• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/trace_events.h>
49 #include <linux/suspend.h>
50 #include <linux/ftrace.h>
51 #include <linux/tick.h>
52 #include <linux/sysrq.h>
53 #include <linux/kprobes.h>
54 #include <linux/gfp.h>
55 #include <linux/oom.h>
56 #include <linux/smpboot.h>
57 #include <linux/jiffies.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include "../time/tick-internal.h"
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 /* Data structures. */
71 
72 /*
73  * Steal a bit from the bottom of ->dynticks for idle entry/exit
74  * control.  Initially this is for TLB flushing.
75  */
76 #define RCU_DYNTICK_CTRL_MASK 0x1
77 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
78 #ifndef rcu_eqs_special_exit
79 #define rcu_eqs_special_exit() do { } while (0)
80 #endif
81 
82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
83 	.dynticks_nesting = 1,
84 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
85 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
86 };
87 struct rcu_state rcu_state = {
88 	.level = { &rcu_state.node[0] },
89 	.gp_state = RCU_GP_IDLE,
90 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
91 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
92 	.name = RCU_NAME,
93 	.abbr = RCU_ABBR,
94 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
95 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
96 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
97 };
98 
99 /* Dump rcu_node combining tree at boot to verify correct setup. */
100 static bool dump_tree;
101 module_param(dump_tree, bool, 0444);
102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
103 static bool use_softirq = 1;
104 module_param(use_softirq, bool, 0444);
105 /* Control rcu_node-tree auto-balancing at boot time. */
106 static bool rcu_fanout_exact;
107 module_param(rcu_fanout_exact, bool, 0444);
108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
110 module_param(rcu_fanout_leaf, int, 0444);
111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112 /* Number of rcu_nodes at specified level. */
113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115 
116 /*
117  * The rcu_scheduler_active variable is initialized to the value
118  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
120  * RCU can assume that there is but one task, allowing RCU to (for example)
121  * optimize synchronize_rcu() to a simple barrier().  When this variable
122  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123  * to detect real grace periods.  This variable is also used to suppress
124  * boot-time false positives from lockdep-RCU error checking.  Finally, it
125  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126  * is fully initialized, including all of its kthreads having been spawned.
127  */
128 int rcu_scheduler_active __read_mostly;
129 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130 
131 /*
132  * The rcu_scheduler_fully_active variable transitions from zero to one
133  * during the early_initcall() processing, which is after the scheduler
134  * is capable of creating new tasks.  So RCU processing (for example,
135  * creating tasks for RCU priority boosting) must be delayed until after
136  * rcu_scheduler_fully_active transitions from zero to one.  We also
137  * currently delay invocation of any RCU callbacks until after this point.
138  *
139  * It might later prove better for people registering RCU callbacks during
140  * early boot to take responsibility for these callbacks, but one step at
141  * a time.
142  */
143 static int rcu_scheduler_fully_active __read_mostly;
144 
145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 			      unsigned long gps, unsigned long flags);
147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
150 static void invoke_rcu_core(void);
151 static void rcu_report_exp_rdp(struct rcu_data *rdp);
152 static void sync_sched_exp_online_cleanup(int cpu);
153 
154 /* rcuc/rcub kthread realtime priority */
155 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
156 module_param(kthread_prio, int, 0444);
157 
158 /* Delay in jiffies for grace-period initialization delays, debug only. */
159 
160 static int gp_preinit_delay;
161 module_param(gp_preinit_delay, int, 0444);
162 static int gp_init_delay;
163 module_param(gp_init_delay, int, 0444);
164 static int gp_cleanup_delay;
165 module_param(gp_cleanup_delay, int, 0444);
166 
167 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)168 int rcu_get_gp_kthreads_prio(void)
169 {
170 	return kthread_prio;
171 }
172 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
173 
174 /*
175  * Number of grace periods between delays, normalized by the duration of
176  * the delay.  The longer the delay, the more the grace periods between
177  * each delay.  The reason for this normalization is that it means that,
178  * for non-zero delays, the overall slowdown of grace periods is constant
179  * regardless of the duration of the delay.  This arrangement balances
180  * the need for long delays to increase some race probabilities with the
181  * need for fast grace periods to increase other race probabilities.
182  */
183 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
184 
185 /*
186  * Compute the mask of online CPUs for the specified rcu_node structure.
187  * This will not be stable unless the rcu_node structure's ->lock is
188  * held, but the bit corresponding to the current CPU will be stable
189  * in most contexts.
190  */
rcu_rnp_online_cpus(struct rcu_node * rnp)191 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
192 {
193 	return READ_ONCE(rnp->qsmaskinitnext);
194 }
195 
196 /*
197  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
198  * permit this function to be invoked without holding the root rcu_node
199  * structure's ->lock, but of course results can be subject to change.
200  */
rcu_gp_in_progress(void)201 static int rcu_gp_in_progress(void)
202 {
203 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
204 }
205 
206 /*
207  * Return the number of callbacks queued on the specified CPU.
208  * Handles both the nocbs and normal cases.
209  */
rcu_get_n_cbs_cpu(int cpu)210 static long rcu_get_n_cbs_cpu(int cpu)
211 {
212 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
213 
214 	if (rcu_segcblist_is_enabled(&rdp->cblist))
215 		return rcu_segcblist_n_cbs(&rdp->cblist);
216 	return 0;
217 }
218 
rcu_softirq_qs(void)219 void rcu_softirq_qs(void)
220 {
221 	rcu_qs();
222 	rcu_preempt_deferred_qs(current);
223 }
224 
225 /*
226  * Record entry into an extended quiescent state.  This is only to be
227  * called when not already in an extended quiescent state.
228  */
rcu_dynticks_eqs_enter(void)229 static void rcu_dynticks_eqs_enter(void)
230 {
231 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
232 	int seq;
233 
234 	/*
235 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
236 	 * critical sections, and we also must force ordering with the
237 	 * next idle sojourn.
238 	 */
239 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
240 	/* Better be in an extended quiescent state! */
241 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
242 		     (seq & RCU_DYNTICK_CTRL_CTR));
243 	/* Better not have special action (TLB flush) pending! */
244 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
245 		     (seq & RCU_DYNTICK_CTRL_MASK));
246 }
247 
248 /*
249  * Record exit from an extended quiescent state.  This is only to be
250  * called from an extended quiescent state.
251  */
rcu_dynticks_eqs_exit(void)252 static void rcu_dynticks_eqs_exit(void)
253 {
254 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
255 	int seq;
256 
257 	/*
258 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
259 	 * and we also must force ordering with the next RCU read-side
260 	 * critical section.
261 	 */
262 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
263 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
264 		     !(seq & RCU_DYNTICK_CTRL_CTR));
265 	if (seq & RCU_DYNTICK_CTRL_MASK) {
266 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
267 		smp_mb__after_atomic(); /* _exit after clearing mask. */
268 		/* Prefer duplicate flushes to losing a flush. */
269 		rcu_eqs_special_exit();
270 	}
271 }
272 
273 /*
274  * Reset the current CPU's ->dynticks counter to indicate that the
275  * newly onlined CPU is no longer in an extended quiescent state.
276  * This will either leave the counter unchanged, or increment it
277  * to the next non-quiescent value.
278  *
279  * The non-atomic test/increment sequence works because the upper bits
280  * of the ->dynticks counter are manipulated only by the corresponding CPU,
281  * or when the corresponding CPU is offline.
282  */
rcu_dynticks_eqs_online(void)283 static void rcu_dynticks_eqs_online(void)
284 {
285 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
286 
287 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
288 		return;
289 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
290 }
291 
292 /*
293  * Is the current CPU in an extended quiescent state?
294  *
295  * No ordering, as we are sampling CPU-local information.
296  */
rcu_dynticks_curr_cpu_in_eqs(void)297 bool rcu_dynticks_curr_cpu_in_eqs(void)
298 {
299 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
300 
301 	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
302 }
303 
304 /*
305  * Snapshot the ->dynticks counter with full ordering so as to allow
306  * stable comparison of this counter with past and future snapshots.
307  */
rcu_dynticks_snap(struct rcu_data * rdp)308 int rcu_dynticks_snap(struct rcu_data *rdp)
309 {
310 	int snap = atomic_add_return(0, &rdp->dynticks);
311 
312 	return snap & ~RCU_DYNTICK_CTRL_MASK;
313 }
314 
315 /*
316  * Return true if the snapshot returned from rcu_dynticks_snap()
317  * indicates that RCU is in an extended quiescent state.
318  */
rcu_dynticks_in_eqs(int snap)319 static bool rcu_dynticks_in_eqs(int snap)
320 {
321 	return !(snap & RCU_DYNTICK_CTRL_CTR);
322 }
323 
324 /*
325  * Return true if the CPU corresponding to the specified rcu_data
326  * structure has spent some time in an extended quiescent state since
327  * rcu_dynticks_snap() returned the specified snapshot.
328  */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)329 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
330 {
331 	return snap != rcu_dynticks_snap(rdp);
332 }
333 
334 /*
335  * Set the special (bottom) bit of the specified CPU so that it
336  * will take special action (such as flushing its TLB) on the
337  * next exit from an extended quiescent state.  Returns true if
338  * the bit was successfully set, or false if the CPU was not in
339  * an extended quiescent state.
340  */
rcu_eqs_special_set(int cpu)341 bool rcu_eqs_special_set(int cpu)
342 {
343 	int old;
344 	int new;
345 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
346 
347 	do {
348 		old = atomic_read(&rdp->dynticks);
349 		if (old & RCU_DYNTICK_CTRL_CTR)
350 			return false;
351 		new = old | RCU_DYNTICK_CTRL_MASK;
352 	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
353 	return true;
354 }
355 
356 /*
357  * Let the RCU core know that this CPU has gone through the scheduler,
358  * which is a quiescent state.  This is called when the need for a
359  * quiescent state is urgent, so we burn an atomic operation and full
360  * memory barriers to let the RCU core know about it, regardless of what
361  * this CPU might (or might not) do in the near future.
362  *
363  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
364  *
365  * The caller must have disabled interrupts and must not be idle.
366  */
rcu_momentary_dyntick_idle(void)367 static void __maybe_unused rcu_momentary_dyntick_idle(void)
368 {
369 	int special;
370 
371 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
372 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
373 				    &this_cpu_ptr(&rcu_data)->dynticks);
374 	/* It is illegal to call this from idle state. */
375 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
376 	rcu_preempt_deferred_qs(current);
377 }
378 
379 /**
380  * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle
381  *
382  * If the current CPU is idle and running at a first-level (not nested)
383  * interrupt from idle, return true.  The caller must have at least
384  * disabled preemption.
385  */
rcu_is_cpu_rrupt_from_idle(void)386 static int rcu_is_cpu_rrupt_from_idle(void)
387 {
388 	/* Called only from within the scheduling-clock interrupt */
389 	lockdep_assert_in_irq();
390 
391 	/* Check for counter underflows */
392 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
393 			 "RCU dynticks_nesting counter underflow!");
394 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
395 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
396 
397 	/* Are we at first interrupt nesting level? */
398 	if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1)
399 		return false;
400 
401 	/* Does CPU appear to be idle from an RCU standpoint? */
402 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
403 }
404 
405 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
406 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
407 static long blimit = DEFAULT_RCU_BLIMIT;
408 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
409 static long qhimark = DEFAULT_RCU_QHIMARK;
410 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
411 static long qlowmark = DEFAULT_RCU_QLOMARK;
412 
413 module_param(blimit, long, 0444);
414 module_param(qhimark, long, 0444);
415 module_param(qlowmark, long, 0444);
416 
417 static ulong jiffies_till_first_fqs = ULONG_MAX;
418 static ulong jiffies_till_next_fqs = ULONG_MAX;
419 static bool rcu_kick_kthreads;
420 static int rcu_divisor = 7;
421 module_param(rcu_divisor, int, 0644);
422 
423 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
424 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
425 module_param(rcu_resched_ns, long, 0644);
426 
427 /*
428  * How long the grace period must be before we start recruiting
429  * quiescent-state help from rcu_note_context_switch().
430  */
431 static ulong jiffies_till_sched_qs = ULONG_MAX;
432 module_param(jiffies_till_sched_qs, ulong, 0444);
433 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
434 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
435 
436 /*
437  * Make sure that we give the grace-period kthread time to detect any
438  * idle CPUs before taking active measures to force quiescent states.
439  * However, don't go below 100 milliseconds, adjusted upwards for really
440  * large systems.
441  */
adjust_jiffies_till_sched_qs(void)442 static void adjust_jiffies_till_sched_qs(void)
443 {
444 	unsigned long j;
445 
446 	/* If jiffies_till_sched_qs was specified, respect the request. */
447 	if (jiffies_till_sched_qs != ULONG_MAX) {
448 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
449 		return;
450 	}
451 	/* Otherwise, set to third fqs scan, but bound below on large system. */
452 	j = READ_ONCE(jiffies_till_first_fqs) +
453 		      2 * READ_ONCE(jiffies_till_next_fqs);
454 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
455 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
456 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
457 	WRITE_ONCE(jiffies_to_sched_qs, j);
458 }
459 
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)460 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
461 {
462 	ulong j;
463 	int ret = kstrtoul(val, 0, &j);
464 
465 	if (!ret) {
466 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
467 		adjust_jiffies_till_sched_qs();
468 	}
469 	return ret;
470 }
471 
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)472 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
473 {
474 	ulong j;
475 	int ret = kstrtoul(val, 0, &j);
476 
477 	if (!ret) {
478 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
479 		adjust_jiffies_till_sched_qs();
480 	}
481 	return ret;
482 }
483 
484 static struct kernel_param_ops first_fqs_jiffies_ops = {
485 	.set = param_set_first_fqs_jiffies,
486 	.get = param_get_ulong,
487 };
488 
489 static struct kernel_param_ops next_fqs_jiffies_ops = {
490 	.set = param_set_next_fqs_jiffies,
491 	.get = param_get_ulong,
492 };
493 
494 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
495 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
496 module_param(rcu_kick_kthreads, bool, 0644);
497 
498 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
499 static int rcu_pending(void);
500 
501 /*
502  * Return the number of RCU GPs completed thus far for debug & stats.
503  */
rcu_get_gp_seq(void)504 unsigned long rcu_get_gp_seq(void)
505 {
506 	return READ_ONCE(rcu_state.gp_seq);
507 }
508 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
509 
510 /*
511  * Return the number of RCU expedited batches completed thus far for
512  * debug & stats.  Odd numbers mean that a batch is in progress, even
513  * numbers mean idle.  The value returned will thus be roughly double
514  * the cumulative batches since boot.
515  */
rcu_exp_batches_completed(void)516 unsigned long rcu_exp_batches_completed(void)
517 {
518 	return rcu_state.expedited_sequence;
519 }
520 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
521 
522 /*
523  * Return the root node of the rcu_state structure.
524  */
rcu_get_root(void)525 static struct rcu_node *rcu_get_root(void)
526 {
527 	return &rcu_state.node[0];
528 }
529 
530 /*
531  * Convert a ->gp_state value to a character string.
532  */
gp_state_getname(short gs)533 static const char *gp_state_getname(short gs)
534 {
535 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
536 		return "???";
537 	return gp_state_names[gs];
538 }
539 
540 /*
541  * Send along grace-period-related data for rcutorture diagnostics.
542  */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)543 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
544 			    unsigned long *gp_seq)
545 {
546 	switch (test_type) {
547 	case RCU_FLAVOR:
548 		*flags = READ_ONCE(rcu_state.gp_flags);
549 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
550 		break;
551 	default:
552 		break;
553 	}
554 }
555 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
556 
557 /*
558  * Enter an RCU extended quiescent state, which can be either the
559  * idle loop or adaptive-tickless usermode execution.
560  *
561  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
562  * the possibility of usermode upcalls having messed up our count
563  * of interrupt nesting level during the prior busy period.
564  */
rcu_eqs_enter(bool user)565 static void rcu_eqs_enter(bool user)
566 {
567 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
568 
569 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
570 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
571 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
572 		     rdp->dynticks_nesting == 0);
573 	if (rdp->dynticks_nesting != 1) {
574 		rdp->dynticks_nesting--;
575 		return;
576 	}
577 
578 	lockdep_assert_irqs_disabled();
579 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
580 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
581 	rdp = this_cpu_ptr(&rcu_data);
582 	rcu_prepare_for_idle();
583 	rcu_preempt_deferred_qs(current);
584 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
585 	rcu_dynticks_eqs_enter();
586 	rcu_dynticks_task_enter();
587 }
588 
589 /**
590  * rcu_idle_enter - inform RCU that current CPU is entering idle
591  *
592  * Enter idle mode, in other words, -leave- the mode in which RCU
593  * read-side critical sections can occur.  (Though RCU read-side
594  * critical sections can occur in irq handlers in idle, a possibility
595  * handled by irq_enter() and irq_exit().)
596  *
597  * If you add or remove a call to rcu_idle_enter(), be sure to test with
598  * CONFIG_RCU_EQS_DEBUG=y.
599  */
rcu_idle_enter(void)600 void rcu_idle_enter(void)
601 {
602 	lockdep_assert_irqs_disabled();
603 	rcu_eqs_enter(false);
604 }
605 EXPORT_SYMBOL_GPL(rcu_idle_enter);
606 
607 #ifdef CONFIG_NO_HZ_FULL
608 /**
609  * rcu_user_enter - inform RCU that we are resuming userspace.
610  *
611  * Enter RCU idle mode right before resuming userspace.  No use of RCU
612  * is permitted between this call and rcu_user_exit(). This way the
613  * CPU doesn't need to maintain the tick for RCU maintenance purposes
614  * when the CPU runs in userspace.
615  *
616  * If you add or remove a call to rcu_user_enter(), be sure to test with
617  * CONFIG_RCU_EQS_DEBUG=y.
618  */
rcu_user_enter(void)619 void rcu_user_enter(void)
620 {
621 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
622 
623 	lockdep_assert_irqs_disabled();
624 
625 	instrumentation_begin();
626 	do_nocb_deferred_wakeup(rdp);
627 	instrumentation_end();
628 
629 	rcu_eqs_enter(true);
630 }
631 #endif /* CONFIG_NO_HZ_FULL */
632 
633 /*
634  * If we are returning from the outermost NMI handler that interrupted an
635  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
636  * to let the RCU grace-period handling know that the CPU is back to
637  * being RCU-idle.
638  *
639  * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
640  * with CONFIG_RCU_EQS_DEBUG=y.
641  */
rcu_nmi_exit_common(bool irq)642 static __always_inline void rcu_nmi_exit_common(bool irq)
643 {
644 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
645 
646 	/*
647 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
648 	 * (We are exiting an NMI handler, so RCU better be paying attention
649 	 * to us!)
650 	 */
651 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
652 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
653 
654 	/*
655 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
656 	 * leave it in non-RCU-idle state.
657 	 */
658 	if (rdp->dynticks_nmi_nesting != 1) {
659 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
660 				  atomic_read(&rdp->dynticks));
661 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
662 			   rdp->dynticks_nmi_nesting - 2);
663 		return;
664 	}
665 
666 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
667 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
668 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
669 
670 	if (irq)
671 		rcu_prepare_for_idle();
672 
673 	rcu_dynticks_eqs_enter();
674 
675 	if (irq)
676 		rcu_dynticks_task_enter();
677 }
678 
679 /**
680  * rcu_nmi_exit - inform RCU of exit from NMI context
681  *
682  * If you add or remove a call to rcu_nmi_exit(), be sure to test
683  * with CONFIG_RCU_EQS_DEBUG=y.
684  */
rcu_nmi_exit(void)685 void rcu_nmi_exit(void)
686 {
687 	rcu_nmi_exit_common(false);
688 }
689 
690 /**
691  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
692  *
693  * Exit from an interrupt handler, which might possibly result in entering
694  * idle mode, in other words, leaving the mode in which read-side critical
695  * sections can occur.  The caller must have disabled interrupts.
696  *
697  * This code assumes that the idle loop never does anything that might
698  * result in unbalanced calls to irq_enter() and irq_exit().  If your
699  * architecture's idle loop violates this assumption, RCU will give you what
700  * you deserve, good and hard.  But very infrequently and irreproducibly.
701  *
702  * Use things like work queues to work around this limitation.
703  *
704  * You have been warned.
705  *
706  * If you add or remove a call to rcu_irq_exit(), be sure to test with
707  * CONFIG_RCU_EQS_DEBUG=y.
708  */
rcu_irq_exit(void)709 void rcu_irq_exit(void)
710 {
711 	lockdep_assert_irqs_disabled();
712 	rcu_nmi_exit_common(true);
713 }
714 
715 /*
716  * Wrapper for rcu_irq_exit() where interrupts are enabled.
717  *
718  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
719  * with CONFIG_RCU_EQS_DEBUG=y.
720  */
rcu_irq_exit_irqson(void)721 void rcu_irq_exit_irqson(void)
722 {
723 	unsigned long flags;
724 
725 	local_irq_save(flags);
726 	rcu_irq_exit();
727 	local_irq_restore(flags);
728 }
729 
730 /*
731  * Exit an RCU extended quiescent state, which can be either the
732  * idle loop or adaptive-tickless usermode execution.
733  *
734  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
735  * allow for the possibility of usermode upcalls messing up our count of
736  * interrupt nesting level during the busy period that is just now starting.
737  */
rcu_eqs_exit(bool user)738 static void rcu_eqs_exit(bool user)
739 {
740 	struct rcu_data *rdp;
741 	long oldval;
742 
743 	lockdep_assert_irqs_disabled();
744 	rdp = this_cpu_ptr(&rcu_data);
745 	oldval = rdp->dynticks_nesting;
746 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
747 	if (oldval) {
748 		rdp->dynticks_nesting++;
749 		return;
750 	}
751 	rcu_dynticks_task_exit();
752 	rcu_dynticks_eqs_exit();
753 	rcu_cleanup_after_idle();
754 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
755 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
756 	WRITE_ONCE(rdp->dynticks_nesting, 1);
757 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
758 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
759 }
760 
761 /**
762  * rcu_idle_exit - inform RCU that current CPU is leaving idle
763  *
764  * Exit idle mode, in other words, -enter- the mode in which RCU
765  * read-side critical sections can occur.
766  *
767  * If you add or remove a call to rcu_idle_exit(), be sure to test with
768  * CONFIG_RCU_EQS_DEBUG=y.
769  */
rcu_idle_exit(void)770 void rcu_idle_exit(void)
771 {
772 	unsigned long flags;
773 
774 	local_irq_save(flags);
775 	rcu_eqs_exit(false);
776 	local_irq_restore(flags);
777 }
778 EXPORT_SYMBOL_GPL(rcu_idle_exit);
779 
780 #ifdef CONFIG_NO_HZ_FULL
781 /**
782  * rcu_user_exit - inform RCU that we are exiting userspace.
783  *
784  * Exit RCU idle mode while entering the kernel because it can
785  * run a RCU read side critical section anytime.
786  *
787  * If you add or remove a call to rcu_user_exit(), be sure to test with
788  * CONFIG_RCU_EQS_DEBUG=y.
789  */
rcu_user_exit(void)790 void rcu_user_exit(void)
791 {
792 	rcu_eqs_exit(1);
793 }
794 #endif /* CONFIG_NO_HZ_FULL */
795 
796 /**
797  * rcu_nmi_enter_common - inform RCU of entry to NMI context
798  * @irq: Is this call from rcu_irq_enter?
799  *
800  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
801  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
802  * that the CPU is active.  This implementation permits nested NMIs, as
803  * long as the nesting level does not overflow an int.  (You will probably
804  * run out of stack space first.)
805  *
806  * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
807  * with CONFIG_RCU_EQS_DEBUG=y.
808  */
rcu_nmi_enter_common(bool irq)809 static __always_inline void rcu_nmi_enter_common(bool irq)
810 {
811 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
812 	long incby = 2;
813 
814 	/* Complain about underflow. */
815 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
816 
817 	/*
818 	 * If idle from RCU viewpoint, atomically increment ->dynticks
819 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
820 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
821 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
822 	 * to be in the outermost NMI handler that interrupted an RCU-idle
823 	 * period (observation due to Andy Lutomirski).
824 	 */
825 	if (rcu_dynticks_curr_cpu_in_eqs()) {
826 
827 		if (irq)
828 			rcu_dynticks_task_exit();
829 
830 		rcu_dynticks_eqs_exit();
831 
832 		if (irq)
833 			rcu_cleanup_after_idle();
834 
835 		incby = 1;
836 	}
837 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
838 			  rdp->dynticks_nmi_nesting,
839 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
840 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
841 		   rdp->dynticks_nmi_nesting + incby);
842 	barrier();
843 }
844 
845 /**
846  * rcu_nmi_enter - inform RCU of entry to NMI context
847  */
rcu_nmi_enter(void)848 void rcu_nmi_enter(void)
849 {
850 	rcu_nmi_enter_common(false);
851 }
852 NOKPROBE_SYMBOL(rcu_nmi_enter);
853 
854 /**
855  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
856  *
857  * Enter an interrupt handler, which might possibly result in exiting
858  * idle mode, in other words, entering the mode in which read-side critical
859  * sections can occur.  The caller must have disabled interrupts.
860  *
861  * Note that the Linux kernel is fully capable of entering an interrupt
862  * handler that it never exits, for example when doing upcalls to user mode!
863  * This code assumes that the idle loop never does upcalls to user mode.
864  * If your architecture's idle loop does do upcalls to user mode (or does
865  * anything else that results in unbalanced calls to the irq_enter() and
866  * irq_exit() functions), RCU will give you what you deserve, good and hard.
867  * But very infrequently and irreproducibly.
868  *
869  * Use things like work queues to work around this limitation.
870  *
871  * You have been warned.
872  *
873  * If you add or remove a call to rcu_irq_enter(), be sure to test with
874  * CONFIG_RCU_EQS_DEBUG=y.
875  */
rcu_irq_enter(void)876 void rcu_irq_enter(void)
877 {
878 	lockdep_assert_irqs_disabled();
879 	rcu_nmi_enter_common(true);
880 }
881 
882 /*
883  * Wrapper for rcu_irq_enter() where interrupts are enabled.
884  *
885  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
886  * with CONFIG_RCU_EQS_DEBUG=y.
887  */
rcu_irq_enter_irqson(void)888 void rcu_irq_enter_irqson(void)
889 {
890 	unsigned long flags;
891 
892 	local_irq_save(flags);
893 	rcu_irq_enter();
894 	local_irq_restore(flags);
895 }
896 
897 /**
898  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
899  *
900  * Return true if RCU is watching the running CPU, which means that this
901  * CPU can safely enter RCU read-side critical sections.  In other words,
902  * if the current CPU is not in its idle loop or is in an interrupt or
903  * NMI handler, return true.
904  */
rcu_is_watching(void)905 bool notrace rcu_is_watching(void)
906 {
907 	bool ret;
908 
909 	preempt_disable_notrace();
910 	ret = !rcu_dynticks_curr_cpu_in_eqs();
911 	preempt_enable_notrace();
912 	return ret;
913 }
914 EXPORT_SYMBOL_GPL(rcu_is_watching);
915 
916 /*
917  * If a holdout task is actually running, request an urgent quiescent
918  * state from its CPU.  This is unsynchronized, so migrations can cause
919  * the request to go to the wrong CPU.  Which is OK, all that will happen
920  * is that the CPU's next context switch will be a bit slower and next
921  * time around this task will generate another request.
922  */
rcu_request_urgent_qs_task(struct task_struct * t)923 void rcu_request_urgent_qs_task(struct task_struct *t)
924 {
925 	int cpu;
926 
927 	barrier();
928 	cpu = task_cpu(t);
929 	if (!task_curr(t))
930 		return; /* This task is not running on that CPU. */
931 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
932 }
933 
934 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
935 
936 /*
937  * Is the current CPU online as far as RCU is concerned?
938  *
939  * Disable preemption to avoid false positives that could otherwise
940  * happen due to the current CPU number being sampled, this task being
941  * preempted, its old CPU being taken offline, resuming on some other CPU,
942  * then determining that its old CPU is now offline.
943  *
944  * Disable checking if in an NMI handler because we cannot safely
945  * report errors from NMI handlers anyway.  In addition, it is OK to use
946  * RCU on an offline processor during initial boot, hence the check for
947  * rcu_scheduler_fully_active.
948  */
rcu_lockdep_current_cpu_online(void)949 bool rcu_lockdep_current_cpu_online(void)
950 {
951 	struct rcu_data *rdp;
952 	struct rcu_node *rnp;
953 	bool ret = false;
954 
955 	if (in_nmi() || !rcu_scheduler_fully_active)
956 		return true;
957 	preempt_disable();
958 	rdp = this_cpu_ptr(&rcu_data);
959 	rnp = rdp->mynode;
960 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
961 		ret = true;
962 	preempt_enable();
963 	return ret;
964 }
965 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
966 
967 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
968 
969 /*
970  * We are reporting a quiescent state on behalf of some other CPU, so
971  * it is our responsibility to check for and handle potential overflow
972  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
973  * After all, the CPU might be in deep idle state, and thus executing no
974  * code whatsoever.
975  */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)976 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
977 {
978 	raw_lockdep_assert_held_rcu_node(rnp);
979 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
980 			 rnp->gp_seq))
981 		WRITE_ONCE(rdp->gpwrap, true);
982 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
983 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
984 }
985 
986 /*
987  * Snapshot the specified CPU's dynticks counter so that we can later
988  * credit them with an implicit quiescent state.  Return 1 if this CPU
989  * is in dynticks idle mode, which is an extended quiescent state.
990  */
dyntick_save_progress_counter(struct rcu_data * rdp)991 static int dyntick_save_progress_counter(struct rcu_data *rdp)
992 {
993 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
994 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
995 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
996 		rcu_gpnum_ovf(rdp->mynode, rdp);
997 		return 1;
998 	}
999 	return 0;
1000 }
1001 
1002 /*
1003  * Return true if the specified CPU has passed through a quiescent
1004  * state by virtue of being in or having passed through an dynticks
1005  * idle state since the last call to dyntick_save_progress_counter()
1006  * for this same CPU, or by virtue of having been offline.
1007  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)1008 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1009 {
1010 	unsigned long jtsq;
1011 	bool *rnhqp;
1012 	bool *ruqp;
1013 	struct rcu_node *rnp = rdp->mynode;
1014 
1015 	/*
1016 	 * If the CPU passed through or entered a dynticks idle phase with
1017 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1018 	 * already acknowledged the request to pass through a quiescent
1019 	 * state.  Either way, that CPU cannot possibly be in an RCU
1020 	 * read-side critical section that started before the beginning
1021 	 * of the current RCU grace period.
1022 	 */
1023 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1024 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1025 		rcu_gpnum_ovf(rnp, rdp);
1026 		return 1;
1027 	}
1028 
1029 	/* If waiting too long on an offline CPU, complain. */
1030 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1031 	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1032 		bool onl;
1033 		struct rcu_node *rnp1;
1034 
1035 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1036 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1037 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1038 			(long)rnp->gp_seq, (long)rnp->completedqs);
1039 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1040 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1041 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1042 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1043 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1044 			__func__, rdp->cpu, ".o"[onl],
1045 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1046 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1047 		return 1; /* Break things loose after complaining. */
1048 	}
1049 
1050 	/*
1051 	 * A CPU running for an extended time within the kernel can
1052 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1053 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1054 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1055 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1056 	 * variable are safe because the assignments are repeated if this
1057 	 * CPU failed to pass through a quiescent state.  This code
1058 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1059 	 * is set way high.
1060 	 */
1061 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1062 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1063 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1064 	if (!READ_ONCE(*rnhqp) &&
1065 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1066 	     time_after(jiffies, rcu_state.jiffies_resched))) {
1067 		WRITE_ONCE(*rnhqp, true);
1068 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1069 		smp_store_release(ruqp, true);
1070 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1071 		WRITE_ONCE(*ruqp, true);
1072 	}
1073 
1074 	/*
1075 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1076 	 * The above code handles this, but only for straight cond_resched().
1077 	 * And some in-kernel loops check need_resched() before calling
1078 	 * cond_resched(), which defeats the above code for CPUs that are
1079 	 * running in-kernel with scheduling-clock interrupts disabled.
1080 	 * So hit them over the head with the resched_cpu() hammer!
1081 	 */
1082 	if (tick_nohz_full_cpu(rdp->cpu) &&
1083 		   time_after(jiffies,
1084 			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1085 		resched_cpu(rdp->cpu);
1086 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1087 	}
1088 
1089 	/*
1090 	 * If more than halfway to RCU CPU stall-warning time, invoke
1091 	 * resched_cpu() more frequently to try to loosen things up a bit.
1092 	 * Also check to see if the CPU is getting hammered with interrupts,
1093 	 * but only once per grace period, just to keep the IPIs down to
1094 	 * a dull roar.
1095 	 */
1096 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1097 		if (time_after(jiffies,
1098 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1099 			resched_cpu(rdp->cpu);
1100 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1101 		}
1102 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1103 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1104 		    (rnp->ffmask & rdp->grpmask)) {
1105 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1106 			rdp->rcu_iw_pending = true;
1107 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1108 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1109 		}
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)1116 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1117 			      unsigned long gp_seq_req, const char *s)
1118 {
1119 	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1120 				      rnp->level, rnp->grplo, rnp->grphi, s);
1121 }
1122 
1123 /*
1124  * rcu_start_this_gp - Request the start of a particular grace period
1125  * @rnp_start: The leaf node of the CPU from which to start.
1126  * @rdp: The rcu_data corresponding to the CPU from which to start.
1127  * @gp_seq_req: The gp_seq of the grace period to start.
1128  *
1129  * Start the specified grace period, as needed to handle newly arrived
1130  * callbacks.  The required future grace periods are recorded in each
1131  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1132  * is reason to awaken the grace-period kthread.
1133  *
1134  * The caller must hold the specified rcu_node structure's ->lock, which
1135  * is why the caller is responsible for waking the grace-period kthread.
1136  *
1137  * Returns true if the GP thread needs to be awakened else false.
1138  */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)1139 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1140 			      unsigned long gp_seq_req)
1141 {
1142 	bool ret = false;
1143 	struct rcu_node *rnp;
1144 
1145 	/*
1146 	 * Use funnel locking to either acquire the root rcu_node
1147 	 * structure's lock or bail out if the need for this grace period
1148 	 * has already been recorded -- or if that grace period has in
1149 	 * fact already started.  If there is already a grace period in
1150 	 * progress in a non-leaf node, no recording is needed because the
1151 	 * end of the grace period will scan the leaf rcu_node structures.
1152 	 * Note that rnp_start->lock must not be released.
1153 	 */
1154 	raw_lockdep_assert_held_rcu_node(rnp_start);
1155 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1156 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1157 		if (rnp != rnp_start)
1158 			raw_spin_lock_rcu_node(rnp);
1159 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1160 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1161 		    (rnp != rnp_start &&
1162 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1163 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1164 					  TPS("Prestarted"));
1165 			goto unlock_out;
1166 		}
1167 		rnp->gp_seq_needed = gp_seq_req;
1168 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1169 			/*
1170 			 * We just marked the leaf or internal node, and a
1171 			 * grace period is in progress, which means that
1172 			 * rcu_gp_cleanup() will see the marking.  Bail to
1173 			 * reduce contention.
1174 			 */
1175 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1176 					  TPS("Startedleaf"));
1177 			goto unlock_out;
1178 		}
1179 		if (rnp != rnp_start && rnp->parent != NULL)
1180 			raw_spin_unlock_rcu_node(rnp);
1181 		if (!rnp->parent)
1182 			break;  /* At root, and perhaps also leaf. */
1183 	}
1184 
1185 	/* If GP already in progress, just leave, otherwise start one. */
1186 	if (rcu_gp_in_progress()) {
1187 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1188 		goto unlock_out;
1189 	}
1190 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1191 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1192 	rcu_state.gp_req_activity = jiffies;
1193 	if (!rcu_state.gp_kthread) {
1194 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1195 		goto unlock_out;
1196 	}
1197 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1198 	ret = true;  /* Caller must wake GP kthread. */
1199 unlock_out:
1200 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1201 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1202 		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1203 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1204 	}
1205 	if (rnp != rnp_start)
1206 		raw_spin_unlock_rcu_node(rnp);
1207 	return ret;
1208 }
1209 
1210 /*
1211  * Clean up any old requests for the just-ended grace period.  Also return
1212  * whether any additional grace periods have been requested.
1213  */
rcu_future_gp_cleanup(struct rcu_node * rnp)1214 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1215 {
1216 	bool needmore;
1217 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1218 
1219 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1220 	if (!needmore)
1221 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1222 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1223 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1224 	return needmore;
1225 }
1226 
1227 /*
1228  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in
1229  * an interrupt or softirq handler), and don't bother awakening when there
1230  * is nothing for the grace-period kthread to do (as in several CPUs raced
1231  * to awaken, and we lost), and finally don't try to awaken a kthread that
1232  * has not yet been created.  If all those checks are passed, track some
1233  * debug information and awaken.
1234  *
1235  * So why do the self-wakeup when in an interrupt or softirq handler
1236  * in the grace-period kthread's context?  Because the kthread might have
1237  * been interrupted just as it was going to sleep, and just after the final
1238  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1239  * is required, and is therefore supplied.
1240  */
rcu_gp_kthread_wake(void)1241 static void rcu_gp_kthread_wake(void)
1242 {
1243 	if ((current == rcu_state.gp_kthread &&
1244 	     !in_irq() && !in_serving_softirq()) ||
1245 	    !READ_ONCE(rcu_state.gp_flags) ||
1246 	    !rcu_state.gp_kthread)
1247 		return;
1248 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1249 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1250 	swake_up_one(&rcu_state.gp_wq);
1251 }
1252 
1253 /*
1254  * If there is room, assign a ->gp_seq number to any callbacks on this
1255  * CPU that have not already been assigned.  Also accelerate any callbacks
1256  * that were previously assigned a ->gp_seq number that has since proven
1257  * to be too conservative, which can happen if callbacks get assigned a
1258  * ->gp_seq number while RCU is idle, but with reference to a non-root
1259  * rcu_node structure.  This function is idempotent, so it does not hurt
1260  * to call it repeatedly.  Returns an flag saying that we should awaken
1261  * the RCU grace-period kthread.
1262  *
1263  * The caller must hold rnp->lock with interrupts disabled.
1264  */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1265 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1266 {
1267 	unsigned long gp_seq_req;
1268 	bool ret = false;
1269 
1270 	rcu_lockdep_assert_cblist_protected(rdp);
1271 	raw_lockdep_assert_held_rcu_node(rnp);
1272 
1273 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1274 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1275 		return false;
1276 
1277 	/*
1278 	 * Callbacks are often registered with incomplete grace-period
1279 	 * information.  Something about the fact that getting exact
1280 	 * information requires acquiring a global lock...  RCU therefore
1281 	 * makes a conservative estimate of the grace period number at which
1282 	 * a given callback will become ready to invoke.	The following
1283 	 * code checks this estimate and improves it when possible, thus
1284 	 * accelerating callback invocation to an earlier grace-period
1285 	 * number.
1286 	 */
1287 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1288 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1289 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1290 
1291 	/* Trace depending on how much we were able to accelerate. */
1292 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1293 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1294 	else
1295 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1296 	return ret;
1297 }
1298 
1299 /*
1300  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1301  * rcu_node structure's ->lock be held.  It consults the cached value
1302  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1303  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1304  * while holding the leaf rcu_node structure's ->lock.
1305  */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1306 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1307 					struct rcu_data *rdp)
1308 {
1309 	unsigned long c;
1310 	bool needwake;
1311 
1312 	rcu_lockdep_assert_cblist_protected(rdp);
1313 	c = rcu_seq_snap(&rcu_state.gp_seq);
1314 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1315 		/* Old request still live, so mark recent callbacks. */
1316 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1317 		return;
1318 	}
1319 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1320 	needwake = rcu_accelerate_cbs(rnp, rdp);
1321 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1322 	if (needwake)
1323 		rcu_gp_kthread_wake();
1324 }
1325 
1326 /*
1327  * Move any callbacks whose grace period has completed to the
1328  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1329  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1330  * sublist.  This function is idempotent, so it does not hurt to
1331  * invoke it repeatedly.  As long as it is not invoked -too- often...
1332  * Returns true if the RCU grace-period kthread needs to be awakened.
1333  *
1334  * The caller must hold rnp->lock with interrupts disabled.
1335  */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1336 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1337 {
1338 	rcu_lockdep_assert_cblist_protected(rdp);
1339 	raw_lockdep_assert_held_rcu_node(rnp);
1340 
1341 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1342 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1343 		return false;
1344 
1345 	/*
1346 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1347 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1348 	 */
1349 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1350 
1351 	/* Classify any remaining callbacks. */
1352 	return rcu_accelerate_cbs(rnp, rdp);
1353 }
1354 
1355 /*
1356  * Move and classify callbacks, but only if doing so won't require
1357  * that the RCU grace-period kthread be awakened.
1358  */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1359 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1360 						  struct rcu_data *rdp)
1361 {
1362 	rcu_lockdep_assert_cblist_protected(rdp);
1363 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1364 		return;
1365 	// The grace period cannot end while we hold the rcu_node lock.
1366 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1367 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1368 	raw_spin_unlock_rcu_node(rnp);
1369 }
1370 
1371 /*
1372  * Update CPU-local rcu_data state to record the beginnings and ends of
1373  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1374  * structure corresponding to the current CPU, and must have irqs disabled.
1375  * Returns true if the grace-period kthread needs to be awakened.
1376  */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1377 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1378 {
1379 	bool ret = false;
1380 	bool need_gp;
1381 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1382 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1383 
1384 	raw_lockdep_assert_held_rcu_node(rnp);
1385 
1386 	if (rdp->gp_seq == rnp->gp_seq)
1387 		return false; /* Nothing to do. */
1388 
1389 	/* Handle the ends of any preceding grace periods first. */
1390 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1391 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1392 		if (!offloaded)
1393 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1394 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1395 	} else {
1396 		if (!offloaded)
1397 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1398 	}
1399 
1400 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1401 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1402 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1403 		/*
1404 		 * If the current grace period is waiting for this CPU,
1405 		 * set up to detect a quiescent state, otherwise don't
1406 		 * go looking for one.
1407 		 */
1408 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1409 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1410 		rdp->cpu_no_qs.b.norm = need_gp;
1411 		rdp->core_needs_qs = need_gp;
1412 		zero_cpu_stall_ticks(rdp);
1413 	}
1414 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1415 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1416 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1417 	WRITE_ONCE(rdp->gpwrap, false);
1418 	rcu_gpnum_ovf(rnp, rdp);
1419 	return ret;
1420 }
1421 
note_gp_changes(struct rcu_data * rdp)1422 static void note_gp_changes(struct rcu_data *rdp)
1423 {
1424 	unsigned long flags;
1425 	bool needwake;
1426 	struct rcu_node *rnp;
1427 
1428 	local_irq_save(flags);
1429 	rnp = rdp->mynode;
1430 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1431 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1432 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1433 		local_irq_restore(flags);
1434 		return;
1435 	}
1436 	needwake = __note_gp_changes(rnp, rdp);
1437 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1438 	if (needwake)
1439 		rcu_gp_kthread_wake();
1440 }
1441 
rcu_gp_slow(int delay)1442 static void rcu_gp_slow(int delay)
1443 {
1444 	if (delay > 0 &&
1445 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1446 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1447 		schedule_timeout_uninterruptible(delay);
1448 }
1449 
1450 /*
1451  * Initialize a new grace period.  Return false if no grace period required.
1452  */
rcu_gp_init(void)1453 static bool rcu_gp_init(void)
1454 {
1455 	unsigned long flags;
1456 	unsigned long oldmask;
1457 	unsigned long mask;
1458 	struct rcu_data *rdp;
1459 	struct rcu_node *rnp = rcu_get_root();
1460 
1461 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1462 	raw_spin_lock_irq_rcu_node(rnp);
1463 	if (!READ_ONCE(rcu_state.gp_flags)) {
1464 		/* Spurious wakeup, tell caller to go back to sleep.  */
1465 		raw_spin_unlock_irq_rcu_node(rnp);
1466 		return false;
1467 	}
1468 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1469 
1470 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1471 		/*
1472 		 * Grace period already in progress, don't start another.
1473 		 * Not supposed to be able to happen.
1474 		 */
1475 		raw_spin_unlock_irq_rcu_node(rnp);
1476 		return false;
1477 	}
1478 
1479 	/* Advance to a new grace period and initialize state. */
1480 	record_gp_stall_check_time();
1481 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1482 	rcu_seq_start(&rcu_state.gp_seq);
1483 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1484 	raw_spin_unlock_irq_rcu_node(rnp);
1485 
1486 	/*
1487 	 * Apply per-leaf buffered online and offline operations to the
1488 	 * rcu_node tree.  Note that this new grace period need not wait
1489 	 * for subsequent online CPUs, and that quiescent-state forcing
1490 	 * will handle subsequent offline CPUs.
1491 	 */
1492 	rcu_state.gp_state = RCU_GP_ONOFF;
1493 	rcu_for_each_leaf_node(rnp) {
1494 		raw_spin_lock(&rcu_state.ofl_lock);
1495 		raw_spin_lock_irq_rcu_node(rnp);
1496 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1497 		    !rnp->wait_blkd_tasks) {
1498 			/* Nothing to do on this leaf rcu_node structure. */
1499 			raw_spin_unlock_irq_rcu_node(rnp);
1500 			raw_spin_unlock(&rcu_state.ofl_lock);
1501 			continue;
1502 		}
1503 
1504 		/* Record old state, apply changes to ->qsmaskinit field. */
1505 		oldmask = rnp->qsmaskinit;
1506 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1507 
1508 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1509 		if (!oldmask != !rnp->qsmaskinit) {
1510 			if (!oldmask) { /* First online CPU for rcu_node. */
1511 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1512 					rcu_init_new_rnp(rnp);
1513 			} else if (rcu_preempt_has_tasks(rnp)) {
1514 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1515 			} else { /* Last offline CPU and can propagate. */
1516 				rcu_cleanup_dead_rnp(rnp);
1517 			}
1518 		}
1519 
1520 		/*
1521 		 * If all waited-on tasks from prior grace period are
1522 		 * done, and if all this rcu_node structure's CPUs are
1523 		 * still offline, propagate up the rcu_node tree and
1524 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1525 		 * rcu_node structure's CPUs has since come back online,
1526 		 * simply clear ->wait_blkd_tasks.
1527 		 */
1528 		if (rnp->wait_blkd_tasks &&
1529 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1530 			rnp->wait_blkd_tasks = false;
1531 			if (!rnp->qsmaskinit)
1532 				rcu_cleanup_dead_rnp(rnp);
1533 		}
1534 
1535 		raw_spin_unlock_irq_rcu_node(rnp);
1536 		raw_spin_unlock(&rcu_state.ofl_lock);
1537 	}
1538 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1539 
1540 	/*
1541 	 * Set the quiescent-state-needed bits in all the rcu_node
1542 	 * structures for all currently online CPUs in breadth-first
1543 	 * order, starting from the root rcu_node structure, relying on the
1544 	 * layout of the tree within the rcu_state.node[] array.  Note that
1545 	 * other CPUs will access only the leaves of the hierarchy, thus
1546 	 * seeing that no grace period is in progress, at least until the
1547 	 * corresponding leaf node has been initialized.
1548 	 *
1549 	 * The grace period cannot complete until the initialization
1550 	 * process finishes, because this kthread handles both.
1551 	 */
1552 	rcu_state.gp_state = RCU_GP_INIT;
1553 	rcu_for_each_node_breadth_first(rnp) {
1554 		rcu_gp_slow(gp_init_delay);
1555 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1556 		rdp = this_cpu_ptr(&rcu_data);
1557 		rcu_preempt_check_blocked_tasks(rnp);
1558 		rnp->qsmask = rnp->qsmaskinit;
1559 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1560 		if (rnp == rdp->mynode)
1561 			(void)__note_gp_changes(rnp, rdp);
1562 		rcu_preempt_boost_start_gp(rnp);
1563 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1564 					    rnp->level, rnp->grplo,
1565 					    rnp->grphi, rnp->qsmask);
1566 		/* Quiescent states for tasks on any now-offline CPUs. */
1567 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1568 		rnp->rcu_gp_init_mask = mask;
1569 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1570 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1571 		else
1572 			raw_spin_unlock_irq_rcu_node(rnp);
1573 		cond_resched_tasks_rcu_qs();
1574 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1575 	}
1576 
1577 	return true;
1578 }
1579 
1580 /*
1581  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1582  * time.
1583  */
rcu_gp_fqs_check_wake(int * gfp)1584 static bool rcu_gp_fqs_check_wake(int *gfp)
1585 {
1586 	struct rcu_node *rnp = rcu_get_root();
1587 
1588 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1589 	*gfp = READ_ONCE(rcu_state.gp_flags);
1590 	if (*gfp & RCU_GP_FLAG_FQS)
1591 		return true;
1592 
1593 	/* The current grace period has completed. */
1594 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1595 		return true;
1596 
1597 	return false;
1598 }
1599 
1600 /*
1601  * Do one round of quiescent-state forcing.
1602  */
rcu_gp_fqs(bool first_time)1603 static void rcu_gp_fqs(bool first_time)
1604 {
1605 	struct rcu_node *rnp = rcu_get_root();
1606 
1607 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1608 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1609 	if (first_time) {
1610 		/* Collect dyntick-idle snapshots. */
1611 		force_qs_rnp(dyntick_save_progress_counter);
1612 	} else {
1613 		/* Handle dyntick-idle and offline CPUs. */
1614 		force_qs_rnp(rcu_implicit_dynticks_qs);
1615 	}
1616 	/* Clear flag to prevent immediate re-entry. */
1617 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1618 		raw_spin_lock_irq_rcu_node(rnp);
1619 		WRITE_ONCE(rcu_state.gp_flags,
1620 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1621 		raw_spin_unlock_irq_rcu_node(rnp);
1622 	}
1623 }
1624 
1625 /*
1626  * Loop doing repeated quiescent-state forcing until the grace period ends.
1627  */
rcu_gp_fqs_loop(void)1628 static void rcu_gp_fqs_loop(void)
1629 {
1630 	bool first_gp_fqs;
1631 	int gf;
1632 	unsigned long j;
1633 	int ret;
1634 	struct rcu_node *rnp = rcu_get_root();
1635 
1636 	first_gp_fqs = true;
1637 	j = READ_ONCE(jiffies_till_first_fqs);
1638 	ret = 0;
1639 	for (;;) {
1640 		if (!ret) {
1641 			rcu_state.jiffies_force_qs = jiffies + j;
1642 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1643 				   jiffies + (j ? 3 * j : 2));
1644 		}
1645 		trace_rcu_grace_period(rcu_state.name,
1646 				       READ_ONCE(rcu_state.gp_seq),
1647 				       TPS("fqswait"));
1648 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1649 		ret = swait_event_idle_timeout_exclusive(
1650 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1651 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1652 		/* Locking provides needed memory barriers. */
1653 		/* If grace period done, leave loop. */
1654 		if (!READ_ONCE(rnp->qsmask) &&
1655 		    !rcu_preempt_blocked_readers_cgp(rnp))
1656 			break;
1657 		/* If time for quiescent-state forcing, do it. */
1658 		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1659 		    (gf & RCU_GP_FLAG_FQS)) {
1660 			trace_rcu_grace_period(rcu_state.name,
1661 					       READ_ONCE(rcu_state.gp_seq),
1662 					       TPS("fqsstart"));
1663 			rcu_gp_fqs(first_gp_fqs);
1664 			first_gp_fqs = false;
1665 			trace_rcu_grace_period(rcu_state.name,
1666 					       READ_ONCE(rcu_state.gp_seq),
1667 					       TPS("fqsend"));
1668 			cond_resched_tasks_rcu_qs();
1669 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1670 			ret = 0; /* Force full wait till next FQS. */
1671 			j = READ_ONCE(jiffies_till_next_fqs);
1672 		} else {
1673 			/* Deal with stray signal. */
1674 			cond_resched_tasks_rcu_qs();
1675 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1676 			WARN_ON(signal_pending(current));
1677 			trace_rcu_grace_period(rcu_state.name,
1678 					       READ_ONCE(rcu_state.gp_seq),
1679 					       TPS("fqswaitsig"));
1680 			ret = 1; /* Keep old FQS timing. */
1681 			j = jiffies;
1682 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1683 				j = 1;
1684 			else
1685 				j = rcu_state.jiffies_force_qs - j;
1686 		}
1687 	}
1688 }
1689 
1690 /*
1691  * Clean up after the old grace period.
1692  */
rcu_gp_cleanup(void)1693 static void rcu_gp_cleanup(void)
1694 {
1695 	unsigned long gp_duration;
1696 	bool needgp = false;
1697 	unsigned long new_gp_seq;
1698 	bool offloaded;
1699 	struct rcu_data *rdp;
1700 	struct rcu_node *rnp = rcu_get_root();
1701 	struct swait_queue_head *sq;
1702 
1703 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1704 	raw_spin_lock_irq_rcu_node(rnp);
1705 	rcu_state.gp_end = jiffies;
1706 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1707 	if (gp_duration > rcu_state.gp_max)
1708 		rcu_state.gp_max = gp_duration;
1709 
1710 	/*
1711 	 * We know the grace period is complete, but to everyone else
1712 	 * it appears to still be ongoing.  But it is also the case
1713 	 * that to everyone else it looks like there is nothing that
1714 	 * they can do to advance the grace period.  It is therefore
1715 	 * safe for us to drop the lock in order to mark the grace
1716 	 * period as completed in all of the rcu_node structures.
1717 	 */
1718 	raw_spin_unlock_irq_rcu_node(rnp);
1719 
1720 	/*
1721 	 * Propagate new ->gp_seq value to rcu_node structures so that
1722 	 * other CPUs don't have to wait until the start of the next grace
1723 	 * period to process their callbacks.  This also avoids some nasty
1724 	 * RCU grace-period initialization races by forcing the end of
1725 	 * the current grace period to be completely recorded in all of
1726 	 * the rcu_node structures before the beginning of the next grace
1727 	 * period is recorded in any of the rcu_node structures.
1728 	 */
1729 	new_gp_seq = rcu_state.gp_seq;
1730 	rcu_seq_end(&new_gp_seq);
1731 	rcu_for_each_node_breadth_first(rnp) {
1732 		raw_spin_lock_irq_rcu_node(rnp);
1733 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1734 			dump_blkd_tasks(rnp, 10);
1735 		WARN_ON_ONCE(rnp->qsmask);
1736 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1737 		rdp = this_cpu_ptr(&rcu_data);
1738 		if (rnp == rdp->mynode)
1739 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1740 		/* smp_mb() provided by prior unlock-lock pair. */
1741 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1742 		sq = rcu_nocb_gp_get(rnp);
1743 		raw_spin_unlock_irq_rcu_node(rnp);
1744 		rcu_nocb_gp_cleanup(sq);
1745 		cond_resched_tasks_rcu_qs();
1746 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1747 		rcu_gp_slow(gp_cleanup_delay);
1748 	}
1749 	rnp = rcu_get_root();
1750 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1751 
1752 	/* Declare grace period done, trace first to use old GP number. */
1753 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1754 	rcu_seq_end(&rcu_state.gp_seq);
1755 	rcu_state.gp_state = RCU_GP_IDLE;
1756 	/* Check for GP requests since above loop. */
1757 	rdp = this_cpu_ptr(&rcu_data);
1758 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1759 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1760 				  TPS("CleanupMore"));
1761 		needgp = true;
1762 	}
1763 	/* Advance CBs to reduce false positives below. */
1764 	offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1765 		    rcu_segcblist_is_offloaded(&rdp->cblist);
1766 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1767 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1768 		rcu_state.gp_req_activity = jiffies;
1769 		trace_rcu_grace_period(rcu_state.name,
1770 				       READ_ONCE(rcu_state.gp_seq),
1771 				       TPS("newreq"));
1772 	} else {
1773 		WRITE_ONCE(rcu_state.gp_flags,
1774 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1775 	}
1776 	raw_spin_unlock_irq_rcu_node(rnp);
1777 }
1778 
1779 /*
1780  * Body of kthread that handles grace periods.
1781  */
rcu_gp_kthread(void * unused)1782 static int __noreturn rcu_gp_kthread(void *unused)
1783 {
1784 	rcu_bind_gp_kthread();
1785 	for (;;) {
1786 
1787 		/* Handle grace-period start. */
1788 		for (;;) {
1789 			trace_rcu_grace_period(rcu_state.name,
1790 					       READ_ONCE(rcu_state.gp_seq),
1791 					       TPS("reqwait"));
1792 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
1793 			swait_event_idle_exclusive(rcu_state.gp_wq,
1794 					 READ_ONCE(rcu_state.gp_flags) &
1795 					 RCU_GP_FLAG_INIT);
1796 			rcu_state.gp_state = RCU_GP_DONE_GPS;
1797 			/* Locking provides needed memory barrier. */
1798 			if (rcu_gp_init())
1799 				break;
1800 			cond_resched_tasks_rcu_qs();
1801 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1802 			WARN_ON(signal_pending(current));
1803 			trace_rcu_grace_period(rcu_state.name,
1804 					       READ_ONCE(rcu_state.gp_seq),
1805 					       TPS("reqwaitsig"));
1806 		}
1807 
1808 		/* Handle quiescent-state forcing. */
1809 		rcu_gp_fqs_loop();
1810 
1811 		/* Handle grace-period end. */
1812 		rcu_state.gp_state = RCU_GP_CLEANUP;
1813 		rcu_gp_cleanup();
1814 		rcu_state.gp_state = RCU_GP_CLEANED;
1815 	}
1816 }
1817 
1818 /*
1819  * Report a full set of quiescent states to the rcu_state data structure.
1820  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1821  * another grace period is required.  Whether we wake the grace-period
1822  * kthread or it awakens itself for the next round of quiescent-state
1823  * forcing, that kthread will clean up after the just-completed grace
1824  * period.  Note that the caller must hold rnp->lock, which is released
1825  * before return.
1826  */
rcu_report_qs_rsp(unsigned long flags)1827 static void rcu_report_qs_rsp(unsigned long flags)
1828 	__releases(rcu_get_root()->lock)
1829 {
1830 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1831 	WARN_ON_ONCE(!rcu_gp_in_progress());
1832 	WRITE_ONCE(rcu_state.gp_flags,
1833 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1834 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1835 	rcu_gp_kthread_wake();
1836 }
1837 
1838 /*
1839  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1840  * Allows quiescent states for a group of CPUs to be reported at one go
1841  * to the specified rcu_node structure, though all the CPUs in the group
1842  * must be represented by the same rcu_node structure (which need not be a
1843  * leaf rcu_node structure, though it often will be).  The gps parameter
1844  * is the grace-period snapshot, which means that the quiescent states
1845  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1846  * must be held upon entry, and it is released before return.
1847  *
1848  * As a special case, if mask is zero, the bit-already-cleared check is
1849  * disabled.  This allows propagating quiescent state due to resumed tasks
1850  * during grace-period initialization.
1851  */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)1852 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1853 			      unsigned long gps, unsigned long flags)
1854 	__releases(rnp->lock)
1855 {
1856 	unsigned long oldmask = 0;
1857 	struct rcu_node *rnp_c;
1858 
1859 	raw_lockdep_assert_held_rcu_node(rnp);
1860 
1861 	/* Walk up the rcu_node hierarchy. */
1862 	for (;;) {
1863 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1864 
1865 			/*
1866 			 * Our bit has already been cleared, or the
1867 			 * relevant grace period is already over, so done.
1868 			 */
1869 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1870 			return;
1871 		}
1872 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1873 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1874 			     rcu_preempt_blocked_readers_cgp(rnp));
1875 		rnp->qsmask &= ~mask;
1876 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1877 						 mask, rnp->qsmask, rnp->level,
1878 						 rnp->grplo, rnp->grphi,
1879 						 !!rnp->gp_tasks);
1880 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1881 
1882 			/* Other bits still set at this level, so done. */
1883 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1884 			return;
1885 		}
1886 		rnp->completedqs = rnp->gp_seq;
1887 		mask = rnp->grpmask;
1888 		if (rnp->parent == NULL) {
1889 
1890 			/* No more levels.  Exit loop holding root lock. */
1891 
1892 			break;
1893 		}
1894 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1895 		rnp_c = rnp;
1896 		rnp = rnp->parent;
1897 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1898 		oldmask = rnp_c->qsmask;
1899 	}
1900 
1901 	/*
1902 	 * Get here if we are the last CPU to pass through a quiescent
1903 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1904 	 * to clean up and start the next grace period if one is needed.
1905 	 */
1906 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1907 }
1908 
1909 /*
1910  * Record a quiescent state for all tasks that were previously queued
1911  * on the specified rcu_node structure and that were blocking the current
1912  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1913  * irqs disabled, and this lock is released upon return, but irqs remain
1914  * disabled.
1915  */
1916 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)1917 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1918 	__releases(rnp->lock)
1919 {
1920 	unsigned long gps;
1921 	unsigned long mask;
1922 	struct rcu_node *rnp_p;
1923 
1924 	raw_lockdep_assert_held_rcu_node(rnp);
1925 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPTION)) ||
1926 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1927 	    rnp->qsmask != 0) {
1928 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1929 		return;  /* Still need more quiescent states! */
1930 	}
1931 
1932 	rnp->completedqs = rnp->gp_seq;
1933 	rnp_p = rnp->parent;
1934 	if (rnp_p == NULL) {
1935 		/*
1936 		 * Only one rcu_node structure in the tree, so don't
1937 		 * try to report up to its nonexistent parent!
1938 		 */
1939 		rcu_report_qs_rsp(flags);
1940 		return;
1941 	}
1942 
1943 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1944 	gps = rnp->gp_seq;
1945 	mask = rnp->grpmask;
1946 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1947 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1948 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1949 }
1950 
1951 /*
1952  * Record a quiescent state for the specified CPU to that CPU's rcu_data
1953  * structure.  This must be called from the specified CPU.
1954  */
1955 static void
rcu_report_qs_rdp(int cpu,struct rcu_data * rdp)1956 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
1957 {
1958 	unsigned long flags;
1959 	unsigned long mask;
1960 	bool needwake = false;
1961 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1962 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1963 	struct rcu_node *rnp;
1964 
1965 	rnp = rdp->mynode;
1966 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1967 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1968 	    rdp->gpwrap) {
1969 
1970 		/*
1971 		 * The grace period in which this quiescent state was
1972 		 * recorded has ended, so don't report it upwards.
1973 		 * We will instead need a new quiescent state that lies
1974 		 * within the current grace period.
1975 		 */
1976 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
1977 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1978 		return;
1979 	}
1980 	mask = rdp->grpmask;
1981 	rdp->core_needs_qs = false;
1982 	if ((rnp->qsmask & mask) == 0) {
1983 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1984 	} else {
1985 		/*
1986 		 * This GP can't end until cpu checks in, so all of our
1987 		 * callbacks can be processed during the next GP.
1988 		 */
1989 		if (!offloaded)
1990 			needwake = rcu_accelerate_cbs(rnp, rdp);
1991 
1992 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1993 		/* ^^^ Released rnp->lock */
1994 		if (needwake)
1995 			rcu_gp_kthread_wake();
1996 	}
1997 }
1998 
1999 /*
2000  * Check to see if there is a new grace period of which this CPU
2001  * is not yet aware, and if so, set up local rcu_data state for it.
2002  * Otherwise, see if this CPU has just passed through its first
2003  * quiescent state for this grace period, and record that fact if so.
2004  */
2005 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2006 rcu_check_quiescent_state(struct rcu_data *rdp)
2007 {
2008 	/* Check for grace-period ends and beginnings. */
2009 	note_gp_changes(rdp);
2010 
2011 	/*
2012 	 * Does this CPU still need to do its part for current grace period?
2013 	 * If no, return and let the other CPUs do their part as well.
2014 	 */
2015 	if (!rdp->core_needs_qs)
2016 		return;
2017 
2018 	/*
2019 	 * Was there a quiescent state since the beginning of the grace
2020 	 * period? If no, then exit and wait for the next call.
2021 	 */
2022 	if (rdp->cpu_no_qs.b.norm)
2023 		return;
2024 
2025 	/*
2026 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2027 	 * judge of that).
2028 	 */
2029 	rcu_report_qs_rdp(rdp->cpu, rdp);
2030 }
2031 
2032 /*
2033  * Near the end of the offline process.  Trace the fact that this CPU
2034  * is going offline.
2035  */
rcutree_dying_cpu(unsigned int cpu)2036 int rcutree_dying_cpu(unsigned int cpu)
2037 {
2038 	bool blkd;
2039 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2040 	struct rcu_node *rnp = rdp->mynode;
2041 
2042 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2043 		return 0;
2044 
2045 	blkd = !!(rnp->qsmask & rdp->grpmask);
2046 	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2047 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2048 	return 0;
2049 }
2050 
2051 /*
2052  * All CPUs for the specified rcu_node structure have gone offline,
2053  * and all tasks that were preempted within an RCU read-side critical
2054  * section while running on one of those CPUs have since exited their RCU
2055  * read-side critical section.  Some other CPU is reporting this fact with
2056  * the specified rcu_node structure's ->lock held and interrupts disabled.
2057  * This function therefore goes up the tree of rcu_node structures,
2058  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2059  * the leaf rcu_node structure's ->qsmaskinit field has already been
2060  * updated.
2061  *
2062  * This function does check that the specified rcu_node structure has
2063  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2064  * prematurely.  That said, invoking it after the fact will cost you
2065  * a needless lock acquisition.  So once it has done its work, don't
2066  * invoke it again.
2067  */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)2068 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2069 {
2070 	long mask;
2071 	struct rcu_node *rnp = rnp_leaf;
2072 
2073 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2074 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2075 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2076 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2077 		return;
2078 	for (;;) {
2079 		mask = rnp->grpmask;
2080 		rnp = rnp->parent;
2081 		if (!rnp)
2082 			break;
2083 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2084 		rnp->qsmaskinit &= ~mask;
2085 		/* Between grace periods, so better already be zero! */
2086 		WARN_ON_ONCE(rnp->qsmask);
2087 		if (rnp->qsmaskinit) {
2088 			raw_spin_unlock_rcu_node(rnp);
2089 			/* irqs remain disabled. */
2090 			return;
2091 		}
2092 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2093 	}
2094 }
2095 
2096 /*
2097  * The CPU has been completely removed, and some other CPU is reporting
2098  * this fact from process context.  Do the remainder of the cleanup.
2099  * There can only be one CPU hotplug operation at a time, so no need for
2100  * explicit locking.
2101  */
rcutree_dead_cpu(unsigned int cpu)2102 int rcutree_dead_cpu(unsigned int cpu)
2103 {
2104 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2105 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2106 
2107 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2108 		return 0;
2109 
2110 	/* Adjust any no-longer-needed kthreads. */
2111 	rcu_boost_kthread_setaffinity(rnp, -1);
2112 	/* Do any needed no-CB deferred wakeups from this CPU. */
2113 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2114 	return 0;
2115 }
2116 
2117 /*
2118  * Invoke any RCU callbacks that have made it to the end of their grace
2119  * period.  Thottle as specified by rdp->blimit.
2120  */
rcu_do_batch(struct rcu_data * rdp)2121 static void rcu_do_batch(struct rcu_data *rdp)
2122 {
2123 	unsigned long flags;
2124 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2125 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2126 	struct rcu_head *rhp;
2127 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2128 	long bl, count;
2129 	long pending, tlimit = 0;
2130 
2131 	/* If no callbacks are ready, just return. */
2132 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2133 		trace_rcu_batch_start(rcu_state.name,
2134 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2135 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2136 		trace_rcu_batch_end(rcu_state.name, 0,
2137 				    !rcu_segcblist_empty(&rdp->cblist),
2138 				    need_resched(), is_idle_task(current),
2139 				    rcu_is_callbacks_kthread());
2140 		return;
2141 	}
2142 
2143 	/*
2144 	 * Extract the list of ready callbacks, disabling to prevent
2145 	 * races with call_rcu() from interrupt handlers.  Leave the
2146 	 * callback counts, as rcu_barrier() needs to be conservative.
2147 	 */
2148 	local_irq_save(flags);
2149 	rcu_nocb_lock(rdp);
2150 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2151 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2152 	bl = max(rdp->blimit, pending >> rcu_divisor);
2153 	if (unlikely(bl > 100))
2154 		tlimit = local_clock() + rcu_resched_ns;
2155 	trace_rcu_batch_start(rcu_state.name,
2156 			      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2157 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2158 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2159 	if (offloaded)
2160 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2161 	rcu_nocb_unlock_irqrestore(rdp, flags);
2162 
2163 	/* Invoke callbacks. */
2164 	rhp = rcu_cblist_dequeue(&rcl);
2165 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2166 		debug_rcu_head_unqueue(rhp);
2167 		if (__rcu_reclaim(rcu_state.name, rhp))
2168 			rcu_cblist_dequeued_lazy(&rcl);
2169 		/*
2170 		 * Stop only if limit reached and CPU has something to do.
2171 		 * Note: The rcl structure counts down from zero.
2172 		 */
2173 		if (-rcl.len >= bl && !offloaded &&
2174 		    (need_resched() ||
2175 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2176 			break;
2177 		if (unlikely(tlimit)) {
2178 			/* only call local_clock() every 32 callbacks */
2179 			if (likely((-rcl.len & 31) || local_clock() < tlimit))
2180 				continue;
2181 			/* Exceeded the time limit, so leave. */
2182 			break;
2183 		}
2184 		if (offloaded) {
2185 			WARN_ON_ONCE(in_serving_softirq());
2186 			local_bh_enable();
2187 			lockdep_assert_irqs_enabled();
2188 			cond_resched_tasks_rcu_qs();
2189 			lockdep_assert_irqs_enabled();
2190 			local_bh_disable();
2191 		}
2192 	}
2193 
2194 	local_irq_save(flags);
2195 	rcu_nocb_lock(rdp);
2196 	count = -rcl.len;
2197 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2198 			    is_idle_task(current), rcu_is_callbacks_kthread());
2199 
2200 	/* Update counts and requeue any remaining callbacks. */
2201 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2202 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2203 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2204 
2205 	/* Reinstate batch limit if we have worked down the excess. */
2206 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2207 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2208 		rdp->blimit = blimit;
2209 
2210 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2211 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2212 		rdp->qlen_last_fqs_check = 0;
2213 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2214 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2215 		rdp->qlen_last_fqs_check = count;
2216 
2217 	/*
2218 	 * The following usually indicates a double call_rcu().  To track
2219 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2220 	 */
2221 	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2222 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2223 		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
2224 
2225 	rcu_nocb_unlock_irqrestore(rdp, flags);
2226 
2227 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2228 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2229 		invoke_rcu_core();
2230 }
2231 
2232 /*
2233  * This function is invoked from each scheduling-clock interrupt,
2234  * and checks to see if this CPU is in a non-context-switch quiescent
2235  * state, for example, user mode or idle loop.  It also schedules RCU
2236  * core processing.  If the current grace period has gone on too long,
2237  * it will ask the scheduler to manufacture a context switch for the sole
2238  * purpose of providing a providing the needed quiescent state.
2239  */
rcu_sched_clock_irq(int user)2240 void rcu_sched_clock_irq(int user)
2241 {
2242 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2243 	raw_cpu_inc(rcu_data.ticks_this_gp);
2244 	/* The load-acquire pairs with the store-release setting to true. */
2245 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2246 		/* Idle and userspace execution already are quiescent states. */
2247 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2248 			set_tsk_need_resched(current);
2249 			set_preempt_need_resched();
2250 		}
2251 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2252 	}
2253 	rcu_flavor_sched_clock_irq(user);
2254 	if (rcu_pending())
2255 		invoke_rcu_core();
2256 
2257 	trace_rcu_utilization(TPS("End scheduler-tick"));
2258 }
2259 
2260 /*
2261  * Scan the leaf rcu_node structures.  For each structure on which all
2262  * CPUs have reported a quiescent state and on which there are tasks
2263  * blocking the current grace period, initiate RCU priority boosting.
2264  * Otherwise, invoke the specified function to check dyntick state for
2265  * each CPU that has not yet reported a quiescent state.
2266  */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2267 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2268 {
2269 	int cpu;
2270 	unsigned long flags;
2271 	unsigned long mask;
2272 	struct rcu_node *rnp;
2273 
2274 	rcu_for_each_leaf_node(rnp) {
2275 		cond_resched_tasks_rcu_qs();
2276 		mask = 0;
2277 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2278 		if (rnp->qsmask == 0) {
2279 			if (!IS_ENABLED(CONFIG_PREEMPTION) ||
2280 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2281 				/*
2282 				 * No point in scanning bits because they
2283 				 * are all zero.  But we might need to
2284 				 * priority-boost blocked readers.
2285 				 */
2286 				rcu_initiate_boost(rnp, flags);
2287 				/* rcu_initiate_boost() releases rnp->lock */
2288 				continue;
2289 			}
2290 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2291 			continue;
2292 		}
2293 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2294 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2295 			if ((rnp->qsmask & bit) != 0) {
2296 				if (f(per_cpu_ptr(&rcu_data, cpu)))
2297 					mask |= bit;
2298 			}
2299 		}
2300 		if (mask != 0) {
2301 			/* Idle/offline CPUs, report (releases rnp->lock). */
2302 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2303 		} else {
2304 			/* Nothing to do here, so just drop the lock. */
2305 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2306 		}
2307 	}
2308 }
2309 
2310 /*
2311  * Force quiescent states on reluctant CPUs, and also detect which
2312  * CPUs are in dyntick-idle mode.
2313  */
rcu_force_quiescent_state(void)2314 void rcu_force_quiescent_state(void)
2315 {
2316 	unsigned long flags;
2317 	bool ret;
2318 	struct rcu_node *rnp;
2319 	struct rcu_node *rnp_old = NULL;
2320 
2321 	/* Funnel through hierarchy to reduce memory contention. */
2322 	rnp = raw_cpu_read(rcu_data.mynode);
2323 	for (; rnp != NULL; rnp = rnp->parent) {
2324 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2325 		      !raw_spin_trylock(&rnp->fqslock);
2326 		if (rnp_old != NULL)
2327 			raw_spin_unlock(&rnp_old->fqslock);
2328 		if (ret)
2329 			return;
2330 		rnp_old = rnp;
2331 	}
2332 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2333 
2334 	/* Reached the root of the rcu_node tree, acquire lock. */
2335 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2336 	raw_spin_unlock(&rnp_old->fqslock);
2337 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2338 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2339 		return;  /* Someone beat us to it. */
2340 	}
2341 	WRITE_ONCE(rcu_state.gp_flags,
2342 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2343 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2344 	rcu_gp_kthread_wake();
2345 }
2346 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2347 
2348 /* Perform RCU core processing work for the current CPU.  */
rcu_core(void)2349 static __latent_entropy void rcu_core(void)
2350 {
2351 	unsigned long flags;
2352 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2353 	struct rcu_node *rnp = rdp->mynode;
2354 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2355 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2356 
2357 	if (cpu_is_offline(smp_processor_id()))
2358 		return;
2359 	trace_rcu_utilization(TPS("Start RCU core"));
2360 	WARN_ON_ONCE(!rdp->beenonline);
2361 
2362 	/* Report any deferred quiescent states if preemption enabled. */
2363 	if (!(preempt_count() & PREEMPT_MASK)) {
2364 		rcu_preempt_deferred_qs(current);
2365 	} else if (rcu_preempt_need_deferred_qs(current)) {
2366 		set_tsk_need_resched(current);
2367 		set_preempt_need_resched();
2368 	}
2369 
2370 	/* Update RCU state based on any recent quiescent states. */
2371 	rcu_check_quiescent_state(rdp);
2372 
2373 	/* No grace period and unregistered callbacks? */
2374 	if (!rcu_gp_in_progress() &&
2375 	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2376 		local_irq_save(flags);
2377 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2378 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2379 		local_irq_restore(flags);
2380 	}
2381 
2382 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2383 
2384 	/* If there are callbacks ready, invoke them. */
2385 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2386 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2387 		rcu_do_batch(rdp);
2388 
2389 	/* Do any needed deferred wakeups of rcuo kthreads. */
2390 	do_nocb_deferred_wakeup(rdp);
2391 	trace_rcu_utilization(TPS("End RCU core"));
2392 }
2393 
rcu_core_si(struct softirq_action * h)2394 static void rcu_core_si(struct softirq_action *h)
2395 {
2396 	rcu_core();
2397 }
2398 
rcu_wake_cond(struct task_struct * t,int status)2399 static void rcu_wake_cond(struct task_struct *t, int status)
2400 {
2401 	/*
2402 	 * If the thread is yielding, only wake it when this
2403 	 * is invoked from idle
2404 	 */
2405 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2406 		wake_up_process(t);
2407 }
2408 
invoke_rcu_core_kthread(void)2409 static void invoke_rcu_core_kthread(void)
2410 {
2411 	struct task_struct *t;
2412 	unsigned long flags;
2413 
2414 	local_irq_save(flags);
2415 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2416 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2417 	if (t != NULL && t != current)
2418 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2419 	local_irq_restore(flags);
2420 }
2421 
2422 /*
2423  * Wake up this CPU's rcuc kthread to do RCU core processing.
2424  */
invoke_rcu_core(void)2425 static void invoke_rcu_core(void)
2426 {
2427 	if (!cpu_online(smp_processor_id()))
2428 		return;
2429 	if (use_softirq)
2430 		raise_softirq(RCU_SOFTIRQ);
2431 	else
2432 		invoke_rcu_core_kthread();
2433 }
2434 
rcu_cpu_kthread_park(unsigned int cpu)2435 static void rcu_cpu_kthread_park(unsigned int cpu)
2436 {
2437 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2438 }
2439 
rcu_cpu_kthread_should_run(unsigned int cpu)2440 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2441 {
2442 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2443 }
2444 
2445 /*
2446  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2447  * the RCU softirq used in configurations of RCU that do not support RCU
2448  * priority boosting.
2449  */
rcu_cpu_kthread(unsigned int cpu)2450 static void rcu_cpu_kthread(unsigned int cpu)
2451 {
2452 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2453 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2454 	int spincnt;
2455 
2456 	for (spincnt = 0; spincnt < 10; spincnt++) {
2457 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
2458 		local_bh_disable();
2459 		*statusp = RCU_KTHREAD_RUNNING;
2460 		local_irq_disable();
2461 		work = *workp;
2462 		*workp = 0;
2463 		local_irq_enable();
2464 		if (work)
2465 			rcu_core();
2466 		local_bh_enable();
2467 		if (*workp == 0) {
2468 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2469 			*statusp = RCU_KTHREAD_WAITING;
2470 			return;
2471 		}
2472 	}
2473 	*statusp = RCU_KTHREAD_YIELDING;
2474 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2475 	schedule_timeout_interruptible(2);
2476 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2477 	*statusp = RCU_KTHREAD_WAITING;
2478 }
2479 
2480 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2481 	.store			= &rcu_data.rcu_cpu_kthread_task,
2482 	.thread_should_run	= rcu_cpu_kthread_should_run,
2483 	.thread_fn		= rcu_cpu_kthread,
2484 	.thread_comm		= "rcuc/%u",
2485 	.setup			= rcu_cpu_kthread_setup,
2486 	.park			= rcu_cpu_kthread_park,
2487 };
2488 
2489 /*
2490  * Spawn per-CPU RCU core processing kthreads.
2491  */
rcu_spawn_core_kthreads(void)2492 static int __init rcu_spawn_core_kthreads(void)
2493 {
2494 	int cpu;
2495 
2496 	for_each_possible_cpu(cpu)
2497 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2498 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2499 		return 0;
2500 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2501 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2502 	return 0;
2503 }
2504 
2505 /*
2506  * Handle any core-RCU processing required by a call_rcu() invocation.
2507  */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2508 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2509 			    unsigned long flags)
2510 {
2511 	/*
2512 	 * If called from an extended quiescent state, invoke the RCU
2513 	 * core in order to force a re-evaluation of RCU's idleness.
2514 	 */
2515 	if (!rcu_is_watching())
2516 		invoke_rcu_core();
2517 
2518 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2519 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2520 		return;
2521 
2522 	/*
2523 	 * Force the grace period if too many callbacks or too long waiting.
2524 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2525 	 * if some other CPU has recently done so.  Also, don't bother
2526 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2527 	 * is the only one waiting for a grace period to complete.
2528 	 */
2529 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2530 		     rdp->qlen_last_fqs_check + qhimark)) {
2531 
2532 		/* Are we ignoring a completed grace period? */
2533 		note_gp_changes(rdp);
2534 
2535 		/* Start a new grace period if one not already started. */
2536 		if (!rcu_gp_in_progress()) {
2537 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2538 		} else {
2539 			/* Give the grace period a kick. */
2540 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2541 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2542 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2543 				rcu_force_quiescent_state();
2544 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2545 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2546 		}
2547 	}
2548 }
2549 
2550 /*
2551  * RCU callback function to leak a callback.
2552  */
rcu_leak_callback(struct rcu_head * rhp)2553 static void rcu_leak_callback(struct rcu_head *rhp)
2554 {
2555 }
2556 
2557 /*
2558  * Helper function for call_rcu() and friends.  The cpu argument will
2559  * normally be -1, indicating "currently running CPU".  It may specify
2560  * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2561  * is expected to specify a CPU.
2562  */
2563 static void
__call_rcu(struct rcu_head * head,rcu_callback_t func,bool lazy)2564 __call_rcu(struct rcu_head *head, rcu_callback_t func, bool lazy)
2565 {
2566 	unsigned long flags;
2567 	struct rcu_data *rdp;
2568 	bool was_alldone;
2569 
2570 	/* Misaligned rcu_head! */
2571 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2572 
2573 	if (debug_rcu_head_queue(head)) {
2574 		/*
2575 		 * Probable double call_rcu(), so leak the callback.
2576 		 * Use rcu:rcu_callback trace event to find the previous
2577 		 * time callback was passed to __call_rcu().
2578 		 */
2579 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2580 			  head, head->func);
2581 		WRITE_ONCE(head->func, rcu_leak_callback);
2582 		return;
2583 	}
2584 	head->func = func;
2585 	head->next = NULL;
2586 	local_irq_save(flags);
2587 	rdp = this_cpu_ptr(&rcu_data);
2588 
2589 	/* Add the callback to our list. */
2590 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2591 		// This can trigger due to call_rcu() from offline CPU:
2592 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2593 		WARN_ON_ONCE(!rcu_is_watching());
2594 		// Very early boot, before rcu_init().  Initialize if needed
2595 		// and then drop through to queue the callback.
2596 		if (rcu_segcblist_empty(&rdp->cblist))
2597 			rcu_segcblist_init(&rdp->cblist);
2598 	}
2599 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2600 		return; // Enqueued onto ->nocb_bypass, so just leave.
2601 	/* If we get here, rcu_nocb_try_bypass() acquired ->nocb_lock. */
2602 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2603 	if (__is_kfree_rcu_offset((unsigned long)func))
2604 		trace_rcu_kfree_callback(rcu_state.name, head,
2605 					 (unsigned long)func,
2606 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2607 					 rcu_segcblist_n_cbs(&rdp->cblist));
2608 	else
2609 		trace_rcu_callback(rcu_state.name, head,
2610 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2611 				   rcu_segcblist_n_cbs(&rdp->cblist));
2612 
2613 	/* Go handle any RCU core processing required. */
2614 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2615 	    unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2616 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2617 	} else {
2618 		__call_rcu_core(rdp, head, flags);
2619 		local_irq_restore(flags);
2620 	}
2621 }
2622 
2623 /**
2624  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2625  * @head: structure to be used for queueing the RCU updates.
2626  * @func: actual callback function to be invoked after the grace period
2627  *
2628  * The callback function will be invoked some time after a full grace
2629  * period elapses, in other words after all pre-existing RCU read-side
2630  * critical sections have completed.  However, the callback function
2631  * might well execute concurrently with RCU read-side critical sections
2632  * that started after call_rcu() was invoked.  RCU read-side critical
2633  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2634  * may be nested.  In addition, regions of code across which interrupts,
2635  * preemption, or softirqs have been disabled also serve as RCU read-side
2636  * critical sections.  This includes hardware interrupt handlers, softirq
2637  * handlers, and NMI handlers.
2638  *
2639  * Note that all CPUs must agree that the grace period extended beyond
2640  * all pre-existing RCU read-side critical section.  On systems with more
2641  * than one CPU, this means that when "func()" is invoked, each CPU is
2642  * guaranteed to have executed a full memory barrier since the end of its
2643  * last RCU read-side critical section whose beginning preceded the call
2644  * to call_rcu().  It also means that each CPU executing an RCU read-side
2645  * critical section that continues beyond the start of "func()" must have
2646  * executed a memory barrier after the call_rcu() but before the beginning
2647  * of that RCU read-side critical section.  Note that these guarantees
2648  * include CPUs that are offline, idle, or executing in user mode, as
2649  * well as CPUs that are executing in the kernel.
2650  *
2651  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2652  * resulting RCU callback function "func()", then both CPU A and CPU B are
2653  * guaranteed to execute a full memory barrier during the time interval
2654  * between the call to call_rcu() and the invocation of "func()" -- even
2655  * if CPU A and CPU B are the same CPU (but again only if the system has
2656  * more than one CPU).
2657  */
call_rcu(struct rcu_head * head,rcu_callback_t func)2658 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2659 {
2660 	__call_rcu(head, func, 0);
2661 }
2662 EXPORT_SYMBOL_GPL(call_rcu);
2663 
2664 /*
2665  * Queue an RCU callback for lazy invocation after a grace period.
2666  * This will likely be later named something like "call_rcu_lazy()",
2667  * but this change will require some way of tagging the lazy RCU
2668  * callbacks in the list of pending callbacks. Until then, this
2669  * function may only be called from __kfree_rcu().
2670  */
kfree_call_rcu(struct rcu_head * head,rcu_callback_t func)2671 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2672 {
2673 	__call_rcu(head, func, 1);
2674 }
2675 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2676 
2677 /*
2678  * During early boot, any blocking grace-period wait automatically
2679  * implies a grace period.  Later on, this is never the case for PREEMPT.
2680  *
2681  * Howevr, because a context switch is a grace period for !PREEMPT, any
2682  * blocking grace-period wait automatically implies a grace period if
2683  * there is only one CPU online at any point time during execution of
2684  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
2685  * occasionally incorrectly indicate that there are multiple CPUs online
2686  * when there was in fact only one the whole time, as this just adds some
2687  * overhead: RCU still operates correctly.
2688  */
rcu_blocking_is_gp(void)2689 static int rcu_blocking_is_gp(void)
2690 {
2691 	int ret;
2692 
2693 	if (IS_ENABLED(CONFIG_PREEMPTION))
2694 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
2695 	might_sleep();  /* Check for RCU read-side critical section. */
2696 	preempt_disable();
2697 	ret = num_online_cpus() <= 1;
2698 	preempt_enable();
2699 	return ret;
2700 }
2701 
2702 /**
2703  * synchronize_rcu - wait until a grace period has elapsed.
2704  *
2705  * Control will return to the caller some time after a full grace
2706  * period has elapsed, in other words after all currently executing RCU
2707  * read-side critical sections have completed.  Note, however, that
2708  * upon return from synchronize_rcu(), the caller might well be executing
2709  * concurrently with new RCU read-side critical sections that began while
2710  * synchronize_rcu() was waiting.  RCU read-side critical sections are
2711  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
2712  * In addition, regions of code across which interrupts, preemption, or
2713  * softirqs have been disabled also serve as RCU read-side critical
2714  * sections.  This includes hardware interrupt handlers, softirq handlers,
2715  * and NMI handlers.
2716  *
2717  * Note that this guarantee implies further memory-ordering guarantees.
2718  * On systems with more than one CPU, when synchronize_rcu() returns,
2719  * each CPU is guaranteed to have executed a full memory barrier since
2720  * the end of its last RCU read-side critical section whose beginning
2721  * preceded the call to synchronize_rcu().  In addition, each CPU having
2722  * an RCU read-side critical section that extends beyond the return from
2723  * synchronize_rcu() is guaranteed to have executed a full memory barrier
2724  * after the beginning of synchronize_rcu() and before the beginning of
2725  * that RCU read-side critical section.  Note that these guarantees include
2726  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2727  * that are executing in the kernel.
2728  *
2729  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
2730  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2731  * to have executed a full memory barrier during the execution of
2732  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
2733  * again only if the system has more than one CPU).
2734  */
synchronize_rcu(void)2735 void synchronize_rcu(void)
2736 {
2737 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
2738 			 lock_is_held(&rcu_lock_map) ||
2739 			 lock_is_held(&rcu_sched_lock_map),
2740 			 "Illegal synchronize_rcu() in RCU read-side critical section");
2741 	if (rcu_blocking_is_gp())
2742 		return;
2743 	if (rcu_gp_is_expedited())
2744 		synchronize_rcu_expedited();
2745 	else
2746 		wait_rcu_gp(call_rcu);
2747 }
2748 EXPORT_SYMBOL_GPL(synchronize_rcu);
2749 
2750 /**
2751  * get_state_synchronize_rcu - Snapshot current RCU state
2752  *
2753  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2754  * to determine whether or not a full grace period has elapsed in the
2755  * meantime.
2756  */
get_state_synchronize_rcu(void)2757 unsigned long get_state_synchronize_rcu(void)
2758 {
2759 	/*
2760 	 * Any prior manipulation of RCU-protected data must happen
2761 	 * before the load from ->gp_seq.
2762 	 */
2763 	smp_mb();  /* ^^^ */
2764 	return rcu_seq_snap(&rcu_state.gp_seq);
2765 }
2766 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2767 
2768 /**
2769  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2770  *
2771  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2772  *
2773  * If a full RCU grace period has elapsed since the earlier call to
2774  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2775  * synchronize_rcu() to wait for a full grace period.
2776  *
2777  * Yes, this function does not take counter wrap into account.  But
2778  * counter wrap is harmless.  If the counter wraps, we have waited for
2779  * more than 2 billion grace periods (and way more on a 64-bit system!),
2780  * so waiting for one additional grace period should be just fine.
2781  */
cond_synchronize_rcu(unsigned long oldstate)2782 void cond_synchronize_rcu(unsigned long oldstate)
2783 {
2784 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2785 		synchronize_rcu();
2786 	else
2787 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
2788 }
2789 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2790 
2791 /*
2792  * Check to see if there is any immediate RCU-related work to be done by
2793  * the current CPU, returning 1 if so and zero otherwise.  The checks are
2794  * in order of increasing expense: checks that can be carried out against
2795  * CPU-local state are performed first.  However, we must check for CPU
2796  * stalls first, else we might not get a chance.
2797  */
rcu_pending(void)2798 static int rcu_pending(void)
2799 {
2800 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2801 	struct rcu_node *rnp = rdp->mynode;
2802 
2803 	/* Check for CPU stalls, if enabled. */
2804 	check_cpu_stall(rdp);
2805 
2806 	/* Does this CPU need a deferred NOCB wakeup? */
2807 	if (rcu_nocb_need_deferred_wakeup(rdp))
2808 		return 1;
2809 
2810 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2811 	if (rcu_nohz_full_cpu())
2812 		return 0;
2813 
2814 	/* Is the RCU core waiting for a quiescent state from this CPU? */
2815 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
2816 		return 1;
2817 
2818 	/* Does this CPU have callbacks ready to invoke? */
2819 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2820 		return 1;
2821 
2822 	/* Has RCU gone idle with this CPU needing another grace period? */
2823 	if (!rcu_gp_in_progress() &&
2824 	    rcu_segcblist_is_enabled(&rdp->cblist) &&
2825 	    (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
2826 	     !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
2827 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2828 		return 1;
2829 
2830 	/* Have RCU grace period completed or started?  */
2831 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
2832 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
2833 		return 1;
2834 
2835 	/* nothing to do */
2836 	return 0;
2837 }
2838 
2839 /*
2840  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
2841  * the compiler is expected to optimize this away.
2842  */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)2843 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
2844 {
2845 	trace_rcu_barrier(rcu_state.name, s, cpu,
2846 			  atomic_read(&rcu_state.barrier_cpu_count), done);
2847 }
2848 
2849 /*
2850  * RCU callback function for rcu_barrier().  If we are last, wake
2851  * up the task executing rcu_barrier().
2852  */
rcu_barrier_callback(struct rcu_head * rhp)2853 static void rcu_barrier_callback(struct rcu_head *rhp)
2854 {
2855 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
2856 		rcu_barrier_trace(TPS("LastCB"), -1,
2857 				   rcu_state.barrier_sequence);
2858 		complete(&rcu_state.barrier_completion);
2859 	} else {
2860 		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
2861 	}
2862 }
2863 
2864 /*
2865  * Called with preemption disabled, and from cross-cpu IRQ context.
2866  */
rcu_barrier_func(void * unused)2867 static void rcu_barrier_func(void *unused)
2868 {
2869 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2870 
2871 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
2872 	rdp->barrier_head.func = rcu_barrier_callback;
2873 	debug_rcu_head_queue(&rdp->barrier_head);
2874 	rcu_nocb_lock(rdp);
2875 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
2876 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
2877 		atomic_inc(&rcu_state.barrier_cpu_count);
2878 	} else {
2879 		debug_rcu_head_unqueue(&rdp->barrier_head);
2880 		rcu_barrier_trace(TPS("IRQNQ"), -1,
2881 				   rcu_state.barrier_sequence);
2882 	}
2883 	rcu_nocb_unlock(rdp);
2884 }
2885 
2886 /**
2887  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
2888  *
2889  * Note that this primitive does not necessarily wait for an RCU grace period
2890  * to complete.  For example, if there are no RCU callbacks queued anywhere
2891  * in the system, then rcu_barrier() is within its rights to return
2892  * immediately, without waiting for anything, much less an RCU grace period.
2893  */
rcu_barrier(void)2894 void rcu_barrier(void)
2895 {
2896 	int cpu;
2897 	struct rcu_data *rdp;
2898 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
2899 
2900 	rcu_barrier_trace(TPS("Begin"), -1, s);
2901 
2902 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2903 	mutex_lock(&rcu_state.barrier_mutex);
2904 
2905 	/* Did someone else do our work for us? */
2906 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
2907 		rcu_barrier_trace(TPS("EarlyExit"), -1,
2908 				   rcu_state.barrier_sequence);
2909 		smp_mb(); /* caller's subsequent code after above check. */
2910 		mutex_unlock(&rcu_state.barrier_mutex);
2911 		return;
2912 	}
2913 
2914 	/* Mark the start of the barrier operation. */
2915 	rcu_seq_start(&rcu_state.barrier_sequence);
2916 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
2917 
2918 	/*
2919 	 * Initialize the count to one rather than to zero in order to
2920 	 * avoid a too-soon return to zero in case of a short grace period
2921 	 * (or preemption of this task).  Exclude CPU-hotplug operations
2922 	 * to ensure that no offline CPU has callbacks queued.
2923 	 */
2924 	init_completion(&rcu_state.barrier_completion);
2925 	atomic_set(&rcu_state.barrier_cpu_count, 1);
2926 	get_online_cpus();
2927 
2928 	/*
2929 	 * Force each CPU with callbacks to register a new callback.
2930 	 * When that callback is invoked, we will know that all of the
2931 	 * corresponding CPU's preceding callbacks have been invoked.
2932 	 */
2933 	for_each_possible_cpu(cpu) {
2934 		rdp = per_cpu_ptr(&rcu_data, cpu);
2935 		if (!cpu_online(cpu) &&
2936 		    !rcu_segcblist_is_offloaded(&rdp->cblist))
2937 			continue;
2938 		if (rcu_segcblist_n_cbs(&rdp->cblist)) {
2939 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
2940 					   rcu_state.barrier_sequence);
2941 			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
2942 		} else {
2943 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
2944 					   rcu_state.barrier_sequence);
2945 		}
2946 	}
2947 	put_online_cpus();
2948 
2949 	/*
2950 	 * Now that we have an rcu_barrier_callback() callback on each
2951 	 * CPU, and thus each counted, remove the initial count.
2952 	 */
2953 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
2954 		complete(&rcu_state.barrier_completion);
2955 
2956 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2957 	wait_for_completion(&rcu_state.barrier_completion);
2958 
2959 	/* Mark the end of the barrier operation. */
2960 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
2961 	rcu_seq_end(&rcu_state.barrier_sequence);
2962 
2963 	/* Other rcu_barrier() invocations can now safely proceed. */
2964 	mutex_unlock(&rcu_state.barrier_mutex);
2965 }
2966 EXPORT_SYMBOL_GPL(rcu_barrier);
2967 
2968 /*
2969  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
2970  * first CPU in a given leaf rcu_node structure coming online.  The caller
2971  * must hold the corresponding leaf rcu_node ->lock with interrrupts
2972  * disabled.
2973  */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)2974 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
2975 {
2976 	long mask;
2977 	long oldmask;
2978 	struct rcu_node *rnp = rnp_leaf;
2979 
2980 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2981 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
2982 	for (;;) {
2983 		mask = rnp->grpmask;
2984 		rnp = rnp->parent;
2985 		if (rnp == NULL)
2986 			return;
2987 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
2988 		oldmask = rnp->qsmaskinit;
2989 		rnp->qsmaskinit |= mask;
2990 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
2991 		if (oldmask)
2992 			return;
2993 	}
2994 }
2995 
2996 /*
2997  * Do boot-time initialization of a CPU's per-CPU RCU data.
2998  */
2999 static void __init
rcu_boot_init_percpu_data(int cpu)3000 rcu_boot_init_percpu_data(int cpu)
3001 {
3002 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3003 
3004 	/* Set up local state, ensuring consistent view of global state. */
3005 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3006 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3007 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3008 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3009 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3010 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3011 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3012 	rdp->cpu = cpu;
3013 	rcu_boot_init_nocb_percpu_data(rdp);
3014 }
3015 
3016 /*
3017  * Invoked early in the CPU-online process, when pretty much all services
3018  * are available.  The incoming CPU is not present.
3019  *
3020  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3021  * offline event can be happening at a given time.  Note also that we can
3022  * accept some slop in the rsp->gp_seq access due to the fact that this
3023  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3024  * And any offloaded callbacks are being numbered elsewhere.
3025  */
rcutree_prepare_cpu(unsigned int cpu)3026 int rcutree_prepare_cpu(unsigned int cpu)
3027 {
3028 	unsigned long flags;
3029 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3030 	struct rcu_node *rnp = rcu_get_root();
3031 
3032 	/* Set up local state, ensuring consistent view of global state. */
3033 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3034 	rdp->qlen_last_fqs_check = 0;
3035 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
3036 	rdp->blimit = blimit;
3037 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3038 	    !rcu_segcblist_is_offloaded(&rdp->cblist))
3039 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3040 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3041 	rcu_dynticks_eqs_online();
3042 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3043 
3044 	/*
3045 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3046 	 * propagation up the rcu_node tree will happen at the beginning
3047 	 * of the next grace period.
3048 	 */
3049 	rnp = rdp->mynode;
3050 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3051 	rdp->beenonline = true;	 /* We have now been online. */
3052 	rdp->gp_seq = rnp->gp_seq;
3053 	rdp->gp_seq_needed = rnp->gp_seq;
3054 	rdp->cpu_no_qs.b.norm = true;
3055 	rdp->core_needs_qs = false;
3056 	rdp->rcu_iw_pending = false;
3057 	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3058 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3059 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3060 	rcu_prepare_kthreads(cpu);
3061 	rcu_spawn_cpu_nocb_kthread(cpu);
3062 
3063 	return 0;
3064 }
3065 
3066 /*
3067  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3068  */
rcutree_affinity_setting(unsigned int cpu,int outgoing)3069 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3070 {
3071 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3072 
3073 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3074 }
3075 
3076 /*
3077  * Near the end of the CPU-online process.  Pretty much all services
3078  * enabled, and the CPU is now very much alive.
3079  */
rcutree_online_cpu(unsigned int cpu)3080 int rcutree_online_cpu(unsigned int cpu)
3081 {
3082 	unsigned long flags;
3083 	struct rcu_data *rdp;
3084 	struct rcu_node *rnp;
3085 
3086 	rdp = per_cpu_ptr(&rcu_data, cpu);
3087 	rnp = rdp->mynode;
3088 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3089 	rnp->ffmask |= rdp->grpmask;
3090 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3091 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3092 		return 0; /* Too early in boot for scheduler work. */
3093 	sync_sched_exp_online_cleanup(cpu);
3094 	rcutree_affinity_setting(cpu, -1);
3095 	return 0;
3096 }
3097 
3098 /*
3099  * Near the beginning of the process.  The CPU is still very much alive
3100  * with pretty much all services enabled.
3101  */
rcutree_offline_cpu(unsigned int cpu)3102 int rcutree_offline_cpu(unsigned int cpu)
3103 {
3104 	unsigned long flags;
3105 	struct rcu_data *rdp;
3106 	struct rcu_node *rnp;
3107 
3108 	rdp = per_cpu_ptr(&rcu_data, cpu);
3109 	rnp = rdp->mynode;
3110 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3111 	rnp->ffmask &= ~rdp->grpmask;
3112 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3113 
3114 	rcutree_affinity_setting(cpu, cpu);
3115 	return 0;
3116 }
3117 
3118 static DEFINE_PER_CPU(int, rcu_cpu_started);
3119 
3120 /*
3121  * Mark the specified CPU as being online so that subsequent grace periods
3122  * (both expedited and normal) will wait on it.  Note that this means that
3123  * incoming CPUs are not allowed to use RCU read-side critical sections
3124  * until this function is called.  Failing to observe this restriction
3125  * will result in lockdep splats.
3126  *
3127  * Note that this function is special in that it is invoked directly
3128  * from the incoming CPU rather than from the cpuhp_step mechanism.
3129  * This is because this function must be invoked at a precise location.
3130  */
rcu_cpu_starting(unsigned int cpu)3131 void rcu_cpu_starting(unsigned int cpu)
3132 {
3133 	unsigned long flags;
3134 	unsigned long mask;
3135 	int nbits;
3136 	unsigned long oldmask;
3137 	struct rcu_data *rdp;
3138 	struct rcu_node *rnp;
3139 
3140 	if (per_cpu(rcu_cpu_started, cpu))
3141 		return;
3142 
3143 	per_cpu(rcu_cpu_started, cpu) = 1;
3144 
3145 	rdp = per_cpu_ptr(&rcu_data, cpu);
3146 	rnp = rdp->mynode;
3147 	mask = rdp->grpmask;
3148 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3149 	rnp->qsmaskinitnext |= mask;
3150 	oldmask = rnp->expmaskinitnext;
3151 	rnp->expmaskinitnext |= mask;
3152 	oldmask ^= rnp->expmaskinitnext;
3153 	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3154 	/* Allow lockless access for expedited grace periods. */
3155 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3156 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3157 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3158 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3159 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3160 		/* Report QS -after- changing ->qsmaskinitnext! */
3161 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3162 	} else {
3163 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3164 	}
3165 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3166 }
3167 
3168 /*
3169  * The outgoing function has no further need of RCU, so remove it from
3170  * the rcu_node tree's ->qsmaskinitnext bit masks.
3171  *
3172  * Note that this function is special in that it is invoked directly
3173  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3174  * This is because this function must be invoked at a precise location.
3175  */
rcu_report_dead(unsigned int cpu)3176 void rcu_report_dead(unsigned int cpu)
3177 {
3178 	unsigned long flags;
3179 	unsigned long mask;
3180 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3181 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3182 
3183 	/* QS for any half-done expedited grace period. */
3184 	preempt_disable();
3185 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3186 	preempt_enable();
3187 	rcu_preempt_deferred_qs(current);
3188 
3189 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3190 	mask = rdp->grpmask;
3191 	raw_spin_lock(&rcu_state.ofl_lock);
3192 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3193 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3194 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3195 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3196 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
3197 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3198 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3199 	}
3200 	rnp->qsmaskinitnext &= ~mask;
3201 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3202 	raw_spin_unlock(&rcu_state.ofl_lock);
3203 
3204 	per_cpu(rcu_cpu_started, cpu) = 0;
3205 }
3206 
3207 #ifdef CONFIG_HOTPLUG_CPU
3208 /*
3209  * The outgoing CPU has just passed through the dying-idle state, and we
3210  * are being invoked from the CPU that was IPIed to continue the offline
3211  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3212  */
rcutree_migrate_callbacks(int cpu)3213 void rcutree_migrate_callbacks(int cpu)
3214 {
3215 	unsigned long flags;
3216 	struct rcu_data *my_rdp;
3217 	struct rcu_node *my_rnp;
3218 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3219 	bool needwake;
3220 
3221 	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3222 	    rcu_segcblist_empty(&rdp->cblist))
3223 		return;  /* No callbacks to migrate. */
3224 
3225 	local_irq_save(flags);
3226 	my_rdp = this_cpu_ptr(&rcu_data);
3227 	my_rnp = my_rdp->mynode;
3228 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3229 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3230 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3231 	/* Leverage recent GPs and set GP for new callbacks. */
3232 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
3233 		   rcu_advance_cbs(my_rnp, my_rdp);
3234 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3235 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3236 	rcu_segcblist_disable(&rdp->cblist);
3237 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3238 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3239 	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3240 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3241 		__call_rcu_nocb_wake(my_rdp, true, flags);
3242 	} else {
3243 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3244 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3245 	}
3246 	if (needwake)
3247 		rcu_gp_kthread_wake();
3248 	lockdep_assert_irqs_enabled();
3249 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3250 		  !rcu_segcblist_empty(&rdp->cblist),
3251 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3252 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3253 		  rcu_segcblist_first_cb(&rdp->cblist));
3254 }
3255 #endif
3256 
3257 /*
3258  * On non-huge systems, use expedited RCU grace periods to make suspend
3259  * and hibernation run faster.
3260  */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)3261 static int rcu_pm_notify(struct notifier_block *self,
3262 			 unsigned long action, void *hcpu)
3263 {
3264 	switch (action) {
3265 	case PM_HIBERNATION_PREPARE:
3266 	case PM_SUSPEND_PREPARE:
3267 		rcu_expedite_gp();
3268 		break;
3269 	case PM_POST_HIBERNATION:
3270 	case PM_POST_SUSPEND:
3271 		rcu_unexpedite_gp();
3272 		break;
3273 	default:
3274 		break;
3275 	}
3276 	return NOTIFY_OK;
3277 }
3278 
3279 /*
3280  * Spawn the kthreads that handle RCU's grace periods.
3281  */
rcu_spawn_gp_kthread(void)3282 static int __init rcu_spawn_gp_kthread(void)
3283 {
3284 	unsigned long flags;
3285 	int kthread_prio_in = kthread_prio;
3286 	struct rcu_node *rnp;
3287 	struct sched_param sp;
3288 	struct task_struct *t;
3289 
3290 	/* Force priority into range. */
3291 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3292 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3293 		kthread_prio = 2;
3294 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3295 		kthread_prio = 1;
3296 	else if (kthread_prio < 0)
3297 		kthread_prio = 0;
3298 	else if (kthread_prio > 99)
3299 		kthread_prio = 99;
3300 
3301 	if (kthread_prio != kthread_prio_in)
3302 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3303 			 kthread_prio, kthread_prio_in);
3304 
3305 	rcu_scheduler_fully_active = 1;
3306 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3307 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3308 		return 0;
3309 	if (kthread_prio) {
3310 		sp.sched_priority = kthread_prio;
3311 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3312 	}
3313 	rnp = rcu_get_root();
3314 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3315 	rcu_state.gp_kthread = t;
3316 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3317 	wake_up_process(t);
3318 	rcu_spawn_nocb_kthreads();
3319 	rcu_spawn_boost_kthreads();
3320 	rcu_spawn_core_kthreads();
3321 	return 0;
3322 }
3323 early_initcall(rcu_spawn_gp_kthread);
3324 
3325 /*
3326  * This function is invoked towards the end of the scheduler's
3327  * initialization process.  Before this is called, the idle task might
3328  * contain synchronous grace-period primitives (during which time, this idle
3329  * task is booting the system, and such primitives are no-ops).  After this
3330  * function is called, any synchronous grace-period primitives are run as
3331  * expedited, with the requesting task driving the grace period forward.
3332  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3333  * runtime RCU functionality.
3334  */
rcu_scheduler_starting(void)3335 void rcu_scheduler_starting(void)
3336 {
3337 	WARN_ON(num_online_cpus() != 1);
3338 	WARN_ON(nr_context_switches() > 0);
3339 	rcu_test_sync_prims();
3340 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3341 	rcu_test_sync_prims();
3342 }
3343 
3344 /*
3345  * Helper function for rcu_init() that initializes the rcu_state structure.
3346  */
rcu_init_one(void)3347 static void __init rcu_init_one(void)
3348 {
3349 	static const char * const buf[] = RCU_NODE_NAME_INIT;
3350 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3351 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3352 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3353 
3354 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3355 	int cpustride = 1;
3356 	int i;
3357 	int j;
3358 	struct rcu_node *rnp;
3359 
3360 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3361 
3362 	/* Silence gcc 4.8 false positive about array index out of range. */
3363 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3364 		panic("rcu_init_one: rcu_num_lvls out of range");
3365 
3366 	/* Initialize the level-tracking arrays. */
3367 
3368 	for (i = 1; i < rcu_num_lvls; i++)
3369 		rcu_state.level[i] =
3370 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3371 	rcu_init_levelspread(levelspread, num_rcu_lvl);
3372 
3373 	/* Initialize the elements themselves, starting from the leaves. */
3374 
3375 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3376 		cpustride *= levelspread[i];
3377 		rnp = rcu_state.level[i];
3378 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3379 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3380 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3381 						   &rcu_node_class[i], buf[i]);
3382 			raw_spin_lock_init(&rnp->fqslock);
3383 			lockdep_set_class_and_name(&rnp->fqslock,
3384 						   &rcu_fqs_class[i], fqs[i]);
3385 			rnp->gp_seq = rcu_state.gp_seq;
3386 			rnp->gp_seq_needed = rcu_state.gp_seq;
3387 			rnp->completedqs = rcu_state.gp_seq;
3388 			rnp->qsmask = 0;
3389 			rnp->qsmaskinit = 0;
3390 			rnp->grplo = j * cpustride;
3391 			rnp->grphi = (j + 1) * cpustride - 1;
3392 			if (rnp->grphi >= nr_cpu_ids)
3393 				rnp->grphi = nr_cpu_ids - 1;
3394 			if (i == 0) {
3395 				rnp->grpnum = 0;
3396 				rnp->grpmask = 0;
3397 				rnp->parent = NULL;
3398 			} else {
3399 				rnp->grpnum = j % levelspread[i - 1];
3400 				rnp->grpmask = BIT(rnp->grpnum);
3401 				rnp->parent = rcu_state.level[i - 1] +
3402 					      j / levelspread[i - 1];
3403 			}
3404 			rnp->level = i;
3405 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3406 			rcu_init_one_nocb(rnp);
3407 			init_waitqueue_head(&rnp->exp_wq[0]);
3408 			init_waitqueue_head(&rnp->exp_wq[1]);
3409 			init_waitqueue_head(&rnp->exp_wq[2]);
3410 			init_waitqueue_head(&rnp->exp_wq[3]);
3411 			spin_lock_init(&rnp->exp_lock);
3412 		}
3413 	}
3414 
3415 	init_swait_queue_head(&rcu_state.gp_wq);
3416 	init_swait_queue_head(&rcu_state.expedited_wq);
3417 	rnp = rcu_first_leaf_node();
3418 	for_each_possible_cpu(i) {
3419 		while (i > rnp->grphi)
3420 			rnp++;
3421 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3422 		rcu_boot_init_percpu_data(i);
3423 	}
3424 }
3425 
3426 /*
3427  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3428  * replace the definitions in tree.h because those are needed to size
3429  * the ->node array in the rcu_state structure.
3430  */
rcu_init_geometry(void)3431 void rcu_init_geometry(void)
3432 {
3433 	ulong d;
3434 	int i;
3435 	static unsigned long old_nr_cpu_ids;
3436 	int rcu_capacity[RCU_NUM_LVLS];
3437 	static bool initialized;
3438 
3439 	if (initialized) {
3440 		/*
3441 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
3442 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
3443 		 */
3444 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
3445 		return;
3446 	}
3447 
3448 	old_nr_cpu_ids = nr_cpu_ids;
3449 	initialized = true;
3450 
3451 	/*
3452 	 * Initialize any unspecified boot parameters.
3453 	 * The default values of jiffies_till_first_fqs and
3454 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3455 	 * value, which is a function of HZ, then adding one for each
3456 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3457 	 */
3458 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3459 	if (jiffies_till_first_fqs == ULONG_MAX)
3460 		jiffies_till_first_fqs = d;
3461 	if (jiffies_till_next_fqs == ULONG_MAX)
3462 		jiffies_till_next_fqs = d;
3463 	adjust_jiffies_till_sched_qs();
3464 
3465 	/* If the compile-time values are accurate, just leave. */
3466 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3467 	    nr_cpu_ids == NR_CPUS)
3468 		return;
3469 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3470 		rcu_fanout_leaf, nr_cpu_ids);
3471 
3472 	/*
3473 	 * The boot-time rcu_fanout_leaf parameter must be at least two
3474 	 * and cannot exceed the number of bits in the rcu_node masks.
3475 	 * Complain and fall back to the compile-time values if this
3476 	 * limit is exceeded.
3477 	 */
3478 	if (rcu_fanout_leaf < 2 ||
3479 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3480 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3481 		WARN_ON(1);
3482 		return;
3483 	}
3484 
3485 	/*
3486 	 * Compute number of nodes that can be handled an rcu_node tree
3487 	 * with the given number of levels.
3488 	 */
3489 	rcu_capacity[0] = rcu_fanout_leaf;
3490 	for (i = 1; i < RCU_NUM_LVLS; i++)
3491 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3492 
3493 	/*
3494 	 * The tree must be able to accommodate the configured number of CPUs.
3495 	 * If this limit is exceeded, fall back to the compile-time values.
3496 	 */
3497 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3498 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3499 		WARN_ON(1);
3500 		return;
3501 	}
3502 
3503 	/* Calculate the number of levels in the tree. */
3504 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3505 	}
3506 	rcu_num_lvls = i + 1;
3507 
3508 	/* Calculate the number of rcu_nodes at each level of the tree. */
3509 	for (i = 0; i < rcu_num_lvls; i++) {
3510 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3511 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3512 	}
3513 
3514 	/* Calculate the total number of rcu_node structures. */
3515 	rcu_num_nodes = 0;
3516 	for (i = 0; i < rcu_num_lvls; i++)
3517 		rcu_num_nodes += num_rcu_lvl[i];
3518 }
3519 
3520 /*
3521  * Dump out the structure of the rcu_node combining tree associated
3522  * with the rcu_state structure.
3523  */
rcu_dump_rcu_node_tree(void)3524 static void __init rcu_dump_rcu_node_tree(void)
3525 {
3526 	int level = 0;
3527 	struct rcu_node *rnp;
3528 
3529 	pr_info("rcu_node tree layout dump\n");
3530 	pr_info(" ");
3531 	rcu_for_each_node_breadth_first(rnp) {
3532 		if (rnp->level != level) {
3533 			pr_cont("\n");
3534 			pr_info(" ");
3535 			level = rnp->level;
3536 		}
3537 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3538 	}
3539 	pr_cont("\n");
3540 }
3541 
3542 struct workqueue_struct *rcu_gp_wq;
3543 struct workqueue_struct *rcu_par_gp_wq;
3544 
rcu_init(void)3545 void __init rcu_init(void)
3546 {
3547 	int cpu;
3548 
3549 	rcu_early_boot_tests();
3550 
3551 	rcu_bootup_announce();
3552 	rcu_init_geometry();
3553 	rcu_init_one();
3554 	if (dump_tree)
3555 		rcu_dump_rcu_node_tree();
3556 	if (use_softirq)
3557 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
3558 
3559 	/*
3560 	 * We don't need protection against CPU-hotplug here because
3561 	 * this is called early in boot, before either interrupts
3562 	 * or the scheduler are operational.
3563 	 */
3564 	pm_notifier(rcu_pm_notify, 0);
3565 	for_each_online_cpu(cpu) {
3566 		rcutree_prepare_cpu(cpu);
3567 		rcu_cpu_starting(cpu);
3568 		rcutree_online_cpu(cpu);
3569 	}
3570 
3571 	/* Create workqueue for expedited GPs and for Tree SRCU. */
3572 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3573 	WARN_ON(!rcu_gp_wq);
3574 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3575 	WARN_ON(!rcu_par_gp_wq);
3576 	srcu_init();
3577 }
3578 
3579 #include "tree_stall.h"
3580 #include "tree_exp.h"
3581 #include "tree_plugin.h"
3582