• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 Nicira, Inc.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/openvswitch.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/sctp.h>
11 #include <linux/static_key.h>
12 #include <net/ip.h>
13 #include <net/genetlink.h>
14 #include <net/netfilter/nf_conntrack_core.h>
15 #include <net/netfilter/nf_conntrack_count.h>
16 #include <net/netfilter/nf_conntrack_helper.h>
17 #include <net/netfilter/nf_conntrack_labels.h>
18 #include <net/netfilter/nf_conntrack_seqadj.h>
19 #include <net/netfilter/nf_conntrack_timeout.h>
20 #include <net/netfilter/nf_conntrack_zones.h>
21 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
22 #include <net/ipv6_frag.h>
23 
24 #if IS_ENABLED(CONFIG_NF_NAT)
25 #include <net/netfilter/nf_nat.h>
26 #endif
27 
28 #include "datapath.h"
29 #include "conntrack.h"
30 #include "flow.h"
31 #include "flow_netlink.h"
32 
33 struct ovs_ct_len_tbl {
34 	int maxlen;
35 	int minlen;
36 };
37 
38 /* Metadata mark for masked write to conntrack mark */
39 struct md_mark {
40 	u32 value;
41 	u32 mask;
42 };
43 
44 /* Metadata label for masked write to conntrack label. */
45 struct md_labels {
46 	struct ovs_key_ct_labels value;
47 	struct ovs_key_ct_labels mask;
48 };
49 
50 enum ovs_ct_nat {
51 	OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
52 	OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
53 	OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
54 };
55 
56 /* Conntrack action context for execution. */
57 struct ovs_conntrack_info {
58 	struct nf_conntrack_helper *helper;
59 	struct nf_conntrack_zone zone;
60 	struct nf_conn *ct;
61 	u8 commit : 1;
62 	u8 nat : 3;                 /* enum ovs_ct_nat */
63 	u8 force : 1;
64 	u8 have_eventmask : 1;
65 	u16 family;
66 	u32 eventmask;              /* Mask of 1 << IPCT_*. */
67 	struct md_mark mark;
68 	struct md_labels labels;
69 	char timeout[CTNL_TIMEOUT_NAME_MAX];
70 	struct nf_ct_timeout *nf_ct_timeout;
71 #if IS_ENABLED(CONFIG_NF_NAT)
72 	struct nf_nat_range2 range;  /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75 
76 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
77 #define OVS_CT_LIMIT_UNLIMITED	0
78 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
79 #define CT_LIMIT_HASH_BUCKETS 512
80 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
81 
82 struct ovs_ct_limit {
83 	/* Elements in ovs_ct_limit_info->limits hash table */
84 	struct hlist_node hlist_node;
85 	struct rcu_head rcu;
86 	u16 zone;
87 	u32 limit;
88 };
89 
90 struct ovs_ct_limit_info {
91 	u32 default_limit;
92 	struct hlist_head *limits;
93 	struct nf_conncount_data *data;
94 };
95 
96 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
97 	[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
98 };
99 #endif
100 
101 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
102 
103 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
104 
key_to_nfproto(const struct sw_flow_key * key)105 static u16 key_to_nfproto(const struct sw_flow_key *key)
106 {
107 	switch (ntohs(key->eth.type)) {
108 	case ETH_P_IP:
109 		return NFPROTO_IPV4;
110 	case ETH_P_IPV6:
111 		return NFPROTO_IPV6;
112 	default:
113 		return NFPROTO_UNSPEC;
114 	}
115 }
116 
117 /* Map SKB connection state into the values used by flow definition. */
ovs_ct_get_state(enum ip_conntrack_info ctinfo)118 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
119 {
120 	u8 ct_state = OVS_CS_F_TRACKED;
121 
122 	switch (ctinfo) {
123 	case IP_CT_ESTABLISHED_REPLY:
124 	case IP_CT_RELATED_REPLY:
125 		ct_state |= OVS_CS_F_REPLY_DIR;
126 		break;
127 	default:
128 		break;
129 	}
130 
131 	switch (ctinfo) {
132 	case IP_CT_ESTABLISHED:
133 	case IP_CT_ESTABLISHED_REPLY:
134 		ct_state |= OVS_CS_F_ESTABLISHED;
135 		break;
136 	case IP_CT_RELATED:
137 	case IP_CT_RELATED_REPLY:
138 		ct_state |= OVS_CS_F_RELATED;
139 		break;
140 	case IP_CT_NEW:
141 		ct_state |= OVS_CS_F_NEW;
142 		break;
143 	default:
144 		break;
145 	}
146 
147 	return ct_state;
148 }
149 
ovs_ct_get_mark(const struct nf_conn * ct)150 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
151 {
152 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
153 	return ct ? ct->mark : 0;
154 #else
155 	return 0;
156 #endif
157 }
158 
159 /* Guard against conntrack labels max size shrinking below 128 bits. */
160 #if NF_CT_LABELS_MAX_SIZE < 16
161 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
162 #endif
163 
ovs_ct_get_labels(const struct nf_conn * ct,struct ovs_key_ct_labels * labels)164 static void ovs_ct_get_labels(const struct nf_conn *ct,
165 			      struct ovs_key_ct_labels *labels)
166 {
167 	struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
168 
169 	if (cl)
170 		memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
171 	else
172 		memset(labels, 0, OVS_CT_LABELS_LEN);
173 }
174 
__ovs_ct_update_key_orig_tp(struct sw_flow_key * key,const struct nf_conntrack_tuple * orig,u8 icmp_proto)175 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
176 					const struct nf_conntrack_tuple *orig,
177 					u8 icmp_proto)
178 {
179 	key->ct_orig_proto = orig->dst.protonum;
180 	if (orig->dst.protonum == icmp_proto) {
181 		key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
182 		key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
183 	} else {
184 		key->ct.orig_tp.src = orig->src.u.all;
185 		key->ct.orig_tp.dst = orig->dst.u.all;
186 	}
187 }
188 
__ovs_ct_update_key(struct sw_flow_key * key,u8 state,const struct nf_conntrack_zone * zone,const struct nf_conn * ct)189 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
190 				const struct nf_conntrack_zone *zone,
191 				const struct nf_conn *ct)
192 {
193 	key->ct_state = state;
194 	key->ct_zone = zone->id;
195 	key->ct.mark = ovs_ct_get_mark(ct);
196 	ovs_ct_get_labels(ct, &key->ct.labels);
197 
198 	if (ct) {
199 		const struct nf_conntrack_tuple *orig;
200 
201 		/* Use the master if we have one. */
202 		if (ct->master)
203 			ct = ct->master;
204 		orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
205 
206 		/* IP version must match with the master connection. */
207 		if (key->eth.type == htons(ETH_P_IP) &&
208 		    nf_ct_l3num(ct) == NFPROTO_IPV4) {
209 			key->ipv4.ct_orig.src = orig->src.u3.ip;
210 			key->ipv4.ct_orig.dst = orig->dst.u3.ip;
211 			__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
212 			return;
213 		} else if (key->eth.type == htons(ETH_P_IPV6) &&
214 			   !sw_flow_key_is_nd(key) &&
215 			   nf_ct_l3num(ct) == NFPROTO_IPV6) {
216 			key->ipv6.ct_orig.src = orig->src.u3.in6;
217 			key->ipv6.ct_orig.dst = orig->dst.u3.in6;
218 			__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
219 			return;
220 		}
221 	}
222 	/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
223 	 * original direction key fields.
224 	 */
225 	key->ct_orig_proto = 0;
226 }
227 
228 /* Update 'key' based on skb->_nfct.  If 'post_ct' is true, then OVS has
229  * previously sent the packet to conntrack via the ct action.  If
230  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
231  * initialized from the connection status.
232  */
ovs_ct_update_key(const struct sk_buff * skb,const struct ovs_conntrack_info * info,struct sw_flow_key * key,bool post_ct,bool keep_nat_flags)233 static void ovs_ct_update_key(const struct sk_buff *skb,
234 			      const struct ovs_conntrack_info *info,
235 			      struct sw_flow_key *key, bool post_ct,
236 			      bool keep_nat_flags)
237 {
238 	const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
239 	enum ip_conntrack_info ctinfo;
240 	struct nf_conn *ct;
241 	u8 state = 0;
242 
243 	ct = nf_ct_get(skb, &ctinfo);
244 	if (ct) {
245 		state = ovs_ct_get_state(ctinfo);
246 		/* All unconfirmed entries are NEW connections. */
247 		if (!nf_ct_is_confirmed(ct))
248 			state |= OVS_CS_F_NEW;
249 		/* OVS persists the related flag for the duration of the
250 		 * connection.
251 		 */
252 		if (ct->master)
253 			state |= OVS_CS_F_RELATED;
254 		if (keep_nat_flags) {
255 			state |= key->ct_state & OVS_CS_F_NAT_MASK;
256 		} else {
257 			if (ct->status & IPS_SRC_NAT)
258 				state |= OVS_CS_F_SRC_NAT;
259 			if (ct->status & IPS_DST_NAT)
260 				state |= OVS_CS_F_DST_NAT;
261 		}
262 		zone = nf_ct_zone(ct);
263 	} else if (post_ct) {
264 		state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
265 		if (info)
266 			zone = &info->zone;
267 	}
268 	__ovs_ct_update_key(key, state, zone, ct);
269 }
270 
271 /* This is called to initialize CT key fields possibly coming in from the local
272  * stack.
273  */
ovs_ct_fill_key(const struct sk_buff * skb,struct sw_flow_key * key)274 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
275 {
276 	ovs_ct_update_key(skb, NULL, key, false, false);
277 }
278 
ovs_ct_put_key(const struct sw_flow_key * swkey,const struct sw_flow_key * output,struct sk_buff * skb)279 int ovs_ct_put_key(const struct sw_flow_key *swkey,
280 		   const struct sw_flow_key *output, struct sk_buff *skb)
281 {
282 	if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
283 		return -EMSGSIZE;
284 
285 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
286 	    nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
287 		return -EMSGSIZE;
288 
289 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
290 	    nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
291 		return -EMSGSIZE;
292 
293 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
294 	    nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
295 		    &output->ct.labels))
296 		return -EMSGSIZE;
297 
298 	if (swkey->ct_orig_proto) {
299 		if (swkey->eth.type == htons(ETH_P_IP)) {
300 			struct ovs_key_ct_tuple_ipv4 orig;
301 
302 			memset(&orig, 0, sizeof(orig));
303 			orig.ipv4_src = output->ipv4.ct_orig.src;
304 			orig.ipv4_dst = output->ipv4.ct_orig.dst;
305 			orig.src_port = output->ct.orig_tp.src;
306 			orig.dst_port = output->ct.orig_tp.dst;
307 			orig.ipv4_proto = output->ct_orig_proto;
308 
309 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
310 				    sizeof(orig), &orig))
311 				return -EMSGSIZE;
312 		} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
313 			struct ovs_key_ct_tuple_ipv6 orig;
314 
315 			memset(&orig, 0, sizeof(orig));
316 			memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32,
317 			       sizeof(orig.ipv6_src));
318 			memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32,
319 			       sizeof(orig.ipv6_dst));
320 			orig.src_port = output->ct.orig_tp.src;
321 			orig.dst_port = output->ct.orig_tp.dst;
322 			orig.ipv6_proto = output->ct_orig_proto;
323 
324 			if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
325 				    sizeof(orig), &orig))
326 				return -EMSGSIZE;
327 		}
328 	}
329 
330 	return 0;
331 }
332 
ovs_ct_set_mark(struct nf_conn * ct,struct sw_flow_key * key,u32 ct_mark,u32 mask)333 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
334 			   u32 ct_mark, u32 mask)
335 {
336 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
337 	u32 new_mark;
338 
339 	new_mark = ct_mark | (ct->mark & ~(mask));
340 	if (ct->mark != new_mark) {
341 		ct->mark = new_mark;
342 		if (nf_ct_is_confirmed(ct))
343 			nf_conntrack_event_cache(IPCT_MARK, ct);
344 		key->ct.mark = new_mark;
345 	}
346 
347 	return 0;
348 #else
349 	return -ENOTSUPP;
350 #endif
351 }
352 
ovs_ct_get_conn_labels(struct nf_conn * ct)353 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
354 {
355 	struct nf_conn_labels *cl;
356 
357 	cl = nf_ct_labels_find(ct);
358 	if (!cl) {
359 		nf_ct_labels_ext_add(ct);
360 		cl = nf_ct_labels_find(ct);
361 	}
362 
363 	return cl;
364 }
365 
366 /* Initialize labels for a new, yet to be committed conntrack entry.  Note that
367  * since the new connection is not yet confirmed, and thus no-one else has
368  * access to it's labels, we simply write them over.
369  */
ovs_ct_init_labels(struct nf_conn * ct,struct sw_flow_key * key,const struct ovs_key_ct_labels * labels,const struct ovs_key_ct_labels * mask)370 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
371 			      const struct ovs_key_ct_labels *labels,
372 			      const struct ovs_key_ct_labels *mask)
373 {
374 	struct nf_conn_labels *cl, *master_cl;
375 	bool have_mask = labels_nonzero(mask);
376 
377 	/* Inherit master's labels to the related connection? */
378 	master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
379 
380 	if (!master_cl && !have_mask)
381 		return 0;   /* Nothing to do. */
382 
383 	cl = ovs_ct_get_conn_labels(ct);
384 	if (!cl)
385 		return -ENOSPC;
386 
387 	/* Inherit the master's labels, if any. */
388 	if (master_cl)
389 		*cl = *master_cl;
390 
391 	if (have_mask) {
392 		u32 *dst = (u32 *)cl->bits;
393 		int i;
394 
395 		for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
396 			dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
397 				(labels->ct_labels_32[i]
398 				 & mask->ct_labels_32[i]);
399 	}
400 
401 	/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
402 	 * IPCT_LABEL bit is set in the event cache.
403 	 */
404 	nf_conntrack_event_cache(IPCT_LABEL, ct);
405 
406 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
407 
408 	return 0;
409 }
410 
ovs_ct_set_labels(struct nf_conn * ct,struct sw_flow_key * key,const struct ovs_key_ct_labels * labels,const struct ovs_key_ct_labels * mask)411 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
412 			     const struct ovs_key_ct_labels *labels,
413 			     const struct ovs_key_ct_labels *mask)
414 {
415 	struct nf_conn_labels *cl;
416 	int err;
417 
418 	cl = ovs_ct_get_conn_labels(ct);
419 	if (!cl)
420 		return -ENOSPC;
421 
422 	err = nf_connlabels_replace(ct, labels->ct_labels_32,
423 				    mask->ct_labels_32,
424 				    OVS_CT_LABELS_LEN_32);
425 	if (err)
426 		return err;
427 
428 	memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
429 
430 	return 0;
431 }
432 
433 /* 'skb' should already be pulled to nh_ofs. */
ovs_ct_helper(struct sk_buff * skb,u16 proto)434 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
435 {
436 	const struct nf_conntrack_helper *helper;
437 	const struct nf_conn_help *help;
438 	enum ip_conntrack_info ctinfo;
439 	unsigned int protoff;
440 	struct nf_conn *ct;
441 	int err;
442 
443 	ct = nf_ct_get(skb, &ctinfo);
444 	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
445 		return NF_ACCEPT;
446 
447 	help = nfct_help(ct);
448 	if (!help)
449 		return NF_ACCEPT;
450 
451 	helper = rcu_dereference(help->helper);
452 	if (!helper)
453 		return NF_ACCEPT;
454 
455 	switch (proto) {
456 	case NFPROTO_IPV4:
457 		protoff = ip_hdrlen(skb);
458 		break;
459 	case NFPROTO_IPV6: {
460 		u8 nexthdr = ipv6_hdr(skb)->nexthdr;
461 		__be16 frag_off;
462 		int ofs;
463 
464 		ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
465 				       &frag_off);
466 		if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
467 			pr_debug("proto header not found\n");
468 			return NF_ACCEPT;
469 		}
470 		protoff = ofs;
471 		break;
472 	}
473 	default:
474 		WARN_ONCE(1, "helper invoked on non-IP family!");
475 		return NF_DROP;
476 	}
477 
478 	err = helper->help(skb, protoff, ct, ctinfo);
479 	if (err != NF_ACCEPT)
480 		return err;
481 
482 	/* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
483 	 * FTP with NAT) adusting the TCP payload size when mangling IP
484 	 * addresses and/or port numbers in the text-based control connection.
485 	 */
486 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
487 	    !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
488 		return NF_DROP;
489 	return NF_ACCEPT;
490 }
491 
492 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
493  * value if 'skb' is freed.
494  */
handle_fragments(struct net * net,struct sw_flow_key * key,u16 zone,struct sk_buff * skb)495 static int handle_fragments(struct net *net, struct sw_flow_key *key,
496 			    u16 zone, struct sk_buff *skb)
497 {
498 	struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
499 	int err;
500 
501 	if (key->eth.type == htons(ETH_P_IP)) {
502 		enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
503 
504 		memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
505 		err = ip_defrag(net, skb, user);
506 		if (err)
507 			return err;
508 
509 		ovs_cb.mru = IPCB(skb)->frag_max_size;
510 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
511 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
512 		enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
513 
514 		memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
515 		err = nf_ct_frag6_gather(net, skb, user);
516 		if (err) {
517 			if (err != -EINPROGRESS)
518 				kfree_skb(skb);
519 			return err;
520 		}
521 
522 		key->ip.proto = ipv6_hdr(skb)->nexthdr;
523 		ovs_cb.mru = IP6CB(skb)->frag_max_size;
524 #endif
525 	} else {
526 		kfree_skb(skb);
527 		return -EPFNOSUPPORT;
528 	}
529 
530 	/* The key extracted from the fragment that completed this datagram
531 	 * likely didn't have an L4 header, so regenerate it.
532 	 */
533 	ovs_flow_key_update_l3l4(skb, key);
534 
535 	key->ip.frag = OVS_FRAG_TYPE_NONE;
536 	skb_clear_hash(skb);
537 	skb->ignore_df = 1;
538 	*OVS_CB(skb) = ovs_cb;
539 
540 	return 0;
541 }
542 
543 static struct nf_conntrack_expect *
ovs_ct_expect_find(struct net * net,const struct nf_conntrack_zone * zone,u16 proto,const struct sk_buff * skb)544 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
545 		   u16 proto, const struct sk_buff *skb)
546 {
547 	struct nf_conntrack_tuple tuple;
548 	struct nf_conntrack_expect *exp;
549 
550 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
551 		return NULL;
552 
553 	exp = __nf_ct_expect_find(net, zone, &tuple);
554 	if (exp) {
555 		struct nf_conntrack_tuple_hash *h;
556 
557 		/* Delete existing conntrack entry, if it clashes with the
558 		 * expectation.  This can happen since conntrack ALGs do not
559 		 * check for clashes between (new) expectations and existing
560 		 * conntrack entries.  nf_conntrack_in() will check the
561 		 * expectations only if a conntrack entry can not be found,
562 		 * which can lead to OVS finding the expectation (here) in the
563 		 * init direction, but which will not be removed by the
564 		 * nf_conntrack_in() call, if a matching conntrack entry is
565 		 * found instead.  In this case all init direction packets
566 		 * would be reported as new related packets, while reply
567 		 * direction packets would be reported as un-related
568 		 * established packets.
569 		 */
570 		h = nf_conntrack_find_get(net, zone, &tuple);
571 		if (h) {
572 			struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
573 
574 			nf_ct_delete(ct, 0, 0);
575 			nf_conntrack_put(&ct->ct_general);
576 		}
577 	}
578 
579 	return exp;
580 }
581 
582 /* This replicates logic from nf_conntrack_core.c that is not exported. */
583 static enum ip_conntrack_info
ovs_ct_get_info(const struct nf_conntrack_tuple_hash * h)584 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
585 {
586 	const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
587 
588 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
589 		return IP_CT_ESTABLISHED_REPLY;
590 	/* Once we've had two way comms, always ESTABLISHED. */
591 	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
592 		return IP_CT_ESTABLISHED;
593 	if (test_bit(IPS_EXPECTED_BIT, &ct->status))
594 		return IP_CT_RELATED;
595 	return IP_CT_NEW;
596 }
597 
598 /* Find an existing connection which this packet belongs to without
599  * re-attributing statistics or modifying the connection state.  This allows an
600  * skb->_nfct lost due to an upcall to be recovered during actions execution.
601  *
602  * Must be called with rcu_read_lock.
603  *
604  * On success, populates skb->_nfct and returns the connection.  Returns NULL
605  * if there is no existing entry.
606  */
607 static struct nf_conn *
ovs_ct_find_existing(struct net * net,const struct nf_conntrack_zone * zone,u8 l3num,struct sk_buff * skb,bool natted)608 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
609 		     u8 l3num, struct sk_buff *skb, bool natted)
610 {
611 	struct nf_conntrack_tuple tuple;
612 	struct nf_conntrack_tuple_hash *h;
613 	struct nf_conn *ct;
614 
615 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
616 			       net, &tuple)) {
617 		pr_debug("ovs_ct_find_existing: Can't get tuple\n");
618 		return NULL;
619 	}
620 
621 	/* Must invert the tuple if skb has been transformed by NAT. */
622 	if (natted) {
623 		struct nf_conntrack_tuple inverse;
624 
625 		if (!nf_ct_invert_tuple(&inverse, &tuple)) {
626 			pr_debug("ovs_ct_find_existing: Inversion failed!\n");
627 			return NULL;
628 		}
629 		tuple = inverse;
630 	}
631 
632 	/* look for tuple match */
633 	h = nf_conntrack_find_get(net, zone, &tuple);
634 	if (!h)
635 		return NULL;   /* Not found. */
636 
637 	ct = nf_ct_tuplehash_to_ctrack(h);
638 
639 	/* Inverted packet tuple matches the reverse direction conntrack tuple,
640 	 * select the other tuplehash to get the right 'ctinfo' bits for this
641 	 * packet.
642 	 */
643 	if (natted)
644 		h = &ct->tuplehash[!h->tuple.dst.dir];
645 
646 	nf_ct_set(skb, ct, ovs_ct_get_info(h));
647 	return ct;
648 }
649 
650 static
ovs_ct_executed(struct net * net,const struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb,bool * ct_executed)651 struct nf_conn *ovs_ct_executed(struct net *net,
652 				const struct sw_flow_key *key,
653 				const struct ovs_conntrack_info *info,
654 				struct sk_buff *skb,
655 				bool *ct_executed)
656 {
657 	struct nf_conn *ct = NULL;
658 
659 	/* If no ct, check if we have evidence that an existing conntrack entry
660 	 * might be found for this skb.  This happens when we lose a skb->_nfct
661 	 * due to an upcall, or if the direction is being forced.  If the
662 	 * connection was not confirmed, it is not cached and needs to be run
663 	 * through conntrack again.
664 	 */
665 	*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
666 		       !(key->ct_state & OVS_CS_F_INVALID) &&
667 		       (key->ct_zone == info->zone.id);
668 
669 	if (*ct_executed || (!key->ct_state && info->force)) {
670 		ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
671 					  !!(key->ct_state &
672 					  OVS_CS_F_NAT_MASK));
673 	}
674 
675 	return ct;
676 }
677 
678 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
skb_nfct_cached(struct net * net,const struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)679 static bool skb_nfct_cached(struct net *net,
680 			    const struct sw_flow_key *key,
681 			    const struct ovs_conntrack_info *info,
682 			    struct sk_buff *skb)
683 {
684 	enum ip_conntrack_info ctinfo;
685 	struct nf_conn *ct;
686 	bool ct_executed = true;
687 
688 	ct = nf_ct_get(skb, &ctinfo);
689 	if (!ct)
690 		ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
691 
692 	if (ct)
693 		nf_ct_get(skb, &ctinfo);
694 	else
695 		return false;
696 
697 	if (!net_eq(net, read_pnet(&ct->ct_net)))
698 		return false;
699 	if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
700 		return false;
701 	if (info->helper) {
702 		struct nf_conn_help *help;
703 
704 		help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
705 		if (help && rcu_access_pointer(help->helper) != info->helper)
706 			return false;
707 	}
708 	if (info->nf_ct_timeout) {
709 		struct nf_conn_timeout *timeout_ext;
710 
711 		timeout_ext = nf_ct_timeout_find(ct);
712 		if (!timeout_ext || info->nf_ct_timeout !=
713 		    rcu_dereference(timeout_ext->timeout))
714 			return false;
715 	}
716 	/* Force conntrack entry direction to the current packet? */
717 	if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
718 		/* Delete the conntrack entry if confirmed, else just release
719 		 * the reference.
720 		 */
721 		if (nf_ct_is_confirmed(ct))
722 			nf_ct_delete(ct, 0, 0);
723 
724 		nf_conntrack_put(&ct->ct_general);
725 		nf_ct_set(skb, NULL, 0);
726 		return false;
727 	}
728 
729 	return ct_executed;
730 }
731 
732 #if IS_ENABLED(CONFIG_NF_NAT)
ovs_nat_update_key(struct sw_flow_key * key,const struct sk_buff * skb,enum nf_nat_manip_type maniptype)733 static void ovs_nat_update_key(struct sw_flow_key *key,
734 			       const struct sk_buff *skb,
735 			       enum nf_nat_manip_type maniptype)
736 {
737 	if (maniptype == NF_NAT_MANIP_SRC) {
738 		__be16 src;
739 
740 		key->ct_state |= OVS_CS_F_SRC_NAT;
741 		if (key->eth.type == htons(ETH_P_IP))
742 			key->ipv4.addr.src = ip_hdr(skb)->saddr;
743 		else if (key->eth.type == htons(ETH_P_IPV6))
744 			memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
745 			       sizeof(key->ipv6.addr.src));
746 		else
747 			return;
748 
749 		if (key->ip.proto == IPPROTO_UDP)
750 			src = udp_hdr(skb)->source;
751 		else if (key->ip.proto == IPPROTO_TCP)
752 			src = tcp_hdr(skb)->source;
753 		else if (key->ip.proto == IPPROTO_SCTP)
754 			src = sctp_hdr(skb)->source;
755 		else
756 			return;
757 
758 		key->tp.src = src;
759 	} else {
760 		__be16 dst;
761 
762 		key->ct_state |= OVS_CS_F_DST_NAT;
763 		if (key->eth.type == htons(ETH_P_IP))
764 			key->ipv4.addr.dst = ip_hdr(skb)->daddr;
765 		else if (key->eth.type == htons(ETH_P_IPV6))
766 			memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
767 			       sizeof(key->ipv6.addr.dst));
768 		else
769 			return;
770 
771 		if (key->ip.proto == IPPROTO_UDP)
772 			dst = udp_hdr(skb)->dest;
773 		else if (key->ip.proto == IPPROTO_TCP)
774 			dst = tcp_hdr(skb)->dest;
775 		else if (key->ip.proto == IPPROTO_SCTP)
776 			dst = sctp_hdr(skb)->dest;
777 		else
778 			return;
779 
780 		key->tp.dst = dst;
781 	}
782 }
783 
784 /* Modelled after nf_nat_ipv[46]_fn().
785  * range is only used for new, uninitialized NAT state.
786  * Returns either NF_ACCEPT or NF_DROP.
787  */
ovs_ct_nat_execute(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_nat_range2 * range,enum nf_nat_manip_type maniptype,struct sw_flow_key * key)788 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
789 			      enum ip_conntrack_info ctinfo,
790 			      const struct nf_nat_range2 *range,
791 			      enum nf_nat_manip_type maniptype, struct sw_flow_key *key)
792 {
793 	int hooknum, nh_off, err = NF_ACCEPT;
794 
795 	nh_off = skb_network_offset(skb);
796 	skb_pull_rcsum(skb, nh_off);
797 
798 	/* See HOOK2MANIP(). */
799 	if (maniptype == NF_NAT_MANIP_SRC)
800 		hooknum = NF_INET_LOCAL_IN; /* Source NAT */
801 	else
802 		hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
803 
804 	switch (ctinfo) {
805 	case IP_CT_RELATED:
806 	case IP_CT_RELATED_REPLY:
807 		if (IS_ENABLED(CONFIG_NF_NAT) &&
808 		    skb->protocol == htons(ETH_P_IP) &&
809 		    ip_hdr(skb)->protocol == IPPROTO_ICMP) {
810 			if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
811 							   hooknum))
812 				err = NF_DROP;
813 			goto push;
814 		} else if (IS_ENABLED(CONFIG_IPV6) &&
815 			   skb->protocol == htons(ETH_P_IPV6)) {
816 			__be16 frag_off;
817 			u8 nexthdr = ipv6_hdr(skb)->nexthdr;
818 			int hdrlen = ipv6_skip_exthdr(skb,
819 						      sizeof(struct ipv6hdr),
820 						      &nexthdr, &frag_off);
821 
822 			if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
823 				if (!nf_nat_icmpv6_reply_translation(skb, ct,
824 								     ctinfo,
825 								     hooknum,
826 								     hdrlen))
827 					err = NF_DROP;
828 				goto push;
829 			}
830 		}
831 		/* Non-ICMP, fall thru to initialize if needed. */
832 		/* fall through */
833 	case IP_CT_NEW:
834 		/* Seen it before?  This can happen for loopback, retrans,
835 		 * or local packets.
836 		 */
837 		if (!nf_nat_initialized(ct, maniptype)) {
838 			/* Initialize according to the NAT action. */
839 			err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
840 				/* Action is set up to establish a new
841 				 * mapping.
842 				 */
843 				? nf_nat_setup_info(ct, range, maniptype)
844 				: nf_nat_alloc_null_binding(ct, hooknum);
845 			if (err != NF_ACCEPT)
846 				goto push;
847 		}
848 		break;
849 
850 	case IP_CT_ESTABLISHED:
851 	case IP_CT_ESTABLISHED_REPLY:
852 		break;
853 
854 	default:
855 		err = NF_DROP;
856 		goto push;
857 	}
858 
859 	err = nf_nat_packet(ct, ctinfo, hooknum, skb);
860 push:
861 	skb_push(skb, nh_off);
862 	skb_postpush_rcsum(skb, skb->data, nh_off);
863 
864 	/* Update the flow key if NAT successful. */
865 	if (err == NF_ACCEPT)
866 		ovs_nat_update_key(key, skb, maniptype);
867 
868 	return err;
869 }
870 
871 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
ovs_ct_nat(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)872 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
873 		      const struct ovs_conntrack_info *info,
874 		      struct sk_buff *skb, struct nf_conn *ct,
875 		      enum ip_conntrack_info ctinfo)
876 {
877 	enum nf_nat_manip_type maniptype;
878 	int err;
879 
880 	/* Add NAT extension if not confirmed yet. */
881 	if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
882 		return NF_ACCEPT;   /* Can't NAT. */
883 
884 	/* Determine NAT type.
885 	 * Check if the NAT type can be deduced from the tracked connection.
886 	 * Make sure new expected connections (IP_CT_RELATED) are NATted only
887 	 * when committing.
888 	 */
889 	if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
890 	    ct->status & IPS_NAT_MASK &&
891 	    (ctinfo != IP_CT_RELATED || info->commit)) {
892 		/* NAT an established or related connection like before. */
893 		if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
894 			/* This is the REPLY direction for a connection
895 			 * for which NAT was applied in the forward
896 			 * direction.  Do the reverse NAT.
897 			 */
898 			maniptype = ct->status & IPS_SRC_NAT
899 				? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
900 		else
901 			maniptype = ct->status & IPS_SRC_NAT
902 				? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
903 	} else if (info->nat & OVS_CT_SRC_NAT) {
904 		maniptype = NF_NAT_MANIP_SRC;
905 	} else if (info->nat & OVS_CT_DST_NAT) {
906 		maniptype = NF_NAT_MANIP_DST;
907 	} else {
908 		return NF_ACCEPT; /* Connection is not NATed. */
909 	}
910 	err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype, key);
911 
912 	if (err == NF_ACCEPT && ct->status & IPS_DST_NAT) {
913 		if (ct->status & IPS_SRC_NAT) {
914 			if (maniptype == NF_NAT_MANIP_SRC)
915 				maniptype = NF_NAT_MANIP_DST;
916 			else
917 				maniptype = NF_NAT_MANIP_SRC;
918 
919 			err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
920 						 maniptype, key);
921 		} else if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL) {
922 			err = ovs_ct_nat_execute(skb, ct, ctinfo, NULL,
923 						 NF_NAT_MANIP_SRC, key);
924 		}
925 	}
926 
927 	return err;
928 }
929 #else /* !CONFIG_NF_NAT */
ovs_ct_nat(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)930 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
931 		      const struct ovs_conntrack_info *info,
932 		      struct sk_buff *skb, struct nf_conn *ct,
933 		      enum ip_conntrack_info ctinfo)
934 {
935 	return NF_ACCEPT;
936 }
937 #endif
938 
939 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
940  * not done already.  Update key with new CT state after passing the packet
941  * through conntrack.
942  * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
943  * set to NULL and 0 will be returned.
944  */
__ovs_ct_lookup(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)945 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
946 			   const struct ovs_conntrack_info *info,
947 			   struct sk_buff *skb)
948 {
949 	/* If we are recirculating packets to match on conntrack fields and
950 	 * committing with a separate conntrack action,  then we don't need to
951 	 * actually run the packet through conntrack twice unless it's for a
952 	 * different zone.
953 	 */
954 	bool cached = skb_nfct_cached(net, key, info, skb);
955 	enum ip_conntrack_info ctinfo;
956 	struct nf_conn *ct;
957 
958 	if (!cached) {
959 		struct nf_hook_state state = {
960 			.hook = NF_INET_PRE_ROUTING,
961 			.pf = info->family,
962 			.net = net,
963 		};
964 		struct nf_conn *tmpl = info->ct;
965 		int err;
966 
967 		/* Associate skb with specified zone. */
968 		if (tmpl) {
969 			if (skb_nfct(skb))
970 				nf_conntrack_put(skb_nfct(skb));
971 			nf_conntrack_get(&tmpl->ct_general);
972 			nf_ct_set(skb, tmpl, IP_CT_NEW);
973 		}
974 
975 		err = nf_conntrack_in(skb, &state);
976 		if (err != NF_ACCEPT)
977 			return -ENOENT;
978 
979 		/* Clear CT state NAT flags to mark that we have not yet done
980 		 * NAT after the nf_conntrack_in() call.  We can actually clear
981 		 * the whole state, as it will be re-initialized below.
982 		 */
983 		key->ct_state = 0;
984 
985 		/* Update the key, but keep the NAT flags. */
986 		ovs_ct_update_key(skb, info, key, true, true);
987 	}
988 
989 	ct = nf_ct_get(skb, &ctinfo);
990 	if (ct) {
991 		/* Packets starting a new connection must be NATted before the
992 		 * helper, so that the helper knows about the NAT.  We enforce
993 		 * this by delaying both NAT and helper calls for unconfirmed
994 		 * connections until the committing CT action.  For later
995 		 * packets NAT and Helper may be called in either order.
996 		 *
997 		 * NAT will be done only if the CT action has NAT, and only
998 		 * once per packet (per zone), as guarded by the NAT bits in
999 		 * the key->ct_state.
1000 		 */
1001 		if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
1002 		    (nf_ct_is_confirmed(ct) || info->commit) &&
1003 		    ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
1004 			return -EINVAL;
1005 		}
1006 
1007 		/* Userspace may decide to perform a ct lookup without a helper
1008 		 * specified followed by a (recirculate and) commit with one.
1009 		 * Therefore, for unconfirmed connections which we will commit,
1010 		 * we need to attach the helper here.
1011 		 */
1012 		if (!nf_ct_is_confirmed(ct) && info->commit &&
1013 		    info->helper && !nfct_help(ct)) {
1014 			int err = __nf_ct_try_assign_helper(ct, info->ct,
1015 							    GFP_ATOMIC);
1016 			if (err)
1017 				return err;
1018 
1019 			/* helper installed, add seqadj if NAT is required */
1020 			if (info->nat && !nfct_seqadj(ct)) {
1021 				if (!nfct_seqadj_ext_add(ct))
1022 					return -EINVAL;
1023 			}
1024 		}
1025 
1026 		/* Call the helper only if:
1027 		 * - nf_conntrack_in() was executed above ("!cached") for a
1028 		 *   confirmed connection, or
1029 		 * - When committing an unconfirmed connection.
1030 		 */
1031 		if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
1032 		    ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1033 			return -EINVAL;
1034 		}
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 /* Lookup connection and read fields into key. */
ovs_ct_lookup(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)1041 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1042 			 const struct ovs_conntrack_info *info,
1043 			 struct sk_buff *skb)
1044 {
1045 	struct nf_conntrack_expect *exp;
1046 
1047 	/* If we pass an expected packet through nf_conntrack_in() the
1048 	 * expectation is typically removed, but the packet could still be
1049 	 * lost in upcall processing.  To prevent this from happening we
1050 	 * perform an explicit expectation lookup.  Expected connections are
1051 	 * always new, and will be passed through conntrack only when they are
1052 	 * committed, as it is OK to remove the expectation at that time.
1053 	 */
1054 	exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1055 	if (exp) {
1056 		u8 state;
1057 
1058 		/* NOTE: New connections are NATted and Helped only when
1059 		 * committed, so we are not calling into NAT here.
1060 		 */
1061 		state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1062 		__ovs_ct_update_key(key, state, &info->zone, exp->master);
1063 	} else {
1064 		struct nf_conn *ct;
1065 		int err;
1066 
1067 		err = __ovs_ct_lookup(net, key, info, skb);
1068 		if (err)
1069 			return err;
1070 
1071 		ct = (struct nf_conn *)skb_nfct(skb);
1072 		if (ct)
1073 			nf_ct_deliver_cached_events(ct);
1074 	}
1075 
1076 	return 0;
1077 }
1078 
labels_nonzero(const struct ovs_key_ct_labels * labels)1079 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1080 {
1081 	size_t i;
1082 
1083 	for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1084 		if (labels->ct_labels_32[i])
1085 			return true;
1086 
1087 	return false;
1088 }
1089 
1090 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
ct_limit_hash_bucket(const struct ovs_ct_limit_info * info,u16 zone)1091 static struct hlist_head *ct_limit_hash_bucket(
1092 	const struct ovs_ct_limit_info *info, u16 zone)
1093 {
1094 	return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1095 }
1096 
1097 /* Call with ovs_mutex */
ct_limit_set(const struct ovs_ct_limit_info * info,struct ovs_ct_limit * new_ct_limit)1098 static void ct_limit_set(const struct ovs_ct_limit_info *info,
1099 			 struct ovs_ct_limit *new_ct_limit)
1100 {
1101 	struct ovs_ct_limit *ct_limit;
1102 	struct hlist_head *head;
1103 
1104 	head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1105 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1106 		if (ct_limit->zone == new_ct_limit->zone) {
1107 			hlist_replace_rcu(&ct_limit->hlist_node,
1108 					  &new_ct_limit->hlist_node);
1109 			kfree_rcu(ct_limit, rcu);
1110 			return;
1111 		}
1112 	}
1113 
1114 	hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1115 }
1116 
1117 /* Call with ovs_mutex */
ct_limit_del(const struct ovs_ct_limit_info * info,u16 zone)1118 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1119 {
1120 	struct ovs_ct_limit *ct_limit;
1121 	struct hlist_head *head;
1122 	struct hlist_node *n;
1123 
1124 	head = ct_limit_hash_bucket(info, zone);
1125 	hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1126 		if (ct_limit->zone == zone) {
1127 			hlist_del_rcu(&ct_limit->hlist_node);
1128 			kfree_rcu(ct_limit, rcu);
1129 			return;
1130 		}
1131 	}
1132 }
1133 
1134 /* Call with RCU read lock */
ct_limit_get(const struct ovs_ct_limit_info * info,u16 zone)1135 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1136 {
1137 	struct ovs_ct_limit *ct_limit;
1138 	struct hlist_head *head;
1139 
1140 	head = ct_limit_hash_bucket(info, zone);
1141 	hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1142 		if (ct_limit->zone == zone)
1143 			return ct_limit->limit;
1144 	}
1145 
1146 	return info->default_limit;
1147 }
1148 
ovs_ct_check_limit(struct net * net,const struct ovs_conntrack_info * info,const struct nf_conntrack_tuple * tuple)1149 static int ovs_ct_check_limit(struct net *net,
1150 			      const struct ovs_conntrack_info *info,
1151 			      const struct nf_conntrack_tuple *tuple)
1152 {
1153 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1154 	const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1155 	u32 per_zone_limit, connections;
1156 	u32 conncount_key;
1157 
1158 	conncount_key = info->zone.id;
1159 
1160 	per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1161 	if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1162 		return 0;
1163 
1164 	connections = nf_conncount_count(net, ct_limit_info->data,
1165 					 &conncount_key, tuple, &info->zone);
1166 	if (connections > per_zone_limit)
1167 		return -ENOMEM;
1168 
1169 	return 0;
1170 }
1171 #endif
1172 
1173 /* Lookup connection and confirm if unconfirmed. */
ovs_ct_commit(struct net * net,struct sw_flow_key * key,const struct ovs_conntrack_info * info,struct sk_buff * skb)1174 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1175 			 const struct ovs_conntrack_info *info,
1176 			 struct sk_buff *skb)
1177 {
1178 	enum ip_conntrack_info ctinfo;
1179 	struct nf_conn *ct;
1180 	int err;
1181 
1182 	err = __ovs_ct_lookup(net, key, info, skb);
1183 	if (err)
1184 		return err;
1185 
1186 	/* The connection could be invalid, in which case this is a no-op.*/
1187 	ct = nf_ct_get(skb, &ctinfo);
1188 	if (!ct)
1189 		return 0;
1190 
1191 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1192 	if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1193 		if (!nf_ct_is_confirmed(ct)) {
1194 			err = ovs_ct_check_limit(net, info,
1195 				&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1196 			if (err) {
1197 				net_warn_ratelimited("openvswitch: zone: %u "
1198 					"exceeds conntrack limit\n",
1199 					info->zone.id);
1200 				return err;
1201 			}
1202 		}
1203 	}
1204 #endif
1205 
1206 	/* Set the conntrack event mask if given.  NEW and DELETE events have
1207 	 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1208 	 * typically would receive many kinds of updates.  Setting the event
1209 	 * mask allows those events to be filtered.  The set event mask will
1210 	 * remain in effect for the lifetime of the connection unless changed
1211 	 * by a further CT action with both the commit flag and the eventmask
1212 	 * option. */
1213 	if (info->have_eventmask) {
1214 		struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1215 
1216 		if (cache)
1217 			cache->ctmask = info->eventmask;
1218 	}
1219 
1220 	/* Apply changes before confirming the connection so that the initial
1221 	 * conntrack NEW netlink event carries the values given in the CT
1222 	 * action.
1223 	 */
1224 	if (info->mark.mask) {
1225 		err = ovs_ct_set_mark(ct, key, info->mark.value,
1226 				      info->mark.mask);
1227 		if (err)
1228 			return err;
1229 	}
1230 	if (!nf_ct_is_confirmed(ct)) {
1231 		err = ovs_ct_init_labels(ct, key, &info->labels.value,
1232 					 &info->labels.mask);
1233 		if (err)
1234 			return err;
1235 	} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1236 		   labels_nonzero(&info->labels.mask)) {
1237 		err = ovs_ct_set_labels(ct, key, &info->labels.value,
1238 					&info->labels.mask);
1239 		if (err)
1240 			return err;
1241 	}
1242 	/* This will take care of sending queued events even if the connection
1243 	 * is already confirmed.
1244 	 */
1245 	if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1246 		return -EINVAL;
1247 
1248 	return 0;
1249 }
1250 
1251 /* Trim the skb to the length specified by the IP/IPv6 header,
1252  * removing any trailing lower-layer padding. This prepares the skb
1253  * for higher-layer processing that assumes skb->len excludes padding
1254  * (such as nf_ip_checksum). The caller needs to pull the skb to the
1255  * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1256  */
ovs_skb_network_trim(struct sk_buff * skb)1257 static int ovs_skb_network_trim(struct sk_buff *skb)
1258 {
1259 	unsigned int len;
1260 	int err;
1261 
1262 	switch (skb->protocol) {
1263 	case htons(ETH_P_IP):
1264 		len = ntohs(ip_hdr(skb)->tot_len);
1265 		break;
1266 	case htons(ETH_P_IPV6):
1267 		len = sizeof(struct ipv6hdr)
1268 			+ ntohs(ipv6_hdr(skb)->payload_len);
1269 		break;
1270 	default:
1271 		len = skb->len;
1272 	}
1273 
1274 	err = pskb_trim_rcsum(skb, len);
1275 	if (err)
1276 		kfree_skb(skb);
1277 
1278 	return err;
1279 }
1280 
1281 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1282  * value if 'skb' is freed.
1283  */
ovs_ct_execute(struct net * net,struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_conntrack_info * info)1284 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1285 		   struct sw_flow_key *key,
1286 		   const struct ovs_conntrack_info *info)
1287 {
1288 	int nh_ofs;
1289 	int err;
1290 
1291 	/* The conntrack module expects to be working at L3. */
1292 	nh_ofs = skb_network_offset(skb);
1293 	skb_pull_rcsum(skb, nh_ofs);
1294 
1295 	err = ovs_skb_network_trim(skb);
1296 	if (err)
1297 		return err;
1298 
1299 	if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1300 		err = handle_fragments(net, key, info->zone.id, skb);
1301 		if (err)
1302 			return err;
1303 	}
1304 
1305 	if (info->commit)
1306 		err = ovs_ct_commit(net, key, info, skb);
1307 	else
1308 		err = ovs_ct_lookup(net, key, info, skb);
1309 
1310 	skb_push(skb, nh_ofs);
1311 	skb_postpush_rcsum(skb, skb->data, nh_ofs);
1312 	if (err)
1313 		kfree_skb(skb);
1314 	return err;
1315 }
1316 
ovs_ct_clear(struct sk_buff * skb,struct sw_flow_key * key)1317 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1318 {
1319 	if (skb_nfct(skb)) {
1320 		nf_conntrack_put(skb_nfct(skb));
1321 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1322 		if (key)
1323 			ovs_ct_fill_key(skb, key);
1324 	}
1325 
1326 	return 0;
1327 }
1328 
ovs_ct_add_helper(struct ovs_conntrack_info * info,const char * name,const struct sw_flow_key * key,bool log)1329 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1330 			     const struct sw_flow_key *key, bool log)
1331 {
1332 	struct nf_conntrack_helper *helper;
1333 	struct nf_conn_help *help;
1334 	int ret = 0;
1335 
1336 	helper = nf_conntrack_helper_try_module_get(name, info->family,
1337 						    key->ip.proto);
1338 	if (!helper) {
1339 		OVS_NLERR(log, "Unknown helper \"%s\"", name);
1340 		return -EINVAL;
1341 	}
1342 
1343 	help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1344 	if (!help) {
1345 		nf_conntrack_helper_put(helper);
1346 		return -ENOMEM;
1347 	}
1348 
1349 #if IS_ENABLED(CONFIG_NF_NAT)
1350 	if (info->nat) {
1351 		ret = nf_nat_helper_try_module_get(name, info->family,
1352 						   key->ip.proto);
1353 		if (ret) {
1354 			nf_conntrack_helper_put(helper);
1355 			OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
1356 				  name, ret);
1357 			return ret;
1358 		}
1359 	}
1360 #endif
1361 	rcu_assign_pointer(help->helper, helper);
1362 	info->helper = helper;
1363 	return ret;
1364 }
1365 
1366 #if IS_ENABLED(CONFIG_NF_NAT)
parse_nat(const struct nlattr * attr,struct ovs_conntrack_info * info,bool log)1367 static int parse_nat(const struct nlattr *attr,
1368 		     struct ovs_conntrack_info *info, bool log)
1369 {
1370 	struct nlattr *a;
1371 	int rem;
1372 	bool have_ip_max = false;
1373 	bool have_proto_max = false;
1374 	bool ip_vers = (info->family == NFPROTO_IPV6);
1375 
1376 	nla_for_each_nested(a, attr, rem) {
1377 		static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1378 			[OVS_NAT_ATTR_SRC] = {0, 0},
1379 			[OVS_NAT_ATTR_DST] = {0, 0},
1380 			[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1381 						 sizeof(struct in6_addr)},
1382 			[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1383 						 sizeof(struct in6_addr)},
1384 			[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1385 			[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1386 			[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1387 			[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1388 			[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1389 		};
1390 		int type = nla_type(a);
1391 
1392 		if (type > OVS_NAT_ATTR_MAX) {
1393 			OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1394 				  type, OVS_NAT_ATTR_MAX);
1395 			return -EINVAL;
1396 		}
1397 
1398 		if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1399 			OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1400 				  type, nla_len(a),
1401 				  ovs_nat_attr_lens[type][ip_vers]);
1402 			return -EINVAL;
1403 		}
1404 
1405 		switch (type) {
1406 		case OVS_NAT_ATTR_SRC:
1407 		case OVS_NAT_ATTR_DST:
1408 			if (info->nat) {
1409 				OVS_NLERR(log, "Only one type of NAT may be specified");
1410 				return -ERANGE;
1411 			}
1412 			info->nat |= OVS_CT_NAT;
1413 			info->nat |= ((type == OVS_NAT_ATTR_SRC)
1414 					? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1415 			break;
1416 
1417 		case OVS_NAT_ATTR_IP_MIN:
1418 			nla_memcpy(&info->range.min_addr, a,
1419 				   sizeof(info->range.min_addr));
1420 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1421 			break;
1422 
1423 		case OVS_NAT_ATTR_IP_MAX:
1424 			have_ip_max = true;
1425 			nla_memcpy(&info->range.max_addr, a,
1426 				   sizeof(info->range.max_addr));
1427 			info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1428 			break;
1429 
1430 		case OVS_NAT_ATTR_PROTO_MIN:
1431 			info->range.min_proto.all = htons(nla_get_u16(a));
1432 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1433 			break;
1434 
1435 		case OVS_NAT_ATTR_PROTO_MAX:
1436 			have_proto_max = true;
1437 			info->range.max_proto.all = htons(nla_get_u16(a));
1438 			info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1439 			break;
1440 
1441 		case OVS_NAT_ATTR_PERSISTENT:
1442 			info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1443 			break;
1444 
1445 		case OVS_NAT_ATTR_PROTO_HASH:
1446 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1447 			break;
1448 
1449 		case OVS_NAT_ATTR_PROTO_RANDOM:
1450 			info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1451 			break;
1452 
1453 		default:
1454 			OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1455 			return -EINVAL;
1456 		}
1457 	}
1458 
1459 	if (rem > 0) {
1460 		OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1461 		return -EINVAL;
1462 	}
1463 	if (!info->nat) {
1464 		/* Do not allow flags if no type is given. */
1465 		if (info->range.flags) {
1466 			OVS_NLERR(log,
1467 				  "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1468 				  );
1469 			return -EINVAL;
1470 		}
1471 		info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1472 	} else if (!info->commit) {
1473 		OVS_NLERR(log,
1474 			  "NAT attributes may be specified only when CT COMMIT flag is also specified."
1475 			  );
1476 		return -EINVAL;
1477 	}
1478 	/* Allow missing IP_MAX. */
1479 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1480 		memcpy(&info->range.max_addr, &info->range.min_addr,
1481 		       sizeof(info->range.max_addr));
1482 	}
1483 	/* Allow missing PROTO_MAX. */
1484 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1485 	    !have_proto_max) {
1486 		info->range.max_proto.all = info->range.min_proto.all;
1487 	}
1488 	return 0;
1489 }
1490 #endif
1491 
1492 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1493 	[OVS_CT_ATTR_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1494 	[OVS_CT_ATTR_FORCE_COMMIT]	= { .minlen = 0, .maxlen = 0 },
1495 	[OVS_CT_ATTR_ZONE]	= { .minlen = sizeof(u16),
1496 				    .maxlen = sizeof(u16) },
1497 	[OVS_CT_ATTR_MARK]	= { .minlen = sizeof(struct md_mark),
1498 				    .maxlen = sizeof(struct md_mark) },
1499 	[OVS_CT_ATTR_LABELS]	= { .minlen = sizeof(struct md_labels),
1500 				    .maxlen = sizeof(struct md_labels) },
1501 	[OVS_CT_ATTR_HELPER]	= { .minlen = 1,
1502 				    .maxlen = NF_CT_HELPER_NAME_LEN },
1503 #if IS_ENABLED(CONFIG_NF_NAT)
1504 	/* NAT length is checked when parsing the nested attributes. */
1505 	[OVS_CT_ATTR_NAT]	= { .minlen = 0, .maxlen = INT_MAX },
1506 #endif
1507 	[OVS_CT_ATTR_EVENTMASK]	= { .minlen = sizeof(u32),
1508 				    .maxlen = sizeof(u32) },
1509 	[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
1510 				  .maxlen = CTNL_TIMEOUT_NAME_MAX },
1511 };
1512 
parse_ct(const struct nlattr * attr,struct ovs_conntrack_info * info,const char ** helper,bool log)1513 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1514 		    const char **helper, bool log)
1515 {
1516 	struct nlattr *a;
1517 	int rem;
1518 
1519 	nla_for_each_nested(a, attr, rem) {
1520 		int type = nla_type(a);
1521 		int maxlen;
1522 		int minlen;
1523 
1524 		if (type > OVS_CT_ATTR_MAX) {
1525 			OVS_NLERR(log,
1526 				  "Unknown conntrack attr (type=%d, max=%d)",
1527 				  type, OVS_CT_ATTR_MAX);
1528 			return -EINVAL;
1529 		}
1530 
1531 		maxlen = ovs_ct_attr_lens[type].maxlen;
1532 		minlen = ovs_ct_attr_lens[type].minlen;
1533 		if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1534 			OVS_NLERR(log,
1535 				  "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1536 				  type, nla_len(a), maxlen);
1537 			return -EINVAL;
1538 		}
1539 
1540 		switch (type) {
1541 		case OVS_CT_ATTR_FORCE_COMMIT:
1542 			info->force = true;
1543 			/* fall through. */
1544 		case OVS_CT_ATTR_COMMIT:
1545 			info->commit = true;
1546 			break;
1547 #ifdef CONFIG_NF_CONNTRACK_ZONES
1548 		case OVS_CT_ATTR_ZONE:
1549 			info->zone.id = nla_get_u16(a);
1550 			break;
1551 #endif
1552 #ifdef CONFIG_NF_CONNTRACK_MARK
1553 		case OVS_CT_ATTR_MARK: {
1554 			struct md_mark *mark = nla_data(a);
1555 
1556 			if (!mark->mask) {
1557 				OVS_NLERR(log, "ct_mark mask cannot be 0");
1558 				return -EINVAL;
1559 			}
1560 			info->mark = *mark;
1561 			break;
1562 		}
1563 #endif
1564 #ifdef CONFIG_NF_CONNTRACK_LABELS
1565 		case OVS_CT_ATTR_LABELS: {
1566 			struct md_labels *labels = nla_data(a);
1567 
1568 			if (!labels_nonzero(&labels->mask)) {
1569 				OVS_NLERR(log, "ct_labels mask cannot be 0");
1570 				return -EINVAL;
1571 			}
1572 			info->labels = *labels;
1573 			break;
1574 		}
1575 #endif
1576 		case OVS_CT_ATTR_HELPER:
1577 			*helper = nla_data(a);
1578 			if (!memchr(*helper, '\0', nla_len(a))) {
1579 				OVS_NLERR(log, "Invalid conntrack helper");
1580 				return -EINVAL;
1581 			}
1582 			break;
1583 #if IS_ENABLED(CONFIG_NF_NAT)
1584 		case OVS_CT_ATTR_NAT: {
1585 			int err = parse_nat(a, info, log);
1586 
1587 			if (err)
1588 				return err;
1589 			break;
1590 		}
1591 #endif
1592 		case OVS_CT_ATTR_EVENTMASK:
1593 			info->have_eventmask = true;
1594 			info->eventmask = nla_get_u32(a);
1595 			break;
1596 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1597 		case OVS_CT_ATTR_TIMEOUT:
1598 			memcpy(info->timeout, nla_data(a), nla_len(a));
1599 			if (!memchr(info->timeout, '\0', nla_len(a))) {
1600 				OVS_NLERR(log, "Invalid conntrack timeout");
1601 				return -EINVAL;
1602 			}
1603 			break;
1604 #endif
1605 
1606 		default:
1607 			OVS_NLERR(log, "Unknown conntrack attr (%d)",
1608 				  type);
1609 			return -EINVAL;
1610 		}
1611 	}
1612 
1613 #ifdef CONFIG_NF_CONNTRACK_MARK
1614 	if (!info->commit && info->mark.mask) {
1615 		OVS_NLERR(log,
1616 			  "Setting conntrack mark requires 'commit' flag.");
1617 		return -EINVAL;
1618 	}
1619 #endif
1620 #ifdef CONFIG_NF_CONNTRACK_LABELS
1621 	if (!info->commit && labels_nonzero(&info->labels.mask)) {
1622 		OVS_NLERR(log,
1623 			  "Setting conntrack labels requires 'commit' flag.");
1624 		return -EINVAL;
1625 	}
1626 #endif
1627 	if (rem > 0) {
1628 		OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1629 		return -EINVAL;
1630 	}
1631 
1632 	return 0;
1633 }
1634 
ovs_ct_verify(struct net * net,enum ovs_key_attr attr)1635 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1636 {
1637 	if (attr == OVS_KEY_ATTR_CT_STATE)
1638 		return true;
1639 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1640 	    attr == OVS_KEY_ATTR_CT_ZONE)
1641 		return true;
1642 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1643 	    attr == OVS_KEY_ATTR_CT_MARK)
1644 		return true;
1645 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1646 	    attr == OVS_KEY_ATTR_CT_LABELS) {
1647 		struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1648 
1649 		return ovs_net->xt_label;
1650 	}
1651 
1652 	return false;
1653 }
1654 
ovs_ct_copy_action(struct net * net,const struct nlattr * attr,const struct sw_flow_key * key,struct sw_flow_actions ** sfa,bool log)1655 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1656 		       const struct sw_flow_key *key,
1657 		       struct sw_flow_actions **sfa,  bool log)
1658 {
1659 	struct ovs_conntrack_info ct_info;
1660 	const char *helper = NULL;
1661 	u16 family;
1662 	int err;
1663 
1664 	family = key_to_nfproto(key);
1665 	if (family == NFPROTO_UNSPEC) {
1666 		OVS_NLERR(log, "ct family unspecified");
1667 		return -EINVAL;
1668 	}
1669 
1670 	memset(&ct_info, 0, sizeof(ct_info));
1671 	ct_info.family = family;
1672 
1673 	nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1674 			NF_CT_DEFAULT_ZONE_DIR, 0);
1675 
1676 	err = parse_ct(attr, &ct_info, &helper, log);
1677 	if (err)
1678 		return err;
1679 
1680 	/* Set up template for tracking connections in specific zones. */
1681 	ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1682 	if (!ct_info.ct) {
1683 		OVS_NLERR(log, "Failed to allocate conntrack template");
1684 		return -ENOMEM;
1685 	}
1686 
1687 	if (ct_info.timeout[0]) {
1688 		if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
1689 				      ct_info.timeout))
1690 			pr_info_ratelimited("Failed to associated timeout "
1691 					    "policy `%s'\n", ct_info.timeout);
1692 		else
1693 			ct_info.nf_ct_timeout = rcu_dereference(
1694 				nf_ct_timeout_find(ct_info.ct)->timeout);
1695 
1696 	}
1697 
1698 	if (helper) {
1699 		err = ovs_ct_add_helper(&ct_info, helper, key, log);
1700 		if (err)
1701 			goto err_free_ct;
1702 	}
1703 
1704 	err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1705 				 sizeof(ct_info), log);
1706 	if (err)
1707 		goto err_free_ct;
1708 
1709 	__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1710 	nf_conntrack_get(&ct_info.ct->ct_general);
1711 	return 0;
1712 err_free_ct:
1713 	__ovs_ct_free_action(&ct_info);
1714 	return err;
1715 }
1716 
1717 #if IS_ENABLED(CONFIG_NF_NAT)
ovs_ct_nat_to_attr(const struct ovs_conntrack_info * info,struct sk_buff * skb)1718 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1719 			       struct sk_buff *skb)
1720 {
1721 	struct nlattr *start;
1722 
1723 	start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
1724 	if (!start)
1725 		return false;
1726 
1727 	if (info->nat & OVS_CT_SRC_NAT) {
1728 		if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1729 			return false;
1730 	} else if (info->nat & OVS_CT_DST_NAT) {
1731 		if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1732 			return false;
1733 	} else {
1734 		goto out;
1735 	}
1736 
1737 	if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1738 		if (IS_ENABLED(CONFIG_NF_NAT) &&
1739 		    info->family == NFPROTO_IPV4) {
1740 			if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1741 					    info->range.min_addr.ip) ||
1742 			    (info->range.max_addr.ip
1743 			     != info->range.min_addr.ip &&
1744 			     (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1745 					      info->range.max_addr.ip))))
1746 				return false;
1747 		} else if (IS_ENABLED(CONFIG_IPV6) &&
1748 			   info->family == NFPROTO_IPV6) {
1749 			if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1750 					     &info->range.min_addr.in6) ||
1751 			    (memcmp(&info->range.max_addr.in6,
1752 				    &info->range.min_addr.in6,
1753 				    sizeof(info->range.max_addr.in6)) &&
1754 			     (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1755 					       &info->range.max_addr.in6))))
1756 				return false;
1757 		} else {
1758 			return false;
1759 		}
1760 	}
1761 	if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1762 	    (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1763 			 ntohs(info->range.min_proto.all)) ||
1764 	     (info->range.max_proto.all != info->range.min_proto.all &&
1765 	      nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1766 			  ntohs(info->range.max_proto.all)))))
1767 		return false;
1768 
1769 	if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1770 	    nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1771 		return false;
1772 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1773 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1774 		return false;
1775 	if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1776 	    nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1777 		return false;
1778 out:
1779 	nla_nest_end(skb, start);
1780 
1781 	return true;
1782 }
1783 #endif
1784 
ovs_ct_action_to_attr(const struct ovs_conntrack_info * ct_info,struct sk_buff * skb)1785 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1786 			  struct sk_buff *skb)
1787 {
1788 	struct nlattr *start;
1789 
1790 	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
1791 	if (!start)
1792 		return -EMSGSIZE;
1793 
1794 	if (ct_info->commit && nla_put_flag(skb, ct_info->force
1795 					    ? OVS_CT_ATTR_FORCE_COMMIT
1796 					    : OVS_CT_ATTR_COMMIT))
1797 		return -EMSGSIZE;
1798 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1799 	    nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1800 		return -EMSGSIZE;
1801 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1802 	    nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1803 		    &ct_info->mark))
1804 		return -EMSGSIZE;
1805 	if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1806 	    labels_nonzero(&ct_info->labels.mask) &&
1807 	    nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1808 		    &ct_info->labels))
1809 		return -EMSGSIZE;
1810 	if (ct_info->helper) {
1811 		if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1812 				   ct_info->helper->name))
1813 			return -EMSGSIZE;
1814 	}
1815 	if (ct_info->have_eventmask &&
1816 	    nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1817 		return -EMSGSIZE;
1818 	if (ct_info->timeout[0]) {
1819 		if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
1820 			return -EMSGSIZE;
1821 	}
1822 
1823 #if IS_ENABLED(CONFIG_NF_NAT)
1824 	if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1825 		return -EMSGSIZE;
1826 #endif
1827 	nla_nest_end(skb, start);
1828 
1829 	return 0;
1830 }
1831 
ovs_ct_free_action(const struct nlattr * a)1832 void ovs_ct_free_action(const struct nlattr *a)
1833 {
1834 	struct ovs_conntrack_info *ct_info = nla_data(a);
1835 
1836 	__ovs_ct_free_action(ct_info);
1837 }
1838 
__ovs_ct_free_action(struct ovs_conntrack_info * ct_info)1839 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1840 {
1841 	if (ct_info->helper) {
1842 #if IS_ENABLED(CONFIG_NF_NAT)
1843 		if (ct_info->nat)
1844 			nf_nat_helper_put(ct_info->helper);
1845 #endif
1846 		nf_conntrack_helper_put(ct_info->helper);
1847 	}
1848 	if (ct_info->ct) {
1849 		if (ct_info->timeout[0])
1850 			nf_ct_destroy_timeout(ct_info->ct);
1851 		nf_ct_tmpl_free(ct_info->ct);
1852 	}
1853 }
1854 
1855 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
ovs_ct_limit_init(struct net * net,struct ovs_net * ovs_net)1856 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1857 {
1858 	int i, err;
1859 
1860 	ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1861 					 GFP_KERNEL);
1862 	if (!ovs_net->ct_limit_info)
1863 		return -ENOMEM;
1864 
1865 	ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1866 	ovs_net->ct_limit_info->limits =
1867 		kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1868 			      GFP_KERNEL);
1869 	if (!ovs_net->ct_limit_info->limits) {
1870 		kfree(ovs_net->ct_limit_info);
1871 		return -ENOMEM;
1872 	}
1873 
1874 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1875 		INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1876 
1877 	ovs_net->ct_limit_info->data =
1878 		nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1879 
1880 	if (IS_ERR(ovs_net->ct_limit_info->data)) {
1881 		err = PTR_ERR(ovs_net->ct_limit_info->data);
1882 		kfree(ovs_net->ct_limit_info->limits);
1883 		kfree(ovs_net->ct_limit_info);
1884 		pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1885 		return err;
1886 	}
1887 	return 0;
1888 }
1889 
ovs_ct_limit_exit(struct net * net,struct ovs_net * ovs_net)1890 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1891 {
1892 	const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1893 	int i;
1894 
1895 	nf_conncount_destroy(net, NFPROTO_INET, info->data);
1896 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1897 		struct hlist_head *head = &info->limits[i];
1898 		struct ovs_ct_limit *ct_limit;
1899 
1900 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node,
1901 					 lockdep_ovsl_is_held())
1902 			kfree_rcu(ct_limit, rcu);
1903 	}
1904 	kfree(ovs_net->ct_limit_info->limits);
1905 	kfree(ovs_net->ct_limit_info);
1906 }
1907 
1908 static struct sk_buff *
ovs_ct_limit_cmd_reply_start(struct genl_info * info,u8 cmd,struct ovs_header ** ovs_reply_header)1909 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1910 			     struct ovs_header **ovs_reply_header)
1911 {
1912 	struct ovs_header *ovs_header = info->userhdr;
1913 	struct sk_buff *skb;
1914 
1915 	skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1916 	if (!skb)
1917 		return ERR_PTR(-ENOMEM);
1918 
1919 	*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1920 					info->snd_seq,
1921 					&dp_ct_limit_genl_family, 0, cmd);
1922 
1923 	if (!*ovs_reply_header) {
1924 		nlmsg_free(skb);
1925 		return ERR_PTR(-EMSGSIZE);
1926 	}
1927 	(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1928 
1929 	return skb;
1930 }
1931 
check_zone_id(int zone_id,u16 * pzone)1932 static bool check_zone_id(int zone_id, u16 *pzone)
1933 {
1934 	if (zone_id >= 0 && zone_id <= 65535) {
1935 		*pzone = (u16)zone_id;
1936 		return true;
1937 	}
1938 	return false;
1939 }
1940 
ovs_ct_limit_set_zone_limit(struct nlattr * nla_zone_limit,struct ovs_ct_limit_info * info)1941 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1942 				       struct ovs_ct_limit_info *info)
1943 {
1944 	struct ovs_zone_limit *zone_limit;
1945 	int rem;
1946 	u16 zone;
1947 
1948 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1949 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1950 
1951 	while (rem >= sizeof(*zone_limit)) {
1952 		if (unlikely(zone_limit->zone_id ==
1953 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1954 			ovs_lock();
1955 			info->default_limit = zone_limit->limit;
1956 			ovs_unlock();
1957 		} else if (unlikely(!check_zone_id(
1958 				zone_limit->zone_id, &zone))) {
1959 			OVS_NLERR(true, "zone id is out of range");
1960 		} else {
1961 			struct ovs_ct_limit *ct_limit;
1962 
1963 			ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1964 			if (!ct_limit)
1965 				return -ENOMEM;
1966 
1967 			ct_limit->zone = zone;
1968 			ct_limit->limit = zone_limit->limit;
1969 
1970 			ovs_lock();
1971 			ct_limit_set(info, ct_limit);
1972 			ovs_unlock();
1973 		}
1974 		rem -= NLA_ALIGN(sizeof(*zone_limit));
1975 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1976 				NLA_ALIGN(sizeof(*zone_limit)));
1977 	}
1978 
1979 	if (rem)
1980 		OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1981 
1982 	return 0;
1983 }
1984 
ovs_ct_limit_del_zone_limit(struct nlattr * nla_zone_limit,struct ovs_ct_limit_info * info)1985 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1986 				       struct ovs_ct_limit_info *info)
1987 {
1988 	struct ovs_zone_limit *zone_limit;
1989 	int rem;
1990 	u16 zone;
1991 
1992 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
1993 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1994 
1995 	while (rem >= sizeof(*zone_limit)) {
1996 		if (unlikely(zone_limit->zone_id ==
1997 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1998 			ovs_lock();
1999 			info->default_limit = OVS_CT_LIMIT_DEFAULT;
2000 			ovs_unlock();
2001 		} else if (unlikely(!check_zone_id(
2002 				zone_limit->zone_id, &zone))) {
2003 			OVS_NLERR(true, "zone id is out of range");
2004 		} else {
2005 			ovs_lock();
2006 			ct_limit_del(info, zone);
2007 			ovs_unlock();
2008 		}
2009 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2010 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2011 				NLA_ALIGN(sizeof(*zone_limit)));
2012 	}
2013 
2014 	if (rem)
2015 		OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
2016 
2017 	return 0;
2018 }
2019 
ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info * info,struct sk_buff * reply)2020 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
2021 					  struct sk_buff *reply)
2022 {
2023 	struct ovs_zone_limit zone_limit = {
2024 		.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE,
2025 		.limit   = info->default_limit,
2026 	};
2027 
2028 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2029 }
2030 
__ovs_ct_limit_get_zone_limit(struct net * net,struct nf_conncount_data * data,u16 zone_id,u32 limit,struct sk_buff * reply)2031 static int __ovs_ct_limit_get_zone_limit(struct net *net,
2032 					 struct nf_conncount_data *data,
2033 					 u16 zone_id, u32 limit,
2034 					 struct sk_buff *reply)
2035 {
2036 	struct nf_conntrack_zone ct_zone;
2037 	struct ovs_zone_limit zone_limit;
2038 	u32 conncount_key = zone_id;
2039 
2040 	zone_limit.zone_id = zone_id;
2041 	zone_limit.limit = limit;
2042 	nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
2043 
2044 	zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
2045 					      &ct_zone);
2046 	return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
2047 }
2048 
ovs_ct_limit_get_zone_limit(struct net * net,struct nlattr * nla_zone_limit,struct ovs_ct_limit_info * info,struct sk_buff * reply)2049 static int ovs_ct_limit_get_zone_limit(struct net *net,
2050 				       struct nlattr *nla_zone_limit,
2051 				       struct ovs_ct_limit_info *info,
2052 				       struct sk_buff *reply)
2053 {
2054 	struct ovs_zone_limit *zone_limit;
2055 	int rem, err;
2056 	u32 limit;
2057 	u16 zone;
2058 
2059 	rem = NLA_ALIGN(nla_len(nla_zone_limit));
2060 	zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
2061 
2062 	while (rem >= sizeof(*zone_limit)) {
2063 		if (unlikely(zone_limit->zone_id ==
2064 				OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2065 			err = ovs_ct_limit_get_default_limit(info, reply);
2066 			if (err)
2067 				return err;
2068 		} else if (unlikely(!check_zone_id(zone_limit->zone_id,
2069 							&zone))) {
2070 			OVS_NLERR(true, "zone id is out of range");
2071 		} else {
2072 			rcu_read_lock();
2073 			limit = ct_limit_get(info, zone);
2074 			rcu_read_unlock();
2075 
2076 			err = __ovs_ct_limit_get_zone_limit(
2077 				net, info->data, zone, limit, reply);
2078 			if (err)
2079 				return err;
2080 		}
2081 		rem -= NLA_ALIGN(sizeof(*zone_limit));
2082 		zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2083 				NLA_ALIGN(sizeof(*zone_limit)));
2084 	}
2085 
2086 	if (rem)
2087 		OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2088 
2089 	return 0;
2090 }
2091 
ovs_ct_limit_get_all_zone_limit(struct net * net,struct ovs_ct_limit_info * info,struct sk_buff * reply)2092 static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2093 					   struct ovs_ct_limit_info *info,
2094 					   struct sk_buff *reply)
2095 {
2096 	struct ovs_ct_limit *ct_limit;
2097 	struct hlist_head *head;
2098 	int i, err = 0;
2099 
2100 	err = ovs_ct_limit_get_default_limit(info, reply);
2101 	if (err)
2102 		return err;
2103 
2104 	rcu_read_lock();
2105 	for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2106 		head = &info->limits[i];
2107 		hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2108 			err = __ovs_ct_limit_get_zone_limit(net, info->data,
2109 				ct_limit->zone, ct_limit->limit, reply);
2110 			if (err)
2111 				goto exit_err;
2112 		}
2113 	}
2114 
2115 exit_err:
2116 	rcu_read_unlock();
2117 	return err;
2118 }
2119 
ovs_ct_limit_cmd_set(struct sk_buff * skb,struct genl_info * info)2120 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2121 {
2122 	struct nlattr **a = info->attrs;
2123 	struct sk_buff *reply;
2124 	struct ovs_header *ovs_reply_header;
2125 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2126 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2127 	int err;
2128 
2129 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2130 					     &ovs_reply_header);
2131 	if (IS_ERR(reply))
2132 		return PTR_ERR(reply);
2133 
2134 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2135 		err = -EINVAL;
2136 		goto exit_err;
2137 	}
2138 
2139 	err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2140 					  ct_limit_info);
2141 	if (err)
2142 		goto exit_err;
2143 
2144 	static_branch_enable(&ovs_ct_limit_enabled);
2145 
2146 	genlmsg_end(reply, ovs_reply_header);
2147 	return genlmsg_reply(reply, info);
2148 
2149 exit_err:
2150 	nlmsg_free(reply);
2151 	return err;
2152 }
2153 
ovs_ct_limit_cmd_del(struct sk_buff * skb,struct genl_info * info)2154 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2155 {
2156 	struct nlattr **a = info->attrs;
2157 	struct sk_buff *reply;
2158 	struct ovs_header *ovs_reply_header;
2159 	struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2160 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2161 	int err;
2162 
2163 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2164 					     &ovs_reply_header);
2165 	if (IS_ERR(reply))
2166 		return PTR_ERR(reply);
2167 
2168 	if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2169 		err = -EINVAL;
2170 		goto exit_err;
2171 	}
2172 
2173 	err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2174 					  ct_limit_info);
2175 	if (err)
2176 		goto exit_err;
2177 
2178 	genlmsg_end(reply, ovs_reply_header);
2179 	return genlmsg_reply(reply, info);
2180 
2181 exit_err:
2182 	nlmsg_free(reply);
2183 	return err;
2184 }
2185 
ovs_ct_limit_cmd_get(struct sk_buff * skb,struct genl_info * info)2186 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2187 {
2188 	struct nlattr **a = info->attrs;
2189 	struct nlattr *nla_reply;
2190 	struct sk_buff *reply;
2191 	struct ovs_header *ovs_reply_header;
2192 	struct net *net = sock_net(skb->sk);
2193 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2194 	struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2195 	int err;
2196 
2197 	reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2198 					     &ovs_reply_header);
2199 	if (IS_ERR(reply))
2200 		return PTR_ERR(reply);
2201 
2202 	nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2203 	if (!nla_reply) {
2204 		err = -EMSGSIZE;
2205 		goto exit_err;
2206 	}
2207 
2208 	if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2209 		err = ovs_ct_limit_get_zone_limit(
2210 			net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2211 			reply);
2212 		if (err)
2213 			goto exit_err;
2214 	} else {
2215 		err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2216 						      reply);
2217 		if (err)
2218 			goto exit_err;
2219 	}
2220 
2221 	nla_nest_end(reply, nla_reply);
2222 	genlmsg_end(reply, ovs_reply_header);
2223 	return genlmsg_reply(reply, info);
2224 
2225 exit_err:
2226 	nlmsg_free(reply);
2227 	return err;
2228 }
2229 
2230 static struct genl_ops ct_limit_genl_ops[] = {
2231 	{ .cmd = OVS_CT_LIMIT_CMD_SET,
2232 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2233 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2234 					   * privilege. */
2235 		.doit = ovs_ct_limit_cmd_set,
2236 	},
2237 	{ .cmd = OVS_CT_LIMIT_CMD_DEL,
2238 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2239 		.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2240 					   * privilege. */
2241 		.doit = ovs_ct_limit_cmd_del,
2242 	},
2243 	{ .cmd = OVS_CT_LIMIT_CMD_GET,
2244 		.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
2245 		.flags = 0,		  /* OK for unprivileged users. */
2246 		.doit = ovs_ct_limit_cmd_get,
2247 	},
2248 };
2249 
2250 static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2251 	.name = OVS_CT_LIMIT_MCGROUP,
2252 };
2253 
2254 struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2255 	.hdrsize = sizeof(struct ovs_header),
2256 	.name = OVS_CT_LIMIT_FAMILY,
2257 	.version = OVS_CT_LIMIT_VERSION,
2258 	.maxattr = OVS_CT_LIMIT_ATTR_MAX,
2259 	.policy = ct_limit_policy,
2260 	.netnsok = true,
2261 	.parallel_ops = true,
2262 	.ops = ct_limit_genl_ops,
2263 	.n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2264 	.mcgrps = &ovs_ct_limit_multicast_group,
2265 	.n_mcgrps = 1,
2266 	.module = THIS_MODULE,
2267 };
2268 #endif
2269 
ovs_ct_init(struct net * net)2270 int ovs_ct_init(struct net *net)
2271 {
2272 	unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2273 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2274 
2275 	if (nf_connlabels_get(net, n_bits - 1)) {
2276 		ovs_net->xt_label = false;
2277 		OVS_NLERR(true, "Failed to set connlabel length");
2278 	} else {
2279 		ovs_net->xt_label = true;
2280 	}
2281 
2282 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2283 	return ovs_ct_limit_init(net, ovs_net);
2284 #else
2285 	return 0;
2286 #endif
2287 }
2288 
ovs_ct_exit(struct net * net)2289 void ovs_ct_exit(struct net *net)
2290 {
2291 	struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2292 
2293 #if	IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2294 	ovs_ct_limit_exit(net, ovs_net);
2295 #endif
2296 
2297 	if (ovs_net->xt_label)
2298 		nf_connlabels_put(net);
2299 }
2300