• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4  *   {mikejc|engebret}@us.ibm.com
5  *
6  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7  *
8  * SMP scalability work:
9  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10  *
11  *    Module name: htab.c
12  *
13  *    Description:
14  *      PowerPC Hashed Page Table functions
15  */
16 
17 #undef DEBUG
18 #undef DEBUG_LOW
19 
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 
39 #include <asm/debugfs.h>
40 #include <asm/processor.h>
41 #include <asm/pgtable.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/page.h>
45 #include <asm/types.h>
46 #include <linux/uaccess.h>
47 #include <asm/machdep.h>
48 #include <asm/prom.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/copro.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
60 #include <asm/tm.h>
61 #include <asm/trace.h>
62 #include <asm/ps3.h>
63 #include <asm/pte-walk.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/ultravisor.h>
66 
67 #include <mm/mmu_decl.h>
68 
69 #ifdef DEBUG
70 #define DBG(fmt...) udbg_printf(fmt)
71 #else
72 #define DBG(fmt...)
73 #endif
74 
75 #ifdef DEBUG_LOW
76 #define DBG_LOW(fmt...) udbg_printf(fmt)
77 #else
78 #define DBG_LOW(fmt...)
79 #endif
80 
81 #define KB (1024)
82 #define MB (1024*KB)
83 #define GB (1024L*MB)
84 
85 /*
86  * Note:  pte   --> Linux PTE
87  *        HPTE  --> PowerPC Hashed Page Table Entry
88  *
89  * Execution context:
90  *   htab_initialize is called with the MMU off (of course), but
91  *   the kernel has been copied down to zero so it can directly
92  *   reference global data.  At this point it is very difficult
93  *   to print debug info.
94  *
95  */
96 
97 static unsigned long _SDR1;
98 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
99 EXPORT_SYMBOL_GPL(mmu_psize_defs);
100 
101 u8 hpte_page_sizes[1 << LP_BITS];
102 EXPORT_SYMBOL_GPL(hpte_page_sizes);
103 
104 struct hash_pte *htab_address;
105 unsigned long htab_size_bytes;
106 unsigned long htab_hash_mask;
107 EXPORT_SYMBOL_GPL(htab_hash_mask);
108 int mmu_linear_psize = MMU_PAGE_4K;
109 EXPORT_SYMBOL_GPL(mmu_linear_psize);
110 int mmu_virtual_psize = MMU_PAGE_4K;
111 int mmu_vmalloc_psize = MMU_PAGE_4K;
112 #ifdef CONFIG_SPARSEMEM_VMEMMAP
113 int mmu_vmemmap_psize = MMU_PAGE_4K;
114 #endif
115 int mmu_io_psize = MMU_PAGE_4K;
116 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
117 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
118 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
119 u16 mmu_slb_size = 64;
120 EXPORT_SYMBOL_GPL(mmu_slb_size);
121 #ifdef CONFIG_PPC_64K_PAGES
122 int mmu_ci_restrictions;
123 #endif
124 #ifdef CONFIG_DEBUG_PAGEALLOC
125 static u8 *linear_map_hash_slots;
126 static unsigned long linear_map_hash_count;
127 static DEFINE_SPINLOCK(linear_map_hash_lock);
128 #endif /* CONFIG_DEBUG_PAGEALLOC */
129 struct mmu_hash_ops mmu_hash_ops;
130 EXPORT_SYMBOL(mmu_hash_ops);
131 
132 /*
133  * These are definitions of page sizes arrays to be used when none
134  * is provided by the firmware.
135  */
136 
137 /*
138  * Fallback (4k pages only)
139  */
140 static struct mmu_psize_def mmu_psize_defaults[] = {
141 	[MMU_PAGE_4K] = {
142 		.shift	= 12,
143 		.sllp	= 0,
144 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
145 		.avpnm	= 0,
146 		.tlbiel = 0,
147 	},
148 };
149 
150 /*
151  * POWER4, GPUL, POWER5
152  *
153  * Support for 16Mb large pages
154  */
155 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
156 	[MMU_PAGE_4K] = {
157 		.shift	= 12,
158 		.sllp	= 0,
159 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
160 		.avpnm	= 0,
161 		.tlbiel = 1,
162 	},
163 	[MMU_PAGE_16M] = {
164 		.shift	= 24,
165 		.sllp	= SLB_VSID_L,
166 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
167 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
168 		.avpnm	= 0x1UL,
169 		.tlbiel = 0,
170 	},
171 };
172 
173 /*
174  * 'R' and 'C' update notes:
175  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
176  *     create writeable HPTEs without C set, because the hcall H_PROTECT
177  *     that we use in that case will not update C
178  *  - The above is however not a problem, because we also don't do that
179  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
180  *     do the right thing and thus we don't have the race I described earlier
181  *
182  *    - Under bare metal,  we do have the race, so we need R and C set
183  *    - We make sure R is always set and never lost
184  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
185  */
htab_convert_pte_flags(unsigned long pteflags)186 unsigned long htab_convert_pte_flags(unsigned long pteflags)
187 {
188 	unsigned long rflags = 0;
189 
190 	/* _PAGE_EXEC -> NOEXEC */
191 	if ((pteflags & _PAGE_EXEC) == 0)
192 		rflags |= HPTE_R_N;
193 	/*
194 	 * PPP bits:
195 	 * Linux uses slb key 0 for kernel and 1 for user.
196 	 * kernel RW areas are mapped with PPP=0b000
197 	 * User area is mapped with PPP=0b010 for read/write
198 	 * or PPP=0b011 for read-only (including writeable but clean pages).
199 	 */
200 	if (pteflags & _PAGE_PRIVILEGED) {
201 		/*
202 		 * Kernel read only mapped with ppp bits 0b110
203 		 */
204 		if (!(pteflags & _PAGE_WRITE)) {
205 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
206 				rflags |= (HPTE_R_PP0 | 0x2);
207 			else
208 				rflags |= 0x3;
209 		}
210 	} else {
211 		if (pteflags & _PAGE_RWX)
212 			rflags |= 0x2;
213 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
214 			rflags |= 0x1;
215 	}
216 	/*
217 	 * We can't allow hardware to update hpte bits. Hence always
218 	 * set 'R' bit and set 'C' if it is a write fault
219 	 */
220 	rflags |=  HPTE_R_R;
221 
222 	if (pteflags & _PAGE_DIRTY)
223 		rflags |= HPTE_R_C;
224 	/*
225 	 * Add in WIG bits
226 	 */
227 
228 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
229 		rflags |= HPTE_R_I;
230 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
231 		rflags |= (HPTE_R_I | HPTE_R_G);
232 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
233 		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
234 	else
235 		/*
236 		 * Add memory coherence if cache inhibited is not set
237 		 */
238 		rflags |= HPTE_R_M;
239 
240 	rflags |= pte_to_hpte_pkey_bits(pteflags);
241 	return rflags;
242 }
243 
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)244 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
245 		      unsigned long pstart, unsigned long prot,
246 		      int psize, int ssize)
247 {
248 	unsigned long vaddr, paddr;
249 	unsigned int step, shift;
250 	int ret = 0;
251 
252 	shift = mmu_psize_defs[psize].shift;
253 	step = 1 << shift;
254 
255 	prot = htab_convert_pte_flags(prot);
256 
257 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
258 	    vstart, vend, pstart, prot, psize, ssize);
259 
260 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
261 	     vaddr += step, paddr += step) {
262 		unsigned long hash, hpteg;
263 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
264 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
265 		unsigned long tprot = prot;
266 
267 		/*
268 		 * If we hit a bad address return error.
269 		 */
270 		if (!vsid)
271 			return -1;
272 		/* Make kernel text executable */
273 		if (overlaps_kernel_text(vaddr, vaddr + step))
274 			tprot &= ~HPTE_R_N;
275 
276 		/*
277 		 * If relocatable, check if it overlaps interrupt vectors that
278 		 * are copied down to real 0. For relocatable kernel
279 		 * (e.g. kdump case) we copy interrupt vectors down to real
280 		 * address 0. Mark that region as executable. This is
281 		 * because on p8 system with relocation on exception feature
282 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
283 		 * in order to execute the interrupt handlers in virtual
284 		 * mode the vector region need to be marked as executable.
285 		 */
286 		if ((PHYSICAL_START > MEMORY_START) &&
287 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
288 				tprot &= ~HPTE_R_N;
289 
290 		hash = hpt_hash(vpn, shift, ssize);
291 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
292 
293 		BUG_ON(!mmu_hash_ops.hpte_insert);
294 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
295 					       HPTE_V_BOLTED, psize, psize,
296 					       ssize);
297 		if (ret == -1) {
298 			/* Try to remove a non bolted entry */
299 			ret = mmu_hash_ops.hpte_remove(hpteg);
300 			if (ret != -1)
301 				ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
302 							       HPTE_V_BOLTED, psize, psize,
303 							       ssize);
304 		}
305 		if (ret < 0)
306 			break;
307 
308 		cond_resched();
309 #ifdef CONFIG_DEBUG_PAGEALLOC
310 		if (debug_pagealloc_enabled() &&
311 			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
312 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
313 #endif /* CONFIG_DEBUG_PAGEALLOC */
314 	}
315 	return ret < 0 ? ret : 0;
316 }
317 
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)318 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
319 		      int psize, int ssize)
320 {
321 	unsigned long vaddr;
322 	unsigned int step, shift;
323 	int rc;
324 	int ret = 0;
325 
326 	shift = mmu_psize_defs[psize].shift;
327 	step = 1 << shift;
328 
329 	if (!mmu_hash_ops.hpte_removebolted)
330 		return -ENODEV;
331 
332 	for (vaddr = vstart; vaddr < vend; vaddr += step) {
333 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
334 		if (rc == -ENOENT) {
335 			ret = -ENOENT;
336 			continue;
337 		}
338 		if (rc < 0)
339 			return rc;
340 	}
341 
342 	return ret;
343 }
344 
345 static bool disable_1tb_segments = false;
346 
parse_disable_1tb_segments(char * p)347 static int __init parse_disable_1tb_segments(char *p)
348 {
349 	disable_1tb_segments = true;
350 	return 0;
351 }
352 early_param("disable_1tb_segments", parse_disable_1tb_segments);
353 
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)354 static int __init htab_dt_scan_seg_sizes(unsigned long node,
355 					 const char *uname, int depth,
356 					 void *data)
357 {
358 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
359 	const __be32 *prop;
360 	int size = 0;
361 
362 	/* We are scanning "cpu" nodes only */
363 	if (type == NULL || strcmp(type, "cpu") != 0)
364 		return 0;
365 
366 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
367 	if (prop == NULL)
368 		return 0;
369 	for (; size >= 4; size -= 4, ++prop) {
370 		if (be32_to_cpu(prop[0]) == 40) {
371 			DBG("1T segment support detected\n");
372 
373 			if (disable_1tb_segments) {
374 				DBG("1T segments disabled by command line\n");
375 				break;
376 			}
377 
378 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
379 			return 1;
380 		}
381 	}
382 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
383 	return 0;
384 }
385 
get_idx_from_shift(unsigned int shift)386 static int __init get_idx_from_shift(unsigned int shift)
387 {
388 	int idx = -1;
389 
390 	switch (shift) {
391 	case 0xc:
392 		idx = MMU_PAGE_4K;
393 		break;
394 	case 0x10:
395 		idx = MMU_PAGE_64K;
396 		break;
397 	case 0x14:
398 		idx = MMU_PAGE_1M;
399 		break;
400 	case 0x18:
401 		idx = MMU_PAGE_16M;
402 		break;
403 	case 0x22:
404 		idx = MMU_PAGE_16G;
405 		break;
406 	}
407 	return idx;
408 }
409 
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)410 static int __init htab_dt_scan_page_sizes(unsigned long node,
411 					  const char *uname, int depth,
412 					  void *data)
413 {
414 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
415 	const __be32 *prop;
416 	int size = 0;
417 
418 	/* We are scanning "cpu" nodes only */
419 	if (type == NULL || strcmp(type, "cpu") != 0)
420 		return 0;
421 
422 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
423 	if (!prop)
424 		return 0;
425 
426 	pr_info("Page sizes from device-tree:\n");
427 	size /= 4;
428 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
429 	while(size > 0) {
430 		unsigned int base_shift = be32_to_cpu(prop[0]);
431 		unsigned int slbenc = be32_to_cpu(prop[1]);
432 		unsigned int lpnum = be32_to_cpu(prop[2]);
433 		struct mmu_psize_def *def;
434 		int idx, base_idx;
435 
436 		size -= 3; prop += 3;
437 		base_idx = get_idx_from_shift(base_shift);
438 		if (base_idx < 0) {
439 			/* skip the pte encoding also */
440 			prop += lpnum * 2; size -= lpnum * 2;
441 			continue;
442 		}
443 		def = &mmu_psize_defs[base_idx];
444 		if (base_idx == MMU_PAGE_16M)
445 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
446 
447 		def->shift = base_shift;
448 		if (base_shift <= 23)
449 			def->avpnm = 0;
450 		else
451 			def->avpnm = (1 << (base_shift - 23)) - 1;
452 		def->sllp = slbenc;
453 		/*
454 		 * We don't know for sure what's up with tlbiel, so
455 		 * for now we only set it for 4K and 64K pages
456 		 */
457 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
458 			def->tlbiel = 1;
459 		else
460 			def->tlbiel = 0;
461 
462 		while (size > 0 && lpnum) {
463 			unsigned int shift = be32_to_cpu(prop[0]);
464 			int penc  = be32_to_cpu(prop[1]);
465 
466 			prop += 2; size -= 2;
467 			lpnum--;
468 
469 			idx = get_idx_from_shift(shift);
470 			if (idx < 0)
471 				continue;
472 
473 			if (penc == -1)
474 				pr_err("Invalid penc for base_shift=%d "
475 				       "shift=%d\n", base_shift, shift);
476 
477 			def->penc[idx] = penc;
478 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
479 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
480 				base_shift, shift, def->sllp,
481 				def->avpnm, def->tlbiel, def->penc[idx]);
482 		}
483 	}
484 
485 	return 1;
486 }
487 
488 #ifdef CONFIG_HUGETLB_PAGE
489 /*
490  * Scan for 16G memory blocks that have been set aside for huge pages
491  * and reserve those blocks for 16G huge pages.
492  */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)493 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
494 					const char *uname, int depth,
495 					void *data) {
496 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
497 	const __be64 *addr_prop;
498 	const __be32 *page_count_prop;
499 	unsigned int expected_pages;
500 	long unsigned int phys_addr;
501 	long unsigned int block_size;
502 
503 	/* We are scanning "memory" nodes only */
504 	if (type == NULL || strcmp(type, "memory") != 0)
505 		return 0;
506 
507 	/*
508 	 * This property is the log base 2 of the number of virtual pages that
509 	 * will represent this memory block.
510 	 */
511 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
512 	if (page_count_prop == NULL)
513 		return 0;
514 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
515 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
516 	if (addr_prop == NULL)
517 		return 0;
518 	phys_addr = be64_to_cpu(addr_prop[0]);
519 	block_size = be64_to_cpu(addr_prop[1]);
520 	if (block_size != (16 * GB))
521 		return 0;
522 	printk(KERN_INFO "Huge page(16GB) memory: "
523 			"addr = 0x%lX size = 0x%lX pages = %d\n",
524 			phys_addr, block_size, expected_pages);
525 	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
526 		memblock_reserve(phys_addr, block_size * expected_pages);
527 		pseries_add_gpage(phys_addr, block_size, expected_pages);
528 	}
529 	return 0;
530 }
531 #endif /* CONFIG_HUGETLB_PAGE */
532 
mmu_psize_set_default_penc(void)533 static void mmu_psize_set_default_penc(void)
534 {
535 	int bpsize, apsize;
536 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
537 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
538 			mmu_psize_defs[bpsize].penc[apsize] = -1;
539 }
540 
541 #ifdef CONFIG_PPC_64K_PAGES
542 
might_have_hea(void)543 static bool might_have_hea(void)
544 {
545 	/*
546 	 * The HEA ethernet adapter requires awareness of the
547 	 * GX bus. Without that awareness we can easily assume
548 	 * we will never see an HEA ethernet device.
549 	 */
550 #ifdef CONFIG_IBMEBUS
551 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
552 		firmware_has_feature(FW_FEATURE_SPLPAR);
553 #else
554 	return false;
555 #endif
556 }
557 
558 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
559 
htab_scan_page_sizes(void)560 static void __init htab_scan_page_sizes(void)
561 {
562 	int rc;
563 
564 	/* se the invalid penc to -1 */
565 	mmu_psize_set_default_penc();
566 
567 	/* Default to 4K pages only */
568 	memcpy(mmu_psize_defs, mmu_psize_defaults,
569 	       sizeof(mmu_psize_defaults));
570 
571 	/*
572 	 * Try to find the available page sizes in the device-tree
573 	 */
574 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
575 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
576 		/*
577 		 * Nothing in the device-tree, but the CPU supports 16M pages,
578 		 * so let's fallback on a known size list for 16M capable CPUs.
579 		 */
580 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
581 		       sizeof(mmu_psize_defaults_gp));
582 	}
583 
584 #ifdef CONFIG_HUGETLB_PAGE
585 	if (!hugetlb_disabled) {
586 		/* Reserve 16G huge page memory sections for huge pages */
587 		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
588 	}
589 #endif /* CONFIG_HUGETLB_PAGE */
590 }
591 
592 /*
593  * Fill in the hpte_page_sizes[] array.
594  * We go through the mmu_psize_defs[] array looking for all the
595  * supported base/actual page size combinations.  Each combination
596  * has a unique pagesize encoding (penc) value in the low bits of
597  * the LP field of the HPTE.  For actual page sizes less than 1MB,
598  * some of the upper LP bits are used for RPN bits, meaning that
599  * we need to fill in several entries in hpte_page_sizes[].
600  *
601  * In diagrammatic form, with r = RPN bits and z = page size bits:
602  *        PTE LP     actual page size
603  *    rrrr rrrz		>=8KB
604  *    rrrr rrzz		>=16KB
605  *    rrrr rzzz		>=32KB
606  *    rrrr zzzz		>=64KB
607  *    ...
608  *
609  * The zzzz bits are implementation-specific but are chosen so that
610  * no encoding for a larger page size uses the same value in its
611  * low-order N bits as the encoding for the 2^(12+N) byte page size
612  * (if it exists).
613  */
init_hpte_page_sizes(void)614 static void init_hpte_page_sizes(void)
615 {
616 	long int ap, bp;
617 	long int shift, penc;
618 
619 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
620 		if (!mmu_psize_defs[bp].shift)
621 			continue;	/* not a supported page size */
622 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
623 			penc = mmu_psize_defs[bp].penc[ap];
624 			if (penc == -1 || !mmu_psize_defs[ap].shift)
625 				continue;
626 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
627 			if (shift <= 0)
628 				continue;	/* should never happen */
629 			/*
630 			 * For page sizes less than 1MB, this loop
631 			 * replicates the entry for all possible values
632 			 * of the rrrr bits.
633 			 */
634 			while (penc < (1 << LP_BITS)) {
635 				hpte_page_sizes[penc] = (ap << 4) | bp;
636 				penc += 1 << shift;
637 			}
638 		}
639 	}
640 }
641 
htab_init_page_sizes(void)642 static void __init htab_init_page_sizes(void)
643 {
644 	init_hpte_page_sizes();
645 
646 	if (!debug_pagealloc_enabled()) {
647 		/*
648 		 * Pick a size for the linear mapping. Currently, we only
649 		 * support 16M, 1M and 4K which is the default
650 		 */
651 		if (mmu_psize_defs[MMU_PAGE_16M].shift)
652 			mmu_linear_psize = MMU_PAGE_16M;
653 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
654 			mmu_linear_psize = MMU_PAGE_1M;
655 	}
656 
657 #ifdef CONFIG_PPC_64K_PAGES
658 	/*
659 	 * Pick a size for the ordinary pages. Default is 4K, we support
660 	 * 64K for user mappings and vmalloc if supported by the processor.
661 	 * We only use 64k for ioremap if the processor
662 	 * (and firmware) support cache-inhibited large pages.
663 	 * If not, we use 4k and set mmu_ci_restrictions so that
664 	 * hash_page knows to switch processes that use cache-inhibited
665 	 * mappings to 4k pages.
666 	 */
667 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
668 		mmu_virtual_psize = MMU_PAGE_64K;
669 		mmu_vmalloc_psize = MMU_PAGE_64K;
670 		if (mmu_linear_psize == MMU_PAGE_4K)
671 			mmu_linear_psize = MMU_PAGE_64K;
672 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
673 			/*
674 			 * When running on pSeries using 64k pages for ioremap
675 			 * would stop us accessing the HEA ethernet. So if we
676 			 * have the chance of ever seeing one, stay at 4k.
677 			 */
678 			if (!might_have_hea())
679 				mmu_io_psize = MMU_PAGE_64K;
680 		} else
681 			mmu_ci_restrictions = 1;
682 	}
683 #endif /* CONFIG_PPC_64K_PAGES */
684 
685 #ifdef CONFIG_SPARSEMEM_VMEMMAP
686 	/*
687 	 * We try to use 16M pages for vmemmap if that is supported
688 	 * and we have at least 1G of RAM at boot
689 	 */
690 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
691 	    memblock_phys_mem_size() >= 0x40000000)
692 		mmu_vmemmap_psize = MMU_PAGE_16M;
693 	else
694 		mmu_vmemmap_psize = mmu_virtual_psize;
695 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
696 
697 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
698 	       "virtual = %d, io = %d"
699 #ifdef CONFIG_SPARSEMEM_VMEMMAP
700 	       ", vmemmap = %d"
701 #endif
702 	       "\n",
703 	       mmu_psize_defs[mmu_linear_psize].shift,
704 	       mmu_psize_defs[mmu_virtual_psize].shift,
705 	       mmu_psize_defs[mmu_io_psize].shift
706 #ifdef CONFIG_SPARSEMEM_VMEMMAP
707 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
708 #endif
709 	       );
710 }
711 
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)712 static int __init htab_dt_scan_pftsize(unsigned long node,
713 				       const char *uname, int depth,
714 				       void *data)
715 {
716 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
717 	const __be32 *prop;
718 
719 	/* We are scanning "cpu" nodes only */
720 	if (type == NULL || strcmp(type, "cpu") != 0)
721 		return 0;
722 
723 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
724 	if (prop != NULL) {
725 		/* pft_size[0] is the NUMA CEC cookie */
726 		ppc64_pft_size = be32_to_cpu(prop[1]);
727 		return 1;
728 	}
729 	return 0;
730 }
731 
htab_shift_for_mem_size(unsigned long mem_size)732 unsigned htab_shift_for_mem_size(unsigned long mem_size)
733 {
734 	unsigned memshift = __ilog2(mem_size);
735 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
736 	unsigned pteg_shift;
737 
738 	/* round mem_size up to next power of 2 */
739 	if ((1UL << memshift) < mem_size)
740 		memshift += 1;
741 
742 	/* aim for 2 pages / pteg */
743 	pteg_shift = memshift - (pshift + 1);
744 
745 	/*
746 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
747 	 * size permitted by the architecture.
748 	 */
749 	return max(pteg_shift + 7, 18U);
750 }
751 
htab_get_table_size(void)752 static unsigned long __init htab_get_table_size(void)
753 {
754 	/*
755 	 * If hash size isn't already provided by the platform, we try to
756 	 * retrieve it from the device-tree. If it's not there neither, we
757 	 * calculate it now based on the total RAM size
758 	 */
759 	if (ppc64_pft_size == 0)
760 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
761 	if (ppc64_pft_size)
762 		return 1UL << ppc64_pft_size;
763 
764 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
765 }
766 
767 #ifdef CONFIG_MEMORY_HOTPLUG
resize_hpt_for_hotplug(unsigned long new_mem_size)768 int resize_hpt_for_hotplug(unsigned long new_mem_size)
769 {
770 	unsigned target_hpt_shift;
771 
772 	if (!mmu_hash_ops.resize_hpt)
773 		return 0;
774 
775 	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
776 
777 	/*
778 	 * To avoid lots of HPT resizes if memory size is fluctuating
779 	 * across a boundary, we deliberately have some hysterisis
780 	 * here: we immediately increase the HPT size if the target
781 	 * shift exceeds the current shift, but we won't attempt to
782 	 * reduce unless the target shift is at least 2 below the
783 	 * current shift
784 	 */
785 	if (target_hpt_shift > ppc64_pft_size ||
786 	    target_hpt_shift < ppc64_pft_size - 1)
787 		return mmu_hash_ops.resize_hpt(target_hpt_shift);
788 
789 	return 0;
790 }
791 
hash__create_section_mapping(unsigned long start,unsigned long end,int nid)792 int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
793 {
794 	int rc;
795 
796 	if (end >= H_VMALLOC_START) {
797 		pr_warn("Outside the supported range\n");
798 		return -1;
799 	}
800 
801 	rc = htab_bolt_mapping(start, end, __pa(start),
802 			       pgprot_val(PAGE_KERNEL), mmu_linear_psize,
803 			       mmu_kernel_ssize);
804 
805 	if (rc < 0) {
806 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
807 					      mmu_kernel_ssize);
808 		BUG_ON(rc2 && (rc2 != -ENOENT));
809 	}
810 	return rc;
811 }
812 
hash__remove_section_mapping(unsigned long start,unsigned long end)813 int hash__remove_section_mapping(unsigned long start, unsigned long end)
814 {
815 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
816 				     mmu_kernel_ssize);
817 	WARN_ON(rc < 0);
818 	return rc;
819 }
820 #endif /* CONFIG_MEMORY_HOTPLUG */
821 
hash_init_partition_table(phys_addr_t hash_table,unsigned long htab_size)822 static void __init hash_init_partition_table(phys_addr_t hash_table,
823 					     unsigned long htab_size)
824 {
825 	mmu_partition_table_init();
826 
827 	/*
828 	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
829 	 * For now, UPRT is 0 and we have no segment table.
830 	 */
831 	htab_size =  __ilog2(htab_size) - 18;
832 	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
833 	pr_info("Partition table %p\n", partition_tb);
834 }
835 
htab_initialize(void)836 static void __init htab_initialize(void)
837 {
838 	unsigned long table;
839 	unsigned long pteg_count;
840 	unsigned long prot;
841 	unsigned long base = 0, size = 0;
842 	struct memblock_region *reg;
843 
844 	DBG(" -> htab_initialize()\n");
845 
846 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
847 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
848 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
849 		printk(KERN_INFO "Using 1TB segments\n");
850 	}
851 
852 	/*
853 	 * Calculate the required size of the htab.  We want the number of
854 	 * PTEGs to equal one half the number of real pages.
855 	 */
856 	htab_size_bytes = htab_get_table_size();
857 	pteg_count = htab_size_bytes >> 7;
858 
859 	htab_hash_mask = pteg_count - 1;
860 
861 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
862 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
863 		/* Using a hypervisor which owns the htab */
864 		htab_address = NULL;
865 		_SDR1 = 0;
866 #ifdef CONFIG_FA_DUMP
867 		/*
868 		 * If firmware assisted dump is active firmware preserves
869 		 * the contents of htab along with entire partition memory.
870 		 * Clear the htab if firmware assisted dump is active so
871 		 * that we dont end up using old mappings.
872 		 */
873 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
874 			mmu_hash_ops.hpte_clear_all();
875 #endif
876 	} else {
877 		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
878 
879 #ifdef CONFIG_PPC_CELL
880 		/*
881 		 * Cell may require the hash table down low when using the
882 		 * Axon IOMMU in order to fit the dynamic region over it, see
883 		 * comments in cell/iommu.c
884 		 */
885 		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
886 			limit = 0x80000000;
887 			pr_info("Hash table forced below 2G for Axon IOMMU\n");
888 		}
889 #endif /* CONFIG_PPC_CELL */
890 
891 		table = memblock_phys_alloc_range(htab_size_bytes,
892 						  htab_size_bytes,
893 						  0, limit);
894 		if (!table)
895 			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
896 			      &htab_size_bytes, &limit);
897 
898 		DBG("Hash table allocated at %lx, size: %lx\n", table,
899 		    htab_size_bytes);
900 
901 		htab_address = __va(table);
902 
903 		/* htab absolute addr + encoded htabsize */
904 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
905 
906 		/* Initialize the HPT with no entries */
907 		memset((void *)table, 0, htab_size_bytes);
908 
909 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
910 			/* Set SDR1 */
911 			mtspr(SPRN_SDR1, _SDR1);
912 		else
913 			hash_init_partition_table(table, htab_size_bytes);
914 	}
915 
916 	prot = pgprot_val(PAGE_KERNEL);
917 
918 #ifdef CONFIG_DEBUG_PAGEALLOC
919 	if (debug_pagealloc_enabled()) {
920 		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
921 		linear_map_hash_slots = memblock_alloc_try_nid(
922 				linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
923 				ppc64_rma_size,	NUMA_NO_NODE);
924 		if (!linear_map_hash_slots)
925 			panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
926 			      __func__, linear_map_hash_count, &ppc64_rma_size);
927 	}
928 #endif /* CONFIG_DEBUG_PAGEALLOC */
929 
930 	/* create bolted the linear mapping in the hash table */
931 	for_each_memblock(memory, reg) {
932 		base = (unsigned long)__va(reg->base);
933 		size = reg->size;
934 
935 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
936 		    base, size, prot);
937 
938 		if ((base + size) >= H_VMALLOC_START) {
939 			pr_warn("Outside the supported range\n");
940 			continue;
941 		}
942 
943 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
944 				prot, mmu_linear_psize, mmu_kernel_ssize));
945 	}
946 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
947 
948 	/*
949 	 * If we have a memory_limit and we've allocated TCEs then we need to
950 	 * explicitly map the TCE area at the top of RAM. We also cope with the
951 	 * case that the TCEs start below memory_limit.
952 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
953 	 * for either 4K or 16MB pages.
954 	 */
955 	if (tce_alloc_start) {
956 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
957 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
958 
959 		if (base + size >= tce_alloc_start)
960 			tce_alloc_start = base + size + 1;
961 
962 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
963 					 __pa(tce_alloc_start), prot,
964 					 mmu_linear_psize, mmu_kernel_ssize));
965 	}
966 
967 
968 	DBG(" <- htab_initialize()\n");
969 }
970 #undef KB
971 #undef MB
972 
hash__early_init_devtree(void)973 void __init hash__early_init_devtree(void)
974 {
975 	/* Initialize segment sizes */
976 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
977 
978 	/* Initialize page sizes */
979 	htab_scan_page_sizes();
980 }
981 
982 static struct hash_mm_context init_hash_mm_context;
hash__early_init_mmu(void)983 void __init hash__early_init_mmu(void)
984 {
985 #ifndef CONFIG_PPC_64K_PAGES
986 	/*
987 	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
988 	 * do the following:
989 	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
990 	 *
991 	 * Where the slot number is between 0-15, and values of 8-15 indicate
992 	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
993 	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
994 	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
995 	 * with a BUILD_BUG_ON().
996 	 */
997 	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
998 #endif /* CONFIG_PPC_64K_PAGES */
999 
1000 	htab_init_page_sizes();
1001 
1002 	/*
1003 	 * initialize page table size
1004 	 */
1005 	__pte_frag_nr = H_PTE_FRAG_NR;
1006 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1007 	__pmd_frag_nr = H_PMD_FRAG_NR;
1008 	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1009 
1010 	__pte_index_size = H_PTE_INDEX_SIZE;
1011 	__pmd_index_size = H_PMD_INDEX_SIZE;
1012 	__pud_index_size = H_PUD_INDEX_SIZE;
1013 	__pgd_index_size = H_PGD_INDEX_SIZE;
1014 	__pud_cache_index = H_PUD_CACHE_INDEX;
1015 	__pte_table_size = H_PTE_TABLE_SIZE;
1016 	__pmd_table_size = H_PMD_TABLE_SIZE;
1017 	__pud_table_size = H_PUD_TABLE_SIZE;
1018 	__pgd_table_size = H_PGD_TABLE_SIZE;
1019 	/*
1020 	 * 4k use hugepd format, so for hash set then to
1021 	 * zero
1022 	 */
1023 	__pmd_val_bits = HASH_PMD_VAL_BITS;
1024 	__pud_val_bits = HASH_PUD_VAL_BITS;
1025 	__pgd_val_bits = HASH_PGD_VAL_BITS;
1026 
1027 	__kernel_virt_start = H_KERN_VIRT_START;
1028 	__vmalloc_start = H_VMALLOC_START;
1029 	__vmalloc_end = H_VMALLOC_END;
1030 	__kernel_io_start = H_KERN_IO_START;
1031 	__kernel_io_end = H_KERN_IO_END;
1032 	vmemmap = (struct page *)H_VMEMMAP_START;
1033 	ioremap_bot = IOREMAP_BASE;
1034 
1035 #ifdef CONFIG_PCI
1036 	pci_io_base = ISA_IO_BASE;
1037 #endif
1038 
1039 	/* Select appropriate backend */
1040 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1041 		ps3_early_mm_init();
1042 	else if (firmware_has_feature(FW_FEATURE_LPAR))
1043 		hpte_init_pseries();
1044 	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1045 		hpte_init_native();
1046 
1047 	if (!mmu_hash_ops.hpte_insert)
1048 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1049 
1050 	/*
1051 	 * Initialize the MMU Hash table and create the linear mapping
1052 	 * of memory. Has to be done before SLB initialization as this is
1053 	 * currently where the page size encoding is obtained.
1054 	 */
1055 	htab_initialize();
1056 
1057 	init_mm.context.hash_context = &init_hash_mm_context;
1058 	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1059 
1060 	pr_info("Initializing hash mmu with SLB\n");
1061 	/* Initialize SLB management */
1062 	slb_initialize();
1063 
1064 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1065 			&& cpu_has_feature(CPU_FTR_HVMODE))
1066 		tlbiel_all();
1067 }
1068 
1069 #ifdef CONFIG_SMP
hash__early_init_mmu_secondary(void)1070 void hash__early_init_mmu_secondary(void)
1071 {
1072 	/* Initialize hash table for that CPU */
1073 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1074 
1075 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1076 			mtspr(SPRN_SDR1, _SDR1);
1077 		else
1078 			set_ptcr_when_no_uv(__pa(partition_tb) |
1079 					    (PATB_SIZE_SHIFT - 12));
1080 	}
1081 	/* Initialize SLB */
1082 	slb_initialize();
1083 
1084 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1085 			&& cpu_has_feature(CPU_FTR_HVMODE))
1086 		tlbiel_all();
1087 }
1088 #endif /* CONFIG_SMP */
1089 
1090 /*
1091  * Called by asm hashtable.S for doing lazy icache flush
1092  */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)1093 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1094 {
1095 	struct page *page;
1096 
1097 	if (!pfn_valid(pte_pfn(pte)))
1098 		return pp;
1099 
1100 	page = pte_page(pte);
1101 
1102 	/* page is dirty */
1103 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1104 		if (trap == 0x400) {
1105 			flush_dcache_icache_page(page);
1106 			set_bit(PG_arch_1, &page->flags);
1107 		} else
1108 			pp |= HPTE_R_N;
1109 	}
1110 	return pp;
1111 }
1112 
1113 #ifdef CONFIG_PPC_MM_SLICES
get_paca_psize(unsigned long addr)1114 static unsigned int get_paca_psize(unsigned long addr)
1115 {
1116 	unsigned char *psizes;
1117 	unsigned long index, mask_index;
1118 
1119 	if (addr < SLICE_LOW_TOP) {
1120 		psizes = get_paca()->mm_ctx_low_slices_psize;
1121 		index = GET_LOW_SLICE_INDEX(addr);
1122 	} else {
1123 		psizes = get_paca()->mm_ctx_high_slices_psize;
1124 		index = GET_HIGH_SLICE_INDEX(addr);
1125 	}
1126 	mask_index = index & 0x1;
1127 	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1128 }
1129 
1130 #else
get_paca_psize(unsigned long addr)1131 unsigned int get_paca_psize(unsigned long addr)
1132 {
1133 	return get_paca()->mm_ctx_user_psize;
1134 }
1135 #endif
1136 
1137 /*
1138  * Demote a segment to using 4k pages.
1139  * For now this makes the whole process use 4k pages.
1140  */
1141 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)1142 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1143 {
1144 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1145 		return;
1146 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1147 	copro_flush_all_slbs(mm);
1148 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1149 
1150 		copy_mm_to_paca(mm);
1151 		slb_flush_and_restore_bolted();
1152 	}
1153 }
1154 #endif /* CONFIG_PPC_64K_PAGES */
1155 
1156 #ifdef CONFIG_PPC_SUBPAGE_PROT
1157 /*
1158  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1159  * Userspace sets the subpage permissions using the subpage_prot system call.
1160  *
1161  * Result is 0: full permissions, _PAGE_RW: read-only,
1162  * _PAGE_RWX: no access.
1163  */
subpage_protection(struct mm_struct * mm,unsigned long ea)1164 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1165 {
1166 	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1167 	u32 spp = 0;
1168 	u32 **sbpm, *sbpp;
1169 
1170 	if (!spt)
1171 		return 0;
1172 
1173 	if (ea >= spt->maxaddr)
1174 		return 0;
1175 	if (ea < 0x100000000UL) {
1176 		/* addresses below 4GB use spt->low_prot */
1177 		sbpm = spt->low_prot;
1178 	} else {
1179 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1180 		if (!sbpm)
1181 			return 0;
1182 	}
1183 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1184 	if (!sbpp)
1185 		return 0;
1186 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1187 
1188 	/* extract 2-bit bitfield for this 4k subpage */
1189 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1190 
1191 	/*
1192 	 * 0 -> full premission
1193 	 * 1 -> Read only
1194 	 * 2 -> no access.
1195 	 * We return the flag that need to be cleared.
1196 	 */
1197 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1198 	return spp;
1199 }
1200 
1201 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)1202 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1203 {
1204 	return 0;
1205 }
1206 #endif
1207 
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,int lpsize,unsigned long pte)1208 void hash_failure_debug(unsigned long ea, unsigned long access,
1209 			unsigned long vsid, unsigned long trap,
1210 			int ssize, int psize, int lpsize, unsigned long pte)
1211 {
1212 	if (!printk_ratelimit())
1213 		return;
1214 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1215 		ea, access, current->comm);
1216 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1217 		trap, vsid, ssize, psize, lpsize, pte);
1218 }
1219 
check_paca_psize(unsigned long ea,struct mm_struct * mm,int psize,bool user_region)1220 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1221 			     int psize, bool user_region)
1222 {
1223 	if (user_region) {
1224 		if (psize != get_paca_psize(ea)) {
1225 			copy_mm_to_paca(mm);
1226 			slb_flush_and_restore_bolted();
1227 		}
1228 	} else if (get_paca()->vmalloc_sllp !=
1229 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1230 		get_paca()->vmalloc_sllp =
1231 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1232 		slb_vmalloc_update();
1233 	}
1234 }
1235 
1236 /*
1237  * Result code is:
1238  *  0 - handled
1239  *  1 - normal page fault
1240  * -1 - critical hash insertion error
1241  * -2 - access not permitted by subpage protection mechanism
1242  */
hash_page_mm(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap,unsigned long flags)1243 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1244 		 unsigned long access, unsigned long trap,
1245 		 unsigned long flags)
1246 {
1247 	bool is_thp;
1248 	enum ctx_state prev_state = exception_enter();
1249 	pgd_t *pgdir;
1250 	unsigned long vsid;
1251 	pte_t *ptep;
1252 	unsigned hugeshift;
1253 	int rc, user_region = 0;
1254 	int psize, ssize;
1255 
1256 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1257 		ea, access, trap);
1258 	trace_hash_fault(ea, access, trap);
1259 
1260 	/* Get region & vsid */
1261 	switch (get_region_id(ea)) {
1262 	case USER_REGION_ID:
1263 		user_region = 1;
1264 		if (! mm) {
1265 			DBG_LOW(" user region with no mm !\n");
1266 			rc = 1;
1267 			goto bail;
1268 		}
1269 		psize = get_slice_psize(mm, ea);
1270 		ssize = user_segment_size(ea);
1271 		vsid = get_user_vsid(&mm->context, ea, ssize);
1272 		break;
1273 	case VMALLOC_REGION_ID:
1274 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1275 		psize = mmu_vmalloc_psize;
1276 		ssize = mmu_kernel_ssize;
1277 		break;
1278 
1279 	case IO_REGION_ID:
1280 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1281 		psize = mmu_io_psize;
1282 		ssize = mmu_kernel_ssize;
1283 		break;
1284 	default:
1285 		/*
1286 		 * Not a valid range
1287 		 * Send the problem up to do_page_fault()
1288 		 */
1289 		rc = 1;
1290 		goto bail;
1291 	}
1292 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1293 
1294 	/* Bad address. */
1295 	if (!vsid) {
1296 		DBG_LOW("Bad address!\n");
1297 		rc = 1;
1298 		goto bail;
1299 	}
1300 	/* Get pgdir */
1301 	pgdir = mm->pgd;
1302 	if (pgdir == NULL) {
1303 		rc = 1;
1304 		goto bail;
1305 	}
1306 
1307 	/* Check CPU locality */
1308 	if (user_region && mm_is_thread_local(mm))
1309 		flags |= HPTE_LOCAL_UPDATE;
1310 
1311 #ifndef CONFIG_PPC_64K_PAGES
1312 	/*
1313 	 * If we use 4K pages and our psize is not 4K, then we might
1314 	 * be hitting a special driver mapping, and need to align the
1315 	 * address before we fetch the PTE.
1316 	 *
1317 	 * It could also be a hugepage mapping, in which case this is
1318 	 * not necessary, but it's not harmful, either.
1319 	 */
1320 	if (psize != MMU_PAGE_4K)
1321 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1322 #endif /* CONFIG_PPC_64K_PAGES */
1323 
1324 	/* Get PTE and page size from page tables */
1325 	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1326 	if (ptep == NULL || !pte_present(*ptep)) {
1327 		DBG_LOW(" no PTE !\n");
1328 		rc = 1;
1329 		goto bail;
1330 	}
1331 
1332 	/* Add _PAGE_PRESENT to the required access perm */
1333 	access |= _PAGE_PRESENT;
1334 
1335 	/*
1336 	 * Pre-check access permissions (will be re-checked atomically
1337 	 * in __hash_page_XX but this pre-check is a fast path
1338 	 */
1339 	if (!check_pte_access(access, pte_val(*ptep))) {
1340 		DBG_LOW(" no access !\n");
1341 		rc = 1;
1342 		goto bail;
1343 	}
1344 
1345 	if (hugeshift) {
1346 		if (is_thp)
1347 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1348 					     trap, flags, ssize, psize);
1349 #ifdef CONFIG_HUGETLB_PAGE
1350 		else
1351 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1352 					      flags, ssize, hugeshift, psize);
1353 #else
1354 		else {
1355 			/*
1356 			 * if we have hugeshift, and is not transhuge with
1357 			 * hugetlb disabled, something is really wrong.
1358 			 */
1359 			rc = 1;
1360 			WARN_ON(1);
1361 		}
1362 #endif
1363 		if (current->mm == mm)
1364 			check_paca_psize(ea, mm, psize, user_region);
1365 
1366 		goto bail;
1367 	}
1368 
1369 #ifndef CONFIG_PPC_64K_PAGES
1370 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1371 #else
1372 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1373 		pte_val(*(ptep + PTRS_PER_PTE)));
1374 #endif
1375 	/* Do actual hashing */
1376 #ifdef CONFIG_PPC_64K_PAGES
1377 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1378 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1379 		demote_segment_4k(mm, ea);
1380 		psize = MMU_PAGE_4K;
1381 	}
1382 
1383 	/*
1384 	 * If this PTE is non-cacheable and we have restrictions on
1385 	 * using non cacheable large pages, then we switch to 4k
1386 	 */
1387 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1388 		if (user_region) {
1389 			demote_segment_4k(mm, ea);
1390 			psize = MMU_PAGE_4K;
1391 		} else if (ea < VMALLOC_END) {
1392 			/*
1393 			 * some driver did a non-cacheable mapping
1394 			 * in vmalloc space, so switch vmalloc
1395 			 * to 4k pages
1396 			 */
1397 			printk(KERN_ALERT "Reducing vmalloc segment "
1398 			       "to 4kB pages because of "
1399 			       "non-cacheable mapping\n");
1400 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1401 			copro_flush_all_slbs(mm);
1402 		}
1403 	}
1404 
1405 #endif /* CONFIG_PPC_64K_PAGES */
1406 
1407 	if (current->mm == mm)
1408 		check_paca_psize(ea, mm, psize, user_region);
1409 
1410 #ifdef CONFIG_PPC_64K_PAGES
1411 	if (psize == MMU_PAGE_64K)
1412 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1413 				     flags, ssize);
1414 	else
1415 #endif /* CONFIG_PPC_64K_PAGES */
1416 	{
1417 		int spp = subpage_protection(mm, ea);
1418 		if (access & spp)
1419 			rc = -2;
1420 		else
1421 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1422 					    flags, ssize, spp);
1423 	}
1424 
1425 	/*
1426 	 * Dump some info in case of hash insertion failure, they should
1427 	 * never happen so it is really useful to know if/when they do
1428 	 */
1429 	if (rc == -1)
1430 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1431 				   psize, pte_val(*ptep));
1432 #ifndef CONFIG_PPC_64K_PAGES
1433 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1434 #else
1435 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1436 		pte_val(*(ptep + PTRS_PER_PTE)));
1437 #endif
1438 	DBG_LOW(" -> rc=%d\n", rc);
1439 
1440 bail:
1441 	exception_exit(prev_state);
1442 	return rc;
1443 }
1444 EXPORT_SYMBOL_GPL(hash_page_mm);
1445 
hash_page(unsigned long ea,unsigned long access,unsigned long trap,unsigned long dsisr)1446 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1447 	      unsigned long dsisr)
1448 {
1449 	unsigned long flags = 0;
1450 	struct mm_struct *mm = current->mm;
1451 
1452 	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1453 	    (get_region_id(ea) == IO_REGION_ID))
1454 		mm = &init_mm;
1455 
1456 	if (dsisr & DSISR_NOHPTE)
1457 		flags |= HPTE_NOHPTE_UPDATE;
1458 
1459 	return hash_page_mm(mm, ea, access, trap, flags);
1460 }
1461 EXPORT_SYMBOL_GPL(hash_page);
1462 
__hash_page(unsigned long trap,unsigned long ea,unsigned long dsisr,unsigned long msr)1463 int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr,
1464 		unsigned long msr)
1465 {
1466 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1467 	unsigned long flags = 0;
1468 	struct mm_struct *mm = current->mm;
1469 	unsigned int region_id = get_region_id(ea);
1470 
1471 	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1472 		mm = &init_mm;
1473 
1474 	if (dsisr & DSISR_NOHPTE)
1475 		flags |= HPTE_NOHPTE_UPDATE;
1476 
1477 	if (dsisr & DSISR_ISSTORE)
1478 		access |= _PAGE_WRITE;
1479 	/*
1480 	 * We set _PAGE_PRIVILEGED only when
1481 	 * kernel mode access kernel space.
1482 	 *
1483 	 * _PAGE_PRIVILEGED is NOT set
1484 	 * 1) when kernel mode access user space
1485 	 * 2) user space access kernel space.
1486 	 */
1487 	access |= _PAGE_PRIVILEGED;
1488 	if ((msr & MSR_PR) || (region_id == USER_REGION_ID))
1489 		access &= ~_PAGE_PRIVILEGED;
1490 
1491 	if (trap == 0x400)
1492 		access |= _PAGE_EXEC;
1493 
1494 	return hash_page_mm(mm, ea, access, trap, flags);
1495 }
1496 
1497 #ifdef CONFIG_PPC_MM_SLICES
should_hash_preload(struct mm_struct * mm,unsigned long ea)1498 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1499 {
1500 	int psize = get_slice_psize(mm, ea);
1501 
1502 	/* We only prefault standard pages for now */
1503 	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1504 		return false;
1505 
1506 	/*
1507 	 * Don't prefault if subpage protection is enabled for the EA.
1508 	 */
1509 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1510 		return false;
1511 
1512 	return true;
1513 }
1514 #else
should_hash_preload(struct mm_struct * mm,unsigned long ea)1515 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1516 {
1517 	return true;
1518 }
1519 #endif
1520 
hash_preload(struct mm_struct * mm,unsigned long ea,bool is_exec,unsigned long trap)1521 static void hash_preload(struct mm_struct *mm, unsigned long ea,
1522 			 bool is_exec, unsigned long trap)
1523 {
1524 	int hugepage_shift;
1525 	unsigned long vsid;
1526 	pgd_t *pgdir;
1527 	pte_t *ptep;
1528 	unsigned long flags;
1529 	int rc, ssize, update_flags = 0;
1530 	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1531 
1532 	BUG_ON(get_region_id(ea) != USER_REGION_ID);
1533 
1534 	if (!should_hash_preload(mm, ea))
1535 		return;
1536 
1537 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1538 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1539 
1540 	/* Get Linux PTE if available */
1541 	pgdir = mm->pgd;
1542 	if (pgdir == NULL)
1543 		return;
1544 
1545 	/* Get VSID */
1546 	ssize = user_segment_size(ea);
1547 	vsid = get_user_vsid(&mm->context, ea, ssize);
1548 	if (!vsid)
1549 		return;
1550 	/*
1551 	 * Hash doesn't like irqs. Walking linux page table with irq disabled
1552 	 * saves us from holding multiple locks.
1553 	 */
1554 	local_irq_save(flags);
1555 
1556 	/*
1557 	 * THP pages use update_mmu_cache_pmd. We don't do
1558 	 * hash preload there. Hence can ignore THP here
1559 	 */
1560 	ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1561 	if (!ptep)
1562 		goto out_exit;
1563 
1564 	WARN_ON(hugepage_shift);
1565 #ifdef CONFIG_PPC_64K_PAGES
1566 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1567 	 * a 64K kernel), then we don't preload, hash_page() will take
1568 	 * care of it once we actually try to access the page.
1569 	 * That way we don't have to duplicate all of the logic for segment
1570 	 * page size demotion here
1571 	 */
1572 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1573 		goto out_exit;
1574 #endif /* CONFIG_PPC_64K_PAGES */
1575 
1576 	/* Is that local to this CPU ? */
1577 	if (mm_is_thread_local(mm))
1578 		update_flags |= HPTE_LOCAL_UPDATE;
1579 
1580 	/* Hash it in */
1581 #ifdef CONFIG_PPC_64K_PAGES
1582 	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1583 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1584 				     update_flags, ssize);
1585 	else
1586 #endif /* CONFIG_PPC_64K_PAGES */
1587 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1588 				    ssize, subpage_protection(mm, ea));
1589 
1590 	/* Dump some info in case of hash insertion failure, they should
1591 	 * never happen so it is really useful to know if/when they do
1592 	 */
1593 	if (rc == -1)
1594 		hash_failure_debug(ea, access, vsid, trap, ssize,
1595 				   mm_ctx_user_psize(&mm->context),
1596 				   mm_ctx_user_psize(&mm->context),
1597 				   pte_val(*ptep));
1598 out_exit:
1599 	local_irq_restore(flags);
1600 }
1601 
1602 /*
1603  * This is called at the end of handling a user page fault, when the
1604  * fault has been handled by updating a PTE in the linux page tables.
1605  * We use it to preload an HPTE into the hash table corresponding to
1606  * the updated linux PTE.
1607  *
1608  * This must always be called with the pte lock held.
1609  */
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1610 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1611 		      pte_t *ptep)
1612 {
1613 	/*
1614 	 * We don't need to worry about _PAGE_PRESENT here because we are
1615 	 * called with either mm->page_table_lock held or ptl lock held
1616 	 */
1617 	unsigned long trap;
1618 	bool is_exec;
1619 
1620 	if (radix_enabled()) {
1621 		prefetch((void *)address);
1622 		return;
1623 	}
1624 
1625 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1626 	if (!pte_young(*ptep) || address >= TASK_SIZE)
1627 		return;
1628 
1629 	/*
1630 	 * We try to figure out if we are coming from an instruction
1631 	 * access fault and pass that down to __hash_page so we avoid
1632 	 * double-faulting on execution of fresh text. We have to test
1633 	 * for regs NULL since init will get here first thing at boot.
1634 	 *
1635 	 * We also avoid filling the hash if not coming from a fault.
1636 	 */
1637 
1638 	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1639 	switch (trap) {
1640 	case 0x300:
1641 		is_exec = false;
1642 		break;
1643 	case 0x400:
1644 		is_exec = true;
1645 		break;
1646 	default:
1647 		return;
1648 	}
1649 
1650 	hash_preload(vma->vm_mm, address, is_exec, trap);
1651 }
1652 
1653 #ifdef CONFIG_PPC_MEM_KEYS
1654 /*
1655  * Return the protection key associated with the given address and the
1656  * mm_struct.
1657  */
get_mm_addr_key(struct mm_struct * mm,unsigned long address)1658 u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1659 {
1660 	pte_t *ptep;
1661 	u16 pkey = 0;
1662 	unsigned long flags;
1663 
1664 	if (!mm || !mm->pgd)
1665 		return 0;
1666 
1667 	local_irq_save(flags);
1668 	ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1669 	if (ptep)
1670 		pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1671 	local_irq_restore(flags);
1672 
1673 	return pkey;
1674 }
1675 #endif /* CONFIG_PPC_MEM_KEYS */
1676 
1677 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_flush_hash_page(int local)1678 static inline void tm_flush_hash_page(int local)
1679 {
1680 	/*
1681 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1682 	 * page back to a block device w/PIO could pick up transactional data
1683 	 * (bad!) so we force an abort here. Before the sync the page will be
1684 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1685 	 * kernel uses a page from userspace without unmapping it first, it may
1686 	 * see the speculated version.
1687 	 */
1688 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1689 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1690 		tm_enable();
1691 		tm_abort(TM_CAUSE_TLBI);
1692 	}
1693 }
1694 #else
tm_flush_hash_page(int local)1695 static inline void tm_flush_hash_page(int local)
1696 {
1697 }
1698 #endif
1699 
1700 /*
1701  * Return the global hash slot, corresponding to the given PTE, which contains
1702  * the HPTE.
1703  */
pte_get_hash_gslot(unsigned long vpn,unsigned long shift,int ssize,real_pte_t rpte,unsigned int subpg_index)1704 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1705 		int ssize, real_pte_t rpte, unsigned int subpg_index)
1706 {
1707 	unsigned long hash, gslot, hidx;
1708 
1709 	hash = hpt_hash(vpn, shift, ssize);
1710 	hidx = __rpte_to_hidx(rpte, subpg_index);
1711 	if (hidx & _PTEIDX_SECONDARY)
1712 		hash = ~hash;
1713 	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1714 	gslot += hidx & _PTEIDX_GROUP_IX;
1715 	return gslot;
1716 }
1717 
1718 /*
1719  * WARNING: This is called from hash_low_64.S, if you change this prototype,
1720  *          do not forget to update the assembly call site !
1721  */
flush_hash_page(unsigned long vpn,real_pte_t pte,int psize,int ssize,unsigned long flags)1722 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1723 		     unsigned long flags)
1724 {
1725 	unsigned long index, shift, gslot;
1726 	int local = flags & HPTE_LOCAL_UPDATE;
1727 
1728 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1729 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1730 		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1731 		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1732 		/*
1733 		 * We use same base page size and actual psize, because we don't
1734 		 * use these functions for hugepage
1735 		 */
1736 		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1737 					     ssize, local);
1738 	} pte_iterate_hashed_end();
1739 
1740 	tm_flush_hash_page(local);
1741 }
1742 
1743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
flush_hash_hugepage(unsigned long vsid,unsigned long addr,pmd_t * pmdp,unsigned int psize,int ssize,unsigned long flags)1744 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1745 			 pmd_t *pmdp, unsigned int psize, int ssize,
1746 			 unsigned long flags)
1747 {
1748 	int i, max_hpte_count, valid;
1749 	unsigned long s_addr;
1750 	unsigned char *hpte_slot_array;
1751 	unsigned long hidx, shift, vpn, hash, slot;
1752 	int local = flags & HPTE_LOCAL_UPDATE;
1753 
1754 	s_addr = addr & HPAGE_PMD_MASK;
1755 	hpte_slot_array = get_hpte_slot_array(pmdp);
1756 	/*
1757 	 * IF we try to do a HUGE PTE update after a withdraw is done.
1758 	 * we will find the below NULL. This happens when we do
1759 	 * split_huge_pmd
1760 	 */
1761 	if (!hpte_slot_array)
1762 		return;
1763 
1764 	if (mmu_hash_ops.hugepage_invalidate) {
1765 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1766 						 psize, ssize, local);
1767 		goto tm_abort;
1768 	}
1769 	/*
1770 	 * No bluk hpte removal support, invalidate each entry
1771 	 */
1772 	shift = mmu_psize_defs[psize].shift;
1773 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1774 	for (i = 0; i < max_hpte_count; i++) {
1775 		/*
1776 		 * 8 bits per each hpte entries
1777 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1778 		 */
1779 		valid = hpte_valid(hpte_slot_array, i);
1780 		if (!valid)
1781 			continue;
1782 		hidx =  hpte_hash_index(hpte_slot_array, i);
1783 
1784 		/* get the vpn */
1785 		addr = s_addr + (i * (1ul << shift));
1786 		vpn = hpt_vpn(addr, vsid, ssize);
1787 		hash = hpt_hash(vpn, shift, ssize);
1788 		if (hidx & _PTEIDX_SECONDARY)
1789 			hash = ~hash;
1790 
1791 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1792 		slot += hidx & _PTEIDX_GROUP_IX;
1793 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1794 					     MMU_PAGE_16M, ssize, local);
1795 	}
1796 tm_abort:
1797 	tm_flush_hash_page(local);
1798 }
1799 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1800 
flush_hash_range(unsigned long number,int local)1801 void flush_hash_range(unsigned long number, int local)
1802 {
1803 	if (mmu_hash_ops.flush_hash_range)
1804 		mmu_hash_ops.flush_hash_range(number, local);
1805 	else {
1806 		int i;
1807 		struct ppc64_tlb_batch *batch =
1808 			this_cpu_ptr(&ppc64_tlb_batch);
1809 
1810 		for (i = 0; i < number; i++)
1811 			flush_hash_page(batch->vpn[i], batch->pte[i],
1812 					batch->psize, batch->ssize, local);
1813 	}
1814 }
1815 
1816 /*
1817  * low_hash_fault is called when we the low level hash code failed
1818  * to instert a PTE due to an hypervisor error
1819  */
low_hash_fault(struct pt_regs * regs,unsigned long address,int rc)1820 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1821 {
1822 	enum ctx_state prev_state = exception_enter();
1823 
1824 	if (user_mode(regs)) {
1825 #ifdef CONFIG_PPC_SUBPAGE_PROT
1826 		if (rc == -2)
1827 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1828 		else
1829 #endif
1830 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1831 	} else
1832 		bad_page_fault(regs, address, SIGBUS);
1833 
1834 	exception_exit(prev_state);
1835 }
1836 
hpte_insert_repeating(unsigned long hash,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int ssize)1837 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1838 			   unsigned long pa, unsigned long rflags,
1839 			   unsigned long vflags, int psize, int ssize)
1840 {
1841 	unsigned long hpte_group;
1842 	long slot;
1843 
1844 repeat:
1845 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1846 
1847 	/* Insert into the hash table, primary slot */
1848 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1849 					psize, psize, ssize);
1850 
1851 	/* Primary is full, try the secondary */
1852 	if (unlikely(slot == -1)) {
1853 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1854 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1855 						vflags | HPTE_V_SECONDARY,
1856 						psize, psize, ssize);
1857 		if (slot == -1) {
1858 			if (mftb() & 0x1)
1859 				hpte_group = (hash & htab_hash_mask) *
1860 						HPTES_PER_GROUP;
1861 
1862 			mmu_hash_ops.hpte_remove(hpte_group);
1863 			goto repeat;
1864 		}
1865 	}
1866 
1867 	return slot;
1868 }
1869 
1870 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)1871 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1872 {
1873 	unsigned long hash;
1874 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1875 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1876 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1877 	long ret;
1878 
1879 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1880 
1881 	/* Don't create HPTE entries for bad address */
1882 	if (!vsid)
1883 		return;
1884 
1885 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1886 				    HPTE_V_BOLTED,
1887 				    mmu_linear_psize, mmu_kernel_ssize);
1888 
1889 	BUG_ON (ret < 0);
1890 	spin_lock(&linear_map_hash_lock);
1891 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1892 	linear_map_hash_slots[lmi] = ret | 0x80;
1893 	spin_unlock(&linear_map_hash_lock);
1894 }
1895 
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)1896 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1897 {
1898 	unsigned long hash, hidx, slot;
1899 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1900 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1901 
1902 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1903 	spin_lock(&linear_map_hash_lock);
1904 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1905 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1906 	linear_map_hash_slots[lmi] = 0;
1907 	spin_unlock(&linear_map_hash_lock);
1908 	if (hidx & _PTEIDX_SECONDARY)
1909 		hash = ~hash;
1910 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1911 	slot += hidx & _PTEIDX_GROUP_IX;
1912 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1913 				     mmu_linear_psize,
1914 				     mmu_kernel_ssize, 0);
1915 }
1916 
__kernel_map_pages(struct page * page,int numpages,int enable)1917 void __kernel_map_pages(struct page *page, int numpages, int enable)
1918 {
1919 	unsigned long flags, vaddr, lmi;
1920 	int i;
1921 
1922 	local_irq_save(flags);
1923 	for (i = 0; i < numpages; i++, page++) {
1924 		vaddr = (unsigned long)page_address(page);
1925 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1926 		if (lmi >= linear_map_hash_count)
1927 			continue;
1928 		if (enable)
1929 			kernel_map_linear_page(vaddr, lmi);
1930 		else
1931 			kernel_unmap_linear_page(vaddr, lmi);
1932 	}
1933 	local_irq_restore(flags);
1934 }
1935 #endif /* CONFIG_DEBUG_PAGEALLOC */
1936 
hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)1937 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1938 				phys_addr_t first_memblock_size)
1939 {
1940 	/*
1941 	 * We don't currently support the first MEMBLOCK not mapping 0
1942 	 * physical on those processors
1943 	 */
1944 	BUG_ON(first_memblock_base != 0);
1945 
1946 	/*
1947 	 * On virtualized systems the first entry is our RMA region aka VRMA,
1948 	 * non-virtualized 64-bit hash MMU systems don't have a limitation
1949 	 * on real mode access.
1950 	 *
1951 	 * For guests on platforms before POWER9, we clamp the it limit to 1G
1952 	 * to avoid some funky things such as RTAS bugs etc...
1953 	 *
1954 	 * On POWER9 we limit to 1TB in case the host erroneously told us that
1955 	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
1956 	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
1957 	 * for virtual real mode addressing and so it doesn't make sense to
1958 	 * have an area larger than 1TB as it can't be addressed.
1959 	 */
1960 	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1961 		ppc64_rma_size = first_memblock_size;
1962 		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1963 			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1964 		else
1965 			ppc64_rma_size = min_t(u64, ppc64_rma_size,
1966 					       1UL << SID_SHIFT_1T);
1967 
1968 		/* Finally limit subsequent allocations */
1969 		memblock_set_current_limit(ppc64_rma_size);
1970 	} else {
1971 		ppc64_rma_size = ULONG_MAX;
1972 	}
1973 }
1974 
1975 #ifdef CONFIG_DEBUG_FS
1976 
hpt_order_get(void * data,u64 * val)1977 static int hpt_order_get(void *data, u64 *val)
1978 {
1979 	*val = ppc64_pft_size;
1980 	return 0;
1981 }
1982 
hpt_order_set(void * data,u64 val)1983 static int hpt_order_set(void *data, u64 val)
1984 {
1985 	int ret;
1986 
1987 	if (!mmu_hash_ops.resize_hpt)
1988 		return -ENODEV;
1989 
1990 	cpus_read_lock();
1991 	ret = mmu_hash_ops.resize_hpt(val);
1992 	cpus_read_unlock();
1993 
1994 	return ret;
1995 }
1996 
1997 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1998 
hash64_debugfs(void)1999 static int __init hash64_debugfs(void)
2000 {
2001 	if (!debugfs_create_file_unsafe("hpt_order", 0600, powerpc_debugfs_root,
2002 					NULL, &fops_hpt_order)) {
2003 		pr_err("lpar: unable to create hpt_order debugsfs file\n");
2004 	}
2005 
2006 	return 0;
2007 }
2008 machine_device_initcall(pseries, hash64_debugfs);
2009 #endif /* CONFIG_DEBUG_FS */
2010 
print_system_hash_info(void)2011 void __init print_system_hash_info(void)
2012 {
2013 	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2014 
2015 	if (htab_hash_mask)
2016 		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2017 }
2018