• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "util.h"
20 #include "sys.h"
21 #include "trace_gfs2.h"
22 
23 /**
24  * gfs2_update_stats - Update time based stats
25  * @mv: Pointer to mean/variance structure to update
26  * @sample: New data to include
27  *
28  * @delta is the difference between the current rtt sample and the
29  * running average srtt. We add 1/8 of that to the srtt in order to
30  * update the current srtt estimate. The variance estimate is a bit
31  * more complicated. We subtract the current variance estimate from
32  * the abs value of the @delta and add 1/4 of that to the running
33  * total.  That's equivalent to 3/4 of the current variance
34  * estimate plus 1/4 of the abs of @delta.
35  *
36  * Note that the index points at the array entry containing the smoothed
37  * mean value, and the variance is always in the following entry
38  *
39  * Reference: TCP/IP Illustrated, vol 2, p. 831,832
40  * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
41  * they are not scaled fixed point.
42  */
43 
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)44 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
45 				     s64 sample)
46 {
47 	s64 delta = sample - s->stats[index];
48 	s->stats[index] += (delta >> 3);
49 	index++;
50 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
51 }
52 
53 /**
54  * gfs2_update_reply_times - Update locking statistics
55  * @gl: The glock to update
56  *
57  * This assumes that gl->gl_dstamp has been set earlier.
58  *
59  * The rtt (lock round trip time) is an estimate of the time
60  * taken to perform a dlm lock request. We update it on each
61  * reply from the dlm.
62  *
63  * The blocking flag is set on the glock for all dlm requests
64  * which may potentially block due to lock requests from other nodes.
65  * DLM requests where the current lock state is exclusive, the
66  * requested state is null (or unlocked) or where the TRY or
67  * TRY_1CB flags are set are classified as non-blocking. All
68  * other DLM requests are counted as (potentially) blocking.
69  */
gfs2_update_reply_times(struct gfs2_glock * gl)70 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
71 {
72 	struct gfs2_pcpu_lkstats *lks;
73 	const unsigned gltype = gl->gl_name.ln_type;
74 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
75 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
76 	s64 rtt;
77 
78 	preempt_disable();
79 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
80 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
81 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
82 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
83 	preempt_enable();
84 
85 	trace_gfs2_glock_lock_time(gl, rtt);
86 }
87 
88 /**
89  * gfs2_update_request_times - Update locking statistics
90  * @gl: The glock to update
91  *
92  * The irt (lock inter-request times) measures the average time
93  * between requests to the dlm. It is updated immediately before
94  * each dlm call.
95  */
96 
gfs2_update_request_times(struct gfs2_glock * gl)97 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
98 {
99 	struct gfs2_pcpu_lkstats *lks;
100 	const unsigned gltype = gl->gl_name.ln_type;
101 	ktime_t dstamp;
102 	s64 irt;
103 
104 	preempt_disable();
105 	dstamp = gl->gl_dstamp;
106 	gl->gl_dstamp = ktime_get_real();
107 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
108 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
109 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
110 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
111 	preempt_enable();
112 }
113 
gdlm_ast(void * arg)114 static void gdlm_ast(void *arg)
115 {
116 	struct gfs2_glock *gl = arg;
117 	unsigned ret = gl->gl_state;
118 
119 	gfs2_update_reply_times(gl);
120 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
121 
122 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
123 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
124 
125 	switch (gl->gl_lksb.sb_status) {
126 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
127 		gfs2_glock_free(gl);
128 		return;
129 	case -DLM_ECANCEL: /* Cancel while getting lock */
130 		ret |= LM_OUT_CANCELED;
131 		goto out;
132 	case -EAGAIN: /* Try lock fails */
133 	case -EDEADLK: /* Deadlock detected */
134 		goto out;
135 	case -ETIMEDOUT: /* Canceled due to timeout */
136 		ret |= LM_OUT_ERROR;
137 		goto out;
138 	case 0: /* Success */
139 		break;
140 	default: /* Something unexpected */
141 		BUG();
142 	}
143 
144 	ret = gl->gl_req;
145 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
146 		if (gl->gl_req == LM_ST_SHARED)
147 			ret = LM_ST_DEFERRED;
148 		else if (gl->gl_req == LM_ST_DEFERRED)
149 			ret = LM_ST_SHARED;
150 		else
151 			BUG();
152 	}
153 
154 	set_bit(GLF_INITIAL, &gl->gl_flags);
155 	gfs2_glock_complete(gl, ret);
156 	return;
157 out:
158 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
159 		gl->gl_lksb.sb_lkid = 0;
160 	gfs2_glock_complete(gl, ret);
161 }
162 
gdlm_bast(void * arg,int mode)163 static void gdlm_bast(void *arg, int mode)
164 {
165 	struct gfs2_glock *gl = arg;
166 
167 	switch (mode) {
168 	case DLM_LOCK_EX:
169 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
170 		break;
171 	case DLM_LOCK_CW:
172 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
173 		break;
174 	case DLM_LOCK_PR:
175 		gfs2_glock_cb(gl, LM_ST_SHARED);
176 		break;
177 	default:
178 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
179 		BUG();
180 	}
181 }
182 
183 /* convert gfs lock-state to dlm lock-mode */
184 
make_mode(struct gfs2_sbd * sdp,const unsigned int lmstate)185 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
186 {
187 	switch (lmstate) {
188 	case LM_ST_UNLOCKED:
189 		return DLM_LOCK_NL;
190 	case LM_ST_EXCLUSIVE:
191 		return DLM_LOCK_EX;
192 	case LM_ST_DEFERRED:
193 		return DLM_LOCK_CW;
194 	case LM_ST_SHARED:
195 		return DLM_LOCK_PR;
196 	}
197 	fs_err(sdp, "unknown LM state %d\n", lmstate);
198 	BUG();
199 	return -1;
200 }
201 
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req)202 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
203 		      const int req)
204 {
205 	u32 lkf = 0;
206 
207 	if (gl->gl_lksb.sb_lvbptr)
208 		lkf |= DLM_LKF_VALBLK;
209 
210 	if (gfs_flags & LM_FLAG_TRY)
211 		lkf |= DLM_LKF_NOQUEUE;
212 
213 	if (gfs_flags & LM_FLAG_TRY_1CB) {
214 		lkf |= DLM_LKF_NOQUEUE;
215 		lkf |= DLM_LKF_NOQUEUEBAST;
216 	}
217 
218 	if (gfs_flags & LM_FLAG_PRIORITY) {
219 		lkf |= DLM_LKF_NOORDER;
220 		lkf |= DLM_LKF_HEADQUE;
221 	}
222 
223 	if (gfs_flags & LM_FLAG_ANY) {
224 		if (req == DLM_LOCK_PR)
225 			lkf |= DLM_LKF_ALTCW;
226 		else if (req == DLM_LOCK_CW)
227 			lkf |= DLM_LKF_ALTPR;
228 		else
229 			BUG();
230 	}
231 
232 	if (gl->gl_lksb.sb_lkid != 0) {
233 		lkf |= DLM_LKF_CONVERT;
234 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
235 			lkf |= DLM_LKF_QUECVT;
236 	}
237 
238 	return lkf;
239 }
240 
gfs2_reverse_hex(char * c,u64 value)241 static void gfs2_reverse_hex(char *c, u64 value)
242 {
243 	*c = '0';
244 	while (value) {
245 		*c-- = hex_asc[value & 0x0f];
246 		value >>= 4;
247 	}
248 }
249 
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)250 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
251 		     unsigned int flags)
252 {
253 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
254 	int req;
255 	u32 lkf;
256 	char strname[GDLM_STRNAME_BYTES] = "";
257 
258 	req = make_mode(gl->gl_name.ln_sbd, req_state);
259 	lkf = make_flags(gl, flags, req);
260 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
261 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
262 	if (gl->gl_lksb.sb_lkid) {
263 		gfs2_update_request_times(gl);
264 	} else {
265 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
266 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
267 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
268 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
269 		gl->gl_dstamp = ktime_get_real();
270 	}
271 	/*
272 	 * Submit the actual lock request.
273 	 */
274 
275 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
276 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
277 }
278 
gdlm_put_lock(struct gfs2_glock * gl)279 static void gdlm_put_lock(struct gfs2_glock *gl)
280 {
281 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
282 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
283 	int error;
284 
285 	if (gl->gl_lksb.sb_lkid == 0) {
286 		gfs2_glock_free(gl);
287 		return;
288 	}
289 
290 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
291 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
292 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
293 	gfs2_update_request_times(gl);
294 
295 	/* don't want to call dlm if we've unmounted the lock protocol */
296 	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
297 		gfs2_glock_free(gl);
298 		return;
299 	}
300 	/* don't want to skip dlm_unlock writing the lvb when lock has one */
301 
302 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
303 	    !gl->gl_lksb.sb_lvbptr) {
304 		gfs2_glock_free(gl);
305 		return;
306 	}
307 
308 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
309 			   NULL, gl);
310 	if (error) {
311 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
312 		       gl->gl_name.ln_type,
313 		       (unsigned long long)gl->gl_name.ln_number, error);
314 		return;
315 	}
316 }
317 
gdlm_cancel(struct gfs2_glock * gl)318 static void gdlm_cancel(struct gfs2_glock *gl)
319 {
320 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
321 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
322 }
323 
324 /*
325  * dlm/gfs2 recovery coordination using dlm_recover callbacks
326  *
327  *  1. dlm_controld sees lockspace members change
328  *  2. dlm_controld blocks dlm-kernel locking activity
329  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
330  *  4. dlm_controld starts and finishes its own user level recovery
331  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
332  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
333  *  7. dlm_recoverd does its own lock recovery
334  *  8. dlm_recoverd unblocks dlm-kernel locking activity
335  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
336  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
337  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
338  * 12. gfs2_recover dequeues and recovers journals of failed nodes
339  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
340  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
341  * 15. gfs2_control unblocks normal locking when all journals are recovered
342  *
343  * - failures during recovery
344  *
345  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
346  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
347  * recovering for a prior failure.  gfs2_control needs a way to detect
348  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
349  * the recover_block and recover_start values.
350  *
351  * recover_done() provides a new lockspace generation number each time it
352  * is called (step 9).  This generation number is saved as recover_start.
353  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
354  * recover_block = recover_start.  So, while recover_block is equal to
355  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
356  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
357  *
358  * - more specific gfs2 steps in sequence above
359  *
360  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
361  *  6. recover_slot records any failed jids (maybe none)
362  *  9. recover_done sets recover_start = new generation number
363  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
364  * 12. gfs2_recover does journal recoveries for failed jids identified above
365  * 14. gfs2_control clears control_lock lvb bits for recovered jids
366  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
367  *     again) then do nothing, otherwise if recover_start > recover_block
368  *     then clear BLOCK_LOCKS.
369  *
370  * - parallel recovery steps across all nodes
371  *
372  * All nodes attempt to update the control_lock lvb with the new generation
373  * number and jid bits, but only the first to get the control_lock EX will
374  * do so; others will see that it's already done (lvb already contains new
375  * generation number.)
376  *
377  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
378  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
379  * . One node gets control_lock first and writes the lvb, others see it's done
380  * . All nodes attempt to recover jids for which they see control_lock bits set
381  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
382  * . All nodes will eventually see all lvb bits clear and unblock locks
383  *
384  * - is there a problem with clearing an lvb bit that should be set
385  *   and missing a journal recovery?
386  *
387  * 1. jid fails
388  * 2. lvb bit set for step 1
389  * 3. jid recovered for step 1
390  * 4. jid taken again (new mount)
391  * 5. jid fails (for step 4)
392  * 6. lvb bit set for step 5 (will already be set)
393  * 7. lvb bit cleared for step 3
394  *
395  * This is not a problem because the failure in step 5 does not
396  * require recovery, because the mount in step 4 could not have
397  * progressed far enough to unblock locks and access the fs.  The
398  * control_mount() function waits for all recoveries to be complete
399  * for the latest lockspace generation before ever unblocking locks
400  * and returning.  The mount in step 4 waits until the recovery in
401  * step 1 is done.
402  *
403  * - special case of first mounter: first node to mount the fs
404  *
405  * The first node to mount a gfs2 fs needs to check all the journals
406  * and recover any that need recovery before other nodes are allowed
407  * to mount the fs.  (Others may begin mounting, but they must wait
408  * for the first mounter to be done before taking locks on the fs
409  * or accessing the fs.)  This has two parts:
410  *
411  * 1. The mounted_lock tells a node it's the first to mount the fs.
412  * Each node holds the mounted_lock in PR while it's mounted.
413  * Each node tries to acquire the mounted_lock in EX when it mounts.
414  * If a node is granted the mounted_lock EX it means there are no
415  * other mounted nodes (no PR locks exist), and it is the first mounter.
416  * The mounted_lock is demoted to PR when first recovery is done, so
417  * others will fail to get an EX lock, but will get a PR lock.
418  *
419  * 2. The control_lock blocks others in control_mount() while the first
420  * mounter is doing first mount recovery of all journals.
421  * A mounting node needs to acquire control_lock in EX mode before
422  * it can proceed.  The first mounter holds control_lock in EX while doing
423  * the first mount recovery, blocking mounts from other nodes, then demotes
424  * control_lock to NL when it's done (others_may_mount/first_done),
425  * allowing other nodes to continue mounting.
426  *
427  * first mounter:
428  * control_lock EX/NOQUEUE success
429  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
430  * set first=1
431  * do first mounter recovery
432  * mounted_lock EX->PR
433  * control_lock EX->NL, write lvb generation
434  *
435  * other mounter:
436  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
437  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
438  * mounted_lock PR/NOQUEUE success
439  * read lvb generation
440  * control_lock EX->NL
441  * set first=0
442  *
443  * - mount during recovery
444  *
445  * If a node mounts while others are doing recovery (not first mounter),
446  * the mounting node will get its initial recover_done() callback without
447  * having seen any previous failures/callbacks.
448  *
449  * It must wait for all recoveries preceding its mount to be finished
450  * before it unblocks locks.  It does this by repeating the "other mounter"
451  * steps above until the lvb generation number is >= its mount generation
452  * number (from initial recover_done) and all lvb bits are clear.
453  *
454  * - control_lock lvb format
455  *
456  * 4 bytes generation number: the latest dlm lockspace generation number
457  * from recover_done callback.  Indicates the jid bitmap has been updated
458  * to reflect all slot failures through that generation.
459  * 4 bytes unused.
460  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
461  * that jid N needs recovery.
462  */
463 
464 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
465 
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)466 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
467 			     char *lvb_bits)
468 {
469 	__le32 gen;
470 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
471 	memcpy(&gen, lvb_bits, sizeof(__le32));
472 	*lvb_gen = le32_to_cpu(gen);
473 }
474 
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)475 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
476 			      char *lvb_bits)
477 {
478 	__le32 gen;
479 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
480 	gen = cpu_to_le32(lvb_gen);
481 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
482 }
483 
all_jid_bits_clear(char * lvb)484 static int all_jid_bits_clear(char *lvb)
485 {
486 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
487 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
488 }
489 
sync_wait_cb(void * arg)490 static void sync_wait_cb(void *arg)
491 {
492 	struct lm_lockstruct *ls = arg;
493 	complete(&ls->ls_sync_wait);
494 }
495 
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)496 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
497 {
498 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
499 	int error;
500 
501 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
502 	if (error) {
503 		fs_err(sdp, "%s lkid %x error %d\n",
504 		       name, lksb->sb_lkid, error);
505 		return error;
506 	}
507 
508 	wait_for_completion(&ls->ls_sync_wait);
509 
510 	if (lksb->sb_status != -DLM_EUNLOCK) {
511 		fs_err(sdp, "%s lkid %x status %d\n",
512 		       name, lksb->sb_lkid, lksb->sb_status);
513 		return -1;
514 	}
515 	return 0;
516 }
517 
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)518 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
519 		     unsigned int num, struct dlm_lksb *lksb, char *name)
520 {
521 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
522 	char strname[GDLM_STRNAME_BYTES];
523 	int error, status;
524 
525 	memset(strname, 0, GDLM_STRNAME_BYTES);
526 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
527 
528 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
529 			 strname, GDLM_STRNAME_BYTES - 1,
530 			 0, sync_wait_cb, ls, NULL);
531 	if (error) {
532 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
533 		       name, lksb->sb_lkid, flags, mode, error);
534 		return error;
535 	}
536 
537 	wait_for_completion(&ls->ls_sync_wait);
538 
539 	status = lksb->sb_status;
540 
541 	if (status && status != -EAGAIN) {
542 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
543 		       name, lksb->sb_lkid, flags, mode, status);
544 	}
545 
546 	return status;
547 }
548 
mounted_unlock(struct gfs2_sbd * sdp)549 static int mounted_unlock(struct gfs2_sbd *sdp)
550 {
551 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
552 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
553 }
554 
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)555 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
556 {
557 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
558 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
559 			 &ls->ls_mounted_lksb, "mounted_lock");
560 }
561 
control_unlock(struct gfs2_sbd * sdp)562 static int control_unlock(struct gfs2_sbd *sdp)
563 {
564 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
565 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
566 }
567 
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)568 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
569 {
570 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
571 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
572 			 &ls->ls_control_lksb, "control_lock");
573 }
574 
gfs2_control_func(struct work_struct * work)575 static void gfs2_control_func(struct work_struct *work)
576 {
577 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
578 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
579 	uint32_t block_gen, start_gen, lvb_gen, flags;
580 	int recover_set = 0;
581 	int write_lvb = 0;
582 	int recover_size;
583 	int i, error;
584 
585 	spin_lock(&ls->ls_recover_spin);
586 	/*
587 	 * No MOUNT_DONE means we're still mounting; control_mount()
588 	 * will set this flag, after which this thread will take over
589 	 * all further clearing of BLOCK_LOCKS.
590 	 *
591 	 * FIRST_MOUNT means this node is doing first mounter recovery,
592 	 * for which recovery control is handled by
593 	 * control_mount()/control_first_done(), not this thread.
594 	 */
595 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
596 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
597 		spin_unlock(&ls->ls_recover_spin);
598 		return;
599 	}
600 	block_gen = ls->ls_recover_block;
601 	start_gen = ls->ls_recover_start;
602 	spin_unlock(&ls->ls_recover_spin);
603 
604 	/*
605 	 * Equal block_gen and start_gen implies we are between
606 	 * recover_prep and recover_done callbacks, which means
607 	 * dlm recovery is in progress and dlm locking is blocked.
608 	 * There's no point trying to do any work until recover_done.
609 	 */
610 
611 	if (block_gen == start_gen)
612 		return;
613 
614 	/*
615 	 * Propagate recover_submit[] and recover_result[] to lvb:
616 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
617 	 * gfs2_recover adds to recover_result[] journal recovery results
618 	 *
619 	 * set lvb bit for jids in recover_submit[] if the lvb has not
620 	 * yet been updated for the generation of the failure
621 	 *
622 	 * clear lvb bit for jids in recover_result[] if the result of
623 	 * the journal recovery is SUCCESS
624 	 */
625 
626 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
627 	if (error) {
628 		fs_err(sdp, "control lock EX error %d\n", error);
629 		return;
630 	}
631 
632 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
633 
634 	spin_lock(&ls->ls_recover_spin);
635 	if (block_gen != ls->ls_recover_block ||
636 	    start_gen != ls->ls_recover_start) {
637 		fs_info(sdp, "recover generation %u block1 %u %u\n",
638 			start_gen, block_gen, ls->ls_recover_block);
639 		spin_unlock(&ls->ls_recover_spin);
640 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
641 		return;
642 	}
643 
644 	recover_size = ls->ls_recover_size;
645 
646 	if (lvb_gen <= start_gen) {
647 		/*
648 		 * Clear lvb bits for jids we've successfully recovered.
649 		 * Because all nodes attempt to recover failed journals,
650 		 * a journal can be recovered multiple times successfully
651 		 * in succession.  Only the first will really do recovery,
652 		 * the others find it clean, but still report a successful
653 		 * recovery.  So, another node may have already recovered
654 		 * the jid and cleared the lvb bit for it.
655 		 */
656 		for (i = 0; i < recover_size; i++) {
657 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
658 				continue;
659 
660 			ls->ls_recover_result[i] = 0;
661 
662 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
663 				continue;
664 
665 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
666 			write_lvb = 1;
667 		}
668 	}
669 
670 	if (lvb_gen == start_gen) {
671 		/*
672 		 * Failed slots before start_gen are already set in lvb.
673 		 */
674 		for (i = 0; i < recover_size; i++) {
675 			if (!ls->ls_recover_submit[i])
676 				continue;
677 			if (ls->ls_recover_submit[i] < lvb_gen)
678 				ls->ls_recover_submit[i] = 0;
679 		}
680 	} else if (lvb_gen < start_gen) {
681 		/*
682 		 * Failed slots before start_gen are not yet set in lvb.
683 		 */
684 		for (i = 0; i < recover_size; i++) {
685 			if (!ls->ls_recover_submit[i])
686 				continue;
687 			if (ls->ls_recover_submit[i] < start_gen) {
688 				ls->ls_recover_submit[i] = 0;
689 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
690 			}
691 		}
692 		/* even if there are no bits to set, we need to write the
693 		   latest generation to the lvb */
694 		write_lvb = 1;
695 	} else {
696 		/*
697 		 * we should be getting a recover_done() for lvb_gen soon
698 		 */
699 	}
700 	spin_unlock(&ls->ls_recover_spin);
701 
702 	if (write_lvb) {
703 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
704 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
705 	} else {
706 		flags = DLM_LKF_CONVERT;
707 	}
708 
709 	error = control_lock(sdp, DLM_LOCK_NL, flags);
710 	if (error) {
711 		fs_err(sdp, "control lock NL error %d\n", error);
712 		return;
713 	}
714 
715 	/*
716 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
717 	 * and clear a jid bit in the lvb if the recovery is a success.
718 	 * Eventually all journals will be recovered, all jid bits will
719 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
720 	 */
721 
722 	for (i = 0; i < recover_size; i++) {
723 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
724 			fs_info(sdp, "recover generation %u jid %d\n",
725 				start_gen, i);
726 			gfs2_recover_set(sdp, i);
727 			recover_set++;
728 		}
729 	}
730 	if (recover_set)
731 		return;
732 
733 	/*
734 	 * No more jid bits set in lvb, all recovery is done, unblock locks
735 	 * (unless a new recover_prep callback has occured blocking locks
736 	 * again while working above)
737 	 */
738 
739 	spin_lock(&ls->ls_recover_spin);
740 	if (ls->ls_recover_block == block_gen &&
741 	    ls->ls_recover_start == start_gen) {
742 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
743 		spin_unlock(&ls->ls_recover_spin);
744 		fs_info(sdp, "recover generation %u done\n", start_gen);
745 		gfs2_glock_thaw(sdp);
746 	} else {
747 		fs_info(sdp, "recover generation %u block2 %u %u\n",
748 			start_gen, block_gen, ls->ls_recover_block);
749 		spin_unlock(&ls->ls_recover_spin);
750 	}
751 }
752 
control_mount(struct gfs2_sbd * sdp)753 static int control_mount(struct gfs2_sbd *sdp)
754 {
755 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
756 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
757 	int mounted_mode;
758 	int retries = 0;
759 	int error;
760 
761 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
762 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
763 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
764 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
765 	init_completion(&ls->ls_sync_wait);
766 
767 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
768 
769 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
770 	if (error) {
771 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
772 		return error;
773 	}
774 
775 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
776 	if (error) {
777 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
778 		control_unlock(sdp);
779 		return error;
780 	}
781 	mounted_mode = DLM_LOCK_NL;
782 
783 restart:
784 	if (retries++ && signal_pending(current)) {
785 		error = -EINTR;
786 		goto fail;
787 	}
788 
789 	/*
790 	 * We always start with both locks in NL. control_lock is
791 	 * demoted to NL below so we don't need to do it here.
792 	 */
793 
794 	if (mounted_mode != DLM_LOCK_NL) {
795 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
796 		if (error)
797 			goto fail;
798 		mounted_mode = DLM_LOCK_NL;
799 	}
800 
801 	/*
802 	 * Other nodes need to do some work in dlm recovery and gfs2_control
803 	 * before the recover_done and control_lock will be ready for us below.
804 	 * A delay here is not required but often avoids having to retry.
805 	 */
806 
807 	msleep_interruptible(500);
808 
809 	/*
810 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
811 	 * control_lock lvb keeps track of any pending journal recoveries.
812 	 * mounted_lock indicates if any other nodes have the fs mounted.
813 	 */
814 
815 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
816 	if (error == -EAGAIN) {
817 		goto restart;
818 	} else if (error) {
819 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
820 		goto fail;
821 	}
822 
823 	/**
824 	 * If we're a spectator, we don't want to take the lock in EX because
825 	 * we cannot do the first-mount responsibility it implies: recovery.
826 	 */
827 	if (sdp->sd_args.ar_spectator)
828 		goto locks_done;
829 
830 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
831 	if (!error) {
832 		mounted_mode = DLM_LOCK_EX;
833 		goto locks_done;
834 	} else if (error != -EAGAIN) {
835 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
836 		goto fail;
837 	}
838 
839 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
840 	if (!error) {
841 		mounted_mode = DLM_LOCK_PR;
842 		goto locks_done;
843 	} else {
844 		/* not even -EAGAIN should happen here */
845 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
846 		goto fail;
847 	}
848 
849 locks_done:
850 	/*
851 	 * If we got both locks above in EX, then we're the first mounter.
852 	 * If not, then we need to wait for the control_lock lvb to be
853 	 * updated by other mounted nodes to reflect our mount generation.
854 	 *
855 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
856 	 * but in cases where all existing nodes leave/fail before mounting
857 	 * nodes finish control_mount, then all nodes will be mounting and
858 	 * lvb_gen will be non-zero.
859 	 */
860 
861 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
862 
863 	if (lvb_gen == 0xFFFFFFFF) {
864 		/* special value to force mount attempts to fail */
865 		fs_err(sdp, "control_mount control_lock disabled\n");
866 		error = -EINVAL;
867 		goto fail;
868 	}
869 
870 	if (mounted_mode == DLM_LOCK_EX) {
871 		/* first mounter, keep both EX while doing first recovery */
872 		spin_lock(&ls->ls_recover_spin);
873 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
874 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
875 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
876 		spin_unlock(&ls->ls_recover_spin);
877 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
878 		return 0;
879 	}
880 
881 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
882 	if (error)
883 		goto fail;
884 
885 	/*
886 	 * We are not first mounter, now we need to wait for the control_lock
887 	 * lvb generation to be >= the generation from our first recover_done
888 	 * and all lvb bits to be clear (no pending journal recoveries.)
889 	 */
890 
891 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
892 		/* journals need recovery, wait until all are clear */
893 		fs_info(sdp, "control_mount wait for journal recovery\n");
894 		goto restart;
895 	}
896 
897 	spin_lock(&ls->ls_recover_spin);
898 	block_gen = ls->ls_recover_block;
899 	start_gen = ls->ls_recover_start;
900 	mount_gen = ls->ls_recover_mount;
901 
902 	if (lvb_gen < mount_gen) {
903 		/* wait for mounted nodes to update control_lock lvb to our
904 		   generation, which might include new recovery bits set */
905 		if (sdp->sd_args.ar_spectator) {
906 			fs_info(sdp, "Recovery is required. Waiting for a "
907 				"non-spectator to mount.\n");
908 			msleep_interruptible(1000);
909 		} else {
910 			fs_info(sdp, "control_mount wait1 block %u start %u "
911 				"mount %u lvb %u flags %lx\n", block_gen,
912 				start_gen, mount_gen, lvb_gen,
913 				ls->ls_recover_flags);
914 		}
915 		spin_unlock(&ls->ls_recover_spin);
916 		goto restart;
917 	}
918 
919 	if (lvb_gen != start_gen) {
920 		/* wait for mounted nodes to update control_lock lvb to the
921 		   latest recovery generation */
922 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
923 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
924 			lvb_gen, ls->ls_recover_flags);
925 		spin_unlock(&ls->ls_recover_spin);
926 		goto restart;
927 	}
928 
929 	if (block_gen == start_gen) {
930 		/* dlm recovery in progress, wait for it to finish */
931 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
932 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
933 			lvb_gen, ls->ls_recover_flags);
934 		spin_unlock(&ls->ls_recover_spin);
935 		goto restart;
936 	}
937 
938 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
939 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
940 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
941 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
942 	spin_unlock(&ls->ls_recover_spin);
943 	return 0;
944 
945 fail:
946 	mounted_unlock(sdp);
947 	control_unlock(sdp);
948 	return error;
949 }
950 
control_first_done(struct gfs2_sbd * sdp)951 static int control_first_done(struct gfs2_sbd *sdp)
952 {
953 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
954 	uint32_t start_gen, block_gen;
955 	int error;
956 
957 restart:
958 	spin_lock(&ls->ls_recover_spin);
959 	start_gen = ls->ls_recover_start;
960 	block_gen = ls->ls_recover_block;
961 
962 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
963 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
964 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
965 		/* sanity check, should not happen */
966 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
967 		       start_gen, block_gen, ls->ls_recover_flags);
968 		spin_unlock(&ls->ls_recover_spin);
969 		control_unlock(sdp);
970 		return -1;
971 	}
972 
973 	if (start_gen == block_gen) {
974 		/*
975 		 * Wait for the end of a dlm recovery cycle to switch from
976 		 * first mounter recovery.  We can ignore any recover_slot
977 		 * callbacks between the recover_prep and next recover_done
978 		 * because we are still the first mounter and any failed nodes
979 		 * have not fully mounted, so they don't need recovery.
980 		 */
981 		spin_unlock(&ls->ls_recover_spin);
982 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
983 
984 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
985 			    TASK_UNINTERRUPTIBLE);
986 		goto restart;
987 	}
988 
989 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
990 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
991 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
992 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
993 	spin_unlock(&ls->ls_recover_spin);
994 
995 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
996 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
997 
998 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
999 	if (error)
1000 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1001 
1002 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1003 	if (error)
1004 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1005 
1006 	return error;
1007 }
1008 
1009 /*
1010  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1011  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1,
1012  * gfs2 jids start at 0, so jid = slot - 1)
1013  */
1014 
1015 #define RECOVER_SIZE_INC 16
1016 
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1017 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1018 			    int num_slots)
1019 {
1020 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1021 	uint32_t *submit = NULL;
1022 	uint32_t *result = NULL;
1023 	uint32_t old_size, new_size;
1024 	int i, max_jid;
1025 
1026 	if (!ls->ls_lvb_bits) {
1027 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1028 		if (!ls->ls_lvb_bits)
1029 			return -ENOMEM;
1030 	}
1031 
1032 	max_jid = 0;
1033 	for (i = 0; i < num_slots; i++) {
1034 		if (max_jid < slots[i].slot - 1)
1035 			max_jid = slots[i].slot - 1;
1036 	}
1037 
1038 	old_size = ls->ls_recover_size;
1039 	new_size = old_size;
1040 	while (new_size < max_jid + 1)
1041 		new_size += RECOVER_SIZE_INC;
1042 	if (new_size == old_size)
1043 		return 0;
1044 
1045 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1046 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1047 	if (!submit || !result) {
1048 		kfree(submit);
1049 		kfree(result);
1050 		return -ENOMEM;
1051 	}
1052 
1053 	spin_lock(&ls->ls_recover_spin);
1054 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1055 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1056 	kfree(ls->ls_recover_submit);
1057 	kfree(ls->ls_recover_result);
1058 	ls->ls_recover_submit = submit;
1059 	ls->ls_recover_result = result;
1060 	ls->ls_recover_size = new_size;
1061 	spin_unlock(&ls->ls_recover_spin);
1062 	return 0;
1063 }
1064 
free_recover_size(struct lm_lockstruct * ls)1065 static void free_recover_size(struct lm_lockstruct *ls)
1066 {
1067 	kfree(ls->ls_lvb_bits);
1068 	kfree(ls->ls_recover_submit);
1069 	kfree(ls->ls_recover_result);
1070 	ls->ls_recover_submit = NULL;
1071 	ls->ls_recover_result = NULL;
1072 	ls->ls_recover_size = 0;
1073 	ls->ls_lvb_bits = NULL;
1074 }
1075 
1076 /* dlm calls before it does lock recovery */
1077 
gdlm_recover_prep(void * arg)1078 static void gdlm_recover_prep(void *arg)
1079 {
1080 	struct gfs2_sbd *sdp = arg;
1081 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1082 
1083 	spin_lock(&ls->ls_recover_spin);
1084 	ls->ls_recover_block = ls->ls_recover_start;
1085 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1086 
1087 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1088 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1089 		spin_unlock(&ls->ls_recover_spin);
1090 		return;
1091 	}
1092 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1093 	spin_unlock(&ls->ls_recover_spin);
1094 }
1095 
1096 /* dlm calls after recover_prep has been completed on all lockspace members;
1097    identifies slot/jid of failed member */
1098 
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1099 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1100 {
1101 	struct gfs2_sbd *sdp = arg;
1102 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1103 	int jid = slot->slot - 1;
1104 
1105 	spin_lock(&ls->ls_recover_spin);
1106 	if (ls->ls_recover_size < jid + 1) {
1107 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1108 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1109 		spin_unlock(&ls->ls_recover_spin);
1110 		return;
1111 	}
1112 
1113 	if (ls->ls_recover_submit[jid]) {
1114 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1115 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1116 	}
1117 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1118 	spin_unlock(&ls->ls_recover_spin);
1119 }
1120 
1121 /* dlm calls after recover_slot and after it completes lock recovery */
1122 
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1123 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1124 			      int our_slot, uint32_t generation)
1125 {
1126 	struct gfs2_sbd *sdp = arg;
1127 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1128 
1129 	/* ensure the ls jid arrays are large enough */
1130 	set_recover_size(sdp, slots, num_slots);
1131 
1132 	spin_lock(&ls->ls_recover_spin);
1133 	ls->ls_recover_start = generation;
1134 
1135 	if (!ls->ls_recover_mount) {
1136 		ls->ls_recover_mount = generation;
1137 		ls->ls_jid = our_slot - 1;
1138 	}
1139 
1140 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1141 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1142 
1143 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1144 	smp_mb__after_atomic();
1145 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1146 	spin_unlock(&ls->ls_recover_spin);
1147 }
1148 
1149 /* gfs2_recover thread has a journal recovery result */
1150 
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1151 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1152 				 unsigned int result)
1153 {
1154 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1155 
1156 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1157 		return;
1158 
1159 	/* don't care about the recovery of own journal during mount */
1160 	if (jid == ls->ls_jid)
1161 		return;
1162 
1163 	spin_lock(&ls->ls_recover_spin);
1164 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1165 		spin_unlock(&ls->ls_recover_spin);
1166 		return;
1167 	}
1168 	if (ls->ls_recover_size < jid + 1) {
1169 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1170 		       jid, ls->ls_recover_size);
1171 		spin_unlock(&ls->ls_recover_spin);
1172 		return;
1173 	}
1174 
1175 	fs_info(sdp, "recover jid %d result %s\n", jid,
1176 		result == LM_RD_GAVEUP ? "busy" : "success");
1177 
1178 	ls->ls_recover_result[jid] = result;
1179 
1180 	/* GAVEUP means another node is recovering the journal; delay our
1181 	   next attempt to recover it, to give the other node a chance to
1182 	   finish before trying again */
1183 
1184 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1185 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1186 				   result == LM_RD_GAVEUP ? HZ : 0);
1187 	spin_unlock(&ls->ls_recover_spin);
1188 }
1189 
1190 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1191 	.recover_prep = gdlm_recover_prep,
1192 	.recover_slot = gdlm_recover_slot,
1193 	.recover_done = gdlm_recover_done,
1194 };
1195 
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1196 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1197 {
1198 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1199 	char cluster[GFS2_LOCKNAME_LEN];
1200 	const char *fsname;
1201 	uint32_t flags;
1202 	int error, ops_result;
1203 
1204 	/*
1205 	 * initialize everything
1206 	 */
1207 
1208 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1209 	spin_lock_init(&ls->ls_recover_spin);
1210 	ls->ls_recover_flags = 0;
1211 	ls->ls_recover_mount = 0;
1212 	ls->ls_recover_start = 0;
1213 	ls->ls_recover_block = 0;
1214 	ls->ls_recover_size = 0;
1215 	ls->ls_recover_submit = NULL;
1216 	ls->ls_recover_result = NULL;
1217 	ls->ls_lvb_bits = NULL;
1218 
1219 	error = set_recover_size(sdp, NULL, 0);
1220 	if (error)
1221 		goto fail;
1222 
1223 	/*
1224 	 * prepare dlm_new_lockspace args
1225 	 */
1226 
1227 	fsname = strchr(table, ':');
1228 	if (!fsname) {
1229 		fs_info(sdp, "no fsname found\n");
1230 		error = -EINVAL;
1231 		goto fail_free;
1232 	}
1233 	memset(cluster, 0, sizeof(cluster));
1234 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1235 	fsname++;
1236 
1237 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1238 
1239 	/*
1240 	 * create/join lockspace
1241 	 */
1242 
1243 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1244 				  &gdlm_lockspace_ops, sdp, &ops_result,
1245 				  &ls->ls_dlm);
1246 	if (error) {
1247 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1248 		goto fail_free;
1249 	}
1250 
1251 	if (ops_result < 0) {
1252 		/*
1253 		 * dlm does not support ops callbacks,
1254 		 * old dlm_controld/gfs_controld are used, try without ops.
1255 		 */
1256 		fs_info(sdp, "dlm lockspace ops not used\n");
1257 		free_recover_size(ls);
1258 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1259 		return 0;
1260 	}
1261 
1262 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1263 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1264 		error = -EINVAL;
1265 		goto fail_release;
1266 	}
1267 
1268 	/*
1269 	 * control_mount() uses control_lock to determine first mounter,
1270 	 * and for later mounts, waits for any recoveries to be cleared.
1271 	 */
1272 
1273 	error = control_mount(sdp);
1274 	if (error) {
1275 		fs_err(sdp, "mount control error %d\n", error);
1276 		goto fail_release;
1277 	}
1278 
1279 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1280 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1281 	smp_mb__after_atomic();
1282 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1283 	return 0;
1284 
1285 fail_release:
1286 	dlm_release_lockspace(ls->ls_dlm, 2);
1287 fail_free:
1288 	free_recover_size(ls);
1289 fail:
1290 	return error;
1291 }
1292 
gdlm_first_done(struct gfs2_sbd * sdp)1293 static void gdlm_first_done(struct gfs2_sbd *sdp)
1294 {
1295 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1296 	int error;
1297 
1298 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1299 		return;
1300 
1301 	error = control_first_done(sdp);
1302 	if (error)
1303 		fs_err(sdp, "mount first_done error %d\n", error);
1304 }
1305 
gdlm_unmount(struct gfs2_sbd * sdp)1306 static void gdlm_unmount(struct gfs2_sbd *sdp)
1307 {
1308 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1309 
1310 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1311 		goto release;
1312 
1313 	/* wait for gfs2_control_wq to be done with this mount */
1314 
1315 	spin_lock(&ls->ls_recover_spin);
1316 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1317 	spin_unlock(&ls->ls_recover_spin);
1318 	flush_delayed_work(&sdp->sd_control_work);
1319 
1320 	/* mounted_lock and control_lock will be purged in dlm recovery */
1321 release:
1322 	if (ls->ls_dlm) {
1323 		dlm_release_lockspace(ls->ls_dlm, 2);
1324 		ls->ls_dlm = NULL;
1325 	}
1326 
1327 	free_recover_size(ls);
1328 }
1329 
1330 static const match_table_t dlm_tokens = {
1331 	{ Opt_jid, "jid=%d"},
1332 	{ Opt_id, "id=%d"},
1333 	{ Opt_first, "first=%d"},
1334 	{ Opt_nodir, "nodir=%d"},
1335 	{ Opt_err, NULL },
1336 };
1337 
1338 const struct lm_lockops gfs2_dlm_ops = {
1339 	.lm_proto_name = "lock_dlm",
1340 	.lm_mount = gdlm_mount,
1341 	.lm_first_done = gdlm_first_done,
1342 	.lm_recovery_result = gdlm_recovery_result,
1343 	.lm_unmount = gdlm_unmount,
1344 	.lm_put_lock = gdlm_put_lock,
1345 	.lm_lock = gdlm_lock,
1346 	.lm_cancel = gdlm_cancel,
1347 	.lm_tokens = &dlm_tokens,
1348 };
1349 
1350