• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/fs.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
19 
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 #include "dir.h"
35 
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38 
39 #if BITS_PER_LONG == 32
40 #define LBITMASK   (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK   (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48 
49 /*
50  * These routines are used by the resource group routines (rgrp.c)
51  * to keep track of block allocation.  Each block is represented by two
52  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53  *
54  * 0 = Free
55  * 1 = Used (not metadata)
56  * 2 = Unlinked (still in use) inode
57  * 3 = Used (metadata)
58  */
59 
60 struct gfs2_extent {
61 	struct gfs2_rbm rbm;
62 	u32 len;
63 };
64 
65 static const char valid_change[16] = {
66 	        /* current */
67 	/* n */ 0, 1, 1, 1,
68 	/* e */ 1, 0, 0, 0,
69 	/* w */ 0, 0, 0, 1,
70 	        1, 0, 0, 0
71 };
72 
73 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
74 			 const struct gfs2_inode *ip, bool nowrap);
75 
76 
77 /**
78  * gfs2_setbit - Set a bit in the bitmaps
79  * @rbm: The position of the bit to set
80  * @do_clone: Also set the clone bitmap, if it exists
81  * @new_state: the new state of the block
82  *
83  */
84 
gfs2_setbit(const struct gfs2_rbm * rbm,bool do_clone,unsigned char new_state)85 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
86 			       unsigned char new_state)
87 {
88 	unsigned char *byte1, *byte2, *end, cur_state;
89 	struct gfs2_bitmap *bi = rbm_bi(rbm);
90 	unsigned int buflen = bi->bi_bytes;
91 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
92 
93 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
94 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
95 
96 	BUG_ON(byte1 >= end);
97 
98 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
99 
100 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
101 		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
102 
103 		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
104 			rbm->offset, cur_state, new_state);
105 		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
106 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
107 			(unsigned long long)bi->bi_bh->b_blocknr);
108 		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
109 			bi->bi_offset, bi->bi_bytes,
110 			(unsigned long long)gfs2_rbm_to_block(rbm));
111 		dump_stack();
112 		gfs2_consist_rgrpd(rbm->rgd);
113 		return;
114 	}
115 	*byte1 ^= (cur_state ^ new_state) << bit;
116 
117 	if (do_clone && bi->bi_clone) {
118 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
119 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
120 		*byte2 ^= (cur_state ^ new_state) << bit;
121 	}
122 }
123 
124 /**
125  * gfs2_testbit - test a bit in the bitmaps
126  * @rbm: The bit to test
127  * @use_clone: If true, test the clone bitmap, not the official bitmap.
128  *
129  * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
130  * not the "real" bitmaps, to avoid allocating recently freed blocks.
131  *
132  * Returns: The two bit block state of the requested bit
133  */
134 
gfs2_testbit(const struct gfs2_rbm * rbm,bool use_clone)135 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
136 {
137 	struct gfs2_bitmap *bi = rbm_bi(rbm);
138 	const u8 *buffer;
139 	const u8 *byte;
140 	unsigned int bit;
141 
142 	if (use_clone && bi->bi_clone)
143 		buffer = bi->bi_clone;
144 	else
145 		buffer = bi->bi_bh->b_data;
146 	buffer += bi->bi_offset;
147 	byte = buffer + (rbm->offset / GFS2_NBBY);
148 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
149 
150 	return (*byte >> bit) & GFS2_BIT_MASK;
151 }
152 
153 /**
154  * gfs2_bit_search
155  * @ptr: Pointer to bitmap data
156  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
157  * @state: The state we are searching for
158  *
159  * We xor the bitmap data with a patter which is the bitwise opposite
160  * of what we are looking for, this gives rise to a pattern of ones
161  * wherever there is a match. Since we have two bits per entry, we
162  * take this pattern, shift it down by one place and then and it with
163  * the original. All the even bit positions (0,2,4, etc) then represent
164  * successful matches, so we mask with 0x55555..... to remove the unwanted
165  * odd bit positions.
166  *
167  * This allows searching of a whole u64 at once (32 blocks) with a
168  * single test (on 64 bit arches).
169  */
170 
gfs2_bit_search(const __le64 * ptr,u64 mask,u8 state)171 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
172 {
173 	u64 tmp;
174 	static const u64 search[] = {
175 		[0] = 0xffffffffffffffffULL,
176 		[1] = 0xaaaaaaaaaaaaaaaaULL,
177 		[2] = 0x5555555555555555ULL,
178 		[3] = 0x0000000000000000ULL,
179 	};
180 	tmp = le64_to_cpu(*ptr) ^ search[state];
181 	tmp &= (tmp >> 1);
182 	tmp &= mask;
183 	return tmp;
184 }
185 
186 /**
187  * rs_cmp - multi-block reservation range compare
188  * @blk: absolute file system block number of the new reservation
189  * @len: number of blocks in the new reservation
190  * @rs: existing reservation to compare against
191  *
192  * returns: 1 if the block range is beyond the reach of the reservation
193  *         -1 if the block range is before the start of the reservation
194  *          0 if the block range overlaps with the reservation
195  */
rs_cmp(u64 blk,u32 len,struct gfs2_blkreserv * rs)196 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
197 {
198 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
199 
200 	if (blk >= startblk + rs->rs_free)
201 		return 1;
202 	if (blk + len - 1 < startblk)
203 		return -1;
204 	return 0;
205 }
206 
207 /**
208  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
209  *       a block in a given allocation state.
210  * @buf: the buffer that holds the bitmaps
211  * @len: the length (in bytes) of the buffer
212  * @goal: start search at this block's bit-pair (within @buffer)
213  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
214  *
215  * Scope of @goal and returned block number is only within this bitmap buffer,
216  * not entire rgrp or filesystem.  @buffer will be offset from the actual
217  * beginning of a bitmap block buffer, skipping any header structures, but
218  * headers are always a multiple of 64 bits long so that the buffer is
219  * always aligned to a 64 bit boundary.
220  *
221  * The size of the buffer is in bytes, but is it assumed that it is
222  * always ok to read a complete multiple of 64 bits at the end
223  * of the block in case the end is no aligned to a natural boundary.
224  *
225  * Return: the block number (bitmap buffer scope) that was found
226  */
227 
gfs2_bitfit(const u8 * buf,const unsigned int len,u32 goal,u8 state)228 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
229 		       u32 goal, u8 state)
230 {
231 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
232 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
233 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
234 	u64 tmp;
235 	u64 mask = 0x5555555555555555ULL;
236 	u32 bit;
237 
238 	/* Mask off bits we don't care about at the start of the search */
239 	mask <<= spoint;
240 	tmp = gfs2_bit_search(ptr, mask, state);
241 	ptr++;
242 	while(tmp == 0 && ptr < end) {
243 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
244 		ptr++;
245 	}
246 	/* Mask off any bits which are more than len bytes from the start */
247 	if (ptr == end && (len & (sizeof(u64) - 1)))
248 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
249 	/* Didn't find anything, so return */
250 	if (tmp == 0)
251 		return BFITNOENT;
252 	ptr--;
253 	bit = __ffs64(tmp);
254 	bit /= 2;	/* two bits per entry in the bitmap */
255 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
256 }
257 
258 /**
259  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
260  * @rbm: The rbm with rgd already set correctly
261  * @block: The block number (filesystem relative)
262  *
263  * This sets the bi and offset members of an rbm based on a
264  * resource group and a filesystem relative block number. The
265  * resource group must be set in the rbm on entry, the bi and
266  * offset members will be set by this function.
267  *
268  * Returns: 0 on success, or an error code
269  */
270 
gfs2_rbm_from_block(struct gfs2_rbm * rbm,u64 block)271 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
272 {
273 	if (!rgrp_contains_block(rbm->rgd, block))
274 		return -E2BIG;
275 	rbm->bii = 0;
276 	rbm->offset = block - rbm->rgd->rd_data0;
277 	/* Check if the block is within the first block */
278 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
279 		return 0;
280 
281 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
282 	rbm->offset += (sizeof(struct gfs2_rgrp) -
283 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
284 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
285 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
286 	return 0;
287 }
288 
289 /**
290  * gfs2_rbm_incr - increment an rbm structure
291  * @rbm: The rbm with rgd already set correctly
292  *
293  * This function takes an existing rbm structure and increments it to the next
294  * viable block offset.
295  *
296  * Returns: If incrementing the offset would cause the rbm to go past the
297  *          end of the rgrp, true is returned, otherwise false.
298  *
299  */
300 
gfs2_rbm_incr(struct gfs2_rbm * rbm)301 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
302 {
303 	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
304 		rbm->offset++;
305 		return false;
306 	}
307 	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
308 		return true;
309 
310 	rbm->offset = 0;
311 	rbm->bii++;
312 	return false;
313 }
314 
315 /**
316  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
317  * @rbm: Position to search (value/result)
318  * @n_unaligned: Number of unaligned blocks to check
319  * @len: Decremented for each block found (terminate on zero)
320  *
321  * Returns: true if a non-free block is encountered
322  */
323 
gfs2_unaligned_extlen(struct gfs2_rbm * rbm,u32 n_unaligned,u32 * len)324 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
325 {
326 	u32 n;
327 	u8 res;
328 
329 	for (n = 0; n < n_unaligned; n++) {
330 		res = gfs2_testbit(rbm, true);
331 		if (res != GFS2_BLKST_FREE)
332 			return true;
333 		(*len)--;
334 		if (*len == 0)
335 			return true;
336 		if (gfs2_rbm_incr(rbm))
337 			return true;
338 	}
339 
340 	return false;
341 }
342 
343 /**
344  * gfs2_free_extlen - Return extent length of free blocks
345  * @rrbm: Starting position
346  * @len: Max length to check
347  *
348  * Starting at the block specified by the rbm, see how many free blocks
349  * there are, not reading more than len blocks ahead. This can be done
350  * using memchr_inv when the blocks are byte aligned, but has to be done
351  * on a block by block basis in case of unaligned blocks. Also this
352  * function can cope with bitmap boundaries (although it must stop on
353  * a resource group boundary)
354  *
355  * Returns: Number of free blocks in the extent
356  */
357 
gfs2_free_extlen(const struct gfs2_rbm * rrbm,u32 len)358 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
359 {
360 	struct gfs2_rbm rbm = *rrbm;
361 	u32 n_unaligned = rbm.offset & 3;
362 	u32 size = len;
363 	u32 bytes;
364 	u32 chunk_size;
365 	u8 *ptr, *start, *end;
366 	u64 block;
367 	struct gfs2_bitmap *bi;
368 
369 	if (n_unaligned &&
370 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
371 		goto out;
372 
373 	n_unaligned = len & 3;
374 	/* Start is now byte aligned */
375 	while (len > 3) {
376 		bi = rbm_bi(&rbm);
377 		start = bi->bi_bh->b_data;
378 		if (bi->bi_clone)
379 			start = bi->bi_clone;
380 		start += bi->bi_offset;
381 		end = start + bi->bi_bytes;
382 		BUG_ON(rbm.offset & 3);
383 		start += (rbm.offset / GFS2_NBBY);
384 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
385 		ptr = memchr_inv(start, 0, bytes);
386 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
387 		chunk_size *= GFS2_NBBY;
388 		BUG_ON(len < chunk_size);
389 		len -= chunk_size;
390 		block = gfs2_rbm_to_block(&rbm);
391 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
392 			n_unaligned = 0;
393 			break;
394 		}
395 		if (ptr) {
396 			n_unaligned = 3;
397 			break;
398 		}
399 		n_unaligned = len & 3;
400 	}
401 
402 	/* Deal with any bits left over at the end */
403 	if (n_unaligned)
404 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
405 out:
406 	return size - len;
407 }
408 
409 /**
410  * gfs2_bitcount - count the number of bits in a certain state
411  * @rgd: the resource group descriptor
412  * @buffer: the buffer that holds the bitmaps
413  * @buflen: the length (in bytes) of the buffer
414  * @state: the state of the block we're looking for
415  *
416  * Returns: The number of bits
417  */
418 
gfs2_bitcount(struct gfs2_rgrpd * rgd,const u8 * buffer,unsigned int buflen,u8 state)419 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
420 			 unsigned int buflen, u8 state)
421 {
422 	const u8 *byte = buffer;
423 	const u8 *end = buffer + buflen;
424 	const u8 state1 = state << 2;
425 	const u8 state2 = state << 4;
426 	const u8 state3 = state << 6;
427 	u32 count = 0;
428 
429 	for (; byte < end; byte++) {
430 		if (((*byte) & 0x03) == state)
431 			count++;
432 		if (((*byte) & 0x0C) == state1)
433 			count++;
434 		if (((*byte) & 0x30) == state2)
435 			count++;
436 		if (((*byte) & 0xC0) == state3)
437 			count++;
438 	}
439 
440 	return count;
441 }
442 
443 /**
444  * gfs2_rgrp_verify - Verify that a resource group is consistent
445  * @rgd: the rgrp
446  *
447  */
448 
gfs2_rgrp_verify(struct gfs2_rgrpd * rgd)449 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
450 {
451 	struct gfs2_sbd *sdp = rgd->rd_sbd;
452 	struct gfs2_bitmap *bi = NULL;
453 	u32 length = rgd->rd_length;
454 	u32 count[4], tmp;
455 	int buf, x;
456 
457 	memset(count, 0, 4 * sizeof(u32));
458 
459 	/* Count # blocks in each of 4 possible allocation states */
460 	for (buf = 0; buf < length; buf++) {
461 		bi = rgd->rd_bits + buf;
462 		for (x = 0; x < 4; x++)
463 			count[x] += gfs2_bitcount(rgd,
464 						  bi->bi_bh->b_data +
465 						  bi->bi_offset,
466 						  bi->bi_bytes, x);
467 	}
468 
469 	if (count[0] != rgd->rd_free) {
470 		if (gfs2_consist_rgrpd(rgd))
471 			fs_err(sdp, "free data mismatch:  %u != %u\n",
472 			       count[0], rgd->rd_free);
473 		return;
474 	}
475 
476 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
477 	if (count[1] != tmp) {
478 		if (gfs2_consist_rgrpd(rgd))
479 			fs_err(sdp, "used data mismatch:  %u != %u\n",
480 			       count[1], tmp);
481 		return;
482 	}
483 
484 	if (count[2] + count[3] != rgd->rd_dinodes) {
485 		if (gfs2_consist_rgrpd(rgd))
486 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
487 			       count[2] + count[3], rgd->rd_dinodes);
488 		return;
489 	}
490 }
491 
492 /**
493  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
494  * @sdp: The GFS2 superblock
495  * @blk: The data block number
496  * @exact: True if this needs to be an exact match
497  *
498  * The @exact argument should be set to true by most callers. The exception
499  * is when we need to match blocks which are not represented by the rgrp
500  * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
501  * there for alignment purposes. Another way of looking at it is that @exact
502  * matches only valid data/metadata blocks, but with @exact false, it will
503  * match any block within the extent of the rgrp.
504  *
505  * Returns: The resource group, or NULL if not found
506  */
507 
gfs2_blk2rgrpd(struct gfs2_sbd * sdp,u64 blk,bool exact)508 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
509 {
510 	struct rb_node *n, *next;
511 	struct gfs2_rgrpd *cur;
512 
513 	spin_lock(&sdp->sd_rindex_spin);
514 	n = sdp->sd_rindex_tree.rb_node;
515 	while (n) {
516 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
517 		next = NULL;
518 		if (blk < cur->rd_addr)
519 			next = n->rb_left;
520 		else if (blk >= cur->rd_data0 + cur->rd_data)
521 			next = n->rb_right;
522 		if (next == NULL) {
523 			spin_unlock(&sdp->sd_rindex_spin);
524 			if (exact) {
525 				if (blk < cur->rd_addr)
526 					return NULL;
527 				if (blk >= cur->rd_data0 + cur->rd_data)
528 					return NULL;
529 			}
530 			return cur;
531 		}
532 		n = next;
533 	}
534 	spin_unlock(&sdp->sd_rindex_spin);
535 
536 	return NULL;
537 }
538 
539 /**
540  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
541  * @sdp: The GFS2 superblock
542  *
543  * Returns: The first rgrp in the filesystem
544  */
545 
gfs2_rgrpd_get_first(struct gfs2_sbd * sdp)546 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
547 {
548 	const struct rb_node *n;
549 	struct gfs2_rgrpd *rgd;
550 
551 	spin_lock(&sdp->sd_rindex_spin);
552 	n = rb_first(&sdp->sd_rindex_tree);
553 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
554 	spin_unlock(&sdp->sd_rindex_spin);
555 
556 	return rgd;
557 }
558 
559 /**
560  * gfs2_rgrpd_get_next - get the next RG
561  * @rgd: the resource group descriptor
562  *
563  * Returns: The next rgrp
564  */
565 
gfs2_rgrpd_get_next(struct gfs2_rgrpd * rgd)566 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
567 {
568 	struct gfs2_sbd *sdp = rgd->rd_sbd;
569 	const struct rb_node *n;
570 
571 	spin_lock(&sdp->sd_rindex_spin);
572 	n = rb_next(&rgd->rd_node);
573 	if (n == NULL)
574 		n = rb_first(&sdp->sd_rindex_tree);
575 
576 	if (unlikely(&rgd->rd_node == n)) {
577 		spin_unlock(&sdp->sd_rindex_spin);
578 		return NULL;
579 	}
580 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
581 	spin_unlock(&sdp->sd_rindex_spin);
582 	return rgd;
583 }
584 
check_and_update_goal(struct gfs2_inode * ip)585 void check_and_update_goal(struct gfs2_inode *ip)
586 {
587 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
588 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
589 		ip->i_goal = ip->i_no_addr;
590 }
591 
gfs2_free_clones(struct gfs2_rgrpd * rgd)592 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
593 {
594 	int x;
595 
596 	for (x = 0; x < rgd->rd_length; x++) {
597 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
598 		kfree(bi->bi_clone);
599 		bi->bi_clone = NULL;
600 	}
601 }
602 
603 /**
604  * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
605  *                 plus a quota allocations data structure, if necessary
606  * @ip: the inode for this reservation
607  */
gfs2_rsqa_alloc(struct gfs2_inode * ip)608 int gfs2_rsqa_alloc(struct gfs2_inode *ip)
609 {
610 	return gfs2_qa_alloc(ip);
611 }
612 
dump_rs(struct seq_file * seq,const struct gfs2_blkreserv * rs,const char * fs_id_buf)613 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
614 		    const char *fs_id_buf)
615 {
616 	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
617 
618 	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf,
619 		       (unsigned long long)ip->i_no_addr,
620 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
621 		       rs->rs_rbm.offset, rs->rs_free);
622 }
623 
624 /**
625  * __rs_deltree - remove a multi-block reservation from the rgd tree
626  * @rs: The reservation to remove
627  *
628  */
__rs_deltree(struct gfs2_blkreserv * rs)629 static void __rs_deltree(struct gfs2_blkreserv *rs)
630 {
631 	struct gfs2_rgrpd *rgd;
632 
633 	if (!gfs2_rs_active(rs))
634 		return;
635 
636 	rgd = rs->rs_rbm.rgd;
637 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
638 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
639 	RB_CLEAR_NODE(&rs->rs_node);
640 
641 	if (rs->rs_free) {
642 		u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) +
643 				 rs->rs_free - 1;
644 		struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, };
645 		struct gfs2_bitmap *start, *last;
646 
647 		/* return reserved blocks to the rgrp */
648 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
649 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
650 		/* The rgrp extent failure point is likely not to increase;
651 		   it will only do so if the freed blocks are somehow
652 		   contiguous with a span of free blocks that follows. Still,
653 		   it will force the number to be recalculated later. */
654 		rgd->rd_extfail_pt += rs->rs_free;
655 		rs->rs_free = 0;
656 		if (gfs2_rbm_from_block(&last_rbm, last_block))
657 			return;
658 		start = rbm_bi(&rs->rs_rbm);
659 		last = rbm_bi(&last_rbm);
660 		do
661 			clear_bit(GBF_FULL, &start->bi_flags);
662 		while (start++ != last);
663 	}
664 }
665 
666 /**
667  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
668  * @rs: The reservation to remove
669  *
670  */
gfs2_rs_deltree(struct gfs2_blkreserv * rs)671 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
672 {
673 	struct gfs2_rgrpd *rgd;
674 
675 	rgd = rs->rs_rbm.rgd;
676 	if (rgd) {
677 		spin_lock(&rgd->rd_rsspin);
678 		__rs_deltree(rs);
679 		BUG_ON(rs->rs_free);
680 		spin_unlock(&rgd->rd_rsspin);
681 	}
682 }
683 
684 /**
685  * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
686  * @ip: The inode for this reservation
687  * @wcount: The inode's write count, or NULL
688  *
689  */
gfs2_rsqa_delete(struct gfs2_inode * ip,atomic_t * wcount)690 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
691 {
692 	down_write(&ip->i_rw_mutex);
693 	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
694 		gfs2_rs_deltree(&ip->i_res);
695 	up_write(&ip->i_rw_mutex);
696 	gfs2_qa_delete(ip, wcount);
697 }
698 
699 /**
700  * return_all_reservations - return all reserved blocks back to the rgrp.
701  * @rgd: the rgrp that needs its space back
702  *
703  * We previously reserved a bunch of blocks for allocation. Now we need to
704  * give them back. This leave the reservation structures in tact, but removes
705  * all of their corresponding "no-fly zones".
706  */
return_all_reservations(struct gfs2_rgrpd * rgd)707 static void return_all_reservations(struct gfs2_rgrpd *rgd)
708 {
709 	struct rb_node *n;
710 	struct gfs2_blkreserv *rs;
711 
712 	spin_lock(&rgd->rd_rsspin);
713 	while ((n = rb_first(&rgd->rd_rstree))) {
714 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
715 		__rs_deltree(rs);
716 	}
717 	spin_unlock(&rgd->rd_rsspin);
718 }
719 
gfs2_clear_rgrpd(struct gfs2_sbd * sdp)720 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
721 {
722 	struct rb_node *n;
723 	struct gfs2_rgrpd *rgd;
724 	struct gfs2_glock *gl;
725 
726 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
727 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
728 		gl = rgd->rd_gl;
729 
730 		rb_erase(n, &sdp->sd_rindex_tree);
731 
732 		if (gl) {
733 			glock_clear_object(gl, rgd);
734 			gfs2_rgrp_brelse(rgd);
735 			gfs2_glock_put(gl);
736 		}
737 
738 		gfs2_free_clones(rgd);
739 		return_all_reservations(rgd);
740 		kfree(rgd->rd_bits);
741 		rgd->rd_bits = NULL;
742 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
743 	}
744 }
745 
gfs2_rindex_print(const struct gfs2_rgrpd * rgd)746 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
747 {
748 	struct gfs2_sbd *sdp = rgd->rd_sbd;
749 
750 	fs_info(sdp, "ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
751 	fs_info(sdp, "ri_length = %u\n", rgd->rd_length);
752 	fs_info(sdp, "ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
753 	fs_info(sdp, "ri_data = %u\n", rgd->rd_data);
754 	fs_info(sdp, "ri_bitbytes = %u\n", rgd->rd_bitbytes);
755 }
756 
757 /**
758  * gfs2_compute_bitstructs - Compute the bitmap sizes
759  * @rgd: The resource group descriptor
760  *
761  * Calculates bitmap descriptors, one for each block that contains bitmap data
762  *
763  * Returns: errno
764  */
765 
compute_bitstructs(struct gfs2_rgrpd * rgd)766 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
767 {
768 	struct gfs2_sbd *sdp = rgd->rd_sbd;
769 	struct gfs2_bitmap *bi;
770 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
771 	u32 bytes_left, bytes;
772 	int x;
773 
774 	if (!length)
775 		return -EINVAL;
776 
777 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
778 	if (!rgd->rd_bits)
779 		return -ENOMEM;
780 
781 	bytes_left = rgd->rd_bitbytes;
782 
783 	for (x = 0; x < length; x++) {
784 		bi = rgd->rd_bits + x;
785 
786 		bi->bi_flags = 0;
787 		/* small rgrp; bitmap stored completely in header block */
788 		if (length == 1) {
789 			bytes = bytes_left;
790 			bi->bi_offset = sizeof(struct gfs2_rgrp);
791 			bi->bi_start = 0;
792 			bi->bi_bytes = bytes;
793 			bi->bi_blocks = bytes * GFS2_NBBY;
794 		/* header block */
795 		} else if (x == 0) {
796 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
797 			bi->bi_offset = sizeof(struct gfs2_rgrp);
798 			bi->bi_start = 0;
799 			bi->bi_bytes = bytes;
800 			bi->bi_blocks = bytes * GFS2_NBBY;
801 		/* last block */
802 		} else if (x + 1 == length) {
803 			bytes = bytes_left;
804 			bi->bi_offset = sizeof(struct gfs2_meta_header);
805 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
806 			bi->bi_bytes = bytes;
807 			bi->bi_blocks = bytes * GFS2_NBBY;
808 		/* other blocks */
809 		} else {
810 			bytes = sdp->sd_sb.sb_bsize -
811 				sizeof(struct gfs2_meta_header);
812 			bi->bi_offset = sizeof(struct gfs2_meta_header);
813 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
814 			bi->bi_bytes = bytes;
815 			bi->bi_blocks = bytes * GFS2_NBBY;
816 		}
817 
818 		bytes_left -= bytes;
819 	}
820 
821 	if (bytes_left) {
822 		gfs2_consist_rgrpd(rgd);
823 		return -EIO;
824 	}
825 	bi = rgd->rd_bits + (length - 1);
826 	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
827 		if (gfs2_consist_rgrpd(rgd)) {
828 			gfs2_rindex_print(rgd);
829 			fs_err(sdp, "start=%u len=%u offset=%u\n",
830 			       bi->bi_start, bi->bi_bytes, bi->bi_offset);
831 		}
832 		return -EIO;
833 	}
834 
835 	return 0;
836 }
837 
838 /**
839  * gfs2_ri_total - Total up the file system space, according to the rindex.
840  * @sdp: the filesystem
841  *
842  */
gfs2_ri_total(struct gfs2_sbd * sdp)843 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
844 {
845 	u64 total_data = 0;
846 	struct inode *inode = sdp->sd_rindex;
847 	struct gfs2_inode *ip = GFS2_I(inode);
848 	char buf[sizeof(struct gfs2_rindex)];
849 	int error, rgrps;
850 
851 	for (rgrps = 0;; rgrps++) {
852 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
853 
854 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
855 			break;
856 		error = gfs2_internal_read(ip, buf, &pos,
857 					   sizeof(struct gfs2_rindex));
858 		if (error != sizeof(struct gfs2_rindex))
859 			break;
860 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
861 	}
862 	return total_data;
863 }
864 
rgd_insert(struct gfs2_rgrpd * rgd)865 static int rgd_insert(struct gfs2_rgrpd *rgd)
866 {
867 	struct gfs2_sbd *sdp = rgd->rd_sbd;
868 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
869 
870 	/* Figure out where to put new node */
871 	while (*newn) {
872 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
873 						  rd_node);
874 
875 		parent = *newn;
876 		if (rgd->rd_addr < cur->rd_addr)
877 			newn = &((*newn)->rb_left);
878 		else if (rgd->rd_addr > cur->rd_addr)
879 			newn = &((*newn)->rb_right);
880 		else
881 			return -EEXIST;
882 	}
883 
884 	rb_link_node(&rgd->rd_node, parent, newn);
885 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
886 	sdp->sd_rgrps++;
887 	return 0;
888 }
889 
890 /**
891  * read_rindex_entry - Pull in a new resource index entry from the disk
892  * @ip: Pointer to the rindex inode
893  *
894  * Returns: 0 on success, > 0 on EOF, error code otherwise
895  */
896 
read_rindex_entry(struct gfs2_inode * ip)897 static int read_rindex_entry(struct gfs2_inode *ip)
898 {
899 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
900 	const unsigned bsize = sdp->sd_sb.sb_bsize;
901 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
902 	struct gfs2_rindex buf;
903 	int error;
904 	struct gfs2_rgrpd *rgd;
905 
906 	if (pos >= i_size_read(&ip->i_inode))
907 		return 1;
908 
909 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
910 				   sizeof(struct gfs2_rindex));
911 
912 	if (error != sizeof(struct gfs2_rindex))
913 		return (error == 0) ? 1 : error;
914 
915 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
916 	error = -ENOMEM;
917 	if (!rgd)
918 		return error;
919 
920 	rgd->rd_sbd = sdp;
921 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
922 	rgd->rd_length = be32_to_cpu(buf.ri_length);
923 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
924 	rgd->rd_data = be32_to_cpu(buf.ri_data);
925 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
926 	spin_lock_init(&rgd->rd_rsspin);
927 
928 	error = gfs2_glock_get(sdp, rgd->rd_addr,
929 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
930 	if (error)
931 		goto fail;
932 
933 	error = compute_bitstructs(rgd);
934 	if (error)
935 		goto fail_glock;
936 
937 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
938 	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
939 	if (rgd->rd_data > sdp->sd_max_rg_data)
940 		sdp->sd_max_rg_data = rgd->rd_data;
941 	spin_lock(&sdp->sd_rindex_spin);
942 	error = rgd_insert(rgd);
943 	spin_unlock(&sdp->sd_rindex_spin);
944 	if (!error) {
945 		glock_set_object(rgd->rd_gl, rgd);
946 		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
947 		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
948 						    rgd->rd_length) * bsize) - 1;
949 		return 0;
950 	}
951 
952 	error = 0; /* someone else read in the rgrp; free it and ignore it */
953 fail_glock:
954 	gfs2_glock_put(rgd->rd_gl);
955 
956 fail:
957 	kfree(rgd->rd_bits);
958 	rgd->rd_bits = NULL;
959 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
960 	return error;
961 }
962 
963 /**
964  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
965  * @sdp: the GFS2 superblock
966  *
967  * The purpose of this function is to select a subset of the resource groups
968  * and mark them as PREFERRED. We do it in such a way that each node prefers
969  * to use a unique set of rgrps to minimize glock contention.
970  */
set_rgrp_preferences(struct gfs2_sbd * sdp)971 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
972 {
973 	struct gfs2_rgrpd *rgd, *first;
974 	int i;
975 
976 	/* Skip an initial number of rgrps, based on this node's journal ID.
977 	   That should start each node out on its own set. */
978 	rgd = gfs2_rgrpd_get_first(sdp);
979 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
980 		rgd = gfs2_rgrpd_get_next(rgd);
981 	first = rgd;
982 
983 	do {
984 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
985 		for (i = 0; i < sdp->sd_journals; i++) {
986 			rgd = gfs2_rgrpd_get_next(rgd);
987 			if (!rgd || rgd == first)
988 				break;
989 		}
990 	} while (rgd && rgd != first);
991 }
992 
993 /**
994  * gfs2_ri_update - Pull in a new resource index from the disk
995  * @ip: pointer to the rindex inode
996  *
997  * Returns: 0 on successful update, error code otherwise
998  */
999 
gfs2_ri_update(struct gfs2_inode * ip)1000 static int gfs2_ri_update(struct gfs2_inode *ip)
1001 {
1002 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1003 	int error;
1004 
1005 	do {
1006 		error = read_rindex_entry(ip);
1007 	} while (error == 0);
1008 
1009 	if (error < 0)
1010 		return error;
1011 
1012 	if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
1013 		fs_err(sdp, "no resource groups found in the file system.\n");
1014 		return -ENOENT;
1015 	}
1016 	set_rgrp_preferences(sdp);
1017 
1018 	sdp->sd_rindex_uptodate = 1;
1019 	return 0;
1020 }
1021 
1022 /**
1023  * gfs2_rindex_update - Update the rindex if required
1024  * @sdp: The GFS2 superblock
1025  *
1026  * We grab a lock on the rindex inode to make sure that it doesn't
1027  * change whilst we are performing an operation. We keep this lock
1028  * for quite long periods of time compared to other locks. This
1029  * doesn't matter, since it is shared and it is very, very rarely
1030  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1031  *
1032  * This makes sure that we're using the latest copy of the resource index
1033  * special file, which might have been updated if someone expanded the
1034  * filesystem (via gfs2_grow utility), which adds new resource groups.
1035  *
1036  * Returns: 0 on succeess, error code otherwise
1037  */
1038 
gfs2_rindex_update(struct gfs2_sbd * sdp)1039 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1040 {
1041 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1042 	struct gfs2_glock *gl = ip->i_gl;
1043 	struct gfs2_holder ri_gh;
1044 	int error = 0;
1045 	int unlock_required = 0;
1046 
1047 	/* Read new copy from disk if we don't have the latest */
1048 	if (!sdp->sd_rindex_uptodate) {
1049 		if (!gfs2_glock_is_locked_by_me(gl)) {
1050 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1051 			if (error)
1052 				return error;
1053 			unlock_required = 1;
1054 		}
1055 		if (!sdp->sd_rindex_uptodate)
1056 			error = gfs2_ri_update(ip);
1057 		if (unlock_required)
1058 			gfs2_glock_dq_uninit(&ri_gh);
1059 	}
1060 
1061 	return error;
1062 }
1063 
gfs2_rgrp_in(struct gfs2_rgrpd * rgd,const void * buf)1064 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1065 {
1066 	const struct gfs2_rgrp *str = buf;
1067 	u32 rg_flags;
1068 
1069 	rg_flags = be32_to_cpu(str->rg_flags);
1070 	rg_flags &= ~GFS2_RDF_MASK;
1071 	rgd->rd_flags &= GFS2_RDF_MASK;
1072 	rgd->rd_flags |= rg_flags;
1073 	rgd->rd_free = be32_to_cpu(str->rg_free);
1074 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1075 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1076 	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1077 }
1078 
gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb * rgl,const void * buf)1079 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1080 {
1081 	const struct gfs2_rgrp *str = buf;
1082 
1083 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1084 	rgl->rl_flags = str->rg_flags;
1085 	rgl->rl_free = str->rg_free;
1086 	rgl->rl_dinodes = str->rg_dinodes;
1087 	rgl->rl_igeneration = str->rg_igeneration;
1088 	rgl->__pad = 0UL;
1089 }
1090 
gfs2_rgrp_out(struct gfs2_rgrpd * rgd,void * buf)1091 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1092 {
1093 	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1094 	struct gfs2_rgrp *str = buf;
1095 	u32 crc;
1096 
1097 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1098 	str->rg_free = cpu_to_be32(rgd->rd_free);
1099 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1100 	if (next == NULL)
1101 		str->rg_skip = 0;
1102 	else if (next->rd_addr > rgd->rd_addr)
1103 		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1104 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1105 	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1106 	str->rg_data = cpu_to_be32(rgd->rd_data);
1107 	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1108 	str->rg_crc = 0;
1109 	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1110 	str->rg_crc = cpu_to_be32(crc);
1111 
1112 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1113 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1114 }
1115 
gfs2_rgrp_lvb_valid(struct gfs2_rgrpd * rgd)1116 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1117 {
1118 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1119 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1120 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1121 	int valid = 1;
1122 
1123 	if (rgl->rl_flags != str->rg_flags) {
1124 		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1125 			(unsigned long long)rgd->rd_addr,
1126 		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1127 		valid = 0;
1128 	}
1129 	if (rgl->rl_free != str->rg_free) {
1130 		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1131 			(unsigned long long)rgd->rd_addr,
1132 			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1133 		valid = 0;
1134 	}
1135 	if (rgl->rl_dinodes != str->rg_dinodes) {
1136 		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1137 			(unsigned long long)rgd->rd_addr,
1138 			be32_to_cpu(rgl->rl_dinodes),
1139 			be32_to_cpu(str->rg_dinodes));
1140 		valid = 0;
1141 	}
1142 	if (rgl->rl_igeneration != str->rg_igeneration) {
1143 		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1144 			(unsigned long long)rgd->rd_addr,
1145 			(unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1146 			(unsigned long long)be64_to_cpu(str->rg_igeneration));
1147 		valid = 0;
1148 	}
1149 	return valid;
1150 }
1151 
count_unlinked(struct gfs2_rgrpd * rgd)1152 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1153 {
1154 	struct gfs2_bitmap *bi;
1155 	const u32 length = rgd->rd_length;
1156 	const u8 *buffer = NULL;
1157 	u32 i, goal, count = 0;
1158 
1159 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1160 		goal = 0;
1161 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1162 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1163 		while (goal < bi->bi_blocks) {
1164 			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1165 					   GFS2_BLKST_UNLINKED);
1166 			if (goal == BFITNOENT)
1167 				break;
1168 			count++;
1169 			goal++;
1170 		}
1171 	}
1172 
1173 	return count;
1174 }
1175 
1176 
1177 /**
1178  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1179  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1180  *
1181  * Read in all of a Resource Group's header and bitmap blocks.
1182  * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1183  *
1184  * Returns: errno
1185  */
1186 
gfs2_rgrp_bh_get(struct gfs2_rgrpd * rgd)1187 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1188 {
1189 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1190 	struct gfs2_glock *gl = rgd->rd_gl;
1191 	unsigned int length = rgd->rd_length;
1192 	struct gfs2_bitmap *bi;
1193 	unsigned int x, y;
1194 	int error;
1195 
1196 	if (rgd->rd_bits[0].bi_bh != NULL)
1197 		return 0;
1198 
1199 	for (x = 0; x < length; x++) {
1200 		bi = rgd->rd_bits + x;
1201 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1202 		if (error)
1203 			goto fail;
1204 	}
1205 
1206 	for (y = length; y--;) {
1207 		bi = rgd->rd_bits + y;
1208 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1209 		if (error)
1210 			goto fail;
1211 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1212 					      GFS2_METATYPE_RG)) {
1213 			error = -EIO;
1214 			goto fail;
1215 		}
1216 	}
1217 
1218 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1219 		for (x = 0; x < length; x++)
1220 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1221 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1222 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1223 		rgd->rd_free_clone = rgd->rd_free;
1224 		/* max out the rgrp allocation failure point */
1225 		rgd->rd_extfail_pt = rgd->rd_free;
1226 	}
1227 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1228 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1229 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1230 				     rgd->rd_bits[0].bi_bh->b_data);
1231 	}
1232 	else if (sdp->sd_args.ar_rgrplvb) {
1233 		if (!gfs2_rgrp_lvb_valid(rgd)){
1234 			gfs2_consist_rgrpd(rgd);
1235 			error = -EIO;
1236 			goto fail;
1237 		}
1238 		if (rgd->rd_rgl->rl_unlinked == 0)
1239 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1240 	}
1241 	return 0;
1242 
1243 fail:
1244 	while (x--) {
1245 		bi = rgd->rd_bits + x;
1246 		brelse(bi->bi_bh);
1247 		bi->bi_bh = NULL;
1248 		gfs2_assert_warn(sdp, !bi->bi_clone);
1249 	}
1250 
1251 	return error;
1252 }
1253 
update_rgrp_lvb(struct gfs2_rgrpd * rgd)1254 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1255 {
1256 	u32 rl_flags;
1257 
1258 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1259 		return 0;
1260 
1261 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1262 		return gfs2_rgrp_bh_get(rgd);
1263 
1264 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1265 	rl_flags &= ~GFS2_RDF_MASK;
1266 	rgd->rd_flags &= GFS2_RDF_MASK;
1267 	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1268 	if (rgd->rd_rgl->rl_unlinked == 0)
1269 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1270 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1271 	rgd->rd_free_clone = rgd->rd_free;
1272 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1273 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1274 	return 0;
1275 }
1276 
gfs2_rgrp_go_lock(struct gfs2_holder * gh)1277 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1278 {
1279 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1280 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1281 
1282 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1283 		return 0;
1284 	return gfs2_rgrp_bh_get(rgd);
1285 }
1286 
1287 /**
1288  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1289  * @rgd: The resource group
1290  *
1291  */
1292 
gfs2_rgrp_brelse(struct gfs2_rgrpd * rgd)1293 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1294 {
1295 	int x, length = rgd->rd_length;
1296 
1297 	for (x = 0; x < length; x++) {
1298 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1299 		if (bi->bi_bh) {
1300 			brelse(bi->bi_bh);
1301 			bi->bi_bh = NULL;
1302 		}
1303 	}
1304 
1305 }
1306 
1307 /**
1308  * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1309  * @gh: The glock holder for the resource group
1310  *
1311  */
1312 
gfs2_rgrp_go_unlock(struct gfs2_holder * gh)1313 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1314 {
1315 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1316 	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1317 		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1318 
1319 	if (rgd && demote_requested)
1320 		gfs2_rgrp_brelse(rgd);
1321 }
1322 
gfs2_rgrp_send_discards(struct gfs2_sbd * sdp,u64 offset,struct buffer_head * bh,const struct gfs2_bitmap * bi,unsigned minlen,u64 * ptrimmed)1323 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1324 			     struct buffer_head *bh,
1325 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1326 {
1327 	struct super_block *sb = sdp->sd_vfs;
1328 	u64 blk;
1329 	sector_t start = 0;
1330 	sector_t nr_blks = 0;
1331 	int rv;
1332 	unsigned int x;
1333 	u32 trimmed = 0;
1334 	u8 diff;
1335 
1336 	for (x = 0; x < bi->bi_bytes; x++) {
1337 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1338 		clone += bi->bi_offset;
1339 		clone += x;
1340 		if (bh) {
1341 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1342 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1343 		} else {
1344 			diff = ~(*clone | (*clone >> 1));
1345 		}
1346 		diff &= 0x55;
1347 		if (diff == 0)
1348 			continue;
1349 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1350 		while(diff) {
1351 			if (diff & 1) {
1352 				if (nr_blks == 0)
1353 					goto start_new_extent;
1354 				if ((start + nr_blks) != blk) {
1355 					if (nr_blks >= minlen) {
1356 						rv = sb_issue_discard(sb,
1357 							start, nr_blks,
1358 							GFP_NOFS, 0);
1359 						if (rv)
1360 							goto fail;
1361 						trimmed += nr_blks;
1362 					}
1363 					nr_blks = 0;
1364 start_new_extent:
1365 					start = blk;
1366 				}
1367 				nr_blks++;
1368 			}
1369 			diff >>= 2;
1370 			blk++;
1371 		}
1372 	}
1373 	if (nr_blks >= minlen) {
1374 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1375 		if (rv)
1376 			goto fail;
1377 		trimmed += nr_blks;
1378 	}
1379 	if (ptrimmed)
1380 		*ptrimmed = trimmed;
1381 	return 0;
1382 
1383 fail:
1384 	if (sdp->sd_args.ar_discard)
1385 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1386 	sdp->sd_args.ar_discard = 0;
1387 	return -EIO;
1388 }
1389 
1390 /**
1391  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1392  * @filp: Any file on the filesystem
1393  * @argp: Pointer to the arguments (also used to pass result)
1394  *
1395  * Returns: 0 on success, otherwise error code
1396  */
1397 
gfs2_fitrim(struct file * filp,void __user * argp)1398 int gfs2_fitrim(struct file *filp, void __user *argp)
1399 {
1400 	struct inode *inode = file_inode(filp);
1401 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1402 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1403 	struct buffer_head *bh;
1404 	struct gfs2_rgrpd *rgd;
1405 	struct gfs2_rgrpd *rgd_end;
1406 	struct gfs2_holder gh;
1407 	struct fstrim_range r;
1408 	int ret = 0;
1409 	u64 amt;
1410 	u64 trimmed = 0;
1411 	u64 start, end, minlen;
1412 	unsigned int x;
1413 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1414 
1415 	if (!capable(CAP_SYS_ADMIN))
1416 		return -EPERM;
1417 
1418 	if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1419 		return -EROFS;
1420 
1421 	if (!blk_queue_discard(q))
1422 		return -EOPNOTSUPP;
1423 
1424 	if (copy_from_user(&r, argp, sizeof(r)))
1425 		return -EFAULT;
1426 
1427 	ret = gfs2_rindex_update(sdp);
1428 	if (ret)
1429 		return ret;
1430 
1431 	start = r.start >> bs_shift;
1432 	end = start + (r.len >> bs_shift);
1433 	minlen = max_t(u64, r.minlen, sdp->sd_sb.sb_bsize);
1434 	minlen = max_t(u64, minlen,
1435 		       q->limits.discard_granularity) >> bs_shift;
1436 
1437 	if (end <= start || minlen > sdp->sd_max_rg_data)
1438 		return -EINVAL;
1439 
1440 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1441 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1442 
1443 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1444 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1445 		return -EINVAL; /* start is beyond the end of the fs */
1446 
1447 	while (1) {
1448 
1449 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1450 		if (ret)
1451 			goto out;
1452 
1453 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1454 			/* Trim each bitmap in the rgrp */
1455 			for (x = 0; x < rgd->rd_length; x++) {
1456 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1457 				ret = gfs2_rgrp_send_discards(sdp,
1458 						rgd->rd_data0, NULL, bi, minlen,
1459 						&amt);
1460 				if (ret) {
1461 					gfs2_glock_dq_uninit(&gh);
1462 					goto out;
1463 				}
1464 				trimmed += amt;
1465 			}
1466 
1467 			/* Mark rgrp as having been trimmed */
1468 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1469 			if (ret == 0) {
1470 				bh = rgd->rd_bits[0].bi_bh;
1471 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1472 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1473 				gfs2_rgrp_out(rgd, bh->b_data);
1474 				gfs2_trans_end(sdp);
1475 			}
1476 		}
1477 		gfs2_glock_dq_uninit(&gh);
1478 
1479 		if (rgd == rgd_end)
1480 			break;
1481 
1482 		rgd = gfs2_rgrpd_get_next(rgd);
1483 	}
1484 
1485 out:
1486 	r.len = trimmed << bs_shift;
1487 	if (copy_to_user(argp, &r, sizeof(r)))
1488 		return -EFAULT;
1489 
1490 	return ret;
1491 }
1492 
1493 /**
1494  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1495  * @ip: the inode structure
1496  *
1497  */
rs_insert(struct gfs2_inode * ip)1498 static void rs_insert(struct gfs2_inode *ip)
1499 {
1500 	struct rb_node **newn, *parent = NULL;
1501 	int rc;
1502 	struct gfs2_blkreserv *rs = &ip->i_res;
1503 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1504 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1505 
1506 	BUG_ON(gfs2_rs_active(rs));
1507 
1508 	spin_lock(&rgd->rd_rsspin);
1509 	newn = &rgd->rd_rstree.rb_node;
1510 	while (*newn) {
1511 		struct gfs2_blkreserv *cur =
1512 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1513 
1514 		parent = *newn;
1515 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1516 		if (rc > 0)
1517 			newn = &((*newn)->rb_right);
1518 		else if (rc < 0)
1519 			newn = &((*newn)->rb_left);
1520 		else {
1521 			spin_unlock(&rgd->rd_rsspin);
1522 			WARN_ON(1);
1523 			return;
1524 		}
1525 	}
1526 
1527 	rb_link_node(&rs->rs_node, parent, newn);
1528 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1529 
1530 	/* Do our rgrp accounting for the reservation */
1531 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1532 	spin_unlock(&rgd->rd_rsspin);
1533 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1534 }
1535 
1536 /**
1537  * rgd_free - return the number of free blocks we can allocate.
1538  * @rgd: the resource group
1539  *
1540  * This function returns the number of free blocks for an rgrp.
1541  * That's the clone-free blocks (blocks that are free, not including those
1542  * still being used for unlinked files that haven't been deleted.)
1543  *
1544  * It also subtracts any blocks reserved by someone else, but does not
1545  * include free blocks that are still part of our current reservation,
1546  * because obviously we can (and will) allocate them.
1547  */
rgd_free(struct gfs2_rgrpd * rgd,struct gfs2_blkreserv * rs)1548 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1549 {
1550 	u32 tot_reserved, tot_free;
1551 
1552 	if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free))
1553 		return 0;
1554 	tot_reserved = rgd->rd_reserved - rs->rs_free;
1555 
1556 	if (rgd->rd_free_clone < tot_reserved)
1557 		tot_reserved = 0;
1558 
1559 	tot_free = rgd->rd_free_clone - tot_reserved;
1560 
1561 	return tot_free;
1562 }
1563 
1564 /**
1565  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1566  * @rgd: the resource group descriptor
1567  * @ip: pointer to the inode for which we're reserving blocks
1568  * @ap: the allocation parameters
1569  *
1570  */
1571 
rg_mblk_search(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip,const struct gfs2_alloc_parms * ap)1572 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1573 			   const struct gfs2_alloc_parms *ap)
1574 {
1575 	struct gfs2_rbm rbm = { .rgd = rgd, };
1576 	u64 goal;
1577 	struct gfs2_blkreserv *rs = &ip->i_res;
1578 	u32 extlen;
1579 	u32 free_blocks = rgd_free(rgd, rs);
1580 	int ret;
1581 	struct inode *inode = &ip->i_inode;
1582 
1583 	if (S_ISDIR(inode->i_mode))
1584 		extlen = 1;
1585 	else {
1586 		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1587 		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1588 	}
1589 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1590 		return;
1591 
1592 	/* Find bitmap block that contains bits for goal block */
1593 	if (rgrp_contains_block(rgd, ip->i_goal))
1594 		goal = ip->i_goal;
1595 	else
1596 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1597 
1598 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1599 		return;
1600 
1601 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1602 	if (ret == 0) {
1603 		rs->rs_rbm = rbm;
1604 		rs->rs_free = extlen;
1605 		rs_insert(ip);
1606 	} else {
1607 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1608 			rgd->rd_last_alloc = 0;
1609 	}
1610 }
1611 
1612 /**
1613  * gfs2_next_unreserved_block - Return next block that is not reserved
1614  * @rgd: The resource group
1615  * @block: The starting block
1616  * @length: The required length
1617  * @ip: Ignore any reservations for this inode
1618  *
1619  * If the block does not appear in any reservation, then return the
1620  * block number unchanged. If it does appear in the reservation, then
1621  * keep looking through the tree of reservations in order to find the
1622  * first block number which is not reserved.
1623  */
1624 
gfs2_next_unreserved_block(struct gfs2_rgrpd * rgd,u64 block,u32 length,const struct gfs2_inode * ip)1625 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1626 				      u32 length,
1627 				      const struct gfs2_inode *ip)
1628 {
1629 	struct gfs2_blkreserv *rs;
1630 	struct rb_node *n;
1631 	int rc;
1632 
1633 	spin_lock(&rgd->rd_rsspin);
1634 	n = rgd->rd_rstree.rb_node;
1635 	while (n) {
1636 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1637 		rc = rs_cmp(block, length, rs);
1638 		if (rc < 0)
1639 			n = n->rb_left;
1640 		else if (rc > 0)
1641 			n = n->rb_right;
1642 		else
1643 			break;
1644 	}
1645 
1646 	if (n) {
1647 		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1648 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1649 			n = n->rb_right;
1650 			if (n == NULL)
1651 				break;
1652 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1653 		}
1654 	}
1655 
1656 	spin_unlock(&rgd->rd_rsspin);
1657 	return block;
1658 }
1659 
1660 /**
1661  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1662  * @rbm: The current position in the resource group
1663  * @ip: The inode for which we are searching for blocks
1664  * @minext: The minimum extent length
1665  * @maxext: A pointer to the maximum extent structure
1666  *
1667  * This checks the current position in the rgrp to see whether there is
1668  * a reservation covering this block. If not then this function is a
1669  * no-op. If there is, then the position is moved to the end of the
1670  * contiguous reservation(s) so that we are pointing at the first
1671  * non-reserved block.
1672  *
1673  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1674  */
1675 
gfs2_reservation_check_and_update(struct gfs2_rbm * rbm,const struct gfs2_inode * ip,u32 minext,struct gfs2_extent * maxext)1676 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1677 					     const struct gfs2_inode *ip,
1678 					     u32 minext,
1679 					     struct gfs2_extent *maxext)
1680 {
1681 	u64 block = gfs2_rbm_to_block(rbm);
1682 	u32 extlen = 1;
1683 	u64 nblock;
1684 	int ret;
1685 
1686 	/*
1687 	 * If we have a minimum extent length, then skip over any extent
1688 	 * which is less than the min extent length in size.
1689 	 */
1690 	if (minext) {
1691 		extlen = gfs2_free_extlen(rbm, minext);
1692 		if (extlen <= maxext->len)
1693 			goto fail;
1694 	}
1695 
1696 	/*
1697 	 * Check the extent which has been found against the reservations
1698 	 * and skip if parts of it are already reserved
1699 	 */
1700 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1701 	if (nblock == block) {
1702 		if (!minext || extlen >= minext)
1703 			return 0;
1704 
1705 		if (extlen > maxext->len) {
1706 			maxext->len = extlen;
1707 			maxext->rbm = *rbm;
1708 		}
1709 fail:
1710 		nblock = block + extlen;
1711 	}
1712 	ret = gfs2_rbm_from_block(rbm, nblock);
1713 	if (ret < 0)
1714 		return ret;
1715 	return 1;
1716 }
1717 
1718 /**
1719  * gfs2_rbm_find - Look for blocks of a particular state
1720  * @rbm: Value/result starting position and final position
1721  * @state: The state which we want to find
1722  * @minext: Pointer to the requested extent length (NULL for a single block)
1723  *          This is updated to be the actual reservation size.
1724  * @ip: If set, check for reservations
1725  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1726  *          around until we've reached the starting point.
1727  *
1728  * Side effects:
1729  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1730  *   has no free blocks in it.
1731  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1732  *   has come up short on a free block search.
1733  *
1734  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1735  */
1736 
gfs2_rbm_find(struct gfs2_rbm * rbm,u8 state,u32 * minext,const struct gfs2_inode * ip,bool nowrap)1737 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1738 			 const struct gfs2_inode *ip, bool nowrap)
1739 {
1740 	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1741 	struct buffer_head *bh;
1742 	int last_bii;
1743 	u32 offset;
1744 	u8 *buffer;
1745 	bool wrapped = false;
1746 	int ret;
1747 	struct gfs2_bitmap *bi;
1748 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1749 
1750 	/*
1751 	 * Determine the last bitmap to search.  If we're not starting at the
1752 	 * beginning of a bitmap, we need to search that bitmap twice to scan
1753 	 * the entire resource group.
1754 	 */
1755 	last_bii = rbm->bii - (rbm->offset == 0);
1756 
1757 	while(1) {
1758 		bi = rbm_bi(rbm);
1759 		if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) &&
1760 		    test_bit(GBF_FULL, &bi->bi_flags) &&
1761 		    (state == GFS2_BLKST_FREE))
1762 			goto next_bitmap;
1763 
1764 		bh = bi->bi_bh;
1765 		buffer = bh->b_data + bi->bi_offset;
1766 		WARN_ON(!buffer_uptodate(bh));
1767 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1768 			buffer = bi->bi_clone + bi->bi_offset;
1769 		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1770 		if (offset == BFITNOENT) {
1771 			if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1772 				set_bit(GBF_FULL, &bi->bi_flags);
1773 			goto next_bitmap;
1774 		}
1775 		rbm->offset = offset;
1776 		if (ip == NULL)
1777 			return 0;
1778 
1779 		ret = gfs2_reservation_check_and_update(rbm, ip,
1780 							minext ? *minext : 0,
1781 							&maxext);
1782 		if (ret == 0)
1783 			return 0;
1784 		if (ret > 0)
1785 			goto next_iter;
1786 		if (ret == -E2BIG) {
1787 			rbm->bii = 0;
1788 			rbm->offset = 0;
1789 			goto res_covered_end_of_rgrp;
1790 		}
1791 		return ret;
1792 
1793 next_bitmap:	/* Find next bitmap in the rgrp */
1794 		rbm->offset = 0;
1795 		rbm->bii++;
1796 		if (rbm->bii == rbm->rgd->rd_length)
1797 			rbm->bii = 0;
1798 res_covered_end_of_rgrp:
1799 		if (rbm->bii == 0) {
1800 			if (wrapped)
1801 				break;
1802 			wrapped = true;
1803 			if (nowrap)
1804 				break;
1805 		}
1806 next_iter:
1807 		/* Have we scanned the entire resource group? */
1808 		if (wrapped && rbm->bii > last_bii)
1809 			break;
1810 	}
1811 
1812 	if (minext == NULL || state != GFS2_BLKST_FREE)
1813 		return -ENOSPC;
1814 
1815 	/* If the extent was too small, and it's smaller than the smallest
1816 	   to have failed before, remember for future reference that it's
1817 	   useless to search this rgrp again for this amount or more. */
1818 	if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1819 	    *minext < rbm->rgd->rd_extfail_pt)
1820 		rbm->rgd->rd_extfail_pt = *minext;
1821 
1822 	/* If the maximum extent we found is big enough to fulfill the
1823 	   minimum requirements, use it anyway. */
1824 	if (maxext.len) {
1825 		*rbm = maxext.rbm;
1826 		*minext = maxext.len;
1827 		return 0;
1828 	}
1829 
1830 	return -ENOSPC;
1831 }
1832 
1833 /**
1834  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1835  * @rgd: The rgrp
1836  * @last_unlinked: block address of the last dinode we unlinked
1837  * @skip: block address we should explicitly not unlink
1838  *
1839  * Returns: 0 if no error
1840  *          The inode, if one has been found, in inode.
1841  */
1842 
try_rgrp_unlink(struct gfs2_rgrpd * rgd,u64 * last_unlinked,u64 skip)1843 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1844 {
1845 	u64 block;
1846 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1847 	struct gfs2_glock *gl;
1848 	struct gfs2_inode *ip;
1849 	int error;
1850 	int found = 0;
1851 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1852 
1853 	while (1) {
1854 		down_write(&sdp->sd_log_flush_lock);
1855 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1856 				      true);
1857 		up_write(&sdp->sd_log_flush_lock);
1858 		if (error == -ENOSPC)
1859 			break;
1860 		if (WARN_ON_ONCE(error))
1861 			break;
1862 
1863 		block = gfs2_rbm_to_block(&rbm);
1864 		if (gfs2_rbm_from_block(&rbm, block + 1))
1865 			break;
1866 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1867 			continue;
1868 		if (block == skip)
1869 			continue;
1870 		*last_unlinked = block;
1871 
1872 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1873 		if (error)
1874 			continue;
1875 
1876 		/* If the inode is already in cache, we can ignore it here
1877 		 * because the existing inode disposal code will deal with
1878 		 * it when all refs have gone away. Accessing gl_object like
1879 		 * this is not safe in general. Here it is ok because we do
1880 		 * not dereference the pointer, and we only need an approx
1881 		 * answer to whether it is NULL or not.
1882 		 */
1883 		ip = gl->gl_object;
1884 
1885 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1886 			gfs2_glock_put(gl);
1887 		else
1888 			found++;
1889 
1890 		/* Limit reclaim to sensible number of tasks */
1891 		if (found > NR_CPUS)
1892 			return;
1893 	}
1894 
1895 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1896 	return;
1897 }
1898 
1899 /**
1900  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1901  * @rgd: The rgrp in question
1902  * @loops: An indication of how picky we can be (0=very, 1=less so)
1903  *
1904  * This function uses the recently added glock statistics in order to
1905  * figure out whether a parciular resource group is suffering from
1906  * contention from multiple nodes. This is done purely on the basis
1907  * of timings, since this is the only data we have to work with and
1908  * our aim here is to reject a resource group which is highly contended
1909  * but (very important) not to do this too often in order to ensure that
1910  * we do not land up introducing fragmentation by changing resource
1911  * groups when not actually required.
1912  *
1913  * The calculation is fairly simple, we want to know whether the SRTTB
1914  * (i.e. smoothed round trip time for blocking operations) to acquire
1915  * the lock for this rgrp's glock is significantly greater than the
1916  * time taken for resource groups on average. We introduce a margin in
1917  * the form of the variable @var which is computed as the sum of the two
1918  * respective variences, and multiplied by a factor depending on @loops
1919  * and whether we have a lot of data to base the decision on. This is
1920  * then tested against the square difference of the means in order to
1921  * decide whether the result is statistically significant or not.
1922  *
1923  * Returns: A boolean verdict on the congestion status
1924  */
1925 
gfs2_rgrp_congested(const struct gfs2_rgrpd * rgd,int loops)1926 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1927 {
1928 	const struct gfs2_glock *gl = rgd->rd_gl;
1929 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1930 	struct gfs2_lkstats *st;
1931 	u64 r_dcount, l_dcount;
1932 	u64 l_srttb, a_srttb = 0;
1933 	s64 srttb_diff;
1934 	u64 sqr_diff;
1935 	u64 var;
1936 	int cpu, nonzero = 0;
1937 
1938 	preempt_disable();
1939 	for_each_present_cpu(cpu) {
1940 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1941 		if (st->stats[GFS2_LKS_SRTTB]) {
1942 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1943 			nonzero++;
1944 		}
1945 	}
1946 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1947 	if (nonzero)
1948 		do_div(a_srttb, nonzero);
1949 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1950 	var = st->stats[GFS2_LKS_SRTTVARB] +
1951 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1952 	preempt_enable();
1953 
1954 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1955 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1956 
1957 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1958 		return false;
1959 
1960 	srttb_diff = a_srttb - l_srttb;
1961 	sqr_diff = srttb_diff * srttb_diff;
1962 
1963 	var *= 2;
1964 	if (l_dcount < 8 || r_dcount < 8)
1965 		var *= 2;
1966 	if (loops == 1)
1967 		var *= 2;
1968 
1969 	return ((srttb_diff < 0) && (sqr_diff > var));
1970 }
1971 
1972 /**
1973  * gfs2_rgrp_used_recently
1974  * @rs: The block reservation with the rgrp to test
1975  * @msecs: The time limit in milliseconds
1976  *
1977  * Returns: True if the rgrp glock has been used within the time limit
1978  */
gfs2_rgrp_used_recently(const struct gfs2_blkreserv * rs,u64 msecs)1979 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1980 				    u64 msecs)
1981 {
1982 	u64 tdiff;
1983 
1984 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1985                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1986 
1987 	return tdiff > (msecs * 1000 * 1000);
1988 }
1989 
gfs2_orlov_skip(const struct gfs2_inode * ip)1990 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1991 {
1992 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1993 	u32 skip;
1994 
1995 	get_random_bytes(&skip, sizeof(skip));
1996 	return skip % sdp->sd_rgrps;
1997 }
1998 
gfs2_select_rgrp(struct gfs2_rgrpd ** pos,const struct gfs2_rgrpd * begin)1999 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
2000 {
2001 	struct gfs2_rgrpd *rgd = *pos;
2002 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2003 
2004 	rgd = gfs2_rgrpd_get_next(rgd);
2005 	if (rgd == NULL)
2006 		rgd = gfs2_rgrpd_get_first(sdp);
2007 	*pos = rgd;
2008 	if (rgd != begin) /* If we didn't wrap */
2009 		return true;
2010 	return false;
2011 }
2012 
2013 /**
2014  * fast_to_acquire - determine if a resource group will be fast to acquire
2015  *
2016  * If this is one of our preferred rgrps, it should be quicker to acquire,
2017  * because we tried to set ourselves up as dlm lock master.
2018  */
fast_to_acquire(struct gfs2_rgrpd * rgd)2019 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2020 {
2021 	struct gfs2_glock *gl = rgd->rd_gl;
2022 
2023 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2024 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2025 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
2026 		return 1;
2027 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2028 		return 1;
2029 	return 0;
2030 }
2031 
2032 /**
2033  * gfs2_inplace_reserve - Reserve space in the filesystem
2034  * @ip: the inode to reserve space for
2035  * @ap: the allocation parameters
2036  *
2037  * We try our best to find an rgrp that has at least ap->target blocks
2038  * available. After a couple of passes (loops == 2), the prospects of finding
2039  * such an rgrp diminish. At this stage, we return the first rgrp that has
2040  * at least ap->min_target blocks available. Either way, we set ap->allowed to
2041  * the number of blocks available in the chosen rgrp.
2042  *
2043  * Returns: 0 on success,
2044  *          -ENOMEM if a suitable rgrp can't be found
2045  *          errno otherwise
2046  */
2047 
gfs2_inplace_reserve(struct gfs2_inode * ip,struct gfs2_alloc_parms * ap)2048 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2049 {
2050 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2051 	struct gfs2_rgrpd *begin = NULL;
2052 	struct gfs2_blkreserv *rs = &ip->i_res;
2053 	int error = 0, rg_locked, flags = 0;
2054 	u64 last_unlinked = NO_BLOCK;
2055 	int loops = 0;
2056 	u32 free_blocks, skip = 0;
2057 
2058 	if (sdp->sd_args.ar_rgrplvb)
2059 		flags |= GL_SKIP;
2060 	if (gfs2_assert_warn(sdp, ap->target))
2061 		return -EINVAL;
2062 	if (gfs2_rs_active(rs)) {
2063 		begin = rs->rs_rbm.rgd;
2064 	} else if (rs->rs_rbm.rgd &&
2065 		   rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) {
2066 		begin = rs->rs_rbm.rgd;
2067 	} else {
2068 		check_and_update_goal(ip);
2069 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2070 	}
2071 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2072 		skip = gfs2_orlov_skip(ip);
2073 	if (rs->rs_rbm.rgd == NULL)
2074 		return -EBADSLT;
2075 
2076 	while (loops < 3) {
2077 		rg_locked = 1;
2078 
2079 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2080 			rg_locked = 0;
2081 			if (skip && skip--)
2082 				goto next_rgrp;
2083 			if (!gfs2_rs_active(rs)) {
2084 				if (loops == 0 &&
2085 				    !fast_to_acquire(rs->rs_rbm.rgd))
2086 					goto next_rgrp;
2087 				if ((loops < 2) &&
2088 				    gfs2_rgrp_used_recently(rs, 1000) &&
2089 				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2090 					goto next_rgrp;
2091 			}
2092 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2093 						   LM_ST_EXCLUSIVE, flags,
2094 						   &ip->i_rgd_gh);
2095 			if (unlikely(error))
2096 				return error;
2097 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2098 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2099 				goto skip_rgrp;
2100 			if (sdp->sd_args.ar_rgrplvb) {
2101 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2102 				if (unlikely(error)) {
2103 					gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2104 					return error;
2105 				}
2106 			}
2107 		}
2108 
2109 		/* Skip unusable resource groups */
2110 		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2111 						 GFS2_RDF_ERROR)) ||
2112 		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2113 			goto skip_rgrp;
2114 
2115 		if (sdp->sd_args.ar_rgrplvb)
2116 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2117 
2118 		/* Get a reservation if we don't already have one */
2119 		if (!gfs2_rs_active(rs))
2120 			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2121 
2122 		/* Skip rgrps when we can't get a reservation on first pass */
2123 		if (!gfs2_rs_active(rs) && (loops < 1))
2124 			goto check_rgrp;
2125 
2126 		/* If rgrp has enough free space, use it */
2127 		free_blocks = rgd_free(rs->rs_rbm.rgd, rs);
2128 		if (free_blocks >= ap->target ||
2129 		    (loops == 2 && ap->min_target &&
2130 		     free_blocks >= ap->min_target)) {
2131 			ap->allowed = free_blocks;
2132 			return 0;
2133 		}
2134 check_rgrp:
2135 		/* Check for unlinked inodes which can be reclaimed */
2136 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2137 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2138 					ip->i_no_addr);
2139 skip_rgrp:
2140 		/* Drop reservation, if we couldn't use reserved rgrp */
2141 		if (gfs2_rs_active(rs))
2142 			gfs2_rs_deltree(rs);
2143 
2144 		/* Unlock rgrp if required */
2145 		if (!rg_locked)
2146 			gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2147 next_rgrp:
2148 		/* Find the next rgrp, and continue looking */
2149 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2150 			continue;
2151 		if (skip)
2152 			continue;
2153 
2154 		/* If we've scanned all the rgrps, but found no free blocks
2155 		 * then this checks for some less likely conditions before
2156 		 * trying again.
2157 		 */
2158 		loops++;
2159 		/* Check that fs hasn't grown if writing to rindex */
2160 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2161 			error = gfs2_ri_update(ip);
2162 			if (error)
2163 				return error;
2164 		}
2165 		/* Flushing the log may release space */
2166 		if (loops == 2)
2167 			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2168 				       GFS2_LFC_INPLACE_RESERVE);
2169 	}
2170 
2171 	return -ENOSPC;
2172 }
2173 
2174 /**
2175  * gfs2_inplace_release - release an inplace reservation
2176  * @ip: the inode the reservation was taken out on
2177  *
2178  * Release a reservation made by gfs2_inplace_reserve().
2179  */
2180 
gfs2_inplace_release(struct gfs2_inode * ip)2181 void gfs2_inplace_release(struct gfs2_inode *ip)
2182 {
2183 	if (gfs2_holder_initialized(&ip->i_rgd_gh))
2184 		gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2185 }
2186 
2187 /**
2188  * gfs2_alloc_extent - allocate an extent from a given bitmap
2189  * @rbm: the resource group information
2190  * @dinode: TRUE if the first block we allocate is for a dinode
2191  * @n: The extent length (value/result)
2192  *
2193  * Add the bitmap buffer to the transaction.
2194  * Set the found bits to @new_state to change block's allocation state.
2195  */
gfs2_alloc_extent(const struct gfs2_rbm * rbm,bool dinode,unsigned int * n)2196 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2197 			     unsigned int *n)
2198 {
2199 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2200 	const unsigned int elen = *n;
2201 	u64 block;
2202 	int ret;
2203 
2204 	*n = 1;
2205 	block = gfs2_rbm_to_block(rbm);
2206 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2207 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2208 	block++;
2209 	while (*n < elen) {
2210 		ret = gfs2_rbm_from_block(&pos, block);
2211 		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2212 			break;
2213 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2214 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2215 		(*n)++;
2216 		block++;
2217 	}
2218 }
2219 
2220 /**
2221  * rgblk_free - Change alloc state of given block(s)
2222  * @sdp: the filesystem
2223  * @rgd: the resource group the blocks are in
2224  * @bstart: the start of a run of blocks to free
2225  * @blen: the length of the block run (all must lie within ONE RG!)
2226  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2227  */
2228 
rgblk_free(struct gfs2_sbd * sdp,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen,unsigned char new_state)2229 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2230 		       u64 bstart, u32 blen, unsigned char new_state)
2231 {
2232 	struct gfs2_rbm rbm;
2233 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2234 
2235 	rbm.rgd = rgd;
2236 	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2237 		return;
2238 	while (blen--) {
2239 		bi = rbm_bi(&rbm);
2240 		if (bi != bi_prev) {
2241 			if (!bi->bi_clone) {
2242 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2243 						      GFP_NOFS | __GFP_NOFAIL);
2244 				memcpy(bi->bi_clone + bi->bi_offset,
2245 				       bi->bi_bh->b_data + bi->bi_offset,
2246 				       bi->bi_bytes);
2247 			}
2248 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2249 			bi_prev = bi;
2250 		}
2251 		gfs2_setbit(&rbm, false, new_state);
2252 		gfs2_rbm_incr(&rbm);
2253 	}
2254 }
2255 
2256 /**
2257  * gfs2_rgrp_dump - print out an rgrp
2258  * @seq: The iterator
2259  * @gl: The glock in question
2260  * @fs_id_buf: pointer to file system id (if requested)
2261  *
2262  */
2263 
gfs2_rgrp_dump(struct seq_file * seq,struct gfs2_glock * gl,const char * fs_id_buf)2264 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_glock *gl,
2265 		    const char *fs_id_buf)
2266 {
2267 	struct gfs2_rgrpd *rgd = gl->gl_object;
2268 	struct gfs2_blkreserv *trs;
2269 	const struct rb_node *n;
2270 
2271 	if (rgd == NULL)
2272 		return;
2273 	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2274 		       fs_id_buf,
2275 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2276 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2277 		       rgd->rd_reserved, rgd->rd_extfail_pt);
2278 	if (rgd->rd_sbd->sd_args.ar_rgrplvb && rgd->rd_rgl) {
2279 		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2280 
2281 		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2282 			       be32_to_cpu(rgl->rl_flags),
2283 			       be32_to_cpu(rgl->rl_free),
2284 			       be32_to_cpu(rgl->rl_dinodes));
2285 	}
2286 	spin_lock(&rgd->rd_rsspin);
2287 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2288 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2289 		dump_rs(seq, trs, fs_id_buf);
2290 	}
2291 	spin_unlock(&rgd->rd_rsspin);
2292 }
2293 
gfs2_rgrp_error(struct gfs2_rgrpd * rgd)2294 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2295 {
2296 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2297 	char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2298 
2299 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2300 		(unsigned long long)rgd->rd_addr);
2301 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2302 	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2303 	gfs2_rgrp_dump(NULL, rgd->rd_gl, fs_id_buf);
2304 	rgd->rd_flags |= GFS2_RDF_ERROR;
2305 }
2306 
2307 /**
2308  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2309  * @ip: The inode we have just allocated blocks for
2310  * @rbm: The start of the allocated blocks
2311  * @len: The extent length
2312  *
2313  * Adjusts a reservation after an allocation has taken place. If the
2314  * reservation does not match the allocation, or if it is now empty
2315  * then it is removed.
2316  */
2317 
gfs2_adjust_reservation(struct gfs2_inode * ip,const struct gfs2_rbm * rbm,unsigned len)2318 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2319 				    const struct gfs2_rbm *rbm, unsigned len)
2320 {
2321 	struct gfs2_blkreserv *rs = &ip->i_res;
2322 	struct gfs2_rgrpd *rgd = rbm->rgd;
2323 	unsigned rlen;
2324 	u64 block;
2325 	int ret;
2326 
2327 	spin_lock(&rgd->rd_rsspin);
2328 	if (gfs2_rs_active(rs)) {
2329 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2330 			block = gfs2_rbm_to_block(rbm);
2331 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2332 			rlen = min(rs->rs_free, len);
2333 			rs->rs_free -= rlen;
2334 			rgd->rd_reserved -= rlen;
2335 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2336 			if (rs->rs_free && !ret)
2337 				goto out;
2338 			/* We used up our block reservation, so we should
2339 			   reserve more blocks next time. */
2340 			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2341 		}
2342 		__rs_deltree(rs);
2343 	}
2344 out:
2345 	spin_unlock(&rgd->rd_rsspin);
2346 }
2347 
2348 /**
2349  * gfs2_set_alloc_start - Set starting point for block allocation
2350  * @rbm: The rbm which will be set to the required location
2351  * @ip: The gfs2 inode
2352  * @dinode: Flag to say if allocation includes a new inode
2353  *
2354  * This sets the starting point from the reservation if one is active
2355  * otherwise it falls back to guessing a start point based on the
2356  * inode's goal block or the last allocation point in the rgrp.
2357  */
2358 
gfs2_set_alloc_start(struct gfs2_rbm * rbm,const struct gfs2_inode * ip,bool dinode)2359 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2360 				 const struct gfs2_inode *ip, bool dinode)
2361 {
2362 	u64 goal;
2363 
2364 	if (gfs2_rs_active(&ip->i_res)) {
2365 		*rbm = ip->i_res.rs_rbm;
2366 		return;
2367 	}
2368 
2369 	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2370 		goal = ip->i_goal;
2371 	else
2372 		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2373 
2374 	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2375 		rbm->bii = 0;
2376 		rbm->offset = 0;
2377 	}
2378 }
2379 
2380 /**
2381  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2382  * @ip: the inode to allocate the block for
2383  * @bn: Used to return the starting block number
2384  * @nblocks: requested number of blocks/extent length (value/result)
2385  * @dinode: 1 if we're allocating a dinode block, else 0
2386  * @generation: the generation number of the inode
2387  *
2388  * Returns: 0 or error
2389  */
2390 
gfs2_alloc_blocks(struct gfs2_inode * ip,u64 * bn,unsigned int * nblocks,bool dinode,u64 * generation)2391 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2392 		      bool dinode, u64 *generation)
2393 {
2394 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2395 	struct buffer_head *dibh;
2396 	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, };
2397 	unsigned int ndata;
2398 	u64 block; /* block, within the file system scope */
2399 	int error;
2400 
2401 	gfs2_set_alloc_start(&rbm, ip, dinode);
2402 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2403 
2404 	if (error == -ENOSPC) {
2405 		gfs2_set_alloc_start(&rbm, ip, dinode);
2406 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2407 	}
2408 
2409 	/* Since all blocks are reserved in advance, this shouldn't happen */
2410 	if (error) {
2411 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2412 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2413 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2414 			rbm.rgd->rd_extfail_pt);
2415 		goto rgrp_error;
2416 	}
2417 
2418 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2419 	block = gfs2_rbm_to_block(&rbm);
2420 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2421 	if (gfs2_rs_active(&ip->i_res))
2422 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2423 	ndata = *nblocks;
2424 	if (dinode)
2425 		ndata--;
2426 
2427 	if (!dinode) {
2428 		ip->i_goal = block + ndata - 1;
2429 		error = gfs2_meta_inode_buffer(ip, &dibh);
2430 		if (error == 0) {
2431 			struct gfs2_dinode *di =
2432 				(struct gfs2_dinode *)dibh->b_data;
2433 			gfs2_trans_add_meta(ip->i_gl, dibh);
2434 			di->di_goal_meta = di->di_goal_data =
2435 				cpu_to_be64(ip->i_goal);
2436 			brelse(dibh);
2437 		}
2438 	}
2439 	if (rbm.rgd->rd_free < *nblocks) {
2440 		fs_warn(sdp, "nblocks=%u\n", *nblocks);
2441 		goto rgrp_error;
2442 	}
2443 
2444 	rbm.rgd->rd_free -= *nblocks;
2445 	if (dinode) {
2446 		rbm.rgd->rd_dinodes++;
2447 		*generation = rbm.rgd->rd_igeneration++;
2448 		if (*generation == 0)
2449 			*generation = rbm.rgd->rd_igeneration++;
2450 	}
2451 
2452 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2453 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2454 
2455 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2456 	if (dinode)
2457 		gfs2_trans_remove_revoke(sdp, block, *nblocks);
2458 
2459 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2460 
2461 	rbm.rgd->rd_free_clone -= *nblocks;
2462 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2463 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2464 	*bn = block;
2465 	return 0;
2466 
2467 rgrp_error:
2468 	gfs2_rgrp_error(rbm.rgd);
2469 	return -EIO;
2470 }
2471 
2472 /**
2473  * __gfs2_free_blocks - free a contiguous run of block(s)
2474  * @ip: the inode these blocks are being freed from
2475  * @rgd: the resource group the blocks are in
2476  * @bstart: first block of a run of contiguous blocks
2477  * @blen: the length of the block run
2478  * @meta: 1 if the blocks represent metadata
2479  *
2480  */
2481 
__gfs2_free_blocks(struct gfs2_inode * ip,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen,int meta)2482 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2483 			u64 bstart, u32 blen, int meta)
2484 {
2485 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2486 
2487 	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2488 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2489 	rgd->rd_free += blen;
2490 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2491 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2492 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2493 
2494 	/* Directories keep their data in the metadata address space */
2495 	if (meta || ip->i_depth)
2496 		gfs2_meta_wipe(ip, bstart, blen);
2497 }
2498 
2499 /**
2500  * gfs2_free_meta - free a contiguous run of data block(s)
2501  * @ip: the inode these blocks are being freed from
2502  * @rgd: the resource group the blocks are in
2503  * @bstart: first block of a run of contiguous blocks
2504  * @blen: the length of the block run
2505  *
2506  */
2507 
gfs2_free_meta(struct gfs2_inode * ip,struct gfs2_rgrpd * rgd,u64 bstart,u32 blen)2508 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2509 		    u64 bstart, u32 blen)
2510 {
2511 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2512 
2513 	__gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2514 	gfs2_statfs_change(sdp, 0, +blen, 0);
2515 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2516 }
2517 
gfs2_unlink_di(struct inode * inode)2518 void gfs2_unlink_di(struct inode *inode)
2519 {
2520 	struct gfs2_inode *ip = GFS2_I(inode);
2521 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2522 	struct gfs2_rgrpd *rgd;
2523 	u64 blkno = ip->i_no_addr;
2524 
2525 	rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2526 	if (!rgd)
2527 		return;
2528 	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2529 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2530 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2531 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2532 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2533 }
2534 
gfs2_free_di(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip)2535 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2536 {
2537 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2538 
2539 	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2540 	if (!rgd->rd_dinodes)
2541 		gfs2_consist_rgrpd(rgd);
2542 	rgd->rd_dinodes--;
2543 	rgd->rd_free++;
2544 
2545 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2546 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2547 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2548 
2549 	gfs2_statfs_change(sdp, 0, +1, -1);
2550 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2551 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2552 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2553 }
2554 
2555 /**
2556  * gfs2_check_blk_type - Check the type of a block
2557  * @sdp: The superblock
2558  * @no_addr: The block number to check
2559  * @type: The block type we are looking for
2560  *
2561  * Returns: 0 if the block type matches the expected type
2562  *          -ESTALE if it doesn't match
2563  *          or -ve errno if something went wrong while checking
2564  */
2565 
gfs2_check_blk_type(struct gfs2_sbd * sdp,u64 no_addr,unsigned int type)2566 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2567 {
2568 	struct gfs2_rgrpd *rgd;
2569 	struct gfs2_holder rgd_gh;
2570 	struct gfs2_rbm rbm;
2571 	int error = -EINVAL;
2572 
2573 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2574 	if (!rgd)
2575 		goto fail;
2576 
2577 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2578 	if (error)
2579 		goto fail;
2580 
2581 	rbm.rgd = rgd;
2582 	error = gfs2_rbm_from_block(&rbm, no_addr);
2583 	if (!WARN_ON_ONCE(error)) {
2584 		if (gfs2_testbit(&rbm, false) != type)
2585 			error = -ESTALE;
2586 	}
2587 
2588 	gfs2_glock_dq_uninit(&rgd_gh);
2589 
2590 fail:
2591 	return error;
2592 }
2593 
2594 /**
2595  * gfs2_rlist_add - add a RG to a list of RGs
2596  * @ip: the inode
2597  * @rlist: the list of resource groups
2598  * @block: the block
2599  *
2600  * Figure out what RG a block belongs to and add that RG to the list
2601  *
2602  * FIXME: Don't use NOFAIL
2603  *
2604  */
2605 
gfs2_rlist_add(struct gfs2_inode * ip,struct gfs2_rgrp_list * rlist,u64 block)2606 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2607 		    u64 block)
2608 {
2609 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2610 	struct gfs2_rgrpd *rgd;
2611 	struct gfs2_rgrpd **tmp;
2612 	unsigned int new_space;
2613 	unsigned int x;
2614 
2615 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2616 		return;
2617 
2618 	/*
2619 	 * The resource group last accessed is kept in the last position.
2620 	 */
2621 
2622 	if (rlist->rl_rgrps) {
2623 		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2624 		if (rgrp_contains_block(rgd, block))
2625 			return;
2626 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2627 	} else {
2628 		rgd = ip->i_res.rs_rbm.rgd;
2629 		if (!rgd || !rgrp_contains_block(rgd, block))
2630 			rgd = gfs2_blk2rgrpd(sdp, block, 1);
2631 	}
2632 
2633 	if (!rgd) {
2634 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2635 		       (unsigned long long)block);
2636 		return;
2637 	}
2638 
2639 	for (x = 0; x < rlist->rl_rgrps; x++) {
2640 		if (rlist->rl_rgd[x] == rgd) {
2641 			swap(rlist->rl_rgd[x],
2642 			     rlist->rl_rgd[rlist->rl_rgrps - 1]);
2643 			return;
2644 		}
2645 	}
2646 
2647 	if (rlist->rl_rgrps == rlist->rl_space) {
2648 		new_space = rlist->rl_space + 10;
2649 
2650 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2651 			      GFP_NOFS | __GFP_NOFAIL);
2652 
2653 		if (rlist->rl_rgd) {
2654 			memcpy(tmp, rlist->rl_rgd,
2655 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2656 			kfree(rlist->rl_rgd);
2657 		}
2658 
2659 		rlist->rl_space = new_space;
2660 		rlist->rl_rgd = tmp;
2661 	}
2662 
2663 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2664 }
2665 
2666 /**
2667  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2668  *      and initialize an array of glock holders for them
2669  * @rlist: the list of resource groups
2670  *
2671  * FIXME: Don't use NOFAIL
2672  *
2673  */
2674 
gfs2_rlist_alloc(struct gfs2_rgrp_list * rlist)2675 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2676 {
2677 	unsigned int x;
2678 
2679 	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2680 				      sizeof(struct gfs2_holder),
2681 				      GFP_NOFS | __GFP_NOFAIL);
2682 	for (x = 0; x < rlist->rl_rgrps; x++)
2683 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2684 				LM_ST_EXCLUSIVE, 0,
2685 				&rlist->rl_ghs[x]);
2686 }
2687 
2688 /**
2689  * gfs2_rlist_free - free a resource group list
2690  * @rlist: the list of resource groups
2691  *
2692  */
2693 
gfs2_rlist_free(struct gfs2_rgrp_list * rlist)2694 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2695 {
2696 	unsigned int x;
2697 
2698 	kfree(rlist->rl_rgd);
2699 
2700 	if (rlist->rl_ghs) {
2701 		for (x = 0; x < rlist->rl_rgrps; x++)
2702 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2703 		kfree(rlist->rl_ghs);
2704 		rlist->rl_ghs = NULL;
2705 	}
2706 }
2707 
2708