /* list head */
272 struct page *page; /* warm node page pointer */
273 unsigned int seq_id; /* sequence id */
274 };
275
276 /* for the bitmap indicate blocks to be discarded */
277 struct discard_entry {
278 struct list_head list; /* list head */
279 block_t start_blkaddr; /* start blockaddr of current segment */
280 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
281 };
282
283 /* default discard granularity of inner discard thread, unit: block count */
284 #define DEFAULT_DISCARD_GRANULARITY 16
285
286 /* max discard pend list number */
287 #define MAX_PLIST_NUM 512
288 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
289 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
290
291 enum {
292 D_PREP, /* initial */
293 D_PARTIAL, /* partially submitted */
294 D_SUBMIT, /* all submitted */
295 D_DONE, /* finished */
296 };
297
298 struct discard_info {
299 block_t lstart; /* logical start address */
300 block_t len; /* length */
301 block_t start; /* actual start address in dev */
302 };
303
304 struct discard_cmd {
305 struct rb_node rb_node; /* rb node located in rb-tree */
306 union {
307 struct {
308 block_t lstart; /* logical start address */
309 block_t len; /* length */
310 block_t start; /* actual start address in dev */
311 };
312 struct discard_info di; /* discard info */
313
314 };
315 struct list_head list; /* command list */
316 struct completion wait; /* compleation */
317 struct block_device *bdev; /* bdev */
318 unsigned short ref; /* reference count */
319 unsigned char state; /* state */
320 unsigned char queued; /* queued discard */
321 int error; /* bio error */
322 spinlock_t lock; /* for state/bio_ref updating */
323 unsigned short bio_ref; /* bio reference count */
324 };
325
326 enum {
327 DPOLICY_BG,
328 DPOLICY_FORCE,
329 DPOLICY_FSTRIM,
330 DPOLICY_UMOUNT,
331 MAX_DPOLICY,
332 };
333
334 struct discard_policy {
335 int type; /* type of discard */
336 unsigned int min_interval; /* used for candidates exist */
337 unsigned int mid_interval; /* used for device busy */
338 unsigned int max_interval; /* used for candidates not exist */
339 unsigned int max_requests; /* # of discards issued per round */
340 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
341 bool io_aware; /* issue discard in idle time */
342 bool sync; /* submit discard with REQ_SYNC flag */
343 bool ordered; /* issue discard by lba order */
344 bool timeout; /* discard timeout for put_super */
345 unsigned int granularity; /* discard granularity */
346 };
347
348 struct discard_cmd_control {
349 struct task_struct *f2fs_issue_discard; /* discard thread */
350 struct list_head entry_list; /* 4KB discard entry list */
351 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
352 struct list_head wait_list; /* store on-flushing entries */
353 struct list_head fstrim_list; /* in-flight discard from fstrim */
354 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
355 unsigned int discard_wake; /* to wake up discard thread */
356 struct mutex cmd_lock;
357 unsigned int nr_discards; /* # of discards in the list */
358 unsigned int max_discards; /* max. discards to be issued */
359 unsigned int discard_granularity; /* discard granularity */
360 unsigned int undiscard_blks; /* # of undiscard blocks */
361 unsigned int next_pos; /* next discard position */
362 atomic_t issued_discard; /* # of issued discard */
363 atomic_t queued_discard; /* # of queued discard */
364 atomic_t discard_cmd_cnt; /* # of cached cmd count */
365 struct rb_root_cached root; /* root of discard rb-tree */
366 bool rbtree_check; /* config for consistence check */
367 };
368
369 /* for the list of fsync inodes, used only during recovery */
370 struct fsync_inode_entry {
371 struct list_head list; /* list head */
372 struct inode *inode; /* vfs inode pointer */
373 block_t blkaddr; /* block address locating the last fsync */
374 block_t last_dentry; /* block address locating the last dentry */
375 };
376
377 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
378 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
379
380 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
381 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
382 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
383 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
384
385 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
386 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
387
update_nats_in_cursum(struct f2fs_journal * journal,int i)388 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
389 {
390 int before = nats_in_cursum(journal);
391
392 journal->n_nats = cpu_to_le16(before + i);
393 return before;
394 }
395
update_sits_in_cursum(struct f2fs_journal * journal,int i)396 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
397 {
398 int before = sits_in_cursum(journal);
399
400 journal->n_sits = cpu_to_le16(before + i);
401 return before;
402 }
403
__has_cursum_space(struct f2fs_journal * journal,int size,int type)404 static inline bool __has_cursum_space(struct f2fs_journal *journal,
405 int size, int type)
406 {
407 if (type == NAT_JOURNAL)
408 return size <= MAX_NAT_JENTRIES(journal);
409 return size <= MAX_SIT_JENTRIES(journal);
410 }
411
412 /*
413 * ioctl commands
414 */
415 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
416 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
417 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
418
419 #define F2FS_IOCTL_MAGIC 0xf5
420 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
421 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
422 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
423 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
424 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
425 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
426 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
427 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
428 struct f2fs_defragment)
429 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
430 struct f2fs_move_range)
431 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
432 struct f2fs_flush_device)
433 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
434 struct f2fs_gc_range)
435 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
436 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32)
437 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32)
438 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15)
439 #define F2FS_IOC_RESIZE_FS _IOW(F2FS_IOCTL_MAGIC, 16, __u64)
440 #define F2FS_IOC_GET_COMPRESS_BLOCKS _IOR(F2FS_IOCTL_MAGIC, 17, __u64)
441 #define F2FS_IOC_RELEASE_COMPRESS_BLOCKS \
442 _IOR(F2FS_IOCTL_MAGIC, 18, __u64)
443 #define F2FS_IOC_RESERVE_COMPRESS_BLOCKS \
444 _IOR(F2FS_IOCTL_MAGIC, 19, __u64)
445
446 #define F2FS_IOC_GET_VOLUME_NAME FS_IOC_GETFSLABEL
447 #define F2FS_IOC_SET_VOLUME_NAME FS_IOC_SETFSLABEL
448
449 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
450 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
451 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
452
453 /*
454 * should be same as XFS_IOC_GOINGDOWN.
455 * Flags for going down operation used by FS_IOC_GOINGDOWN
456 */
457 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
458 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
459 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
460 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
461 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
462 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */
463
464 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
465 /*
466 * ioctl commands in 32 bit emulation
467 */
468 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
469 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
470 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
471 #endif
472
473 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
474 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
475
476 struct f2fs_gc_range {
477 u32 sync;
478 u64 start;
479 u64 len;
480 };
481
482 struct f2fs_defragment {
483 u64 start;
484 u64 len;
485 };
486
487 struct f2fs_move_range {
488 u32 dst_fd; /* destination fd */
489 u64 pos_in; /* start position in src_fd */
490 u64 pos_out; /* start position in dst_fd */
491 u64 len; /* size to move */
492 };
493
494 struct f2fs_flush_device {
495 u32 dev_num; /* device number to flush */
496 u32 segments; /* # of segments to flush */
497 };
498
499 /* for inline stuff */
500 #define DEF_INLINE_RESERVED_SIZE 1
501 static inline int get_extra_isize(struct inode *inode);
502 static inline int get_inline_xattr_addrs(struct inode *inode);
503 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
504 (CUR_ADDRS_PER_INODE(inode) - \
505 get_inline_xattr_addrs(inode) - \
506 DEF_INLINE_RESERVED_SIZE))
507
508 /* for inline dir */
509 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
510 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
511 BITS_PER_BYTE + 1))
512 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
513 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
514 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
515 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
516 NR_INLINE_DENTRY(inode) + \
517 INLINE_DENTRY_BITMAP_SIZE(inode)))
518
519 /*
520 * For INODE and NODE manager
521 */
522 /* for directory operations */
523
524 struct f2fs_filename {
525 /*
526 * The filename the user specified. This is NULL for some
527 * filesystem-internal operations, e.g. converting an inline directory
528 * to a non-inline one, or roll-forward recovering an encrypted dentry.
529 */
530 const struct qstr *usr_fname;
531
532 /*
533 * The on-disk filename. For encrypted directories, this is encrypted.
534 * This may be NULL for lookups in an encrypted dir without the key.
535 */
536 struct fscrypt_str disk_name;
537
538 /* The dirhash of this filename */
539 f2fs_hash_t hash;
540
541 #ifdef CONFIG_FS_ENCRYPTION
542 /*
543 * For lookups in encrypted directories: either the buffer backing
544 * disk_name, or a buffer that holds the decoded no-key name.
545 */
546 struct fscrypt_str crypto_buf;
547 #endif
548 #ifdef CONFIG_UNICODE
549 /*
550 * For casefolded directories: the casefolded name, but it's left NULL
551 * if the original name is not valid Unicode, if the original name is
552 * "." or "..", if the directory is both casefolded and encrypted and
553 * its encryption key is unavailable, or if the filesystem is doing an
554 * internal operation where usr_fname is also NULL. In all these cases
555 * we fall back to treating the name as an opaque byte sequence.
556 */
557 struct fscrypt_str cf_name;
558 #endif
559 };
560
561 struct f2fs_dentry_ptr {
562 struct inode *inode;
563 void *bitmap;
564 struct f2fs_dir_entry *dentry;
565 __u8 (*filename)[F2FS_SLOT_LEN];
566 int max;
567 int nr_bitmap;
568 };
569
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)570 static inline void make_dentry_ptr_block(struct inode *inode,
571 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
572 {
573 d->inode = inode;
574 d->max = NR_DENTRY_IN_BLOCK;
575 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
576 d->bitmap = t->dentry_bitmap;
577 d->dentry = t->dentry;
578 d->filename = t->filename;
579 }
580
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)581 static inline void make_dentry_ptr_inline(struct inode *inode,
582 struct f2fs_dentry_ptr *d, void *t)
583 {
584 int entry_cnt = NR_INLINE_DENTRY(inode);
585 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
586 int reserved_size = INLINE_RESERVED_SIZE(inode);
587
588 d->inode = inode;
589 d->max = entry_cnt;
590 d->nr_bitmap = bitmap_size;
591 d->bitmap = t;
592 d->dentry = t + bitmap_size + reserved_size;
593 d->filename = t + bitmap_size + reserved_size +
594 SIZE_OF_DIR_ENTRY * entry_cnt;
595 }
596
597 /*
598 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
599 * as its node offset to distinguish from index node blocks.
600 * But some bits are used to mark the node block.
601 */
602 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
603 >> OFFSET_BIT_SHIFT)
604 enum {
605 ALLOC_NODE, /* allocate a new node page if needed */
606 LOOKUP_NODE, /* look up a node without readahead */
607 LOOKUP_NODE_RA, /*
608 * look up a node with readahead called
609 * by get_data_block.
610 */
611 };
612
613 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
614
615 /* congestion wait timeout value, default: 20ms */
616 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
617
618 /* maximum retry quota flush count */
619 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
620
621 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
622
623 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
624
625 /* for in-memory extent cache entry */
626 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
627
628 /* number of extent info in extent cache we try to shrink */
629 #define EXTENT_CACHE_SHRINK_NUMBER 128
630
631 struct rb_entry {
632 struct rb_node rb_node; /* rb node located in rb-tree */
633 unsigned int ofs; /* start offset of the entry */
634 unsigned int len; /* length of the entry */
635 };
636
637 struct extent_info {
638 unsigned int fofs; /* start offset in a file */
639 unsigned int len; /* length of the extent */
640 u32 blk; /* start block address of the extent */
641 };
642
643 struct extent_node {
644 struct rb_node rb_node; /* rb node located in rb-tree */
645 struct extent_info ei; /* extent info */
646 struct list_head list; /* node in global extent list of sbi */
647 struct extent_tree *et; /* extent tree pointer */
648 };
649
650 struct extent_tree {
651 nid_t ino; /* inode number */
652 struct rb_root_cached root; /* root of extent info rb-tree */
653 struct extent_node *cached_en; /* recently accessed extent node */
654 struct extent_info largest; /* largested extent info */
655 struct list_head list; /* to be used by sbi->zombie_list */
656 rwlock_t lock; /* protect extent info rb-tree */
657 atomic_t node_cnt; /* # of extent node in rb-tree*/
658 bool largest_updated; /* largest extent updated */
659 };
660
661 /*
662 * This structure is taken from ext4_map_blocks.
663 *
664 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
665 */
666 #define F2FS_MAP_NEW (1 << BH_New)
667 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
668 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
669 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
670 F2FS_MAP_UNWRITTEN)
671
672 struct f2fs_map_blocks {
673 block_t m_pblk;
674 block_t m_lblk;
675 unsigned int m_len;
676 unsigned int m_flags;
677 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
678 pgoff_t *m_next_extent; /* point to next possible extent */
679 int m_seg_type;
680 bool m_may_create; /* indicate it is from write path */
681 };
682
683 /* for flag in get_data_block */
684 enum {
685 F2FS_GET_BLOCK_DEFAULT,
686 F2FS_GET_BLOCK_FIEMAP,
687 F2FS_GET_BLOCK_BMAP,
688 F2FS_GET_BLOCK_DIO,
689 F2FS_GET_BLOCK_PRE_DIO,
690 F2FS_GET_BLOCK_PRE_AIO,
691 F2FS_GET_BLOCK_PRECACHE,
692 };
693
694 /*
695 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
696 */
697 #define FADVISE_COLD_BIT 0x01
698 #define FADVISE_LOST_PINO_BIT 0x02
699 #define FADVISE_ENCRYPT_BIT 0x04
700 #define FADVISE_ENC_NAME_BIT 0x08
701 #define FADVISE_KEEP_SIZE_BIT 0x10
702 #define FADVISE_HOT_BIT 0x20
703 #define FADVISE_VERITY_BIT 0x40
704
705 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
706
707 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
708 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
709 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
710 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
711 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
712 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
713 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
714 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
715 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
716 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
717 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
718 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
719 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
720 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
721 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
722 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
723 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
724 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
725
726 #define DEF_DIR_LEVEL 0
727
728 enum {
729 GC_FAILURE_PIN,
730 GC_FAILURE_ATOMIC,
731 MAX_GC_FAILURE
732 };
733
734 /* used for f2fs_inode_info->flags */
735 enum {
736 FI_NEW_INODE, /* indicate newly allocated inode */
737 FI_DIRTY_INODE, /* indicate inode is dirty or not */
738 FI_AUTO_RECOVER, /* indicate inode is recoverable */
739 FI_DIRTY_DIR, /* indicate directory has dirty pages */
740 FI_INC_LINK, /* need to increment i_nlink */
741 FI_ACL_MODE, /* indicate acl mode */
742 FI_NO_ALLOC, /* should not allocate any blocks */
743 FI_FREE_NID, /* free allocated nide */
744 FI_NO_EXTENT, /* not to use the extent cache */
745 FI_INLINE_XATTR, /* used for inline xattr */
746 FI_INLINE_DATA, /* used for inline data*/
747 FI_INLINE_DENTRY, /* used for inline dentry */
748 FI_APPEND_WRITE, /* inode has appended data */
749 FI_UPDATE_WRITE, /* inode has in-place-update data */
750 FI_NEED_IPU, /* used for ipu per file */
751 FI_ATOMIC_FILE, /* indicate atomic file */
752 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
753 FI_VOLATILE_FILE, /* indicate volatile file */
754 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
755 FI_DROP_CACHE, /* drop dirty page cache */
756 FI_DATA_EXIST, /* indicate data exists */
757 FI_INLINE_DOTS, /* indicate inline dot dentries */
758 FI_DO_DEFRAG, /* indicate defragment is running */
759 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
760 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
761 FI_HOT_DATA, /* indicate file is hot */
762 FI_EXTRA_ATTR, /* indicate file has extra attribute */
763 FI_PROJ_INHERIT, /* indicate file inherits projectid */
764 FI_PIN_FILE, /* indicate file should not be gced */
765 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
766 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
767 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
768 FI_MMAP_FILE, /* indicate file was mmapped */
769 FI_COMPRESS_RELEASED, /* compressed blocks were released */
770 FI_MAX, /* max flag, never be used */
771 };
772
773 struct f2fs_inode_info {
774 struct inode vfs_inode; /* serve a vfs inode */
775 unsigned long i_flags; /* keep an inode flags for ioctl */
776 unsigned char i_advise; /* use to give file attribute hints */
777 unsigned char i_dir_level; /* use for dentry level for large dir */
778 unsigned int i_current_depth; /* only for directory depth */
779 /* for gc failure statistic */
780 unsigned int i_gc_failures[MAX_GC_FAILURE];
781 unsigned int i_pino; /* parent inode number */
782 umode_t i_acl_mode; /* keep file acl mode temporarily */
783
784 /* Use below internally in f2fs*/
785 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
786 struct rw_semaphore i_sem; /* protect fi info */
787 atomic_t dirty_pages; /* # of dirty pages */
788 f2fs_hash_t chash; /* hash value of given file name */
789 unsigned int clevel; /* maximum level of given file name */
790 struct task_struct *task; /* lookup and create consistency */
791 struct task_struct *cp_task; /* separate cp/wb IO stats*/
792 nid_t i_xattr_nid; /* node id that contains xattrs */
793 loff_t last_disk_size; /* lastly written file size */
794 spinlock_t i_size_lock; /* protect last_disk_size */
795
796 #ifdef CONFIG_QUOTA
797 struct dquot *i_dquot[MAXQUOTAS];
798
799 /* quota space reservation, managed internally by quota code */
800 qsize_t i_reserved_quota;
801 #endif
802 struct list_head dirty_list; /* dirty list for dirs and files */
803 struct list_head gdirty_list; /* linked in global dirty list */
804 struct list_head inmem_ilist; /* list for inmem inodes */
805 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
806 struct task_struct *inmem_task; /* store inmemory task */
807 struct mutex inmem_lock; /* lock for inmemory pages */
808 struct extent_tree *extent_tree; /* cached extent_tree entry */
809
810 /* avoid racing between foreground op and gc */
811 struct rw_semaphore i_gc_rwsem[2];
812 struct rw_semaphore i_mmap_sem;
813 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
814
815 int i_extra_isize; /* size of extra space located in i_addr */
816 kprojid_t i_projid; /* id for project quota */
817 int i_inline_xattr_size; /* inline xattr size */
818 struct timespec64 i_crtime; /* inode creation time */
819 struct timespec64 i_disk_time[4];/* inode disk times */
820
821 /* for file compress */
822 atomic_t i_compr_blocks; /* # of compressed blocks */
823 unsigned char i_compress_algorithm; /* algorithm type */
824 unsigned char i_log_cluster_size; /* log of cluster size */
825 unsigned int i_cluster_size; /* cluster size */
826 };
827
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)828 static inline void get_extent_info(struct extent_info *ext,
829 struct f2fs_extent *i_ext)
830 {
831 ext->fofs = le32_to_cpu(i_ext->fofs);
832 ext->blk = le32_to_cpu(i_ext->blk);
833 ext->len = le32_to_cpu(i_ext->len);
834 }
835
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)836 static inline void set_raw_extent(struct extent_info *ext,
837 struct f2fs_extent *i_ext)
838 {
839 i_ext->fofs = cpu_to_le32(ext->fofs);
840 i_ext->blk = cpu_to_le32(ext->blk);
841 i_ext->len = cpu_to_le32(ext->len);
842 }
843
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)844 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
845 u32 blk, unsigned int len)
846 {
847 ei->fofs = fofs;
848 ei->blk = blk;
849 ei->len = len;
850 }
851
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)852 static inline bool __is_discard_mergeable(struct discard_info *back,
853 struct discard_info *front, unsigned int max_len)
854 {
855 return (back->lstart + back->len == front->lstart) &&
856 (back->len + front->len <= max_len);
857 }
858
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)859 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
860 struct discard_info *back, unsigned int max_len)
861 {
862 return __is_discard_mergeable(back, cur, max_len);
863 }
864
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)865 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
866 struct discard_info *front, unsigned int max_len)
867 {
868 return __is_discard_mergeable(cur, front, max_len);
869 }
870
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)871 static inline bool __is_extent_mergeable(struct extent_info *back,
872 struct extent_info *front)
873 {
874 return (back->fofs + back->len == front->fofs &&
875 back->blk + back->len == front->blk);
876 }
877
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)878 static inline bool __is_back_mergeable(struct extent_info *cur,
879 struct extent_info *back)
880 {
881 return __is_extent_mergeable(back, cur);
882 }
883
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)884 static inline bool __is_front_mergeable(struct extent_info *cur,
885 struct extent_info *front)
886 {
887 return __is_extent_mergeable(cur, front);
888 }
889
890 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)891 static inline void __try_update_largest_extent(struct extent_tree *et,
892 struct extent_node *en)
893 {
894 if (en->ei.len > et->largest.len) {
895 et->largest = en->ei;
896 et->largest_updated = true;
897 }
898 }
899
900 /*
901 * For free nid management
902 */
903 enum nid_state {
904 FREE_NID, /* newly added to free nid list */
905 PREALLOC_NID, /* it is preallocated */
906 MAX_NID_STATE,
907 };
908
909 enum nat_state {
910 TOTAL_NAT,
911 DIRTY_NAT,
912 RECLAIMABLE_NAT,
913 MAX_NAT_STATE,
914 };
915
916 struct f2fs_nm_info {
917 block_t nat_blkaddr; /* base disk address of NAT */
918 nid_t max_nid; /* maximum possible node ids */
919 nid_t available_nids; /* # of available node ids */
920 nid_t next_scan_nid; /* the next nid to be scanned */
921 unsigned int ram_thresh; /* control the memory footprint */
922 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
923 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
924
925 /* NAT cache management */
926 struct radix_tree_root nat_root;/* root of the nat entry cache */
927 struct radix_tree_root nat_set_root;/* root of the nat set cache */
928 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
929 struct list_head nat_entries; /* cached nat entry list (clean) */
930 spinlock_t nat_list_lock; /* protect clean nat entry list */
931 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
932 unsigned int nat_blocks; /* # of nat blocks */
933
934 /* free node ids management */
935 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
936 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
937 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
938 spinlock_t nid_list_lock; /* protect nid lists ops */
939 struct mutex build_lock; /* lock for build free nids */
940 unsigned char **free_nid_bitmap;
941 unsigned char *nat_block_bitmap;
942 unsigned short *free_nid_count; /* free nid count of NAT block */
943
944 /* for checkpoint */
945 char *nat_bitmap; /* NAT bitmap pointer */
946
947 unsigned int nat_bits_blocks; /* # of nat bits blocks */
948 unsigned char *nat_bits; /* NAT bits blocks */
949 unsigned char *full_nat_bits; /* full NAT pages */
950 unsigned char *empty_nat_bits; /* empty NAT pages */
951 #ifdef CONFIG_F2FS_CHECK_FS
952 char *nat_bitmap_mir; /* NAT bitmap mirror */
953 #endif
954 int bitmap_size; /* bitmap size */
955 };
956
957 /*
958 * this structure is used as one of function parameters.
959 * all the information are dedicated to a given direct node block determined
960 * by the data offset in a file.
961 */
962 struct dnode_of_data {
963 struct inode *inode; /* vfs inode pointer */
964 struct page *inode_page; /* its inode page, NULL is possible */
965 struct page *node_page; /* cached direct node page */
966 nid_t nid; /* node id of the direct node block */
967 unsigned int ofs_in_node; /* data offset in the node page */
968 bool inode_page_locked; /* inode page is locked or not */
969 bool node_changed; /* is node block changed */
970 char cur_level; /* level of hole node page */
971 char max_level; /* level of current page located */
972 block_t data_blkaddr; /* block address of the node block */
973 };
974
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)975 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
976 struct page *ipage, struct page *npage, nid_t nid)
977 {
978 memset(dn, 0, sizeof(*dn));
979 dn->inode = inode;
980 dn->inode_page = ipage;
981 dn->node_page = npage;
982 dn->nid = nid;
983 }
984
985 /*
986 * For SIT manager
987 *
988 * By default, there are 6 active log areas across the whole main area.
989 * When considering hot and cold data separation to reduce cleaning overhead,
990 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
991 * respectively.
992 * In the current design, you should not change the numbers intentionally.
993 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
994 * logs individually according to the underlying devices. (default: 6)
995 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
996 * data and 8 for node logs.
997 */
998 #define NR_CURSEG_DATA_TYPE (3)
999 #define NR_CURSEG_NODE_TYPE (3)
1000 #define NR_CURSEG_RO_TYPE (2)
1001 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1002
1003 enum {
1004 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1005 CURSEG_WARM_DATA, /* data blocks */
1006 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1007 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1008 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1009 CURSEG_COLD_NODE, /* indirect node blocks */
1010 NO_CHECK_TYPE,
1011 CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */
1012 };
1013
1014 struct flush_cmd {
1015 struct completion wait;
1016 struct llist_node llnode;
1017 nid_t ino;
1018 int ret;
1019 };
1020
1021 struct flush_cmd_control {
1022 struct task_struct *f2fs_issue_flush; /* flush thread */
1023 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1024 atomic_t issued_flush; /* # of issued flushes */
1025 atomic_t queued_flush; /* # of queued flushes */
1026 struct llist_head issue_list; /* list for command issue */
1027 struct llist_node *dispatch_list; /* list for command dispatch */
1028 };
1029
1030 struct f2fs_sm_info {
1031 struct sit_info *sit_info; /* whole segment information */
1032 struct free_segmap_info *free_info; /* free segment information */
1033 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1034 struct curseg_info *curseg_array; /* active segment information */
1035
1036 struct rw_semaphore curseg_lock; /* for preventing curseg change */
1037
1038 block_t seg0_blkaddr; /* block address of 0'th segment */
1039 block_t main_blkaddr; /* start block address of main area */
1040 block_t ssa_blkaddr; /* start block address of SSA area */
1041
1042 unsigned int segment_count; /* total # of segments */
1043 unsigned int main_segments; /* # of segments in main area */
1044 unsigned int reserved_segments; /* # of reserved segments */
1045 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1046 unsigned int ovp_segments; /* # of overprovision segments */
1047
1048 /* a threshold to reclaim prefree segments */
1049 unsigned int rec_prefree_segments;
1050
1051 /* for batched trimming */
1052 unsigned int trim_sections; /* # of sections to trim */
1053
1054 struct list_head sit_entry_set; /* sit entry set list */
1055
1056 unsigned int ipu_policy; /* in-place-update policy */
1057 unsigned int min_ipu_util; /* in-place-update threshold */
1058 unsigned int min_fsync_blocks; /* threshold for fsync */
1059 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1060 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1061 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1062
1063 /* for flush command control */
1064 struct flush_cmd_control *fcc_info;
1065
1066 /* for discard command control */
1067 struct discard_cmd_control *dcc_info;
1068 };
1069
1070 /*
1071 * For superblock
1072 */
1073 /*
1074 * COUNT_TYPE for monitoring
1075 *
1076 * f2fs monitors the number of several block types such as on-writeback,
1077 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1078 */
1079 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1080 enum count_type {
1081 F2FS_DIRTY_DENTS,
1082 F2FS_DIRTY_DATA,
1083 F2FS_DIRTY_QDATA,
1084 F2FS_DIRTY_NODES,
1085 F2FS_DIRTY_META,
1086 F2FS_INMEM_PAGES,
1087 F2FS_DIRTY_IMETA,
1088 F2FS_WB_CP_DATA,
1089 F2FS_WB_DATA,
1090 F2FS_RD_DATA,
1091 F2FS_RD_NODE,
1092 F2FS_RD_META,
1093 F2FS_DIO_WRITE,
1094 F2FS_DIO_READ,
1095 NR_COUNT_TYPE,
1096 };
1097
1098 /*
1099 * The below are the page types of bios used in submit_bio().
1100 * The available types are:
1101 * DATA User data pages. It operates as async mode.
1102 * NODE Node pages. It operates as async mode.
1103 * META FS metadata pages such as SIT, NAT, CP.
1104 * NR_PAGE_TYPE The number of page types.
1105 * META_FLUSH Make sure the previous pages are written
1106 * with waiting the bio's completion
1107 * ... Only can be used with META.
1108 */
1109 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1110 enum page_type {
1111 DATA,
1112 NODE,
1113 META,
1114 NR_PAGE_TYPE,
1115 META_FLUSH,
1116 INMEM, /* the below types are used by tracepoints only. */
1117 INMEM_DROP,
1118 INMEM_INVALIDATE,
1119 INMEM_REVOKE,
1120 IPU,
1121 OPU,
1122 };
1123
1124 enum temp_type {
1125 HOT = 0, /* must be zero for meta bio */
1126 WARM,
1127 COLD,
1128 NR_TEMP_TYPE,
1129 };
1130
1131 enum need_lock_type {
1132 LOCK_REQ = 0,
1133 LOCK_DONE,
1134 LOCK_RETRY,
1135 };
1136
1137 enum cp_reason_type {
1138 CP_NO_NEEDED,
1139 CP_NON_REGULAR,
1140 CP_COMPRESSED,
1141 CP_HARDLINK,
1142 CP_SB_NEED_CP,
1143 CP_WRONG_PINO,
1144 CP_NO_SPC_ROLL,
1145 CP_NODE_NEED_CP,
1146 CP_FASTBOOT_MODE,
1147 CP_SPEC_LOG_NUM,
1148 CP_RECOVER_DIR,
1149 };
1150
1151 enum iostat_type {
1152 /* WRITE IO */
1153 APP_DIRECT_IO, /* app direct write IOs */
1154 APP_BUFFERED_IO, /* app buffered write IOs */
1155 APP_WRITE_IO, /* app write IOs */
1156 APP_MAPPED_IO, /* app mapped IOs */
1157 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1158 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1159 FS_META_IO, /* meta IOs from kworker/reclaimer */
1160 FS_GC_DATA_IO, /* data IOs from forground gc */
1161 FS_GC_NODE_IO, /* node IOs from forground gc */
1162 FS_CP_DATA_IO, /* data IOs from checkpoint */
1163 FS_CP_NODE_IO, /* node IOs from checkpoint */
1164 FS_CP_META_IO, /* meta IOs from checkpoint */
1165
1166 /* READ IO */
1167 APP_DIRECT_READ_IO, /* app direct read IOs */
1168 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1169 APP_READ_IO, /* app read IOs */
1170 APP_MAPPED_READ_IO, /* app mapped read IOs */
1171 FS_DATA_READ_IO, /* data read IOs */
1172 FS_GDATA_READ_IO, /* data read IOs from background gc */
1173 FS_CDATA_READ_IO, /* compressed data read IOs */
1174 FS_NODE_READ_IO, /* node read IOs */
1175 FS_META_READ_IO, /* meta read IOs */
1176
1177 /* other */
1178 FS_DISCARD, /* discard */
1179 NR_IO_TYPE,
1180 };
1181
1182 struct f2fs_io_info {
1183 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1184 nid_t ino; /* inode number */
1185 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1186 enum temp_type temp; /* contains HOT/WARM/COLD */
1187 int op; /* contains REQ_OP_ */
1188 int op_flags; /* req_flag_bits */
1189 block_t new_blkaddr; /* new block address to be written */
1190 block_t old_blkaddr; /* old block address before Cow */
1191 struct page *page; /* page to be written */
1192 struct page *encrypted_page; /* encrypted page */
1193 struct page *compressed_page; /* compressed page */
1194 struct list_head list; /* serialize IOs */
1195 bool submitted; /* indicate IO submission */
1196 int need_lock; /* indicate we need to lock cp_rwsem */
1197 bool in_list; /* indicate fio is in io_list */
1198 bool is_por; /* indicate IO is from recovery or not */
1199 bool retry; /* need to reallocate block address */
1200 int compr_blocks; /* # of compressed block addresses */
1201 bool encrypted; /* indicate file is encrypted */
1202 enum iostat_type io_type; /* io type */
1203 struct writeback_control *io_wbc; /* writeback control */
1204 struct bio **bio; /* bio for ipu */
1205 sector_t *last_block; /* last block number in bio */
1206 unsigned char version; /* version of the node */
1207 };
1208
1209 struct bio_entry {
1210 struct bio *bio;
1211 struct list_head list;
1212 };
1213
1214 #define is_read_io(rw) ((rw) == READ)
1215 struct f2fs_bio_info {
1216 struct f2fs_sb_info *sbi; /* f2fs superblock */
1217 struct bio *bio; /* bios to merge */
1218 sector_t last_block_in_bio; /* last block number */
1219 struct f2fs_io_info fio; /* store buffered io info. */
1220 struct rw_semaphore io_rwsem; /* blocking op for bio */
1221 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1222 struct list_head io_list; /* track fios */
1223 struct list_head bio_list; /* bio entry list head */
1224 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1225 };
1226
1227 #define FDEV(i) (sbi->devs[i])
1228 #define RDEV(i) (raw_super->devs[i])
1229 struct f2fs_dev_info {
1230 struct block_device *bdev;
1231 char path[MAX_PATH_LEN];
1232 unsigned int total_segments;
1233 block_t start_blk;
1234 block_t end_blk;
1235 #ifdef CONFIG_BLK_DEV_ZONED
1236 unsigned int nr_blkz; /* Total number of zones */
1237 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1238 #endif
1239 };
1240
1241 enum inode_type {
1242 DIR_INODE, /* for dirty dir inode */
1243 FILE_INODE, /* for dirty regular/symlink inode */
1244 DIRTY_META, /* for all dirtied inode metadata */
1245 ATOMIC_FILE, /* for all atomic files */
1246 NR_INODE_TYPE,
1247 };
1248
1249 /* for inner inode cache management */
1250 struct inode_management {
1251 struct radix_tree_root ino_root; /* ino entry array */
1252 spinlock_t ino_lock; /* for ino entry lock */
1253 struct list_head ino_list; /* inode list head */
1254 unsigned long ino_num; /* number of entries */
1255 };
1256
1257 /* For s_flag in struct f2fs_sb_info */
1258 enum {
1259 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1260 SBI_IS_CLOSE, /* specify unmounting */
1261 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1262 SBI_POR_DOING, /* recovery is doing or not */
1263 SBI_NEED_SB_WRITE, /* need to recover superblock */
1264 SBI_NEED_CP, /* need to checkpoint */
1265 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1266 SBI_IS_RECOVERED, /* recovered orphan/data */
1267 SBI_CP_DISABLED, /* CP was disabled last mount */
1268 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1269 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1270 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1271 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1272 SBI_IS_RESIZEFS, /* resizefs is in process */
1273 };
1274
1275 enum {
1276 CP_TIME,
1277 REQ_TIME,
1278 DISCARD_TIME,
1279 GC_TIME,
1280 DISABLE_TIME,
1281 UMOUNT_DISCARD_TIMEOUT,
1282 MAX_TIME,
1283 };
1284
1285 enum {
1286 GC_NORMAL,
1287 GC_IDLE_CB,
1288 GC_IDLE_GREEDY,
1289 GC_URGENT,
1290 };
1291
1292 enum {
1293 BGGC_MODE_ON, /* background gc is on */
1294 BGGC_MODE_OFF, /* background gc is off */
1295 BGGC_MODE_SYNC, /*
1296 * background gc is on, migrating blocks
1297 * like foreground gc
1298 */
1299 };
1300
1301 enum {
1302 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1303 FS_MODE_LFS, /* use lfs allocation only */
1304 };
1305
1306 enum {
1307 WHINT_MODE_OFF, /* not pass down write hints */
1308 WHINT_MODE_USER, /* try to pass down hints given by users */
1309 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1310 };
1311
1312 enum {
1313 ALLOC_MODE_DEFAULT, /* stay default */
1314 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1315 };
1316
1317 enum fsync_mode {
1318 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1319 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1320 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1321 };
1322
1323 /*
1324 * this value is set in page as a private data which indicate that
1325 * the page is atomically written, and it is in inmem_pages list.
1326 */
1327 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
1328 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
1329
1330 #define IS_ATOMIC_WRITTEN_PAGE(page) \
1331 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
1332 #define IS_DUMMY_WRITTEN_PAGE(page) \
1333 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
1334
1335 #ifdef CONFIG_FS_ENCRYPTION
1336 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1337 (unlikely(F2FS_OPTION(sbi).dummy_enc_ctx.ctx != NULL))
1338 #else
1339 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1340 #endif
1341
1342 /* For compression */
1343 enum compress_algorithm_type {
1344 COMPRESS_LZO,
1345 COMPRESS_LZ4,
1346 COMPRESS_ZSTD,
1347 COMPRESS_LZORLE,
1348 COMPRESS_MAX,
1349 };
1350
1351 #define COMPRESS_DATA_RESERVED_SIZE 5
1352 struct compress_data {
1353 __le32 clen; /* compressed data size */
1354 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1355 u8 cdata[]; /* compressed data */
1356 };
1357
1358 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1359
1360 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1361
1362 /* compress context */
1363 struct compress_ctx {
1364 struct inode *inode; /* inode the context belong to */
1365 pgoff_t cluster_idx; /* cluster index number */
1366 unsigned int cluster_size; /* page count in cluster */
1367 unsigned int log_cluster_size; /* log of cluster size */
1368 struct page **rpages; /* pages store raw data in cluster */
1369 unsigned int nr_rpages; /* total page number in rpages */
1370 struct page **cpages; /* pages store compressed data in cluster */
1371 unsigned int nr_cpages; /* total page number in cpages */
1372 void *rbuf; /* virtual mapped address on rpages */
1373 struct compress_data *cbuf; /* virtual mapped address on cpages */
1374 size_t rlen; /* valid data length in rbuf */
1375 size_t clen; /* valid data length in cbuf */
1376 void *private; /* payload buffer for specified compression algorithm */
1377 void *private2; /* extra payload buffer */
1378 };
1379
1380 /* compress context for write IO path */
1381 struct compress_io_ctx {
1382 u32 magic; /* magic number to indicate page is compressed */
1383 struct inode *inode; /* inode the context belong to */
1384 struct page **rpages; /* pages store raw data in cluster */
1385 unsigned int nr_rpages; /* total page number in rpages */
1386 refcount_t ref; /* referrence count of raw page */
1387 };
1388
1389 /* decompress io context for read IO path */
1390 struct decompress_io_ctx {
1391 u32 magic; /* magic number to indicate page is compressed */
1392 struct inode *inode; /* inode the context belong to */
1393 pgoff_t cluster_idx; /* cluster index number */
1394 unsigned int cluster_size; /* page count in cluster */
1395 unsigned int log_cluster_size; /* log of cluster size */
1396 struct page **rpages; /* pages store raw data in cluster */
1397 unsigned int nr_rpages; /* total page number in rpages */
1398 struct page **cpages; /* pages store compressed data in cluster */
1399 unsigned int nr_cpages; /* total page number in cpages */
1400 struct page **tpages; /* temp pages to pad holes in cluster */
1401 void *rbuf; /* virtual mapped address on rpages */
1402 struct compress_data *cbuf; /* virtual mapped address on cpages */
1403 size_t rlen; /* valid data length in rbuf */
1404 size_t clen; /* valid data length in cbuf */
1405 refcount_t ref; /* referrence count of compressed page */
1406 bool failed; /* indicate IO error during decompression */
1407 void *private; /* payload buffer for specified decompression algorithm */
1408 void *private2; /* extra payload buffer */
1409 };
1410
1411 #define NULL_CLUSTER ((unsigned int)(~0))
1412 #define MIN_COMPRESS_LOG_SIZE 2
1413 #define MAX_COMPRESS_LOG_SIZE 8
1414 #define MAX_COMPRESS_WINDOW_SIZE ((PAGE_SIZE) << MAX_COMPRESS_LOG_SIZE)
1415
1416 struct f2fs_sb_info {
1417 struct super_block *sb; /* pointer to VFS super block */
1418 struct proc_dir_entry *s_proc; /* proc entry */
1419 struct f2fs_super_block *raw_super; /* raw super block pointer */
1420 struct rw_semaphore sb_lock; /* lock for raw super block */
1421 int valid_super_block; /* valid super block no */
1422 unsigned long s_flag; /* flags for sbi */
1423 struct mutex writepages; /* mutex for writepages() */
1424
1425 #ifdef CONFIG_BLK_DEV_ZONED
1426 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1427 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1428 #endif
1429
1430 /* for node-related operations */
1431 struct f2fs_nm_info *nm_info; /* node manager */
1432 struct inode *node_inode; /* cache node blocks */
1433
1434 /* for segment-related operations */
1435 struct f2fs_sm_info *sm_info; /* segment manager */
1436
1437 /* for bio operations */
1438 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1439 /* keep migration IO order for LFS mode */
1440 struct rw_semaphore io_order_lock;
1441 mempool_t *write_io_dummy; /* Dummy pages */
1442
1443 /* for checkpoint */
1444 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1445 int cur_cp_pack; /* remain current cp pack */
1446 spinlock_t cp_lock; /* for flag in ckpt */
1447 struct inode *meta_inode; /* cache meta blocks */
1448 struct mutex cp_mutex; /* checkpoint procedure lock */
1449 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1450 struct rw_semaphore node_write; /* locking node writes */
1451 struct rw_semaphore node_change; /* locking node change */
1452 wait_queue_head_t cp_wait;
1453 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1454 long interval_time[MAX_TIME]; /* to store thresholds */
1455
1456 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1457
1458 spinlock_t fsync_node_lock; /* for node entry lock */
1459 struct list_head fsync_node_list; /* node list head */
1460 unsigned int fsync_seg_id; /* sequence id */
1461 unsigned int fsync_node_num; /* number of node entries */
1462
1463 /* for orphan inode, use 0'th array */
1464 unsigned int max_orphans; /* max orphan inodes */
1465
1466 /* for inode management */
1467 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1468 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1469 struct mutex flush_lock; /* for flush exclusion */
1470
1471 /* for extent tree cache */
1472 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1473 struct mutex extent_tree_lock; /* locking extent radix tree */
1474 struct list_head extent_list; /* lru list for shrinker */
1475 spinlock_t extent_lock; /* locking extent lru list */
1476 atomic_t total_ext_tree; /* extent tree count */
1477 struct list_head zombie_list; /* extent zombie tree list */
1478 atomic_t total_zombie_tree; /* extent zombie tree count */
1479 atomic_t total_ext_node; /* extent info count */
1480
1481 /* basic filesystem units */
1482 unsigned int log_sectors_per_block; /* log2 sectors per block */
1483 unsigned int log_blocksize; /* log2 block size */
1484 unsigned int blocksize; /* block size */
1485 unsigned int root_ino_num; /* root inode number*/
1486 unsigned int node_ino_num; /* node inode number*/
1487 unsigned int meta_ino_num; /* meta inode number*/
1488 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1489 unsigned int blocks_per_seg; /* blocks per segment */
1490 unsigned int segs_per_sec; /* segments per section */
1491 unsigned int secs_per_zone; /* sections per zone */
1492 unsigned int total_sections; /* total section count */
1493 unsigned int total_node_count; /* total node block count */
1494 unsigned int total_valid_node_count; /* valid node block count */
1495 loff_t max_file_blocks; /* max block index of file */
1496 int dir_level; /* directory level */
1497 int readdir_ra; /* readahead inode in readdir */
1498
1499 block_t user_block_count; /* # of user blocks */
1500 block_t total_valid_block_count; /* # of valid blocks */
1501 block_t discard_blks; /* discard command candidats */
1502 block_t last_valid_block_count; /* for recovery */
1503 block_t reserved_blocks; /* configurable reserved blocks */
1504 block_t current_reserved_blocks; /* current reserved blocks */
1505
1506 /* Additional tracking for no checkpoint mode */
1507 block_t unusable_block_count; /* # of blocks saved by last cp */
1508
1509 unsigned int nquota_files; /* # of quota sysfile */
1510 struct rw_semaphore quota_sem; /* blocking cp for flags */
1511
1512 /* # of pages, see count_type */
1513 atomic_t nr_pages[NR_COUNT_TYPE];
1514 /* # of allocated blocks */
1515 struct percpu_counter alloc_valid_block_count;
1516
1517 /* writeback control */
1518 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1519
1520 /* valid inode count */
1521 struct percpu_counter total_valid_inode_count;
1522
1523 struct f2fs_mount_info mount_opt; /* mount options */
1524
1525 /* for cleaning operations */
1526 struct rw_semaphore gc_lock; /*
1527 * semaphore for GC, avoid
1528 * race between GC and GC or CP
1529 */
1530 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1531 unsigned int cur_victim_sec; /* current victim section num */
1532 unsigned int gc_mode; /* current GC state */
1533 unsigned int next_victim_seg[2]; /* next segment in victim section */
1534 /* for skip statistic */
1535 unsigned int atomic_files; /* # of opened atomic file */
1536 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1537 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1538
1539 /* threshold for gc trials on pinned files */
1540 u64 gc_pin_file_threshold;
1541 struct rw_semaphore pin_sem;
1542
1543 /* maximum # of trials to find a victim segment for SSR and GC */
1544 unsigned int max_victim_search;
1545 /* migration granularity of garbage collection, unit: segment */
1546 unsigned int migration_granularity;
1547
1548 /*
1549 * for stat information.
1550 * one is for the LFS mode, and the other is for the SSR mode.
1551 */
1552 #ifdef CONFIG_F2FS_STAT_FS
1553 struct f2fs_stat_info *stat_info; /* FS status information */
1554 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1555 unsigned int segment_count[2]; /* # of allocated segments */
1556 unsigned int block_count[2]; /* # of allocated blocks */
1557 atomic_t inplace_count; /* # of inplace update */
1558 atomic64_t total_hit_ext; /* # of lookup extent cache */
1559 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1560 atomic64_t read_hit_largest; /* # of hit largest extent node */
1561 atomic64_t read_hit_cached; /* # of hit cached extent node */
1562 atomic_t inline_xattr; /* # of inline_xattr inodes */
1563 atomic_t inline_inode; /* # of inline_data inodes */
1564 atomic_t inline_dir; /* # of inline_dentry inodes */
1565 atomic_t compr_inode; /* # of compressed inodes */
1566 atomic_t compr_blocks; /* # of compressed blocks */
1567 atomic_t vw_cnt; /* # of volatile writes */
1568 atomic_t max_aw_cnt; /* max # of atomic writes */
1569 atomic_t max_vw_cnt; /* max # of volatile writes */
1570 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1571 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1572 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1573 #endif
1574 spinlock_t stat_lock; /* lock for stat operations */
1575
1576 /* For app/fs IO statistics */
1577 spinlock_t iostat_lock;
1578 unsigned long long rw_iostat[NR_IO_TYPE];
1579 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1580 bool iostat_enable;
1581 unsigned long iostat_next_period;
1582 unsigned int iostat_period_ms;
1583
1584 /* to attach REQ_META|REQ_FUA flags */
1585 unsigned int data_io_flag;
1586 unsigned int node_io_flag;
1587
1588 /* For sysfs suppport */
1589 struct kobject s_kobj;
1590 struct completion s_kobj_unregister;
1591
1592 /* For shrinker support */
1593 struct list_head s_list;
1594 int s_ndevs; /* number of devices */
1595 struct f2fs_dev_info *devs; /* for device list */
1596 unsigned int dirty_device; /* for checkpoint data flush */
1597 spinlock_t dev_lock; /* protect dirty_device */
1598 struct mutex umount_mutex;
1599 unsigned int shrinker_run_no;
1600
1601 /* For write statistics */
1602 u64 sectors_written_start;
1603 u64 kbytes_written;
1604
1605 /* Reference to checksum algorithm driver via cryptoapi */
1606 struct crypto_shash *s_chksum_driver;
1607
1608 /* Precomputed FS UUID checksum for seeding other checksums */
1609 __u32 s_chksum_seed;
1610
1611 struct workqueue_struct *post_read_wq; /* post read workqueue */
1612
1613 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1614 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1615 };
1616
1617 struct f2fs_private_dio {
1618 struct inode *inode;
1619 void *orig_private;
1620 bio_end_io_t *orig_end_io;
1621 bool write;
1622 };
1623
1624 #ifdef CONFIG_F2FS_FAULT_INJECTION
1625 #define f2fs_show_injection_info(sbi, type) \
1626 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1627 KERN_INFO, sbi->sb->s_id, \
1628 f2fs_fault_name[type], \
1629 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1630 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1631 {
1632 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1633
1634 if (!ffi->inject_rate)
1635 return false;
1636
1637 if (!IS_FAULT_SET(ffi, type))
1638 return false;
1639
1640 atomic_inc(&ffi->inject_ops);
1641 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1642 atomic_set(&ffi->inject_ops, 0);
1643 return true;
1644 }
1645 return false;
1646 }
1647 #else
1648 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1649 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1650 {
1651 return false;
1652 }
1653 #endif
1654
1655 /*
1656 * Test if the mounted volume is a multi-device volume.
1657 * - For a single regular disk volume, sbi->s_ndevs is 0.
1658 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1659 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1660 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1661 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1662 {
1663 return sbi->s_ndevs > 1;
1664 }
1665
1666 /* For write statistics. Suppose sector size is 512 bytes,
1667 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1668 */
1669 #define BD_PART_WRITTEN(s) \
1670 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1671 (s)->sectors_written_start) >> 1)
1672
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1673 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1674 {
1675 unsigned long now = jiffies;
1676
1677 sbi->last_time[type] = now;
1678
1679 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1680 if (type == REQ_TIME) {
1681 sbi->last_time[DISCARD_TIME] = now;
1682 sbi->last_time[GC_TIME] = now;
1683 }
1684 }
1685
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1686 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1687 {
1688 unsigned long interval = sbi->interval_time[type] * HZ;
1689
1690 return time_after(jiffies, sbi->last_time[type] + interval);
1691 }
1692
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1693 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1694 int type)
1695 {
1696 unsigned long interval = sbi->interval_time[type] * HZ;
1697 unsigned int wait_ms = 0;
1698 long delta;
1699
1700 delta = (sbi->last_time[type] + interval) - jiffies;
1701 if (delta > 0)
1702 wait_ms = jiffies_to_msecs(delta);
1703
1704 return wait_ms;
1705 }
1706
1707 /*
1708 * Inline functions
1709 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1710 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1711 const void *address, unsigned int length)
1712 {
1713 struct {
1714 struct shash_desc shash;
1715 char ctx[4];
1716 } desc;
1717 int err;
1718
1719 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1720
1721 desc.shash.tfm = sbi->s_chksum_driver;
1722 *(u32 *)desc.ctx = crc;
1723
1724 err = crypto_shash_update(&desc.shash, address, length);
1725 BUG_ON(err);
1726
1727 return *(u32 *)desc.ctx;
1728 }
1729
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1730 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1731 unsigned int length)
1732 {
1733 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1734 }
1735
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1736 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1737 void *buf, size_t buf_size)
1738 {
1739 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1740 }
1741
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1742 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1743 const void *address, unsigned int length)
1744 {
1745 return __f2fs_crc32(sbi, crc, address, length);
1746 }
1747
F2FS_I(struct inode * inode)1748 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1749 {
1750 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1751 }
1752
F2FS_SB(struct super_block * sb)1753 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1754 {
1755 return sb->s_fs_info;
1756 }
1757
F2FS_I_SB(struct inode * inode)1758 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1759 {
1760 return F2FS_SB(inode->i_sb);
1761 }
1762
F2FS_M_SB(struct address_space * mapping)1763 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1764 {
1765 return F2FS_I_SB(mapping->host);
1766 }
1767
F2FS_P_SB(struct page * page)1768 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1769 {
1770 return F2FS_M_SB(page_file_mapping(page));
1771 }
1772
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1773 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1774 {
1775 return (struct f2fs_super_block *)(sbi->raw_super);
1776 }
1777
F2FS_CKPT(struct f2fs_sb_info * sbi)1778 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1779 {
1780 return (struct f2fs_checkpoint *)(sbi->ckpt);
1781 }
1782
F2FS_NODE(struct page * page)1783 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1784 {
1785 return (struct f2fs_node *)page_address(page);
1786 }
1787
F2FS_INODE(struct page * page)1788 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1789 {
1790 return &((struct f2fs_node *)page_address(page))->i;
1791 }
1792
NM_I(struct f2fs_sb_info * sbi)1793 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1794 {
1795 return (struct f2fs_nm_info *)(sbi->nm_info);
1796 }
1797
SM_I(struct f2fs_sb_info * sbi)1798 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1799 {
1800 return (struct f2fs_sm_info *)(sbi->sm_info);
1801 }
1802
SIT_I(struct f2fs_sb_info * sbi)1803 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1804 {
1805 return (struct sit_info *)(SM_I(sbi)->sit_info);
1806 }
1807
FREE_I(struct f2fs_sb_info * sbi)1808 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1809 {
1810 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1811 }
1812
DIRTY_I(struct f2fs_sb_info * sbi)1813 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1814 {
1815 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1816 }
1817
META_MAPPING(struct f2fs_sb_info * sbi)1818 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1819 {
1820 return sbi->meta_inode->i_mapping;
1821 }
1822
NODE_MAPPING(struct f2fs_sb_info * sbi)1823 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1824 {
1825 return sbi->node_inode->i_mapping;
1826 }
1827
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1828 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1829 {
1830 return test_bit(type, &sbi->s_flag);
1831 }
1832
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1833 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1834 {
1835 set_bit(type, &sbi->s_flag);
1836 }
1837
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1838 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1839 {
1840 clear_bit(type, &sbi->s_flag);
1841 }
1842
cur_cp_version(struct f2fs_checkpoint * cp)1843 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1844 {
1845 return le64_to_cpu(cp->checkpoint_ver);
1846 }
1847
f2fs_qf_ino(struct super_block * sb,int type)1848 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1849 {
1850 if (type < F2FS_MAX_QUOTAS)
1851 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1852 return 0;
1853 }
1854
cur_cp_crc(struct f2fs_checkpoint * cp)1855 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1856 {
1857 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1858 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1859 }
1860
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1861 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1862 {
1863 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1864
1865 return ckpt_flags & f;
1866 }
1867
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1868 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1869 {
1870 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1871 }
1872
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1873 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1874 {
1875 unsigned int ckpt_flags;
1876
1877 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1878 ckpt_flags |= f;
1879 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1880 }
1881
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1882 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1883 {
1884 unsigned long flags;
1885
1886 spin_lock_irqsave(&sbi->cp_lock, flags);
1887 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1888 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1889 }
1890
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1891 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1892 {
1893 unsigned int ckpt_flags;
1894
1895 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1896 ckpt_flags &= (~f);
1897 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1898 }
1899
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1900 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1901 {
1902 unsigned long flags;
1903
1904 spin_lock_irqsave(&sbi->cp_lock, flags);
1905 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1906 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1907 }
1908
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1909 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1910 {
1911 unsigned long flags;
1912 unsigned char *nat_bits;
1913
1914 /*
1915 * In order to re-enable nat_bits we need to call fsck.f2fs by
1916 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1917 * so let's rely on regular fsck or unclean shutdown.
1918 */
1919
1920 if (lock)
1921 spin_lock_irqsave(&sbi->cp_lock, flags);
1922 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1923 nat_bits = NM_I(sbi)->nat_bits;
1924 NM_I(sbi)->nat_bits = NULL;
1925 if (lock)
1926 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1927
1928 kvfree(nat_bits);
1929 }
1930
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1931 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1932 struct cp_control *cpc)
1933 {
1934 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1935
1936 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1937 }
1938
f2fs_lock_op(struct f2fs_sb_info * sbi)1939 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1940 {
1941 down_read(&sbi->cp_rwsem);
1942 }
1943
f2fs_trylock_op(struct f2fs_sb_info * sbi)1944 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1945 {
1946 return down_read_trylock(&sbi->cp_rwsem);
1947 }
1948
f2fs_unlock_op(struct f2fs_sb_info * sbi)1949 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1950 {
1951 up_read(&sbi->cp_rwsem);
1952 }
1953
f2fs_lock_all(struct f2fs_sb_info * sbi)1954 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1955 {
1956 down_write(&sbi->cp_rwsem);
1957 }
1958
f2fs_unlock_all(struct f2fs_sb_info * sbi)1959 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1960 {
1961 up_write(&sbi->cp_rwsem);
1962 }
1963
__get_cp_reason(struct f2fs_sb_info * sbi)1964 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1965 {
1966 int reason = CP_SYNC;
1967
1968 if (test_opt(sbi, FASTBOOT))
1969 reason = CP_FASTBOOT;
1970 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1971 reason = CP_UMOUNT;
1972 return reason;
1973 }
1974
__remain_node_summaries(int reason)1975 static inline bool __remain_node_summaries(int reason)
1976 {
1977 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1978 }
1979
__exist_node_summaries(struct f2fs_sb_info * sbi)1980 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1981 {
1982 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1983 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1984 }
1985
1986 /*
1987 * Check whether the inode has blocks or not
1988 */
F2FS_HAS_BLOCKS(struct inode * inode)1989 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1990 {
1991 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1992
1993 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1994 }
1995
f2fs_has_xattr_block(unsigned int ofs)1996 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1997 {
1998 return ofs == XATTR_NODE_OFFSET;
1999 }
2000
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2001 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2002 struct inode *inode, bool cap)
2003 {
2004 if (!inode)
2005 return true;
2006 if (!test_opt(sbi, RESERVE_ROOT))
2007 return false;
2008 if (IS_NOQUOTA(inode))
2009 return true;
2010 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2011 return true;
2012 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2013 in_group_p(F2FS_OPTION(sbi).s_resgid))
2014 return true;
2015 if (cap && capable(CAP_SYS_RESOURCE))
2016 return true;
2017 return false;
2018 }
2019
2020 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2021 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2022 struct inode *inode, blkcnt_t *count)
2023 {
2024 blkcnt_t diff = 0, release = 0;
2025 block_t avail_user_block_count;
2026 int ret;
2027
2028 ret = dquot_reserve_block(inode, *count);
2029 if (ret)
2030 return ret;
2031
2032 if (time_to_inject(sbi, FAULT_BLOCK)) {
2033 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2034 release = *count;
2035 goto release_quota;
2036 }
2037
2038 /*
2039 * let's increase this in prior to actual block count change in order
2040 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2041 */
2042 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2043
2044 spin_lock(&sbi->stat_lock);
2045 sbi->total_valid_block_count += (block_t)(*count);
2046 avail_user_block_count = sbi->user_block_count -
2047 sbi->current_reserved_blocks;
2048
2049 if (!__allow_reserved_blocks(sbi, inode, true))
2050 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2051
2052 if (F2FS_IO_ALIGNED(sbi))
2053 avail_user_block_count -= sbi->blocks_per_seg *
2054 SM_I(sbi)->additional_reserved_segments;
2055
2056 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2057 if (avail_user_block_count > sbi->unusable_block_count)
2058 avail_user_block_count -= sbi->unusable_block_count;
2059 else
2060 avail_user_block_count = 0;
2061 }
2062 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2063 diff = sbi->total_valid_block_count - avail_user_block_count;
2064 if (diff > *count)
2065 diff = *count;
2066 *count -= diff;
2067 release = diff;
2068 sbi->total_valid_block_count -= diff;
2069 if (!*count) {
2070 spin_unlock(&sbi->stat_lock);
2071 goto enospc;
2072 }
2073 }
2074 spin_unlock(&sbi->stat_lock);
2075
2076 if (unlikely(release)) {
2077 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2078 dquot_release_reservation_block(inode, release);
2079 }
2080 f2fs_i_blocks_write(inode, *count, true, true);
2081 return 0;
2082
2083 enospc:
2084 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2085 release_quota:
2086 dquot_release_reservation_block(inode, release);
2087 return -ENOSPC;
2088 }
2089
2090 __printf(2, 3)
2091 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2092
2093 #define f2fs_err(sbi, fmt, ...) \
2094 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2095 #define f2fs_warn(sbi, fmt, ...) \
2096 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2097 #define f2fs_notice(sbi, fmt, ...) \
2098 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2099 #define f2fs_info(sbi, fmt, ...) \
2100 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2101 #define f2fs_debug(sbi, fmt, ...) \
2102 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2103
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2104 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2105 struct inode *inode,
2106 block_t count)
2107 {
2108 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2109
2110 spin_lock(&sbi->stat_lock);
2111 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2112 sbi->total_valid_block_count -= (block_t)count;
2113 if (sbi->reserved_blocks &&
2114 sbi->current_reserved_blocks < sbi->reserved_blocks)
2115 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2116 sbi->current_reserved_blocks + count);
2117 spin_unlock(&sbi->stat_lock);
2118 if (unlikely(inode->i_blocks < sectors)) {
2119 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2120 inode->i_ino,
2121 (unsigned long long)inode->i_blocks,
2122 (unsigned long long)sectors);
2123 set_sbi_flag(sbi, SBI_NEED_FSCK);
2124 return;
2125 }
2126 f2fs_i_blocks_write(inode, count, false, true);
2127 }
2128
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2129 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2130 {
2131 atomic_inc(&sbi->nr_pages[count_type]);
2132
2133 if (count_type == F2FS_DIRTY_DENTS ||
2134 count_type == F2FS_DIRTY_NODES ||
2135 count_type == F2FS_DIRTY_META ||
2136 count_type == F2FS_DIRTY_QDATA ||
2137 count_type == F2FS_DIRTY_IMETA)
2138 set_sbi_flag(sbi, SBI_IS_DIRTY);
2139 }
2140
inode_inc_dirty_pages(struct inode * inode)2141 static inline void inode_inc_dirty_pages(struct inode *inode)
2142 {
2143 atomic_inc(&F2FS_I(inode)->dirty_pages);
2144 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2145 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2146 if (IS_NOQUOTA(inode))
2147 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2148 }
2149
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2150 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2151 {
2152 atomic_dec(&sbi->nr_pages[count_type]);
2153 }
2154
inode_dec_dirty_pages(struct inode * inode)2155 static inline void inode_dec_dirty_pages(struct inode *inode)
2156 {
2157 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2158 !S_ISLNK(inode->i_mode))
2159 return;
2160
2161 atomic_dec(&F2FS_I(inode)->dirty_pages);
2162 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2163 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2164 if (IS_NOQUOTA(inode))
2165 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2166 }
2167
get_pages(struct f2fs_sb_info * sbi,int count_type)2168 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2169 {
2170 return atomic_read(&sbi->nr_pages[count_type]);
2171 }
2172
get_dirty_pages(struct inode * inode)2173 static inline int get_dirty_pages(struct inode *inode)
2174 {
2175 return atomic_read(&F2FS_I(inode)->dirty_pages);
2176 }
2177
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2178 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2179 {
2180 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2181 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2182 sbi->log_blocks_per_seg;
2183
2184 return segs / sbi->segs_per_sec;
2185 }
2186
valid_user_blocks(struct f2fs_sb_info * sbi)2187 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2188 {
2189 return sbi->total_valid_block_count;
2190 }
2191
discard_blocks(struct f2fs_sb_info * sbi)2192 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2193 {
2194 return sbi->discard_blks;
2195 }
2196
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2197 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2198 {
2199 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2200
2201 /* return NAT or SIT bitmap */
2202 if (flag == NAT_BITMAP)
2203 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2204 else if (flag == SIT_BITMAP)
2205 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2206
2207 return 0;
2208 }
2209
__cp_payload(struct f2fs_sb_info * sbi)2210 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2211 {
2212 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2213 }
2214
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2215 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2216 {
2217 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2218 int offset;
2219
2220 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2221 offset = (flag == SIT_BITMAP) ?
2222 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2223 /*
2224 * if large_nat_bitmap feature is enabled, leave checksum
2225 * protection for all nat/sit bitmaps.
2226 */
2227 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2228 }
2229
2230 if (__cp_payload(sbi) > 0) {
2231 if (flag == NAT_BITMAP)
2232 return &ckpt->sit_nat_version_bitmap;
2233 else
2234 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2235 } else {
2236 offset = (flag == NAT_BITMAP) ?
2237 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2238 return &ckpt->sit_nat_version_bitmap + offset;
2239 }
2240 }
2241
__start_cp_addr(struct f2fs_sb_info * sbi)2242 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2243 {
2244 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2245
2246 if (sbi->cur_cp_pack == 2)
2247 start_addr += sbi->blocks_per_seg;
2248 return start_addr;
2249 }
2250
__start_cp_next_addr(struct f2fs_sb_info * sbi)2251 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2252 {
2253 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2254
2255 if (sbi->cur_cp_pack == 1)
2256 start_addr += sbi->blocks_per_seg;
2257 return start_addr;
2258 }
2259
__set_cp_next_pack(struct f2fs_sb_info * sbi)2260 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2261 {
2262 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2263 }
2264
__start_sum_addr(struct f2fs_sb_info * sbi)2265 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2266 {
2267 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2268 }
2269
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2270 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2271 struct inode *inode, bool is_inode)
2272 {
2273 block_t valid_block_count;
2274 unsigned int valid_node_count, user_block_count;
2275 int err;
2276
2277 if (is_inode) {
2278 if (inode) {
2279 err = dquot_alloc_inode(inode);
2280 if (err)
2281 return err;
2282 }
2283 } else {
2284 err = dquot_reserve_block(inode, 1);
2285 if (err)
2286 return err;
2287 }
2288
2289 if (time_to_inject(sbi, FAULT_BLOCK)) {
2290 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2291 goto enospc;
2292 }
2293
2294 spin_lock(&sbi->stat_lock);
2295
2296 valid_block_count = sbi->total_valid_block_count +
2297 sbi->current_reserved_blocks + 1;
2298
2299 if (!__allow_reserved_blocks(sbi, inode, false))
2300 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2301
2302 if (F2FS_IO_ALIGNED(sbi))
2303 valid_block_count += sbi->blocks_per_seg *
2304 SM_I(sbi)->additional_reserved_segments;
2305
2306 user_block_count = sbi->user_block_count;
2307 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2308 user_block_count -= sbi->unusable_block_count;
2309
2310 if (unlikely(valid_block_count > user_block_count)) {
2311 spin_unlock(&sbi->stat_lock);
2312 goto enospc;
2313 }
2314
2315 valid_node_count = sbi->total_valid_node_count + 1;
2316 if (unlikely(valid_node_count > sbi->total_node_count)) {
2317 spin_unlock(&sbi->stat_lock);
2318 goto enospc;
2319 }
2320
2321 sbi->total_valid_node_count++;
2322 sbi->total_valid_block_count++;
2323 spin_unlock(&sbi->stat_lock);
2324
2325 if (inode) {
2326 if (is_inode)
2327 f2fs_mark_inode_dirty_sync(inode, true);
2328 else
2329 f2fs_i_blocks_write(inode, 1, true, true);
2330 }
2331
2332 percpu_counter_inc(&sbi->alloc_valid_block_count);
2333 return 0;
2334
2335 enospc:
2336 if (is_inode) {
2337 if (inode)
2338 dquot_free_inode(inode);
2339 } else {
2340 dquot_release_reservation_block(inode, 1);
2341 }
2342 return -ENOSPC;
2343 }
2344
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2345 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2346 struct inode *inode, bool is_inode)
2347 {
2348 spin_lock(&sbi->stat_lock);
2349
2350 if (unlikely(!sbi->total_valid_block_count ||
2351 !sbi->total_valid_node_count)) {
2352 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2353 sbi->total_valid_block_count,
2354 sbi->total_valid_node_count);
2355 set_sbi_flag(sbi, SBI_NEED_FSCK);
2356 } else {
2357 sbi->total_valid_block_count--;
2358 sbi->total_valid_node_count--;
2359 }
2360
2361 if (sbi->reserved_blocks &&
2362 sbi->current_reserved_blocks < sbi->reserved_blocks)
2363 sbi->current_reserved_blocks++;
2364
2365 spin_unlock(&sbi->stat_lock);
2366
2367 if (is_inode) {
2368 dquot_free_inode(inode);
2369 } else {
2370 if (unlikely(inode->i_blocks == 0)) {
2371 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2372 inode->i_ino,
2373 (unsigned long long)inode->i_blocks);
2374 set_sbi_flag(sbi, SBI_NEED_FSCK);
2375 return;
2376 }
2377 f2fs_i_blocks_write(inode, 1, false, true);
2378 }
2379 }
2380
valid_node_count(struct f2fs_sb_info * sbi)2381 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2382 {
2383 return sbi->total_valid_node_count;
2384 }
2385
inc_valid_inode_count(struct f2fs_sb_info * sbi)2386 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2387 {
2388 percpu_counter_inc(&sbi->total_valid_inode_count);
2389 }
2390
dec_valid_inode_count(struct f2fs_sb_info * sbi)2391 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2392 {
2393 percpu_counter_dec(&sbi->total_valid_inode_count);
2394 }
2395
valid_inode_count(struct f2fs_sb_info * sbi)2396 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2397 {
2398 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2399 }
2400
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2401 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2402 pgoff_t index, bool for_write)
2403 {
2404 struct page *page;
2405
2406 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2407 if (!for_write)
2408 page = find_get_page_flags(mapping, index,
2409 FGP_LOCK | FGP_ACCESSED);
2410 else
2411 page = find_lock_page(mapping, index);
2412 if (page)
2413 return page;
2414
2415 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2416 f2fs_show_injection_info(F2FS_M_SB(mapping),
2417 FAULT_PAGE_ALLOC);
2418 return NULL;
2419 }
2420 }
2421
2422 if (!for_write)
2423 return grab_cache_page(mapping, index);
2424 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2425 }
2426
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2427 static inline struct page *f2fs_pagecache_get_page(
2428 struct address_space *mapping, pgoff_t index,
2429 int fgp_flags, gfp_t gfp_mask)
2430 {
2431 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2432 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2433 return NULL;
2434 }
2435
2436 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2437 }
2438
f2fs_copy_page(struct page * src,struct page * dst)2439 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2440 {
2441 char *src_kaddr = kmap(src);
2442 char *dst_kaddr = kmap(dst);
2443
2444 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2445 kunmap(dst);
2446 kunmap(src);
2447 }
2448
f2fs_put_page(struct page * page,int unlock)2449 static inline void f2fs_put_page(struct page *page, int unlock)
2450 {
2451 if (!page)
2452 return;
2453
2454 if (unlock) {
2455 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2456 unlock_page(page);
2457 }
2458 put_page(page);
2459 }
2460
f2fs_put_dnode(struct dnode_of_data * dn)2461 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2462 {
2463 if (dn->node_page)
2464 f2fs_put_page(dn->node_page, 1);
2465 if (dn->inode_page && dn->node_page != dn->inode_page)
2466 f2fs_put_page(dn->inode_page, 0);
2467 dn->node_page = NULL;
2468 dn->inode_page = NULL;
2469 }
2470
f2fs_kmem_cache_create(const char * name,size_t size)2471 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2472 size_t size)
2473 {
2474 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2475 }
2476
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2477 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2478 gfp_t flags)
2479 {
2480 void *entry;
2481
2482 entry = kmem_cache_alloc(cachep, flags);
2483 if (!entry)
2484 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2485 return entry;
2486 }
2487
is_idle(struct f2fs_sb_info * sbi,int type)2488 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2489 {
2490 if (sbi->gc_mode == GC_URGENT)
2491 return true;
2492
2493 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2494 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2495 get_pages(sbi, F2FS_WB_CP_DATA) ||
2496 get_pages(sbi, F2FS_DIO_READ) ||
2497 get_pages(sbi, F2FS_DIO_WRITE))
2498 return false;
2499
2500 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2501 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2502 return false;
2503
2504 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2505 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2506 return false;
2507
2508 return f2fs_time_over(sbi, type);
2509 }
2510
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2511 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2512 unsigned long index, void *item)
2513 {
2514 while (radix_tree_insert(root, index, item))
2515 cond_resched();
2516 }
2517
2518 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2519
IS_INODE(struct page * page)2520 static inline bool IS_INODE(struct page *page)
2521 {
2522 struct f2fs_node *p = F2FS_NODE(page);
2523
2524 return RAW_IS_INODE(p);
2525 }
2526
offset_in_addr(struct f2fs_inode * i)2527 static inline int offset_in_addr(struct f2fs_inode *i)
2528 {
2529 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2530 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2531 }
2532
blkaddr_in_node(struct f2fs_node * node)2533 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2534 {
2535 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2536 }
2537
2538 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2539 static inline block_t data_blkaddr(struct inode *inode,
2540 struct page *node_page, unsigned int offset)
2541 {
2542 struct f2fs_node *raw_node;
2543 __le32 *addr_array;
2544 int base = 0;
2545 bool is_inode = IS_INODE(node_page);
2546
2547 raw_node = F2FS_NODE(node_page);
2548
2549 if (is_inode) {
2550 if (!inode)
2551 /* from GC path only */
2552 base = offset_in_addr(&raw_node->i);
2553 else if (f2fs_has_extra_attr(inode))
2554 base = get_extra_isize(inode);
2555 }
2556
2557 addr_array = blkaddr_in_node(raw_node);
2558 return le32_to_cpu(addr_array[base + offset]);
2559 }
2560
f2fs_data_blkaddr(struct dnode_of_data * dn)2561 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2562 {
2563 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2564 }
2565
f2fs_test_bit(unsigned int nr,char * addr)2566 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2567 {
2568 int mask;
2569
2570 addr += (nr >> 3);
2571 mask = 1 << (7 - (nr & 0x07));
2572 return mask & *addr;
2573 }
2574
f2fs_set_bit(unsigned int nr,char * addr)2575 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2576 {
2577 int mask;
2578
2579 addr += (nr >> 3);
2580 mask = 1 << (7 - (nr & 0x07));
2581 *addr |= mask;
2582 }
2583
f2fs_clear_bit(unsigned int nr,char * addr)2584 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2585 {
2586 int mask;
2587
2588 addr += (nr >> 3);
2589 mask = 1 << (7 - (nr & 0x07));
2590 *addr &= ~mask;
2591 }
2592
f2fs_test_and_set_bit(unsigned int nr,char * addr)2593 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2594 {
2595 int mask;
2596 int ret;
2597
2598 addr += (nr >> 3);
2599 mask = 1 << (7 - (nr & 0x07));
2600 ret = mask & *addr;
2601 *addr |= mask;
2602 return ret;
2603 }
2604
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2605 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2606 {
2607 int mask;
2608 int ret;
2609
2610 addr += (nr >> 3);
2611 mask = 1 << (7 - (nr & 0x07));
2612 ret = mask & *addr;
2613 *addr &= ~mask;
2614 return ret;
2615 }
2616
f2fs_change_bit(unsigned int nr,char * addr)2617 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2618 {
2619 int mask;
2620
2621 addr += (nr >> 3);
2622 mask = 1 << (7 - (nr & 0x07));
2623 *addr ^= mask;
2624 }
2625
2626 /*
2627 * On-disk inode flags (f2fs_inode::i_flags)
2628 */
2629 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2630 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2631 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2632 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2633 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2634 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2635 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2636 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2637 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2638 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2639 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2640
2641 /* Flags that should be inherited by new inodes from their parent. */
2642 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2643 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2644 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2645
2646 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2647 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2648 F2FS_CASEFOLD_FL))
2649
2650 /* Flags that are appropriate for non-directories/regular files. */
2651 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2652
f2fs_mask_flags(umode_t mode,__u32 flags)2653 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2654 {
2655 if (S_ISDIR(mode))
2656 return flags;
2657 else if (S_ISREG(mode))
2658 return flags & F2FS_REG_FLMASK;
2659 else
2660 return flags & F2FS_OTHER_FLMASK;
2661 }
2662
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2663 static inline void __mark_inode_dirty_flag(struct inode *inode,
2664 int flag, bool set)
2665 {
2666 switch (flag) {
2667 case FI_INLINE_XATTR:
2668 case FI_INLINE_DATA:
2669 case FI_INLINE_DENTRY:
2670 case FI_NEW_INODE:
2671 if (set)
2672 return;
2673 /* fall through */
2674 case FI_DATA_EXIST:
2675 case FI_INLINE_DOTS:
2676 case FI_PIN_FILE:
2677 case FI_COMPRESS_RELEASED:
2678 f2fs_mark_inode_dirty_sync(inode, true);
2679 }
2680 }
2681
set_inode_flag(struct inode * inode,int flag)2682 static inline void set_inode_flag(struct inode *inode, int flag)
2683 {
2684 test_and_set_bit(flag, F2FS_I(inode)->flags);
2685 __mark_inode_dirty_flag(inode, flag, true);
2686 }
2687
is_inode_flag_set(struct inode * inode,int flag)2688 static inline int is_inode_flag_set(struct inode *inode, int flag)
2689 {
2690 return test_bit(flag, F2FS_I(inode)->flags);
2691 }
2692
clear_inode_flag(struct inode * inode,int flag)2693 static inline void clear_inode_flag(struct inode *inode, int flag)
2694 {
2695 test_and_clear_bit(flag, F2FS_I(inode)->flags);
2696 __mark_inode_dirty_flag(inode, flag, false);
2697 }
2698
f2fs_verity_in_progress(struct inode * inode)2699 static inline bool f2fs_verity_in_progress(struct inode *inode)
2700 {
2701 return IS_ENABLED(CONFIG_FS_VERITY) &&
2702 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2703 }
2704
set_acl_inode(struct inode * inode,umode_t mode)2705 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2706 {
2707 F2FS_I(inode)->i_acl_mode = mode;
2708 set_inode_flag(inode, FI_ACL_MODE);
2709 f2fs_mark_inode_dirty_sync(inode, false);
2710 }
2711
f2fs_i_links_write(struct inode * inode,bool inc)2712 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2713 {
2714 if (inc)
2715 inc_nlink(inode);
2716 else
2717 drop_nlink(inode);
2718 f2fs_mark_inode_dirty_sync(inode, true);
2719 }
2720
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2721 static inline void f2fs_i_blocks_write(struct inode *inode,
2722 block_t diff, bool add, bool claim)
2723 {
2724 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2725 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2726
2727 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2728 if (add) {
2729 if (claim)
2730 dquot_claim_block(inode, diff);
2731 else
2732 dquot_alloc_block_nofail(inode, diff);
2733 } else {
2734 dquot_free_block(inode, diff);
2735 }
2736
2737 f2fs_mark_inode_dirty_sync(inode, true);
2738 if (clean || recover)
2739 set_inode_flag(inode, FI_AUTO_RECOVER);
2740 }
2741
f2fs_i_size_write(struct inode * inode,loff_t i_size)2742 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2743 {
2744 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2745 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2746
2747 if (i_size_read(inode) == i_size)
2748 return;
2749
2750 i_size_write(inode, i_size);
2751 f2fs_mark_inode_dirty_sync(inode, true);
2752 if (clean || recover)
2753 set_inode_flag(inode, FI_AUTO_RECOVER);
2754 }
2755
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2756 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2757 {
2758 F2FS_I(inode)->i_current_depth = depth;
2759 f2fs_mark_inode_dirty_sync(inode, true);
2760 }
2761
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2762 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2763 unsigned int count)
2764 {
2765 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2766 f2fs_mark_inode_dirty_sync(inode, true);
2767 }
2768
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2769 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2770 {
2771 F2FS_I(inode)->i_xattr_nid = xnid;
2772 f2fs_mark_inode_dirty_sync(inode, true);
2773 }
2774
f2fs_i_pino_write(struct inode * inode,nid_t pino)2775 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2776 {
2777 F2FS_I(inode)->i_pino = pino;
2778 f2fs_mark_inode_dirty_sync(inode, true);
2779 }
2780
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2781 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2782 {
2783 struct f2fs_inode_info *fi = F2FS_I(inode);
2784
2785 if (ri->i_inline & F2FS_INLINE_XATTR)
2786 set_bit(FI_INLINE_XATTR, fi->flags);
2787 if (ri->i_inline & F2FS_INLINE_DATA)
2788 set_bit(FI_INLINE_DATA, fi->flags);
2789 if (ri->i_inline & F2FS_INLINE_DENTRY)
2790 set_bit(FI_INLINE_DENTRY, fi->flags);
2791 if (ri->i_inline & F2FS_DATA_EXIST)
2792 set_bit(FI_DATA_EXIST, fi->flags);
2793 if (ri->i_inline & F2FS_INLINE_DOTS)
2794 set_bit(FI_INLINE_DOTS, fi->flags);
2795 if (ri->i_inline & F2FS_EXTRA_ATTR)
2796 set_bit(FI_EXTRA_ATTR, fi->flags);
2797 if (ri->i_inline & F2FS_PIN_FILE)
2798 set_bit(FI_PIN_FILE, fi->flags);
2799 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2800 set_bit(FI_COMPRESS_RELEASED, fi->flags);
2801 }
2802
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2803 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2804 {
2805 ri->i_inline = 0;
2806
2807 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2808 ri->i_inline |= F2FS_INLINE_XATTR;
2809 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2810 ri->i_inline |= F2FS_INLINE_DATA;
2811 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2812 ri->i_inline |= F2FS_INLINE_DENTRY;
2813 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2814 ri->i_inline |= F2FS_DATA_EXIST;
2815 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2816 ri->i_inline |= F2FS_INLINE_DOTS;
2817 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2818 ri->i_inline |= F2FS_EXTRA_ATTR;
2819 if (is_inode_flag_set(inode, FI_PIN_FILE))
2820 ri->i_inline |= F2FS_PIN_FILE;
2821 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
2822 ri->i_inline |= F2FS_COMPRESS_RELEASED;
2823 }
2824
f2fs_has_extra_attr(struct inode * inode)2825 static inline int f2fs_has_extra_attr(struct inode *inode)
2826 {
2827 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2828 }
2829
f2fs_has_inline_xattr(struct inode * inode)2830 static inline int f2fs_has_inline_xattr(struct inode *inode)
2831 {
2832 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2833 }
2834
f2fs_compressed_file(struct inode * inode)2835 static inline int f2fs_compressed_file(struct inode *inode)
2836 {
2837 return S_ISREG(inode->i_mode) &&
2838 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2839 }
2840
addrs_per_inode(struct inode * inode)2841 static inline unsigned int addrs_per_inode(struct inode *inode)
2842 {
2843 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2844 get_inline_xattr_addrs(inode);
2845
2846 if (!f2fs_compressed_file(inode))
2847 return addrs;
2848 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2849 }
2850
addrs_per_block(struct inode * inode)2851 static inline unsigned int addrs_per_block(struct inode *inode)
2852 {
2853 if (!f2fs_compressed_file(inode))
2854 return DEF_ADDRS_PER_BLOCK;
2855 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2856 }
2857
inline_xattr_addr(struct inode * inode,struct page * page)2858 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2859 {
2860 struct f2fs_inode *ri = F2FS_INODE(page);
2861
2862 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2863 get_inline_xattr_addrs(inode)]);
2864 }
2865
inline_xattr_size(struct inode * inode)2866 static inline int inline_xattr_size(struct inode *inode)
2867 {
2868 if (f2fs_has_inline_xattr(inode))
2869 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2870 return 0;
2871 }
2872
f2fs_has_inline_data(struct inode * inode)2873 static inline int f2fs_has_inline_data(struct inode *inode)
2874 {
2875 return is_inode_flag_set(inode, FI_INLINE_DATA);
2876 }
2877
f2fs_exist_data(struct inode * inode)2878 static inline int f2fs_exist_data(struct inode *inode)
2879 {
2880 return is_inode_flag_set(inode, FI_DATA_EXIST);
2881 }
2882
f2fs_has_inline_dots(struct inode * inode)2883 static inline int f2fs_has_inline_dots(struct inode *inode)
2884 {
2885 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2886 }
2887
f2fs_is_mmap_file(struct inode * inode)2888 static inline int f2fs_is_mmap_file(struct inode *inode)
2889 {
2890 return is_inode_flag_set(inode, FI_MMAP_FILE);
2891 }
2892
f2fs_is_pinned_file(struct inode * inode)2893 static inline bool f2fs_is_pinned_file(struct inode *inode)
2894 {
2895 return is_inode_flag_set(inode, FI_PIN_FILE);
2896 }
2897
f2fs_is_atomic_file(struct inode * inode)2898 static inline bool f2fs_is_atomic_file(struct inode *inode)
2899 {
2900 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2901 }
2902
f2fs_is_commit_atomic_write(struct inode * inode)2903 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2904 {
2905 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2906 }
2907
f2fs_is_volatile_file(struct inode * inode)2908 static inline bool f2fs_is_volatile_file(struct inode *inode)
2909 {
2910 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2911 }
2912
f2fs_is_first_block_written(struct inode * inode)2913 static inline bool f2fs_is_first_block_written(struct inode *inode)
2914 {
2915 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2916 }
2917
f2fs_is_drop_cache(struct inode * inode)2918 static inline bool f2fs_is_drop_cache(struct inode *inode)
2919 {
2920 return is_inode_flag_set(inode, FI_DROP_CACHE);
2921 }
2922
inline_data_addr(struct inode * inode,struct page * page)2923 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2924 {
2925 struct f2fs_inode *ri = F2FS_INODE(page);
2926 int extra_size = get_extra_isize(inode);
2927
2928 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2929 }
2930
f2fs_has_inline_dentry(struct inode * inode)2931 static inline int f2fs_has_inline_dentry(struct inode *inode)
2932 {
2933 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2934 }
2935
is_file(struct inode * inode,int type)2936 static inline int is_file(struct inode *inode, int type)
2937 {
2938 return F2FS_I(inode)->i_advise & type;
2939 }
2940
set_file(struct inode * inode,int type)2941 static inline void set_file(struct inode *inode, int type)
2942 {
2943 F2FS_I(inode)->i_advise |= type;
2944 f2fs_mark_inode_dirty_sync(inode, true);
2945 }
2946
clear_file(struct inode * inode,int type)2947 static inline void clear_file(struct inode *inode, int type)
2948 {
2949 F2FS_I(inode)->i_advise &= ~type;
2950 f2fs_mark_inode_dirty_sync(inode, true);
2951 }
2952
f2fs_is_time_consistent(struct inode * inode)2953 static inline bool f2fs_is_time_consistent(struct inode *inode)
2954 {
2955 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2956 return false;
2957 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2958 return false;
2959 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2960 return false;
2961 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2962 &F2FS_I(inode)->i_crtime))
2963 return false;
2964 return true;
2965 }
2966
f2fs_skip_inode_update(struct inode * inode,int dsync)2967 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2968 {
2969 bool ret;
2970
2971 if (dsync) {
2972 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2973
2974 spin_lock(&sbi->inode_lock[DIRTY_META]);
2975 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2976 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2977 return ret;
2978 }
2979 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2980 file_keep_isize(inode) ||
2981 i_size_read(inode) & ~PAGE_MASK)
2982 return false;
2983
2984 if (!f2fs_is_time_consistent(inode))
2985 return false;
2986
2987 spin_lock(&F2FS_I(inode)->i_size_lock);
2988 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2989 spin_unlock(&F2FS_I(inode)->i_size_lock);
2990
2991 return ret;
2992 }
2993
f2fs_readonly(struct super_block * sb)2994 static inline bool f2fs_readonly(struct super_block *sb)
2995 {
2996 return sb_rdonly(sb);
2997 }
2998
f2fs_cp_error(struct f2fs_sb_info * sbi)2999 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3000 {
3001 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3002 }
3003
is_dot_dotdot(const u8 * name,size_t len)3004 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3005 {
3006 if (len == 1 && name[0] == '.')
3007 return true;
3008
3009 if (len == 2 && name[0] == '.' && name[1] == '.')
3010 return true;
3011
3012 return false;
3013 }
3014
f2fs_may_extent_tree(struct inode * inode)3015 static inline bool f2fs_may_extent_tree(struct inode *inode)
3016 {
3017 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3018
3019 if (!test_opt(sbi, EXTENT_CACHE) ||
3020 is_inode_flag_set(inode, FI_NO_EXTENT) ||
3021 is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3022 return false;
3023
3024 /*
3025 * for recovered files during mount do not create extents
3026 * if shrinker is not registered.
3027 */
3028 if (list_empty(&sbi->s_list))
3029 return false;
3030
3031 return S_ISREG(inode->i_mode);
3032 }
3033
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3034 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3035 size_t size, gfp_t flags)
3036 {
3037 if (time_to_inject(sbi, FAULT_KMALLOC)) {
3038 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3039 return NULL;
3040 }
3041
3042 return kmalloc(size, flags);
3043 }
3044
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3045 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3046 size_t size, gfp_t flags)
3047 {
3048 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3049 }
3050
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3051 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3052 size_t size, gfp_t flags)
3053 {
3054 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3055 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3056 return NULL;
3057 }
3058
3059 return kvmalloc(size, flags);
3060 }
3061
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3062 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3063 size_t size, gfp_t flags)
3064 {
3065 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3066 }
3067
get_extra_isize(struct inode * inode)3068 static inline int get_extra_isize(struct inode *inode)
3069 {
3070 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3071 }
3072
get_inline_xattr_addrs(struct inode * inode)3073 static inline int get_inline_xattr_addrs(struct inode *inode)
3074 {
3075 return F2FS_I(inode)->i_inline_xattr_size;
3076 }
3077
3078 #define f2fs_get_inode_mode(i) \
3079 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3080 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3081
3082 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3083 (offsetof(struct f2fs_inode, i_extra_end) - \
3084 offsetof(struct f2fs_inode, i_extra_isize)) \
3085
3086 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3087 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3088 ((offsetof(typeof(*(f2fs_inode)), field) + \
3089 sizeof((f2fs_inode)->field)) \
3090 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3091
3092 #define DEFAULT_IOSTAT_PERIOD_MS 3000
3093 #define MIN_IOSTAT_PERIOD_MS 100
3094 /* maximum period of iostat tracing is 1 day */
3095 #define MAX_IOSTAT_PERIOD_MS 8640000
3096
f2fs_reset_iostat(struct f2fs_sb_info * sbi)3097 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3098 {
3099 int i;
3100
3101 spin_lock(&sbi->iostat_lock);
3102 for (i = 0; i < NR_IO_TYPE; i++) {
3103 sbi->rw_iostat[i] = 0;
3104 sbi->prev_rw_iostat[i] = 0;
3105 }
3106 spin_unlock(&sbi->iostat_lock);
3107 }
3108
3109 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3110
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)3111 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3112 enum iostat_type type, unsigned long long io_bytes)
3113 {
3114 if (!sbi->iostat_enable)
3115 return;
3116 spin_lock(&sbi->iostat_lock);
3117 sbi->rw_iostat[type] += io_bytes;
3118
3119 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3120 sbi->rw_iostat[APP_BUFFERED_IO] =
3121 sbi->rw_iostat[APP_WRITE_IO] -
3122 sbi->rw_iostat[APP_DIRECT_IO];
3123
3124 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3125 sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3126 sbi->rw_iostat[APP_READ_IO] -
3127 sbi->rw_iostat[APP_DIRECT_READ_IO];
3128 spin_unlock(&sbi->iostat_lock);
3129
3130 f2fs_record_iostat(sbi);
3131 }
3132
3133 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3134
3135 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3136
3137 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3138 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3139 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3140 block_t blkaddr, int type)
3141 {
3142 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3143 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3144 blkaddr, type);
3145 f2fs_bug_on(sbi, 1);
3146 }
3147 }
3148
__is_valid_data_blkaddr(block_t blkaddr)3149 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3150 {
3151 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3152 blkaddr == COMPRESS_ADDR)
3153 return false;
3154 return true;
3155 }
3156
f2fs_set_page_private(struct page * page,unsigned long data)3157 static inline void f2fs_set_page_private(struct page *page,
3158 unsigned long data)
3159 {
3160 if (PagePrivate(page))
3161 return;
3162
3163 get_page(page);
3164 SetPagePrivate(page);
3165 set_page_private(page, data);
3166 }
3167
f2fs_clear_page_private(struct page * page)3168 static inline void f2fs_clear_page_private(struct page *page)
3169 {
3170 if (!PagePrivate(page))
3171 return;
3172
3173 set_page_private(page, 0);
3174 ClearPagePrivate(page);
3175 f2fs_put_page(page, 0);
3176 }
3177
3178 /*
3179 * file.c
3180 */
3181 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3182 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3183 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3184 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3185 int f2fs_truncate(struct inode *inode);
3186 int f2fs_getattr(const struct path *path, struct kstat *stat,
3187 u32 request_mask, unsigned int flags);
3188 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3189 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3190 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3191 int f2fs_precache_extents(struct inode *inode);
3192 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3193 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3194 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3195 int f2fs_pin_file_control(struct inode *inode, bool inc);
3196
3197 /*
3198 * inode.c
3199 */
3200 void f2fs_set_inode_flags(struct inode *inode);
3201 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3202 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3203 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3204 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3205 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3206 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3207 void f2fs_update_inode_page(struct inode *inode);
3208 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3209 void f2fs_evict_inode(struct inode *inode);
3210 void f2fs_handle_failed_inode(struct inode *inode);
3211
3212 /*
3213 * namei.c
3214 */
3215 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3216 bool hot, bool set);
3217 struct dentry *f2fs_get_parent(struct dentry *child);
3218
3219 /*
3220 * dir.c
3221 */
3222 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3223 int f2fs_init_casefolded_name(const struct inode *dir,
3224 struct f2fs_filename *fname);
3225 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3226 int lookup, struct f2fs_filename *fname);
3227 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3228 struct f2fs_filename *fname);
3229 void f2fs_free_filename(struct f2fs_filename *fname);
3230 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3231 const struct f2fs_filename *fname, int *max_slots);
3232 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3233 unsigned int start_pos, struct fscrypt_str *fstr);
3234 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3235 struct f2fs_dentry_ptr *d);
3236 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3237 const struct f2fs_filename *fname, struct page *dpage);
3238 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3239 unsigned int current_depth);
3240 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3241 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3242 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3243 const struct f2fs_filename *fname,
3244 struct page **res_page);
3245 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3246 const struct qstr *child, struct page **res_page);
3247 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3248 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3249 struct page **page);
3250 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3251 struct page *page, struct inode *inode);
3252 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3253 const struct f2fs_filename *fname);
3254 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3255 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3256 unsigned int bit_pos);
3257 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3258 struct inode *inode, nid_t ino, umode_t mode);
3259 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3260 struct inode *inode, nid_t ino, umode_t mode);
3261 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3262 struct inode *inode, nid_t ino, umode_t mode);
3263 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3264 struct inode *dir, struct inode *inode);
3265 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3266 bool f2fs_empty_dir(struct inode *dir);
3267
f2fs_add_link(struct dentry * dentry,struct inode * inode)3268 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3269 {
3270 if (fscrypt_is_nokey_name(dentry))
3271 return -ENOKEY;
3272 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3273 inode, inode->i_ino, inode->i_mode);
3274 }
3275
3276 /*
3277 * super.c
3278 */
3279 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3280 void f2fs_inode_synced(struct inode *inode);
3281 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3282 int f2fs_quota_sync(struct super_block *sb, int type);
3283 void f2fs_quota_off_umount(struct super_block *sb);
3284 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3285 int f2fs_sync_fs(struct super_block *sb, int sync);
3286 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3287
3288 /*
3289 * hash.c
3290 */
3291 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3292
3293 /*
3294 * node.c
3295 */
3296 struct dnode_of_data;
3297 struct node_info;
3298
3299 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3300 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3301 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3302 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3303 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3304 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3305 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3306 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3307 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3308 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3309 struct node_info *ni);
3310 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3311 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3312 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3313 int f2fs_truncate_xattr_node(struct inode *inode);
3314 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3315 unsigned int seq_id);
3316 int f2fs_remove_inode_page(struct inode *inode);
3317 struct page *f2fs_new_inode_page(struct inode *inode);
3318 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3319 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3320 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3321 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3322 int f2fs_move_node_page(struct page *node_page, int gc_type);
3323 int f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3324 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3325 struct writeback_control *wbc, bool atomic,
3326 unsigned int *seq_id);
3327 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3328 struct writeback_control *wbc,
3329 bool do_balance, enum iostat_type io_type);
3330 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3331 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3332 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3333 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3334 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3335 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3336 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3337 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3338 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3339 unsigned int segno, struct f2fs_summary_block *sum);
3340 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3341 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3342 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3343 int __init f2fs_create_node_manager_caches(void);
3344 void f2fs_destroy_node_manager_caches(void);
3345
3346 /*
3347 * segment.c
3348 */
3349 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3350 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3351 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3352 void f2fs_drop_inmem_pages(struct inode *inode);
3353 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3354 int f2fs_commit_inmem_pages(struct inode *inode);
3355 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3356 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3357 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3358 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3359 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3360 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3361 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3362 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3363 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3364 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3365 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3366 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3367 struct cp_control *cpc);
3368 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3369 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3370 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3371 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3372 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3373 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3374 unsigned int start, unsigned int end);
3375 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type);
3376 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3377 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3378 struct cp_control *cpc);
3379 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3380 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3381 block_t blk_addr);
3382 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3383 enum iostat_type io_type);
3384 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3385 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3386 struct f2fs_io_info *fio);
3387 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3388 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3389 block_t old_blkaddr, block_t new_blkaddr,
3390 bool recover_curseg, bool recover_newaddr);
3391 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3392 block_t old_addr, block_t new_addr,
3393 unsigned char version, bool recover_curseg,
3394 bool recover_newaddr);
3395 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3396 block_t old_blkaddr, block_t *new_blkaddr,
3397 struct f2fs_summary *sum, int type,
3398 struct f2fs_io_info *fio, bool add_list);
3399 void f2fs_wait_on_page_writeback(struct page *page,
3400 enum page_type type, bool ordered, bool locked);
3401 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3402 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3403 block_t len);
3404 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3405 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3406 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3407 unsigned int val, int alloc);
3408 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3409 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3410 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3411 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3412 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3413 int __init f2fs_create_segment_manager_caches(void);
3414 void f2fs_destroy_segment_manager_caches(void);
3415 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3416 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3417 enum page_type type, enum temp_type temp);
3418
3419 /*
3420 * checkpoint.c
3421 */
3422 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3423 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3424 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3425 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3426 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3427 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3428 block_t blkaddr, int type);
3429 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3430 int type, bool sync);
3431 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3432 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3433 long nr_to_write, enum iostat_type io_type);
3434 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3435 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3436 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3437 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3438 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3439 unsigned int devidx, int type);
3440 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3441 unsigned int devidx, int type);
3442 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3443 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3444 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3445 void f2fs_add_orphan_inode(struct inode *inode);
3446 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3447 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3448 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3449 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3450 void f2fs_remove_dirty_inode(struct inode *inode);
3451 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3452 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3453 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3454 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3455 int __init f2fs_create_checkpoint_caches(void);
3456 void f2fs_destroy_checkpoint_caches(void);
3457
3458 /*
3459 * data.c
3460 */
3461 int __init f2fs_init_bioset(void);
3462 void f2fs_destroy_bioset(void);
3463 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3464 int f2fs_init_bio_entry_cache(void);
3465 void f2fs_destroy_bio_entry_cache(void);
3466 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3467 struct bio *bio, enum page_type type);
3468 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3469 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3470 struct inode *inode, struct page *page,
3471 nid_t ino, enum page_type type);
3472 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3473 struct bio **bio, struct page *page);
3474 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3475 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3476 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3477 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3478 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3479 block_t blk_addr, struct bio *bio);
3480 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3481 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3482 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3483 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3484 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3485 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3486 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3487 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3488 int f2fs_mpage_readpages(struct address_space *mapping,
3489 struct list_head *pages, struct page *page,
3490 unsigned nr_pages, bool is_readahead);
3491 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3492 int op_flags, bool for_write);
3493 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3494 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3495 bool for_write);
3496 struct page *f2fs_get_new_data_page(struct inode *inode,
3497 struct page *ipage, pgoff_t index, bool new_i_size);
3498 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3499 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3500 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3501 int create, int flag);
3502 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3503 u64 start, u64 len);
3504 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3505 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3506 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3507 int f2fs_write_single_data_page(struct page *page, int *submitted,
3508 struct bio **bio, sector_t *last_block,
3509 struct writeback_control *wbc,
3510 enum iostat_type io_type,
3511 int compr_blocks);
3512 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3513 unsigned int length);
3514 int f2fs_release_page(struct page *page, gfp_t wait);
3515 #ifdef CONFIG_MIGRATION
3516 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3517 struct page *page, enum migrate_mode mode);
3518 #endif
3519 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3520 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3521 int f2fs_init_post_read_processing(void);
3522 void f2fs_destroy_post_read_processing(void);
3523 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3524 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3525
3526 /*
3527 * gc.c
3528 */
3529 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3530 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3531 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3532 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3533 unsigned int segno);
3534 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3535 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3536
3537 /*
3538 * recovery.c
3539 */
3540 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3541 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3542
3543 /*
3544 * debug.c
3545 */
3546 #ifdef CONFIG_F2FS_STAT_FS
3547 struct f2fs_stat_info {
3548 struct list_head stat_list;
3549 struct f2fs_sb_info *sbi;
3550 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3551 int main_area_segs, main_area_sections, main_area_zones;
3552 unsigned long long hit_largest, hit_cached, hit_rbtree;
3553 unsigned long long hit_total, total_ext;
3554 int ext_tree, zombie_tree, ext_node;
3555 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3556 int ndirty_data, ndirty_qdata;
3557 int inmem_pages;
3558 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3559 int nats, dirty_nats, sits, dirty_sits;
3560 int free_nids, avail_nids, alloc_nids;
3561 int total_count, utilization;
3562 int bg_gc, nr_wb_cp_data, nr_wb_data;
3563 int nr_rd_data, nr_rd_node, nr_rd_meta;
3564 int nr_dio_read, nr_dio_write;
3565 unsigned int io_skip_bggc, other_skip_bggc;
3566 int nr_flushing, nr_flushed, flush_list_empty;
3567 int nr_discarding, nr_discarded;
3568 int nr_discard_cmd;
3569 unsigned int undiscard_blks;
3570 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3571 int compr_inode, compr_blocks;
3572 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3573 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3574 unsigned int bimodal, avg_vblocks;
3575 int util_free, util_valid, util_invalid;
3576 int rsvd_segs, overp_segs;
3577 int dirty_count, node_pages, meta_pages;
3578 int prefree_count, call_count, cp_count, bg_cp_count;
3579 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3580 int bg_node_segs, bg_data_segs;
3581 int tot_blks, data_blks, node_blks;
3582 int bg_data_blks, bg_node_blks;
3583 unsigned long long skipped_atomic_files[2];
3584 int curseg[NR_CURSEG_TYPE];
3585 int cursec[NR_CURSEG_TYPE];
3586 int curzone[NR_CURSEG_TYPE];
3587
3588 unsigned int meta_count[META_MAX];
3589 unsigned int segment_count[2];
3590 unsigned int block_count[2];
3591 unsigned int inplace_count;
3592 unsigned long long base_mem, cache_mem, page_mem;
3593 };
3594
F2FS_STAT(struct f2fs_sb_info * sbi)3595 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3596 {
3597 return (struct f2fs_stat_info *)sbi->stat_info;
3598 }
3599
3600 #define stat_inc_cp_count(si) ((si)->cp_count++)
3601 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3602 #define stat_inc_call_count(si) ((si)->call_count++)
3603 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3604 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3605 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3606 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3607 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3608 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3609 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3610 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3611 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3612 #define stat_inc_inline_xattr(inode) \
3613 do { \
3614 if (f2fs_has_inline_xattr(inode)) \
3615 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3616 } while (0)
3617 #define stat_dec_inline_xattr(inode) \
3618 do { \
3619 if (f2fs_has_inline_xattr(inode)) \
3620 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3621 } while (0)
3622 #define stat_inc_inline_inode(inode) \
3623 do { \
3624 if (f2fs_has_inline_data(inode)) \
3625 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3626 } while (0)
3627 #define stat_dec_inline_inode(inode) \
3628 do { \
3629 if (f2fs_has_inline_data(inode)) \
3630 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3631 } while (0)
3632 #define stat_inc_inline_dir(inode) \
3633 do { \
3634 if (f2fs_has_inline_dentry(inode)) \
3635 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3636 } while (0)
3637 #define stat_dec_inline_dir(inode) \
3638 do { \
3639 if (f2fs_has_inline_dentry(inode)) \
3640 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3641 } while (0)
3642 #define stat_inc_compr_inode(inode) \
3643 do { \
3644 if (f2fs_compressed_file(inode)) \
3645 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3646 } while (0)
3647 #define stat_dec_compr_inode(inode) \
3648 do { \
3649 if (f2fs_compressed_file(inode)) \
3650 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3651 } while (0)
3652 #define stat_add_compr_blocks(inode, blocks) \
3653 (atomic_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3654 #define stat_sub_compr_blocks(inode, blocks) \
3655 (atomic_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3656 #define stat_inc_meta_count(sbi, blkaddr) \
3657 do { \
3658 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3659 atomic_inc(&(sbi)->meta_count[META_CP]); \
3660 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3661 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3662 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3663 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3664 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3665 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3666 } while (0)
3667 #define stat_inc_seg_type(sbi, curseg) \
3668 ((sbi)->segment_count[(curseg)->alloc_type]++)
3669 #define stat_inc_block_count(sbi, curseg) \
3670 ((sbi)->block_count[(curseg)->alloc_type]++)
3671 #define stat_inc_inplace_blocks(sbi) \
3672 (atomic_inc(&(sbi)->inplace_count))
3673 #define stat_update_max_atomic_write(inode) \
3674 do { \
3675 int cur = F2FS_I_SB(inode)->atomic_files; \
3676 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3677 if (cur > max) \
3678 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3679 } while (0)
3680 #define stat_inc_volatile_write(inode) \
3681 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3682 #define stat_dec_volatile_write(inode) \
3683 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3684 #define stat_update_max_volatile_write(inode) \
3685 do { \
3686 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3687 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3688 if (cur > max) \
3689 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3690 } while (0)
3691 #define stat_inc_seg_count(sbi, type, gc_type) \
3692 do { \
3693 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3694 si->tot_segs++; \
3695 if ((type) == SUM_TYPE_DATA) { \
3696 si->data_segs++; \
3697 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3698 } else { \
3699 si->node_segs++; \
3700 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3701 } \
3702 } while (0)
3703
3704 #define stat_inc_tot_blk_count(si, blks) \
3705 ((si)->tot_blks += (blks))
3706
3707 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3708 do { \
3709 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3710 stat_inc_tot_blk_count(si, blks); \
3711 si->data_blks += (blks); \
3712 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3713 } while (0)
3714
3715 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3716 do { \
3717 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3718 stat_inc_tot_blk_count(si, blks); \
3719 si->node_blks += (blks); \
3720 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3721 } while (0)
3722
3723 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3724 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3725 void __init f2fs_create_root_stats(void);
3726 void f2fs_destroy_root_stats(void);
3727 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3728 #else
3729 #define stat_inc_cp_count(si) do { } while (0)
3730 #define stat_inc_bg_cp_count(si) do { } while (0)
3731 #define stat_inc_call_count(si) do { } while (0)
3732 #define stat_inc_bggc_count(si) do { } while (0)
3733 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3734 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3735 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3736 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3737 #define stat_inc_total_hit(sbi) do { } while (0)
3738 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3739 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3740 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3741 #define stat_inc_inline_xattr(inode) do { } while (0)
3742 #define stat_dec_inline_xattr(inode) do { } while (0)
3743 #define stat_inc_inline_inode(inode) do { } while (0)
3744 #define stat_dec_inline_inode(inode) do { } while (0)
3745 #define stat_inc_inline_dir(inode) do { } while (0)
3746 #define stat_dec_inline_dir(inode) do { } while (0)
3747 #define stat_inc_compr_inode(inode) do { } while (0)
3748 #define stat_dec_compr_inode(inode) do { } while (0)
3749 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
3750 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3751 #define stat_inc_atomic_write(inode) do { } while (0)
3752 #define stat_dec_atomic_write(inode) do { } while (0)
3753 #define stat_update_max_atomic_write(inode) do { } while (0)
3754 #define stat_inc_volatile_write(inode) do { } while (0)
3755 #define stat_dec_volatile_write(inode) do { } while (0)
3756 #define stat_update_max_volatile_write(inode) do { } while (0)
3757 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3758 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3759 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3760 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3761 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3762 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3763 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3764 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3765
f2fs_build_stats(struct f2fs_sb_info * sbi)3766 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3767 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3768 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3769 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)3770 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3771 #endif
3772
3773 extern const struct file_operations f2fs_dir_operations;
3774 extern const struct file_operations f2fs_file_operations;
3775 extern const struct inode_operations f2fs_file_inode_operations;
3776 extern const struct address_space_operations f2fs_dblock_aops;
3777 extern const struct address_space_operations f2fs_node_aops;
3778 extern const struct address_space_operations f2fs_meta_aops;
3779 extern const struct inode_operations f2fs_dir_inode_operations;
3780 extern const struct inode_operations f2fs_symlink_inode_operations;
3781 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3782 extern const struct inode_operations f2fs_special_inode_operations;
3783 extern struct kmem_cache *f2fs_inode_entry_slab;
3784
3785 /*
3786 * inline.c
3787 */
3788 bool f2fs_may_inline_data(struct inode *inode);
3789 bool f2fs_may_inline_dentry(struct inode *inode);
3790 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3791 void f2fs_truncate_inline_inode(struct inode *inode,
3792 struct page *ipage, u64 from);
3793 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3794 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3795 int f2fs_convert_inline_inode(struct inode *inode);
3796 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3797 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3798 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3799 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3800 const struct f2fs_filename *fname,
3801 struct page **res_page);
3802 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3803 struct page *ipage);
3804 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3805 struct inode *inode, nid_t ino, umode_t mode);
3806 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3807 struct page *page, struct inode *dir,
3808 struct inode *inode);
3809 bool f2fs_empty_inline_dir(struct inode *dir);
3810 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3811 struct fscrypt_str *fstr);
3812 int f2fs_inline_data_fiemap(struct inode *inode,
3813 struct fiemap_extent_info *fieinfo,
3814 __u64 start, __u64 len);
3815
3816 /*
3817 * shrinker.c
3818 */
3819 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3820 struct shrink_control *sc);
3821 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3822 struct shrink_control *sc);
3823 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3824 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3825
3826 /*
3827 * extent_cache.c
3828 */
3829 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3830 struct rb_entry *cached_re, unsigned int ofs);
3831 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3832 struct rb_root_cached *root,
3833 struct rb_node **parent,
3834 unsigned int ofs, bool *leftmost);
3835 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3836 struct rb_entry *cached_re, unsigned int ofs,
3837 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3838 struct rb_node ***insert_p, struct rb_node **insert_parent,
3839 bool force, bool *leftmost);
3840 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3841 struct rb_root_cached *root);
3842 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3843 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3844 void f2fs_drop_extent_tree(struct inode *inode);
3845 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3846 void f2fs_destroy_extent_tree(struct inode *inode);
3847 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3848 struct extent_info *ei);
3849 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3850 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3851 pgoff_t fofs, block_t blkaddr, unsigned int len);
3852 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3853 int __init f2fs_create_extent_cache(void);
3854 void f2fs_destroy_extent_cache(void);
3855
3856 /*
3857 * sysfs.c
3858 */
3859 int __init f2fs_init_sysfs(void);
3860 void f2fs_exit_sysfs(void);
3861 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3862 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3863
3864 /* verity.c */
3865 extern const struct fsverity_operations f2fs_verityops;
3866
3867 /*
3868 * crypto support
3869 */
f2fs_encrypted_file(struct inode * inode)3870 static inline bool f2fs_encrypted_file(struct inode *inode)
3871 {
3872 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3873 }
3874
f2fs_set_encrypted_inode(struct inode * inode)3875 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3876 {
3877 #ifdef CONFIG_FS_ENCRYPTION
3878 file_set_encrypt(inode);
3879 f2fs_set_inode_flags(inode);
3880 #endif
3881 }
3882
3883 /*
3884 * Returns true if the reads of the inode's data need to undergo some
3885 * postprocessing step, like decryption or authenticity verification.
3886 */
f2fs_post_read_required(struct inode * inode)3887 static inline bool f2fs_post_read_required(struct inode *inode)
3888 {
3889 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3890 f2fs_compressed_file(inode);
3891 }
3892
3893 /*
3894 * compress.c
3895 */
3896 #ifdef CONFIG_F2FS_FS_COMPRESSION
3897 bool f2fs_is_compressed_page(struct page *page);
3898 struct page *f2fs_compress_control_page(struct page *page);
3899 int f2fs_prepare_compress_overwrite(struct inode *inode,
3900 struct page **pagep, pgoff_t index, void **fsdata);
3901 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3902 pgoff_t index, unsigned copied);
3903 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3904 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3905 bool f2fs_is_compress_backend_ready(struct inode *inode);
3906 int f2fs_init_compress_mempool(void);
3907 void f2fs_destroy_compress_mempool(void);
3908 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3909 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3910 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3911 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3912 int f2fs_write_multi_pages(struct compress_ctx *cc,
3913 int *submitted,
3914 struct writeback_control *wbc,
3915 enum iostat_type io_type);
3916 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3917 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3918 unsigned nr_pages, sector_t *last_block_in_bio,
3919 bool is_readahead, bool for_write);
3920 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3921 void f2fs_free_dic(struct decompress_io_ctx *dic);
3922 void f2fs_decompress_end_io(struct page **rpages,
3923 unsigned int cluster_size, bool err, bool verity);
3924 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3925 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3926 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3927 #else
f2fs_is_compressed_page(struct page * page)3928 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)3929 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3930 {
3931 if (!f2fs_compressed_file(inode))
3932 return true;
3933 /* not support compression */
3934 return false;
3935 }
f2fs_compress_control_page(struct page * page)3936 static inline struct page *f2fs_compress_control_page(struct page *page)
3937 {
3938 WARN_ON_ONCE(1);
3939 return ERR_PTR(-EINVAL);
3940 }
f2fs_init_compress_mempool(void)3941 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)3942 static inline void f2fs_destroy_compress_mempool(void) { }
3943 #endif
3944
set_compress_context(struct inode * inode)3945 static inline int set_compress_context(struct inode *inode)
3946 {
3947 #ifdef CONFIG_F2FS_FS_COMPRESSION
3948 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3949
3950 F2FS_I(inode)->i_compress_algorithm =
3951 F2FS_OPTION(sbi).compress_algorithm;
3952 F2FS_I(inode)->i_log_cluster_size =
3953 F2FS_OPTION(sbi).compress_log_size;
3954 F2FS_I(inode)->i_cluster_size =
3955 1 << F2FS_I(inode)->i_log_cluster_size;
3956 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3957 set_inode_flag(inode, FI_COMPRESSED_FILE);
3958 stat_inc_compr_inode(inode);
3959 f2fs_mark_inode_dirty_sync(inode, true);
3960 return 0;
3961 #else
3962 return -EOPNOTSUPP;
3963 #endif
3964 }
3965
f2fs_disable_compressed_file(struct inode * inode)3966 static inline u32 f2fs_disable_compressed_file(struct inode *inode)
3967 {
3968 struct f2fs_inode_info *fi = F2FS_I(inode);
3969 u32 i_compr_blocks;
3970
3971 if (!f2fs_compressed_file(inode))
3972 return 0;
3973 if (S_ISREG(inode->i_mode)) {
3974 if (get_dirty_pages(inode))
3975 return 1;
3976 i_compr_blocks = atomic_read(&fi->i_compr_blocks);
3977 if (i_compr_blocks)
3978 return i_compr_blocks;
3979 }
3980
3981 fi->i_flags &= ~F2FS_COMPR_FL;
3982 stat_dec_compr_inode(inode);
3983 clear_inode_flag(inode, FI_COMPRESSED_FILE);
3984 f2fs_mark_inode_dirty_sync(inode, true);
3985 return 0;
3986 }
3987
3988 #define F2FS_FEATURE_FUNCS(name, flagname) \
3989 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3990 { \
3991 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3992 }
3993
3994 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3995 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3996 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3997 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3998 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3999 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4000 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4001 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4002 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4003 F2FS_FEATURE_FUNCS(verity, VERITY);
4004 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4005 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4006 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4007 F2FS_FEATURE_FUNCS(readonly, RO);
4008
4009 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4010 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4011 block_t blkaddr)
4012 {
4013 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4014
4015 return test_bit(zno, FDEV(devi).blkz_seq);
4016 }
4017 #endif
4018
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4019 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4020 {
4021 return f2fs_sb_has_blkzoned(sbi);
4022 }
4023
f2fs_bdev_support_discard(struct block_device * bdev)4024 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4025 {
4026 return blk_queue_discard(bdev_get_queue(bdev)) ||
4027 bdev_is_zoned(bdev);
4028 }
4029
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4030 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4031 {
4032 int i;
4033
4034 if (!f2fs_is_multi_device(sbi))
4035 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4036
4037 for (i = 0; i < sbi->s_ndevs; i++)
4038 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4039 return true;
4040 return false;
4041 }
4042
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4043 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4044 {
4045 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4046 f2fs_hw_should_discard(sbi);
4047 }
4048
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4049 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4050 {
4051 int i;
4052
4053 if (!f2fs_is_multi_device(sbi))
4054 return bdev_read_only(sbi->sb->s_bdev);
4055
4056 for (i = 0; i < sbi->s_ndevs; i++)
4057 if (bdev_read_only(FDEV(i).bdev))
4058 return true;
4059 return false;
4060 }
4061
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4062 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4063 {
4064 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4065 }
4066
f2fs_may_encrypt(struct inode * dir,struct inode * inode)4067 static inline bool f2fs_may_encrypt(struct inode *dir, struct inode *inode)
4068 {
4069 #ifdef CONFIG_FS_ENCRYPTION
4070 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
4071 umode_t mode = inode->i_mode;
4072
4073 /*
4074 * If the directory encrypted or dummy encryption enabled,
4075 * then we should encrypt the inode.
4076 */
4077 if (IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi))
4078 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
4079 #endif
4080 return false;
4081 }
4082
f2fs_may_compress(struct inode * inode)4083 static inline bool f2fs_may_compress(struct inode *inode)
4084 {
4085 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4086 f2fs_is_atomic_file(inode) ||
4087 f2fs_is_volatile_file(inode))
4088 return false;
4089 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4090 }
4091
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4092 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4093 u64 blocks, bool add)
4094 {
4095 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4096 struct f2fs_inode_info *fi = F2FS_I(inode);
4097
4098 /* don't update i_compr_blocks if saved blocks were released */
4099 if (!add && !atomic_read(&fi->i_compr_blocks))
4100 return;
4101
4102 if (add) {
4103 atomic_add(diff, &fi->i_compr_blocks);
4104 stat_add_compr_blocks(inode, diff);
4105 } else {
4106 atomic_sub(diff, &fi->i_compr_blocks);
4107 stat_sub_compr_blocks(inode, diff);
4108 }
4109 f2fs_mark_inode_dirty_sync(inode, true);
4110 }
4111
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4112 static inline int block_unaligned_IO(struct inode *inode,
4113 struct kiocb *iocb, struct iov_iter *iter)
4114 {
4115 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4116 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4117 loff_t offset = iocb->ki_pos;
4118 unsigned long align = offset | iov_iter_alignment(iter);
4119
4120 return align & blocksize_mask;
4121 }
4122
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4123 static inline int allow_outplace_dio(struct inode *inode,
4124 struct kiocb *iocb, struct iov_iter *iter)
4125 {
4126 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4127 int rw = iov_iter_rw(iter);
4128
4129 return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4130 !block_unaligned_IO(inode, iocb, iter));
4131 }
4132
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4133 static inline bool f2fs_force_buffered_io(struct inode *inode,
4134 struct kiocb *iocb, struct iov_iter *iter)
4135 {
4136 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4137 int rw = iov_iter_rw(iter);
4138
4139 if (!fscrypt_dio_supported(iocb, iter))
4140 return true;
4141 if (fsverity_active(inode))
4142 return true;
4143 if (f2fs_compressed_file(inode))
4144 return true;
4145 if (f2fs_is_multi_device(sbi))
4146 return true;
4147 /*
4148 * for blkzoned device, fallback direct IO to buffered IO, so
4149 * all IOs can be serialized by log-structured write.
4150 */
4151 if (f2fs_sb_has_blkzoned(sbi))
4152 return true;
4153 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4154 if (block_unaligned_IO(inode, iocb, iter))
4155 return true;
4156 if (F2FS_IO_ALIGNED(sbi))
4157 return true;
4158 }
4159 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4160 !IS_SWAPFILE(inode))
4161 return true;
4162
4163 return false;
4164 }
4165
4166 #ifdef CONFIG_F2FS_FAULT_INJECTION
4167 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4168 unsigned int type);
4169 #else
4170 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4171 #endif
4172
is_journalled_quota(struct f2fs_sb_info * sbi)4173 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4174 {
4175 #ifdef CONFIG_QUOTA
4176 if (f2fs_sb_has_quota_ino(sbi))
4177 return true;
4178 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4179 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4180 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4181 return true;
4182 #endif
4183 return false;
4184 }
4185
4186 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4187 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4188
4189 #endif /* _LINUX_F2FS_H */
4190