1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42
43 static int thaw_super_locked(struct super_block *sb);
44
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 "sb_writers",
50 "sb_pagefaults",
51 "sb_internal",
52 };
53
54 /*
55 * One thing we have to be careful of with a per-sb shrinker is that we don't
56 * drop the last active reference to the superblock from within the shrinker.
57 * If that happens we could trigger unregistering the shrinker from within the
58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59 * take a passive reference to the superblock to avoid this from occurring.
60 */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 struct shrink_control *sc)
63 {
64 struct super_block *sb;
65 long fs_objects = 0;
66 long total_objects;
67 long freed = 0;
68 long dentries;
69 long inodes;
70
71 sb = container_of(shrink, struct super_block, s_shrink);
72
73 /*
74 * Deadlock avoidance. We may hold various FS locks, and we don't want
75 * to recurse into the FS that called us in clear_inode() and friends..
76 */
77 if (!(sc->gfp_mask & __GFP_FS))
78 return SHRINK_STOP;
79
80 if (!trylock_super(sb))
81 return SHRINK_STOP;
82
83 if (sb->s_op->nr_cached_objects)
84 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85
86 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 total_objects = dentries + inodes + fs_objects + 1;
89 if (!total_objects)
90 total_objects = 1;
91
92 /* proportion the scan between the caches */
93 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96
97 /*
98 * prune the dcache first as the icache is pinned by it, then
99 * prune the icache, followed by the filesystem specific caches
100 *
101 * Ensure that we always scan at least one object - memcg kmem
102 * accounting uses this to fully empty the caches.
103 */
104 sc->nr_to_scan = dentries + 1;
105 freed = prune_dcache_sb(sb, sc);
106 sc->nr_to_scan = inodes + 1;
107 freed += prune_icache_sb(sb, sc);
108
109 if (fs_objects) {
110 sc->nr_to_scan = fs_objects + 1;
111 freed += sb->s_op->free_cached_objects(sb, sc);
112 }
113
114 up_read(&sb->s_umount);
115 return freed;
116 }
117
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)118 static unsigned long super_cache_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 struct super_block *sb;
122 long total_objects = 0;
123
124 sb = container_of(shrink, struct super_block, s_shrink);
125
126 /*
127 * We don't call trylock_super() here as it is a scalability bottleneck,
128 * so we're exposed to partial setup state. The shrinker rwsem does not
129 * protect filesystem operations backing list_lru_shrink_count() or
130 * s_op->nr_cached_objects(). Counts can change between
131 * super_cache_count and super_cache_scan, so we really don't need locks
132 * here.
133 *
134 * However, if we are currently mounting the superblock, the underlying
135 * filesystem might be in a state of partial construction and hence it
136 * is dangerous to access it. trylock_super() uses a SB_BORN check to
137 * avoid this situation, so do the same here. The memory barrier is
138 * matched with the one in mount_fs() as we don't hold locks here.
139 */
140 if (!(sb->s_flags & SB_BORN))
141 return 0;
142 smp_rmb();
143
144 if (sb->s_op && sb->s_op->nr_cached_objects)
145 total_objects = sb->s_op->nr_cached_objects(sb, sc);
146
147 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149
150 if (!total_objects)
151 return SHRINK_EMPTY;
152
153 total_objects = vfs_pressure_ratio(total_objects);
154 return total_objects;
155 }
156
destroy_super_work(struct work_struct * work)157 static void destroy_super_work(struct work_struct *work)
158 {
159 struct super_block *s = container_of(work, struct super_block,
160 destroy_work);
161 int i;
162
163 for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 kfree(s);
166 }
167
destroy_super_rcu(struct rcu_head * head)168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 struct super_block *s = container_of(head, struct super_block, rcu);
171 INIT_WORK(&s->destroy_work, destroy_super_work);
172 schedule_work(&s->destroy_work);
173 }
174
175 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)176 static void destroy_unused_super(struct super_block *s)
177 {
178 if (!s)
179 return;
180 up_write(&s->s_umount);
181 list_lru_destroy(&s->s_dentry_lru);
182 list_lru_destroy(&s->s_inode_lru);
183 security_sb_free(s);
184 put_user_ns(s->s_user_ns);
185 kfree(s->s_subtype);
186 free_prealloced_shrinker(&s->s_shrink);
187 /* no delays needed */
188 destroy_super_work(&s->destroy_work);
189 }
190
191 /**
192 * alloc_super - create new superblock
193 * @type: filesystem type superblock should belong to
194 * @flags: the mount flags
195 * @user_ns: User namespace for the super_block
196 *
197 * Allocates and initializes a new &struct super_block. alloc_super()
198 * returns a pointer new superblock or %NULL if allocation had failed.
199 */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 struct user_namespace *user_ns)
202 {
203 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
204 static const struct super_operations default_op;
205 int i;
206
207 if (!s)
208 return NULL;
209
210 INIT_LIST_HEAD(&s->s_mounts);
211 s->s_user_ns = get_user_ns(user_ns);
212 init_rwsem(&s->s_umount);
213 lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 /*
215 * sget() can have s_umount recursion.
216 *
217 * When it cannot find a suitable sb, it allocates a new
218 * one (this one), and tries again to find a suitable old
219 * one.
220 *
221 * In case that succeeds, it will acquire the s_umount
222 * lock of the old one. Since these are clearly distrinct
223 * locks, and this object isn't exposed yet, there's no
224 * risk of deadlocks.
225 *
226 * Annotate this by putting this lock in a different
227 * subclass.
228 */
229 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230
231 if (security_sb_alloc(s))
232 goto fail;
233
234 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 sb_writers_name[i],
237 &type->s_writers_key[i]))
238 goto fail;
239 }
240 init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 s->s_bdi = &noop_backing_dev_info;
242 s->s_flags = flags;
243 if (s->s_user_ns != &init_user_ns)
244 s->s_iflags |= SB_I_NODEV;
245 INIT_HLIST_NODE(&s->s_instances);
246 INIT_HLIST_BL_HEAD(&s->s_roots);
247 mutex_init(&s->s_sync_lock);
248 INIT_LIST_HEAD(&s->s_inodes);
249 spin_lock_init(&s->s_inode_list_lock);
250 INIT_LIST_HEAD(&s->s_inodes_wb);
251 spin_lock_init(&s->s_inode_wblist_lock);
252
253 s->s_count = 1;
254 atomic_set(&s->s_active, 1);
255 mutex_init(&s->s_vfs_rename_mutex);
256 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 init_rwsem(&s->s_dquot.dqio_sem);
258 s->s_maxbytes = MAX_NON_LFS;
259 s->s_op = &default_op;
260 s->s_time_gran = 1000000000;
261 s->s_time_min = TIME64_MIN;
262 s->s_time_max = TIME64_MAX;
263 s->cleancache_poolid = CLEANCACHE_NO_POOL;
264
265 s->s_shrink.seeks = DEFAULT_SEEKS;
266 s->s_shrink.scan_objects = super_cache_scan;
267 s->s_shrink.count_objects = super_cache_count;
268 s->s_shrink.batch = 1024;
269 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 if (prealloc_shrinker(&s->s_shrink))
271 goto fail;
272 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 goto fail;
274 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 goto fail;
276 return s;
277
278 fail:
279 destroy_unused_super(s);
280 return NULL;
281 }
282
283 /* Superblock refcounting */
284
285 /*
286 * Drop a superblock's refcount. The caller must hold sb_lock.
287 */
__put_super(struct super_block * s)288 static void __put_super(struct super_block *s)
289 {
290 if (!--s->s_count) {
291 list_del_init(&s->s_list);
292 WARN_ON(s->s_dentry_lru.node);
293 WARN_ON(s->s_inode_lru.node);
294 WARN_ON(!list_empty(&s->s_mounts));
295 security_sb_free(s);
296 fscrypt_sb_free(s);
297 put_user_ns(s->s_user_ns);
298 kfree(s->s_subtype);
299 call_rcu(&s->rcu, destroy_super_rcu);
300 }
301 }
302
303 /**
304 * put_super - drop a temporary reference to superblock
305 * @sb: superblock in question
306 *
307 * Drops a temporary reference, frees superblock if there's no
308 * references left.
309 */
put_super(struct super_block * sb)310 static void put_super(struct super_block *sb)
311 {
312 spin_lock(&sb_lock);
313 __put_super(sb);
314 spin_unlock(&sb_lock);
315 }
316
317
318 /**
319 * deactivate_locked_super - drop an active reference to superblock
320 * @s: superblock to deactivate
321 *
322 * Drops an active reference to superblock, converting it into a temporary
323 * one if there is no other active references left. In that case we
324 * tell fs driver to shut it down and drop the temporary reference we
325 * had just acquired.
326 *
327 * Caller holds exclusive lock on superblock; that lock is released.
328 */
deactivate_locked_super(struct super_block * s)329 void deactivate_locked_super(struct super_block *s)
330 {
331 struct file_system_type *fs = s->s_type;
332 if (atomic_dec_and_test(&s->s_active)) {
333 cleancache_invalidate_fs(s);
334 unregister_shrinker(&s->s_shrink);
335 fs->kill_sb(s);
336
337 /*
338 * Since list_lru_destroy() may sleep, we cannot call it from
339 * put_super(), where we hold the sb_lock. Therefore we destroy
340 * the lru lists right now.
341 */
342 list_lru_destroy(&s->s_dentry_lru);
343 list_lru_destroy(&s->s_inode_lru);
344
345 put_filesystem(fs);
346 put_super(s);
347 } else {
348 up_write(&s->s_umount);
349 }
350 }
351
352 EXPORT_SYMBOL(deactivate_locked_super);
353
354 /**
355 * deactivate_super - drop an active reference to superblock
356 * @s: superblock to deactivate
357 *
358 * Variant of deactivate_locked_super(), except that superblock is *not*
359 * locked by caller. If we are going to drop the final active reference,
360 * lock will be acquired prior to that.
361 */
deactivate_super(struct super_block * s)362 void deactivate_super(struct super_block *s)
363 {
364 if (!atomic_add_unless(&s->s_active, -1, 1)) {
365 down_write(&s->s_umount);
366 deactivate_locked_super(s);
367 }
368 }
369
370 EXPORT_SYMBOL(deactivate_super);
371
372 /**
373 * grab_super - acquire an active reference
374 * @s: reference we are trying to make active
375 *
376 * Tries to acquire an active reference. grab_super() is used when we
377 * had just found a superblock in super_blocks or fs_type->fs_supers
378 * and want to turn it into a full-blown active reference. grab_super()
379 * is called with sb_lock held and drops it. Returns 1 in case of
380 * success, 0 if we had failed (superblock contents was already dead or
381 * dying when grab_super() had been called). Note that this is only
382 * called for superblocks not in rundown mode (== ones still on ->fs_supers
383 * of their type), so increment of ->s_count is OK here.
384 */
grab_super(struct super_block * s)385 static int grab_super(struct super_block *s) __releases(sb_lock)
386 {
387 s->s_count++;
388 spin_unlock(&sb_lock);
389 down_write(&s->s_umount);
390 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
391 put_super(s);
392 return 1;
393 }
394 up_write(&s->s_umount);
395 put_super(s);
396 return 0;
397 }
398
399 /*
400 * trylock_super - try to grab ->s_umount shared
401 * @sb: reference we are trying to grab
402 *
403 * Try to prevent fs shutdown. This is used in places where we
404 * cannot take an active reference but we need to ensure that the
405 * filesystem is not shut down while we are working on it. It returns
406 * false if we cannot acquire s_umount or if we lose the race and
407 * filesystem already got into shutdown, and returns true with the s_umount
408 * lock held in read mode in case of success. On successful return,
409 * the caller must drop the s_umount lock when done.
410 *
411 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
412 * The reason why it's safe is that we are OK with doing trylock instead
413 * of down_read(). There's a couple of places that are OK with that, but
414 * it's very much not a general-purpose interface.
415 */
trylock_super(struct super_block * sb)416 bool trylock_super(struct super_block *sb)
417 {
418 if (down_read_trylock(&sb->s_umount)) {
419 if (!hlist_unhashed(&sb->s_instances) &&
420 sb->s_root && (sb->s_flags & SB_BORN))
421 return true;
422 up_read(&sb->s_umount);
423 }
424
425 return false;
426 }
427
428 /**
429 * generic_shutdown_super - common helper for ->kill_sb()
430 * @sb: superblock to kill
431 *
432 * generic_shutdown_super() does all fs-independent work on superblock
433 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
434 * that need destruction out of superblock, call generic_shutdown_super()
435 * and release aforementioned objects. Note: dentries and inodes _are_
436 * taken care of and do not need specific handling.
437 *
438 * Upon calling this function, the filesystem may no longer alter or
439 * rearrange the set of dentries belonging to this super_block, nor may it
440 * change the attachments of dentries to inodes.
441 */
generic_shutdown_super(struct super_block * sb)442 void generic_shutdown_super(struct super_block *sb)
443 {
444 const struct super_operations *sop = sb->s_op;
445
446 if (sb->s_root) {
447 shrink_dcache_for_umount(sb);
448 sync_filesystem(sb);
449 sb->s_flags &= ~SB_ACTIVE;
450
451 cgroup_writeback_umount();
452
453 /* evict all inodes with zero refcount */
454 evict_inodes(sb);
455 /* only nonzero refcount inodes can have marks */
456 fsnotify_sb_delete(sb);
457
458 if (sb->s_dio_done_wq) {
459 destroy_workqueue(sb->s_dio_done_wq);
460 sb->s_dio_done_wq = NULL;
461 }
462
463 if (sop->put_super)
464 sop->put_super(sb);
465
466 if (!list_empty(&sb->s_inodes)) {
467 printk("VFS: Busy inodes after unmount of %s. "
468 "Self-destruct in 5 seconds. Have a nice day...\n",
469 sb->s_id);
470 }
471 }
472 spin_lock(&sb_lock);
473 /* should be initialized for __put_super_and_need_restart() */
474 hlist_del_init(&sb->s_instances);
475 spin_unlock(&sb_lock);
476 up_write(&sb->s_umount);
477 if (sb->s_bdi != &noop_backing_dev_info) {
478 bdi_put(sb->s_bdi);
479 sb->s_bdi = &noop_backing_dev_info;
480 }
481 }
482
483 EXPORT_SYMBOL(generic_shutdown_super);
484
mount_capable(struct fs_context * fc)485 bool mount_capable(struct fs_context *fc)
486 {
487 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
488 return capable(CAP_SYS_ADMIN);
489 else
490 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
491 }
492
493 /**
494 * sget_fc - Find or create a superblock
495 * @fc: Filesystem context.
496 * @test: Comparison callback
497 * @set: Setup callback
498 *
499 * Find or create a superblock using the parameters stored in the filesystem
500 * context and the two callback functions.
501 *
502 * If an extant superblock is matched, then that will be returned with an
503 * elevated reference count that the caller must transfer or discard.
504 *
505 * If no match is made, a new superblock will be allocated and basic
506 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
507 * the set() callback will be invoked), the superblock will be published and it
508 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
509 * as yet unset.
510 */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))511 struct super_block *sget_fc(struct fs_context *fc,
512 int (*test)(struct super_block *, struct fs_context *),
513 int (*set)(struct super_block *, struct fs_context *))
514 {
515 struct super_block *s = NULL;
516 struct super_block *old;
517 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
518 int err;
519
520 retry:
521 spin_lock(&sb_lock);
522 if (test) {
523 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
524 if (test(old, fc))
525 goto share_extant_sb;
526 }
527 }
528 if (!s) {
529 spin_unlock(&sb_lock);
530 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
531 if (!s)
532 return ERR_PTR(-ENOMEM);
533 goto retry;
534 }
535
536 s->s_fs_info = fc->s_fs_info;
537 err = set(s, fc);
538 if (err) {
539 s->s_fs_info = NULL;
540 spin_unlock(&sb_lock);
541 destroy_unused_super(s);
542 return ERR_PTR(err);
543 }
544 fc->s_fs_info = NULL;
545 s->s_type = fc->fs_type;
546 s->s_iflags |= fc->s_iflags;
547 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
548 list_add_tail(&s->s_list, &super_blocks);
549 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
550 spin_unlock(&sb_lock);
551 get_filesystem(s->s_type);
552 register_shrinker_prepared(&s->s_shrink);
553 return s;
554
555 share_extant_sb:
556 if (user_ns != old->s_user_ns) {
557 spin_unlock(&sb_lock);
558 destroy_unused_super(s);
559 return ERR_PTR(-EBUSY);
560 }
561 if (!grab_super(old))
562 goto retry;
563 destroy_unused_super(s);
564 return old;
565 }
566 EXPORT_SYMBOL(sget_fc);
567
568 /**
569 * sget - find or create a superblock
570 * @type: filesystem type superblock should belong to
571 * @test: comparison callback
572 * @set: setup callback
573 * @flags: mount flags
574 * @data: argument to each of them
575 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)576 struct super_block *sget(struct file_system_type *type,
577 int (*test)(struct super_block *,void *),
578 int (*set)(struct super_block *,void *),
579 int flags,
580 void *data)
581 {
582 struct user_namespace *user_ns = current_user_ns();
583 struct super_block *s = NULL;
584 struct super_block *old;
585 int err;
586
587 /* We don't yet pass the user namespace of the parent
588 * mount through to here so always use &init_user_ns
589 * until that changes.
590 */
591 if (flags & SB_SUBMOUNT)
592 user_ns = &init_user_ns;
593
594 retry:
595 spin_lock(&sb_lock);
596 if (test) {
597 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
598 if (!test(old, data))
599 continue;
600 if (user_ns != old->s_user_ns) {
601 spin_unlock(&sb_lock);
602 destroy_unused_super(s);
603 return ERR_PTR(-EBUSY);
604 }
605 if (!grab_super(old))
606 goto retry;
607 destroy_unused_super(s);
608 return old;
609 }
610 }
611 if (!s) {
612 spin_unlock(&sb_lock);
613 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
614 if (!s)
615 return ERR_PTR(-ENOMEM);
616 goto retry;
617 }
618
619 err = set(s, data);
620 if (err) {
621 spin_unlock(&sb_lock);
622 destroy_unused_super(s);
623 return ERR_PTR(err);
624 }
625 s->s_type = type;
626 strlcpy(s->s_id, type->name, sizeof(s->s_id));
627 list_add_tail(&s->s_list, &super_blocks);
628 hlist_add_head(&s->s_instances, &type->fs_supers);
629 spin_unlock(&sb_lock);
630 get_filesystem(type);
631 register_shrinker_prepared(&s->s_shrink);
632 return s;
633 }
634 EXPORT_SYMBOL(sget);
635
drop_super(struct super_block * sb)636 void drop_super(struct super_block *sb)
637 {
638 up_read(&sb->s_umount);
639 put_super(sb);
640 }
641
642 EXPORT_SYMBOL(drop_super);
643
drop_super_exclusive(struct super_block * sb)644 void drop_super_exclusive(struct super_block *sb)
645 {
646 up_write(&sb->s_umount);
647 put_super(sb);
648 }
649 EXPORT_SYMBOL(drop_super_exclusive);
650
__iterate_supers(void (* f)(struct super_block *))651 static void __iterate_supers(void (*f)(struct super_block *))
652 {
653 struct super_block *sb, *p = NULL;
654
655 spin_lock(&sb_lock);
656 list_for_each_entry(sb, &super_blocks, s_list) {
657 if (hlist_unhashed(&sb->s_instances))
658 continue;
659 sb->s_count++;
660 spin_unlock(&sb_lock);
661
662 f(sb);
663
664 spin_lock(&sb_lock);
665 if (p)
666 __put_super(p);
667 p = sb;
668 }
669 if (p)
670 __put_super(p);
671 spin_unlock(&sb_lock);
672 }
673 /**
674 * iterate_supers - call function for all active superblocks
675 * @f: function to call
676 * @arg: argument to pass to it
677 *
678 * Scans the superblock list and calls given function, passing it
679 * locked superblock and given argument.
680 */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)681 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
682 {
683 struct super_block *sb, *p = NULL;
684
685 spin_lock(&sb_lock);
686 list_for_each_entry(sb, &super_blocks, s_list) {
687 if (hlist_unhashed(&sb->s_instances))
688 continue;
689 sb->s_count++;
690 spin_unlock(&sb_lock);
691
692 down_read(&sb->s_umount);
693 if (sb->s_root && (sb->s_flags & SB_BORN))
694 f(sb, arg);
695 up_read(&sb->s_umount);
696
697 spin_lock(&sb_lock);
698 if (p)
699 __put_super(p);
700 p = sb;
701 }
702 if (p)
703 __put_super(p);
704 spin_unlock(&sb_lock);
705 }
706
707 /**
708 * iterate_supers_type - call function for superblocks of given type
709 * @type: fs type
710 * @f: function to call
711 * @arg: argument to pass to it
712 *
713 * Scans the superblock list and calls given function, passing it
714 * locked superblock and given argument.
715 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)716 void iterate_supers_type(struct file_system_type *type,
717 void (*f)(struct super_block *, void *), void *arg)
718 {
719 struct super_block *sb, *p = NULL;
720
721 spin_lock(&sb_lock);
722 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
723 sb->s_count++;
724 spin_unlock(&sb_lock);
725
726 down_read(&sb->s_umount);
727 if (sb->s_root && (sb->s_flags & SB_BORN))
728 f(sb, arg);
729 up_read(&sb->s_umount);
730
731 spin_lock(&sb_lock);
732 if (p)
733 __put_super(p);
734 p = sb;
735 }
736 if (p)
737 __put_super(p);
738 spin_unlock(&sb_lock);
739 }
740
741 EXPORT_SYMBOL(iterate_supers_type);
742
__get_super(struct block_device * bdev,bool excl)743 static struct super_block *__get_super(struct block_device *bdev, bool excl)
744 {
745 struct super_block *sb;
746
747 if (!bdev)
748 return NULL;
749
750 spin_lock(&sb_lock);
751 rescan:
752 list_for_each_entry(sb, &super_blocks, s_list) {
753 if (hlist_unhashed(&sb->s_instances))
754 continue;
755 if (sb->s_bdev == bdev) {
756 sb->s_count++;
757 spin_unlock(&sb_lock);
758 if (!excl)
759 down_read(&sb->s_umount);
760 else
761 down_write(&sb->s_umount);
762 /* still alive? */
763 if (sb->s_root && (sb->s_flags & SB_BORN))
764 return sb;
765 if (!excl)
766 up_read(&sb->s_umount);
767 else
768 up_write(&sb->s_umount);
769 /* nope, got unmounted */
770 spin_lock(&sb_lock);
771 __put_super(sb);
772 goto rescan;
773 }
774 }
775 spin_unlock(&sb_lock);
776 return NULL;
777 }
778
779 /**
780 * get_super - get the superblock of a device
781 * @bdev: device to get the superblock for
782 *
783 * Scans the superblock list and finds the superblock of the file system
784 * mounted on the device given. %NULL is returned if no match is found.
785 */
get_super(struct block_device * bdev)786 struct super_block *get_super(struct block_device *bdev)
787 {
788 return __get_super(bdev, false);
789 }
790 EXPORT_SYMBOL(get_super);
791
__get_super_thawed(struct block_device * bdev,bool excl)792 static struct super_block *__get_super_thawed(struct block_device *bdev,
793 bool excl)
794 {
795 while (1) {
796 struct super_block *s = __get_super(bdev, excl);
797 if (!s || s->s_writers.frozen == SB_UNFROZEN)
798 return s;
799 if (!excl)
800 up_read(&s->s_umount);
801 else
802 up_write(&s->s_umount);
803 wait_event(s->s_writers.wait_unfrozen,
804 s->s_writers.frozen == SB_UNFROZEN);
805 put_super(s);
806 }
807 }
808
809 /**
810 * get_super_thawed - get thawed superblock of a device
811 * @bdev: device to get the superblock for
812 *
813 * Scans the superblock list and finds the superblock of the file system
814 * mounted on the device. The superblock is returned once it is thawed
815 * (or immediately if it was not frozen). %NULL is returned if no match
816 * is found.
817 */
get_super_thawed(struct block_device * bdev)818 struct super_block *get_super_thawed(struct block_device *bdev)
819 {
820 return __get_super_thawed(bdev, false);
821 }
822 EXPORT_SYMBOL(get_super_thawed);
823
824 /**
825 * get_super_exclusive_thawed - get thawed superblock of a device
826 * @bdev: device to get the superblock for
827 *
828 * Scans the superblock list and finds the superblock of the file system
829 * mounted on the device. The superblock is returned once it is thawed
830 * (or immediately if it was not frozen) and s_umount semaphore is held
831 * in exclusive mode. %NULL is returned if no match is found.
832 */
get_super_exclusive_thawed(struct block_device * bdev)833 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
834 {
835 return __get_super_thawed(bdev, true);
836 }
837 EXPORT_SYMBOL(get_super_exclusive_thawed);
838
839 /**
840 * get_active_super - get an active reference to the superblock of a device
841 * @bdev: device to get the superblock for
842 *
843 * Scans the superblock list and finds the superblock of the file system
844 * mounted on the device given. Returns the superblock with an active
845 * reference or %NULL if none was found.
846 */
get_active_super(struct block_device * bdev)847 struct super_block *get_active_super(struct block_device *bdev)
848 {
849 struct super_block *sb;
850
851 if (!bdev)
852 return NULL;
853
854 restart:
855 spin_lock(&sb_lock);
856 list_for_each_entry(sb, &super_blocks, s_list) {
857 if (hlist_unhashed(&sb->s_instances))
858 continue;
859 if (sb->s_bdev == bdev) {
860 if (!grab_super(sb))
861 goto restart;
862 up_write(&sb->s_umount);
863 return sb;
864 }
865 }
866 spin_unlock(&sb_lock);
867 return NULL;
868 }
869
user_get_super(dev_t dev)870 struct super_block *user_get_super(dev_t dev)
871 {
872 struct super_block *sb;
873
874 spin_lock(&sb_lock);
875 rescan:
876 list_for_each_entry(sb, &super_blocks, s_list) {
877 if (hlist_unhashed(&sb->s_instances))
878 continue;
879 if (sb->s_dev == dev) {
880 sb->s_count++;
881 spin_unlock(&sb_lock);
882 down_read(&sb->s_umount);
883 /* still alive? */
884 if (sb->s_root && (sb->s_flags & SB_BORN))
885 return sb;
886 up_read(&sb->s_umount);
887 /* nope, got unmounted */
888 spin_lock(&sb_lock);
889 __put_super(sb);
890 goto rescan;
891 }
892 }
893 spin_unlock(&sb_lock);
894 return NULL;
895 }
896
897 /**
898 * reconfigure_super - asks filesystem to change superblock parameters
899 * @fc: The superblock and configuration
900 *
901 * Alters the configuration parameters of a live superblock.
902 */
reconfigure_super(struct fs_context * fc)903 int reconfigure_super(struct fs_context *fc)
904 {
905 struct super_block *sb = fc->root->d_sb;
906 int retval;
907 bool remount_ro = false;
908 bool remount_rw = false;
909 bool force = fc->sb_flags & SB_FORCE;
910
911 if (fc->sb_flags_mask & ~MS_RMT_MASK)
912 return -EINVAL;
913 if (sb->s_writers.frozen != SB_UNFROZEN)
914 return -EBUSY;
915
916 retval = security_sb_remount(sb, fc->security);
917 if (retval)
918 return retval;
919
920 if (fc->sb_flags_mask & SB_RDONLY) {
921 #ifdef CONFIG_BLOCK
922 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
923 return -EACCES;
924 #endif
925 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
926 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
927 }
928
929 if (remount_ro) {
930 if (!hlist_empty(&sb->s_pins)) {
931 up_write(&sb->s_umount);
932 group_pin_kill(&sb->s_pins);
933 down_write(&sb->s_umount);
934 if (!sb->s_root)
935 return 0;
936 if (sb->s_writers.frozen != SB_UNFROZEN)
937 return -EBUSY;
938 remount_ro = !sb_rdonly(sb);
939 }
940 }
941 shrink_dcache_sb(sb);
942
943 /* If we are reconfiguring to RDONLY and current sb is read/write,
944 * make sure there are no files open for writing.
945 */
946 if (remount_ro) {
947 if (force) {
948 sb->s_readonly_remount = 1;
949 smp_wmb();
950 } else {
951 retval = sb_prepare_remount_readonly(sb);
952 if (retval)
953 return retval;
954 }
955 } else if (remount_rw) {
956 /*
957 * We set s_readonly_remount here to protect filesystem's
958 * reconfigure code from writes from userspace until
959 * reconfigure finishes.
960 */
961 sb->s_readonly_remount = 1;
962 smp_wmb();
963 }
964
965 if (fc->ops->reconfigure) {
966 retval = fc->ops->reconfigure(fc);
967 if (retval) {
968 if (!force)
969 goto cancel_readonly;
970 /* If forced remount, go ahead despite any errors */
971 WARN(1, "forced remount of a %s fs returned %i\n",
972 sb->s_type->name, retval);
973 }
974 }
975
976 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
977 (fc->sb_flags & fc->sb_flags_mask)));
978 /* Needs to be ordered wrt mnt_is_readonly() */
979 smp_wmb();
980 sb->s_readonly_remount = 0;
981
982 /*
983 * Some filesystems modify their metadata via some other path than the
984 * bdev buffer cache (eg. use a private mapping, or directories in
985 * pagecache, etc). Also file data modifications go via their own
986 * mappings. So If we try to mount readonly then copy the filesystem
987 * from bdev, we could get stale data, so invalidate it to give a best
988 * effort at coherency.
989 */
990 if (remount_ro && sb->s_bdev)
991 invalidate_bdev(sb->s_bdev);
992 return 0;
993
994 cancel_readonly:
995 sb->s_readonly_remount = 0;
996 return retval;
997 }
998
do_emergency_remount_callback(struct super_block * sb)999 static void do_emergency_remount_callback(struct super_block *sb)
1000 {
1001 down_write(&sb->s_umount);
1002 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
1003 !sb_rdonly(sb)) {
1004 struct fs_context *fc;
1005
1006 fc = fs_context_for_reconfigure(sb->s_root,
1007 SB_RDONLY | SB_FORCE, SB_RDONLY);
1008 if (!IS_ERR(fc)) {
1009 if (parse_monolithic_mount_data(fc, NULL) == 0)
1010 (void)reconfigure_super(fc);
1011 put_fs_context(fc);
1012 }
1013 }
1014 up_write(&sb->s_umount);
1015 }
1016
do_emergency_remount(struct work_struct * work)1017 static void do_emergency_remount(struct work_struct *work)
1018 {
1019 __iterate_supers(do_emergency_remount_callback);
1020 kfree(work);
1021 printk("Emergency Remount complete\n");
1022 }
1023
emergency_remount(void)1024 void emergency_remount(void)
1025 {
1026 struct work_struct *work;
1027
1028 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1029 if (work) {
1030 INIT_WORK(work, do_emergency_remount);
1031 schedule_work(work);
1032 }
1033 }
1034
do_thaw_all_callback(struct super_block * sb)1035 static void do_thaw_all_callback(struct super_block *sb)
1036 {
1037 down_write(&sb->s_umount);
1038 if (sb->s_root && sb->s_flags & SB_BORN) {
1039 emergency_thaw_bdev(sb);
1040 thaw_super_locked(sb);
1041 } else {
1042 up_write(&sb->s_umount);
1043 }
1044 }
1045
do_thaw_all(struct work_struct * work)1046 static void do_thaw_all(struct work_struct *work)
1047 {
1048 __iterate_supers(do_thaw_all_callback);
1049 kfree(work);
1050 printk(KERN_WARNING "Emergency Thaw complete\n");
1051 }
1052
1053 /**
1054 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1055 *
1056 * Used for emergency unfreeze of all filesystems via SysRq
1057 */
emergency_thaw_all(void)1058 void emergency_thaw_all(void)
1059 {
1060 struct work_struct *work;
1061
1062 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1063 if (work) {
1064 INIT_WORK(work, do_thaw_all);
1065 schedule_work(work);
1066 }
1067 }
1068
1069 static DEFINE_IDA(unnamed_dev_ida);
1070
1071 /**
1072 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1073 * @p: Pointer to a dev_t.
1074 *
1075 * Filesystems which don't use real block devices can call this function
1076 * to allocate a virtual block device.
1077 *
1078 * Context: Any context. Frequently called while holding sb_lock.
1079 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1080 * or -ENOMEM if memory allocation failed.
1081 */
get_anon_bdev(dev_t * p)1082 int get_anon_bdev(dev_t *p)
1083 {
1084 int dev;
1085
1086 /*
1087 * Many userspace utilities consider an FSID of 0 invalid.
1088 * Always return at least 1 from get_anon_bdev.
1089 */
1090 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1091 GFP_ATOMIC);
1092 if (dev == -ENOSPC)
1093 dev = -EMFILE;
1094 if (dev < 0)
1095 return dev;
1096
1097 *p = MKDEV(0, dev);
1098 return 0;
1099 }
1100 EXPORT_SYMBOL(get_anon_bdev);
1101
free_anon_bdev(dev_t dev)1102 void free_anon_bdev(dev_t dev)
1103 {
1104 ida_free(&unnamed_dev_ida, MINOR(dev));
1105 }
1106 EXPORT_SYMBOL(free_anon_bdev);
1107
set_anon_super(struct super_block * s,void * data)1108 int set_anon_super(struct super_block *s, void *data)
1109 {
1110 return get_anon_bdev(&s->s_dev);
1111 }
1112 EXPORT_SYMBOL(set_anon_super);
1113
kill_anon_super(struct super_block * sb)1114 void kill_anon_super(struct super_block *sb)
1115 {
1116 dev_t dev = sb->s_dev;
1117 generic_shutdown_super(sb);
1118 free_anon_bdev(dev);
1119 }
1120 EXPORT_SYMBOL(kill_anon_super);
1121
kill_litter_super(struct super_block * sb)1122 void kill_litter_super(struct super_block *sb)
1123 {
1124 if (sb->s_root)
1125 d_genocide(sb->s_root);
1126 kill_anon_super(sb);
1127 }
1128 EXPORT_SYMBOL(kill_litter_super);
1129
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1130 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1131 {
1132 return set_anon_super(sb, NULL);
1133 }
1134 EXPORT_SYMBOL(set_anon_super_fc);
1135
test_keyed_super(struct super_block * sb,struct fs_context * fc)1136 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1137 {
1138 return sb->s_fs_info == fc->s_fs_info;
1139 }
1140
test_single_super(struct super_block * s,struct fs_context * fc)1141 static int test_single_super(struct super_block *s, struct fs_context *fc)
1142 {
1143 return 1;
1144 }
1145
1146 /**
1147 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1148 * @fc: The filesystem context holding the parameters
1149 * @keying: How to distinguish superblocks
1150 * @fill_super: Helper to initialise a new superblock
1151 *
1152 * Search for a superblock and create a new one if not found. The search
1153 * criterion is controlled by @keying. If the search fails, a new superblock
1154 * is created and @fill_super() is called to initialise it.
1155 *
1156 * @keying can take one of a number of values:
1157 *
1158 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1159 * system. This is typically used for special system filesystems.
1160 *
1161 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1162 * distinct keys (where the key is in s_fs_info). Searching for the same
1163 * key again will turn up the superblock for that key.
1164 *
1165 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1166 * unkeyed. Each call will get a new superblock.
1167 *
1168 * A permissions check is made by sget_fc() unless we're getting a superblock
1169 * for a kernel-internal mount or a submount.
1170 */
vfs_get_super(struct fs_context * fc,enum vfs_get_super_keying keying,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1171 int vfs_get_super(struct fs_context *fc,
1172 enum vfs_get_super_keying keying,
1173 int (*fill_super)(struct super_block *sb,
1174 struct fs_context *fc))
1175 {
1176 int (*test)(struct super_block *, struct fs_context *);
1177 struct super_block *sb;
1178 int err;
1179
1180 switch (keying) {
1181 case vfs_get_single_super:
1182 case vfs_get_single_reconf_super:
1183 test = test_single_super;
1184 break;
1185 case vfs_get_keyed_super:
1186 test = test_keyed_super;
1187 break;
1188 case vfs_get_independent_super:
1189 test = NULL;
1190 break;
1191 default:
1192 BUG();
1193 }
1194
1195 sb = sget_fc(fc, test, set_anon_super_fc);
1196 if (IS_ERR(sb))
1197 return PTR_ERR(sb);
1198
1199 if (!sb->s_root) {
1200 err = fill_super(sb, fc);
1201 if (err)
1202 goto error;
1203
1204 sb->s_flags |= SB_ACTIVE;
1205 fc->root = dget(sb->s_root);
1206 } else {
1207 fc->root = dget(sb->s_root);
1208 if (keying == vfs_get_single_reconf_super) {
1209 err = reconfigure_super(fc);
1210 if (err < 0) {
1211 dput(fc->root);
1212 fc->root = NULL;
1213 goto error;
1214 }
1215 }
1216 }
1217
1218 return 0;
1219
1220 error:
1221 deactivate_locked_super(sb);
1222 return err;
1223 }
1224 EXPORT_SYMBOL(vfs_get_super);
1225
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1226 int get_tree_nodev(struct fs_context *fc,
1227 int (*fill_super)(struct super_block *sb,
1228 struct fs_context *fc))
1229 {
1230 return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1231 }
1232 EXPORT_SYMBOL(get_tree_nodev);
1233
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1234 int get_tree_single(struct fs_context *fc,
1235 int (*fill_super)(struct super_block *sb,
1236 struct fs_context *fc))
1237 {
1238 return vfs_get_super(fc, vfs_get_single_super, fill_super);
1239 }
1240 EXPORT_SYMBOL(get_tree_single);
1241
get_tree_single_reconf(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1242 int get_tree_single_reconf(struct fs_context *fc,
1243 int (*fill_super)(struct super_block *sb,
1244 struct fs_context *fc))
1245 {
1246 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1247 }
1248 EXPORT_SYMBOL(get_tree_single_reconf);
1249
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1250 int get_tree_keyed(struct fs_context *fc,
1251 int (*fill_super)(struct super_block *sb,
1252 struct fs_context *fc),
1253 void *key)
1254 {
1255 fc->s_fs_info = key;
1256 return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1257 }
1258 EXPORT_SYMBOL(get_tree_keyed);
1259
1260 #ifdef CONFIG_BLOCK
1261
set_bdev_super(struct super_block * s,void * data)1262 static int set_bdev_super(struct super_block *s, void *data)
1263 {
1264 s->s_bdev = data;
1265 s->s_dev = s->s_bdev->bd_dev;
1266 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1267
1268 return 0;
1269 }
1270
set_bdev_super_fc(struct super_block * s,struct fs_context * fc)1271 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1272 {
1273 return set_bdev_super(s, fc->sget_key);
1274 }
1275
test_bdev_super_fc(struct super_block * s,struct fs_context * fc)1276 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1277 {
1278 return s->s_bdev == fc->sget_key;
1279 }
1280
1281 /**
1282 * get_tree_bdev - Get a superblock based on a single block device
1283 * @fc: The filesystem context holding the parameters
1284 * @fill_super: Helper to initialise a new superblock
1285 */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1286 int get_tree_bdev(struct fs_context *fc,
1287 int (*fill_super)(struct super_block *,
1288 struct fs_context *))
1289 {
1290 struct block_device *bdev;
1291 struct super_block *s;
1292 fmode_t mode = FMODE_READ | FMODE_EXCL;
1293 int error = 0;
1294
1295 if (!(fc->sb_flags & SB_RDONLY))
1296 mode |= FMODE_WRITE;
1297
1298 if (!fc->source)
1299 return invalf(fc, "No source specified");
1300
1301 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1302 if (IS_ERR(bdev)) {
1303 errorf(fc, "%s: Can't open blockdev", fc->source);
1304 return PTR_ERR(bdev);
1305 }
1306
1307 /* Once the superblock is inserted into the list by sget_fc(), s_umount
1308 * will protect the lockfs code from trying to start a snapshot while
1309 * we are mounting
1310 */
1311 mutex_lock(&bdev->bd_fsfreeze_mutex);
1312 if (bdev->bd_fsfreeze_count > 0) {
1313 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1314 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1315 blkdev_put(bdev, mode);
1316 return -EBUSY;
1317 }
1318
1319 fc->sb_flags |= SB_NOSEC;
1320 fc->sget_key = bdev;
1321 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1322 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1323 if (IS_ERR(s)) {
1324 blkdev_put(bdev, mode);
1325 return PTR_ERR(s);
1326 }
1327
1328 if (s->s_root) {
1329 /* Don't summarily change the RO/RW state. */
1330 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1331 warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1332 deactivate_locked_super(s);
1333 blkdev_put(bdev, mode);
1334 return -EBUSY;
1335 }
1336
1337 /*
1338 * s_umount nests inside bd_mutex during
1339 * __invalidate_device(). blkdev_put() acquires
1340 * bd_mutex and can't be called under s_umount. Drop
1341 * s_umount temporarily. This is safe as we're
1342 * holding an active reference.
1343 */
1344 up_write(&s->s_umount);
1345 blkdev_put(bdev, mode);
1346 down_write(&s->s_umount);
1347 } else {
1348 s->s_mode = mode;
1349 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1350 sb_set_blocksize(s, block_size(bdev));
1351 error = fill_super(s, fc);
1352 if (error) {
1353 deactivate_locked_super(s);
1354 return error;
1355 }
1356
1357 s->s_flags |= SB_ACTIVE;
1358 bdev->bd_super = s;
1359 }
1360
1361 BUG_ON(fc->root);
1362 fc->root = dget(s->s_root);
1363 return 0;
1364 }
1365 EXPORT_SYMBOL(get_tree_bdev);
1366
test_bdev_super(struct super_block * s,void * data)1367 static int test_bdev_super(struct super_block *s, void *data)
1368 {
1369 return (void *)s->s_bdev == data;
1370 }
1371
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1372 struct dentry *mount_bdev(struct file_system_type *fs_type,
1373 int flags, const char *dev_name, void *data,
1374 int (*fill_super)(struct super_block *, void *, int))
1375 {
1376 struct block_device *bdev;
1377 struct super_block *s;
1378 fmode_t mode = FMODE_READ | FMODE_EXCL;
1379 int error = 0;
1380
1381 if (!(flags & SB_RDONLY))
1382 mode |= FMODE_WRITE;
1383
1384 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1385 if (IS_ERR(bdev))
1386 return ERR_CAST(bdev);
1387
1388 /*
1389 * once the super is inserted into the list by sget, s_umount
1390 * will protect the lockfs code from trying to start a snapshot
1391 * while we are mounting
1392 */
1393 mutex_lock(&bdev->bd_fsfreeze_mutex);
1394 if (bdev->bd_fsfreeze_count > 0) {
1395 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1396 error = -EBUSY;
1397 goto error_bdev;
1398 }
1399 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1400 bdev);
1401 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1402 if (IS_ERR(s))
1403 goto error_s;
1404
1405 if (s->s_root) {
1406 if ((flags ^ s->s_flags) & SB_RDONLY) {
1407 deactivate_locked_super(s);
1408 error = -EBUSY;
1409 goto error_bdev;
1410 }
1411
1412 /*
1413 * s_umount nests inside bd_mutex during
1414 * __invalidate_device(). blkdev_put() acquires
1415 * bd_mutex and can't be called under s_umount. Drop
1416 * s_umount temporarily. This is safe as we're
1417 * holding an active reference.
1418 */
1419 up_write(&s->s_umount);
1420 blkdev_put(bdev, mode);
1421 down_write(&s->s_umount);
1422 } else {
1423 s->s_mode = mode;
1424 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1425 sb_set_blocksize(s, block_size(bdev));
1426 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1427 if (error) {
1428 deactivate_locked_super(s);
1429 goto error;
1430 }
1431
1432 s->s_flags |= SB_ACTIVE;
1433 bdev->bd_super = s;
1434 }
1435
1436 return dget(s->s_root);
1437
1438 error_s:
1439 error = PTR_ERR(s);
1440 error_bdev:
1441 blkdev_put(bdev, mode);
1442 error:
1443 return ERR_PTR(error);
1444 }
1445 EXPORT_SYMBOL(mount_bdev);
1446
kill_block_super(struct super_block * sb)1447 void kill_block_super(struct super_block *sb)
1448 {
1449 struct block_device *bdev = sb->s_bdev;
1450 fmode_t mode = sb->s_mode;
1451
1452 bdev->bd_super = NULL;
1453 generic_shutdown_super(sb);
1454 sync_blockdev(bdev);
1455 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1456 blkdev_put(bdev, mode | FMODE_EXCL);
1457 }
1458
1459 EXPORT_SYMBOL(kill_block_super);
1460 #endif
1461
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1462 struct dentry *mount_nodev(struct file_system_type *fs_type,
1463 int flags, void *data,
1464 int (*fill_super)(struct super_block *, void *, int))
1465 {
1466 int error;
1467 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1468
1469 if (IS_ERR(s))
1470 return ERR_CAST(s);
1471
1472 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1473 if (error) {
1474 deactivate_locked_super(s);
1475 return ERR_PTR(error);
1476 }
1477 s->s_flags |= SB_ACTIVE;
1478 return dget(s->s_root);
1479 }
1480 EXPORT_SYMBOL(mount_nodev);
1481
reconfigure_single(struct super_block * s,int flags,void * data)1482 int reconfigure_single(struct super_block *s,
1483 int flags, void *data)
1484 {
1485 struct fs_context *fc;
1486 int ret;
1487
1488 /* The caller really need to be passing fc down into mount_single(),
1489 * then a chunk of this can be removed. [Bollocks -- AV]
1490 * Better yet, reconfiguration shouldn't happen, but rather the second
1491 * mount should be rejected if the parameters are not compatible.
1492 */
1493 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1494 if (IS_ERR(fc))
1495 return PTR_ERR(fc);
1496
1497 ret = parse_monolithic_mount_data(fc, data);
1498 if (ret < 0)
1499 goto out;
1500
1501 ret = reconfigure_super(fc);
1502 out:
1503 put_fs_context(fc);
1504 return ret;
1505 }
1506
compare_single(struct super_block * s,void * p)1507 static int compare_single(struct super_block *s, void *p)
1508 {
1509 return 1;
1510 }
1511
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1512 struct dentry *mount_single(struct file_system_type *fs_type,
1513 int flags, void *data,
1514 int (*fill_super)(struct super_block *, void *, int))
1515 {
1516 struct super_block *s;
1517 int error;
1518
1519 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1520 if (IS_ERR(s))
1521 return ERR_CAST(s);
1522 if (!s->s_root) {
1523 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1524 if (!error)
1525 s->s_flags |= SB_ACTIVE;
1526 } else {
1527 error = reconfigure_single(s, flags, data);
1528 }
1529 if (unlikely(error)) {
1530 deactivate_locked_super(s);
1531 return ERR_PTR(error);
1532 }
1533 return dget(s->s_root);
1534 }
1535 EXPORT_SYMBOL(mount_single);
1536
1537 /**
1538 * vfs_get_tree - Get the mountable root
1539 * @fc: The superblock configuration context.
1540 *
1541 * The filesystem is invoked to get or create a superblock which can then later
1542 * be used for mounting. The filesystem places a pointer to the root to be
1543 * used for mounting in @fc->root.
1544 */
vfs_get_tree(struct fs_context * fc)1545 int vfs_get_tree(struct fs_context *fc)
1546 {
1547 struct super_block *sb;
1548 int error;
1549
1550 if (fc->root)
1551 return -EBUSY;
1552
1553 /* Get the mountable root in fc->root, with a ref on the root and a ref
1554 * on the superblock.
1555 */
1556 error = fc->ops->get_tree(fc);
1557 if (error < 0)
1558 return error;
1559
1560 if (!fc->root) {
1561 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1562 fc->fs_type->name);
1563 /* We don't know what the locking state of the superblock is -
1564 * if there is a superblock.
1565 */
1566 BUG();
1567 }
1568
1569 sb = fc->root->d_sb;
1570 WARN_ON(!sb->s_bdi);
1571
1572 /*
1573 * Write barrier is for super_cache_count(). We place it before setting
1574 * SB_BORN as the data dependency between the two functions is the
1575 * superblock structure contents that we just set up, not the SB_BORN
1576 * flag.
1577 */
1578 smp_wmb();
1579 sb->s_flags |= SB_BORN;
1580
1581 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1582 if (unlikely(error)) {
1583 fc_drop_locked(fc);
1584 return error;
1585 }
1586
1587 /*
1588 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1589 * but s_maxbytes was an unsigned long long for many releases. Throw
1590 * this warning for a little while to try and catch filesystems that
1591 * violate this rule.
1592 */
1593 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1594 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1595
1596 return 0;
1597 }
1598 EXPORT_SYMBOL(vfs_get_tree);
1599
1600 /*
1601 * Setup private BDI for given superblock. It gets automatically cleaned up
1602 * in generic_shutdown_super().
1603 */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1604 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1605 {
1606 struct backing_dev_info *bdi;
1607 int err;
1608 va_list args;
1609
1610 bdi = bdi_alloc(GFP_KERNEL);
1611 if (!bdi)
1612 return -ENOMEM;
1613
1614 bdi->name = sb->s_type->name;
1615
1616 va_start(args, fmt);
1617 err = bdi_register_va(bdi, fmt, args);
1618 va_end(args);
1619 if (err) {
1620 bdi_put(bdi);
1621 return err;
1622 }
1623 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1624 sb->s_bdi = bdi;
1625
1626 return 0;
1627 }
1628 EXPORT_SYMBOL(super_setup_bdi_name);
1629
1630 /*
1631 * Setup private BDI for given superblock. I gets automatically cleaned up
1632 * in generic_shutdown_super().
1633 */
super_setup_bdi(struct super_block * sb)1634 int super_setup_bdi(struct super_block *sb)
1635 {
1636 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1637
1638 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1639 atomic_long_inc_return(&bdi_seq));
1640 }
1641 EXPORT_SYMBOL(super_setup_bdi);
1642
1643 /*
1644 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1645 * instead.
1646 */
__sb_end_write(struct super_block * sb,int level)1647 void __sb_end_write(struct super_block *sb, int level)
1648 {
1649 percpu_up_read(sb->s_writers.rw_sem + level-1);
1650 }
1651 EXPORT_SYMBOL(__sb_end_write);
1652
1653 /*
1654 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1655 * instead.
1656 */
__sb_start_write(struct super_block * sb,int level,bool wait)1657 int __sb_start_write(struct super_block *sb, int level, bool wait)
1658 {
1659 if (!wait)
1660 return percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1661
1662 percpu_down_read(sb->s_writers.rw_sem + level-1);
1663 return 1;
1664 }
1665 EXPORT_SYMBOL(__sb_start_write);
1666
1667 /**
1668 * sb_wait_write - wait until all writers to given file system finish
1669 * @sb: the super for which we wait
1670 * @level: type of writers we wait for (normal vs page fault)
1671 *
1672 * This function waits until there are no writers of given type to given file
1673 * system.
1674 */
sb_wait_write(struct super_block * sb,int level)1675 static void sb_wait_write(struct super_block *sb, int level)
1676 {
1677 percpu_down_write(sb->s_writers.rw_sem + level-1);
1678 }
1679
1680 /*
1681 * We are going to return to userspace and forget about these locks, the
1682 * ownership goes to the caller of thaw_super() which does unlock().
1683 */
lockdep_sb_freeze_release(struct super_block * sb)1684 static void lockdep_sb_freeze_release(struct super_block *sb)
1685 {
1686 int level;
1687
1688 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1689 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1690 }
1691
1692 /*
1693 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1694 */
lockdep_sb_freeze_acquire(struct super_block * sb)1695 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1696 {
1697 int level;
1698
1699 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1700 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1701 }
1702
sb_freeze_unlock(struct super_block * sb,int level)1703 static void sb_freeze_unlock(struct super_block *sb, int level)
1704 {
1705 for (level--; level >= 0; level--)
1706 percpu_up_write(sb->s_writers.rw_sem + level);
1707 }
1708
1709 /**
1710 * freeze_super - lock the filesystem and force it into a consistent state
1711 * @sb: the super to lock
1712 *
1713 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1714 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1715 * -EBUSY.
1716 *
1717 * During this function, sb->s_writers.frozen goes through these values:
1718 *
1719 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1720 *
1721 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1722 * writes should be blocked, though page faults are still allowed. We wait for
1723 * all writes to complete and then proceed to the next stage.
1724 *
1725 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1726 * but internal fs threads can still modify the filesystem (although they
1727 * should not dirty new pages or inodes), writeback can run etc. After waiting
1728 * for all running page faults we sync the filesystem which will clean all
1729 * dirty pages and inodes (no new dirty pages or inodes can be created when
1730 * sync is running).
1731 *
1732 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1733 * modification are blocked (e.g. XFS preallocation truncation on inode
1734 * reclaim). This is usually implemented by blocking new transactions for
1735 * filesystems that have them and need this additional guard. After all
1736 * internal writers are finished we call ->freeze_fs() to finish filesystem
1737 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1738 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1739 *
1740 * sb->s_writers.frozen is protected by sb->s_umount.
1741 */
freeze_super(struct super_block * sb)1742 int freeze_super(struct super_block *sb)
1743 {
1744 int ret;
1745
1746 atomic_inc(&sb->s_active);
1747 down_write(&sb->s_umount);
1748 if (sb->s_writers.frozen != SB_UNFROZEN) {
1749 deactivate_locked_super(sb);
1750 return -EBUSY;
1751 }
1752
1753 if (!(sb->s_flags & SB_BORN)) {
1754 up_write(&sb->s_umount);
1755 return 0; /* sic - it's "nothing to do" */
1756 }
1757
1758 if (sb_rdonly(sb)) {
1759 /* Nothing to do really... */
1760 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1761 up_write(&sb->s_umount);
1762 return 0;
1763 }
1764
1765 sb->s_writers.frozen = SB_FREEZE_WRITE;
1766 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1767 up_write(&sb->s_umount);
1768 sb_wait_write(sb, SB_FREEZE_WRITE);
1769 down_write(&sb->s_umount);
1770
1771 /* Now we go and block page faults... */
1772 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1773 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1774
1775 /* All writers are done so after syncing there won't be dirty data */
1776 ret = sync_filesystem(sb);
1777 if (ret) {
1778 sb->s_writers.frozen = SB_UNFROZEN;
1779 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1780 wake_up(&sb->s_writers.wait_unfrozen);
1781 deactivate_locked_super(sb);
1782 return ret;
1783 }
1784
1785 /* Now wait for internal filesystem counter */
1786 sb->s_writers.frozen = SB_FREEZE_FS;
1787 sb_wait_write(sb, SB_FREEZE_FS);
1788
1789 if (sb->s_op->freeze_fs) {
1790 ret = sb->s_op->freeze_fs(sb);
1791 if (ret) {
1792 printk(KERN_ERR
1793 "VFS:Filesystem freeze failed\n");
1794 sb->s_writers.frozen = SB_UNFROZEN;
1795 sb_freeze_unlock(sb, SB_FREEZE_FS);
1796 wake_up(&sb->s_writers.wait_unfrozen);
1797 deactivate_locked_super(sb);
1798 return ret;
1799 }
1800 }
1801 /*
1802 * For debugging purposes so that fs can warn if it sees write activity
1803 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1804 */
1805 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1806 lockdep_sb_freeze_release(sb);
1807 up_write(&sb->s_umount);
1808 return 0;
1809 }
1810 EXPORT_SYMBOL(freeze_super);
1811
1812 /**
1813 * thaw_super -- unlock filesystem
1814 * @sb: the super to thaw
1815 *
1816 * Unlocks the filesystem and marks it writeable again after freeze_super().
1817 */
thaw_super_locked(struct super_block * sb)1818 static int thaw_super_locked(struct super_block *sb)
1819 {
1820 int error;
1821
1822 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1823 up_write(&sb->s_umount);
1824 return -EINVAL;
1825 }
1826
1827 if (sb_rdonly(sb)) {
1828 sb->s_writers.frozen = SB_UNFROZEN;
1829 goto out;
1830 }
1831
1832 lockdep_sb_freeze_acquire(sb);
1833
1834 if (sb->s_op->unfreeze_fs) {
1835 error = sb->s_op->unfreeze_fs(sb);
1836 if (error) {
1837 printk(KERN_ERR
1838 "VFS:Filesystem thaw failed\n");
1839 lockdep_sb_freeze_release(sb);
1840 up_write(&sb->s_umount);
1841 return error;
1842 }
1843 }
1844
1845 sb->s_writers.frozen = SB_UNFROZEN;
1846 sb_freeze_unlock(sb, SB_FREEZE_FS);
1847 out:
1848 wake_up(&sb->s_writers.wait_unfrozen);
1849 deactivate_locked_super(sb);
1850 return 0;
1851 }
1852
thaw_super(struct super_block * sb)1853 int thaw_super(struct super_block *sb)
1854 {
1855 down_write(&sb->s_umount);
1856 return thaw_super_locked(sb);
1857 }
1858 EXPORT_SYMBOL(thaw_super);
1859