1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 */
6
7 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/spinlock.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/pagevec.h>
14 #include <linux/mpage.h>
15 #include <linux/fs.h>
16 #include <linux/writeback.h>
17 #include <linux/swap.h>
18 #include <linux/gfs2_ondisk.h>
19 #include <linux/backing-dev.h>
20 #include <linux/uio.h>
21 #include <trace/events/writeback.h>
22 #include <linux/sched/signal.h>
23
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37 #include "aops.h"
38
39
gfs2_page_add_databufs(struct gfs2_inode * ip,struct page * page,unsigned int from,unsigned int len)40 void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
41 unsigned int from, unsigned int len)
42 {
43 struct buffer_head *head = page_buffers(page);
44 unsigned int bsize = head->b_size;
45 struct buffer_head *bh;
46 unsigned int to = from + len;
47 unsigned int start, end;
48
49 for (bh = head, start = 0; bh != head || !start;
50 bh = bh->b_this_page, start = end) {
51 end = start + bsize;
52 if (end <= from)
53 continue;
54 if (start >= to)
55 break;
56 set_buffer_uptodate(bh);
57 gfs2_trans_add_data(ip->i_gl, bh);
58 }
59 }
60
61 /**
62 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
63 * @inode: The inode
64 * @lblock: The block number to look up
65 * @bh_result: The buffer head to return the result in
66 * @create: Non-zero if we may add block to the file
67 *
68 * Returns: errno
69 */
70
gfs2_get_block_noalloc(struct inode * inode,sector_t lblock,struct buffer_head * bh_result,int create)71 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
72 struct buffer_head *bh_result, int create)
73 {
74 int error;
75
76 error = gfs2_block_map(inode, lblock, bh_result, 0);
77 if (error)
78 return error;
79 if (!buffer_mapped(bh_result))
80 return -EIO;
81 return 0;
82 }
83
84 /**
85 * gfs2_writepage - Write page for writeback mappings
86 * @page: The page
87 * @wbc: The writeback control
88 */
gfs2_writepage(struct page * page,struct writeback_control * wbc)89 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
90 {
91 struct inode *inode = page->mapping->host;
92 struct gfs2_inode *ip = GFS2_I(inode);
93 struct gfs2_sbd *sdp = GFS2_SB(inode);
94 loff_t i_size = i_size_read(inode);
95 pgoff_t end_index = i_size >> PAGE_SHIFT;
96 unsigned offset;
97
98 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
99 goto out;
100 if (current->journal_info)
101 goto redirty;
102 /* Is the page fully outside i_size? (truncate in progress) */
103 offset = i_size & (PAGE_SIZE-1);
104 if (page->index > end_index || (page->index == end_index && !offset)) {
105 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
106 goto out;
107 }
108
109 return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
110
111 redirty:
112 redirty_page_for_writepage(wbc, page);
113 out:
114 unlock_page(page);
115 return 0;
116 }
117
118 /* This is the same as calling block_write_full_page, but it also
119 * writes pages outside of i_size
120 */
gfs2_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)121 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
122 struct writeback_control *wbc)
123 {
124 struct inode * const inode = page->mapping->host;
125 loff_t i_size = i_size_read(inode);
126 const pgoff_t end_index = i_size >> PAGE_SHIFT;
127 unsigned offset;
128
129 /*
130 * The page straddles i_size. It must be zeroed out on each and every
131 * writepage invocation because it may be mmapped. "A file is mapped
132 * in multiples of the page size. For a file that is not a multiple of
133 * the page size, the remaining memory is zeroed when mapped, and
134 * writes to that region are not written out to the file."
135 */
136 offset = i_size & (PAGE_SIZE-1);
137 if (page->index == end_index && offset)
138 zero_user_segment(page, offset, PAGE_SIZE);
139
140 return __block_write_full_page(inode, page, get_block, wbc,
141 end_buffer_async_write);
142 }
143
144 /**
145 * __gfs2_jdata_writepage - The core of jdata writepage
146 * @page: The page to write
147 * @wbc: The writeback control
148 *
149 * This is shared between writepage and writepages and implements the
150 * core of the writepage operation. If a transaction is required then
151 * PageChecked will have been set and the transaction will have
152 * already been started before this is called.
153 */
154
__gfs2_jdata_writepage(struct page * page,struct writeback_control * wbc)155 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
156 {
157 struct inode *inode = page->mapping->host;
158 struct gfs2_inode *ip = GFS2_I(inode);
159
160 if (PageChecked(page)) {
161 ClearPageChecked(page);
162 if (!page_has_buffers(page)) {
163 create_empty_buffers(page, inode->i_sb->s_blocksize,
164 BIT(BH_Dirty)|BIT(BH_Uptodate));
165 }
166 gfs2_page_add_databufs(ip, page, 0, PAGE_SIZE);
167 }
168 return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
169 }
170
171 /**
172 * gfs2_jdata_writepage - Write complete page
173 * @page: Page to write
174 * @wbc: The writeback control
175 *
176 * Returns: errno
177 *
178 */
179
gfs2_jdata_writepage(struct page * page,struct writeback_control * wbc)180 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182 struct inode *inode = page->mapping->host;
183 struct gfs2_inode *ip = GFS2_I(inode);
184 struct gfs2_sbd *sdp = GFS2_SB(inode);
185 int ret;
186
187 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
188 goto out;
189 if (PageChecked(page) || current->journal_info)
190 goto out_ignore;
191 ret = __gfs2_jdata_writepage(page, wbc);
192 return ret;
193
194 out_ignore:
195 redirty_page_for_writepage(wbc, page);
196 out:
197 unlock_page(page);
198 return 0;
199 }
200
201 /**
202 * gfs2_writepages - Write a bunch of dirty pages back to disk
203 * @mapping: The mapping to write
204 * @wbc: Write-back control
205 *
206 * Used for both ordered and writeback modes.
207 */
gfs2_writepages(struct address_space * mapping,struct writeback_control * wbc)208 static int gfs2_writepages(struct address_space *mapping,
209 struct writeback_control *wbc)
210 {
211 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
212 int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
213
214 /*
215 * Even if we didn't write any pages here, we might still be holding
216 * dirty pages in the ail. We forcibly flush the ail because we don't
217 * want balance_dirty_pages() to loop indefinitely trying to write out
218 * pages held in the ail that it can't find.
219 */
220 if (ret == 0)
221 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
222
223 return ret;
224 }
225
226 /**
227 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
228 * @mapping: The mapping
229 * @wbc: The writeback control
230 * @pvec: The vector of pages
231 * @nr_pages: The number of pages to write
232 * @done_index: Page index
233 *
234 * Returns: non-zero if loop should terminate, zero otherwise
235 */
236
gfs2_write_jdata_pagevec(struct address_space * mapping,struct writeback_control * wbc,struct pagevec * pvec,int nr_pages,pgoff_t * done_index)237 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
238 struct writeback_control *wbc,
239 struct pagevec *pvec,
240 int nr_pages,
241 pgoff_t *done_index)
242 {
243 struct inode *inode = mapping->host;
244 struct gfs2_sbd *sdp = GFS2_SB(inode);
245 unsigned nrblocks = nr_pages * (PAGE_SIZE >> inode->i_blkbits);
246 int i;
247 int ret;
248
249 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
250 if (ret < 0)
251 return ret;
252
253 for(i = 0; i < nr_pages; i++) {
254 struct page *page = pvec->pages[i];
255
256 *done_index = page->index;
257
258 lock_page(page);
259
260 if (unlikely(page->mapping != mapping)) {
261 continue_unlock:
262 unlock_page(page);
263 continue;
264 }
265
266 if (!PageDirty(page)) {
267 /* someone wrote it for us */
268 goto continue_unlock;
269 }
270
271 if (PageWriteback(page)) {
272 if (wbc->sync_mode != WB_SYNC_NONE)
273 wait_on_page_writeback(page);
274 else
275 goto continue_unlock;
276 }
277
278 BUG_ON(PageWriteback(page));
279 if (!clear_page_dirty_for_io(page))
280 goto continue_unlock;
281
282 trace_wbc_writepage(wbc, inode_to_bdi(inode));
283
284 ret = __gfs2_jdata_writepage(page, wbc);
285 if (unlikely(ret)) {
286 if (ret == AOP_WRITEPAGE_ACTIVATE) {
287 unlock_page(page);
288 ret = 0;
289 } else {
290
291 /*
292 * done_index is set past this page,
293 * so media errors will not choke
294 * background writeout for the entire
295 * file. This has consequences for
296 * range_cyclic semantics (ie. it may
297 * not be suitable for data integrity
298 * writeout).
299 */
300 *done_index = page->index + 1;
301 ret = 1;
302 break;
303 }
304 }
305
306 /*
307 * We stop writing back only if we are not doing
308 * integrity sync. In case of integrity sync we have to
309 * keep going until we have written all the pages
310 * we tagged for writeback prior to entering this loop.
311 */
312 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
313 ret = 1;
314 break;
315 }
316
317 }
318 gfs2_trans_end(sdp);
319 return ret;
320 }
321
322 /**
323 * gfs2_write_cache_jdata - Like write_cache_pages but different
324 * @mapping: The mapping to write
325 * @wbc: The writeback control
326 *
327 * The reason that we use our own function here is that we need to
328 * start transactions before we grab page locks. This allows us
329 * to get the ordering right.
330 */
331
gfs2_write_cache_jdata(struct address_space * mapping,struct writeback_control * wbc)332 static int gfs2_write_cache_jdata(struct address_space *mapping,
333 struct writeback_control *wbc)
334 {
335 int ret = 0;
336 int done = 0;
337 struct pagevec pvec;
338 int nr_pages;
339 pgoff_t writeback_index;
340 pgoff_t index;
341 pgoff_t end;
342 pgoff_t done_index;
343 int cycled;
344 int range_whole = 0;
345 xa_mark_t tag;
346
347 pagevec_init(&pvec);
348 if (wbc->range_cyclic) {
349 writeback_index = mapping->writeback_index; /* prev offset */
350 index = writeback_index;
351 if (index == 0)
352 cycled = 1;
353 else
354 cycled = 0;
355 end = -1;
356 } else {
357 index = wbc->range_start >> PAGE_SHIFT;
358 end = wbc->range_end >> PAGE_SHIFT;
359 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
360 range_whole = 1;
361 cycled = 1; /* ignore range_cyclic tests */
362 }
363 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
364 tag = PAGECACHE_TAG_TOWRITE;
365 else
366 tag = PAGECACHE_TAG_DIRTY;
367
368 retry:
369 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
370 tag_pages_for_writeback(mapping, index, end);
371 done_index = index;
372 while (!done && (index <= end)) {
373 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
374 tag);
375 if (nr_pages == 0)
376 break;
377
378 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
379 if (ret)
380 done = 1;
381 if (ret > 0)
382 ret = 0;
383 pagevec_release(&pvec);
384 cond_resched();
385 }
386
387 if (!cycled && !done) {
388 /*
389 * range_cyclic:
390 * We hit the last page and there is more work to be done: wrap
391 * back to the start of the file
392 */
393 cycled = 1;
394 index = 0;
395 end = writeback_index - 1;
396 goto retry;
397 }
398
399 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
400 mapping->writeback_index = done_index;
401
402 return ret;
403 }
404
405
406 /**
407 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
408 * @mapping: The mapping to write
409 * @wbc: The writeback control
410 *
411 */
412
gfs2_jdata_writepages(struct address_space * mapping,struct writeback_control * wbc)413 static int gfs2_jdata_writepages(struct address_space *mapping,
414 struct writeback_control *wbc)
415 {
416 struct gfs2_inode *ip = GFS2_I(mapping->host);
417 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
418 int ret;
419
420 ret = gfs2_write_cache_jdata(mapping, wbc);
421 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
422 gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
423 GFS2_LFC_JDATA_WPAGES);
424 ret = gfs2_write_cache_jdata(mapping, wbc);
425 }
426 return ret;
427 }
428
429 /**
430 * stuffed_readpage - Fill in a Linux page with stuffed file data
431 * @ip: the inode
432 * @page: the page
433 *
434 * Returns: errno
435 */
stuffed_readpage(struct gfs2_inode * ip,struct page * page)436 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
437 {
438 struct buffer_head *dibh;
439 u64 dsize = i_size_read(&ip->i_inode);
440 void *kaddr;
441 int error;
442
443 /*
444 * Due to the order of unstuffing files and ->fault(), we can be
445 * asked for a zero page in the case of a stuffed file being extended,
446 * so we need to supply one here. It doesn't happen often.
447 */
448 if (unlikely(page->index)) {
449 zero_user(page, 0, PAGE_SIZE);
450 SetPageUptodate(page);
451 return 0;
452 }
453
454 error = gfs2_meta_inode_buffer(ip, &dibh);
455 if (error)
456 return error;
457
458 kaddr = kmap_atomic(page);
459 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
460 memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
461 kunmap_atomic(kaddr);
462 flush_dcache_page(page);
463 brelse(dibh);
464 SetPageUptodate(page);
465
466 return 0;
467 }
468
469
470 /**
471 * __gfs2_readpage - readpage
472 * @file: The file to read a page for
473 * @page: The page to read
474 *
475 * This is the core of gfs2's readpage. It's used by the internal file
476 * reading code as in that case we already hold the glock. Also it's
477 * called by gfs2_readpage() once the required lock has been granted.
478 */
479
__gfs2_readpage(void * file,struct page * page)480 static int __gfs2_readpage(void *file, struct page *page)
481 {
482 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
483 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
484
485 int error;
486
487 if (i_blocksize(page->mapping->host) == PAGE_SIZE &&
488 !page_has_buffers(page)) {
489 error = iomap_readpage(page, &gfs2_iomap_ops);
490 } else if (gfs2_is_stuffed(ip)) {
491 error = stuffed_readpage(ip, page);
492 unlock_page(page);
493 } else {
494 error = mpage_readpage(page, gfs2_block_map);
495 }
496
497 if (unlikely(test_bit(SDF_WITHDRAWN, &sdp->sd_flags)))
498 return -EIO;
499
500 return error;
501 }
502
503 /**
504 * gfs2_readpage - read a page of a file
505 * @file: The file to read
506 * @page: The page of the file
507 *
508 * This deals with the locking required. We have to unlock and
509 * relock the page in order to get the locking in the right
510 * order.
511 */
512
gfs2_readpage(struct file * file,struct page * page)513 static int gfs2_readpage(struct file *file, struct page *page)
514 {
515 struct address_space *mapping = page->mapping;
516 struct gfs2_inode *ip = GFS2_I(mapping->host);
517 struct gfs2_holder gh;
518 int error;
519
520 unlock_page(page);
521 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
522 error = gfs2_glock_nq(&gh);
523 if (unlikely(error))
524 goto out;
525 error = AOP_TRUNCATED_PAGE;
526 lock_page(page);
527 if (page->mapping == mapping && !PageUptodate(page))
528 error = __gfs2_readpage(file, page);
529 else
530 unlock_page(page);
531 gfs2_glock_dq(&gh);
532 out:
533 gfs2_holder_uninit(&gh);
534 if (error && error != AOP_TRUNCATED_PAGE)
535 lock_page(page);
536 return error;
537 }
538
539 /**
540 * gfs2_internal_read - read an internal file
541 * @ip: The gfs2 inode
542 * @buf: The buffer to fill
543 * @pos: The file position
544 * @size: The amount to read
545 *
546 */
547
gfs2_internal_read(struct gfs2_inode * ip,char * buf,loff_t * pos,unsigned size)548 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
549 unsigned size)
550 {
551 struct address_space *mapping = ip->i_inode.i_mapping;
552 unsigned long index = *pos >> PAGE_SHIFT;
553 unsigned offset = *pos & (PAGE_SIZE - 1);
554 unsigned copied = 0;
555 unsigned amt;
556 struct page *page;
557 void *p;
558
559 do {
560 amt = size - copied;
561 if (offset + size > PAGE_SIZE)
562 amt = PAGE_SIZE - offset;
563 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
564 if (IS_ERR(page))
565 return PTR_ERR(page);
566 p = kmap_atomic(page);
567 memcpy(buf + copied, p + offset, amt);
568 kunmap_atomic(p);
569 put_page(page);
570 copied += amt;
571 index++;
572 offset = 0;
573 } while(copied < size);
574 (*pos) += size;
575 return size;
576 }
577
578 /**
579 * gfs2_readpages - Read a bunch of pages at once
580 * @file: The file to read from
581 * @mapping: Address space info
582 * @pages: List of pages to read
583 * @nr_pages: Number of pages to read
584 *
585 * Some notes:
586 * 1. This is only for readahead, so we can simply ignore any things
587 * which are slightly inconvenient (such as locking conflicts between
588 * the page lock and the glock) and return having done no I/O. Its
589 * obviously not something we'd want to do on too regular a basis.
590 * Any I/O we ignore at this time will be done via readpage later.
591 * 2. We don't handle stuffed files here we let readpage do the honours.
592 * 3. mpage_readpages() does most of the heavy lifting in the common case.
593 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
594 */
595
gfs2_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)596 static int gfs2_readpages(struct file *file, struct address_space *mapping,
597 struct list_head *pages, unsigned nr_pages)
598 {
599 struct inode *inode = mapping->host;
600 struct gfs2_inode *ip = GFS2_I(inode);
601 struct gfs2_sbd *sdp = GFS2_SB(inode);
602 struct gfs2_holder gh;
603 int ret;
604
605 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
606 ret = gfs2_glock_nq(&gh);
607 if (unlikely(ret))
608 goto out_uninit;
609 if (!gfs2_is_stuffed(ip))
610 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
611 gfs2_glock_dq(&gh);
612 out_uninit:
613 gfs2_holder_uninit(&gh);
614 if (unlikely(test_bit(SDF_WITHDRAWN, &sdp->sd_flags)))
615 ret = -EIO;
616 return ret;
617 }
618
619 /**
620 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
621 * @inode: the rindex inode
622 */
adjust_fs_space(struct inode * inode)623 void adjust_fs_space(struct inode *inode)
624 {
625 struct gfs2_sbd *sdp = GFS2_SB(inode);
626 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
627 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
628 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
629 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
630 struct buffer_head *m_bh, *l_bh;
631 u64 fs_total, new_free;
632
633 if (gfs2_trans_begin(sdp, 2 * RES_STATFS, 0) != 0)
634 return;
635
636 /* Total up the file system space, according to the latest rindex. */
637 fs_total = gfs2_ri_total(sdp);
638 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
639 goto out;
640
641 spin_lock(&sdp->sd_statfs_spin);
642 gfs2_statfs_change_in(m_sc, m_bh->b_data +
643 sizeof(struct gfs2_dinode));
644 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
645 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
646 else
647 new_free = 0;
648 spin_unlock(&sdp->sd_statfs_spin);
649 fs_warn(sdp, "File system extended by %llu blocks.\n",
650 (unsigned long long)new_free);
651 gfs2_statfs_change(sdp, new_free, new_free, 0);
652
653 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
654 goto out2;
655 update_statfs(sdp, m_bh, l_bh);
656 brelse(l_bh);
657 out2:
658 brelse(m_bh);
659 out:
660 sdp->sd_rindex_uptodate = 0;
661 gfs2_trans_end(sdp);
662 }
663
664 /**
665 * jdata_set_page_dirty - Page dirtying function
666 * @page: The page to dirty
667 *
668 * Returns: 1 if it dirtyed the page, or 0 otherwise
669 */
670
jdata_set_page_dirty(struct page * page)671 static int jdata_set_page_dirty(struct page *page)
672 {
673 SetPageChecked(page);
674 return __set_page_dirty_buffers(page);
675 }
676
677 /**
678 * gfs2_bmap - Block map function
679 * @mapping: Address space info
680 * @lblock: The block to map
681 *
682 * Returns: The disk address for the block or 0 on hole or error
683 */
684
gfs2_bmap(struct address_space * mapping,sector_t lblock)685 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
686 {
687 struct gfs2_inode *ip = GFS2_I(mapping->host);
688 struct gfs2_holder i_gh;
689 sector_t dblock = 0;
690 int error;
691
692 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
693 if (error)
694 return 0;
695
696 if (!gfs2_is_stuffed(ip))
697 dblock = iomap_bmap(mapping, lblock, &gfs2_iomap_ops);
698
699 gfs2_glock_dq_uninit(&i_gh);
700
701 return dblock;
702 }
703
gfs2_discard(struct gfs2_sbd * sdp,struct buffer_head * bh)704 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
705 {
706 struct gfs2_bufdata *bd;
707
708 lock_buffer(bh);
709 gfs2_log_lock(sdp);
710 clear_buffer_dirty(bh);
711 bd = bh->b_private;
712 if (bd) {
713 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
714 list_del_init(&bd->bd_list);
715 else
716 gfs2_remove_from_journal(bh, REMOVE_JDATA);
717 }
718 bh->b_bdev = NULL;
719 clear_buffer_mapped(bh);
720 clear_buffer_req(bh);
721 clear_buffer_new(bh);
722 gfs2_log_unlock(sdp);
723 unlock_buffer(bh);
724 }
725
gfs2_invalidatepage(struct page * page,unsigned int offset,unsigned int length)726 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
727 unsigned int length)
728 {
729 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
730 unsigned int stop = offset + length;
731 int partial_page = (offset || length < PAGE_SIZE);
732 struct buffer_head *bh, *head;
733 unsigned long pos = 0;
734
735 BUG_ON(!PageLocked(page));
736 if (!partial_page)
737 ClearPageChecked(page);
738 if (!page_has_buffers(page))
739 goto out;
740
741 bh = head = page_buffers(page);
742 do {
743 if (pos + bh->b_size > stop)
744 return;
745
746 if (offset <= pos)
747 gfs2_discard(sdp, bh);
748 pos += bh->b_size;
749 bh = bh->b_this_page;
750 } while (bh != head);
751 out:
752 if (!partial_page)
753 try_to_release_page(page, 0);
754 }
755
756 /**
757 * gfs2_releasepage - free the metadata associated with a page
758 * @page: the page that's being released
759 * @gfp_mask: passed from Linux VFS, ignored by us
760 *
761 * Calls try_to_free_buffers() to free the buffers and put the page if the
762 * buffers can be released.
763 *
764 * Returns: 1 if the page was put or else 0
765 */
766
gfs2_releasepage(struct page * page,gfp_t gfp_mask)767 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
768 {
769 struct address_space *mapping = page->mapping;
770 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
771 struct buffer_head *bh, *head;
772 struct gfs2_bufdata *bd;
773
774 if (!page_has_buffers(page))
775 return 0;
776
777 /*
778 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
779 * clean pages might not have had the dirty bit cleared. Thus, it can
780 * send actual dirty pages to ->releasepage() via shrink_active_list().
781 *
782 * As a workaround, we skip pages that contain dirty buffers below.
783 * Once ->releasepage isn't called on dirty pages anymore, we can warn
784 * on dirty buffers like we used to here again.
785 */
786
787 gfs2_log_lock(sdp);
788 spin_lock(&sdp->sd_ail_lock);
789 head = bh = page_buffers(page);
790 do {
791 if (atomic_read(&bh->b_count))
792 goto cannot_release;
793 bd = bh->b_private;
794 if (bd && bd->bd_tr)
795 goto cannot_release;
796 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
797 goto cannot_release;
798 bh = bh->b_this_page;
799 } while(bh != head);
800 spin_unlock(&sdp->sd_ail_lock);
801
802 head = bh = page_buffers(page);
803 do {
804 bd = bh->b_private;
805 if (bd) {
806 gfs2_assert_warn(sdp, bd->bd_bh == bh);
807 if (!list_empty(&bd->bd_list))
808 list_del_init(&bd->bd_list);
809 bd->bd_bh = NULL;
810 bh->b_private = NULL;
811 kmem_cache_free(gfs2_bufdata_cachep, bd);
812 }
813
814 bh = bh->b_this_page;
815 } while (bh != head);
816 gfs2_log_unlock(sdp);
817
818 return try_to_free_buffers(page);
819
820 cannot_release:
821 spin_unlock(&sdp->sd_ail_lock);
822 gfs2_log_unlock(sdp);
823 return 0;
824 }
825
826 static const struct address_space_operations gfs2_aops = {
827 .writepage = gfs2_writepage,
828 .writepages = gfs2_writepages,
829 .readpage = gfs2_readpage,
830 .readpages = gfs2_readpages,
831 .bmap = gfs2_bmap,
832 .invalidatepage = gfs2_invalidatepage,
833 .releasepage = gfs2_releasepage,
834 .direct_IO = noop_direct_IO,
835 .migratepage = buffer_migrate_page,
836 .is_partially_uptodate = block_is_partially_uptodate,
837 .error_remove_page = generic_error_remove_page,
838 };
839
840 static const struct address_space_operations gfs2_jdata_aops = {
841 .writepage = gfs2_jdata_writepage,
842 .writepages = gfs2_jdata_writepages,
843 .readpage = gfs2_readpage,
844 .readpages = gfs2_readpages,
845 .set_page_dirty = jdata_set_page_dirty,
846 .bmap = gfs2_bmap,
847 .invalidatepage = gfs2_invalidatepage,
848 .releasepage = gfs2_releasepage,
849 .is_partially_uptodate = block_is_partially_uptodate,
850 .error_remove_page = generic_error_remove_page,
851 };
852
gfs2_set_aops(struct inode * inode)853 void gfs2_set_aops(struct inode *inode)
854 {
855 if (gfs2_is_jdata(GFS2_I(inode)))
856 inode->i_mapping->a_ops = &gfs2_jdata_aops;
857 else
858 inode->i_mapping->a_ops = &gfs2_aops;
859 }
860