1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/sched/signal.h>
15 #include <linux/uio.h>
16 #include <linux/miscdevice.h>
17 #include <linux/namei.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/slab.h>
21 #include <linux/pipe_fs_i.h>
22 #include <linux/swap.h>
23 #include <linux/splice.h>
24 #include <linux/sched.h>
25
26 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
27 MODULE_ALIAS("devname:fuse");
28
29 /* Ordinary requests have even IDs, while interrupts IDs are odd */
30 #define FUSE_INT_REQ_BIT (1ULL << 0)
31 #define FUSE_REQ_ID_STEP (1ULL << 1)
32
33 static struct kmem_cache *fuse_req_cachep;
34
fuse_get_dev(struct file * file)35 static struct fuse_dev *fuse_get_dev(struct file *file)
36 {
37 /*
38 * Lockless access is OK, because file->private data is set
39 * once during mount and is valid until the file is released.
40 */
41 return READ_ONCE(file->private_data);
42 }
43
fuse_request_init(struct fuse_req * req)44 static void fuse_request_init(struct fuse_req *req)
45 {
46 INIT_LIST_HEAD(&req->list);
47 INIT_LIST_HEAD(&req->intr_entry);
48 init_waitqueue_head(&req->waitq);
49 refcount_set(&req->count, 1);
50 __set_bit(FR_PENDING, &req->flags);
51 }
52
fuse_request_alloc(gfp_t flags)53 static struct fuse_req *fuse_request_alloc(gfp_t flags)
54 {
55 struct fuse_req *req = kmem_cache_zalloc(fuse_req_cachep, flags);
56 if (req)
57 fuse_request_init(req);
58
59 return req;
60 }
61
fuse_request_free(struct fuse_req * req)62 static void fuse_request_free(struct fuse_req *req)
63 {
64 kmem_cache_free(fuse_req_cachep, req);
65 }
66
__fuse_get_request(struct fuse_req * req)67 static void __fuse_get_request(struct fuse_req *req)
68 {
69 refcount_inc(&req->count);
70 }
71
72 /* Must be called with > 1 refcount */
__fuse_put_request(struct fuse_req * req)73 static void __fuse_put_request(struct fuse_req *req)
74 {
75 refcount_dec(&req->count);
76 }
77
fuse_set_initialized(struct fuse_conn * fc)78 void fuse_set_initialized(struct fuse_conn *fc)
79 {
80 /* Make sure stores before this are seen on another CPU */
81 smp_wmb();
82 fc->initialized = 1;
83 }
84
fuse_block_alloc(struct fuse_conn * fc,bool for_background)85 static bool fuse_block_alloc(struct fuse_conn *fc, bool for_background)
86 {
87 return !fc->initialized || (for_background && fc->blocked);
88 }
89
fuse_drop_waiting(struct fuse_conn * fc)90 static void fuse_drop_waiting(struct fuse_conn *fc)
91 {
92 /*
93 * lockess check of fc->connected is okay, because atomic_dec_and_test()
94 * provides a memory barrier mached with the one in fuse_wait_aborted()
95 * to ensure no wake-up is missed.
96 */
97 if (atomic_dec_and_test(&fc->num_waiting) &&
98 !READ_ONCE(fc->connected)) {
99 /* wake up aborters */
100 wake_up_all(&fc->blocked_waitq);
101 }
102 }
103
104 static void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req);
105
fuse_get_req(struct fuse_conn * fc,bool for_background)106 static struct fuse_req *fuse_get_req(struct fuse_conn *fc, bool for_background)
107 {
108 struct fuse_req *req;
109 int err;
110 atomic_inc(&fc->num_waiting);
111
112 if (fuse_block_alloc(fc, for_background)) {
113 err = -EINTR;
114 if (wait_event_killable_exclusive(fc->blocked_waitq,
115 !fuse_block_alloc(fc, for_background)))
116 goto out;
117 }
118 /* Matches smp_wmb() in fuse_set_initialized() */
119 smp_rmb();
120
121 err = -ENOTCONN;
122 if (!fc->connected)
123 goto out;
124
125 err = -ECONNREFUSED;
126 if (fc->conn_error)
127 goto out;
128
129 req = fuse_request_alloc(GFP_KERNEL);
130 err = -ENOMEM;
131 if (!req) {
132 if (for_background)
133 wake_up(&fc->blocked_waitq);
134 goto out;
135 }
136
137 req->in.h.uid = from_kuid(fc->user_ns, current_fsuid());
138 req->in.h.gid = from_kgid(fc->user_ns, current_fsgid());
139 req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns);
140
141 __set_bit(FR_WAITING, &req->flags);
142 if (for_background)
143 __set_bit(FR_BACKGROUND, &req->flags);
144
145 if (unlikely(req->in.h.uid == ((uid_t)-1) ||
146 req->in.h.gid == ((gid_t)-1))) {
147 fuse_put_request(fc, req);
148 return ERR_PTR(-EOVERFLOW);
149 }
150 return req;
151
152 out:
153 fuse_drop_waiting(fc);
154 return ERR_PTR(err);
155 }
156
fuse_put_request(struct fuse_conn * fc,struct fuse_req * req)157 static void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
158 {
159 if (refcount_dec_and_test(&req->count)) {
160 if (test_bit(FR_BACKGROUND, &req->flags)) {
161 /*
162 * We get here in the unlikely case that a background
163 * request was allocated but not sent
164 */
165 spin_lock(&fc->bg_lock);
166 if (!fc->blocked)
167 wake_up(&fc->blocked_waitq);
168 spin_unlock(&fc->bg_lock);
169 }
170
171 if (test_bit(FR_WAITING, &req->flags)) {
172 __clear_bit(FR_WAITING, &req->flags);
173 fuse_drop_waiting(fc);
174 }
175
176 fuse_request_free(req);
177 }
178 }
179
fuse_len_args(unsigned int numargs,struct fuse_arg * args)180 unsigned int fuse_len_args(unsigned int numargs, struct fuse_arg *args)
181 {
182 unsigned nbytes = 0;
183 unsigned i;
184
185 for (i = 0; i < numargs; i++)
186 nbytes += args[i].size;
187
188 return nbytes;
189 }
190 EXPORT_SYMBOL_GPL(fuse_len_args);
191
fuse_get_unique(struct fuse_iqueue * fiq)192 u64 fuse_get_unique(struct fuse_iqueue *fiq)
193 {
194 fiq->reqctr += FUSE_REQ_ID_STEP;
195 return fiq->reqctr;
196 }
197 EXPORT_SYMBOL_GPL(fuse_get_unique);
198
fuse_req_hash(u64 unique)199 static unsigned int fuse_req_hash(u64 unique)
200 {
201 return hash_long(unique & ~FUSE_INT_REQ_BIT, FUSE_PQ_HASH_BITS);
202 }
203
204 /**
205 * A new request is available, wake fiq->waitq
206 */
fuse_dev_wake_and_unlock(struct fuse_iqueue * fiq)207 static void fuse_dev_wake_and_unlock(struct fuse_iqueue *fiq)
208 __releases(fiq->lock)
209 {
210 wake_up(&fiq->waitq);
211 kill_fasync(&fiq->fasync, SIGIO, POLL_IN);
212 spin_unlock(&fiq->lock);
213 }
214
215 const struct fuse_iqueue_ops fuse_dev_fiq_ops = {
216 .wake_forget_and_unlock = fuse_dev_wake_and_unlock,
217 .wake_interrupt_and_unlock = fuse_dev_wake_and_unlock,
218 .wake_pending_and_unlock = fuse_dev_wake_and_unlock,
219 };
220 EXPORT_SYMBOL_GPL(fuse_dev_fiq_ops);
221
queue_request_and_unlock(struct fuse_iqueue * fiq,struct fuse_req * req)222 static void queue_request_and_unlock(struct fuse_iqueue *fiq,
223 struct fuse_req *req)
224 __releases(fiq->lock)
225 {
226 req->in.h.len = sizeof(struct fuse_in_header) +
227 fuse_len_args(req->args->in_numargs,
228 (struct fuse_arg *) req->args->in_args);
229 list_add_tail(&req->list, &fiq->pending);
230 fiq->ops->wake_pending_and_unlock(fiq);
231 }
232
fuse_queue_forget(struct fuse_conn * fc,struct fuse_forget_link * forget,u64 nodeid,u64 nlookup)233 void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget,
234 u64 nodeid, u64 nlookup)
235 {
236 struct fuse_iqueue *fiq = &fc->iq;
237
238 forget->forget_one.nodeid = nodeid;
239 forget->forget_one.nlookup = nlookup;
240
241 spin_lock(&fiq->lock);
242 if (fiq->connected) {
243 fiq->forget_list_tail->next = forget;
244 fiq->forget_list_tail = forget;
245 fiq->ops->wake_forget_and_unlock(fiq);
246 } else {
247 kfree(forget);
248 spin_unlock(&fiq->lock);
249 }
250 }
251
flush_bg_queue(struct fuse_conn * fc)252 static void flush_bg_queue(struct fuse_conn *fc)
253 {
254 struct fuse_iqueue *fiq = &fc->iq;
255
256 while (fc->active_background < fc->max_background &&
257 !list_empty(&fc->bg_queue)) {
258 struct fuse_req *req;
259
260 req = list_first_entry(&fc->bg_queue, struct fuse_req, list);
261 list_del(&req->list);
262 fc->active_background++;
263 spin_lock(&fiq->lock);
264 req->in.h.unique = fuse_get_unique(fiq);
265 queue_request_and_unlock(fiq, req);
266 }
267 }
268
269 /*
270 * This function is called when a request is finished. Either a reply
271 * has arrived or it was aborted (and not yet sent) or some error
272 * occurred during communication with userspace, or the device file
273 * was closed. The requester thread is woken up (if still waiting),
274 * the 'end' callback is called if given, else the reference to the
275 * request is released
276 */
fuse_request_end(struct fuse_conn * fc,struct fuse_req * req)277 void fuse_request_end(struct fuse_conn *fc, struct fuse_req *req)
278 {
279 struct fuse_iqueue *fiq = &fc->iq;
280
281 if (test_and_set_bit(FR_FINISHED, &req->flags))
282 goto put_request;
283
284 /*
285 * test_and_set_bit() implies smp_mb() between bit
286 * changing and below FR_INTERRUPTED check. Pairs with
287 * smp_mb() from queue_interrupt().
288 */
289 if (test_bit(FR_INTERRUPTED, &req->flags)) {
290 spin_lock(&fiq->lock);
291 list_del_init(&req->intr_entry);
292 spin_unlock(&fiq->lock);
293 }
294 WARN_ON(test_bit(FR_PENDING, &req->flags));
295 WARN_ON(test_bit(FR_SENT, &req->flags));
296 if (test_bit(FR_BACKGROUND, &req->flags)) {
297 spin_lock(&fc->bg_lock);
298 clear_bit(FR_BACKGROUND, &req->flags);
299 if (fc->num_background == fc->max_background) {
300 fc->blocked = 0;
301 wake_up(&fc->blocked_waitq);
302 } else if (!fc->blocked) {
303 /*
304 * Wake up next waiter, if any. It's okay to use
305 * waitqueue_active(), as we've already synced up
306 * fc->blocked with waiters with the wake_up() call
307 * above.
308 */
309 if (waitqueue_active(&fc->blocked_waitq))
310 wake_up(&fc->blocked_waitq);
311 }
312
313 if (fc->num_background == fc->congestion_threshold && fc->sb) {
314 clear_bdi_congested(fc->sb->s_bdi, BLK_RW_SYNC);
315 clear_bdi_congested(fc->sb->s_bdi, BLK_RW_ASYNC);
316 }
317 fc->num_background--;
318 fc->active_background--;
319 flush_bg_queue(fc);
320 spin_unlock(&fc->bg_lock);
321 } else {
322 /* Wake up waiter sleeping in request_wait_answer() */
323 wake_up(&req->waitq);
324 }
325
326 if (test_bit(FR_ASYNC, &req->flags))
327 req->args->end(fc, req->args, req->out.h.error);
328 put_request:
329 fuse_put_request(fc, req);
330 }
331 EXPORT_SYMBOL_GPL(fuse_request_end);
332
queue_interrupt(struct fuse_iqueue * fiq,struct fuse_req * req)333 static int queue_interrupt(struct fuse_iqueue *fiq, struct fuse_req *req)
334 {
335 spin_lock(&fiq->lock);
336 /* Check for we've sent request to interrupt this req */
337 if (unlikely(!test_bit(FR_INTERRUPTED, &req->flags))) {
338 spin_unlock(&fiq->lock);
339 return -EINVAL;
340 }
341
342 if (list_empty(&req->intr_entry)) {
343 list_add_tail(&req->intr_entry, &fiq->interrupts);
344 /*
345 * Pairs with smp_mb() implied by test_and_set_bit()
346 * from request_end().
347 */
348 smp_mb();
349 if (test_bit(FR_FINISHED, &req->flags)) {
350 list_del_init(&req->intr_entry);
351 spin_unlock(&fiq->lock);
352 return 0;
353 }
354 fiq->ops->wake_interrupt_and_unlock(fiq);
355 } else {
356 spin_unlock(&fiq->lock);
357 }
358 return 0;
359 }
360
request_wait_answer(struct fuse_conn * fc,struct fuse_req * req)361 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
362 {
363 struct fuse_iqueue *fiq = &fc->iq;
364 int err;
365
366 if (!fc->no_interrupt) {
367 /* Any signal may interrupt this */
368 err = wait_event_interruptible(req->waitq,
369 test_bit(FR_FINISHED, &req->flags));
370 if (!err)
371 return;
372
373 set_bit(FR_INTERRUPTED, &req->flags);
374 /* matches barrier in fuse_dev_do_read() */
375 smp_mb__after_atomic();
376 if (test_bit(FR_SENT, &req->flags))
377 queue_interrupt(fiq, req);
378 }
379
380 if (!test_bit(FR_FORCE, &req->flags)) {
381 /* Only fatal signals may interrupt this */
382 err = wait_event_killable(req->waitq,
383 test_bit(FR_FINISHED, &req->flags));
384 if (!err)
385 return;
386
387 spin_lock(&fiq->lock);
388 /* Request is not yet in userspace, bail out */
389 if (test_bit(FR_PENDING, &req->flags)) {
390 list_del(&req->list);
391 spin_unlock(&fiq->lock);
392 __fuse_put_request(req);
393 req->out.h.error = -EINTR;
394 return;
395 }
396 spin_unlock(&fiq->lock);
397 }
398
399 /*
400 * Either request is already in userspace, or it was forced.
401 * Wait it out.
402 */
403 wait_event(req->waitq, test_bit(FR_FINISHED, &req->flags));
404 }
405
__fuse_request_send(struct fuse_conn * fc,struct fuse_req * req)406 static void __fuse_request_send(struct fuse_conn *fc, struct fuse_req *req)
407 {
408 struct fuse_iqueue *fiq = &fc->iq;
409
410 BUG_ON(test_bit(FR_BACKGROUND, &req->flags));
411 spin_lock(&fiq->lock);
412 if (!fiq->connected) {
413 spin_unlock(&fiq->lock);
414 req->out.h.error = -ENOTCONN;
415 } else {
416 req->in.h.unique = fuse_get_unique(fiq);
417 /* acquire extra reference, since request is still needed
418 after fuse_request_end() */
419 __fuse_get_request(req);
420 queue_request_and_unlock(fiq, req);
421
422 request_wait_answer(fc, req);
423 /* Pairs with smp_wmb() in fuse_request_end() */
424 smp_rmb();
425 }
426 }
427
fuse_adjust_compat(struct fuse_conn * fc,struct fuse_args * args)428 static void fuse_adjust_compat(struct fuse_conn *fc, struct fuse_args *args)
429 {
430 if (fc->minor < 4 && args->opcode == FUSE_STATFS)
431 args->out_args[0].size = FUSE_COMPAT_STATFS_SIZE;
432
433 if (fc->minor < 9) {
434 switch (args->opcode) {
435 case FUSE_LOOKUP:
436 case FUSE_CREATE:
437 case FUSE_MKNOD:
438 case FUSE_MKDIR:
439 case FUSE_SYMLINK:
440 case FUSE_LINK:
441 args->out_args[0].size = FUSE_COMPAT_ENTRY_OUT_SIZE;
442 break;
443 case FUSE_GETATTR:
444 case FUSE_SETATTR:
445 args->out_args[0].size = FUSE_COMPAT_ATTR_OUT_SIZE;
446 break;
447 }
448 }
449 if (fc->minor < 12) {
450 switch (args->opcode) {
451 case FUSE_CREATE:
452 args->in_args[0].size = sizeof(struct fuse_open_in);
453 break;
454 case FUSE_MKNOD:
455 args->in_args[0].size = FUSE_COMPAT_MKNOD_IN_SIZE;
456 break;
457 }
458 }
459 }
460
fuse_force_creds(struct fuse_conn * fc,struct fuse_req * req)461 static void fuse_force_creds(struct fuse_conn *fc, struct fuse_req *req)
462 {
463 req->in.h.uid = from_kuid_munged(fc->user_ns, current_fsuid());
464 req->in.h.gid = from_kgid_munged(fc->user_ns, current_fsgid());
465 req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns);
466 }
467
fuse_args_to_req(struct fuse_req * req,struct fuse_args * args)468 static void fuse_args_to_req(struct fuse_req *req, struct fuse_args *args)
469 {
470 req->in.h.opcode = args->opcode;
471 req->in.h.nodeid = args->nodeid;
472 req->args = args;
473 if (args->end)
474 __set_bit(FR_ASYNC, &req->flags);
475 }
476
fuse_simple_request(struct fuse_conn * fc,struct fuse_args * args)477 ssize_t fuse_simple_request(struct fuse_conn *fc, struct fuse_args *args)
478 {
479 struct fuse_req *req;
480 ssize_t ret;
481
482 if (args->force) {
483 atomic_inc(&fc->num_waiting);
484 req = fuse_request_alloc(GFP_KERNEL | __GFP_NOFAIL);
485
486 if (!args->nocreds)
487 fuse_force_creds(fc, req);
488
489 __set_bit(FR_WAITING, &req->flags);
490 __set_bit(FR_FORCE, &req->flags);
491 } else {
492 WARN_ON(args->nocreds);
493 req = fuse_get_req(fc, false);
494 if (IS_ERR(req))
495 return PTR_ERR(req);
496 }
497
498 /* Needs to be done after fuse_get_req() so that fc->minor is valid */
499 fuse_adjust_compat(fc, args);
500 fuse_args_to_req(req, args);
501
502 if (!args->noreply)
503 __set_bit(FR_ISREPLY, &req->flags);
504 __fuse_request_send(fc, req);
505 ret = req->out.h.error;
506 if (!ret && args->out_argvar) {
507 BUG_ON(args->out_numargs == 0);
508 ret = args->out_args[args->out_numargs - 1].size;
509 }
510 fuse_put_request(fc, req);
511
512 return ret;
513 }
514
fuse_request_queue_background(struct fuse_conn * fc,struct fuse_req * req)515 static bool fuse_request_queue_background(struct fuse_conn *fc,
516 struct fuse_req *req)
517 {
518 bool queued = false;
519
520 WARN_ON(!test_bit(FR_BACKGROUND, &req->flags));
521 if (!test_bit(FR_WAITING, &req->flags)) {
522 __set_bit(FR_WAITING, &req->flags);
523 atomic_inc(&fc->num_waiting);
524 }
525 __set_bit(FR_ISREPLY, &req->flags);
526 spin_lock(&fc->bg_lock);
527 if (likely(fc->connected)) {
528 fc->num_background++;
529 if (fc->num_background == fc->max_background)
530 fc->blocked = 1;
531 if (fc->num_background == fc->congestion_threshold && fc->sb) {
532 set_bdi_congested(fc->sb->s_bdi, BLK_RW_SYNC);
533 set_bdi_congested(fc->sb->s_bdi, BLK_RW_ASYNC);
534 }
535 list_add_tail(&req->list, &fc->bg_queue);
536 flush_bg_queue(fc);
537 queued = true;
538 }
539 spin_unlock(&fc->bg_lock);
540
541 return queued;
542 }
543
fuse_simple_background(struct fuse_conn * fc,struct fuse_args * args,gfp_t gfp_flags)544 int fuse_simple_background(struct fuse_conn *fc, struct fuse_args *args,
545 gfp_t gfp_flags)
546 {
547 struct fuse_req *req;
548
549 if (args->force) {
550 WARN_ON(!args->nocreds);
551 req = fuse_request_alloc(gfp_flags);
552 if (!req)
553 return -ENOMEM;
554 __set_bit(FR_BACKGROUND, &req->flags);
555 } else {
556 WARN_ON(args->nocreds);
557 req = fuse_get_req(fc, true);
558 if (IS_ERR(req))
559 return PTR_ERR(req);
560 }
561
562 fuse_args_to_req(req, args);
563
564 if (!fuse_request_queue_background(fc, req)) {
565 fuse_put_request(fc, req);
566 return -ENOTCONN;
567 }
568
569 return 0;
570 }
571 EXPORT_SYMBOL_GPL(fuse_simple_background);
572
fuse_simple_notify_reply(struct fuse_conn * fc,struct fuse_args * args,u64 unique)573 static int fuse_simple_notify_reply(struct fuse_conn *fc,
574 struct fuse_args *args, u64 unique)
575 {
576 struct fuse_req *req;
577 struct fuse_iqueue *fiq = &fc->iq;
578 int err = 0;
579
580 req = fuse_get_req(fc, false);
581 if (IS_ERR(req))
582 return PTR_ERR(req);
583
584 __clear_bit(FR_ISREPLY, &req->flags);
585 req->in.h.unique = unique;
586
587 fuse_args_to_req(req, args);
588
589 spin_lock(&fiq->lock);
590 if (fiq->connected) {
591 queue_request_and_unlock(fiq, req);
592 } else {
593 err = -ENODEV;
594 spin_unlock(&fiq->lock);
595 fuse_put_request(fc, req);
596 }
597
598 return err;
599 }
600
601 /*
602 * Lock the request. Up to the next unlock_request() there mustn't be
603 * anything that could cause a page-fault. If the request was already
604 * aborted bail out.
605 */
lock_request(struct fuse_req * req)606 static int lock_request(struct fuse_req *req)
607 {
608 int err = 0;
609 if (req) {
610 spin_lock(&req->waitq.lock);
611 if (test_bit(FR_ABORTED, &req->flags))
612 err = -ENOENT;
613 else
614 set_bit(FR_LOCKED, &req->flags);
615 spin_unlock(&req->waitq.lock);
616 }
617 return err;
618 }
619
620 /*
621 * Unlock request. If it was aborted while locked, caller is responsible
622 * for unlocking and ending the request.
623 */
unlock_request(struct fuse_req * req)624 static int unlock_request(struct fuse_req *req)
625 {
626 int err = 0;
627 if (req) {
628 spin_lock(&req->waitq.lock);
629 if (test_bit(FR_ABORTED, &req->flags))
630 err = -ENOENT;
631 else
632 clear_bit(FR_LOCKED, &req->flags);
633 spin_unlock(&req->waitq.lock);
634 }
635 return err;
636 }
637
638 struct fuse_copy_state {
639 int write;
640 struct fuse_req *req;
641 struct iov_iter *iter;
642 struct pipe_buffer *pipebufs;
643 struct pipe_buffer *currbuf;
644 struct pipe_inode_info *pipe;
645 unsigned long nr_segs;
646 struct page *pg;
647 unsigned len;
648 unsigned offset;
649 unsigned move_pages:1;
650 };
651
fuse_copy_init(struct fuse_copy_state * cs,int write,struct iov_iter * iter)652 static void fuse_copy_init(struct fuse_copy_state *cs, int write,
653 struct iov_iter *iter)
654 {
655 memset(cs, 0, sizeof(*cs));
656 cs->write = write;
657 cs->iter = iter;
658 }
659
660 /* Unmap and put previous page of userspace buffer */
fuse_copy_finish(struct fuse_copy_state * cs)661 static void fuse_copy_finish(struct fuse_copy_state *cs)
662 {
663 if (cs->currbuf) {
664 struct pipe_buffer *buf = cs->currbuf;
665
666 if (cs->write)
667 buf->len = PAGE_SIZE - cs->len;
668 cs->currbuf = NULL;
669 } else if (cs->pg) {
670 if (cs->write) {
671 flush_dcache_page(cs->pg);
672 set_page_dirty_lock(cs->pg);
673 }
674 put_page(cs->pg);
675 }
676 cs->pg = NULL;
677 }
678
679 /*
680 * Get another pagefull of userspace buffer, and map it to kernel
681 * address space, and lock request
682 */
fuse_copy_fill(struct fuse_copy_state * cs)683 static int fuse_copy_fill(struct fuse_copy_state *cs)
684 {
685 struct page *page;
686 int err;
687
688 err = unlock_request(cs->req);
689 if (err)
690 return err;
691
692 fuse_copy_finish(cs);
693 if (cs->pipebufs) {
694 struct pipe_buffer *buf = cs->pipebufs;
695
696 if (!cs->write) {
697 err = pipe_buf_confirm(cs->pipe, buf);
698 if (err)
699 return err;
700
701 BUG_ON(!cs->nr_segs);
702 cs->currbuf = buf;
703 cs->pg = buf->page;
704 cs->offset = buf->offset;
705 cs->len = buf->len;
706 cs->pipebufs++;
707 cs->nr_segs--;
708 } else {
709 if (cs->nr_segs == cs->pipe->buffers)
710 return -EIO;
711
712 page = alloc_page(GFP_HIGHUSER);
713 if (!page)
714 return -ENOMEM;
715
716 buf->page = page;
717 buf->offset = 0;
718 buf->len = 0;
719
720 cs->currbuf = buf;
721 cs->pg = page;
722 cs->offset = 0;
723 cs->len = PAGE_SIZE;
724 cs->pipebufs++;
725 cs->nr_segs++;
726 }
727 } else {
728 size_t off;
729 err = iov_iter_get_pages(cs->iter, &page, PAGE_SIZE, 1, &off);
730 if (err < 0)
731 return err;
732 BUG_ON(!err);
733 cs->len = err;
734 cs->offset = off;
735 cs->pg = page;
736 iov_iter_advance(cs->iter, err);
737 }
738
739 return lock_request(cs->req);
740 }
741
742 /* Do as much copy to/from userspace buffer as we can */
fuse_copy_do(struct fuse_copy_state * cs,void ** val,unsigned * size)743 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
744 {
745 unsigned ncpy = min(*size, cs->len);
746 if (val) {
747 void *pgaddr = kmap_atomic(cs->pg);
748 void *buf = pgaddr + cs->offset;
749
750 if (cs->write)
751 memcpy(buf, *val, ncpy);
752 else
753 memcpy(*val, buf, ncpy);
754
755 kunmap_atomic(pgaddr);
756 *val += ncpy;
757 }
758 *size -= ncpy;
759 cs->len -= ncpy;
760 cs->offset += ncpy;
761 return ncpy;
762 }
763
fuse_check_page(struct page * page)764 static int fuse_check_page(struct page *page)
765 {
766 if (page_mapcount(page) ||
767 page->mapping != NULL ||
768 (page->flags & PAGE_FLAGS_CHECK_AT_PREP &
769 ~(1 << PG_locked |
770 1 << PG_referenced |
771 1 << PG_uptodate |
772 1 << PG_lru |
773 1 << PG_active |
774 1 << PG_workingset |
775 1 << PG_reclaim |
776 1 << PG_waiters))) {
777 pr_warn("trying to steal weird page\n");
778 pr_warn(" page=%p index=%li flags=%08lx, count=%i, mapcount=%i, mapping=%p\n", page, page->index, page->flags, page_count(page), page_mapcount(page), page->mapping);
779 return 1;
780 }
781 return 0;
782 }
783
fuse_try_move_page(struct fuse_copy_state * cs,struct page ** pagep)784 static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep)
785 {
786 int err;
787 struct page *oldpage = *pagep;
788 struct page *newpage;
789 struct pipe_buffer *buf = cs->pipebufs;
790
791 get_page(oldpage);
792 err = unlock_request(cs->req);
793 if (err)
794 goto out_put_old;
795
796 fuse_copy_finish(cs);
797
798 err = pipe_buf_confirm(cs->pipe, buf);
799 if (err)
800 goto out_put_old;
801
802 BUG_ON(!cs->nr_segs);
803 cs->currbuf = buf;
804 cs->len = buf->len;
805 cs->pipebufs++;
806 cs->nr_segs--;
807
808 if (cs->len != PAGE_SIZE)
809 goto out_fallback;
810
811 if (pipe_buf_steal(cs->pipe, buf) != 0)
812 goto out_fallback;
813
814 newpage = buf->page;
815
816 if (!PageUptodate(newpage))
817 SetPageUptodate(newpage);
818
819 ClearPageMappedToDisk(newpage);
820
821 if (fuse_check_page(newpage) != 0)
822 goto out_fallback_unlock;
823
824 /*
825 * This is a new and locked page, it shouldn't be mapped or
826 * have any special flags on it
827 */
828 if (WARN_ON(page_mapped(oldpage)))
829 goto out_fallback_unlock;
830 if (WARN_ON(page_has_private(oldpage)))
831 goto out_fallback_unlock;
832 if (WARN_ON(PageDirty(oldpage) || PageWriteback(oldpage)))
833 goto out_fallback_unlock;
834 if (WARN_ON(PageMlocked(oldpage)))
835 goto out_fallback_unlock;
836
837 err = replace_page_cache_page(oldpage, newpage, GFP_KERNEL);
838 if (err) {
839 unlock_page(newpage);
840 goto out_put_old;
841 }
842
843 get_page(newpage);
844
845 if (!(buf->flags & PIPE_BUF_FLAG_LRU))
846 lru_cache_add_file(newpage);
847
848 /*
849 * Release while we have extra ref on stolen page. Otherwise
850 * anon_pipe_buf_release() might think the page can be reused.
851 */
852 pipe_buf_release(cs->pipe, buf);
853
854 err = 0;
855 spin_lock(&cs->req->waitq.lock);
856 if (test_bit(FR_ABORTED, &cs->req->flags))
857 err = -ENOENT;
858 else
859 *pagep = newpage;
860 spin_unlock(&cs->req->waitq.lock);
861
862 if (err) {
863 unlock_page(newpage);
864 put_page(newpage);
865 goto out_put_old;
866 }
867
868 unlock_page(oldpage);
869 /* Drop ref for ap->pages[] array */
870 put_page(oldpage);
871 cs->len = 0;
872
873 err = 0;
874 out_put_old:
875 /* Drop ref obtained in this function */
876 put_page(oldpage);
877 return err;
878
879 out_fallback_unlock:
880 unlock_page(newpage);
881 out_fallback:
882 cs->pg = buf->page;
883 cs->offset = buf->offset;
884
885 err = lock_request(cs->req);
886 if (!err)
887 err = 1;
888
889 goto out_put_old;
890 }
891
fuse_ref_page(struct fuse_copy_state * cs,struct page * page,unsigned offset,unsigned count)892 static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page,
893 unsigned offset, unsigned count)
894 {
895 struct pipe_buffer *buf;
896 int err;
897
898 if (cs->nr_segs == cs->pipe->buffers)
899 return -EIO;
900
901 get_page(page);
902 err = unlock_request(cs->req);
903 if (err) {
904 put_page(page);
905 return err;
906 }
907
908 fuse_copy_finish(cs);
909
910 buf = cs->pipebufs;
911 buf->page = page;
912 buf->offset = offset;
913 buf->len = count;
914
915 cs->pipebufs++;
916 cs->nr_segs++;
917 cs->len = 0;
918
919 return 0;
920 }
921
922 /*
923 * Copy a page in the request to/from the userspace buffer. Must be
924 * done atomically
925 */
fuse_copy_page(struct fuse_copy_state * cs,struct page ** pagep,unsigned offset,unsigned count,int zeroing)926 static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep,
927 unsigned offset, unsigned count, int zeroing)
928 {
929 int err;
930 struct page *page = *pagep;
931
932 if (page && zeroing && count < PAGE_SIZE)
933 clear_highpage(page);
934
935 while (count) {
936 if (cs->write && cs->pipebufs && page) {
937 /*
938 * Can't control lifetime of pipe buffers, so always
939 * copy user pages.
940 */
941 if (cs->req->args->user_pages) {
942 err = fuse_copy_fill(cs);
943 if (err)
944 return err;
945 } else {
946 return fuse_ref_page(cs, page, offset, count);
947 }
948 } else if (!cs->len) {
949 if (cs->move_pages && page &&
950 offset == 0 && count == PAGE_SIZE) {
951 err = fuse_try_move_page(cs, pagep);
952 if (err <= 0)
953 return err;
954 } else {
955 err = fuse_copy_fill(cs);
956 if (err)
957 return err;
958 }
959 }
960 if (page) {
961 void *mapaddr = kmap_atomic(page);
962 void *buf = mapaddr + offset;
963 offset += fuse_copy_do(cs, &buf, &count);
964 kunmap_atomic(mapaddr);
965 } else
966 offset += fuse_copy_do(cs, NULL, &count);
967 }
968 if (page && !cs->write)
969 flush_dcache_page(page);
970 return 0;
971 }
972
973 /* Copy pages in the request to/from userspace buffer */
fuse_copy_pages(struct fuse_copy_state * cs,unsigned nbytes,int zeroing)974 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
975 int zeroing)
976 {
977 unsigned i;
978 struct fuse_req *req = cs->req;
979 struct fuse_args_pages *ap = container_of(req->args, typeof(*ap), args);
980
981
982 for (i = 0; i < ap->num_pages && (nbytes || zeroing); i++) {
983 int err;
984 unsigned int offset = ap->descs[i].offset;
985 unsigned int count = min(nbytes, ap->descs[i].length);
986
987 err = fuse_copy_page(cs, &ap->pages[i], offset, count, zeroing);
988 if (err)
989 return err;
990
991 nbytes -= count;
992 }
993 return 0;
994 }
995
996 /* Copy a single argument in the request to/from userspace buffer */
fuse_copy_one(struct fuse_copy_state * cs,void * val,unsigned size)997 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
998 {
999 while (size) {
1000 if (!cs->len) {
1001 int err = fuse_copy_fill(cs);
1002 if (err)
1003 return err;
1004 }
1005 fuse_copy_do(cs, &val, &size);
1006 }
1007 return 0;
1008 }
1009
1010 /* Copy request arguments to/from userspace buffer */
fuse_copy_args(struct fuse_copy_state * cs,unsigned numargs,unsigned argpages,struct fuse_arg * args,int zeroing)1011 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
1012 unsigned argpages, struct fuse_arg *args,
1013 int zeroing)
1014 {
1015 int err = 0;
1016 unsigned i;
1017
1018 for (i = 0; !err && i < numargs; i++) {
1019 struct fuse_arg *arg = &args[i];
1020 if (i == numargs - 1 && argpages)
1021 err = fuse_copy_pages(cs, arg->size, zeroing);
1022 else
1023 err = fuse_copy_one(cs, arg->value, arg->size);
1024 }
1025 return err;
1026 }
1027
forget_pending(struct fuse_iqueue * fiq)1028 static int forget_pending(struct fuse_iqueue *fiq)
1029 {
1030 return fiq->forget_list_head.next != NULL;
1031 }
1032
request_pending(struct fuse_iqueue * fiq)1033 static int request_pending(struct fuse_iqueue *fiq)
1034 {
1035 return !list_empty(&fiq->pending) || !list_empty(&fiq->interrupts) ||
1036 forget_pending(fiq);
1037 }
1038
1039 /*
1040 * Transfer an interrupt request to userspace
1041 *
1042 * Unlike other requests this is assembled on demand, without a need
1043 * to allocate a separate fuse_req structure.
1044 *
1045 * Called with fiq->lock held, releases it
1046 */
fuse_read_interrupt(struct fuse_iqueue * fiq,struct fuse_copy_state * cs,size_t nbytes,struct fuse_req * req)1047 static int fuse_read_interrupt(struct fuse_iqueue *fiq,
1048 struct fuse_copy_state *cs,
1049 size_t nbytes, struct fuse_req *req)
1050 __releases(fiq->lock)
1051 {
1052 struct fuse_in_header ih;
1053 struct fuse_interrupt_in arg;
1054 unsigned reqsize = sizeof(ih) + sizeof(arg);
1055 int err;
1056
1057 list_del_init(&req->intr_entry);
1058 memset(&ih, 0, sizeof(ih));
1059 memset(&arg, 0, sizeof(arg));
1060 ih.len = reqsize;
1061 ih.opcode = FUSE_INTERRUPT;
1062 ih.unique = (req->in.h.unique | FUSE_INT_REQ_BIT);
1063 arg.unique = req->in.h.unique;
1064
1065 spin_unlock(&fiq->lock);
1066 if (nbytes < reqsize)
1067 return -EINVAL;
1068
1069 err = fuse_copy_one(cs, &ih, sizeof(ih));
1070 if (!err)
1071 err = fuse_copy_one(cs, &arg, sizeof(arg));
1072 fuse_copy_finish(cs);
1073
1074 return err ? err : reqsize;
1075 }
1076
fuse_dequeue_forget(struct fuse_iqueue * fiq,unsigned int max,unsigned int * countp)1077 struct fuse_forget_link *fuse_dequeue_forget(struct fuse_iqueue *fiq,
1078 unsigned int max,
1079 unsigned int *countp)
1080 {
1081 struct fuse_forget_link *head = fiq->forget_list_head.next;
1082 struct fuse_forget_link **newhead = &head;
1083 unsigned count;
1084
1085 for (count = 0; *newhead != NULL && count < max; count++)
1086 newhead = &(*newhead)->next;
1087
1088 fiq->forget_list_head.next = *newhead;
1089 *newhead = NULL;
1090 if (fiq->forget_list_head.next == NULL)
1091 fiq->forget_list_tail = &fiq->forget_list_head;
1092
1093 if (countp != NULL)
1094 *countp = count;
1095
1096 return head;
1097 }
1098 EXPORT_SYMBOL(fuse_dequeue_forget);
1099
fuse_read_single_forget(struct fuse_iqueue * fiq,struct fuse_copy_state * cs,size_t nbytes)1100 static int fuse_read_single_forget(struct fuse_iqueue *fiq,
1101 struct fuse_copy_state *cs,
1102 size_t nbytes)
1103 __releases(fiq->lock)
1104 {
1105 int err;
1106 struct fuse_forget_link *forget = fuse_dequeue_forget(fiq, 1, NULL);
1107 struct fuse_forget_in arg = {
1108 .nlookup = forget->forget_one.nlookup,
1109 };
1110 struct fuse_in_header ih = {
1111 .opcode = FUSE_FORGET,
1112 .nodeid = forget->forget_one.nodeid,
1113 .unique = fuse_get_unique(fiq),
1114 .len = sizeof(ih) + sizeof(arg),
1115 };
1116
1117 spin_unlock(&fiq->lock);
1118 kfree(forget);
1119 if (nbytes < ih.len)
1120 return -EINVAL;
1121
1122 err = fuse_copy_one(cs, &ih, sizeof(ih));
1123 if (!err)
1124 err = fuse_copy_one(cs, &arg, sizeof(arg));
1125 fuse_copy_finish(cs);
1126
1127 if (err)
1128 return err;
1129
1130 return ih.len;
1131 }
1132
fuse_read_batch_forget(struct fuse_iqueue * fiq,struct fuse_copy_state * cs,size_t nbytes)1133 static int fuse_read_batch_forget(struct fuse_iqueue *fiq,
1134 struct fuse_copy_state *cs, size_t nbytes)
1135 __releases(fiq->lock)
1136 {
1137 int err;
1138 unsigned max_forgets;
1139 unsigned count;
1140 struct fuse_forget_link *head;
1141 struct fuse_batch_forget_in arg = { .count = 0 };
1142 struct fuse_in_header ih = {
1143 .opcode = FUSE_BATCH_FORGET,
1144 .unique = fuse_get_unique(fiq),
1145 .len = sizeof(ih) + sizeof(arg),
1146 };
1147
1148 if (nbytes < ih.len) {
1149 spin_unlock(&fiq->lock);
1150 return -EINVAL;
1151 }
1152
1153 max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one);
1154 head = fuse_dequeue_forget(fiq, max_forgets, &count);
1155 spin_unlock(&fiq->lock);
1156
1157 arg.count = count;
1158 ih.len += count * sizeof(struct fuse_forget_one);
1159 err = fuse_copy_one(cs, &ih, sizeof(ih));
1160 if (!err)
1161 err = fuse_copy_one(cs, &arg, sizeof(arg));
1162
1163 while (head) {
1164 struct fuse_forget_link *forget = head;
1165
1166 if (!err) {
1167 err = fuse_copy_one(cs, &forget->forget_one,
1168 sizeof(forget->forget_one));
1169 }
1170 head = forget->next;
1171 kfree(forget);
1172 }
1173
1174 fuse_copy_finish(cs);
1175
1176 if (err)
1177 return err;
1178
1179 return ih.len;
1180 }
1181
fuse_read_forget(struct fuse_conn * fc,struct fuse_iqueue * fiq,struct fuse_copy_state * cs,size_t nbytes)1182 static int fuse_read_forget(struct fuse_conn *fc, struct fuse_iqueue *fiq,
1183 struct fuse_copy_state *cs,
1184 size_t nbytes)
1185 __releases(fiq->lock)
1186 {
1187 if (fc->minor < 16 || fiq->forget_list_head.next->next == NULL)
1188 return fuse_read_single_forget(fiq, cs, nbytes);
1189 else
1190 return fuse_read_batch_forget(fiq, cs, nbytes);
1191 }
1192
1193 /*
1194 * Read a single request into the userspace filesystem's buffer. This
1195 * function waits until a request is available, then removes it from
1196 * the pending list and copies request data to userspace buffer. If
1197 * no reply is needed (FORGET) or request has been aborted or there
1198 * was an error during the copying then it's finished by calling
1199 * fuse_request_end(). Otherwise add it to the processing list, and set
1200 * the 'sent' flag.
1201 */
fuse_dev_do_read(struct fuse_dev * fud,struct file * file,struct fuse_copy_state * cs,size_t nbytes)1202 static ssize_t fuse_dev_do_read(struct fuse_dev *fud, struct file *file,
1203 struct fuse_copy_state *cs, size_t nbytes)
1204 {
1205 ssize_t err;
1206 struct fuse_conn *fc = fud->fc;
1207 struct fuse_iqueue *fiq = &fc->iq;
1208 struct fuse_pqueue *fpq = &fud->pq;
1209 struct fuse_req *req;
1210 struct fuse_args *args;
1211 unsigned reqsize;
1212 unsigned int hash;
1213
1214 /*
1215 * Require sane minimum read buffer - that has capacity for fixed part
1216 * of any request header + negotiated max_write room for data.
1217 *
1218 * Historically libfuse reserves 4K for fixed header room, but e.g.
1219 * GlusterFS reserves only 80 bytes
1220 *
1221 * = `sizeof(fuse_in_header) + sizeof(fuse_write_in)`
1222 *
1223 * which is the absolute minimum any sane filesystem should be using
1224 * for header room.
1225 */
1226 if (nbytes < max_t(size_t, FUSE_MIN_READ_BUFFER,
1227 sizeof(struct fuse_in_header) +
1228 sizeof(struct fuse_write_in) +
1229 fc->max_write))
1230 return -EINVAL;
1231
1232 restart:
1233 for (;;) {
1234 spin_lock(&fiq->lock);
1235 if (!fiq->connected || request_pending(fiq))
1236 break;
1237 spin_unlock(&fiq->lock);
1238
1239 if (file->f_flags & O_NONBLOCK)
1240 return -EAGAIN;
1241 err = wait_event_interruptible_exclusive(fiq->waitq,
1242 !fiq->connected || request_pending(fiq));
1243 if (err)
1244 return err;
1245 }
1246
1247 if (!fiq->connected) {
1248 err = fc->aborted ? -ECONNABORTED : -ENODEV;
1249 goto err_unlock;
1250 }
1251
1252 if (!list_empty(&fiq->interrupts)) {
1253 req = list_entry(fiq->interrupts.next, struct fuse_req,
1254 intr_entry);
1255 return fuse_read_interrupt(fiq, cs, nbytes, req);
1256 }
1257
1258 if (forget_pending(fiq)) {
1259 if (list_empty(&fiq->pending) || fiq->forget_batch-- > 0)
1260 return fuse_read_forget(fc, fiq, cs, nbytes);
1261
1262 if (fiq->forget_batch <= -8)
1263 fiq->forget_batch = 16;
1264 }
1265
1266 req = list_entry(fiq->pending.next, struct fuse_req, list);
1267 clear_bit(FR_PENDING, &req->flags);
1268 list_del_init(&req->list);
1269 spin_unlock(&fiq->lock);
1270
1271 args = req->args;
1272 reqsize = req->in.h.len;
1273
1274 /* If request is too large, reply with an error and restart the read */
1275 if (nbytes < reqsize) {
1276 req->out.h.error = -EIO;
1277 /* SETXATTR is special, since it may contain too large data */
1278 if (args->opcode == FUSE_SETXATTR)
1279 req->out.h.error = -E2BIG;
1280 fuse_request_end(fc, req);
1281 goto restart;
1282 }
1283 spin_lock(&fpq->lock);
1284 /*
1285 * Must not put request on fpq->io queue after having been shut down by
1286 * fuse_abort_conn()
1287 */
1288 if (!fpq->connected) {
1289 req->out.h.error = err = -ECONNABORTED;
1290 goto out_end;
1291
1292 }
1293 list_add(&req->list, &fpq->io);
1294 spin_unlock(&fpq->lock);
1295 cs->req = req;
1296 err = fuse_copy_one(cs, &req->in.h, sizeof(req->in.h));
1297 if (!err)
1298 err = fuse_copy_args(cs, args->in_numargs, args->in_pages,
1299 (struct fuse_arg *) args->in_args, 0);
1300 fuse_copy_finish(cs);
1301 spin_lock(&fpq->lock);
1302 clear_bit(FR_LOCKED, &req->flags);
1303 if (!fpq->connected) {
1304 err = fc->aborted ? -ECONNABORTED : -ENODEV;
1305 goto out_end;
1306 }
1307 if (err) {
1308 req->out.h.error = -EIO;
1309 goto out_end;
1310 }
1311 if (!test_bit(FR_ISREPLY, &req->flags)) {
1312 err = reqsize;
1313 goto out_end;
1314 }
1315 hash = fuse_req_hash(req->in.h.unique);
1316 list_move_tail(&req->list, &fpq->processing[hash]);
1317 __fuse_get_request(req);
1318 set_bit(FR_SENT, &req->flags);
1319 spin_unlock(&fpq->lock);
1320 /* matches barrier in request_wait_answer() */
1321 smp_mb__after_atomic();
1322 if (test_bit(FR_INTERRUPTED, &req->flags))
1323 queue_interrupt(fiq, req);
1324 fuse_put_request(fc, req);
1325
1326 return reqsize;
1327
1328 out_end:
1329 if (!test_bit(FR_PRIVATE, &req->flags))
1330 list_del_init(&req->list);
1331 spin_unlock(&fpq->lock);
1332 fuse_request_end(fc, req);
1333 return err;
1334
1335 err_unlock:
1336 spin_unlock(&fiq->lock);
1337 return err;
1338 }
1339
fuse_dev_open(struct inode * inode,struct file * file)1340 static int fuse_dev_open(struct inode *inode, struct file *file)
1341 {
1342 /*
1343 * The fuse device's file's private_data is used to hold
1344 * the fuse_conn(ection) when it is mounted, and is used to
1345 * keep track of whether the file has been mounted already.
1346 */
1347 file->private_data = NULL;
1348 return 0;
1349 }
1350
fuse_dev_read(struct kiocb * iocb,struct iov_iter * to)1351 static ssize_t fuse_dev_read(struct kiocb *iocb, struct iov_iter *to)
1352 {
1353 struct fuse_copy_state cs;
1354 struct file *file = iocb->ki_filp;
1355 struct fuse_dev *fud = fuse_get_dev(file);
1356
1357 if (!fud)
1358 return -EPERM;
1359
1360 if (!iter_is_iovec(to))
1361 return -EINVAL;
1362
1363 fuse_copy_init(&cs, 1, to);
1364
1365 return fuse_dev_do_read(fud, file, &cs, iov_iter_count(to));
1366 }
1367
fuse_dev_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1368 static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos,
1369 struct pipe_inode_info *pipe,
1370 size_t len, unsigned int flags)
1371 {
1372 int total, ret;
1373 int page_nr = 0;
1374 struct pipe_buffer *bufs;
1375 struct fuse_copy_state cs;
1376 struct fuse_dev *fud = fuse_get_dev(in);
1377
1378 if (!fud)
1379 return -EPERM;
1380
1381 bufs = kvmalloc_array(pipe->buffers, sizeof(struct pipe_buffer),
1382 GFP_KERNEL);
1383 if (!bufs)
1384 return -ENOMEM;
1385
1386 fuse_copy_init(&cs, 1, NULL);
1387 cs.pipebufs = bufs;
1388 cs.pipe = pipe;
1389 ret = fuse_dev_do_read(fud, in, &cs, len);
1390 if (ret < 0)
1391 goto out;
1392
1393 if (pipe->nrbufs + cs.nr_segs > pipe->buffers) {
1394 ret = -EIO;
1395 goto out;
1396 }
1397
1398 for (ret = total = 0; page_nr < cs.nr_segs; total += ret) {
1399 /*
1400 * Need to be careful about this. Having buf->ops in module
1401 * code can Oops if the buffer persists after module unload.
1402 */
1403 bufs[page_nr].ops = &nosteal_pipe_buf_ops;
1404 bufs[page_nr].flags = 0;
1405 ret = add_to_pipe(pipe, &bufs[page_nr++]);
1406 if (unlikely(ret < 0))
1407 break;
1408 }
1409 if (total)
1410 ret = total;
1411 out:
1412 for (; page_nr < cs.nr_segs; page_nr++)
1413 put_page(bufs[page_nr].page);
1414
1415 kvfree(bufs);
1416 return ret;
1417 }
1418
fuse_notify_poll(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1419 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
1420 struct fuse_copy_state *cs)
1421 {
1422 struct fuse_notify_poll_wakeup_out outarg;
1423 int err = -EINVAL;
1424
1425 if (size != sizeof(outarg))
1426 goto err;
1427
1428 err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1429 if (err)
1430 goto err;
1431
1432 fuse_copy_finish(cs);
1433 return fuse_notify_poll_wakeup(fc, &outarg);
1434
1435 err:
1436 fuse_copy_finish(cs);
1437 return err;
1438 }
1439
fuse_notify_inval_inode(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1440 static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size,
1441 struct fuse_copy_state *cs)
1442 {
1443 struct fuse_notify_inval_inode_out outarg;
1444 int err = -EINVAL;
1445
1446 if (size != sizeof(outarg))
1447 goto err;
1448
1449 err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1450 if (err)
1451 goto err;
1452 fuse_copy_finish(cs);
1453
1454 down_read(&fc->killsb);
1455 err = -ENOENT;
1456 if (fc->sb) {
1457 err = fuse_reverse_inval_inode(fc->sb, outarg.ino,
1458 outarg.off, outarg.len);
1459 }
1460 up_read(&fc->killsb);
1461 return err;
1462
1463 err:
1464 fuse_copy_finish(cs);
1465 return err;
1466 }
1467
fuse_notify_inval_entry(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1468 static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size,
1469 struct fuse_copy_state *cs)
1470 {
1471 struct fuse_notify_inval_entry_out outarg;
1472 int err = -ENOMEM;
1473 char *buf;
1474 struct qstr name;
1475
1476 buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1477 if (!buf)
1478 goto err;
1479
1480 err = -EINVAL;
1481 if (size < sizeof(outarg))
1482 goto err;
1483
1484 err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1485 if (err)
1486 goto err;
1487
1488 err = -ENAMETOOLONG;
1489 if (outarg.namelen > FUSE_NAME_MAX)
1490 goto err;
1491
1492 err = -EINVAL;
1493 if (size != sizeof(outarg) + outarg.namelen + 1)
1494 goto err;
1495
1496 name.name = buf;
1497 name.len = outarg.namelen;
1498 err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1499 if (err)
1500 goto err;
1501 fuse_copy_finish(cs);
1502 buf[outarg.namelen] = 0;
1503
1504 down_read(&fc->killsb);
1505 err = -ENOENT;
1506 if (fc->sb)
1507 err = fuse_reverse_inval_entry(fc->sb, outarg.parent, 0, &name);
1508 up_read(&fc->killsb);
1509 kfree(buf);
1510 return err;
1511
1512 err:
1513 kfree(buf);
1514 fuse_copy_finish(cs);
1515 return err;
1516 }
1517
fuse_notify_delete(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1518 static int fuse_notify_delete(struct fuse_conn *fc, unsigned int size,
1519 struct fuse_copy_state *cs)
1520 {
1521 struct fuse_notify_delete_out outarg;
1522 int err = -ENOMEM;
1523 char *buf;
1524 struct qstr name;
1525
1526 buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1527 if (!buf)
1528 goto err;
1529
1530 err = -EINVAL;
1531 if (size < sizeof(outarg))
1532 goto err;
1533
1534 err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1535 if (err)
1536 goto err;
1537
1538 err = -ENAMETOOLONG;
1539 if (outarg.namelen > FUSE_NAME_MAX)
1540 goto err;
1541
1542 err = -EINVAL;
1543 if (size != sizeof(outarg) + outarg.namelen + 1)
1544 goto err;
1545
1546 name.name = buf;
1547 name.len = outarg.namelen;
1548 err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1549 if (err)
1550 goto err;
1551 fuse_copy_finish(cs);
1552 buf[outarg.namelen] = 0;
1553
1554 down_read(&fc->killsb);
1555 err = -ENOENT;
1556 if (fc->sb)
1557 err = fuse_reverse_inval_entry(fc->sb, outarg.parent,
1558 outarg.child, &name);
1559 up_read(&fc->killsb);
1560 kfree(buf);
1561 return err;
1562
1563 err:
1564 kfree(buf);
1565 fuse_copy_finish(cs);
1566 return err;
1567 }
1568
fuse_notify_store(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1569 static int fuse_notify_store(struct fuse_conn *fc, unsigned int size,
1570 struct fuse_copy_state *cs)
1571 {
1572 struct fuse_notify_store_out outarg;
1573 struct inode *inode;
1574 struct address_space *mapping;
1575 u64 nodeid;
1576 int err;
1577 pgoff_t index;
1578 unsigned int offset;
1579 unsigned int num;
1580 loff_t file_size;
1581 loff_t end;
1582
1583 err = -EINVAL;
1584 if (size < sizeof(outarg))
1585 goto out_finish;
1586
1587 err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1588 if (err)
1589 goto out_finish;
1590
1591 err = -EINVAL;
1592 if (size - sizeof(outarg) != outarg.size)
1593 goto out_finish;
1594
1595 nodeid = outarg.nodeid;
1596
1597 down_read(&fc->killsb);
1598
1599 err = -ENOENT;
1600 if (!fc->sb)
1601 goto out_up_killsb;
1602
1603 inode = ilookup5(fc->sb, nodeid, fuse_inode_eq, &nodeid);
1604 if (!inode)
1605 goto out_up_killsb;
1606
1607 mapping = inode->i_mapping;
1608 index = outarg.offset >> PAGE_SHIFT;
1609 offset = outarg.offset & ~PAGE_MASK;
1610 file_size = i_size_read(inode);
1611 end = outarg.offset + outarg.size;
1612 if (end > file_size) {
1613 file_size = end;
1614 fuse_write_update_size(inode, file_size);
1615 }
1616
1617 num = outarg.size;
1618 while (num) {
1619 struct page *page;
1620 unsigned int this_num;
1621
1622 err = -ENOMEM;
1623 page = find_or_create_page(mapping, index,
1624 mapping_gfp_mask(mapping));
1625 if (!page)
1626 goto out_iput;
1627
1628 this_num = min_t(unsigned, num, PAGE_SIZE - offset);
1629 err = fuse_copy_page(cs, &page, offset, this_num, 0);
1630 if (!err && offset == 0 &&
1631 (this_num == PAGE_SIZE || file_size == end))
1632 SetPageUptodate(page);
1633 unlock_page(page);
1634 put_page(page);
1635
1636 if (err)
1637 goto out_iput;
1638
1639 num -= this_num;
1640 offset = 0;
1641 index++;
1642 }
1643
1644 err = 0;
1645
1646 out_iput:
1647 iput(inode);
1648 out_up_killsb:
1649 up_read(&fc->killsb);
1650 out_finish:
1651 fuse_copy_finish(cs);
1652 return err;
1653 }
1654
1655 struct fuse_retrieve_args {
1656 struct fuse_args_pages ap;
1657 struct fuse_notify_retrieve_in inarg;
1658 };
1659
fuse_retrieve_end(struct fuse_conn * fc,struct fuse_args * args,int error)1660 static void fuse_retrieve_end(struct fuse_conn *fc, struct fuse_args *args,
1661 int error)
1662 {
1663 struct fuse_retrieve_args *ra =
1664 container_of(args, typeof(*ra), ap.args);
1665
1666 release_pages(ra->ap.pages, ra->ap.num_pages);
1667 kfree(ra);
1668 }
1669
fuse_retrieve(struct fuse_conn * fc,struct inode * inode,struct fuse_notify_retrieve_out * outarg)1670 static int fuse_retrieve(struct fuse_conn *fc, struct inode *inode,
1671 struct fuse_notify_retrieve_out *outarg)
1672 {
1673 int err;
1674 struct address_space *mapping = inode->i_mapping;
1675 pgoff_t index;
1676 loff_t file_size;
1677 unsigned int num;
1678 unsigned int offset;
1679 size_t total_len = 0;
1680 unsigned int num_pages;
1681 struct fuse_retrieve_args *ra;
1682 size_t args_size = sizeof(*ra);
1683 struct fuse_args_pages *ap;
1684 struct fuse_args *args;
1685
1686 offset = outarg->offset & ~PAGE_MASK;
1687 file_size = i_size_read(inode);
1688
1689 num = min(outarg->size, fc->max_write);
1690 if (outarg->offset > file_size)
1691 num = 0;
1692 else if (outarg->offset + num > file_size)
1693 num = file_size - outarg->offset;
1694
1695 num_pages = (num + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
1696 num_pages = min(num_pages, fc->max_pages);
1697
1698 args_size += num_pages * (sizeof(ap->pages[0]) + sizeof(ap->descs[0]));
1699
1700 ra = kzalloc(args_size, GFP_KERNEL);
1701 if (!ra)
1702 return -ENOMEM;
1703
1704 ap = &ra->ap;
1705 ap->pages = (void *) (ra + 1);
1706 ap->descs = (void *) (ap->pages + num_pages);
1707
1708 args = &ap->args;
1709 args->nodeid = outarg->nodeid;
1710 args->opcode = FUSE_NOTIFY_REPLY;
1711 args->in_numargs = 2;
1712 args->in_pages = true;
1713 args->end = fuse_retrieve_end;
1714
1715 index = outarg->offset >> PAGE_SHIFT;
1716
1717 while (num && ap->num_pages < num_pages) {
1718 struct page *page;
1719 unsigned int this_num;
1720
1721 page = find_get_page(mapping, index);
1722 if (!page)
1723 break;
1724
1725 this_num = min_t(unsigned, num, PAGE_SIZE - offset);
1726 ap->pages[ap->num_pages] = page;
1727 ap->descs[ap->num_pages].offset = offset;
1728 ap->descs[ap->num_pages].length = this_num;
1729 ap->num_pages++;
1730
1731 offset = 0;
1732 num -= this_num;
1733 total_len += this_num;
1734 index++;
1735 }
1736 ra->inarg.offset = outarg->offset;
1737 ra->inarg.size = total_len;
1738 args->in_args[0].size = sizeof(ra->inarg);
1739 args->in_args[0].value = &ra->inarg;
1740 args->in_args[1].size = total_len;
1741
1742 err = fuse_simple_notify_reply(fc, args, outarg->notify_unique);
1743 if (err)
1744 fuse_retrieve_end(fc, args, err);
1745
1746 return err;
1747 }
1748
fuse_notify_retrieve(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1749 static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size,
1750 struct fuse_copy_state *cs)
1751 {
1752 struct fuse_notify_retrieve_out outarg;
1753 struct inode *inode;
1754 int err;
1755
1756 err = -EINVAL;
1757 if (size != sizeof(outarg))
1758 goto copy_finish;
1759
1760 err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1761 if (err)
1762 goto copy_finish;
1763
1764 fuse_copy_finish(cs);
1765
1766 down_read(&fc->killsb);
1767 err = -ENOENT;
1768 if (fc->sb) {
1769 u64 nodeid = outarg.nodeid;
1770
1771 inode = ilookup5(fc->sb, nodeid, fuse_inode_eq, &nodeid);
1772 if (inode) {
1773 err = fuse_retrieve(fc, inode, &outarg);
1774 iput(inode);
1775 }
1776 }
1777 up_read(&fc->killsb);
1778
1779 return err;
1780
1781 copy_finish:
1782 fuse_copy_finish(cs);
1783 return err;
1784 }
1785
fuse_notify(struct fuse_conn * fc,enum fuse_notify_code code,unsigned int size,struct fuse_copy_state * cs)1786 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
1787 unsigned int size, struct fuse_copy_state *cs)
1788 {
1789 /* Don't try to move pages (yet) */
1790 cs->move_pages = 0;
1791
1792 switch (code) {
1793 case FUSE_NOTIFY_POLL:
1794 return fuse_notify_poll(fc, size, cs);
1795
1796 case FUSE_NOTIFY_INVAL_INODE:
1797 return fuse_notify_inval_inode(fc, size, cs);
1798
1799 case FUSE_NOTIFY_INVAL_ENTRY:
1800 return fuse_notify_inval_entry(fc, size, cs);
1801
1802 case FUSE_NOTIFY_STORE:
1803 return fuse_notify_store(fc, size, cs);
1804
1805 case FUSE_NOTIFY_RETRIEVE:
1806 return fuse_notify_retrieve(fc, size, cs);
1807
1808 case FUSE_NOTIFY_DELETE:
1809 return fuse_notify_delete(fc, size, cs);
1810
1811 default:
1812 fuse_copy_finish(cs);
1813 return -EINVAL;
1814 }
1815 }
1816
1817 /* Look up request on processing list by unique ID */
request_find(struct fuse_pqueue * fpq,u64 unique)1818 static struct fuse_req *request_find(struct fuse_pqueue *fpq, u64 unique)
1819 {
1820 unsigned int hash = fuse_req_hash(unique);
1821 struct fuse_req *req;
1822
1823 list_for_each_entry(req, &fpq->processing[hash], list) {
1824 if (req->in.h.unique == unique)
1825 return req;
1826 }
1827 return NULL;
1828 }
1829
copy_out_args(struct fuse_copy_state * cs,struct fuse_args * args,unsigned nbytes)1830 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_args *args,
1831 unsigned nbytes)
1832 {
1833 unsigned reqsize = sizeof(struct fuse_out_header);
1834
1835 reqsize += fuse_len_args(args->out_numargs, args->out_args);
1836
1837 if (reqsize < nbytes || (reqsize > nbytes && !args->out_argvar))
1838 return -EINVAL;
1839 else if (reqsize > nbytes) {
1840 struct fuse_arg *lastarg = &args->out_args[args->out_numargs-1];
1841 unsigned diffsize = reqsize - nbytes;
1842
1843 if (diffsize > lastarg->size)
1844 return -EINVAL;
1845 lastarg->size -= diffsize;
1846 }
1847 return fuse_copy_args(cs, args->out_numargs, args->out_pages,
1848 args->out_args, args->page_zeroing);
1849 }
1850
1851 /*
1852 * Write a single reply to a request. First the header is copied from
1853 * the write buffer. The request is then searched on the processing
1854 * list by the unique ID found in the header. If found, then remove
1855 * it from the list and copy the rest of the buffer to the request.
1856 * The request is finished by calling fuse_request_end().
1857 */
fuse_dev_do_write(struct fuse_dev * fud,struct fuse_copy_state * cs,size_t nbytes)1858 static ssize_t fuse_dev_do_write(struct fuse_dev *fud,
1859 struct fuse_copy_state *cs, size_t nbytes)
1860 {
1861 int err;
1862 struct fuse_conn *fc = fud->fc;
1863 struct fuse_pqueue *fpq = &fud->pq;
1864 struct fuse_req *req;
1865 struct fuse_out_header oh;
1866
1867 err = -EINVAL;
1868 if (nbytes < sizeof(struct fuse_out_header))
1869 goto out;
1870
1871 err = fuse_copy_one(cs, &oh, sizeof(oh));
1872 if (err)
1873 goto copy_finish;
1874
1875 err = -EINVAL;
1876 if (oh.len != nbytes)
1877 goto copy_finish;
1878
1879 /*
1880 * Zero oh.unique indicates unsolicited notification message
1881 * and error contains notification code.
1882 */
1883 if (!oh.unique) {
1884 err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs);
1885 goto out;
1886 }
1887
1888 err = -EINVAL;
1889 if (oh.error <= -512 || oh.error > 0)
1890 goto copy_finish;
1891
1892 spin_lock(&fpq->lock);
1893 req = NULL;
1894 if (fpq->connected)
1895 req = request_find(fpq, oh.unique & ~FUSE_INT_REQ_BIT);
1896
1897 err = -ENOENT;
1898 if (!req) {
1899 spin_unlock(&fpq->lock);
1900 goto copy_finish;
1901 }
1902
1903 /* Is it an interrupt reply ID? */
1904 if (oh.unique & FUSE_INT_REQ_BIT) {
1905 __fuse_get_request(req);
1906 spin_unlock(&fpq->lock);
1907
1908 err = 0;
1909 if (nbytes != sizeof(struct fuse_out_header))
1910 err = -EINVAL;
1911 else if (oh.error == -ENOSYS)
1912 fc->no_interrupt = 1;
1913 else if (oh.error == -EAGAIN)
1914 err = queue_interrupt(&fc->iq, req);
1915
1916 fuse_put_request(fc, req);
1917
1918 goto copy_finish;
1919 }
1920
1921 clear_bit(FR_SENT, &req->flags);
1922 list_move(&req->list, &fpq->io);
1923 req->out.h = oh;
1924 set_bit(FR_LOCKED, &req->flags);
1925 spin_unlock(&fpq->lock);
1926 cs->req = req;
1927 if (!req->args->page_replace)
1928 cs->move_pages = 0;
1929
1930 if (oh.error)
1931 err = nbytes != sizeof(oh) ? -EINVAL : 0;
1932 else
1933 err = copy_out_args(cs, req->args, nbytes);
1934 fuse_copy_finish(cs);
1935
1936 if (!err && req->in.h.opcode == FUSE_CANONICAL_PATH) {
1937 char *path = (char *)req->args->out_args[0].value;
1938 path[req->args->out_args[0].size - 1] = 0;
1939 req->out.h.error = kern_path(path, 0, req->args->canonical_path);
1940 }
1941
1942 spin_lock(&fpq->lock);
1943 clear_bit(FR_LOCKED, &req->flags);
1944 if (!fpq->connected)
1945 err = -ENOENT;
1946 else if (err)
1947 req->out.h.error = -EIO;
1948 if (!test_bit(FR_PRIVATE, &req->flags))
1949 list_del_init(&req->list);
1950 spin_unlock(&fpq->lock);
1951
1952 fuse_request_end(fc, req);
1953 out:
1954 return err ? err : nbytes;
1955
1956 copy_finish:
1957 fuse_copy_finish(cs);
1958 goto out;
1959 }
1960
fuse_dev_write(struct kiocb * iocb,struct iov_iter * from)1961 static ssize_t fuse_dev_write(struct kiocb *iocb, struct iov_iter *from)
1962 {
1963 struct fuse_copy_state cs;
1964 struct fuse_dev *fud = fuse_get_dev(iocb->ki_filp);
1965
1966 if (!fud)
1967 return -EPERM;
1968
1969 if (!iter_is_iovec(from))
1970 return -EINVAL;
1971
1972 fuse_copy_init(&cs, 0, from);
1973
1974 return fuse_dev_do_write(fud, &cs, iov_iter_count(from));
1975 }
1976
fuse_dev_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1977 static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe,
1978 struct file *out, loff_t *ppos,
1979 size_t len, unsigned int flags)
1980 {
1981 unsigned nbuf;
1982 unsigned idx;
1983 struct pipe_buffer *bufs;
1984 struct fuse_copy_state cs;
1985 struct fuse_dev *fud;
1986 size_t rem;
1987 ssize_t ret;
1988
1989 fud = fuse_get_dev(out);
1990 if (!fud)
1991 return -EPERM;
1992
1993 pipe_lock(pipe);
1994
1995 bufs = kvmalloc_array(pipe->nrbufs, sizeof(struct pipe_buffer),
1996 GFP_KERNEL);
1997 if (!bufs) {
1998 pipe_unlock(pipe);
1999 return -ENOMEM;
2000 }
2001
2002 nbuf = 0;
2003 rem = 0;
2004 for (idx = 0; idx < pipe->nrbufs && rem < len; idx++)
2005 rem += pipe->bufs[(pipe->curbuf + idx) & (pipe->buffers - 1)].len;
2006
2007 ret = -EINVAL;
2008 if (rem < len)
2009 goto out_free;
2010
2011 rem = len;
2012 while (rem) {
2013 struct pipe_buffer *ibuf;
2014 struct pipe_buffer *obuf;
2015
2016 BUG_ON(nbuf >= pipe->buffers);
2017 BUG_ON(!pipe->nrbufs);
2018 ibuf = &pipe->bufs[pipe->curbuf];
2019 obuf = &bufs[nbuf];
2020
2021 if (rem >= ibuf->len) {
2022 *obuf = *ibuf;
2023 ibuf->ops = NULL;
2024 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
2025 pipe->nrbufs--;
2026 } else {
2027 if (!pipe_buf_get(pipe, ibuf))
2028 goto out_free;
2029
2030 *obuf = *ibuf;
2031 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2032 obuf->len = rem;
2033 ibuf->offset += obuf->len;
2034 ibuf->len -= obuf->len;
2035 }
2036 nbuf++;
2037 rem -= obuf->len;
2038 }
2039 pipe_unlock(pipe);
2040
2041 fuse_copy_init(&cs, 0, NULL);
2042 cs.pipebufs = bufs;
2043 cs.nr_segs = nbuf;
2044 cs.pipe = pipe;
2045
2046 if (flags & SPLICE_F_MOVE)
2047 cs.move_pages = 1;
2048
2049 ret = fuse_dev_do_write(fud, &cs, len);
2050
2051 pipe_lock(pipe);
2052 out_free:
2053 for (idx = 0; idx < nbuf; idx++) {
2054 struct pipe_buffer *buf = &bufs[idx];
2055
2056 if (buf->ops)
2057 pipe_buf_release(pipe, buf);
2058 }
2059 pipe_unlock(pipe);
2060
2061 kvfree(bufs);
2062 return ret;
2063 }
2064
fuse_dev_poll(struct file * file,poll_table * wait)2065 static __poll_t fuse_dev_poll(struct file *file, poll_table *wait)
2066 {
2067 __poll_t mask = EPOLLOUT | EPOLLWRNORM;
2068 struct fuse_iqueue *fiq;
2069 struct fuse_dev *fud = fuse_get_dev(file);
2070
2071 if (!fud)
2072 return EPOLLERR;
2073
2074 fiq = &fud->fc->iq;
2075 poll_wait(file, &fiq->waitq, wait);
2076
2077 spin_lock(&fiq->lock);
2078 if (!fiq->connected)
2079 mask = EPOLLERR;
2080 else if (request_pending(fiq))
2081 mask |= EPOLLIN | EPOLLRDNORM;
2082 spin_unlock(&fiq->lock);
2083
2084 return mask;
2085 }
2086
2087 /* Abort all requests on the given list (pending or processing) */
end_requests(struct fuse_conn * fc,struct list_head * head)2088 static void end_requests(struct fuse_conn *fc, struct list_head *head)
2089 {
2090 while (!list_empty(head)) {
2091 struct fuse_req *req;
2092 req = list_entry(head->next, struct fuse_req, list);
2093 req->out.h.error = -ECONNABORTED;
2094 clear_bit(FR_SENT, &req->flags);
2095 list_del_init(&req->list);
2096 fuse_request_end(fc, req);
2097 }
2098 }
2099
end_polls(struct fuse_conn * fc)2100 static void end_polls(struct fuse_conn *fc)
2101 {
2102 struct rb_node *p;
2103
2104 p = rb_first(&fc->polled_files);
2105
2106 while (p) {
2107 struct fuse_file *ff;
2108 ff = rb_entry(p, struct fuse_file, polled_node);
2109 wake_up_interruptible_all(&ff->poll_wait);
2110
2111 p = rb_next(p);
2112 }
2113 }
2114
2115 /*
2116 * Abort all requests.
2117 *
2118 * Emergency exit in case of a malicious or accidental deadlock, or just a hung
2119 * filesystem.
2120 *
2121 * The same effect is usually achievable through killing the filesystem daemon
2122 * and all users of the filesystem. The exception is the combination of an
2123 * asynchronous request and the tricky deadlock (see
2124 * Documentation/filesystems/fuse.txt).
2125 *
2126 * Aborting requests under I/O goes as follows: 1: Separate out unlocked
2127 * requests, they should be finished off immediately. Locked requests will be
2128 * finished after unlock; see unlock_request(). 2: Finish off the unlocked
2129 * requests. It is possible that some request will finish before we can. This
2130 * is OK, the request will in that case be removed from the list before we touch
2131 * it.
2132 */
fuse_abort_conn(struct fuse_conn * fc)2133 void fuse_abort_conn(struct fuse_conn *fc)
2134 {
2135 struct fuse_iqueue *fiq = &fc->iq;
2136
2137 spin_lock(&fc->lock);
2138 if (fc->connected) {
2139 struct fuse_dev *fud;
2140 struct fuse_req *req, *next;
2141 LIST_HEAD(to_end);
2142 unsigned int i;
2143
2144 /* Background queuing checks fc->connected under bg_lock */
2145 spin_lock(&fc->bg_lock);
2146 fc->connected = 0;
2147 spin_unlock(&fc->bg_lock);
2148
2149 fuse_set_initialized(fc);
2150 list_for_each_entry(fud, &fc->devices, entry) {
2151 struct fuse_pqueue *fpq = &fud->pq;
2152
2153 spin_lock(&fpq->lock);
2154 fpq->connected = 0;
2155 list_for_each_entry_safe(req, next, &fpq->io, list) {
2156 req->out.h.error = -ECONNABORTED;
2157 spin_lock(&req->waitq.lock);
2158 set_bit(FR_ABORTED, &req->flags);
2159 if (!test_bit(FR_LOCKED, &req->flags)) {
2160 set_bit(FR_PRIVATE, &req->flags);
2161 __fuse_get_request(req);
2162 list_move(&req->list, &to_end);
2163 }
2164 spin_unlock(&req->waitq.lock);
2165 }
2166 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++)
2167 list_splice_tail_init(&fpq->processing[i],
2168 &to_end);
2169 spin_unlock(&fpq->lock);
2170 }
2171 spin_lock(&fc->bg_lock);
2172 fc->blocked = 0;
2173 fc->max_background = UINT_MAX;
2174 flush_bg_queue(fc);
2175 spin_unlock(&fc->bg_lock);
2176
2177 spin_lock(&fiq->lock);
2178 fiq->connected = 0;
2179 list_for_each_entry(req, &fiq->pending, list)
2180 clear_bit(FR_PENDING, &req->flags);
2181 list_splice_tail_init(&fiq->pending, &to_end);
2182 while (forget_pending(fiq))
2183 kfree(fuse_dequeue_forget(fiq, 1, NULL));
2184 wake_up_all(&fiq->waitq);
2185 spin_unlock(&fiq->lock);
2186 kill_fasync(&fiq->fasync, SIGIO, POLL_IN);
2187 end_polls(fc);
2188 wake_up_all(&fc->blocked_waitq);
2189 spin_unlock(&fc->lock);
2190
2191 end_requests(fc, &to_end);
2192 } else {
2193 spin_unlock(&fc->lock);
2194 }
2195 }
2196 EXPORT_SYMBOL_GPL(fuse_abort_conn);
2197
fuse_wait_aborted(struct fuse_conn * fc)2198 void fuse_wait_aborted(struct fuse_conn *fc)
2199 {
2200 /* matches implicit memory barrier in fuse_drop_waiting() */
2201 smp_mb();
2202 wait_event(fc->blocked_waitq, atomic_read(&fc->num_waiting) == 0);
2203 }
2204
fuse_dev_release(struct inode * inode,struct file * file)2205 int fuse_dev_release(struct inode *inode, struct file *file)
2206 {
2207 struct fuse_dev *fud = fuse_get_dev(file);
2208
2209 if (fud) {
2210 struct fuse_conn *fc = fud->fc;
2211 struct fuse_pqueue *fpq = &fud->pq;
2212 LIST_HEAD(to_end);
2213 unsigned int i;
2214
2215 spin_lock(&fpq->lock);
2216 WARN_ON(!list_empty(&fpq->io));
2217 for (i = 0; i < FUSE_PQ_HASH_SIZE; i++)
2218 list_splice_init(&fpq->processing[i], &to_end);
2219 spin_unlock(&fpq->lock);
2220
2221 end_requests(fc, &to_end);
2222
2223 /* Are we the last open device? */
2224 if (atomic_dec_and_test(&fc->dev_count)) {
2225 WARN_ON(fc->iq.fasync != NULL);
2226 fuse_abort_conn(fc);
2227 }
2228 fuse_dev_free(fud);
2229 }
2230 return 0;
2231 }
2232 EXPORT_SYMBOL_GPL(fuse_dev_release);
2233
fuse_dev_fasync(int fd,struct file * file,int on)2234 static int fuse_dev_fasync(int fd, struct file *file, int on)
2235 {
2236 struct fuse_dev *fud = fuse_get_dev(file);
2237
2238 if (!fud)
2239 return -EPERM;
2240
2241 /* No locking - fasync_helper does its own locking */
2242 return fasync_helper(fd, file, on, &fud->fc->iq.fasync);
2243 }
2244
fuse_device_clone(struct fuse_conn * fc,struct file * new)2245 static int fuse_device_clone(struct fuse_conn *fc, struct file *new)
2246 {
2247 struct fuse_dev *fud;
2248
2249 if (new->private_data)
2250 return -EINVAL;
2251
2252 fud = fuse_dev_alloc_install(fc);
2253 if (!fud)
2254 return -ENOMEM;
2255
2256 new->private_data = fud;
2257 atomic_inc(&fc->dev_count);
2258
2259 return 0;
2260 }
2261
fuse_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2262 static long fuse_dev_ioctl(struct file *file, unsigned int cmd,
2263 unsigned long arg)
2264 {
2265 int err = -ENOTTY;
2266
2267 if (cmd == FUSE_DEV_IOC_CLONE) {
2268 int oldfd;
2269
2270 err = -EFAULT;
2271 if (!get_user(oldfd, (__u32 __user *) arg)) {
2272 struct file *old = fget(oldfd);
2273
2274 err = -EINVAL;
2275 if (old) {
2276 struct fuse_dev *fud = NULL;
2277
2278 /*
2279 * Check against file->f_op because CUSE
2280 * uses the same ioctl handler.
2281 */
2282 if (old->f_op == file->f_op &&
2283 old->f_cred->user_ns == file->f_cred->user_ns)
2284 fud = fuse_get_dev(old);
2285
2286 if (fud) {
2287 mutex_lock(&fuse_mutex);
2288 err = fuse_device_clone(fud->fc, file);
2289 mutex_unlock(&fuse_mutex);
2290 }
2291 fput(old);
2292 }
2293 }
2294 }
2295 return err;
2296 }
2297
2298 const struct file_operations fuse_dev_operations = {
2299 .owner = THIS_MODULE,
2300 .open = fuse_dev_open,
2301 .llseek = no_llseek,
2302 .read_iter = fuse_dev_read,
2303 .splice_read = fuse_dev_splice_read,
2304 .write_iter = fuse_dev_write,
2305 .splice_write = fuse_dev_splice_write,
2306 .poll = fuse_dev_poll,
2307 .release = fuse_dev_release,
2308 .fasync = fuse_dev_fasync,
2309 .unlocked_ioctl = fuse_dev_ioctl,
2310 .compat_ioctl = fuse_dev_ioctl,
2311 };
2312 EXPORT_SYMBOL_GPL(fuse_dev_operations);
2313
2314 static struct miscdevice fuse_miscdevice = {
2315 .minor = FUSE_MINOR,
2316 .name = "fuse",
2317 .fops = &fuse_dev_operations,
2318 };
2319
fuse_dev_init(void)2320 int __init fuse_dev_init(void)
2321 {
2322 int err = -ENOMEM;
2323 fuse_req_cachep = kmem_cache_create("fuse_request",
2324 sizeof(struct fuse_req),
2325 0, 0, NULL);
2326 if (!fuse_req_cachep)
2327 goto out;
2328
2329 err = misc_register(&fuse_miscdevice);
2330 if (err)
2331 goto out_cache_clean;
2332
2333 return 0;
2334
2335 out_cache_clean:
2336 kmem_cache_destroy(fuse_req_cachep);
2337 out:
2338 return err;
2339 }
2340
fuse_dev_cleanup(void)2341 void fuse_dev_cleanup(void)
2342 {
2343 misc_deregister(&fuse_miscdevice);
2344 kmem_cache_destroy(fuse_req_cachep);
2345 }
2346