1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 */
6
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33 * block is 512, so __u16 is fine for that. It saves stack space to
34 * keep it small.
35 */
36 struct metapath {
37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 __u16 mp_list[GFS2_MAX_META_HEIGHT];
39 int mp_fheight; /* find_metapath height */
40 int mp_aheight; /* actual height (lookup height) */
41 };
42
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44
45 /**
46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47 * @ip: the inode
48 * @dibh: the dinode buffer
49 * @block: the block number that was allocated
50 * @page: The (optional) page. This is looked up if @page is NULL
51 *
52 * Returns: errno
53 */
54
gfs2_unstuffer_page(struct gfs2_inode * ip,struct buffer_head * dibh,u64 block,struct page * page)55 static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 u64 block, struct page *page)
57 {
58 struct inode *inode = &ip->i_inode;
59 struct buffer_head *bh;
60 int release = 0;
61
62 if (!page || page->index) {
63 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
64 if (!page)
65 return -ENOMEM;
66 release = 1;
67 }
68
69 if (!PageUptodate(page)) {
70 void *kaddr = kmap(page);
71 u64 dsize = i_size_read(inode);
72
73 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
74 memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
75 kunmap(page);
76
77 SetPageUptodate(page);
78 }
79
80 if (!page_has_buffers(page))
81 create_empty_buffers(page, BIT(inode->i_blkbits),
82 BIT(BH_Uptodate));
83
84 bh = page_buffers(page);
85
86 if (!buffer_mapped(bh))
87 map_bh(bh, inode->i_sb, block);
88
89 set_buffer_uptodate(bh);
90 if (gfs2_is_jdata(ip))
91 gfs2_trans_add_data(ip->i_gl, bh);
92 else {
93 mark_buffer_dirty(bh);
94 gfs2_ordered_add_inode(ip);
95 }
96
97 if (release) {
98 unlock_page(page);
99 put_page(page);
100 }
101
102 return 0;
103 }
104
105 /**
106 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
107 * @ip: The GFS2 inode to unstuff
108 * @page: The (optional) page. This is looked up if the @page is NULL
109 *
110 * This routine unstuffs a dinode and returns it to a "normal" state such
111 * that the height can be grown in the traditional way.
112 *
113 * Returns: errno
114 */
115
gfs2_unstuff_dinode(struct gfs2_inode * ip,struct page * page)116 int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
117 {
118 struct buffer_head *bh, *dibh;
119 struct gfs2_dinode *di;
120 u64 block = 0;
121 int isdir = gfs2_is_dir(ip);
122 int error;
123
124 down_write(&ip->i_rw_mutex);
125
126 error = gfs2_meta_inode_buffer(ip, &dibh);
127 if (error)
128 goto out;
129
130 if (i_size_read(&ip->i_inode)) {
131 /* Get a free block, fill it with the stuffed data,
132 and write it out to disk */
133
134 unsigned int n = 1;
135 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
136 if (error)
137 goto out_brelse;
138 if (isdir) {
139 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
140 error = gfs2_dir_get_new_buffer(ip, block, &bh);
141 if (error)
142 goto out_brelse;
143 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
144 dibh, sizeof(struct gfs2_dinode));
145 brelse(bh);
146 } else {
147 error = gfs2_unstuffer_page(ip, dibh, block, page);
148 if (error)
149 goto out_brelse;
150 }
151 }
152
153 /* Set up the pointer to the new block */
154
155 gfs2_trans_add_meta(ip->i_gl, dibh);
156 di = (struct gfs2_dinode *)dibh->b_data;
157 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
158
159 if (i_size_read(&ip->i_inode)) {
160 *(__be64 *)(di + 1) = cpu_to_be64(block);
161 gfs2_add_inode_blocks(&ip->i_inode, 1);
162 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
163 }
164
165 ip->i_height = 1;
166 di->di_height = cpu_to_be16(1);
167
168 out_brelse:
169 brelse(dibh);
170 out:
171 up_write(&ip->i_rw_mutex);
172 return error;
173 }
174
175
176 /**
177 * find_metapath - Find path through the metadata tree
178 * @sdp: The superblock
179 * @block: The disk block to look up
180 * @mp: The metapath to return the result in
181 * @height: The pre-calculated height of the metadata tree
182 *
183 * This routine returns a struct metapath structure that defines a path
184 * through the metadata of inode "ip" to get to block "block".
185 *
186 * Example:
187 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a
188 * filesystem with a blocksize of 4096.
189 *
190 * find_metapath() would return a struct metapath structure set to:
191 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
192 *
193 * That means that in order to get to the block containing the byte at
194 * offset 101342453, we would load the indirect block pointed to by pointer
195 * 0 in the dinode. We would then load the indirect block pointed to by
196 * pointer 48 in that indirect block. We would then load the data block
197 * pointed to by pointer 165 in that indirect block.
198 *
199 * ----------------------------------------
200 * | Dinode | |
201 * | | 4|
202 * | |0 1 2 3 4 5 9|
203 * | | 6|
204 * ----------------------------------------
205 * |
206 * |
207 * V
208 * ----------------------------------------
209 * | Indirect Block |
210 * | 5|
211 * | 4 4 4 4 4 5 5 1|
212 * |0 5 6 7 8 9 0 1 2|
213 * ----------------------------------------
214 * |
215 * |
216 * V
217 * ----------------------------------------
218 * | Indirect Block |
219 * | 1 1 1 1 1 5|
220 * | 6 6 6 6 6 1|
221 * |0 3 4 5 6 7 2|
222 * ----------------------------------------
223 * |
224 * |
225 * V
226 * ----------------------------------------
227 * | Data block containing offset |
228 * | 101342453 |
229 * | |
230 * | |
231 * ----------------------------------------
232 *
233 */
234
find_metapath(const struct gfs2_sbd * sdp,u64 block,struct metapath * mp,unsigned int height)235 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
236 struct metapath *mp, unsigned int height)
237 {
238 unsigned int i;
239
240 mp->mp_fheight = height;
241 for (i = height; i--;)
242 mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
243 }
244
metapath_branch_start(const struct metapath * mp)245 static inline unsigned int metapath_branch_start(const struct metapath *mp)
246 {
247 if (mp->mp_list[0] == 0)
248 return 2;
249 return 1;
250 }
251
252 /**
253 * metaptr1 - Return the first possible metadata pointer in a metapath buffer
254 * @height: The metadata height (0 = dinode)
255 * @mp: The metapath
256 */
metaptr1(unsigned int height,const struct metapath * mp)257 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
258 {
259 struct buffer_head *bh = mp->mp_bh[height];
260 if (height == 0)
261 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
262 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
263 }
264
265 /**
266 * metapointer - Return pointer to start of metadata in a buffer
267 * @height: The metadata height (0 = dinode)
268 * @mp: The metapath
269 *
270 * Return a pointer to the block number of the next height of the metadata
271 * tree given a buffer containing the pointer to the current height of the
272 * metadata tree.
273 */
274
metapointer(unsigned int height,const struct metapath * mp)275 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
276 {
277 __be64 *p = metaptr1(height, mp);
278 return p + mp->mp_list[height];
279 }
280
metaend(unsigned int height,const struct metapath * mp)281 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
282 {
283 const struct buffer_head *bh = mp->mp_bh[height];
284 return (const __be64 *)(bh->b_data + bh->b_size);
285 }
286
clone_metapath(struct metapath * clone,struct metapath * mp)287 static void clone_metapath(struct metapath *clone, struct metapath *mp)
288 {
289 unsigned int hgt;
290
291 *clone = *mp;
292 for (hgt = 0; hgt < mp->mp_aheight; hgt++)
293 get_bh(clone->mp_bh[hgt]);
294 }
295
gfs2_metapath_ra(struct gfs2_glock * gl,__be64 * start,__be64 * end)296 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
297 {
298 const __be64 *t;
299
300 for (t = start; t < end; t++) {
301 struct buffer_head *rabh;
302
303 if (!*t)
304 continue;
305
306 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
307 if (trylock_buffer(rabh)) {
308 if (!buffer_uptodate(rabh)) {
309 rabh->b_end_io = end_buffer_read_sync;
310 submit_bh(REQ_OP_READ,
311 REQ_RAHEAD | REQ_META | REQ_PRIO,
312 rabh);
313 continue;
314 }
315 unlock_buffer(rabh);
316 }
317 brelse(rabh);
318 }
319 }
320
__fillup_metapath(struct gfs2_inode * ip,struct metapath * mp,unsigned int x,unsigned int h)321 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
322 unsigned int x, unsigned int h)
323 {
324 for (; x < h; x++) {
325 __be64 *ptr = metapointer(x, mp);
326 u64 dblock = be64_to_cpu(*ptr);
327 int ret;
328
329 if (!dblock)
330 break;
331 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
332 if (ret)
333 return ret;
334 }
335 mp->mp_aheight = x + 1;
336 return 0;
337 }
338
339 /**
340 * lookup_metapath - Walk the metadata tree to a specific point
341 * @ip: The inode
342 * @mp: The metapath
343 *
344 * Assumes that the inode's buffer has already been looked up and
345 * hooked onto mp->mp_bh[0] and that the metapath has been initialised
346 * by find_metapath().
347 *
348 * If this function encounters part of the tree which has not been
349 * allocated, it returns the current height of the tree at the point
350 * at which it found the unallocated block. Blocks which are found are
351 * added to the mp->mp_bh[] list.
352 *
353 * Returns: error
354 */
355
lookup_metapath(struct gfs2_inode * ip,struct metapath * mp)356 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
357 {
358 return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
359 }
360
361 /**
362 * fillup_metapath - fill up buffers for the metadata path to a specific height
363 * @ip: The inode
364 * @mp: The metapath
365 * @h: The height to which it should be mapped
366 *
367 * Similar to lookup_metapath, but does lookups for a range of heights
368 *
369 * Returns: error or the number of buffers filled
370 */
371
fillup_metapath(struct gfs2_inode * ip,struct metapath * mp,int h)372 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
373 {
374 unsigned int x = 0;
375 int ret;
376
377 if (h) {
378 /* find the first buffer we need to look up. */
379 for (x = h - 1; x > 0; x--) {
380 if (mp->mp_bh[x])
381 break;
382 }
383 }
384 ret = __fillup_metapath(ip, mp, x, h);
385 if (ret)
386 return ret;
387 return mp->mp_aheight - x - 1;
388 }
389
metapath_to_block(struct gfs2_sbd * sdp,struct metapath * mp)390 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
391 {
392 sector_t factor = 1, block = 0;
393 int hgt;
394
395 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
396 if (hgt < mp->mp_aheight)
397 block += mp->mp_list[hgt] * factor;
398 factor *= sdp->sd_inptrs;
399 }
400 return block;
401 }
402
release_metapath(struct metapath * mp)403 static void release_metapath(struct metapath *mp)
404 {
405 int i;
406
407 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
408 if (mp->mp_bh[i] == NULL)
409 break;
410 brelse(mp->mp_bh[i]);
411 mp->mp_bh[i] = NULL;
412 }
413 }
414
415 /**
416 * gfs2_extent_length - Returns length of an extent of blocks
417 * @bh: The metadata block
418 * @ptr: Current position in @bh
419 * @limit: Max extent length to return
420 * @eob: Set to 1 if we hit "end of block"
421 *
422 * Returns: The length of the extent (minimum of one block)
423 */
424
gfs2_extent_length(struct buffer_head * bh,__be64 * ptr,size_t limit,int * eob)425 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
426 {
427 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
428 const __be64 *first = ptr;
429 u64 d = be64_to_cpu(*ptr);
430
431 *eob = 0;
432 do {
433 ptr++;
434 if (ptr >= end)
435 break;
436 d++;
437 } while(be64_to_cpu(*ptr) == d);
438 if (ptr >= end)
439 *eob = 1;
440 return ptr - first;
441 }
442
443 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
444
445 /*
446 * gfs2_metadata_walker - walk an indirect block
447 * @mp: Metapath to indirect block
448 * @ptrs: Number of pointers to look at
449 *
450 * When returning WALK_FOLLOW, the walker must update @mp to point at the right
451 * indirect block to follow.
452 */
453 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
454 unsigned int ptrs);
455
456 /*
457 * gfs2_walk_metadata - walk a tree of indirect blocks
458 * @inode: The inode
459 * @mp: Starting point of walk
460 * @max_len: Maximum number of blocks to walk
461 * @walker: Called during the walk
462 *
463 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
464 * past the end of metadata, and a negative error code otherwise.
465 */
466
gfs2_walk_metadata(struct inode * inode,struct metapath * mp,u64 max_len,gfs2_metadata_walker walker)467 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
468 u64 max_len, gfs2_metadata_walker walker)
469 {
470 struct gfs2_inode *ip = GFS2_I(inode);
471 struct gfs2_sbd *sdp = GFS2_SB(inode);
472 u64 factor = 1;
473 unsigned int hgt;
474 int ret;
475
476 /*
477 * The walk starts in the lowest allocated indirect block, which may be
478 * before the position indicated by @mp. Adjust @max_len accordingly
479 * to avoid a short walk.
480 */
481 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
482 max_len += mp->mp_list[hgt] * factor;
483 mp->mp_list[hgt] = 0;
484 factor *= sdp->sd_inptrs;
485 }
486
487 for (;;) {
488 u16 start = mp->mp_list[hgt];
489 enum walker_status status;
490 unsigned int ptrs;
491 u64 len;
492
493 /* Walk indirect block. */
494 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
495 len = ptrs * factor;
496 if (len > max_len)
497 ptrs = DIV_ROUND_UP_ULL(max_len, factor);
498 status = walker(mp, ptrs);
499 switch (status) {
500 case WALK_STOP:
501 return 1;
502 case WALK_FOLLOW:
503 BUG_ON(mp->mp_aheight == mp->mp_fheight);
504 ptrs = mp->mp_list[hgt] - start;
505 len = ptrs * factor;
506 break;
507 case WALK_CONTINUE:
508 break;
509 }
510 if (len >= max_len)
511 break;
512 max_len -= len;
513 if (status == WALK_FOLLOW)
514 goto fill_up_metapath;
515
516 lower_metapath:
517 /* Decrease height of metapath. */
518 brelse(mp->mp_bh[hgt]);
519 mp->mp_bh[hgt] = NULL;
520 mp->mp_list[hgt] = 0;
521 if (!hgt)
522 break;
523 hgt--;
524 factor *= sdp->sd_inptrs;
525
526 /* Advance in metadata tree. */
527 (mp->mp_list[hgt])++;
528 if (hgt) {
529 if (mp->mp_list[hgt] >= sdp->sd_inptrs)
530 goto lower_metapath;
531 } else {
532 if (mp->mp_list[hgt] >= sdp->sd_diptrs)
533 break;
534 }
535
536 fill_up_metapath:
537 /* Increase height of metapath. */
538 ret = fillup_metapath(ip, mp, ip->i_height - 1);
539 if (ret < 0)
540 return ret;
541 hgt += ret;
542 for (; ret; ret--)
543 do_div(factor, sdp->sd_inptrs);
544 mp->mp_aheight = hgt + 1;
545 }
546 return 0;
547 }
548
gfs2_hole_walker(struct metapath * mp,unsigned int ptrs)549 static enum walker_status gfs2_hole_walker(struct metapath *mp,
550 unsigned int ptrs)
551 {
552 const __be64 *start, *ptr, *end;
553 unsigned int hgt;
554
555 hgt = mp->mp_aheight - 1;
556 start = metapointer(hgt, mp);
557 end = start + ptrs;
558
559 for (ptr = start; ptr < end; ptr++) {
560 if (*ptr) {
561 mp->mp_list[hgt] += ptr - start;
562 if (mp->mp_aheight == mp->mp_fheight)
563 return WALK_STOP;
564 return WALK_FOLLOW;
565 }
566 }
567 return WALK_CONTINUE;
568 }
569
570 /**
571 * gfs2_hole_size - figure out the size of a hole
572 * @inode: The inode
573 * @lblock: The logical starting block number
574 * @len: How far to look (in blocks)
575 * @mp: The metapath at lblock
576 * @iomap: The iomap to store the hole size in
577 *
578 * This function modifies @mp.
579 *
580 * Returns: errno on error
581 */
gfs2_hole_size(struct inode * inode,sector_t lblock,u64 len,struct metapath * mp,struct iomap * iomap)582 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
583 struct metapath *mp, struct iomap *iomap)
584 {
585 struct metapath clone;
586 u64 hole_size;
587 int ret;
588
589 clone_metapath(&clone, mp);
590 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
591 if (ret < 0)
592 goto out;
593
594 if (ret == 1)
595 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
596 else
597 hole_size = len;
598 iomap->length = hole_size << inode->i_blkbits;
599 ret = 0;
600
601 out:
602 release_metapath(&clone);
603 return ret;
604 }
605
gfs2_indirect_init(struct metapath * mp,struct gfs2_glock * gl,unsigned int i,unsigned offset,u64 bn)606 static inline __be64 *gfs2_indirect_init(struct metapath *mp,
607 struct gfs2_glock *gl, unsigned int i,
608 unsigned offset, u64 bn)
609 {
610 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
611 ((i > 1) ? sizeof(struct gfs2_meta_header) :
612 sizeof(struct gfs2_dinode)));
613 BUG_ON(i < 1);
614 BUG_ON(mp->mp_bh[i] != NULL);
615 mp->mp_bh[i] = gfs2_meta_new(gl, bn);
616 gfs2_trans_add_meta(gl, mp->mp_bh[i]);
617 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
618 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
619 ptr += offset;
620 *ptr = cpu_to_be64(bn);
621 return ptr;
622 }
623
624 enum alloc_state {
625 ALLOC_DATA = 0,
626 ALLOC_GROW_DEPTH = 1,
627 ALLOC_GROW_HEIGHT = 2,
628 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */
629 };
630
631 /**
632 * gfs2_iomap_alloc - Build a metadata tree of the requested height
633 * @inode: The GFS2 inode
634 * @iomap: The iomap structure
635 * @mp: The metapath, with proper height information calculated
636 *
637 * In this routine we may have to alloc:
638 * i) Indirect blocks to grow the metadata tree height
639 * ii) Indirect blocks to fill in lower part of the metadata tree
640 * iii) Data blocks
641 *
642 * This function is called after gfs2_iomap_get, which works out the
643 * total number of blocks which we need via gfs2_alloc_size.
644 *
645 * We then do the actual allocation asking for an extent at a time (if
646 * enough contiguous free blocks are available, there will only be one
647 * allocation request per call) and uses the state machine to initialise
648 * the blocks in order.
649 *
650 * Right now, this function will allocate at most one indirect block
651 * worth of data -- with a default block size of 4K, that's slightly
652 * less than 2M. If this limitation is ever removed to allow huge
653 * allocations, we would probably still want to limit the iomap size we
654 * return to avoid stalling other tasks during huge writes; the next
655 * iomap iteration would then find the blocks already allocated.
656 *
657 * Returns: errno on error
658 */
659
gfs2_iomap_alloc(struct inode * inode,struct iomap * iomap,struct metapath * mp)660 static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
661 struct metapath *mp)
662 {
663 struct gfs2_inode *ip = GFS2_I(inode);
664 struct gfs2_sbd *sdp = GFS2_SB(inode);
665 struct buffer_head *dibh = mp->mp_bh[0];
666 u64 bn;
667 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
668 size_t dblks = iomap->length >> inode->i_blkbits;
669 const unsigned end_of_metadata = mp->mp_fheight - 1;
670 int ret;
671 enum alloc_state state;
672 __be64 *ptr;
673 __be64 zero_bn = 0;
674
675 BUG_ON(mp->mp_aheight < 1);
676 BUG_ON(dibh == NULL);
677 BUG_ON(dblks < 1);
678
679 gfs2_trans_add_meta(ip->i_gl, dibh);
680
681 down_write(&ip->i_rw_mutex);
682
683 if (mp->mp_fheight == mp->mp_aheight) {
684 /* Bottom indirect block exists */
685 state = ALLOC_DATA;
686 } else {
687 /* Need to allocate indirect blocks */
688 if (mp->mp_fheight == ip->i_height) {
689 /* Writing into existing tree, extend tree down */
690 iblks = mp->mp_fheight - mp->mp_aheight;
691 state = ALLOC_GROW_DEPTH;
692 } else {
693 /* Building up tree height */
694 state = ALLOC_GROW_HEIGHT;
695 iblks = mp->mp_fheight - ip->i_height;
696 branch_start = metapath_branch_start(mp);
697 iblks += (mp->mp_fheight - branch_start);
698 }
699 }
700
701 /* start of the second part of the function (state machine) */
702
703 blks = dblks + iblks;
704 i = mp->mp_aheight;
705 do {
706 n = blks - alloced;
707 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
708 if (ret)
709 goto out;
710 alloced += n;
711 if (state != ALLOC_DATA || gfs2_is_jdata(ip))
712 gfs2_trans_remove_revoke(sdp, bn, n);
713 switch (state) {
714 /* Growing height of tree */
715 case ALLOC_GROW_HEIGHT:
716 if (i == 1) {
717 ptr = (__be64 *)(dibh->b_data +
718 sizeof(struct gfs2_dinode));
719 zero_bn = *ptr;
720 }
721 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
722 i++, n--)
723 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
724 if (i - 1 == mp->mp_fheight - ip->i_height) {
725 i--;
726 gfs2_buffer_copy_tail(mp->mp_bh[i],
727 sizeof(struct gfs2_meta_header),
728 dibh, sizeof(struct gfs2_dinode));
729 gfs2_buffer_clear_tail(dibh,
730 sizeof(struct gfs2_dinode) +
731 sizeof(__be64));
732 ptr = (__be64 *)(mp->mp_bh[i]->b_data +
733 sizeof(struct gfs2_meta_header));
734 *ptr = zero_bn;
735 state = ALLOC_GROW_DEPTH;
736 for(i = branch_start; i < mp->mp_fheight; i++) {
737 if (mp->mp_bh[i] == NULL)
738 break;
739 brelse(mp->mp_bh[i]);
740 mp->mp_bh[i] = NULL;
741 }
742 i = branch_start;
743 }
744 if (n == 0)
745 break;
746 /* fall through - To branching from existing tree */
747 case ALLOC_GROW_DEPTH:
748 if (i > 1 && i < mp->mp_fheight)
749 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
750 for (; i < mp->mp_fheight && n > 0; i++, n--)
751 gfs2_indirect_init(mp, ip->i_gl, i,
752 mp->mp_list[i-1], bn++);
753 if (i == mp->mp_fheight)
754 state = ALLOC_DATA;
755 if (n == 0)
756 break;
757 /* fall through - To tree complete, adding data blocks */
758 case ALLOC_DATA:
759 BUG_ON(n > dblks);
760 BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
761 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
762 dblks = n;
763 ptr = metapointer(end_of_metadata, mp);
764 iomap->addr = bn << inode->i_blkbits;
765 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
766 while (n-- > 0)
767 *ptr++ = cpu_to_be64(bn++);
768 break;
769 }
770 } while (iomap->addr == IOMAP_NULL_ADDR);
771
772 iomap->type = IOMAP_MAPPED;
773 iomap->length = (u64)dblks << inode->i_blkbits;
774 ip->i_height = mp->mp_fheight;
775 gfs2_add_inode_blocks(&ip->i_inode, alloced);
776 gfs2_dinode_out(ip, dibh->b_data);
777 out:
778 up_write(&ip->i_rw_mutex);
779 return ret;
780 }
781
782 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
783
784 /**
785 * gfs2_alloc_size - Compute the maximum allocation size
786 * @inode: The inode
787 * @mp: The metapath
788 * @size: Requested size in blocks
789 *
790 * Compute the maximum size of the next allocation at @mp.
791 *
792 * Returns: size in blocks
793 */
gfs2_alloc_size(struct inode * inode,struct metapath * mp,u64 size)794 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
795 {
796 struct gfs2_inode *ip = GFS2_I(inode);
797 struct gfs2_sbd *sdp = GFS2_SB(inode);
798 const __be64 *first, *ptr, *end;
799
800 /*
801 * For writes to stuffed files, this function is called twice via
802 * gfs2_iomap_get, before and after unstuffing. The size we return the
803 * first time needs to be large enough to get the reservation and
804 * allocation sizes right. The size we return the second time must
805 * be exact or else gfs2_iomap_alloc won't do the right thing.
806 */
807
808 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
809 unsigned int maxsize = mp->mp_fheight > 1 ?
810 sdp->sd_inptrs : sdp->sd_diptrs;
811 maxsize -= mp->mp_list[mp->mp_fheight - 1];
812 if (size > maxsize)
813 size = maxsize;
814 return size;
815 }
816
817 first = metapointer(ip->i_height - 1, mp);
818 end = metaend(ip->i_height - 1, mp);
819 if (end - first > size)
820 end = first + size;
821 for (ptr = first; ptr < end; ptr++) {
822 if (*ptr)
823 break;
824 }
825 return ptr - first;
826 }
827
828 /**
829 * gfs2_iomap_get - Map blocks from an inode to disk blocks
830 * @inode: The inode
831 * @pos: Starting position in bytes
832 * @length: Length to map, in bytes
833 * @flags: iomap flags
834 * @iomap: The iomap structure
835 * @mp: The metapath
836 *
837 * Returns: errno
838 */
gfs2_iomap_get(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct metapath * mp)839 static int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
840 unsigned flags, struct iomap *iomap,
841 struct metapath *mp)
842 {
843 struct gfs2_inode *ip = GFS2_I(inode);
844 struct gfs2_sbd *sdp = GFS2_SB(inode);
845 loff_t size = i_size_read(inode);
846 __be64 *ptr;
847 sector_t lblock;
848 sector_t lblock_stop;
849 int ret;
850 int eob;
851 u64 len;
852 struct buffer_head *dibh = NULL, *bh;
853 u8 height;
854
855 if (!length)
856 return -EINVAL;
857
858 down_read(&ip->i_rw_mutex);
859
860 ret = gfs2_meta_inode_buffer(ip, &dibh);
861 if (ret)
862 goto unlock;
863 mp->mp_bh[0] = dibh;
864
865 if (gfs2_is_stuffed(ip)) {
866 if (flags & IOMAP_WRITE) {
867 loff_t max_size = gfs2_max_stuffed_size(ip);
868
869 if (pos + length > max_size)
870 goto unstuff;
871 iomap->length = max_size;
872 } else {
873 if (pos >= size) {
874 if (flags & IOMAP_REPORT) {
875 ret = -ENOENT;
876 goto unlock;
877 } else {
878 iomap->offset = pos;
879 iomap->length = length;
880 goto hole_found;
881 }
882 }
883 iomap->length = size;
884 }
885 iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
886 sizeof(struct gfs2_dinode);
887 iomap->type = IOMAP_INLINE;
888 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
889 goto out;
890 }
891
892 unstuff:
893 lblock = pos >> inode->i_blkbits;
894 iomap->offset = lblock << inode->i_blkbits;
895 lblock_stop = (pos + length - 1) >> inode->i_blkbits;
896 len = lblock_stop - lblock + 1;
897 iomap->length = len << inode->i_blkbits;
898
899 height = ip->i_height;
900 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
901 height++;
902 find_metapath(sdp, lblock, mp, height);
903 if (height > ip->i_height || gfs2_is_stuffed(ip))
904 goto do_alloc;
905
906 ret = lookup_metapath(ip, mp);
907 if (ret)
908 goto unlock;
909
910 if (mp->mp_aheight != ip->i_height)
911 goto do_alloc;
912
913 ptr = metapointer(ip->i_height - 1, mp);
914 if (*ptr == 0)
915 goto do_alloc;
916
917 bh = mp->mp_bh[ip->i_height - 1];
918 len = gfs2_extent_length(bh, ptr, len, &eob);
919
920 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
921 iomap->length = len << inode->i_blkbits;
922 iomap->type = IOMAP_MAPPED;
923 iomap->flags |= IOMAP_F_MERGED;
924 if (eob)
925 iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
926
927 out:
928 iomap->bdev = inode->i_sb->s_bdev;
929 unlock:
930 up_read(&ip->i_rw_mutex);
931 return ret;
932
933 do_alloc:
934 if (flags & IOMAP_REPORT) {
935 if (pos >= size)
936 ret = -ENOENT;
937 else if (height == ip->i_height)
938 ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
939 else
940 iomap->length = size - iomap->offset;
941 } else if (flags & IOMAP_WRITE) {
942 u64 alloc_size;
943
944 if (flags & IOMAP_DIRECT)
945 goto out; /* (see gfs2_file_direct_write) */
946
947 len = gfs2_alloc_size(inode, mp, len);
948 alloc_size = len << inode->i_blkbits;
949 if (alloc_size < iomap->length)
950 iomap->length = alloc_size;
951 } else {
952 if (pos < size && height == ip->i_height)
953 ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
954 }
955 hole_found:
956 iomap->addr = IOMAP_NULL_ADDR;
957 iomap->type = IOMAP_HOLE;
958 goto out;
959 }
960
961 /**
962 * gfs2_lblk_to_dblk - convert logical block to disk block
963 * @inode: the inode of the file we're mapping
964 * @lblock: the block relative to the start of the file
965 * @dblock: the returned dblock, if no error
966 *
967 * This function maps a single block from a file logical block (relative to
968 * the start of the file) to a file system absolute block using iomap.
969 *
970 * Returns: the absolute file system block, or an error
971 */
gfs2_lblk_to_dblk(struct inode * inode,u32 lblock,u64 * dblock)972 int gfs2_lblk_to_dblk(struct inode *inode, u32 lblock, u64 *dblock)
973 {
974 struct iomap iomap = { };
975 struct metapath mp = { .mp_aheight = 1, };
976 loff_t pos = (loff_t)lblock << inode->i_blkbits;
977 int ret;
978
979 ret = gfs2_iomap_get(inode, pos, i_blocksize(inode), 0, &iomap, &mp);
980 release_metapath(&mp);
981 if (ret == 0)
982 *dblock = iomap.addr >> inode->i_blkbits;
983
984 return ret;
985 }
986
gfs2_write_lock(struct inode * inode)987 static int gfs2_write_lock(struct inode *inode)
988 {
989 struct gfs2_inode *ip = GFS2_I(inode);
990 struct gfs2_sbd *sdp = GFS2_SB(inode);
991 int error;
992
993 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
994 error = gfs2_glock_nq(&ip->i_gh);
995 if (error)
996 goto out_uninit;
997 if (&ip->i_inode == sdp->sd_rindex) {
998 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
999
1000 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1001 GL_NOCACHE, &m_ip->i_gh);
1002 if (error)
1003 goto out_unlock;
1004 }
1005 return 0;
1006
1007 out_unlock:
1008 gfs2_glock_dq(&ip->i_gh);
1009 out_uninit:
1010 gfs2_holder_uninit(&ip->i_gh);
1011 return error;
1012 }
1013
gfs2_write_unlock(struct inode * inode)1014 static void gfs2_write_unlock(struct inode *inode)
1015 {
1016 struct gfs2_inode *ip = GFS2_I(inode);
1017 struct gfs2_sbd *sdp = GFS2_SB(inode);
1018
1019 if (&ip->i_inode == sdp->sd_rindex) {
1020 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1021
1022 gfs2_glock_dq_uninit(&m_ip->i_gh);
1023 }
1024 gfs2_glock_dq_uninit(&ip->i_gh);
1025 }
1026
gfs2_iomap_page_prepare(struct inode * inode,loff_t pos,unsigned len,struct iomap * iomap)1027 static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
1028 unsigned len, struct iomap *iomap)
1029 {
1030 unsigned int blockmask = i_blocksize(inode) - 1;
1031 struct gfs2_sbd *sdp = GFS2_SB(inode);
1032 unsigned int blocks;
1033
1034 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
1035 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
1036 }
1037
gfs2_iomap_page_done(struct inode * inode,loff_t pos,unsigned copied,struct page * page,struct iomap * iomap)1038 static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
1039 unsigned copied, struct page *page,
1040 struct iomap *iomap)
1041 {
1042 struct gfs2_trans *tr = current->journal_info;
1043 struct gfs2_inode *ip = GFS2_I(inode);
1044 struct gfs2_sbd *sdp = GFS2_SB(inode);
1045
1046 if (page && !gfs2_is_stuffed(ip))
1047 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
1048
1049 if (tr->tr_num_buf_new)
1050 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1051
1052 gfs2_trans_end(sdp);
1053 }
1054
1055 static const struct iomap_page_ops gfs2_iomap_page_ops = {
1056 .page_prepare = gfs2_iomap_page_prepare,
1057 .page_done = gfs2_iomap_page_done,
1058 };
1059
gfs2_iomap_begin_write(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct metapath * mp)1060 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1061 loff_t length, unsigned flags,
1062 struct iomap *iomap,
1063 struct metapath *mp)
1064 {
1065 struct gfs2_inode *ip = GFS2_I(inode);
1066 struct gfs2_sbd *sdp = GFS2_SB(inode);
1067 bool unstuff;
1068 int ret;
1069
1070 unstuff = gfs2_is_stuffed(ip) &&
1071 pos + length > gfs2_max_stuffed_size(ip);
1072
1073 if (unstuff || iomap->type == IOMAP_HOLE) {
1074 unsigned int data_blocks, ind_blocks;
1075 struct gfs2_alloc_parms ap = {};
1076 unsigned int rblocks;
1077 struct gfs2_trans *tr;
1078
1079 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1080 &ind_blocks);
1081 ap.target = data_blocks + ind_blocks;
1082 ret = gfs2_quota_lock_check(ip, &ap);
1083 if (ret)
1084 return ret;
1085
1086 ret = gfs2_inplace_reserve(ip, &ap);
1087 if (ret)
1088 goto out_qunlock;
1089
1090 rblocks = RES_DINODE + ind_blocks;
1091 if (gfs2_is_jdata(ip))
1092 rblocks += data_blocks;
1093 if (ind_blocks || data_blocks)
1094 rblocks += RES_STATFS + RES_QUOTA;
1095 if (inode == sdp->sd_rindex)
1096 rblocks += 2 * RES_STATFS;
1097 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1098
1099 ret = gfs2_trans_begin(sdp, rblocks,
1100 iomap->length >> inode->i_blkbits);
1101 if (ret)
1102 goto out_trans_fail;
1103
1104 if (unstuff) {
1105 ret = gfs2_unstuff_dinode(ip, NULL);
1106 if (ret)
1107 goto out_trans_end;
1108 release_metapath(mp);
1109 ret = gfs2_iomap_get(inode, iomap->offset,
1110 iomap->length, flags, iomap, mp);
1111 if (ret)
1112 goto out_trans_end;
1113 }
1114
1115 if (iomap->type == IOMAP_HOLE) {
1116 ret = gfs2_iomap_alloc(inode, iomap, mp);
1117 if (ret) {
1118 gfs2_trans_end(sdp);
1119 gfs2_inplace_release(ip);
1120 punch_hole(ip, iomap->offset, iomap->length);
1121 goto out_qunlock;
1122 }
1123 }
1124
1125 tr = current->journal_info;
1126 if (tr->tr_num_buf_new)
1127 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1128
1129 gfs2_trans_end(sdp);
1130 }
1131
1132 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1133 iomap->page_ops = &gfs2_iomap_page_ops;
1134 return 0;
1135
1136 out_trans_end:
1137 gfs2_trans_end(sdp);
1138 out_trans_fail:
1139 gfs2_inplace_release(ip);
1140 out_qunlock:
1141 gfs2_quota_unlock(ip);
1142 return ret;
1143 }
1144
gfs2_iomap_need_write_lock(unsigned flags)1145 static inline bool gfs2_iomap_need_write_lock(unsigned flags)
1146 {
1147 return (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT);
1148 }
1149
gfs2_iomap_begin(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap)1150 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1151 unsigned flags, struct iomap *iomap)
1152 {
1153 struct gfs2_inode *ip = GFS2_I(inode);
1154 struct metapath mp = { .mp_aheight = 1, };
1155 int ret;
1156
1157 iomap->flags |= IOMAP_F_BUFFER_HEAD;
1158
1159 trace_gfs2_iomap_start(ip, pos, length, flags);
1160 if (gfs2_iomap_need_write_lock(flags)) {
1161 ret = gfs2_write_lock(inode);
1162 if (ret)
1163 goto out;
1164 }
1165
1166 ret = gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1167 if (ret)
1168 goto out_unlock;
1169
1170 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1171 case IOMAP_WRITE:
1172 if (flags & IOMAP_DIRECT) {
1173 /*
1174 * Silently fall back to buffered I/O for stuffed files
1175 * or if we've got a hole (see gfs2_file_direct_write).
1176 */
1177 if (iomap->type != IOMAP_MAPPED)
1178 ret = -ENOTBLK;
1179 goto out_unlock;
1180 }
1181 break;
1182 case IOMAP_ZERO:
1183 if (iomap->type == IOMAP_HOLE)
1184 goto out_unlock;
1185 break;
1186 default:
1187 goto out_unlock;
1188 }
1189
1190 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1191
1192 out_unlock:
1193 if (ret && gfs2_iomap_need_write_lock(flags))
1194 gfs2_write_unlock(inode);
1195 release_metapath(&mp);
1196 out:
1197 trace_gfs2_iomap_end(ip, iomap, ret);
1198 return ret;
1199 }
1200
gfs2_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1201 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1202 ssize_t written, unsigned flags, struct iomap *iomap)
1203 {
1204 struct gfs2_inode *ip = GFS2_I(inode);
1205 struct gfs2_sbd *sdp = GFS2_SB(inode);
1206
1207 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1208 case IOMAP_WRITE:
1209 if (flags & IOMAP_DIRECT)
1210 return 0;
1211 break;
1212 case IOMAP_ZERO:
1213 if (iomap->type == IOMAP_HOLE)
1214 return 0;
1215 break;
1216 default:
1217 return 0;
1218 }
1219
1220 if (!gfs2_is_stuffed(ip))
1221 gfs2_ordered_add_inode(ip);
1222
1223 if (inode == sdp->sd_rindex)
1224 adjust_fs_space(inode);
1225
1226 gfs2_inplace_release(ip);
1227
1228 if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1229 gfs2_quota_unlock(ip);
1230
1231 if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1232 /* Deallocate blocks that were just allocated. */
1233 loff_t hstart = round_up(pos + written, i_blocksize(inode));
1234 loff_t hend = iomap->offset + iomap->length;
1235
1236 if (hstart < hend) {
1237 truncate_pagecache_range(inode, hstart, hend - 1);
1238 punch_hole(ip, hstart, hend - hstart);
1239 }
1240 }
1241
1242 if (unlikely(!written))
1243 goto out_unlock;
1244
1245 if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1246 mark_inode_dirty(inode);
1247 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1248
1249 out_unlock:
1250 if (gfs2_iomap_need_write_lock(flags))
1251 gfs2_write_unlock(inode);
1252 return 0;
1253 }
1254
1255 const struct iomap_ops gfs2_iomap_ops = {
1256 .iomap_begin = gfs2_iomap_begin,
1257 .iomap_end = gfs2_iomap_end,
1258 };
1259
1260 /**
1261 * gfs2_block_map - Map one or more blocks of an inode to a disk block
1262 * @inode: The inode
1263 * @lblock: The logical block number
1264 * @bh_map: The bh to be mapped
1265 * @create: True if its ok to alloc blocks to satify the request
1266 *
1267 * The size of the requested mapping is defined in bh_map->b_size.
1268 *
1269 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1270 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and
1271 * bh_map->b_size to indicate the size of the mapping when @lblock and
1272 * successive blocks are mapped, up to the requested size.
1273 *
1274 * Sets buffer_boundary() if a read of metadata will be required
1275 * before the next block can be mapped. Sets buffer_new() if new
1276 * blocks were allocated.
1277 *
1278 * Returns: errno
1279 */
1280
gfs2_block_map(struct inode * inode,sector_t lblock,struct buffer_head * bh_map,int create)1281 int gfs2_block_map(struct inode *inode, sector_t lblock,
1282 struct buffer_head *bh_map, int create)
1283 {
1284 struct gfs2_inode *ip = GFS2_I(inode);
1285 loff_t pos = (loff_t)lblock << inode->i_blkbits;
1286 loff_t length = bh_map->b_size;
1287 struct metapath mp = { .mp_aheight = 1, };
1288 struct iomap iomap = { };
1289 int ret;
1290
1291 clear_buffer_mapped(bh_map);
1292 clear_buffer_new(bh_map);
1293 clear_buffer_boundary(bh_map);
1294 trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1295
1296 if (create) {
1297 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, &iomap, &mp);
1298 if (!ret && iomap.type == IOMAP_HOLE)
1299 ret = gfs2_iomap_alloc(inode, &iomap, &mp);
1300 release_metapath(&mp);
1301 } else {
1302 ret = gfs2_iomap_get(inode, pos, length, 0, &iomap, &mp);
1303 release_metapath(&mp);
1304 }
1305 if (ret)
1306 goto out;
1307
1308 if (iomap.length > bh_map->b_size) {
1309 iomap.length = bh_map->b_size;
1310 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1311 }
1312 if (iomap.addr != IOMAP_NULL_ADDR)
1313 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1314 bh_map->b_size = iomap.length;
1315 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1316 set_buffer_boundary(bh_map);
1317 if (iomap.flags & IOMAP_F_NEW)
1318 set_buffer_new(bh_map);
1319
1320 out:
1321 trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1322 return ret;
1323 }
1324
1325 /*
1326 * Deprecated: do not use in new code
1327 */
gfs2_extent_map(struct inode * inode,u64 lblock,int * new,u64 * dblock,unsigned * extlen)1328 int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
1329 {
1330 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
1331 int ret;
1332 int create = *new;
1333
1334 BUG_ON(!extlen);
1335 BUG_ON(!dblock);
1336 BUG_ON(!new);
1337
1338 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
1339 ret = gfs2_block_map(inode, lblock, &bh, create);
1340 *extlen = bh.b_size >> inode->i_blkbits;
1341 *dblock = bh.b_blocknr;
1342 if (buffer_new(&bh))
1343 *new = 1;
1344 else
1345 *new = 0;
1346 return ret;
1347 }
1348
1349 /*
1350 * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1351 * uses iomap write to perform its actions, which begin their own transactions
1352 * (iomap_begin, page_prepare, etc.)
1353 */
gfs2_block_zero_range(struct inode * inode,loff_t from,unsigned int length)1354 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1355 unsigned int length)
1356 {
1357 BUG_ON(current->journal_info);
1358 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1359 }
1360
1361 #define GFS2_JTRUNC_REVOKES 8192
1362
1363 /**
1364 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1365 * @inode: The inode being truncated
1366 * @oldsize: The original (larger) size
1367 * @newsize: The new smaller size
1368 *
1369 * With jdata files, we have to journal a revoke for each block which is
1370 * truncated. As a result, we need to split this into separate transactions
1371 * if the number of pages being truncated gets too large.
1372 */
1373
gfs2_journaled_truncate(struct inode * inode,u64 oldsize,u64 newsize)1374 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1375 {
1376 struct gfs2_sbd *sdp = GFS2_SB(inode);
1377 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1378 u64 chunk;
1379 int error;
1380
1381 while (oldsize != newsize) {
1382 struct gfs2_trans *tr;
1383 unsigned int offs;
1384
1385 chunk = oldsize - newsize;
1386 if (chunk > max_chunk)
1387 chunk = max_chunk;
1388
1389 offs = oldsize & ~PAGE_MASK;
1390 if (offs && chunk > PAGE_SIZE)
1391 chunk = offs + ((chunk - offs) & PAGE_MASK);
1392
1393 truncate_pagecache(inode, oldsize - chunk);
1394 oldsize -= chunk;
1395
1396 tr = current->journal_info;
1397 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1398 continue;
1399
1400 gfs2_trans_end(sdp);
1401 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1402 if (error)
1403 return error;
1404 }
1405
1406 return 0;
1407 }
1408
trunc_start(struct inode * inode,u64 newsize)1409 static int trunc_start(struct inode *inode, u64 newsize)
1410 {
1411 struct gfs2_inode *ip = GFS2_I(inode);
1412 struct gfs2_sbd *sdp = GFS2_SB(inode);
1413 struct buffer_head *dibh = NULL;
1414 int journaled = gfs2_is_jdata(ip);
1415 u64 oldsize = inode->i_size;
1416 int error;
1417
1418 if (!gfs2_is_stuffed(ip)) {
1419 unsigned int blocksize = i_blocksize(inode);
1420 unsigned int offs = newsize & (blocksize - 1);
1421 if (offs) {
1422 error = gfs2_block_zero_range(inode, newsize,
1423 blocksize - offs);
1424 if (error)
1425 return error;
1426 }
1427 }
1428 if (journaled)
1429 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1430 else
1431 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1432 if (error)
1433 return error;
1434
1435 error = gfs2_meta_inode_buffer(ip, &dibh);
1436 if (error)
1437 goto out;
1438
1439 gfs2_trans_add_meta(ip->i_gl, dibh);
1440
1441 if (gfs2_is_stuffed(ip))
1442 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1443 else
1444 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1445
1446 i_size_write(inode, newsize);
1447 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1448 gfs2_dinode_out(ip, dibh->b_data);
1449
1450 if (journaled)
1451 error = gfs2_journaled_truncate(inode, oldsize, newsize);
1452 else
1453 truncate_pagecache(inode, newsize);
1454
1455 out:
1456 brelse(dibh);
1457 if (current->journal_info)
1458 gfs2_trans_end(sdp);
1459 return error;
1460 }
1461
gfs2_iomap_get_alloc(struct inode * inode,loff_t pos,loff_t length,struct iomap * iomap)1462 int gfs2_iomap_get_alloc(struct inode *inode, loff_t pos, loff_t length,
1463 struct iomap *iomap)
1464 {
1465 struct metapath mp = { .mp_aheight = 1, };
1466 int ret;
1467
1468 ret = gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1469 if (!ret && iomap->type == IOMAP_HOLE)
1470 ret = gfs2_iomap_alloc(inode, iomap, &mp);
1471 release_metapath(&mp);
1472 return ret;
1473 }
1474
1475 /**
1476 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1477 * @ip: inode
1478 * @rg_gh: holder of resource group glock
1479 * @bh: buffer head to sweep
1480 * @start: starting point in bh
1481 * @end: end point in bh
1482 * @meta: true if bh points to metadata (rather than data)
1483 * @btotal: place to keep count of total blocks freed
1484 *
1485 * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1486 * free, and free them all. However, we do it one rgrp at a time. If this
1487 * block has references to multiple rgrps, we break it into individual
1488 * transactions. This allows other processes to use the rgrps while we're
1489 * focused on a single one, for better concurrency / performance.
1490 * At every transaction boundary, we rewrite the inode into the journal.
1491 * That way the bitmaps are kept consistent with the inode and we can recover
1492 * if we're interrupted by power-outages.
1493 *
1494 * Returns: 0, or return code if an error occurred.
1495 * *btotal has the total number of blocks freed
1496 */
sweep_bh_for_rgrps(struct gfs2_inode * ip,struct gfs2_holder * rd_gh,struct buffer_head * bh,__be64 * start,__be64 * end,bool meta,u32 * btotal)1497 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1498 struct buffer_head *bh, __be64 *start, __be64 *end,
1499 bool meta, u32 *btotal)
1500 {
1501 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1502 struct gfs2_rgrpd *rgd;
1503 struct gfs2_trans *tr;
1504 __be64 *p;
1505 int blks_outside_rgrp;
1506 u64 bn, bstart, isize_blks;
1507 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1508 int ret = 0;
1509 bool buf_in_tr = false; /* buffer was added to transaction */
1510
1511 more_rgrps:
1512 rgd = NULL;
1513 if (gfs2_holder_initialized(rd_gh)) {
1514 rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1515 gfs2_assert_withdraw(sdp,
1516 gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1517 }
1518 blks_outside_rgrp = 0;
1519 bstart = 0;
1520 blen = 0;
1521
1522 for (p = start; p < end; p++) {
1523 if (!*p)
1524 continue;
1525 bn = be64_to_cpu(*p);
1526
1527 if (rgd) {
1528 if (!rgrp_contains_block(rgd, bn)) {
1529 blks_outside_rgrp++;
1530 continue;
1531 }
1532 } else {
1533 rgd = gfs2_blk2rgrpd(sdp, bn, true);
1534 if (unlikely(!rgd)) {
1535 ret = -EIO;
1536 goto out;
1537 }
1538 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1539 0, rd_gh);
1540 if (ret)
1541 goto out;
1542
1543 /* Must be done with the rgrp glock held: */
1544 if (gfs2_rs_active(&ip->i_res) &&
1545 rgd == ip->i_res.rs_rbm.rgd)
1546 gfs2_rs_deltree(&ip->i_res);
1547 }
1548
1549 /* The size of our transactions will be unknown until we
1550 actually process all the metadata blocks that relate to
1551 the rgrp. So we estimate. We know it can't be more than
1552 the dinode's i_blocks and we don't want to exceed the
1553 journal flush threshold, sd_log_thresh2. */
1554 if (current->journal_info == NULL) {
1555 unsigned int jblocks_rqsted, revokes;
1556
1557 jblocks_rqsted = rgd->rd_length + RES_DINODE +
1558 RES_INDIRECT;
1559 isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1560 if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1561 jblocks_rqsted +=
1562 atomic_read(&sdp->sd_log_thresh2);
1563 else
1564 jblocks_rqsted += isize_blks;
1565 revokes = jblocks_rqsted;
1566 if (meta)
1567 revokes += end - start;
1568 else if (ip->i_depth)
1569 revokes += sdp->sd_inptrs;
1570 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1571 if (ret)
1572 goto out_unlock;
1573 down_write(&ip->i_rw_mutex);
1574 }
1575 /* check if we will exceed the transaction blocks requested */
1576 tr = current->journal_info;
1577 if (tr->tr_num_buf_new + RES_STATFS +
1578 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1579 /* We set blks_outside_rgrp to ensure the loop will
1580 be repeated for the same rgrp, but with a new
1581 transaction. */
1582 blks_outside_rgrp++;
1583 /* This next part is tricky. If the buffer was added
1584 to the transaction, we've already set some block
1585 pointers to 0, so we better follow through and free
1586 them, or we will introduce corruption (so break).
1587 This may be impossible, or at least rare, but I
1588 decided to cover the case regardless.
1589
1590 If the buffer was not added to the transaction
1591 (this call), doing so would exceed our transaction
1592 size, so we need to end the transaction and start a
1593 new one (so goto). */
1594
1595 if (buf_in_tr)
1596 break;
1597 goto out_unlock;
1598 }
1599
1600 gfs2_trans_add_meta(ip->i_gl, bh);
1601 buf_in_tr = true;
1602 *p = 0;
1603 if (bstart + blen == bn) {
1604 blen++;
1605 continue;
1606 }
1607 if (bstart) {
1608 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1609 (*btotal) += blen;
1610 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1611 }
1612 bstart = bn;
1613 blen = 1;
1614 }
1615 if (bstart) {
1616 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1617 (*btotal) += blen;
1618 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1619 }
1620 out_unlock:
1621 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1622 outside the rgrp we just processed,
1623 do it all over again. */
1624 if (current->journal_info) {
1625 struct buffer_head *dibh;
1626
1627 ret = gfs2_meta_inode_buffer(ip, &dibh);
1628 if (ret)
1629 goto out;
1630
1631 /* Every transaction boundary, we rewrite the dinode
1632 to keep its di_blocks current in case of failure. */
1633 ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1634 current_time(&ip->i_inode);
1635 gfs2_trans_add_meta(ip->i_gl, dibh);
1636 gfs2_dinode_out(ip, dibh->b_data);
1637 brelse(dibh);
1638 up_write(&ip->i_rw_mutex);
1639 gfs2_trans_end(sdp);
1640 buf_in_tr = false;
1641 }
1642 gfs2_glock_dq_uninit(rd_gh);
1643 cond_resched();
1644 goto more_rgrps;
1645 }
1646 out:
1647 return ret;
1648 }
1649
mp_eq_to_hgt(struct metapath * mp,__u16 * list,unsigned int h)1650 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1651 {
1652 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1653 return false;
1654 return true;
1655 }
1656
1657 /**
1658 * find_nonnull_ptr - find a non-null pointer given a metapath and height
1659 * @mp: starting metapath
1660 * @h: desired height to search
1661 *
1662 * Assumes the metapath is valid (with buffers) out to height h.
1663 * Returns: true if a non-null pointer was found in the metapath buffer
1664 * false if all remaining pointers are NULL in the buffer
1665 */
find_nonnull_ptr(struct gfs2_sbd * sdp,struct metapath * mp,unsigned int h,__u16 * end_list,unsigned int end_aligned)1666 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1667 unsigned int h,
1668 __u16 *end_list, unsigned int end_aligned)
1669 {
1670 struct buffer_head *bh = mp->mp_bh[h];
1671 __be64 *first, *ptr, *end;
1672
1673 first = metaptr1(h, mp);
1674 ptr = first + mp->mp_list[h];
1675 end = (__be64 *)(bh->b_data + bh->b_size);
1676 if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1677 bool keep_end = h < end_aligned;
1678 end = first + end_list[h] + keep_end;
1679 }
1680
1681 while (ptr < end) {
1682 if (*ptr) { /* if we have a non-null pointer */
1683 mp->mp_list[h] = ptr - first;
1684 h++;
1685 if (h < GFS2_MAX_META_HEIGHT)
1686 mp->mp_list[h] = 0;
1687 return true;
1688 }
1689 ptr++;
1690 }
1691 return false;
1692 }
1693
1694 enum dealloc_states {
1695 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */
1696 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */
1697 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */
1698 DEALLOC_DONE = 3, /* process complete */
1699 };
1700
1701 static inline void
metapointer_range(struct metapath * mp,int height,__u16 * start_list,unsigned int start_aligned,__u16 * end_list,unsigned int end_aligned,__be64 ** start,__be64 ** end)1702 metapointer_range(struct metapath *mp, int height,
1703 __u16 *start_list, unsigned int start_aligned,
1704 __u16 *end_list, unsigned int end_aligned,
1705 __be64 **start, __be64 **end)
1706 {
1707 struct buffer_head *bh = mp->mp_bh[height];
1708 __be64 *first;
1709
1710 first = metaptr1(height, mp);
1711 *start = first;
1712 if (mp_eq_to_hgt(mp, start_list, height)) {
1713 bool keep_start = height < start_aligned;
1714 *start = first + start_list[height] + keep_start;
1715 }
1716 *end = (__be64 *)(bh->b_data + bh->b_size);
1717 if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1718 bool keep_end = height < end_aligned;
1719 *end = first + end_list[height] + keep_end;
1720 }
1721 }
1722
walk_done(struct gfs2_sbd * sdp,struct metapath * mp,int height,__u16 * end_list,unsigned int end_aligned)1723 static inline bool walk_done(struct gfs2_sbd *sdp,
1724 struct metapath *mp, int height,
1725 __u16 *end_list, unsigned int end_aligned)
1726 {
1727 __u16 end;
1728
1729 if (end_list) {
1730 bool keep_end = height < end_aligned;
1731 if (!mp_eq_to_hgt(mp, end_list, height))
1732 return false;
1733 end = end_list[height] + keep_end;
1734 } else
1735 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1736 return mp->mp_list[height] >= end;
1737 }
1738
1739 /**
1740 * punch_hole - deallocate blocks in a file
1741 * @ip: inode to truncate
1742 * @offset: the start of the hole
1743 * @length: the size of the hole (or 0 for truncate)
1744 *
1745 * Punch a hole into a file or truncate a file at a given position. This
1746 * function operates in whole blocks (@offset and @length are rounded
1747 * accordingly); partially filled blocks must be cleared otherwise.
1748 *
1749 * This function works from the bottom up, and from the right to the left. In
1750 * other words, it strips off the highest layer (data) before stripping any of
1751 * the metadata. Doing it this way is best in case the operation is interrupted
1752 * by power failure, etc. The dinode is rewritten in every transaction to
1753 * guarantee integrity.
1754 */
punch_hole(struct gfs2_inode * ip,u64 offset,u64 length)1755 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1756 {
1757 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1758 u64 maxsize = sdp->sd_heightsize[ip->i_height];
1759 struct metapath mp = {};
1760 struct buffer_head *dibh, *bh;
1761 struct gfs2_holder rd_gh;
1762 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1763 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1764 __u16 start_list[GFS2_MAX_META_HEIGHT];
1765 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1766 unsigned int start_aligned, end_aligned;
1767 unsigned int strip_h = ip->i_height - 1;
1768 u32 btotal = 0;
1769 int ret, state;
1770 int mp_h; /* metapath buffers are read in to this height */
1771 u64 prev_bnr = 0;
1772 __be64 *start, *end;
1773
1774 if (offset >= maxsize) {
1775 /*
1776 * The starting point lies beyond the allocated meta-data;
1777 * there are no blocks do deallocate.
1778 */
1779 return 0;
1780 }
1781
1782 /*
1783 * The start position of the hole is defined by lblock, start_list, and
1784 * start_aligned. The end position of the hole is defined by lend,
1785 * end_list, and end_aligned.
1786 *
1787 * start_aligned and end_aligned define down to which height the start
1788 * and end positions are aligned to the metadata tree (i.e., the
1789 * position is a multiple of the metadata granularity at the height
1790 * above). This determines at which heights additional meta pointers
1791 * needs to be preserved for the remaining data.
1792 */
1793
1794 if (length) {
1795 u64 end_offset = offset + length;
1796 u64 lend;
1797
1798 /*
1799 * Clip the end at the maximum file size for the given height:
1800 * that's how far the metadata goes; files bigger than that
1801 * will have additional layers of indirection.
1802 */
1803 if (end_offset > maxsize)
1804 end_offset = maxsize;
1805 lend = end_offset >> bsize_shift;
1806
1807 if (lblock >= lend)
1808 return 0;
1809
1810 find_metapath(sdp, lend, &mp, ip->i_height);
1811 end_list = __end_list;
1812 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1813
1814 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1815 if (end_list[mp_h])
1816 break;
1817 }
1818 end_aligned = mp_h;
1819 }
1820
1821 find_metapath(sdp, lblock, &mp, ip->i_height);
1822 memcpy(start_list, mp.mp_list, sizeof(start_list));
1823
1824 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1825 if (start_list[mp_h])
1826 break;
1827 }
1828 start_aligned = mp_h;
1829
1830 ret = gfs2_meta_inode_buffer(ip, &dibh);
1831 if (ret)
1832 return ret;
1833
1834 mp.mp_bh[0] = dibh;
1835 ret = lookup_metapath(ip, &mp);
1836 if (ret)
1837 goto out_metapath;
1838
1839 /* issue read-ahead on metadata */
1840 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1841 metapointer_range(&mp, mp_h, start_list, start_aligned,
1842 end_list, end_aligned, &start, &end);
1843 gfs2_metapath_ra(ip->i_gl, start, end);
1844 }
1845
1846 if (mp.mp_aheight == ip->i_height)
1847 state = DEALLOC_MP_FULL; /* We have a complete metapath */
1848 else
1849 state = DEALLOC_FILL_MP; /* deal with partial metapath */
1850
1851 ret = gfs2_rindex_update(sdp);
1852 if (ret)
1853 goto out_metapath;
1854
1855 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1856 if (ret)
1857 goto out_metapath;
1858 gfs2_holder_mark_uninitialized(&rd_gh);
1859
1860 mp_h = strip_h;
1861
1862 while (state != DEALLOC_DONE) {
1863 switch (state) {
1864 /* Truncate a full metapath at the given strip height.
1865 * Note that strip_h == mp_h in order to be in this state. */
1866 case DEALLOC_MP_FULL:
1867 bh = mp.mp_bh[mp_h];
1868 gfs2_assert_withdraw(sdp, bh);
1869 if (gfs2_assert_withdraw(sdp,
1870 prev_bnr != bh->b_blocknr)) {
1871 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1872 "s_h:%u, mp_h:%u\n",
1873 (unsigned long long)ip->i_no_addr,
1874 prev_bnr, ip->i_height, strip_h, mp_h);
1875 }
1876 prev_bnr = bh->b_blocknr;
1877
1878 if (gfs2_metatype_check(sdp, bh,
1879 (mp_h ? GFS2_METATYPE_IN :
1880 GFS2_METATYPE_DI))) {
1881 ret = -EIO;
1882 goto out;
1883 }
1884
1885 /*
1886 * Below, passing end_aligned as 0 gives us the
1887 * metapointer range excluding the end point: the end
1888 * point is the first metapath we must not deallocate!
1889 */
1890
1891 metapointer_range(&mp, mp_h, start_list, start_aligned,
1892 end_list, 0 /* end_aligned */,
1893 &start, &end);
1894 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1895 start, end,
1896 mp_h != ip->i_height - 1,
1897 &btotal);
1898
1899 /* If we hit an error or just swept dinode buffer,
1900 just exit. */
1901 if (ret || !mp_h) {
1902 state = DEALLOC_DONE;
1903 break;
1904 }
1905 state = DEALLOC_MP_LOWER;
1906 break;
1907
1908 /* lower the metapath strip height */
1909 case DEALLOC_MP_LOWER:
1910 /* We're done with the current buffer, so release it,
1911 unless it's the dinode buffer. Then back up to the
1912 previous pointer. */
1913 if (mp_h) {
1914 brelse(mp.mp_bh[mp_h]);
1915 mp.mp_bh[mp_h] = NULL;
1916 }
1917 /* If we can't get any lower in height, we've stripped
1918 off all we can. Next step is to back up and start
1919 stripping the previous level of metadata. */
1920 if (mp_h == 0) {
1921 strip_h--;
1922 memcpy(mp.mp_list, start_list, sizeof(start_list));
1923 mp_h = strip_h;
1924 state = DEALLOC_FILL_MP;
1925 break;
1926 }
1927 mp.mp_list[mp_h] = 0;
1928 mp_h--; /* search one metadata height down */
1929 mp.mp_list[mp_h]++;
1930 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1931 break;
1932 /* Here we've found a part of the metapath that is not
1933 * allocated. We need to search at that height for the
1934 * next non-null pointer. */
1935 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1936 state = DEALLOC_FILL_MP;
1937 mp_h++;
1938 }
1939 /* No more non-null pointers at this height. Back up
1940 to the previous height and try again. */
1941 break; /* loop around in the same state */
1942
1943 /* Fill the metapath with buffers to the given height. */
1944 case DEALLOC_FILL_MP:
1945 /* Fill the buffers out to the current height. */
1946 ret = fillup_metapath(ip, &mp, mp_h);
1947 if (ret < 0)
1948 goto out;
1949
1950 /* On the first pass, issue read-ahead on metadata. */
1951 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1952 unsigned int height = mp.mp_aheight - 1;
1953
1954 /* No read-ahead for data blocks. */
1955 if (mp.mp_aheight - 1 == strip_h)
1956 height--;
1957
1958 for (; height >= mp.mp_aheight - ret; height--) {
1959 metapointer_range(&mp, height,
1960 start_list, start_aligned,
1961 end_list, end_aligned,
1962 &start, &end);
1963 gfs2_metapath_ra(ip->i_gl, start, end);
1964 }
1965 }
1966
1967 /* If buffers found for the entire strip height */
1968 if (mp.mp_aheight - 1 == strip_h) {
1969 state = DEALLOC_MP_FULL;
1970 break;
1971 }
1972 if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1973 mp_h = mp.mp_aheight - 1;
1974
1975 /* If we find a non-null block pointer, crawl a bit
1976 higher up in the metapath and try again, otherwise
1977 we need to look lower for a new starting point. */
1978 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1979 mp_h++;
1980 else
1981 state = DEALLOC_MP_LOWER;
1982 break;
1983 }
1984 }
1985
1986 if (btotal) {
1987 if (current->journal_info == NULL) {
1988 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1989 RES_QUOTA, 0);
1990 if (ret)
1991 goto out;
1992 down_write(&ip->i_rw_mutex);
1993 }
1994 gfs2_statfs_change(sdp, 0, +btotal, 0);
1995 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1996 ip->i_inode.i_gid);
1997 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1998 gfs2_trans_add_meta(ip->i_gl, dibh);
1999 gfs2_dinode_out(ip, dibh->b_data);
2000 up_write(&ip->i_rw_mutex);
2001 gfs2_trans_end(sdp);
2002 }
2003
2004 out:
2005 if (gfs2_holder_initialized(&rd_gh))
2006 gfs2_glock_dq_uninit(&rd_gh);
2007 if (current->journal_info) {
2008 up_write(&ip->i_rw_mutex);
2009 gfs2_trans_end(sdp);
2010 cond_resched();
2011 }
2012 gfs2_quota_unhold(ip);
2013 out_metapath:
2014 release_metapath(&mp);
2015 return ret;
2016 }
2017
trunc_end(struct gfs2_inode * ip)2018 static int trunc_end(struct gfs2_inode *ip)
2019 {
2020 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2021 struct buffer_head *dibh;
2022 int error;
2023
2024 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2025 if (error)
2026 return error;
2027
2028 down_write(&ip->i_rw_mutex);
2029
2030 error = gfs2_meta_inode_buffer(ip, &dibh);
2031 if (error)
2032 goto out;
2033
2034 if (!i_size_read(&ip->i_inode)) {
2035 ip->i_height = 0;
2036 ip->i_goal = ip->i_no_addr;
2037 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
2038 gfs2_ordered_del_inode(ip);
2039 }
2040 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2041 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2042
2043 gfs2_trans_add_meta(ip->i_gl, dibh);
2044 gfs2_dinode_out(ip, dibh->b_data);
2045 brelse(dibh);
2046
2047 out:
2048 up_write(&ip->i_rw_mutex);
2049 gfs2_trans_end(sdp);
2050 return error;
2051 }
2052
2053 /**
2054 * do_shrink - make a file smaller
2055 * @inode: the inode
2056 * @newsize: the size to make the file
2057 *
2058 * Called with an exclusive lock on @inode. The @size must
2059 * be equal to or smaller than the current inode size.
2060 *
2061 * Returns: errno
2062 */
2063
do_shrink(struct inode * inode,u64 newsize)2064 static int do_shrink(struct inode *inode, u64 newsize)
2065 {
2066 struct gfs2_inode *ip = GFS2_I(inode);
2067 int error;
2068
2069 error = trunc_start(inode, newsize);
2070 if (error < 0)
2071 return error;
2072 if (gfs2_is_stuffed(ip))
2073 return 0;
2074
2075 error = punch_hole(ip, newsize, 0);
2076 if (error == 0)
2077 error = trunc_end(ip);
2078
2079 return error;
2080 }
2081
gfs2_trim_blocks(struct inode * inode)2082 void gfs2_trim_blocks(struct inode *inode)
2083 {
2084 int ret;
2085
2086 ret = do_shrink(inode, inode->i_size);
2087 WARN_ON(ret != 0);
2088 }
2089
2090 /**
2091 * do_grow - Touch and update inode size
2092 * @inode: The inode
2093 * @size: The new size
2094 *
2095 * This function updates the timestamps on the inode and
2096 * may also increase the size of the inode. This function
2097 * must not be called with @size any smaller than the current
2098 * inode size.
2099 *
2100 * Although it is not strictly required to unstuff files here,
2101 * earlier versions of GFS2 have a bug in the stuffed file reading
2102 * code which will result in a buffer overrun if the size is larger
2103 * than the max stuffed file size. In order to prevent this from
2104 * occurring, such files are unstuffed, but in other cases we can
2105 * just update the inode size directly.
2106 *
2107 * Returns: 0 on success, or -ve on error
2108 */
2109
do_grow(struct inode * inode,u64 size)2110 static int do_grow(struct inode *inode, u64 size)
2111 {
2112 struct gfs2_inode *ip = GFS2_I(inode);
2113 struct gfs2_sbd *sdp = GFS2_SB(inode);
2114 struct gfs2_alloc_parms ap = { .target = 1, };
2115 struct buffer_head *dibh;
2116 int error;
2117 int unstuff = 0;
2118
2119 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2120 error = gfs2_quota_lock_check(ip, &ap);
2121 if (error)
2122 return error;
2123
2124 error = gfs2_inplace_reserve(ip, &ap);
2125 if (error)
2126 goto do_grow_qunlock;
2127 unstuff = 1;
2128 }
2129
2130 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2131 (unstuff &&
2132 gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2133 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2134 0 : RES_QUOTA), 0);
2135 if (error)
2136 goto do_grow_release;
2137
2138 if (unstuff) {
2139 error = gfs2_unstuff_dinode(ip, NULL);
2140 if (error)
2141 goto do_end_trans;
2142 }
2143
2144 error = gfs2_meta_inode_buffer(ip, &dibh);
2145 if (error)
2146 goto do_end_trans;
2147
2148 truncate_setsize(inode, size);
2149 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2150 gfs2_trans_add_meta(ip->i_gl, dibh);
2151 gfs2_dinode_out(ip, dibh->b_data);
2152 brelse(dibh);
2153
2154 do_end_trans:
2155 gfs2_trans_end(sdp);
2156 do_grow_release:
2157 if (unstuff) {
2158 gfs2_inplace_release(ip);
2159 do_grow_qunlock:
2160 gfs2_quota_unlock(ip);
2161 }
2162 return error;
2163 }
2164
2165 /**
2166 * gfs2_setattr_size - make a file a given size
2167 * @inode: the inode
2168 * @newsize: the size to make the file
2169 *
2170 * The file size can grow, shrink, or stay the same size. This
2171 * is called holding i_rwsem and an exclusive glock on the inode
2172 * in question.
2173 *
2174 * Returns: errno
2175 */
2176
gfs2_setattr_size(struct inode * inode,u64 newsize)2177 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2178 {
2179 struct gfs2_inode *ip = GFS2_I(inode);
2180 int ret;
2181
2182 BUG_ON(!S_ISREG(inode->i_mode));
2183
2184 ret = inode_newsize_ok(inode, newsize);
2185 if (ret)
2186 return ret;
2187
2188 inode_dio_wait(inode);
2189
2190 ret = gfs2_rsqa_alloc(ip);
2191 if (ret)
2192 goto out;
2193
2194 if (newsize >= inode->i_size) {
2195 ret = do_grow(inode, newsize);
2196 goto out;
2197 }
2198
2199 ret = do_shrink(inode, newsize);
2200 out:
2201 gfs2_rsqa_delete(ip, NULL);
2202 return ret;
2203 }
2204
gfs2_truncatei_resume(struct gfs2_inode * ip)2205 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2206 {
2207 int error;
2208 error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2209 if (!error)
2210 error = trunc_end(ip);
2211 return error;
2212 }
2213
gfs2_file_dealloc(struct gfs2_inode * ip)2214 int gfs2_file_dealloc(struct gfs2_inode *ip)
2215 {
2216 return punch_hole(ip, 0, 0);
2217 }
2218
2219 /**
2220 * gfs2_free_journal_extents - Free cached journal bmap info
2221 * @jd: The journal
2222 *
2223 */
2224
gfs2_free_journal_extents(struct gfs2_jdesc * jd)2225 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2226 {
2227 struct gfs2_journal_extent *jext;
2228
2229 while(!list_empty(&jd->extent_list)) {
2230 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list);
2231 list_del(&jext->list);
2232 kfree(jext);
2233 }
2234 }
2235
2236 /**
2237 * gfs2_add_jextent - Add or merge a new extent to extent cache
2238 * @jd: The journal descriptor
2239 * @lblock: The logical block at start of new extent
2240 * @dblock: The physical block at start of new extent
2241 * @blocks: Size of extent in fs blocks
2242 *
2243 * Returns: 0 on success or -ENOMEM
2244 */
2245
gfs2_add_jextent(struct gfs2_jdesc * jd,u64 lblock,u64 dblock,u64 blocks)2246 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2247 {
2248 struct gfs2_journal_extent *jext;
2249
2250 if (!list_empty(&jd->extent_list)) {
2251 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list);
2252 if ((jext->dblock + jext->blocks) == dblock) {
2253 jext->blocks += blocks;
2254 return 0;
2255 }
2256 }
2257
2258 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2259 if (jext == NULL)
2260 return -ENOMEM;
2261 jext->dblock = dblock;
2262 jext->lblock = lblock;
2263 jext->blocks = blocks;
2264 list_add_tail(&jext->list, &jd->extent_list);
2265 jd->nr_extents++;
2266 return 0;
2267 }
2268
2269 /**
2270 * gfs2_map_journal_extents - Cache journal bmap info
2271 * @sdp: The super block
2272 * @jd: The journal to map
2273 *
2274 * Create a reusable "extent" mapping from all logical
2275 * blocks to all physical blocks for the given journal. This will save
2276 * us time when writing journal blocks. Most journals will have only one
2277 * extent that maps all their logical blocks. That's because gfs2.mkfs
2278 * arranges the journal blocks sequentially to maximize performance.
2279 * So the extent would map the first block for the entire file length.
2280 * However, gfs2_jadd can happen while file activity is happening, so
2281 * those journals may not be sequential. Less likely is the case where
2282 * the users created their own journals by mounting the metafs and
2283 * laying it out. But it's still possible. These journals might have
2284 * several extents.
2285 *
2286 * Returns: 0 on success, or error on failure
2287 */
2288
gfs2_map_journal_extents(struct gfs2_sbd * sdp,struct gfs2_jdesc * jd)2289 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2290 {
2291 u64 lblock = 0;
2292 u64 lblock_stop;
2293 struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2294 struct buffer_head bh;
2295 unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2296 u64 size;
2297 int rc;
2298 ktime_t start, end;
2299
2300 start = ktime_get();
2301 lblock_stop = i_size_read(jd->jd_inode) >> shift;
2302 size = (lblock_stop - lblock) << shift;
2303 jd->nr_extents = 0;
2304 WARN_ON(!list_empty(&jd->extent_list));
2305
2306 do {
2307 bh.b_state = 0;
2308 bh.b_blocknr = 0;
2309 bh.b_size = size;
2310 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2311 if (rc || !buffer_mapped(&bh))
2312 goto fail;
2313 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2314 if (rc)
2315 goto fail;
2316 size -= bh.b_size;
2317 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2318 } while(size > 0);
2319
2320 end = ktime_get();
2321 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2322 jd->nr_extents, ktime_ms_delta(end, start));
2323 return 0;
2324
2325 fail:
2326 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2327 rc, jd->jd_jid,
2328 (unsigned long long)(i_size_read(jd->jd_inode) - size),
2329 jd->nr_extents);
2330 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2331 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2332 bh.b_state, (unsigned long long)bh.b_size);
2333 gfs2_free_journal_extents(jd);
2334 return rc;
2335 }
2336
2337 /**
2338 * gfs2_write_alloc_required - figure out if a write will require an allocation
2339 * @ip: the file being written to
2340 * @offset: the offset to write to
2341 * @len: the number of bytes being written
2342 *
2343 * Returns: 1 if an alloc is required, 0 otherwise
2344 */
2345
gfs2_write_alloc_required(struct gfs2_inode * ip,u64 offset,unsigned int len)2346 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2347 unsigned int len)
2348 {
2349 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2350 struct buffer_head bh;
2351 unsigned int shift;
2352 u64 lblock, lblock_stop, size;
2353 u64 end_of_file;
2354
2355 if (!len)
2356 return 0;
2357
2358 if (gfs2_is_stuffed(ip)) {
2359 if (offset + len > gfs2_max_stuffed_size(ip))
2360 return 1;
2361 return 0;
2362 }
2363
2364 shift = sdp->sd_sb.sb_bsize_shift;
2365 BUG_ON(gfs2_is_dir(ip));
2366 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2367 lblock = offset >> shift;
2368 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2369 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2370 return 1;
2371
2372 size = (lblock_stop - lblock) << shift;
2373 do {
2374 bh.b_state = 0;
2375 bh.b_size = size;
2376 gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2377 if (!buffer_mapped(&bh))
2378 return 1;
2379 size -= bh.b_size;
2380 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2381 } while(size > 0);
2382
2383 return 0;
2384 }
2385
stuffed_zero_range(struct inode * inode,loff_t offset,loff_t length)2386 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2387 {
2388 struct gfs2_inode *ip = GFS2_I(inode);
2389 struct buffer_head *dibh;
2390 int error;
2391
2392 if (offset >= inode->i_size)
2393 return 0;
2394 if (offset + length > inode->i_size)
2395 length = inode->i_size - offset;
2396
2397 error = gfs2_meta_inode_buffer(ip, &dibh);
2398 if (error)
2399 return error;
2400 gfs2_trans_add_meta(ip->i_gl, dibh);
2401 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2402 length);
2403 brelse(dibh);
2404 return 0;
2405 }
2406
gfs2_journaled_truncate_range(struct inode * inode,loff_t offset,loff_t length)2407 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2408 loff_t length)
2409 {
2410 struct gfs2_sbd *sdp = GFS2_SB(inode);
2411 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2412 int error;
2413
2414 while (length) {
2415 struct gfs2_trans *tr;
2416 loff_t chunk;
2417 unsigned int offs;
2418
2419 chunk = length;
2420 if (chunk > max_chunk)
2421 chunk = max_chunk;
2422
2423 offs = offset & ~PAGE_MASK;
2424 if (offs && chunk > PAGE_SIZE)
2425 chunk = offs + ((chunk - offs) & PAGE_MASK);
2426
2427 truncate_pagecache_range(inode, offset, chunk);
2428 offset += chunk;
2429 length -= chunk;
2430
2431 tr = current->journal_info;
2432 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2433 continue;
2434
2435 gfs2_trans_end(sdp);
2436 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2437 if (error)
2438 return error;
2439 }
2440 return 0;
2441 }
2442
__gfs2_punch_hole(struct file * file,loff_t offset,loff_t length)2443 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2444 {
2445 struct inode *inode = file_inode(file);
2446 struct gfs2_inode *ip = GFS2_I(inode);
2447 struct gfs2_sbd *sdp = GFS2_SB(inode);
2448 unsigned int blocksize = i_blocksize(inode);
2449 loff_t start, end;
2450 int error;
2451
2452 if (!gfs2_is_stuffed(ip)) {
2453 unsigned int start_off, end_len;
2454
2455 start_off = offset & (blocksize - 1);
2456 end_len = (offset + length) & (blocksize - 1);
2457 if (start_off) {
2458 unsigned int len = length;
2459 if (length > blocksize - start_off)
2460 len = blocksize - start_off;
2461 error = gfs2_block_zero_range(inode, offset, len);
2462 if (error)
2463 goto out;
2464 if (start_off + length < blocksize)
2465 end_len = 0;
2466 }
2467 if (end_len) {
2468 error = gfs2_block_zero_range(inode,
2469 offset + length - end_len, end_len);
2470 if (error)
2471 goto out;
2472 }
2473 }
2474
2475 start = round_down(offset, blocksize);
2476 end = round_up(offset + length, blocksize) - 1;
2477 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2478 if (error)
2479 return error;
2480
2481 if (gfs2_is_jdata(ip))
2482 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2483 GFS2_JTRUNC_REVOKES);
2484 else
2485 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2486 if (error)
2487 return error;
2488
2489 if (gfs2_is_stuffed(ip)) {
2490 error = stuffed_zero_range(inode, offset, length);
2491 if (error)
2492 goto out;
2493 }
2494
2495 if (gfs2_is_jdata(ip)) {
2496 BUG_ON(!current->journal_info);
2497 gfs2_journaled_truncate_range(inode, offset, length);
2498 } else
2499 truncate_pagecache_range(inode, offset, offset + length - 1);
2500
2501 file_update_time(file);
2502 mark_inode_dirty(inode);
2503
2504 if (current->journal_info)
2505 gfs2_trans_end(sdp);
2506
2507 if (!gfs2_is_stuffed(ip))
2508 error = punch_hole(ip, offset, length);
2509
2510 out:
2511 if (current->journal_info)
2512 gfs2_trans_end(sdp);
2513 return error;
2514 }
2515