1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16
17 #include "incore.h"
18 #include "glock.h"
19 #include "util.h"
20 #include "sys.h"
21 #include "trace_gfs2.h"
22
23 /**
24 * gfs2_update_stats - Update time based stats
25 * @mv: Pointer to mean/variance structure to update
26 * @sample: New data to include
27 *
28 * @delta is the difference between the current rtt sample and the
29 * running average srtt. We add 1/8 of that to the srtt in order to
30 * update the current srtt estimate. The variance estimate is a bit
31 * more complicated. We subtract the current variance estimate from
32 * the abs value of the @delta and add 1/4 of that to the running
33 * total. That's equivalent to 3/4 of the current variance
34 * estimate plus 1/4 of the abs of @delta.
35 *
36 * Note that the index points at the array entry containing the smoothed
37 * mean value, and the variance is always in the following entry
38 *
39 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
40 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
41 * they are not scaled fixed point.
42 */
43
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)44 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
45 s64 sample)
46 {
47 s64 delta = sample - s->stats[index];
48 s->stats[index] += (delta >> 3);
49 index++;
50 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
51 }
52
53 /**
54 * gfs2_update_reply_times - Update locking statistics
55 * @gl: The glock to update
56 *
57 * This assumes that gl->gl_dstamp has been set earlier.
58 *
59 * The rtt (lock round trip time) is an estimate of the time
60 * taken to perform a dlm lock request. We update it on each
61 * reply from the dlm.
62 *
63 * The blocking flag is set on the glock for all dlm requests
64 * which may potentially block due to lock requests from other nodes.
65 * DLM requests where the current lock state is exclusive, the
66 * requested state is null (or unlocked) or where the TRY or
67 * TRY_1CB flags are set are classified as non-blocking. All
68 * other DLM requests are counted as (potentially) blocking.
69 */
gfs2_update_reply_times(struct gfs2_glock * gl)70 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
71 {
72 struct gfs2_pcpu_lkstats *lks;
73 const unsigned gltype = gl->gl_name.ln_type;
74 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
75 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
76 s64 rtt;
77
78 preempt_disable();
79 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
80 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
81 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
82 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
83 preempt_enable();
84
85 trace_gfs2_glock_lock_time(gl, rtt);
86 }
87
88 /**
89 * gfs2_update_request_times - Update locking statistics
90 * @gl: The glock to update
91 *
92 * The irt (lock inter-request times) measures the average time
93 * between requests to the dlm. It is updated immediately before
94 * each dlm call.
95 */
96
gfs2_update_request_times(struct gfs2_glock * gl)97 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
98 {
99 struct gfs2_pcpu_lkstats *lks;
100 const unsigned gltype = gl->gl_name.ln_type;
101 ktime_t dstamp;
102 s64 irt;
103
104 preempt_disable();
105 dstamp = gl->gl_dstamp;
106 gl->gl_dstamp = ktime_get_real();
107 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
108 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
109 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
110 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
111 preempt_enable();
112 }
113
gdlm_ast(void * arg)114 static void gdlm_ast(void *arg)
115 {
116 struct gfs2_glock *gl = arg;
117 unsigned ret = gl->gl_state;
118
119 gfs2_update_reply_times(gl);
120 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
121
122 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
123 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
124
125 switch (gl->gl_lksb.sb_status) {
126 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
127 gfs2_glock_free(gl);
128 return;
129 case -DLM_ECANCEL: /* Cancel while getting lock */
130 ret |= LM_OUT_CANCELED;
131 goto out;
132 case -EAGAIN: /* Try lock fails */
133 case -EDEADLK: /* Deadlock detected */
134 goto out;
135 case -ETIMEDOUT: /* Canceled due to timeout */
136 ret |= LM_OUT_ERROR;
137 goto out;
138 case 0: /* Success */
139 break;
140 default: /* Something unexpected */
141 BUG();
142 }
143
144 ret = gl->gl_req;
145 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
146 if (gl->gl_req == LM_ST_SHARED)
147 ret = LM_ST_DEFERRED;
148 else if (gl->gl_req == LM_ST_DEFERRED)
149 ret = LM_ST_SHARED;
150 else
151 BUG();
152 }
153
154 set_bit(GLF_INITIAL, &gl->gl_flags);
155 gfs2_glock_complete(gl, ret);
156 return;
157 out:
158 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
159 gl->gl_lksb.sb_lkid = 0;
160 gfs2_glock_complete(gl, ret);
161 }
162
gdlm_bast(void * arg,int mode)163 static void gdlm_bast(void *arg, int mode)
164 {
165 struct gfs2_glock *gl = arg;
166
167 switch (mode) {
168 case DLM_LOCK_EX:
169 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
170 break;
171 case DLM_LOCK_CW:
172 gfs2_glock_cb(gl, LM_ST_DEFERRED);
173 break;
174 case DLM_LOCK_PR:
175 gfs2_glock_cb(gl, LM_ST_SHARED);
176 break;
177 default:
178 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
179 BUG();
180 }
181 }
182
183 /* convert gfs lock-state to dlm lock-mode */
184
make_mode(struct gfs2_sbd * sdp,const unsigned int lmstate)185 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
186 {
187 switch (lmstate) {
188 case LM_ST_UNLOCKED:
189 return DLM_LOCK_NL;
190 case LM_ST_EXCLUSIVE:
191 return DLM_LOCK_EX;
192 case LM_ST_DEFERRED:
193 return DLM_LOCK_CW;
194 case LM_ST_SHARED:
195 return DLM_LOCK_PR;
196 }
197 fs_err(sdp, "unknown LM state %d\n", lmstate);
198 BUG();
199 return -1;
200 }
201
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req)202 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
203 const int req)
204 {
205 u32 lkf = 0;
206
207 if (gl->gl_lksb.sb_lvbptr)
208 lkf |= DLM_LKF_VALBLK;
209
210 if (gfs_flags & LM_FLAG_TRY)
211 lkf |= DLM_LKF_NOQUEUE;
212
213 if (gfs_flags & LM_FLAG_TRY_1CB) {
214 lkf |= DLM_LKF_NOQUEUE;
215 lkf |= DLM_LKF_NOQUEUEBAST;
216 }
217
218 if (gfs_flags & LM_FLAG_PRIORITY) {
219 lkf |= DLM_LKF_NOORDER;
220 lkf |= DLM_LKF_HEADQUE;
221 }
222
223 if (gfs_flags & LM_FLAG_ANY) {
224 if (req == DLM_LOCK_PR)
225 lkf |= DLM_LKF_ALTCW;
226 else if (req == DLM_LOCK_CW)
227 lkf |= DLM_LKF_ALTPR;
228 else
229 BUG();
230 }
231
232 if (gl->gl_lksb.sb_lkid != 0) {
233 lkf |= DLM_LKF_CONVERT;
234 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
235 lkf |= DLM_LKF_QUECVT;
236 }
237
238 return lkf;
239 }
240
gfs2_reverse_hex(char * c,u64 value)241 static void gfs2_reverse_hex(char *c, u64 value)
242 {
243 *c = '0';
244 while (value) {
245 *c-- = hex_asc[value & 0x0f];
246 value >>= 4;
247 }
248 }
249
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)250 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
251 unsigned int flags)
252 {
253 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
254 int req;
255 u32 lkf;
256 char strname[GDLM_STRNAME_BYTES] = "";
257
258 req = make_mode(gl->gl_name.ln_sbd, req_state);
259 lkf = make_flags(gl, flags, req);
260 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
261 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
262 if (gl->gl_lksb.sb_lkid) {
263 gfs2_update_request_times(gl);
264 } else {
265 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
266 strname[GDLM_STRNAME_BYTES - 1] = '\0';
267 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
268 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
269 gl->gl_dstamp = ktime_get_real();
270 }
271 /*
272 * Submit the actual lock request.
273 */
274
275 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
276 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
277 }
278
gdlm_put_lock(struct gfs2_glock * gl)279 static void gdlm_put_lock(struct gfs2_glock *gl)
280 {
281 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
282 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
283 int error;
284
285 if (gl->gl_lksb.sb_lkid == 0) {
286 gfs2_glock_free(gl);
287 return;
288 }
289
290 clear_bit(GLF_BLOCKING, &gl->gl_flags);
291 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
292 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
293 gfs2_update_request_times(gl);
294
295 /* don't want to call dlm if we've unmounted the lock protocol */
296 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
297 gfs2_glock_free(gl);
298 return;
299 }
300 /* don't want to skip dlm_unlock writing the lvb when lock has one */
301
302 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
303 !gl->gl_lksb.sb_lvbptr) {
304 gfs2_glock_free(gl);
305 return;
306 }
307
308 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
309 NULL, gl);
310 if (error) {
311 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
312 gl->gl_name.ln_type,
313 (unsigned long long)gl->gl_name.ln_number, error);
314 return;
315 }
316 }
317
gdlm_cancel(struct gfs2_glock * gl)318 static void gdlm_cancel(struct gfs2_glock *gl)
319 {
320 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
321 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
322 }
323
324 /*
325 * dlm/gfs2 recovery coordination using dlm_recover callbacks
326 *
327 * 1. dlm_controld sees lockspace members change
328 * 2. dlm_controld blocks dlm-kernel locking activity
329 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
330 * 4. dlm_controld starts and finishes its own user level recovery
331 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
332 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
333 * 7. dlm_recoverd does its own lock recovery
334 * 8. dlm_recoverd unblocks dlm-kernel locking activity
335 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
336 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
337 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
338 * 12. gfs2_recover dequeues and recovers journals of failed nodes
339 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
340 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
341 * 15. gfs2_control unblocks normal locking when all journals are recovered
342 *
343 * - failures during recovery
344 *
345 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
346 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
347 * recovering for a prior failure. gfs2_control needs a way to detect
348 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
349 * the recover_block and recover_start values.
350 *
351 * recover_done() provides a new lockspace generation number each time it
352 * is called (step 9). This generation number is saved as recover_start.
353 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
354 * recover_block = recover_start. So, while recover_block is equal to
355 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
356 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
357 *
358 * - more specific gfs2 steps in sequence above
359 *
360 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
361 * 6. recover_slot records any failed jids (maybe none)
362 * 9. recover_done sets recover_start = new generation number
363 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
364 * 12. gfs2_recover does journal recoveries for failed jids identified above
365 * 14. gfs2_control clears control_lock lvb bits for recovered jids
366 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
367 * again) then do nothing, otherwise if recover_start > recover_block
368 * then clear BLOCK_LOCKS.
369 *
370 * - parallel recovery steps across all nodes
371 *
372 * All nodes attempt to update the control_lock lvb with the new generation
373 * number and jid bits, but only the first to get the control_lock EX will
374 * do so; others will see that it's already done (lvb already contains new
375 * generation number.)
376 *
377 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
378 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
379 * . One node gets control_lock first and writes the lvb, others see it's done
380 * . All nodes attempt to recover jids for which they see control_lock bits set
381 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
382 * . All nodes will eventually see all lvb bits clear and unblock locks
383 *
384 * - is there a problem with clearing an lvb bit that should be set
385 * and missing a journal recovery?
386 *
387 * 1. jid fails
388 * 2. lvb bit set for step 1
389 * 3. jid recovered for step 1
390 * 4. jid taken again (new mount)
391 * 5. jid fails (for step 4)
392 * 6. lvb bit set for step 5 (will already be set)
393 * 7. lvb bit cleared for step 3
394 *
395 * This is not a problem because the failure in step 5 does not
396 * require recovery, because the mount in step 4 could not have
397 * progressed far enough to unblock locks and access the fs. The
398 * control_mount() function waits for all recoveries to be complete
399 * for the latest lockspace generation before ever unblocking locks
400 * and returning. The mount in step 4 waits until the recovery in
401 * step 1 is done.
402 *
403 * - special case of first mounter: first node to mount the fs
404 *
405 * The first node to mount a gfs2 fs needs to check all the journals
406 * and recover any that need recovery before other nodes are allowed
407 * to mount the fs. (Others may begin mounting, but they must wait
408 * for the first mounter to be done before taking locks on the fs
409 * or accessing the fs.) This has two parts:
410 *
411 * 1. The mounted_lock tells a node it's the first to mount the fs.
412 * Each node holds the mounted_lock in PR while it's mounted.
413 * Each node tries to acquire the mounted_lock in EX when it mounts.
414 * If a node is granted the mounted_lock EX it means there are no
415 * other mounted nodes (no PR locks exist), and it is the first mounter.
416 * The mounted_lock is demoted to PR when first recovery is done, so
417 * others will fail to get an EX lock, but will get a PR lock.
418 *
419 * 2. The control_lock blocks others in control_mount() while the first
420 * mounter is doing first mount recovery of all journals.
421 * A mounting node needs to acquire control_lock in EX mode before
422 * it can proceed. The first mounter holds control_lock in EX while doing
423 * the first mount recovery, blocking mounts from other nodes, then demotes
424 * control_lock to NL when it's done (others_may_mount/first_done),
425 * allowing other nodes to continue mounting.
426 *
427 * first mounter:
428 * control_lock EX/NOQUEUE success
429 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
430 * set first=1
431 * do first mounter recovery
432 * mounted_lock EX->PR
433 * control_lock EX->NL, write lvb generation
434 *
435 * other mounter:
436 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
437 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
438 * mounted_lock PR/NOQUEUE success
439 * read lvb generation
440 * control_lock EX->NL
441 * set first=0
442 *
443 * - mount during recovery
444 *
445 * If a node mounts while others are doing recovery (not first mounter),
446 * the mounting node will get its initial recover_done() callback without
447 * having seen any previous failures/callbacks.
448 *
449 * It must wait for all recoveries preceding its mount to be finished
450 * before it unblocks locks. It does this by repeating the "other mounter"
451 * steps above until the lvb generation number is >= its mount generation
452 * number (from initial recover_done) and all lvb bits are clear.
453 *
454 * - control_lock lvb format
455 *
456 * 4 bytes generation number: the latest dlm lockspace generation number
457 * from recover_done callback. Indicates the jid bitmap has been updated
458 * to reflect all slot failures through that generation.
459 * 4 bytes unused.
460 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
461 * that jid N needs recovery.
462 */
463
464 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
465
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)466 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
467 char *lvb_bits)
468 {
469 __le32 gen;
470 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
471 memcpy(&gen, lvb_bits, sizeof(__le32));
472 *lvb_gen = le32_to_cpu(gen);
473 }
474
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)475 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
476 char *lvb_bits)
477 {
478 __le32 gen;
479 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
480 gen = cpu_to_le32(lvb_gen);
481 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
482 }
483
all_jid_bits_clear(char * lvb)484 static int all_jid_bits_clear(char *lvb)
485 {
486 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
487 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
488 }
489
sync_wait_cb(void * arg)490 static void sync_wait_cb(void *arg)
491 {
492 struct lm_lockstruct *ls = arg;
493 complete(&ls->ls_sync_wait);
494 }
495
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)496 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
497 {
498 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
499 int error;
500
501 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
502 if (error) {
503 fs_err(sdp, "%s lkid %x error %d\n",
504 name, lksb->sb_lkid, error);
505 return error;
506 }
507
508 wait_for_completion(&ls->ls_sync_wait);
509
510 if (lksb->sb_status != -DLM_EUNLOCK) {
511 fs_err(sdp, "%s lkid %x status %d\n",
512 name, lksb->sb_lkid, lksb->sb_status);
513 return -1;
514 }
515 return 0;
516 }
517
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)518 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
519 unsigned int num, struct dlm_lksb *lksb, char *name)
520 {
521 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
522 char strname[GDLM_STRNAME_BYTES];
523 int error, status;
524
525 memset(strname, 0, GDLM_STRNAME_BYTES);
526 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
527
528 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
529 strname, GDLM_STRNAME_BYTES - 1,
530 0, sync_wait_cb, ls, NULL);
531 if (error) {
532 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
533 name, lksb->sb_lkid, flags, mode, error);
534 return error;
535 }
536
537 wait_for_completion(&ls->ls_sync_wait);
538
539 status = lksb->sb_status;
540
541 if (status && status != -EAGAIN) {
542 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
543 name, lksb->sb_lkid, flags, mode, status);
544 }
545
546 return status;
547 }
548
mounted_unlock(struct gfs2_sbd * sdp)549 static int mounted_unlock(struct gfs2_sbd *sdp)
550 {
551 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
552 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
553 }
554
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)555 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
556 {
557 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
558 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
559 &ls->ls_mounted_lksb, "mounted_lock");
560 }
561
control_unlock(struct gfs2_sbd * sdp)562 static int control_unlock(struct gfs2_sbd *sdp)
563 {
564 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
565 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
566 }
567
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)568 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
569 {
570 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
571 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
572 &ls->ls_control_lksb, "control_lock");
573 }
574
gfs2_control_func(struct work_struct * work)575 static void gfs2_control_func(struct work_struct *work)
576 {
577 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
578 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
579 uint32_t block_gen, start_gen, lvb_gen, flags;
580 int recover_set = 0;
581 int write_lvb = 0;
582 int recover_size;
583 int i, error;
584
585 spin_lock(&ls->ls_recover_spin);
586 /*
587 * No MOUNT_DONE means we're still mounting; control_mount()
588 * will set this flag, after which this thread will take over
589 * all further clearing of BLOCK_LOCKS.
590 *
591 * FIRST_MOUNT means this node is doing first mounter recovery,
592 * for which recovery control is handled by
593 * control_mount()/control_first_done(), not this thread.
594 */
595 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
596 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
597 spin_unlock(&ls->ls_recover_spin);
598 return;
599 }
600 block_gen = ls->ls_recover_block;
601 start_gen = ls->ls_recover_start;
602 spin_unlock(&ls->ls_recover_spin);
603
604 /*
605 * Equal block_gen and start_gen implies we are between
606 * recover_prep and recover_done callbacks, which means
607 * dlm recovery is in progress and dlm locking is blocked.
608 * There's no point trying to do any work until recover_done.
609 */
610
611 if (block_gen == start_gen)
612 return;
613
614 /*
615 * Propagate recover_submit[] and recover_result[] to lvb:
616 * dlm_recoverd adds to recover_submit[] jids needing recovery
617 * gfs2_recover adds to recover_result[] journal recovery results
618 *
619 * set lvb bit for jids in recover_submit[] if the lvb has not
620 * yet been updated for the generation of the failure
621 *
622 * clear lvb bit for jids in recover_result[] if the result of
623 * the journal recovery is SUCCESS
624 */
625
626 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
627 if (error) {
628 fs_err(sdp, "control lock EX error %d\n", error);
629 return;
630 }
631
632 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
633
634 spin_lock(&ls->ls_recover_spin);
635 if (block_gen != ls->ls_recover_block ||
636 start_gen != ls->ls_recover_start) {
637 fs_info(sdp, "recover generation %u block1 %u %u\n",
638 start_gen, block_gen, ls->ls_recover_block);
639 spin_unlock(&ls->ls_recover_spin);
640 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
641 return;
642 }
643
644 recover_size = ls->ls_recover_size;
645
646 if (lvb_gen <= start_gen) {
647 /*
648 * Clear lvb bits for jids we've successfully recovered.
649 * Because all nodes attempt to recover failed journals,
650 * a journal can be recovered multiple times successfully
651 * in succession. Only the first will really do recovery,
652 * the others find it clean, but still report a successful
653 * recovery. So, another node may have already recovered
654 * the jid and cleared the lvb bit for it.
655 */
656 for (i = 0; i < recover_size; i++) {
657 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
658 continue;
659
660 ls->ls_recover_result[i] = 0;
661
662 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
663 continue;
664
665 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
666 write_lvb = 1;
667 }
668 }
669
670 if (lvb_gen == start_gen) {
671 /*
672 * Failed slots before start_gen are already set in lvb.
673 */
674 for (i = 0; i < recover_size; i++) {
675 if (!ls->ls_recover_submit[i])
676 continue;
677 if (ls->ls_recover_submit[i] < lvb_gen)
678 ls->ls_recover_submit[i] = 0;
679 }
680 } else if (lvb_gen < start_gen) {
681 /*
682 * Failed slots before start_gen are not yet set in lvb.
683 */
684 for (i = 0; i < recover_size; i++) {
685 if (!ls->ls_recover_submit[i])
686 continue;
687 if (ls->ls_recover_submit[i] < start_gen) {
688 ls->ls_recover_submit[i] = 0;
689 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
690 }
691 }
692 /* even if there are no bits to set, we need to write the
693 latest generation to the lvb */
694 write_lvb = 1;
695 } else {
696 /*
697 * we should be getting a recover_done() for lvb_gen soon
698 */
699 }
700 spin_unlock(&ls->ls_recover_spin);
701
702 if (write_lvb) {
703 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
704 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
705 } else {
706 flags = DLM_LKF_CONVERT;
707 }
708
709 error = control_lock(sdp, DLM_LOCK_NL, flags);
710 if (error) {
711 fs_err(sdp, "control lock NL error %d\n", error);
712 return;
713 }
714
715 /*
716 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
717 * and clear a jid bit in the lvb if the recovery is a success.
718 * Eventually all journals will be recovered, all jid bits will
719 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
720 */
721
722 for (i = 0; i < recover_size; i++) {
723 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
724 fs_info(sdp, "recover generation %u jid %d\n",
725 start_gen, i);
726 gfs2_recover_set(sdp, i);
727 recover_set++;
728 }
729 }
730 if (recover_set)
731 return;
732
733 /*
734 * No more jid bits set in lvb, all recovery is done, unblock locks
735 * (unless a new recover_prep callback has occured blocking locks
736 * again while working above)
737 */
738
739 spin_lock(&ls->ls_recover_spin);
740 if (ls->ls_recover_block == block_gen &&
741 ls->ls_recover_start == start_gen) {
742 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
743 spin_unlock(&ls->ls_recover_spin);
744 fs_info(sdp, "recover generation %u done\n", start_gen);
745 gfs2_glock_thaw(sdp);
746 } else {
747 fs_info(sdp, "recover generation %u block2 %u %u\n",
748 start_gen, block_gen, ls->ls_recover_block);
749 spin_unlock(&ls->ls_recover_spin);
750 }
751 }
752
control_mount(struct gfs2_sbd * sdp)753 static int control_mount(struct gfs2_sbd *sdp)
754 {
755 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
756 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
757 int mounted_mode;
758 int retries = 0;
759 int error;
760
761 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
762 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
763 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
764 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
765 init_completion(&ls->ls_sync_wait);
766
767 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
768
769 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
770 if (error) {
771 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
772 return error;
773 }
774
775 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
776 if (error) {
777 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
778 control_unlock(sdp);
779 return error;
780 }
781 mounted_mode = DLM_LOCK_NL;
782
783 restart:
784 if (retries++ && signal_pending(current)) {
785 error = -EINTR;
786 goto fail;
787 }
788
789 /*
790 * We always start with both locks in NL. control_lock is
791 * demoted to NL below so we don't need to do it here.
792 */
793
794 if (mounted_mode != DLM_LOCK_NL) {
795 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
796 if (error)
797 goto fail;
798 mounted_mode = DLM_LOCK_NL;
799 }
800
801 /*
802 * Other nodes need to do some work in dlm recovery and gfs2_control
803 * before the recover_done and control_lock will be ready for us below.
804 * A delay here is not required but often avoids having to retry.
805 */
806
807 msleep_interruptible(500);
808
809 /*
810 * Acquire control_lock in EX and mounted_lock in either EX or PR.
811 * control_lock lvb keeps track of any pending journal recoveries.
812 * mounted_lock indicates if any other nodes have the fs mounted.
813 */
814
815 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
816 if (error == -EAGAIN) {
817 goto restart;
818 } else if (error) {
819 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
820 goto fail;
821 }
822
823 /**
824 * If we're a spectator, we don't want to take the lock in EX because
825 * we cannot do the first-mount responsibility it implies: recovery.
826 */
827 if (sdp->sd_args.ar_spectator)
828 goto locks_done;
829
830 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
831 if (!error) {
832 mounted_mode = DLM_LOCK_EX;
833 goto locks_done;
834 } else if (error != -EAGAIN) {
835 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
836 goto fail;
837 }
838
839 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
840 if (!error) {
841 mounted_mode = DLM_LOCK_PR;
842 goto locks_done;
843 } else {
844 /* not even -EAGAIN should happen here */
845 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
846 goto fail;
847 }
848
849 locks_done:
850 /*
851 * If we got both locks above in EX, then we're the first mounter.
852 * If not, then we need to wait for the control_lock lvb to be
853 * updated by other mounted nodes to reflect our mount generation.
854 *
855 * In simple first mounter cases, first mounter will see zero lvb_gen,
856 * but in cases where all existing nodes leave/fail before mounting
857 * nodes finish control_mount, then all nodes will be mounting and
858 * lvb_gen will be non-zero.
859 */
860
861 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
862
863 if (lvb_gen == 0xFFFFFFFF) {
864 /* special value to force mount attempts to fail */
865 fs_err(sdp, "control_mount control_lock disabled\n");
866 error = -EINVAL;
867 goto fail;
868 }
869
870 if (mounted_mode == DLM_LOCK_EX) {
871 /* first mounter, keep both EX while doing first recovery */
872 spin_lock(&ls->ls_recover_spin);
873 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
874 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
875 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
876 spin_unlock(&ls->ls_recover_spin);
877 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
878 return 0;
879 }
880
881 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
882 if (error)
883 goto fail;
884
885 /*
886 * We are not first mounter, now we need to wait for the control_lock
887 * lvb generation to be >= the generation from our first recover_done
888 * and all lvb bits to be clear (no pending journal recoveries.)
889 */
890
891 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
892 /* journals need recovery, wait until all are clear */
893 fs_info(sdp, "control_mount wait for journal recovery\n");
894 goto restart;
895 }
896
897 spin_lock(&ls->ls_recover_spin);
898 block_gen = ls->ls_recover_block;
899 start_gen = ls->ls_recover_start;
900 mount_gen = ls->ls_recover_mount;
901
902 if (lvb_gen < mount_gen) {
903 /* wait for mounted nodes to update control_lock lvb to our
904 generation, which might include new recovery bits set */
905 if (sdp->sd_args.ar_spectator) {
906 fs_info(sdp, "Recovery is required. Waiting for a "
907 "non-spectator to mount.\n");
908 msleep_interruptible(1000);
909 } else {
910 fs_info(sdp, "control_mount wait1 block %u start %u "
911 "mount %u lvb %u flags %lx\n", block_gen,
912 start_gen, mount_gen, lvb_gen,
913 ls->ls_recover_flags);
914 }
915 spin_unlock(&ls->ls_recover_spin);
916 goto restart;
917 }
918
919 if (lvb_gen != start_gen) {
920 /* wait for mounted nodes to update control_lock lvb to the
921 latest recovery generation */
922 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
923 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
924 lvb_gen, ls->ls_recover_flags);
925 spin_unlock(&ls->ls_recover_spin);
926 goto restart;
927 }
928
929 if (block_gen == start_gen) {
930 /* dlm recovery in progress, wait for it to finish */
931 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
932 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
933 lvb_gen, ls->ls_recover_flags);
934 spin_unlock(&ls->ls_recover_spin);
935 goto restart;
936 }
937
938 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
939 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
940 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
941 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
942 spin_unlock(&ls->ls_recover_spin);
943 return 0;
944
945 fail:
946 mounted_unlock(sdp);
947 control_unlock(sdp);
948 return error;
949 }
950
control_first_done(struct gfs2_sbd * sdp)951 static int control_first_done(struct gfs2_sbd *sdp)
952 {
953 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
954 uint32_t start_gen, block_gen;
955 int error;
956
957 restart:
958 spin_lock(&ls->ls_recover_spin);
959 start_gen = ls->ls_recover_start;
960 block_gen = ls->ls_recover_block;
961
962 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
963 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
964 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
965 /* sanity check, should not happen */
966 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
967 start_gen, block_gen, ls->ls_recover_flags);
968 spin_unlock(&ls->ls_recover_spin);
969 control_unlock(sdp);
970 return -1;
971 }
972
973 if (start_gen == block_gen) {
974 /*
975 * Wait for the end of a dlm recovery cycle to switch from
976 * first mounter recovery. We can ignore any recover_slot
977 * callbacks between the recover_prep and next recover_done
978 * because we are still the first mounter and any failed nodes
979 * have not fully mounted, so they don't need recovery.
980 */
981 spin_unlock(&ls->ls_recover_spin);
982 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
983
984 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
985 TASK_UNINTERRUPTIBLE);
986 goto restart;
987 }
988
989 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
990 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
991 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
992 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
993 spin_unlock(&ls->ls_recover_spin);
994
995 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
996 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
997
998 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
999 if (error)
1000 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1001
1002 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1003 if (error)
1004 fs_err(sdp, "control_first_done control NL error %d\n", error);
1005
1006 return error;
1007 }
1008
1009 /*
1010 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1011 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1012 * gfs2 jids start at 0, so jid = slot - 1)
1013 */
1014
1015 #define RECOVER_SIZE_INC 16
1016
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1017 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1018 int num_slots)
1019 {
1020 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1021 uint32_t *submit = NULL;
1022 uint32_t *result = NULL;
1023 uint32_t old_size, new_size;
1024 int i, max_jid;
1025
1026 if (!ls->ls_lvb_bits) {
1027 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1028 if (!ls->ls_lvb_bits)
1029 return -ENOMEM;
1030 }
1031
1032 max_jid = 0;
1033 for (i = 0; i < num_slots; i++) {
1034 if (max_jid < slots[i].slot - 1)
1035 max_jid = slots[i].slot - 1;
1036 }
1037
1038 old_size = ls->ls_recover_size;
1039 new_size = old_size;
1040 while (new_size < max_jid + 1)
1041 new_size += RECOVER_SIZE_INC;
1042 if (new_size == old_size)
1043 return 0;
1044
1045 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1046 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1047 if (!submit || !result) {
1048 kfree(submit);
1049 kfree(result);
1050 return -ENOMEM;
1051 }
1052
1053 spin_lock(&ls->ls_recover_spin);
1054 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1055 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1056 kfree(ls->ls_recover_submit);
1057 kfree(ls->ls_recover_result);
1058 ls->ls_recover_submit = submit;
1059 ls->ls_recover_result = result;
1060 ls->ls_recover_size = new_size;
1061 spin_unlock(&ls->ls_recover_spin);
1062 return 0;
1063 }
1064
free_recover_size(struct lm_lockstruct * ls)1065 static void free_recover_size(struct lm_lockstruct *ls)
1066 {
1067 kfree(ls->ls_lvb_bits);
1068 kfree(ls->ls_recover_submit);
1069 kfree(ls->ls_recover_result);
1070 ls->ls_recover_submit = NULL;
1071 ls->ls_recover_result = NULL;
1072 ls->ls_recover_size = 0;
1073 ls->ls_lvb_bits = NULL;
1074 }
1075
1076 /* dlm calls before it does lock recovery */
1077
gdlm_recover_prep(void * arg)1078 static void gdlm_recover_prep(void *arg)
1079 {
1080 struct gfs2_sbd *sdp = arg;
1081 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1082
1083 spin_lock(&ls->ls_recover_spin);
1084 ls->ls_recover_block = ls->ls_recover_start;
1085 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1086
1087 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1088 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1089 spin_unlock(&ls->ls_recover_spin);
1090 return;
1091 }
1092 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1093 spin_unlock(&ls->ls_recover_spin);
1094 }
1095
1096 /* dlm calls after recover_prep has been completed on all lockspace members;
1097 identifies slot/jid of failed member */
1098
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1099 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1100 {
1101 struct gfs2_sbd *sdp = arg;
1102 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1103 int jid = slot->slot - 1;
1104
1105 spin_lock(&ls->ls_recover_spin);
1106 if (ls->ls_recover_size < jid + 1) {
1107 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1108 jid, ls->ls_recover_block, ls->ls_recover_size);
1109 spin_unlock(&ls->ls_recover_spin);
1110 return;
1111 }
1112
1113 if (ls->ls_recover_submit[jid]) {
1114 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1115 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1116 }
1117 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1118 spin_unlock(&ls->ls_recover_spin);
1119 }
1120
1121 /* dlm calls after recover_slot and after it completes lock recovery */
1122
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1123 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1124 int our_slot, uint32_t generation)
1125 {
1126 struct gfs2_sbd *sdp = arg;
1127 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1128
1129 /* ensure the ls jid arrays are large enough */
1130 set_recover_size(sdp, slots, num_slots);
1131
1132 spin_lock(&ls->ls_recover_spin);
1133 ls->ls_recover_start = generation;
1134
1135 if (!ls->ls_recover_mount) {
1136 ls->ls_recover_mount = generation;
1137 ls->ls_jid = our_slot - 1;
1138 }
1139
1140 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1141 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1142
1143 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1144 smp_mb__after_atomic();
1145 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1146 spin_unlock(&ls->ls_recover_spin);
1147 }
1148
1149 /* gfs2_recover thread has a journal recovery result */
1150
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1151 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1152 unsigned int result)
1153 {
1154 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1155
1156 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1157 return;
1158
1159 /* don't care about the recovery of own journal during mount */
1160 if (jid == ls->ls_jid)
1161 return;
1162
1163 spin_lock(&ls->ls_recover_spin);
1164 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1165 spin_unlock(&ls->ls_recover_spin);
1166 return;
1167 }
1168 if (ls->ls_recover_size < jid + 1) {
1169 fs_err(sdp, "recovery_result jid %d short size %d\n",
1170 jid, ls->ls_recover_size);
1171 spin_unlock(&ls->ls_recover_spin);
1172 return;
1173 }
1174
1175 fs_info(sdp, "recover jid %d result %s\n", jid,
1176 result == LM_RD_GAVEUP ? "busy" : "success");
1177
1178 ls->ls_recover_result[jid] = result;
1179
1180 /* GAVEUP means another node is recovering the journal; delay our
1181 next attempt to recover it, to give the other node a chance to
1182 finish before trying again */
1183
1184 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1185 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1186 result == LM_RD_GAVEUP ? HZ : 0);
1187 spin_unlock(&ls->ls_recover_spin);
1188 }
1189
1190 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1191 .recover_prep = gdlm_recover_prep,
1192 .recover_slot = gdlm_recover_slot,
1193 .recover_done = gdlm_recover_done,
1194 };
1195
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1196 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1197 {
1198 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1199 char cluster[GFS2_LOCKNAME_LEN];
1200 const char *fsname;
1201 uint32_t flags;
1202 int error, ops_result;
1203
1204 /*
1205 * initialize everything
1206 */
1207
1208 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1209 spin_lock_init(&ls->ls_recover_spin);
1210 ls->ls_recover_flags = 0;
1211 ls->ls_recover_mount = 0;
1212 ls->ls_recover_start = 0;
1213 ls->ls_recover_block = 0;
1214 ls->ls_recover_size = 0;
1215 ls->ls_recover_submit = NULL;
1216 ls->ls_recover_result = NULL;
1217 ls->ls_lvb_bits = NULL;
1218
1219 error = set_recover_size(sdp, NULL, 0);
1220 if (error)
1221 goto fail;
1222
1223 /*
1224 * prepare dlm_new_lockspace args
1225 */
1226
1227 fsname = strchr(table, ':');
1228 if (!fsname) {
1229 fs_info(sdp, "no fsname found\n");
1230 error = -EINVAL;
1231 goto fail_free;
1232 }
1233 memset(cluster, 0, sizeof(cluster));
1234 memcpy(cluster, table, strlen(table) - strlen(fsname));
1235 fsname++;
1236
1237 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1238
1239 /*
1240 * create/join lockspace
1241 */
1242
1243 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1244 &gdlm_lockspace_ops, sdp, &ops_result,
1245 &ls->ls_dlm);
1246 if (error) {
1247 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1248 goto fail_free;
1249 }
1250
1251 if (ops_result < 0) {
1252 /*
1253 * dlm does not support ops callbacks,
1254 * old dlm_controld/gfs_controld are used, try without ops.
1255 */
1256 fs_info(sdp, "dlm lockspace ops not used\n");
1257 free_recover_size(ls);
1258 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1259 return 0;
1260 }
1261
1262 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1263 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1264 error = -EINVAL;
1265 goto fail_release;
1266 }
1267
1268 /*
1269 * control_mount() uses control_lock to determine first mounter,
1270 * and for later mounts, waits for any recoveries to be cleared.
1271 */
1272
1273 error = control_mount(sdp);
1274 if (error) {
1275 fs_err(sdp, "mount control error %d\n", error);
1276 goto fail_release;
1277 }
1278
1279 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1280 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1281 smp_mb__after_atomic();
1282 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1283 return 0;
1284
1285 fail_release:
1286 dlm_release_lockspace(ls->ls_dlm, 2);
1287 fail_free:
1288 free_recover_size(ls);
1289 fail:
1290 return error;
1291 }
1292
gdlm_first_done(struct gfs2_sbd * sdp)1293 static void gdlm_first_done(struct gfs2_sbd *sdp)
1294 {
1295 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1296 int error;
1297
1298 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1299 return;
1300
1301 error = control_first_done(sdp);
1302 if (error)
1303 fs_err(sdp, "mount first_done error %d\n", error);
1304 }
1305
gdlm_unmount(struct gfs2_sbd * sdp)1306 static void gdlm_unmount(struct gfs2_sbd *sdp)
1307 {
1308 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1309
1310 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1311 goto release;
1312
1313 /* wait for gfs2_control_wq to be done with this mount */
1314
1315 spin_lock(&ls->ls_recover_spin);
1316 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1317 spin_unlock(&ls->ls_recover_spin);
1318 flush_delayed_work(&sdp->sd_control_work);
1319
1320 /* mounted_lock and control_lock will be purged in dlm recovery */
1321 release:
1322 if (ls->ls_dlm) {
1323 dlm_release_lockspace(ls->ls_dlm, 2);
1324 ls->ls_dlm = NULL;
1325 }
1326
1327 free_recover_size(ls);
1328 }
1329
1330 static const match_table_t dlm_tokens = {
1331 { Opt_jid, "jid=%d"},
1332 { Opt_id, "id=%d"},
1333 { Opt_first, "first=%d"},
1334 { Opt_nodir, "nodir=%d"},
1335 { Opt_err, NULL },
1336 };
1337
1338 const struct lm_lockops gfs2_dlm_ops = {
1339 .lm_proto_name = "lock_dlm",
1340 .lm_mount = gdlm_mount,
1341 .lm_first_done = gdlm_first_done,
1342 .lm_recovery_result = gdlm_recovery_result,
1343 .lm_unmount = gdlm_unmount,
1344 .lm_put_lock = gdlm_put_lock,
1345 .lm_lock = gdlm_lock,
1346 .lm_cancel = gdlm_cancel,
1347 .lm_tokens = &dlm_tokens,
1348 };
1349
1350