1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/fs.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
19
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 #include "dir.h"
35
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38
39 #if BITS_PER_LONG == 32
40 #define LBITMASK (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48
49 /*
50 * These routines are used by the resource group routines (rgrp.c)
51 * to keep track of block allocation. Each block is represented by two
52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53 *
54 * 0 = Free
55 * 1 = Used (not metadata)
56 * 2 = Unlinked (still in use) inode
57 * 3 = Used (metadata)
58 */
59
60 struct gfs2_extent {
61 struct gfs2_rbm rbm;
62 u32 len;
63 };
64
65 static const char valid_change[16] = {
66 /* current */
67 /* n */ 0, 1, 1, 1,
68 /* e */ 1, 0, 0, 0,
69 /* w */ 0, 0, 0, 1,
70 1, 0, 0, 0
71 };
72
73 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
74 const struct gfs2_inode *ip, bool nowrap);
75
76
77 /**
78 * gfs2_setbit - Set a bit in the bitmaps
79 * @rbm: The position of the bit to set
80 * @do_clone: Also set the clone bitmap, if it exists
81 * @new_state: the new state of the block
82 *
83 */
84
gfs2_setbit(const struct gfs2_rbm * rbm,bool do_clone,unsigned char new_state)85 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
86 unsigned char new_state)
87 {
88 unsigned char *byte1, *byte2, *end, cur_state;
89 struct gfs2_bitmap *bi = rbm_bi(rbm);
90 unsigned int buflen = bi->bi_bytes;
91 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
92
93 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
94 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
95
96 BUG_ON(byte1 >= end);
97
98 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
99
100 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
101 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
102
103 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
104 rbm->offset, cur_state, new_state);
105 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
106 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
107 (unsigned long long)bi->bi_bh->b_blocknr);
108 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
109 bi->bi_offset, bi->bi_bytes,
110 (unsigned long long)gfs2_rbm_to_block(rbm));
111 dump_stack();
112 gfs2_consist_rgrpd(rbm->rgd);
113 return;
114 }
115 *byte1 ^= (cur_state ^ new_state) << bit;
116
117 if (do_clone && bi->bi_clone) {
118 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
119 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
120 *byte2 ^= (cur_state ^ new_state) << bit;
121 }
122 }
123
124 /**
125 * gfs2_testbit - test a bit in the bitmaps
126 * @rbm: The bit to test
127 * @use_clone: If true, test the clone bitmap, not the official bitmap.
128 *
129 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
130 * not the "real" bitmaps, to avoid allocating recently freed blocks.
131 *
132 * Returns: The two bit block state of the requested bit
133 */
134
gfs2_testbit(const struct gfs2_rbm * rbm,bool use_clone)135 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
136 {
137 struct gfs2_bitmap *bi = rbm_bi(rbm);
138 const u8 *buffer;
139 const u8 *byte;
140 unsigned int bit;
141
142 if (use_clone && bi->bi_clone)
143 buffer = bi->bi_clone;
144 else
145 buffer = bi->bi_bh->b_data;
146 buffer += bi->bi_offset;
147 byte = buffer + (rbm->offset / GFS2_NBBY);
148 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
149
150 return (*byte >> bit) & GFS2_BIT_MASK;
151 }
152
153 /**
154 * gfs2_bit_search
155 * @ptr: Pointer to bitmap data
156 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
157 * @state: The state we are searching for
158 *
159 * We xor the bitmap data with a patter which is the bitwise opposite
160 * of what we are looking for, this gives rise to a pattern of ones
161 * wherever there is a match. Since we have two bits per entry, we
162 * take this pattern, shift it down by one place and then and it with
163 * the original. All the even bit positions (0,2,4, etc) then represent
164 * successful matches, so we mask with 0x55555..... to remove the unwanted
165 * odd bit positions.
166 *
167 * This allows searching of a whole u64 at once (32 blocks) with a
168 * single test (on 64 bit arches).
169 */
170
gfs2_bit_search(const __le64 * ptr,u64 mask,u8 state)171 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
172 {
173 u64 tmp;
174 static const u64 search[] = {
175 [0] = 0xffffffffffffffffULL,
176 [1] = 0xaaaaaaaaaaaaaaaaULL,
177 [2] = 0x5555555555555555ULL,
178 [3] = 0x0000000000000000ULL,
179 };
180 tmp = le64_to_cpu(*ptr) ^ search[state];
181 tmp &= (tmp >> 1);
182 tmp &= mask;
183 return tmp;
184 }
185
186 /**
187 * rs_cmp - multi-block reservation range compare
188 * @blk: absolute file system block number of the new reservation
189 * @len: number of blocks in the new reservation
190 * @rs: existing reservation to compare against
191 *
192 * returns: 1 if the block range is beyond the reach of the reservation
193 * -1 if the block range is before the start of the reservation
194 * 0 if the block range overlaps with the reservation
195 */
rs_cmp(u64 blk,u32 len,struct gfs2_blkreserv * rs)196 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
197 {
198 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
199
200 if (blk >= startblk + rs->rs_free)
201 return 1;
202 if (blk + len - 1 < startblk)
203 return -1;
204 return 0;
205 }
206
207 /**
208 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
209 * a block in a given allocation state.
210 * @buf: the buffer that holds the bitmaps
211 * @len: the length (in bytes) of the buffer
212 * @goal: start search at this block's bit-pair (within @buffer)
213 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
214 *
215 * Scope of @goal and returned block number is only within this bitmap buffer,
216 * not entire rgrp or filesystem. @buffer will be offset from the actual
217 * beginning of a bitmap block buffer, skipping any header structures, but
218 * headers are always a multiple of 64 bits long so that the buffer is
219 * always aligned to a 64 bit boundary.
220 *
221 * The size of the buffer is in bytes, but is it assumed that it is
222 * always ok to read a complete multiple of 64 bits at the end
223 * of the block in case the end is no aligned to a natural boundary.
224 *
225 * Return: the block number (bitmap buffer scope) that was found
226 */
227
gfs2_bitfit(const u8 * buf,const unsigned int len,u32 goal,u8 state)228 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
229 u32 goal, u8 state)
230 {
231 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
232 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
233 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
234 u64 tmp;
235 u64 mask = 0x5555555555555555ULL;
236 u32 bit;
237
238 /* Mask off bits we don't care about at the start of the search */
239 mask <<= spoint;
240 tmp = gfs2_bit_search(ptr, mask, state);
241 ptr++;
242 while(tmp == 0 && ptr < end) {
243 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
244 ptr++;
245 }
246 /* Mask off any bits which are more than len bytes from the start */
247 if (ptr == end && (len & (sizeof(u64) - 1)))
248 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
249 /* Didn't find anything, so return */
250 if (tmp == 0)
251 return BFITNOENT;
252 ptr--;
253 bit = __ffs64(tmp);
254 bit /= 2; /* two bits per entry in the bitmap */
255 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
256 }
257
258 /**
259 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
260 * @rbm: The rbm with rgd already set correctly
261 * @block: The block number (filesystem relative)
262 *
263 * This sets the bi and offset members of an rbm based on a
264 * resource group and a filesystem relative block number. The
265 * resource group must be set in the rbm on entry, the bi and
266 * offset members will be set by this function.
267 *
268 * Returns: 0 on success, or an error code
269 */
270
gfs2_rbm_from_block(struct gfs2_rbm * rbm,u64 block)271 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
272 {
273 if (!rgrp_contains_block(rbm->rgd, block))
274 return -E2BIG;
275 rbm->bii = 0;
276 rbm->offset = block - rbm->rgd->rd_data0;
277 /* Check if the block is within the first block */
278 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
279 return 0;
280
281 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
282 rbm->offset += (sizeof(struct gfs2_rgrp) -
283 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
284 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
285 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
286 return 0;
287 }
288
289 /**
290 * gfs2_rbm_incr - increment an rbm structure
291 * @rbm: The rbm with rgd already set correctly
292 *
293 * This function takes an existing rbm structure and increments it to the next
294 * viable block offset.
295 *
296 * Returns: If incrementing the offset would cause the rbm to go past the
297 * end of the rgrp, true is returned, otherwise false.
298 *
299 */
300
gfs2_rbm_incr(struct gfs2_rbm * rbm)301 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
302 {
303 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
304 rbm->offset++;
305 return false;
306 }
307 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
308 return true;
309
310 rbm->offset = 0;
311 rbm->bii++;
312 return false;
313 }
314
315 /**
316 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
317 * @rbm: Position to search (value/result)
318 * @n_unaligned: Number of unaligned blocks to check
319 * @len: Decremented for each block found (terminate on zero)
320 *
321 * Returns: true if a non-free block is encountered
322 */
323
gfs2_unaligned_extlen(struct gfs2_rbm * rbm,u32 n_unaligned,u32 * len)324 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
325 {
326 u32 n;
327 u8 res;
328
329 for (n = 0; n < n_unaligned; n++) {
330 res = gfs2_testbit(rbm, true);
331 if (res != GFS2_BLKST_FREE)
332 return true;
333 (*len)--;
334 if (*len == 0)
335 return true;
336 if (gfs2_rbm_incr(rbm))
337 return true;
338 }
339
340 return false;
341 }
342
343 /**
344 * gfs2_free_extlen - Return extent length of free blocks
345 * @rrbm: Starting position
346 * @len: Max length to check
347 *
348 * Starting at the block specified by the rbm, see how many free blocks
349 * there are, not reading more than len blocks ahead. This can be done
350 * using memchr_inv when the blocks are byte aligned, but has to be done
351 * on a block by block basis in case of unaligned blocks. Also this
352 * function can cope with bitmap boundaries (although it must stop on
353 * a resource group boundary)
354 *
355 * Returns: Number of free blocks in the extent
356 */
357
gfs2_free_extlen(const struct gfs2_rbm * rrbm,u32 len)358 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
359 {
360 struct gfs2_rbm rbm = *rrbm;
361 u32 n_unaligned = rbm.offset & 3;
362 u32 size = len;
363 u32 bytes;
364 u32 chunk_size;
365 u8 *ptr, *start, *end;
366 u64 block;
367 struct gfs2_bitmap *bi;
368
369 if (n_unaligned &&
370 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
371 goto out;
372
373 n_unaligned = len & 3;
374 /* Start is now byte aligned */
375 while (len > 3) {
376 bi = rbm_bi(&rbm);
377 start = bi->bi_bh->b_data;
378 if (bi->bi_clone)
379 start = bi->bi_clone;
380 start += bi->bi_offset;
381 end = start + bi->bi_bytes;
382 BUG_ON(rbm.offset & 3);
383 start += (rbm.offset / GFS2_NBBY);
384 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
385 ptr = memchr_inv(start, 0, bytes);
386 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
387 chunk_size *= GFS2_NBBY;
388 BUG_ON(len < chunk_size);
389 len -= chunk_size;
390 block = gfs2_rbm_to_block(&rbm);
391 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
392 n_unaligned = 0;
393 break;
394 }
395 if (ptr) {
396 n_unaligned = 3;
397 break;
398 }
399 n_unaligned = len & 3;
400 }
401
402 /* Deal with any bits left over at the end */
403 if (n_unaligned)
404 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
405 out:
406 return size - len;
407 }
408
409 /**
410 * gfs2_bitcount - count the number of bits in a certain state
411 * @rgd: the resource group descriptor
412 * @buffer: the buffer that holds the bitmaps
413 * @buflen: the length (in bytes) of the buffer
414 * @state: the state of the block we're looking for
415 *
416 * Returns: The number of bits
417 */
418
gfs2_bitcount(struct gfs2_rgrpd * rgd,const u8 * buffer,unsigned int buflen,u8 state)419 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
420 unsigned int buflen, u8 state)
421 {
422 const u8 *byte = buffer;
423 const u8 *end = buffer + buflen;
424 const u8 state1 = state << 2;
425 const u8 state2 = state << 4;
426 const u8 state3 = state << 6;
427 u32 count = 0;
428
429 for (; byte < end; byte++) {
430 if (((*byte) & 0x03) == state)
431 count++;
432 if (((*byte) & 0x0C) == state1)
433 count++;
434 if (((*byte) & 0x30) == state2)
435 count++;
436 if (((*byte) & 0xC0) == state3)
437 count++;
438 }
439
440 return count;
441 }
442
443 /**
444 * gfs2_rgrp_verify - Verify that a resource group is consistent
445 * @rgd: the rgrp
446 *
447 */
448
gfs2_rgrp_verify(struct gfs2_rgrpd * rgd)449 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
450 {
451 struct gfs2_sbd *sdp = rgd->rd_sbd;
452 struct gfs2_bitmap *bi = NULL;
453 u32 length = rgd->rd_length;
454 u32 count[4], tmp;
455 int buf, x;
456
457 memset(count, 0, 4 * sizeof(u32));
458
459 /* Count # blocks in each of 4 possible allocation states */
460 for (buf = 0; buf < length; buf++) {
461 bi = rgd->rd_bits + buf;
462 for (x = 0; x < 4; x++)
463 count[x] += gfs2_bitcount(rgd,
464 bi->bi_bh->b_data +
465 bi->bi_offset,
466 bi->bi_bytes, x);
467 }
468
469 if (count[0] != rgd->rd_free) {
470 if (gfs2_consist_rgrpd(rgd))
471 fs_err(sdp, "free data mismatch: %u != %u\n",
472 count[0], rgd->rd_free);
473 return;
474 }
475
476 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
477 if (count[1] != tmp) {
478 if (gfs2_consist_rgrpd(rgd))
479 fs_err(sdp, "used data mismatch: %u != %u\n",
480 count[1], tmp);
481 return;
482 }
483
484 if (count[2] + count[3] != rgd->rd_dinodes) {
485 if (gfs2_consist_rgrpd(rgd))
486 fs_err(sdp, "used metadata mismatch: %u != %u\n",
487 count[2] + count[3], rgd->rd_dinodes);
488 return;
489 }
490 }
491
492 /**
493 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
494 * @sdp: The GFS2 superblock
495 * @blk: The data block number
496 * @exact: True if this needs to be an exact match
497 *
498 * The @exact argument should be set to true by most callers. The exception
499 * is when we need to match blocks which are not represented by the rgrp
500 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
501 * there for alignment purposes. Another way of looking at it is that @exact
502 * matches only valid data/metadata blocks, but with @exact false, it will
503 * match any block within the extent of the rgrp.
504 *
505 * Returns: The resource group, or NULL if not found
506 */
507
gfs2_blk2rgrpd(struct gfs2_sbd * sdp,u64 blk,bool exact)508 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
509 {
510 struct rb_node *n, *next;
511 struct gfs2_rgrpd *cur;
512
513 spin_lock(&sdp->sd_rindex_spin);
514 n = sdp->sd_rindex_tree.rb_node;
515 while (n) {
516 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
517 next = NULL;
518 if (blk < cur->rd_addr)
519 next = n->rb_left;
520 else if (blk >= cur->rd_data0 + cur->rd_data)
521 next = n->rb_right;
522 if (next == NULL) {
523 spin_unlock(&sdp->sd_rindex_spin);
524 if (exact) {
525 if (blk < cur->rd_addr)
526 return NULL;
527 if (blk >= cur->rd_data0 + cur->rd_data)
528 return NULL;
529 }
530 return cur;
531 }
532 n = next;
533 }
534 spin_unlock(&sdp->sd_rindex_spin);
535
536 return NULL;
537 }
538
539 /**
540 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
541 * @sdp: The GFS2 superblock
542 *
543 * Returns: The first rgrp in the filesystem
544 */
545
gfs2_rgrpd_get_first(struct gfs2_sbd * sdp)546 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
547 {
548 const struct rb_node *n;
549 struct gfs2_rgrpd *rgd;
550
551 spin_lock(&sdp->sd_rindex_spin);
552 n = rb_first(&sdp->sd_rindex_tree);
553 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
554 spin_unlock(&sdp->sd_rindex_spin);
555
556 return rgd;
557 }
558
559 /**
560 * gfs2_rgrpd_get_next - get the next RG
561 * @rgd: the resource group descriptor
562 *
563 * Returns: The next rgrp
564 */
565
gfs2_rgrpd_get_next(struct gfs2_rgrpd * rgd)566 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
567 {
568 struct gfs2_sbd *sdp = rgd->rd_sbd;
569 const struct rb_node *n;
570
571 spin_lock(&sdp->sd_rindex_spin);
572 n = rb_next(&rgd->rd_node);
573 if (n == NULL)
574 n = rb_first(&sdp->sd_rindex_tree);
575
576 if (unlikely(&rgd->rd_node == n)) {
577 spin_unlock(&sdp->sd_rindex_spin);
578 return NULL;
579 }
580 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
581 spin_unlock(&sdp->sd_rindex_spin);
582 return rgd;
583 }
584
check_and_update_goal(struct gfs2_inode * ip)585 void check_and_update_goal(struct gfs2_inode *ip)
586 {
587 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
588 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
589 ip->i_goal = ip->i_no_addr;
590 }
591
gfs2_free_clones(struct gfs2_rgrpd * rgd)592 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
593 {
594 int x;
595
596 for (x = 0; x < rgd->rd_length; x++) {
597 struct gfs2_bitmap *bi = rgd->rd_bits + x;
598 kfree(bi->bi_clone);
599 bi->bi_clone = NULL;
600 }
601 }
602
603 /**
604 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
605 * plus a quota allocations data structure, if necessary
606 * @ip: the inode for this reservation
607 */
gfs2_rsqa_alloc(struct gfs2_inode * ip)608 int gfs2_rsqa_alloc(struct gfs2_inode *ip)
609 {
610 return gfs2_qa_alloc(ip);
611 }
612
dump_rs(struct seq_file * seq,const struct gfs2_blkreserv * rs,const char * fs_id_buf)613 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
614 const char *fs_id_buf)
615 {
616 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
617
618 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf,
619 (unsigned long long)ip->i_no_addr,
620 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
621 rs->rs_rbm.offset, rs->rs_free);
622 }
623
624 /**
625 * __rs_deltree - remove a multi-block reservation from the rgd tree
626 * @rs: The reservation to remove
627 *
628 */
__rs_deltree(struct gfs2_blkreserv * rs)629 static void __rs_deltree(struct gfs2_blkreserv *rs)
630 {
631 struct gfs2_rgrpd *rgd;
632
633 if (!gfs2_rs_active(rs))
634 return;
635
636 rgd = rs->rs_rbm.rgd;
637 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
638 rb_erase(&rs->rs_node, &rgd->rd_rstree);
639 RB_CLEAR_NODE(&rs->rs_node);
640
641 if (rs->rs_free) {
642 u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) +
643 rs->rs_free - 1;
644 struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, };
645 struct gfs2_bitmap *start, *last;
646
647 /* return reserved blocks to the rgrp */
648 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
649 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
650 /* The rgrp extent failure point is likely not to increase;
651 it will only do so if the freed blocks are somehow
652 contiguous with a span of free blocks that follows. Still,
653 it will force the number to be recalculated later. */
654 rgd->rd_extfail_pt += rs->rs_free;
655 rs->rs_free = 0;
656 if (gfs2_rbm_from_block(&last_rbm, last_block))
657 return;
658 start = rbm_bi(&rs->rs_rbm);
659 last = rbm_bi(&last_rbm);
660 do
661 clear_bit(GBF_FULL, &start->bi_flags);
662 while (start++ != last);
663 }
664 }
665
666 /**
667 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
668 * @rs: The reservation to remove
669 *
670 */
gfs2_rs_deltree(struct gfs2_blkreserv * rs)671 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
672 {
673 struct gfs2_rgrpd *rgd;
674
675 rgd = rs->rs_rbm.rgd;
676 if (rgd) {
677 spin_lock(&rgd->rd_rsspin);
678 __rs_deltree(rs);
679 BUG_ON(rs->rs_free);
680 spin_unlock(&rgd->rd_rsspin);
681 }
682 }
683
684 /**
685 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
686 * @ip: The inode for this reservation
687 * @wcount: The inode's write count, or NULL
688 *
689 */
gfs2_rsqa_delete(struct gfs2_inode * ip,atomic_t * wcount)690 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
691 {
692 down_write(&ip->i_rw_mutex);
693 if ((wcount == NULL) || (atomic_read(wcount) <= 1))
694 gfs2_rs_deltree(&ip->i_res);
695 up_write(&ip->i_rw_mutex);
696 gfs2_qa_delete(ip, wcount);
697 }
698
699 /**
700 * return_all_reservations - return all reserved blocks back to the rgrp.
701 * @rgd: the rgrp that needs its space back
702 *
703 * We previously reserved a bunch of blocks for allocation. Now we need to
704 * give them back. This leave the reservation structures in tact, but removes
705 * all of their corresponding "no-fly zones".
706 */
return_all_reservations(struct gfs2_rgrpd * rgd)707 static void return_all_reservations(struct gfs2_rgrpd *rgd)
708 {
709 struct rb_node *n;
710 struct gfs2_blkreserv *rs;
711
712 spin_lock(&rgd->rd_rsspin);
713 while ((n = rb_first(&rgd->rd_rstree))) {
714 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
715 __rs_deltree(rs);
716 }
717 spin_unlock(&rgd->rd_rsspin);
718 }
719
gfs2_clear_rgrpd(struct gfs2_sbd * sdp)720 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
721 {
722 struct rb_node *n;
723 struct gfs2_rgrpd *rgd;
724 struct gfs2_glock *gl;
725
726 while ((n = rb_first(&sdp->sd_rindex_tree))) {
727 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
728 gl = rgd->rd_gl;
729
730 rb_erase(n, &sdp->sd_rindex_tree);
731
732 if (gl) {
733 glock_clear_object(gl, rgd);
734 gfs2_rgrp_brelse(rgd);
735 gfs2_glock_put(gl);
736 }
737
738 gfs2_free_clones(rgd);
739 return_all_reservations(rgd);
740 kfree(rgd->rd_bits);
741 rgd->rd_bits = NULL;
742 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
743 }
744 }
745
gfs2_rindex_print(const struct gfs2_rgrpd * rgd)746 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
747 {
748 struct gfs2_sbd *sdp = rgd->rd_sbd;
749
750 fs_info(sdp, "ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
751 fs_info(sdp, "ri_length = %u\n", rgd->rd_length);
752 fs_info(sdp, "ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
753 fs_info(sdp, "ri_data = %u\n", rgd->rd_data);
754 fs_info(sdp, "ri_bitbytes = %u\n", rgd->rd_bitbytes);
755 }
756
757 /**
758 * gfs2_compute_bitstructs - Compute the bitmap sizes
759 * @rgd: The resource group descriptor
760 *
761 * Calculates bitmap descriptors, one for each block that contains bitmap data
762 *
763 * Returns: errno
764 */
765
compute_bitstructs(struct gfs2_rgrpd * rgd)766 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
767 {
768 struct gfs2_sbd *sdp = rgd->rd_sbd;
769 struct gfs2_bitmap *bi;
770 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
771 u32 bytes_left, bytes;
772 int x;
773
774 if (!length)
775 return -EINVAL;
776
777 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
778 if (!rgd->rd_bits)
779 return -ENOMEM;
780
781 bytes_left = rgd->rd_bitbytes;
782
783 for (x = 0; x < length; x++) {
784 bi = rgd->rd_bits + x;
785
786 bi->bi_flags = 0;
787 /* small rgrp; bitmap stored completely in header block */
788 if (length == 1) {
789 bytes = bytes_left;
790 bi->bi_offset = sizeof(struct gfs2_rgrp);
791 bi->bi_start = 0;
792 bi->bi_bytes = bytes;
793 bi->bi_blocks = bytes * GFS2_NBBY;
794 /* header block */
795 } else if (x == 0) {
796 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
797 bi->bi_offset = sizeof(struct gfs2_rgrp);
798 bi->bi_start = 0;
799 bi->bi_bytes = bytes;
800 bi->bi_blocks = bytes * GFS2_NBBY;
801 /* last block */
802 } else if (x + 1 == length) {
803 bytes = bytes_left;
804 bi->bi_offset = sizeof(struct gfs2_meta_header);
805 bi->bi_start = rgd->rd_bitbytes - bytes_left;
806 bi->bi_bytes = bytes;
807 bi->bi_blocks = bytes * GFS2_NBBY;
808 /* other blocks */
809 } else {
810 bytes = sdp->sd_sb.sb_bsize -
811 sizeof(struct gfs2_meta_header);
812 bi->bi_offset = sizeof(struct gfs2_meta_header);
813 bi->bi_start = rgd->rd_bitbytes - bytes_left;
814 bi->bi_bytes = bytes;
815 bi->bi_blocks = bytes * GFS2_NBBY;
816 }
817
818 bytes_left -= bytes;
819 }
820
821 if (bytes_left) {
822 gfs2_consist_rgrpd(rgd);
823 return -EIO;
824 }
825 bi = rgd->rd_bits + (length - 1);
826 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
827 if (gfs2_consist_rgrpd(rgd)) {
828 gfs2_rindex_print(rgd);
829 fs_err(sdp, "start=%u len=%u offset=%u\n",
830 bi->bi_start, bi->bi_bytes, bi->bi_offset);
831 }
832 return -EIO;
833 }
834
835 return 0;
836 }
837
838 /**
839 * gfs2_ri_total - Total up the file system space, according to the rindex.
840 * @sdp: the filesystem
841 *
842 */
gfs2_ri_total(struct gfs2_sbd * sdp)843 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
844 {
845 u64 total_data = 0;
846 struct inode *inode = sdp->sd_rindex;
847 struct gfs2_inode *ip = GFS2_I(inode);
848 char buf[sizeof(struct gfs2_rindex)];
849 int error, rgrps;
850
851 for (rgrps = 0;; rgrps++) {
852 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
853
854 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
855 break;
856 error = gfs2_internal_read(ip, buf, &pos,
857 sizeof(struct gfs2_rindex));
858 if (error != sizeof(struct gfs2_rindex))
859 break;
860 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
861 }
862 return total_data;
863 }
864
rgd_insert(struct gfs2_rgrpd * rgd)865 static int rgd_insert(struct gfs2_rgrpd *rgd)
866 {
867 struct gfs2_sbd *sdp = rgd->rd_sbd;
868 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
869
870 /* Figure out where to put new node */
871 while (*newn) {
872 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
873 rd_node);
874
875 parent = *newn;
876 if (rgd->rd_addr < cur->rd_addr)
877 newn = &((*newn)->rb_left);
878 else if (rgd->rd_addr > cur->rd_addr)
879 newn = &((*newn)->rb_right);
880 else
881 return -EEXIST;
882 }
883
884 rb_link_node(&rgd->rd_node, parent, newn);
885 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
886 sdp->sd_rgrps++;
887 return 0;
888 }
889
890 /**
891 * read_rindex_entry - Pull in a new resource index entry from the disk
892 * @ip: Pointer to the rindex inode
893 *
894 * Returns: 0 on success, > 0 on EOF, error code otherwise
895 */
896
read_rindex_entry(struct gfs2_inode * ip)897 static int read_rindex_entry(struct gfs2_inode *ip)
898 {
899 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
900 const unsigned bsize = sdp->sd_sb.sb_bsize;
901 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
902 struct gfs2_rindex buf;
903 int error;
904 struct gfs2_rgrpd *rgd;
905
906 if (pos >= i_size_read(&ip->i_inode))
907 return 1;
908
909 error = gfs2_internal_read(ip, (char *)&buf, &pos,
910 sizeof(struct gfs2_rindex));
911
912 if (error != sizeof(struct gfs2_rindex))
913 return (error == 0) ? 1 : error;
914
915 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
916 error = -ENOMEM;
917 if (!rgd)
918 return error;
919
920 rgd->rd_sbd = sdp;
921 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
922 rgd->rd_length = be32_to_cpu(buf.ri_length);
923 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
924 rgd->rd_data = be32_to_cpu(buf.ri_data);
925 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
926 spin_lock_init(&rgd->rd_rsspin);
927
928 error = gfs2_glock_get(sdp, rgd->rd_addr,
929 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
930 if (error)
931 goto fail;
932
933 error = compute_bitstructs(rgd);
934 if (error)
935 goto fail_glock;
936
937 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
938 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
939 if (rgd->rd_data > sdp->sd_max_rg_data)
940 sdp->sd_max_rg_data = rgd->rd_data;
941 spin_lock(&sdp->sd_rindex_spin);
942 error = rgd_insert(rgd);
943 spin_unlock(&sdp->sd_rindex_spin);
944 if (!error) {
945 glock_set_object(rgd->rd_gl, rgd);
946 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
947 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
948 rgd->rd_length) * bsize) - 1;
949 return 0;
950 }
951
952 error = 0; /* someone else read in the rgrp; free it and ignore it */
953 fail_glock:
954 gfs2_glock_put(rgd->rd_gl);
955
956 fail:
957 kfree(rgd->rd_bits);
958 rgd->rd_bits = NULL;
959 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
960 return error;
961 }
962
963 /**
964 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
965 * @sdp: the GFS2 superblock
966 *
967 * The purpose of this function is to select a subset of the resource groups
968 * and mark them as PREFERRED. We do it in such a way that each node prefers
969 * to use a unique set of rgrps to minimize glock contention.
970 */
set_rgrp_preferences(struct gfs2_sbd * sdp)971 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
972 {
973 struct gfs2_rgrpd *rgd, *first;
974 int i;
975
976 /* Skip an initial number of rgrps, based on this node's journal ID.
977 That should start each node out on its own set. */
978 rgd = gfs2_rgrpd_get_first(sdp);
979 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
980 rgd = gfs2_rgrpd_get_next(rgd);
981 first = rgd;
982
983 do {
984 rgd->rd_flags |= GFS2_RDF_PREFERRED;
985 for (i = 0; i < sdp->sd_journals; i++) {
986 rgd = gfs2_rgrpd_get_next(rgd);
987 if (!rgd || rgd == first)
988 break;
989 }
990 } while (rgd && rgd != first);
991 }
992
993 /**
994 * gfs2_ri_update - Pull in a new resource index from the disk
995 * @ip: pointer to the rindex inode
996 *
997 * Returns: 0 on successful update, error code otherwise
998 */
999
gfs2_ri_update(struct gfs2_inode * ip)1000 static int gfs2_ri_update(struct gfs2_inode *ip)
1001 {
1002 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1003 int error;
1004
1005 do {
1006 error = read_rindex_entry(ip);
1007 } while (error == 0);
1008
1009 if (error < 0)
1010 return error;
1011
1012 if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
1013 fs_err(sdp, "no resource groups found in the file system.\n");
1014 return -ENOENT;
1015 }
1016 set_rgrp_preferences(sdp);
1017
1018 sdp->sd_rindex_uptodate = 1;
1019 return 0;
1020 }
1021
1022 /**
1023 * gfs2_rindex_update - Update the rindex if required
1024 * @sdp: The GFS2 superblock
1025 *
1026 * We grab a lock on the rindex inode to make sure that it doesn't
1027 * change whilst we are performing an operation. We keep this lock
1028 * for quite long periods of time compared to other locks. This
1029 * doesn't matter, since it is shared and it is very, very rarely
1030 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1031 *
1032 * This makes sure that we're using the latest copy of the resource index
1033 * special file, which might have been updated if someone expanded the
1034 * filesystem (via gfs2_grow utility), which adds new resource groups.
1035 *
1036 * Returns: 0 on succeess, error code otherwise
1037 */
1038
gfs2_rindex_update(struct gfs2_sbd * sdp)1039 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1040 {
1041 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1042 struct gfs2_glock *gl = ip->i_gl;
1043 struct gfs2_holder ri_gh;
1044 int error = 0;
1045 int unlock_required = 0;
1046
1047 /* Read new copy from disk if we don't have the latest */
1048 if (!sdp->sd_rindex_uptodate) {
1049 if (!gfs2_glock_is_locked_by_me(gl)) {
1050 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1051 if (error)
1052 return error;
1053 unlock_required = 1;
1054 }
1055 if (!sdp->sd_rindex_uptodate)
1056 error = gfs2_ri_update(ip);
1057 if (unlock_required)
1058 gfs2_glock_dq_uninit(&ri_gh);
1059 }
1060
1061 return error;
1062 }
1063
gfs2_rgrp_in(struct gfs2_rgrpd * rgd,const void * buf)1064 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1065 {
1066 const struct gfs2_rgrp *str = buf;
1067 u32 rg_flags;
1068
1069 rg_flags = be32_to_cpu(str->rg_flags);
1070 rg_flags &= ~GFS2_RDF_MASK;
1071 rgd->rd_flags &= GFS2_RDF_MASK;
1072 rgd->rd_flags |= rg_flags;
1073 rgd->rd_free = be32_to_cpu(str->rg_free);
1074 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1075 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1076 /* rd_data0, rd_data and rd_bitbytes already set from rindex */
1077 }
1078
gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb * rgl,const void * buf)1079 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1080 {
1081 const struct gfs2_rgrp *str = buf;
1082
1083 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1084 rgl->rl_flags = str->rg_flags;
1085 rgl->rl_free = str->rg_free;
1086 rgl->rl_dinodes = str->rg_dinodes;
1087 rgl->rl_igeneration = str->rg_igeneration;
1088 rgl->__pad = 0UL;
1089 }
1090
gfs2_rgrp_out(struct gfs2_rgrpd * rgd,void * buf)1091 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1092 {
1093 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1094 struct gfs2_rgrp *str = buf;
1095 u32 crc;
1096
1097 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1098 str->rg_free = cpu_to_be32(rgd->rd_free);
1099 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1100 if (next == NULL)
1101 str->rg_skip = 0;
1102 else if (next->rd_addr > rgd->rd_addr)
1103 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1104 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1105 str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1106 str->rg_data = cpu_to_be32(rgd->rd_data);
1107 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1108 str->rg_crc = 0;
1109 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1110 str->rg_crc = cpu_to_be32(crc);
1111
1112 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1113 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1114 }
1115
gfs2_rgrp_lvb_valid(struct gfs2_rgrpd * rgd)1116 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1117 {
1118 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1119 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1120 struct gfs2_sbd *sdp = rgd->rd_sbd;
1121 int valid = 1;
1122
1123 if (rgl->rl_flags != str->rg_flags) {
1124 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1125 (unsigned long long)rgd->rd_addr,
1126 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1127 valid = 0;
1128 }
1129 if (rgl->rl_free != str->rg_free) {
1130 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1131 (unsigned long long)rgd->rd_addr,
1132 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1133 valid = 0;
1134 }
1135 if (rgl->rl_dinodes != str->rg_dinodes) {
1136 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1137 (unsigned long long)rgd->rd_addr,
1138 be32_to_cpu(rgl->rl_dinodes),
1139 be32_to_cpu(str->rg_dinodes));
1140 valid = 0;
1141 }
1142 if (rgl->rl_igeneration != str->rg_igeneration) {
1143 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1144 (unsigned long long)rgd->rd_addr,
1145 (unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1146 (unsigned long long)be64_to_cpu(str->rg_igeneration));
1147 valid = 0;
1148 }
1149 return valid;
1150 }
1151
count_unlinked(struct gfs2_rgrpd * rgd)1152 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1153 {
1154 struct gfs2_bitmap *bi;
1155 const u32 length = rgd->rd_length;
1156 const u8 *buffer = NULL;
1157 u32 i, goal, count = 0;
1158
1159 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1160 goal = 0;
1161 buffer = bi->bi_bh->b_data + bi->bi_offset;
1162 WARN_ON(!buffer_uptodate(bi->bi_bh));
1163 while (goal < bi->bi_blocks) {
1164 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1165 GFS2_BLKST_UNLINKED);
1166 if (goal == BFITNOENT)
1167 break;
1168 count++;
1169 goal++;
1170 }
1171 }
1172
1173 return count;
1174 }
1175
1176
1177 /**
1178 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1179 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1180 *
1181 * Read in all of a Resource Group's header and bitmap blocks.
1182 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1183 *
1184 * Returns: errno
1185 */
1186
gfs2_rgrp_bh_get(struct gfs2_rgrpd * rgd)1187 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1188 {
1189 struct gfs2_sbd *sdp = rgd->rd_sbd;
1190 struct gfs2_glock *gl = rgd->rd_gl;
1191 unsigned int length = rgd->rd_length;
1192 struct gfs2_bitmap *bi;
1193 unsigned int x, y;
1194 int error;
1195
1196 if (rgd->rd_bits[0].bi_bh != NULL)
1197 return 0;
1198
1199 for (x = 0; x < length; x++) {
1200 bi = rgd->rd_bits + x;
1201 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1202 if (error)
1203 goto fail;
1204 }
1205
1206 for (y = length; y--;) {
1207 bi = rgd->rd_bits + y;
1208 error = gfs2_meta_wait(sdp, bi->bi_bh);
1209 if (error)
1210 goto fail;
1211 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1212 GFS2_METATYPE_RG)) {
1213 error = -EIO;
1214 goto fail;
1215 }
1216 }
1217
1218 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1219 for (x = 0; x < length; x++)
1220 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1221 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1222 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1223 rgd->rd_free_clone = rgd->rd_free;
1224 /* max out the rgrp allocation failure point */
1225 rgd->rd_extfail_pt = rgd->rd_free;
1226 }
1227 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1228 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1229 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1230 rgd->rd_bits[0].bi_bh->b_data);
1231 }
1232 else if (sdp->sd_args.ar_rgrplvb) {
1233 if (!gfs2_rgrp_lvb_valid(rgd)){
1234 gfs2_consist_rgrpd(rgd);
1235 error = -EIO;
1236 goto fail;
1237 }
1238 if (rgd->rd_rgl->rl_unlinked == 0)
1239 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1240 }
1241 return 0;
1242
1243 fail:
1244 while (x--) {
1245 bi = rgd->rd_bits + x;
1246 brelse(bi->bi_bh);
1247 bi->bi_bh = NULL;
1248 gfs2_assert_warn(sdp, !bi->bi_clone);
1249 }
1250
1251 return error;
1252 }
1253
update_rgrp_lvb(struct gfs2_rgrpd * rgd)1254 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1255 {
1256 u32 rl_flags;
1257
1258 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1259 return 0;
1260
1261 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1262 return gfs2_rgrp_bh_get(rgd);
1263
1264 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1265 rl_flags &= ~GFS2_RDF_MASK;
1266 rgd->rd_flags &= GFS2_RDF_MASK;
1267 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1268 if (rgd->rd_rgl->rl_unlinked == 0)
1269 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1270 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1271 rgd->rd_free_clone = rgd->rd_free;
1272 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1273 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1274 return 0;
1275 }
1276
gfs2_rgrp_go_lock(struct gfs2_holder * gh)1277 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1278 {
1279 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1280 struct gfs2_sbd *sdp = rgd->rd_sbd;
1281
1282 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1283 return 0;
1284 return gfs2_rgrp_bh_get(rgd);
1285 }
1286
1287 /**
1288 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1289 * @rgd: The resource group
1290 *
1291 */
1292
gfs2_rgrp_brelse(struct gfs2_rgrpd * rgd)1293 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1294 {
1295 int x, length = rgd->rd_length;
1296
1297 for (x = 0; x < length; x++) {
1298 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1299 if (bi->bi_bh) {
1300 brelse(bi->bi_bh);
1301 bi->bi_bh = NULL;
1302 }
1303 }
1304
1305 }
1306
1307 /**
1308 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1309 * @gh: The glock holder for the resource group
1310 *
1311 */
1312
gfs2_rgrp_go_unlock(struct gfs2_holder * gh)1313 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1314 {
1315 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1316 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1317 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1318
1319 if (rgd && demote_requested)
1320 gfs2_rgrp_brelse(rgd);
1321 }
1322
gfs2_rgrp_send_discards(struct gfs2_sbd * sdp,u64 offset,struct buffer_head * bh,const struct gfs2_bitmap * bi,unsigned minlen,u64 * ptrimmed)1323 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1324 struct buffer_head *bh,
1325 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1326 {
1327 struct super_block *sb = sdp->sd_vfs;
1328 u64 blk;
1329 sector_t start = 0;
1330 sector_t nr_blks = 0;
1331 int rv;
1332 unsigned int x;
1333 u32 trimmed = 0;
1334 u8 diff;
1335
1336 for (x = 0; x < bi->bi_bytes; x++) {
1337 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1338 clone += bi->bi_offset;
1339 clone += x;
1340 if (bh) {
1341 const u8 *orig = bh->b_data + bi->bi_offset + x;
1342 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1343 } else {
1344 diff = ~(*clone | (*clone >> 1));
1345 }
1346 diff &= 0x55;
1347 if (diff == 0)
1348 continue;
1349 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1350 while(diff) {
1351 if (diff & 1) {
1352 if (nr_blks == 0)
1353 goto start_new_extent;
1354 if ((start + nr_blks) != blk) {
1355 if (nr_blks >= minlen) {
1356 rv = sb_issue_discard(sb,
1357 start, nr_blks,
1358 GFP_NOFS, 0);
1359 if (rv)
1360 goto fail;
1361 trimmed += nr_blks;
1362 }
1363 nr_blks = 0;
1364 start_new_extent:
1365 start = blk;
1366 }
1367 nr_blks++;
1368 }
1369 diff >>= 2;
1370 blk++;
1371 }
1372 }
1373 if (nr_blks >= minlen) {
1374 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1375 if (rv)
1376 goto fail;
1377 trimmed += nr_blks;
1378 }
1379 if (ptrimmed)
1380 *ptrimmed = trimmed;
1381 return 0;
1382
1383 fail:
1384 if (sdp->sd_args.ar_discard)
1385 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1386 sdp->sd_args.ar_discard = 0;
1387 return -EIO;
1388 }
1389
1390 /**
1391 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1392 * @filp: Any file on the filesystem
1393 * @argp: Pointer to the arguments (also used to pass result)
1394 *
1395 * Returns: 0 on success, otherwise error code
1396 */
1397
gfs2_fitrim(struct file * filp,void __user * argp)1398 int gfs2_fitrim(struct file *filp, void __user *argp)
1399 {
1400 struct inode *inode = file_inode(filp);
1401 struct gfs2_sbd *sdp = GFS2_SB(inode);
1402 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1403 struct buffer_head *bh;
1404 struct gfs2_rgrpd *rgd;
1405 struct gfs2_rgrpd *rgd_end;
1406 struct gfs2_holder gh;
1407 struct fstrim_range r;
1408 int ret = 0;
1409 u64 amt;
1410 u64 trimmed = 0;
1411 u64 start, end, minlen;
1412 unsigned int x;
1413 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1414
1415 if (!capable(CAP_SYS_ADMIN))
1416 return -EPERM;
1417
1418 if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1419 return -EROFS;
1420
1421 if (!blk_queue_discard(q))
1422 return -EOPNOTSUPP;
1423
1424 if (copy_from_user(&r, argp, sizeof(r)))
1425 return -EFAULT;
1426
1427 ret = gfs2_rindex_update(sdp);
1428 if (ret)
1429 return ret;
1430
1431 start = r.start >> bs_shift;
1432 end = start + (r.len >> bs_shift);
1433 minlen = max_t(u64, r.minlen, sdp->sd_sb.sb_bsize);
1434 minlen = max_t(u64, minlen,
1435 q->limits.discard_granularity) >> bs_shift;
1436
1437 if (end <= start || minlen > sdp->sd_max_rg_data)
1438 return -EINVAL;
1439
1440 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1441 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1442
1443 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1444 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1445 return -EINVAL; /* start is beyond the end of the fs */
1446
1447 while (1) {
1448
1449 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1450 if (ret)
1451 goto out;
1452
1453 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1454 /* Trim each bitmap in the rgrp */
1455 for (x = 0; x < rgd->rd_length; x++) {
1456 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1457 ret = gfs2_rgrp_send_discards(sdp,
1458 rgd->rd_data0, NULL, bi, minlen,
1459 &amt);
1460 if (ret) {
1461 gfs2_glock_dq_uninit(&gh);
1462 goto out;
1463 }
1464 trimmed += amt;
1465 }
1466
1467 /* Mark rgrp as having been trimmed */
1468 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1469 if (ret == 0) {
1470 bh = rgd->rd_bits[0].bi_bh;
1471 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1472 gfs2_trans_add_meta(rgd->rd_gl, bh);
1473 gfs2_rgrp_out(rgd, bh->b_data);
1474 gfs2_trans_end(sdp);
1475 }
1476 }
1477 gfs2_glock_dq_uninit(&gh);
1478
1479 if (rgd == rgd_end)
1480 break;
1481
1482 rgd = gfs2_rgrpd_get_next(rgd);
1483 }
1484
1485 out:
1486 r.len = trimmed << bs_shift;
1487 if (copy_to_user(argp, &r, sizeof(r)))
1488 return -EFAULT;
1489
1490 return ret;
1491 }
1492
1493 /**
1494 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1495 * @ip: the inode structure
1496 *
1497 */
rs_insert(struct gfs2_inode * ip)1498 static void rs_insert(struct gfs2_inode *ip)
1499 {
1500 struct rb_node **newn, *parent = NULL;
1501 int rc;
1502 struct gfs2_blkreserv *rs = &ip->i_res;
1503 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1504 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1505
1506 BUG_ON(gfs2_rs_active(rs));
1507
1508 spin_lock(&rgd->rd_rsspin);
1509 newn = &rgd->rd_rstree.rb_node;
1510 while (*newn) {
1511 struct gfs2_blkreserv *cur =
1512 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1513
1514 parent = *newn;
1515 rc = rs_cmp(fsblock, rs->rs_free, cur);
1516 if (rc > 0)
1517 newn = &((*newn)->rb_right);
1518 else if (rc < 0)
1519 newn = &((*newn)->rb_left);
1520 else {
1521 spin_unlock(&rgd->rd_rsspin);
1522 WARN_ON(1);
1523 return;
1524 }
1525 }
1526
1527 rb_link_node(&rs->rs_node, parent, newn);
1528 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1529
1530 /* Do our rgrp accounting for the reservation */
1531 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1532 spin_unlock(&rgd->rd_rsspin);
1533 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1534 }
1535
1536 /**
1537 * rgd_free - return the number of free blocks we can allocate.
1538 * @rgd: the resource group
1539 *
1540 * This function returns the number of free blocks for an rgrp.
1541 * That's the clone-free blocks (blocks that are free, not including those
1542 * still being used for unlinked files that haven't been deleted.)
1543 *
1544 * It also subtracts any blocks reserved by someone else, but does not
1545 * include free blocks that are still part of our current reservation,
1546 * because obviously we can (and will) allocate them.
1547 */
rgd_free(struct gfs2_rgrpd * rgd,struct gfs2_blkreserv * rs)1548 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1549 {
1550 u32 tot_reserved, tot_free;
1551
1552 if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free))
1553 return 0;
1554 tot_reserved = rgd->rd_reserved - rs->rs_free;
1555
1556 if (rgd->rd_free_clone < tot_reserved)
1557 tot_reserved = 0;
1558
1559 tot_free = rgd->rd_free_clone - tot_reserved;
1560
1561 return tot_free;
1562 }
1563
1564 /**
1565 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1566 * @rgd: the resource group descriptor
1567 * @ip: pointer to the inode for which we're reserving blocks
1568 * @ap: the allocation parameters
1569 *
1570 */
1571
rg_mblk_search(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip,const struct gfs2_alloc_parms * ap)1572 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1573 const struct gfs2_alloc_parms *ap)
1574 {
1575 struct gfs2_rbm rbm = { .rgd = rgd, };
1576 u64 goal;
1577 struct gfs2_blkreserv *rs = &ip->i_res;
1578 u32 extlen;
1579 u32 free_blocks = rgd_free(rgd, rs);
1580 int ret;
1581 struct inode *inode = &ip->i_inode;
1582
1583 if (S_ISDIR(inode->i_mode))
1584 extlen = 1;
1585 else {
1586 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1587 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1588 }
1589 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1590 return;
1591
1592 /* Find bitmap block that contains bits for goal block */
1593 if (rgrp_contains_block(rgd, ip->i_goal))
1594 goal = ip->i_goal;
1595 else
1596 goal = rgd->rd_last_alloc + rgd->rd_data0;
1597
1598 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1599 return;
1600
1601 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1602 if (ret == 0) {
1603 rs->rs_rbm = rbm;
1604 rs->rs_free = extlen;
1605 rs_insert(ip);
1606 } else {
1607 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1608 rgd->rd_last_alloc = 0;
1609 }
1610 }
1611
1612 /**
1613 * gfs2_next_unreserved_block - Return next block that is not reserved
1614 * @rgd: The resource group
1615 * @block: The starting block
1616 * @length: The required length
1617 * @ip: Ignore any reservations for this inode
1618 *
1619 * If the block does not appear in any reservation, then return the
1620 * block number unchanged. If it does appear in the reservation, then
1621 * keep looking through the tree of reservations in order to find the
1622 * first block number which is not reserved.
1623 */
1624
gfs2_next_unreserved_block(struct gfs2_rgrpd * rgd,u64 block,u32 length,const struct gfs2_inode * ip)1625 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1626 u32 length,
1627 const struct gfs2_inode *ip)
1628 {
1629 struct gfs2_blkreserv *rs;
1630 struct rb_node *n;
1631 int rc;
1632
1633 spin_lock(&rgd->rd_rsspin);
1634 n = rgd->rd_rstree.rb_node;
1635 while (n) {
1636 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1637 rc = rs_cmp(block, length, rs);
1638 if (rc < 0)
1639 n = n->rb_left;
1640 else if (rc > 0)
1641 n = n->rb_right;
1642 else
1643 break;
1644 }
1645
1646 if (n) {
1647 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1648 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1649 n = n->rb_right;
1650 if (n == NULL)
1651 break;
1652 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1653 }
1654 }
1655
1656 spin_unlock(&rgd->rd_rsspin);
1657 return block;
1658 }
1659
1660 /**
1661 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1662 * @rbm: The current position in the resource group
1663 * @ip: The inode for which we are searching for blocks
1664 * @minext: The minimum extent length
1665 * @maxext: A pointer to the maximum extent structure
1666 *
1667 * This checks the current position in the rgrp to see whether there is
1668 * a reservation covering this block. If not then this function is a
1669 * no-op. If there is, then the position is moved to the end of the
1670 * contiguous reservation(s) so that we are pointing at the first
1671 * non-reserved block.
1672 *
1673 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1674 */
1675
gfs2_reservation_check_and_update(struct gfs2_rbm * rbm,const struct gfs2_inode * ip,u32 minext,struct gfs2_extent * maxext)1676 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1677 const struct gfs2_inode *ip,
1678 u32 minext,
1679 struct gfs2_extent *maxext)
1680 {
1681 u64 block = gfs2_rbm_to_block(rbm);
1682 u32 extlen = 1;
1683 u64 nblock;
1684 int ret;
1685
1686 /*
1687 * If we have a minimum extent length, then skip over any extent
1688 * which is less than the min extent length in size.
1689 */
1690 if (minext) {
1691 extlen = gfs2_free_extlen(rbm, minext);
1692 if (extlen <= maxext->len)
1693 goto fail;
1694 }
1695
1696 /*
1697 * Check the extent which has been found against the reservations
1698 * and skip if parts of it are already reserved
1699 */
1700 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1701 if (nblock == block) {
1702 if (!minext || extlen >= minext)
1703 return 0;
1704
1705 if (extlen > maxext->len) {
1706 maxext->len = extlen;
1707 maxext->rbm = *rbm;
1708 }
1709 fail:
1710 nblock = block + extlen;
1711 }
1712 ret = gfs2_rbm_from_block(rbm, nblock);
1713 if (ret < 0)
1714 return ret;
1715 return 1;
1716 }
1717
1718 /**
1719 * gfs2_rbm_find - Look for blocks of a particular state
1720 * @rbm: Value/result starting position and final position
1721 * @state: The state which we want to find
1722 * @minext: Pointer to the requested extent length (NULL for a single block)
1723 * This is updated to be the actual reservation size.
1724 * @ip: If set, check for reservations
1725 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1726 * around until we've reached the starting point.
1727 *
1728 * Side effects:
1729 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1730 * has no free blocks in it.
1731 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1732 * has come up short on a free block search.
1733 *
1734 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1735 */
1736
gfs2_rbm_find(struct gfs2_rbm * rbm,u8 state,u32 * minext,const struct gfs2_inode * ip,bool nowrap)1737 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1738 const struct gfs2_inode *ip, bool nowrap)
1739 {
1740 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1741 struct buffer_head *bh;
1742 int last_bii;
1743 u32 offset;
1744 u8 *buffer;
1745 bool wrapped = false;
1746 int ret;
1747 struct gfs2_bitmap *bi;
1748 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1749
1750 /*
1751 * Determine the last bitmap to search. If we're not starting at the
1752 * beginning of a bitmap, we need to search that bitmap twice to scan
1753 * the entire resource group.
1754 */
1755 last_bii = rbm->bii - (rbm->offset == 0);
1756
1757 while(1) {
1758 bi = rbm_bi(rbm);
1759 if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) &&
1760 test_bit(GBF_FULL, &bi->bi_flags) &&
1761 (state == GFS2_BLKST_FREE))
1762 goto next_bitmap;
1763
1764 bh = bi->bi_bh;
1765 buffer = bh->b_data + bi->bi_offset;
1766 WARN_ON(!buffer_uptodate(bh));
1767 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1768 buffer = bi->bi_clone + bi->bi_offset;
1769 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1770 if (offset == BFITNOENT) {
1771 if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1772 set_bit(GBF_FULL, &bi->bi_flags);
1773 goto next_bitmap;
1774 }
1775 rbm->offset = offset;
1776 if (ip == NULL)
1777 return 0;
1778
1779 ret = gfs2_reservation_check_and_update(rbm, ip,
1780 minext ? *minext : 0,
1781 &maxext);
1782 if (ret == 0)
1783 return 0;
1784 if (ret > 0)
1785 goto next_iter;
1786 if (ret == -E2BIG) {
1787 rbm->bii = 0;
1788 rbm->offset = 0;
1789 goto res_covered_end_of_rgrp;
1790 }
1791 return ret;
1792
1793 next_bitmap: /* Find next bitmap in the rgrp */
1794 rbm->offset = 0;
1795 rbm->bii++;
1796 if (rbm->bii == rbm->rgd->rd_length)
1797 rbm->bii = 0;
1798 res_covered_end_of_rgrp:
1799 if (rbm->bii == 0) {
1800 if (wrapped)
1801 break;
1802 wrapped = true;
1803 if (nowrap)
1804 break;
1805 }
1806 next_iter:
1807 /* Have we scanned the entire resource group? */
1808 if (wrapped && rbm->bii > last_bii)
1809 break;
1810 }
1811
1812 if (minext == NULL || state != GFS2_BLKST_FREE)
1813 return -ENOSPC;
1814
1815 /* If the extent was too small, and it's smaller than the smallest
1816 to have failed before, remember for future reference that it's
1817 useless to search this rgrp again for this amount or more. */
1818 if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1819 *minext < rbm->rgd->rd_extfail_pt)
1820 rbm->rgd->rd_extfail_pt = *minext;
1821
1822 /* If the maximum extent we found is big enough to fulfill the
1823 minimum requirements, use it anyway. */
1824 if (maxext.len) {
1825 *rbm = maxext.rbm;
1826 *minext = maxext.len;
1827 return 0;
1828 }
1829
1830 return -ENOSPC;
1831 }
1832
1833 /**
1834 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1835 * @rgd: The rgrp
1836 * @last_unlinked: block address of the last dinode we unlinked
1837 * @skip: block address we should explicitly not unlink
1838 *
1839 * Returns: 0 if no error
1840 * The inode, if one has been found, in inode.
1841 */
1842
try_rgrp_unlink(struct gfs2_rgrpd * rgd,u64 * last_unlinked,u64 skip)1843 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1844 {
1845 u64 block;
1846 struct gfs2_sbd *sdp = rgd->rd_sbd;
1847 struct gfs2_glock *gl;
1848 struct gfs2_inode *ip;
1849 int error;
1850 int found = 0;
1851 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1852
1853 while (1) {
1854 down_write(&sdp->sd_log_flush_lock);
1855 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1856 true);
1857 up_write(&sdp->sd_log_flush_lock);
1858 if (error == -ENOSPC)
1859 break;
1860 if (WARN_ON_ONCE(error))
1861 break;
1862
1863 block = gfs2_rbm_to_block(&rbm);
1864 if (gfs2_rbm_from_block(&rbm, block + 1))
1865 break;
1866 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1867 continue;
1868 if (block == skip)
1869 continue;
1870 *last_unlinked = block;
1871
1872 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1873 if (error)
1874 continue;
1875
1876 /* If the inode is already in cache, we can ignore it here
1877 * because the existing inode disposal code will deal with
1878 * it when all refs have gone away. Accessing gl_object like
1879 * this is not safe in general. Here it is ok because we do
1880 * not dereference the pointer, and we only need an approx
1881 * answer to whether it is NULL or not.
1882 */
1883 ip = gl->gl_object;
1884
1885 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1886 gfs2_glock_put(gl);
1887 else
1888 found++;
1889
1890 /* Limit reclaim to sensible number of tasks */
1891 if (found > NR_CPUS)
1892 return;
1893 }
1894
1895 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1896 return;
1897 }
1898
1899 /**
1900 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1901 * @rgd: The rgrp in question
1902 * @loops: An indication of how picky we can be (0=very, 1=less so)
1903 *
1904 * This function uses the recently added glock statistics in order to
1905 * figure out whether a parciular resource group is suffering from
1906 * contention from multiple nodes. This is done purely on the basis
1907 * of timings, since this is the only data we have to work with and
1908 * our aim here is to reject a resource group which is highly contended
1909 * but (very important) not to do this too often in order to ensure that
1910 * we do not land up introducing fragmentation by changing resource
1911 * groups when not actually required.
1912 *
1913 * The calculation is fairly simple, we want to know whether the SRTTB
1914 * (i.e. smoothed round trip time for blocking operations) to acquire
1915 * the lock for this rgrp's glock is significantly greater than the
1916 * time taken for resource groups on average. We introduce a margin in
1917 * the form of the variable @var which is computed as the sum of the two
1918 * respective variences, and multiplied by a factor depending on @loops
1919 * and whether we have a lot of data to base the decision on. This is
1920 * then tested against the square difference of the means in order to
1921 * decide whether the result is statistically significant or not.
1922 *
1923 * Returns: A boolean verdict on the congestion status
1924 */
1925
gfs2_rgrp_congested(const struct gfs2_rgrpd * rgd,int loops)1926 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1927 {
1928 const struct gfs2_glock *gl = rgd->rd_gl;
1929 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1930 struct gfs2_lkstats *st;
1931 u64 r_dcount, l_dcount;
1932 u64 l_srttb, a_srttb = 0;
1933 s64 srttb_diff;
1934 u64 sqr_diff;
1935 u64 var;
1936 int cpu, nonzero = 0;
1937
1938 preempt_disable();
1939 for_each_present_cpu(cpu) {
1940 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1941 if (st->stats[GFS2_LKS_SRTTB]) {
1942 a_srttb += st->stats[GFS2_LKS_SRTTB];
1943 nonzero++;
1944 }
1945 }
1946 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1947 if (nonzero)
1948 do_div(a_srttb, nonzero);
1949 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1950 var = st->stats[GFS2_LKS_SRTTVARB] +
1951 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1952 preempt_enable();
1953
1954 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1955 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1956
1957 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1958 return false;
1959
1960 srttb_diff = a_srttb - l_srttb;
1961 sqr_diff = srttb_diff * srttb_diff;
1962
1963 var *= 2;
1964 if (l_dcount < 8 || r_dcount < 8)
1965 var *= 2;
1966 if (loops == 1)
1967 var *= 2;
1968
1969 return ((srttb_diff < 0) && (sqr_diff > var));
1970 }
1971
1972 /**
1973 * gfs2_rgrp_used_recently
1974 * @rs: The block reservation with the rgrp to test
1975 * @msecs: The time limit in milliseconds
1976 *
1977 * Returns: True if the rgrp glock has been used within the time limit
1978 */
gfs2_rgrp_used_recently(const struct gfs2_blkreserv * rs,u64 msecs)1979 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1980 u64 msecs)
1981 {
1982 u64 tdiff;
1983
1984 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1985 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1986
1987 return tdiff > (msecs * 1000 * 1000);
1988 }
1989
gfs2_orlov_skip(const struct gfs2_inode * ip)1990 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1991 {
1992 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1993 u32 skip;
1994
1995 get_random_bytes(&skip, sizeof(skip));
1996 return skip % sdp->sd_rgrps;
1997 }
1998
gfs2_select_rgrp(struct gfs2_rgrpd ** pos,const struct gfs2_rgrpd * begin)1999 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
2000 {
2001 struct gfs2_rgrpd *rgd = *pos;
2002 struct gfs2_sbd *sdp = rgd->rd_sbd;
2003
2004 rgd = gfs2_rgrpd_get_next(rgd);
2005 if (rgd == NULL)
2006 rgd = gfs2_rgrpd_get_first(sdp);
2007 *pos = rgd;
2008 if (rgd != begin) /* If we didn't wrap */
2009 return true;
2010 return false;
2011 }
2012
2013 /**
2014 * fast_to_acquire - determine if a resource group will be fast to acquire
2015 *
2016 * If this is one of our preferred rgrps, it should be quicker to acquire,
2017 * because we tried to set ourselves up as dlm lock master.
2018 */
fast_to_acquire(struct gfs2_rgrpd * rgd)2019 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2020 {
2021 struct gfs2_glock *gl = rgd->rd_gl;
2022
2023 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2024 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2025 !test_bit(GLF_DEMOTE, &gl->gl_flags))
2026 return 1;
2027 if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2028 return 1;
2029 return 0;
2030 }
2031
2032 /**
2033 * gfs2_inplace_reserve - Reserve space in the filesystem
2034 * @ip: the inode to reserve space for
2035 * @ap: the allocation parameters
2036 *
2037 * We try our best to find an rgrp that has at least ap->target blocks
2038 * available. After a couple of passes (loops == 2), the prospects of finding
2039 * such an rgrp diminish. At this stage, we return the first rgrp that has
2040 * at least ap->min_target blocks available. Either way, we set ap->allowed to
2041 * the number of blocks available in the chosen rgrp.
2042 *
2043 * Returns: 0 on success,
2044 * -ENOMEM if a suitable rgrp can't be found
2045 * errno otherwise
2046 */
2047
gfs2_inplace_reserve(struct gfs2_inode * ip,struct gfs2_alloc_parms * ap)2048 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2049 {
2050 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2051 struct gfs2_rgrpd *begin = NULL;
2052 struct gfs2_blkreserv *rs = &ip->i_res;
2053 int error = 0, rg_locked, flags = 0;
2054 u64 last_unlinked = NO_BLOCK;
2055 int loops = 0;
2056 u32 free_blocks, skip = 0;
2057
2058 if (sdp->sd_args.ar_rgrplvb)
2059 flags |= GL_SKIP;
2060 if (gfs2_assert_warn(sdp, ap->target))
2061 return -EINVAL;
2062 if (gfs2_rs_active(rs)) {
2063 begin = rs->rs_rbm.rgd;
2064 } else if (rs->rs_rbm.rgd &&
2065 rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) {
2066 begin = rs->rs_rbm.rgd;
2067 } else {
2068 check_and_update_goal(ip);
2069 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2070 }
2071 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2072 skip = gfs2_orlov_skip(ip);
2073 if (rs->rs_rbm.rgd == NULL)
2074 return -EBADSLT;
2075
2076 while (loops < 3) {
2077 rg_locked = 1;
2078
2079 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2080 rg_locked = 0;
2081 if (skip && skip--)
2082 goto next_rgrp;
2083 if (!gfs2_rs_active(rs)) {
2084 if (loops == 0 &&
2085 !fast_to_acquire(rs->rs_rbm.rgd))
2086 goto next_rgrp;
2087 if ((loops < 2) &&
2088 gfs2_rgrp_used_recently(rs, 1000) &&
2089 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2090 goto next_rgrp;
2091 }
2092 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2093 LM_ST_EXCLUSIVE, flags,
2094 &ip->i_rgd_gh);
2095 if (unlikely(error))
2096 return error;
2097 if (!gfs2_rs_active(rs) && (loops < 2) &&
2098 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2099 goto skip_rgrp;
2100 if (sdp->sd_args.ar_rgrplvb) {
2101 error = update_rgrp_lvb(rs->rs_rbm.rgd);
2102 if (unlikely(error)) {
2103 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2104 return error;
2105 }
2106 }
2107 }
2108
2109 /* Skip unusable resource groups */
2110 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2111 GFS2_RDF_ERROR)) ||
2112 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2113 goto skip_rgrp;
2114
2115 if (sdp->sd_args.ar_rgrplvb)
2116 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2117
2118 /* Get a reservation if we don't already have one */
2119 if (!gfs2_rs_active(rs))
2120 rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2121
2122 /* Skip rgrps when we can't get a reservation on first pass */
2123 if (!gfs2_rs_active(rs) && (loops < 1))
2124 goto check_rgrp;
2125
2126 /* If rgrp has enough free space, use it */
2127 free_blocks = rgd_free(rs->rs_rbm.rgd, rs);
2128 if (free_blocks >= ap->target ||
2129 (loops == 2 && ap->min_target &&
2130 free_blocks >= ap->min_target)) {
2131 ap->allowed = free_blocks;
2132 return 0;
2133 }
2134 check_rgrp:
2135 /* Check for unlinked inodes which can be reclaimed */
2136 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2137 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2138 ip->i_no_addr);
2139 skip_rgrp:
2140 /* Drop reservation, if we couldn't use reserved rgrp */
2141 if (gfs2_rs_active(rs))
2142 gfs2_rs_deltree(rs);
2143
2144 /* Unlock rgrp if required */
2145 if (!rg_locked)
2146 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2147 next_rgrp:
2148 /* Find the next rgrp, and continue looking */
2149 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2150 continue;
2151 if (skip)
2152 continue;
2153
2154 /* If we've scanned all the rgrps, but found no free blocks
2155 * then this checks for some less likely conditions before
2156 * trying again.
2157 */
2158 loops++;
2159 /* Check that fs hasn't grown if writing to rindex */
2160 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2161 error = gfs2_ri_update(ip);
2162 if (error)
2163 return error;
2164 }
2165 /* Flushing the log may release space */
2166 if (loops == 2)
2167 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2168 GFS2_LFC_INPLACE_RESERVE);
2169 }
2170
2171 return -ENOSPC;
2172 }
2173
2174 /**
2175 * gfs2_inplace_release - release an inplace reservation
2176 * @ip: the inode the reservation was taken out on
2177 *
2178 * Release a reservation made by gfs2_inplace_reserve().
2179 */
2180
gfs2_inplace_release(struct gfs2_inode * ip)2181 void gfs2_inplace_release(struct gfs2_inode *ip)
2182 {
2183 if (gfs2_holder_initialized(&ip->i_rgd_gh))
2184 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2185 }
2186
2187 /**
2188 * gfs2_alloc_extent - allocate an extent from a given bitmap
2189 * @rbm: the resource group information
2190 * @dinode: TRUE if the first block we allocate is for a dinode
2191 * @n: The extent length (value/result)
2192 *
2193 * Add the bitmap buffer to the transaction.
2194 * Set the found bits to @new_state to change block's allocation state.
2195 */
gfs2_alloc_extent(const struct gfs2_rbm * rbm,bool dinode,unsigned int * n)2196 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2197 unsigned int *n)
2198 {
2199 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2200 const unsigned int elen = *n;
2201 u64 block;
2202 int ret;
2203
2204 *n = 1;
2205 block = gfs2_rbm_to_block(rbm);
2206 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2207 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2208 block++;
2209 while (*n < elen) {
2210 ret = gfs2_rbm_from_block(&pos, block);
2211 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2212 break;
2213 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2214 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2215 (*n)++;
2216 block++;
2217 }
2218 }
2219
2220 /**
2221 * rgblk_free - Change alloc state of given block(s)
2222 * @sdp: the filesystem
2223 * @rgd: the resource group the blocks are in
2224 * @bstart: the start of a run of blocks to free
2225 * @blen: the length of the block run (all must lie within ONE RG!)
2226 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2227 */
2228
rgblk_free(struct gfs2_sbd * sdp,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen,unsigned char new_state)2229 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2230 u64 bstart, u32 blen, unsigned char new_state)
2231 {
2232 struct gfs2_rbm rbm;
2233 struct gfs2_bitmap *bi, *bi_prev = NULL;
2234
2235 rbm.rgd = rgd;
2236 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2237 return;
2238 while (blen--) {
2239 bi = rbm_bi(&rbm);
2240 if (bi != bi_prev) {
2241 if (!bi->bi_clone) {
2242 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2243 GFP_NOFS | __GFP_NOFAIL);
2244 memcpy(bi->bi_clone + bi->bi_offset,
2245 bi->bi_bh->b_data + bi->bi_offset,
2246 bi->bi_bytes);
2247 }
2248 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2249 bi_prev = bi;
2250 }
2251 gfs2_setbit(&rbm, false, new_state);
2252 gfs2_rbm_incr(&rbm);
2253 }
2254 }
2255
2256 /**
2257 * gfs2_rgrp_dump - print out an rgrp
2258 * @seq: The iterator
2259 * @gl: The glock in question
2260 * @fs_id_buf: pointer to file system id (if requested)
2261 *
2262 */
2263
gfs2_rgrp_dump(struct seq_file * seq,struct gfs2_glock * gl,const char * fs_id_buf)2264 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_glock *gl,
2265 const char *fs_id_buf)
2266 {
2267 struct gfs2_rgrpd *rgd = gl->gl_object;
2268 struct gfs2_blkreserv *trs;
2269 const struct rb_node *n;
2270
2271 if (rgd == NULL)
2272 return;
2273 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2274 fs_id_buf,
2275 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2276 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2277 rgd->rd_reserved, rgd->rd_extfail_pt);
2278 if (rgd->rd_sbd->sd_args.ar_rgrplvb && rgd->rd_rgl) {
2279 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2280
2281 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf,
2282 be32_to_cpu(rgl->rl_flags),
2283 be32_to_cpu(rgl->rl_free),
2284 be32_to_cpu(rgl->rl_dinodes));
2285 }
2286 spin_lock(&rgd->rd_rsspin);
2287 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2288 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2289 dump_rs(seq, trs, fs_id_buf);
2290 }
2291 spin_unlock(&rgd->rd_rsspin);
2292 }
2293
gfs2_rgrp_error(struct gfs2_rgrpd * rgd)2294 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2295 {
2296 struct gfs2_sbd *sdp = rgd->rd_sbd;
2297 char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2298
2299 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2300 (unsigned long long)rgd->rd_addr);
2301 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2302 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2303 gfs2_rgrp_dump(NULL, rgd->rd_gl, fs_id_buf);
2304 rgd->rd_flags |= GFS2_RDF_ERROR;
2305 }
2306
2307 /**
2308 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2309 * @ip: The inode we have just allocated blocks for
2310 * @rbm: The start of the allocated blocks
2311 * @len: The extent length
2312 *
2313 * Adjusts a reservation after an allocation has taken place. If the
2314 * reservation does not match the allocation, or if it is now empty
2315 * then it is removed.
2316 */
2317
gfs2_adjust_reservation(struct gfs2_inode * ip,const struct gfs2_rbm * rbm,unsigned len)2318 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2319 const struct gfs2_rbm *rbm, unsigned len)
2320 {
2321 struct gfs2_blkreserv *rs = &ip->i_res;
2322 struct gfs2_rgrpd *rgd = rbm->rgd;
2323 unsigned rlen;
2324 u64 block;
2325 int ret;
2326
2327 spin_lock(&rgd->rd_rsspin);
2328 if (gfs2_rs_active(rs)) {
2329 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2330 block = gfs2_rbm_to_block(rbm);
2331 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2332 rlen = min(rs->rs_free, len);
2333 rs->rs_free -= rlen;
2334 rgd->rd_reserved -= rlen;
2335 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2336 if (rs->rs_free && !ret)
2337 goto out;
2338 /* We used up our block reservation, so we should
2339 reserve more blocks next time. */
2340 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2341 }
2342 __rs_deltree(rs);
2343 }
2344 out:
2345 spin_unlock(&rgd->rd_rsspin);
2346 }
2347
2348 /**
2349 * gfs2_set_alloc_start - Set starting point for block allocation
2350 * @rbm: The rbm which will be set to the required location
2351 * @ip: The gfs2 inode
2352 * @dinode: Flag to say if allocation includes a new inode
2353 *
2354 * This sets the starting point from the reservation if one is active
2355 * otherwise it falls back to guessing a start point based on the
2356 * inode's goal block or the last allocation point in the rgrp.
2357 */
2358
gfs2_set_alloc_start(struct gfs2_rbm * rbm,const struct gfs2_inode * ip,bool dinode)2359 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2360 const struct gfs2_inode *ip, bool dinode)
2361 {
2362 u64 goal;
2363
2364 if (gfs2_rs_active(&ip->i_res)) {
2365 *rbm = ip->i_res.rs_rbm;
2366 return;
2367 }
2368
2369 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2370 goal = ip->i_goal;
2371 else
2372 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2373
2374 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2375 rbm->bii = 0;
2376 rbm->offset = 0;
2377 }
2378 }
2379
2380 /**
2381 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2382 * @ip: the inode to allocate the block for
2383 * @bn: Used to return the starting block number
2384 * @nblocks: requested number of blocks/extent length (value/result)
2385 * @dinode: 1 if we're allocating a dinode block, else 0
2386 * @generation: the generation number of the inode
2387 *
2388 * Returns: 0 or error
2389 */
2390
gfs2_alloc_blocks(struct gfs2_inode * ip,u64 * bn,unsigned int * nblocks,bool dinode,u64 * generation)2391 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2392 bool dinode, u64 *generation)
2393 {
2394 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2395 struct buffer_head *dibh;
2396 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, };
2397 unsigned int ndata;
2398 u64 block; /* block, within the file system scope */
2399 int error;
2400
2401 gfs2_set_alloc_start(&rbm, ip, dinode);
2402 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2403
2404 if (error == -ENOSPC) {
2405 gfs2_set_alloc_start(&rbm, ip, dinode);
2406 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2407 }
2408
2409 /* Since all blocks are reserved in advance, this shouldn't happen */
2410 if (error) {
2411 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2412 (unsigned long long)ip->i_no_addr, error, *nblocks,
2413 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2414 rbm.rgd->rd_extfail_pt);
2415 goto rgrp_error;
2416 }
2417
2418 gfs2_alloc_extent(&rbm, dinode, nblocks);
2419 block = gfs2_rbm_to_block(&rbm);
2420 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2421 if (gfs2_rs_active(&ip->i_res))
2422 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2423 ndata = *nblocks;
2424 if (dinode)
2425 ndata--;
2426
2427 if (!dinode) {
2428 ip->i_goal = block + ndata - 1;
2429 error = gfs2_meta_inode_buffer(ip, &dibh);
2430 if (error == 0) {
2431 struct gfs2_dinode *di =
2432 (struct gfs2_dinode *)dibh->b_data;
2433 gfs2_trans_add_meta(ip->i_gl, dibh);
2434 di->di_goal_meta = di->di_goal_data =
2435 cpu_to_be64(ip->i_goal);
2436 brelse(dibh);
2437 }
2438 }
2439 if (rbm.rgd->rd_free < *nblocks) {
2440 fs_warn(sdp, "nblocks=%u\n", *nblocks);
2441 goto rgrp_error;
2442 }
2443
2444 rbm.rgd->rd_free -= *nblocks;
2445 if (dinode) {
2446 rbm.rgd->rd_dinodes++;
2447 *generation = rbm.rgd->rd_igeneration++;
2448 if (*generation == 0)
2449 *generation = rbm.rgd->rd_igeneration++;
2450 }
2451
2452 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2453 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2454
2455 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2456 if (dinode)
2457 gfs2_trans_remove_revoke(sdp, block, *nblocks);
2458
2459 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2460
2461 rbm.rgd->rd_free_clone -= *nblocks;
2462 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2463 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2464 *bn = block;
2465 return 0;
2466
2467 rgrp_error:
2468 gfs2_rgrp_error(rbm.rgd);
2469 return -EIO;
2470 }
2471
2472 /**
2473 * __gfs2_free_blocks - free a contiguous run of block(s)
2474 * @ip: the inode these blocks are being freed from
2475 * @rgd: the resource group the blocks are in
2476 * @bstart: first block of a run of contiguous blocks
2477 * @blen: the length of the block run
2478 * @meta: 1 if the blocks represent metadata
2479 *
2480 */
2481
__gfs2_free_blocks(struct gfs2_inode * ip,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen,int meta)2482 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2483 u64 bstart, u32 blen, int meta)
2484 {
2485 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2486
2487 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2488 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2489 rgd->rd_free += blen;
2490 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2491 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2492 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2493
2494 /* Directories keep their data in the metadata address space */
2495 if (meta || ip->i_depth)
2496 gfs2_meta_wipe(ip, bstart, blen);
2497 }
2498
2499 /**
2500 * gfs2_free_meta - free a contiguous run of data block(s)
2501 * @ip: the inode these blocks are being freed from
2502 * @rgd: the resource group the blocks are in
2503 * @bstart: first block of a run of contiguous blocks
2504 * @blen: the length of the block run
2505 *
2506 */
2507
gfs2_free_meta(struct gfs2_inode * ip,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen)2508 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2509 u64 bstart, u32 blen)
2510 {
2511 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2512
2513 __gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2514 gfs2_statfs_change(sdp, 0, +blen, 0);
2515 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2516 }
2517
gfs2_unlink_di(struct inode * inode)2518 void gfs2_unlink_di(struct inode *inode)
2519 {
2520 struct gfs2_inode *ip = GFS2_I(inode);
2521 struct gfs2_sbd *sdp = GFS2_SB(inode);
2522 struct gfs2_rgrpd *rgd;
2523 u64 blkno = ip->i_no_addr;
2524
2525 rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2526 if (!rgd)
2527 return;
2528 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2529 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2530 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2531 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2532 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2533 }
2534
gfs2_free_di(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip)2535 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2536 {
2537 struct gfs2_sbd *sdp = rgd->rd_sbd;
2538
2539 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2540 if (!rgd->rd_dinodes)
2541 gfs2_consist_rgrpd(rgd);
2542 rgd->rd_dinodes--;
2543 rgd->rd_free++;
2544
2545 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2546 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2547 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2548
2549 gfs2_statfs_change(sdp, 0, +1, -1);
2550 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2551 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2552 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2553 }
2554
2555 /**
2556 * gfs2_check_blk_type - Check the type of a block
2557 * @sdp: The superblock
2558 * @no_addr: The block number to check
2559 * @type: The block type we are looking for
2560 *
2561 * Returns: 0 if the block type matches the expected type
2562 * -ESTALE if it doesn't match
2563 * or -ve errno if something went wrong while checking
2564 */
2565
gfs2_check_blk_type(struct gfs2_sbd * sdp,u64 no_addr,unsigned int type)2566 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2567 {
2568 struct gfs2_rgrpd *rgd;
2569 struct gfs2_holder rgd_gh;
2570 struct gfs2_rbm rbm;
2571 int error = -EINVAL;
2572
2573 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2574 if (!rgd)
2575 goto fail;
2576
2577 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2578 if (error)
2579 goto fail;
2580
2581 rbm.rgd = rgd;
2582 error = gfs2_rbm_from_block(&rbm, no_addr);
2583 if (!WARN_ON_ONCE(error)) {
2584 if (gfs2_testbit(&rbm, false) != type)
2585 error = -ESTALE;
2586 }
2587
2588 gfs2_glock_dq_uninit(&rgd_gh);
2589
2590 fail:
2591 return error;
2592 }
2593
2594 /**
2595 * gfs2_rlist_add - add a RG to a list of RGs
2596 * @ip: the inode
2597 * @rlist: the list of resource groups
2598 * @block: the block
2599 *
2600 * Figure out what RG a block belongs to and add that RG to the list
2601 *
2602 * FIXME: Don't use NOFAIL
2603 *
2604 */
2605
gfs2_rlist_add(struct gfs2_inode * ip,struct gfs2_rgrp_list * rlist,u64 block)2606 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2607 u64 block)
2608 {
2609 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2610 struct gfs2_rgrpd *rgd;
2611 struct gfs2_rgrpd **tmp;
2612 unsigned int new_space;
2613 unsigned int x;
2614
2615 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2616 return;
2617
2618 /*
2619 * The resource group last accessed is kept in the last position.
2620 */
2621
2622 if (rlist->rl_rgrps) {
2623 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2624 if (rgrp_contains_block(rgd, block))
2625 return;
2626 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2627 } else {
2628 rgd = ip->i_res.rs_rbm.rgd;
2629 if (!rgd || !rgrp_contains_block(rgd, block))
2630 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2631 }
2632
2633 if (!rgd) {
2634 fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2635 (unsigned long long)block);
2636 return;
2637 }
2638
2639 for (x = 0; x < rlist->rl_rgrps; x++) {
2640 if (rlist->rl_rgd[x] == rgd) {
2641 swap(rlist->rl_rgd[x],
2642 rlist->rl_rgd[rlist->rl_rgrps - 1]);
2643 return;
2644 }
2645 }
2646
2647 if (rlist->rl_rgrps == rlist->rl_space) {
2648 new_space = rlist->rl_space + 10;
2649
2650 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2651 GFP_NOFS | __GFP_NOFAIL);
2652
2653 if (rlist->rl_rgd) {
2654 memcpy(tmp, rlist->rl_rgd,
2655 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2656 kfree(rlist->rl_rgd);
2657 }
2658
2659 rlist->rl_space = new_space;
2660 rlist->rl_rgd = tmp;
2661 }
2662
2663 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2664 }
2665
2666 /**
2667 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2668 * and initialize an array of glock holders for them
2669 * @rlist: the list of resource groups
2670 *
2671 * FIXME: Don't use NOFAIL
2672 *
2673 */
2674
gfs2_rlist_alloc(struct gfs2_rgrp_list * rlist)2675 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2676 {
2677 unsigned int x;
2678
2679 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2680 sizeof(struct gfs2_holder),
2681 GFP_NOFS | __GFP_NOFAIL);
2682 for (x = 0; x < rlist->rl_rgrps; x++)
2683 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2684 LM_ST_EXCLUSIVE, 0,
2685 &rlist->rl_ghs[x]);
2686 }
2687
2688 /**
2689 * gfs2_rlist_free - free a resource group list
2690 * @rlist: the list of resource groups
2691 *
2692 */
2693
gfs2_rlist_free(struct gfs2_rgrp_list * rlist)2694 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2695 {
2696 unsigned int x;
2697
2698 kfree(rlist->rl_rgd);
2699
2700 if (rlist->rl_ghs) {
2701 for (x = 0; x < rlist->rl_rgrps; x++)
2702 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2703 kfree(rlist->rl_ghs);
2704 rlist->rl_ghs = NULL;
2705 }
2706 }
2707
2708