1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43
44 #include "perf_event.h"
45
46 struct x86_pmu x86_pmu __read_mostly;
47
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 .enabled = 1,
50 };
51
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
53
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX]
60 [PERF_COUNT_HW_CACHE_OP_MAX]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX];
62
63 /*
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
67 */
x86_perf_event_update(struct perf_event * event)68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70 struct hw_perf_event *hwc = &event->hw;
71 int shift = 64 - x86_pmu.cntval_bits;
72 u64 prev_raw_count, new_raw_count;
73 int idx = hwc->idx;
74 u64 delta;
75
76 if (idx == INTEL_PMC_IDX_FIXED_BTS)
77 return 0;
78
79 /*
80 * Careful: an NMI might modify the previous event value.
81 *
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
85 */
86 again:
87 prev_raw_count = local64_read(&hwc->prev_count);
88 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89
90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 new_raw_count) != prev_raw_count)
92 goto again;
93
94 /*
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
98 *
99 * Careful, not all hw sign-extends above the physical width
100 * of the count.
101 */
102 delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 delta >>= shift;
104
105 local64_add(delta, &event->count);
106 local64_sub(delta, &hwc->period_left);
107
108 return new_raw_count;
109 }
110
111 /*
112 * Find and validate any extra registers to set up.
113 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116 struct hw_perf_event_extra *reg;
117 struct extra_reg *er;
118
119 reg = &event->hw.extra_reg;
120
121 if (!x86_pmu.extra_regs)
122 return 0;
123
124 for (er = x86_pmu.extra_regs; er->msr; er++) {
125 if (er->event != (config & er->config_mask))
126 continue;
127 if (event->attr.config1 & ~er->valid_mask)
128 return -EINVAL;
129 /* Check if the extra msrs can be safely accessed*/
130 if (!er->extra_msr_access)
131 return -ENXIO;
132
133 reg->idx = er->idx;
134 reg->config = event->attr.config1;
135 reg->reg = er->msr;
136 break;
137 }
138 return 0;
139 }
140
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144
145 #ifdef CONFIG_X86_LOCAL_APIC
146
reserve_pmc_hardware(void)147 static bool reserve_pmc_hardware(void)
148 {
149 int i;
150
151 for (i = 0; i < x86_pmu.num_counters; i++) {
152 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153 goto perfctr_fail;
154 }
155
156 for (i = 0; i < x86_pmu.num_counters; i++) {
157 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158 goto eventsel_fail;
159 }
160
161 return true;
162
163 eventsel_fail:
164 for (i--; i >= 0; i--)
165 release_evntsel_nmi(x86_pmu_config_addr(i));
166
167 i = x86_pmu.num_counters;
168
169 perfctr_fail:
170 for (i--; i >= 0; i--)
171 release_perfctr_nmi(x86_pmu_event_addr(i));
172
173 return false;
174 }
175
release_pmc_hardware(void)176 static void release_pmc_hardware(void)
177 {
178 int i;
179
180 for (i = 0; i < x86_pmu.num_counters; i++) {
181 release_perfctr_nmi(x86_pmu_event_addr(i));
182 release_evntsel_nmi(x86_pmu_config_addr(i));
183 }
184 }
185
186 #else
187
reserve_pmc_hardware(void)188 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)189 static void release_pmc_hardware(void) {}
190
191 #endif
192
check_hw_exists(void)193 static bool check_hw_exists(void)
194 {
195 u64 val, val_fail = -1, val_new= ~0;
196 int i, reg, reg_fail = -1, ret = 0;
197 int bios_fail = 0;
198 int reg_safe = -1;
199
200 /*
201 * Check to see if the BIOS enabled any of the counters, if so
202 * complain and bail.
203 */
204 for (i = 0; i < x86_pmu.num_counters; i++) {
205 reg = x86_pmu_config_addr(i);
206 ret = rdmsrl_safe(reg, &val);
207 if (ret)
208 goto msr_fail;
209 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210 bios_fail = 1;
211 val_fail = val;
212 reg_fail = reg;
213 } else {
214 reg_safe = i;
215 }
216 }
217
218 if (x86_pmu.num_counters_fixed) {
219 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 ret = rdmsrl_safe(reg, &val);
221 if (ret)
222 goto msr_fail;
223 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 if (val & (0x03 << i*4)) {
225 bios_fail = 1;
226 val_fail = val;
227 reg_fail = reg;
228 }
229 }
230 }
231
232 /*
233 * If all the counters are enabled, the below test will always
234 * fail. The tools will also become useless in this scenario.
235 * Just fail and disable the hardware counters.
236 */
237
238 if (reg_safe == -1) {
239 reg = reg_safe;
240 goto msr_fail;
241 }
242
243 /*
244 * Read the current value, change it and read it back to see if it
245 * matches, this is needed to detect certain hardware emulators
246 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247 */
248 reg = x86_pmu_event_addr(reg_safe);
249 if (rdmsrl_safe(reg, &val))
250 goto msr_fail;
251 val ^= 0xffffUL;
252 ret = wrmsrl_safe(reg, val);
253 ret |= rdmsrl_safe(reg, &val_new);
254 if (ret || val != val_new)
255 goto msr_fail;
256
257 /*
258 * We still allow the PMU driver to operate:
259 */
260 if (bios_fail) {
261 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263 reg_fail, val_fail);
264 }
265
266 return true;
267
268 msr_fail:
269 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 pr_cont("PMU not available due to virtualization, using software events only.\n");
271 } else {
272 pr_cont("Broken PMU hardware detected, using software events only.\n");
273 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274 reg, val_new);
275 }
276
277 return false;
278 }
279
hw_perf_event_destroy(struct perf_event * event)280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282 x86_release_hardware();
283 atomic_dec(&active_events);
284 }
285
hw_perf_lbr_event_destroy(struct perf_event * event)286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288 hw_perf_event_destroy(event);
289
290 /* undo the lbr/bts event accounting */
291 x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293
x86_pmu_initialized(void)294 static inline int x86_pmu_initialized(void)
295 {
296 return x86_pmu.handle_irq != NULL;
297 }
298
299 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302 struct perf_event_attr *attr = &event->attr;
303 unsigned int cache_type, cache_op, cache_result;
304 u64 config, val;
305
306 config = attr->config;
307
308 cache_type = (config >> 0) & 0xff;
309 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 return -EINVAL;
311 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312
313 cache_op = (config >> 8) & 0xff;
314 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315 return -EINVAL;
316 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317
318 cache_result = (config >> 16) & 0xff;
319 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320 return -EINVAL;
321 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322
323 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324
325 if (val == 0)
326 return -ENOENT;
327
328 if (val == -1)
329 return -EINVAL;
330
331 hwc->config |= val;
332 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 return x86_pmu_extra_regs(val, event);
334 }
335
x86_reserve_hardware(void)336 int x86_reserve_hardware(void)
337 {
338 int err = 0;
339
340 if (!atomic_inc_not_zero(&pmc_refcount)) {
341 mutex_lock(&pmc_reserve_mutex);
342 if (atomic_read(&pmc_refcount) == 0) {
343 if (!reserve_pmc_hardware())
344 err = -EBUSY;
345 else
346 reserve_ds_buffers();
347 }
348 if (!err)
349 atomic_inc(&pmc_refcount);
350 mutex_unlock(&pmc_reserve_mutex);
351 }
352
353 return err;
354 }
355
x86_release_hardware(void)356 void x86_release_hardware(void)
357 {
358 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 release_pmc_hardware();
360 release_ds_buffers();
361 mutex_unlock(&pmc_reserve_mutex);
362 }
363 }
364
365 /*
366 * Check if we can create event of a certain type (that no conflicting events
367 * are present).
368 */
x86_add_exclusive(unsigned int what)369 int x86_add_exclusive(unsigned int what)
370 {
371 int i;
372
373 /*
374 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 * LBR and BTS are still mutually exclusive.
376 */
377 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378 goto out;
379
380 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381 mutex_lock(&pmc_reserve_mutex);
382 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384 goto fail_unlock;
385 }
386 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387 mutex_unlock(&pmc_reserve_mutex);
388 }
389
390 out:
391 atomic_inc(&active_events);
392 return 0;
393
394 fail_unlock:
395 mutex_unlock(&pmc_reserve_mutex);
396 return -EBUSY;
397 }
398
x86_del_exclusive(unsigned int what)399 void x86_del_exclusive(unsigned int what)
400 {
401 atomic_dec(&active_events);
402
403 /*
404 * See the comment in x86_add_exclusive().
405 */
406 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
407 return;
408
409 atomic_dec(&x86_pmu.lbr_exclusive[what]);
410 }
411
x86_setup_perfctr(struct perf_event * event)412 int x86_setup_perfctr(struct perf_event *event)
413 {
414 struct perf_event_attr *attr = &event->attr;
415 struct hw_perf_event *hwc = &event->hw;
416 u64 config;
417
418 if (!is_sampling_event(event)) {
419 hwc->sample_period = x86_pmu.max_period;
420 hwc->last_period = hwc->sample_period;
421 local64_set(&hwc->period_left, hwc->sample_period);
422 }
423
424 if (attr->type == PERF_TYPE_RAW)
425 return x86_pmu_extra_regs(event->attr.config, event);
426
427 if (attr->type == PERF_TYPE_HW_CACHE)
428 return set_ext_hw_attr(hwc, event);
429
430 if (attr->config >= x86_pmu.max_events)
431 return -EINVAL;
432
433 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
434
435 /*
436 * The generic map:
437 */
438 config = x86_pmu.event_map(attr->config);
439
440 if (config == 0)
441 return -ENOENT;
442
443 if (config == -1LL)
444 return -EINVAL;
445
446 hwc->config |= config;
447
448 return 0;
449 }
450
451 /*
452 * check that branch_sample_type is compatible with
453 * settings needed for precise_ip > 1 which implies
454 * using the LBR to capture ALL taken branches at the
455 * priv levels of the measurement
456 */
precise_br_compat(struct perf_event * event)457 static inline int precise_br_compat(struct perf_event *event)
458 {
459 u64 m = event->attr.branch_sample_type;
460 u64 b = 0;
461
462 /* must capture all branches */
463 if (!(m & PERF_SAMPLE_BRANCH_ANY))
464 return 0;
465
466 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
467
468 if (!event->attr.exclude_user)
469 b |= PERF_SAMPLE_BRANCH_USER;
470
471 if (!event->attr.exclude_kernel)
472 b |= PERF_SAMPLE_BRANCH_KERNEL;
473
474 /*
475 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
476 */
477
478 return m == b;
479 }
480
x86_pmu_max_precise(void)481 int x86_pmu_max_precise(void)
482 {
483 int precise = 0;
484
485 /* Support for constant skid */
486 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
487 precise++;
488
489 /* Support for IP fixup */
490 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
491 precise++;
492
493 if (x86_pmu.pebs_prec_dist)
494 precise++;
495 }
496 return precise;
497 }
498
x86_pmu_hw_config(struct perf_event * event)499 int x86_pmu_hw_config(struct perf_event *event)
500 {
501 if (event->attr.precise_ip) {
502 int precise = x86_pmu_max_precise();
503
504 if (event->attr.precise_ip > precise)
505 return -EOPNOTSUPP;
506
507 /* There's no sense in having PEBS for non sampling events: */
508 if (!is_sampling_event(event))
509 return -EINVAL;
510 }
511 /*
512 * check that PEBS LBR correction does not conflict with
513 * whatever the user is asking with attr->branch_sample_type
514 */
515 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
516 u64 *br_type = &event->attr.branch_sample_type;
517
518 if (has_branch_stack(event)) {
519 if (!precise_br_compat(event))
520 return -EOPNOTSUPP;
521
522 /* branch_sample_type is compatible */
523
524 } else {
525 /*
526 * user did not specify branch_sample_type
527 *
528 * For PEBS fixups, we capture all
529 * the branches at the priv level of the
530 * event.
531 */
532 *br_type = PERF_SAMPLE_BRANCH_ANY;
533
534 if (!event->attr.exclude_user)
535 *br_type |= PERF_SAMPLE_BRANCH_USER;
536
537 if (!event->attr.exclude_kernel)
538 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
539 }
540 }
541
542 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
543 event->attach_state |= PERF_ATTACH_TASK_DATA;
544
545 /*
546 * Generate PMC IRQs:
547 * (keep 'enabled' bit clear for now)
548 */
549 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
550
551 /*
552 * Count user and OS events unless requested not to
553 */
554 if (!event->attr.exclude_user)
555 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
556 if (!event->attr.exclude_kernel)
557 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
558
559 if (event->attr.type == PERF_TYPE_RAW)
560 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
561
562 if (event->attr.sample_period && x86_pmu.limit_period) {
563 if (x86_pmu.limit_period(event, event->attr.sample_period) >
564 event->attr.sample_period)
565 return -EINVAL;
566 }
567
568 /* sample_regs_user never support XMM registers */
569 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
570 return -EINVAL;
571 /*
572 * Besides the general purpose registers, XMM registers may
573 * be collected in PEBS on some platforms, e.g. Icelake
574 */
575 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
576 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
577 return -EINVAL;
578
579 if (!event->attr.precise_ip)
580 return -EINVAL;
581 }
582
583 return x86_setup_perfctr(event);
584 }
585
586 /*
587 * Setup the hardware configuration for a given attr_type
588 */
__x86_pmu_event_init(struct perf_event * event)589 static int __x86_pmu_event_init(struct perf_event *event)
590 {
591 int err;
592
593 if (!x86_pmu_initialized())
594 return -ENODEV;
595
596 err = x86_reserve_hardware();
597 if (err)
598 return err;
599
600 atomic_inc(&active_events);
601 event->destroy = hw_perf_event_destroy;
602
603 event->hw.idx = -1;
604 event->hw.last_cpu = -1;
605 event->hw.last_tag = ~0ULL;
606
607 /* mark unused */
608 event->hw.extra_reg.idx = EXTRA_REG_NONE;
609 event->hw.branch_reg.idx = EXTRA_REG_NONE;
610
611 return x86_pmu.hw_config(event);
612 }
613
x86_pmu_disable_all(void)614 void x86_pmu_disable_all(void)
615 {
616 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
617 int idx;
618
619 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
620 u64 val;
621
622 if (!test_bit(idx, cpuc->active_mask))
623 continue;
624 rdmsrl(x86_pmu_config_addr(idx), val);
625 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
626 continue;
627 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
628 wrmsrl(x86_pmu_config_addr(idx), val);
629 }
630 }
631
632 /*
633 * There may be PMI landing after enabled=0. The PMI hitting could be before or
634 * after disable_all.
635 *
636 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
637 * It will not be re-enabled in the NMI handler again, because enabled=0. After
638 * handling the NMI, disable_all will be called, which will not change the
639 * state either. If PMI hits after disable_all, the PMU is already disabled
640 * before entering NMI handler. The NMI handler will not change the state
641 * either.
642 *
643 * So either situation is harmless.
644 */
x86_pmu_disable(struct pmu * pmu)645 static void x86_pmu_disable(struct pmu *pmu)
646 {
647 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
648
649 if (!x86_pmu_initialized())
650 return;
651
652 if (!cpuc->enabled)
653 return;
654
655 cpuc->n_added = 0;
656 cpuc->enabled = 0;
657 barrier();
658
659 x86_pmu.disable_all();
660 }
661
x86_pmu_enable_all(int added)662 void x86_pmu_enable_all(int added)
663 {
664 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
665 int idx;
666
667 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
668 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
669
670 if (!test_bit(idx, cpuc->active_mask))
671 continue;
672
673 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
674 }
675 }
676
677 static struct pmu pmu;
678
is_x86_event(struct perf_event * event)679 static inline int is_x86_event(struct perf_event *event)
680 {
681 return event->pmu == &pmu;
682 }
683
x86_get_pmu(void)684 struct pmu *x86_get_pmu(void)
685 {
686 return &pmu;
687 }
688 /*
689 * Event scheduler state:
690 *
691 * Assign events iterating over all events and counters, beginning
692 * with events with least weights first. Keep the current iterator
693 * state in struct sched_state.
694 */
695 struct sched_state {
696 int weight;
697 int event; /* event index */
698 int counter; /* counter index */
699 int unassigned; /* number of events to be assigned left */
700 int nr_gp; /* number of GP counters used */
701 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
702 };
703
704 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
705 #define SCHED_STATES_MAX 2
706
707 struct perf_sched {
708 int max_weight;
709 int max_events;
710 int max_gp;
711 int saved_states;
712 struct event_constraint **constraints;
713 struct sched_state state;
714 struct sched_state saved[SCHED_STATES_MAX];
715 };
716
717 /*
718 * Initialize interator that runs through all events and counters.
719 */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)720 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
721 int num, int wmin, int wmax, int gpmax)
722 {
723 int idx;
724
725 memset(sched, 0, sizeof(*sched));
726 sched->max_events = num;
727 sched->max_weight = wmax;
728 sched->max_gp = gpmax;
729 sched->constraints = constraints;
730
731 for (idx = 0; idx < num; idx++) {
732 if (constraints[idx]->weight == wmin)
733 break;
734 }
735
736 sched->state.event = idx; /* start with min weight */
737 sched->state.weight = wmin;
738 sched->state.unassigned = num;
739 }
740
perf_sched_save_state(struct perf_sched * sched)741 static void perf_sched_save_state(struct perf_sched *sched)
742 {
743 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
744 return;
745
746 sched->saved[sched->saved_states] = sched->state;
747 sched->saved_states++;
748 }
749
perf_sched_restore_state(struct perf_sched * sched)750 static bool perf_sched_restore_state(struct perf_sched *sched)
751 {
752 if (!sched->saved_states)
753 return false;
754
755 sched->saved_states--;
756 sched->state = sched->saved[sched->saved_states];
757
758 /* continue with next counter: */
759 clear_bit(sched->state.counter++, sched->state.used);
760
761 return true;
762 }
763
764 /*
765 * Select a counter for the current event to schedule. Return true on
766 * success.
767 */
__perf_sched_find_counter(struct perf_sched * sched)768 static bool __perf_sched_find_counter(struct perf_sched *sched)
769 {
770 struct event_constraint *c;
771 int idx;
772
773 if (!sched->state.unassigned)
774 return false;
775
776 if (sched->state.event >= sched->max_events)
777 return false;
778
779 c = sched->constraints[sched->state.event];
780 /* Prefer fixed purpose counters */
781 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
782 idx = INTEL_PMC_IDX_FIXED;
783 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
784 if (!__test_and_set_bit(idx, sched->state.used))
785 goto done;
786 }
787 }
788
789 /* Grab the first unused counter starting with idx */
790 idx = sched->state.counter;
791 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
792 if (!__test_and_set_bit(idx, sched->state.used)) {
793 if (sched->state.nr_gp++ >= sched->max_gp)
794 return false;
795
796 goto done;
797 }
798 }
799
800 return false;
801
802 done:
803 sched->state.counter = idx;
804
805 if (c->overlap)
806 perf_sched_save_state(sched);
807
808 return true;
809 }
810
perf_sched_find_counter(struct perf_sched * sched)811 static bool perf_sched_find_counter(struct perf_sched *sched)
812 {
813 while (!__perf_sched_find_counter(sched)) {
814 if (!perf_sched_restore_state(sched))
815 return false;
816 }
817
818 return true;
819 }
820
821 /*
822 * Go through all unassigned events and find the next one to schedule.
823 * Take events with the least weight first. Return true on success.
824 */
perf_sched_next_event(struct perf_sched * sched)825 static bool perf_sched_next_event(struct perf_sched *sched)
826 {
827 struct event_constraint *c;
828
829 if (!sched->state.unassigned || !--sched->state.unassigned)
830 return false;
831
832 do {
833 /* next event */
834 sched->state.event++;
835 if (sched->state.event >= sched->max_events) {
836 /* next weight */
837 sched->state.event = 0;
838 sched->state.weight++;
839 if (sched->state.weight > sched->max_weight)
840 return false;
841 }
842 c = sched->constraints[sched->state.event];
843 } while (c->weight != sched->state.weight);
844
845 sched->state.counter = 0; /* start with first counter */
846
847 return true;
848 }
849
850 /*
851 * Assign a counter for each event.
852 */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)853 int perf_assign_events(struct event_constraint **constraints, int n,
854 int wmin, int wmax, int gpmax, int *assign)
855 {
856 struct perf_sched sched;
857
858 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
859
860 do {
861 if (!perf_sched_find_counter(&sched))
862 break; /* failed */
863 if (assign)
864 assign[sched.state.event] = sched.state.counter;
865 } while (perf_sched_next_event(&sched));
866
867 return sched.state.unassigned;
868 }
869 EXPORT_SYMBOL_GPL(perf_assign_events);
870
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)871 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
872 {
873 struct event_constraint *c;
874 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
875 struct perf_event *e;
876 int n0, i, wmin, wmax, unsched = 0;
877 struct hw_perf_event *hwc;
878
879 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
880
881 /*
882 * Compute the number of events already present; see x86_pmu_add(),
883 * validate_group() and x86_pmu_commit_txn(). For the former two
884 * cpuc->n_events hasn't been updated yet, while for the latter
885 * cpuc->n_txn contains the number of events added in the current
886 * transaction.
887 */
888 n0 = cpuc->n_events;
889 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
890 n0 -= cpuc->n_txn;
891
892 if (x86_pmu.start_scheduling)
893 x86_pmu.start_scheduling(cpuc);
894
895 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
896 c = cpuc->event_constraint[i];
897
898 /*
899 * Previously scheduled events should have a cached constraint,
900 * while new events should not have one.
901 */
902 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
903
904 /*
905 * Request constraints for new events; or for those events that
906 * have a dynamic constraint -- for those the constraint can
907 * change due to external factors (sibling state, allow_tfa).
908 */
909 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
910 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
911 cpuc->event_constraint[i] = c;
912 }
913
914 wmin = min(wmin, c->weight);
915 wmax = max(wmax, c->weight);
916 }
917
918 /*
919 * fastpath, try to reuse previous register
920 */
921 for (i = 0; i < n; i++) {
922 hwc = &cpuc->event_list[i]->hw;
923 c = cpuc->event_constraint[i];
924
925 /* never assigned */
926 if (hwc->idx == -1)
927 break;
928
929 /* constraint still honored */
930 if (!test_bit(hwc->idx, c->idxmsk))
931 break;
932
933 /* not already used */
934 if (test_bit(hwc->idx, used_mask))
935 break;
936
937 __set_bit(hwc->idx, used_mask);
938 if (assign)
939 assign[i] = hwc->idx;
940 }
941
942 /* slow path */
943 if (i != n) {
944 int gpmax = x86_pmu.num_counters;
945
946 /*
947 * Do not allow scheduling of more than half the available
948 * generic counters.
949 *
950 * This helps avoid counter starvation of sibling thread by
951 * ensuring at most half the counters cannot be in exclusive
952 * mode. There is no designated counters for the limits. Any
953 * N/2 counters can be used. This helps with events with
954 * specific counter constraints.
955 */
956 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
957 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
958 gpmax /= 2;
959
960 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
961 wmax, gpmax, assign);
962 }
963
964 /*
965 * In case of success (unsched = 0), mark events as committed,
966 * so we do not put_constraint() in case new events are added
967 * and fail to be scheduled
968 *
969 * We invoke the lower level commit callback to lock the resource
970 *
971 * We do not need to do all of this in case we are called to
972 * validate an event group (assign == NULL)
973 */
974 if (!unsched && assign) {
975 for (i = 0; i < n; i++) {
976 e = cpuc->event_list[i];
977 if (x86_pmu.commit_scheduling)
978 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
979 }
980 } else {
981 for (i = n0; i < n; i++) {
982 e = cpuc->event_list[i];
983
984 /*
985 * release events that failed scheduling
986 */
987 if (x86_pmu.put_event_constraints)
988 x86_pmu.put_event_constraints(cpuc, e);
989
990 cpuc->event_constraint[i] = NULL;
991 }
992 }
993
994 if (x86_pmu.stop_scheduling)
995 x86_pmu.stop_scheduling(cpuc);
996
997 return unsched ? -EINVAL : 0;
998 }
999
1000 /*
1001 * dogrp: true if must collect siblings events (group)
1002 * returns total number of events and error code
1003 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)1004 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1005 {
1006 struct perf_event *event;
1007 int n, max_count;
1008
1009 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1010
1011 /* current number of events already accepted */
1012 n = cpuc->n_events;
1013 if (!cpuc->n_events)
1014 cpuc->pebs_output = 0;
1015
1016 if (!cpuc->is_fake && leader->attr.precise_ip) {
1017 /*
1018 * For PEBS->PT, if !aux_event, the group leader (PT) went
1019 * away, the group was broken down and this singleton event
1020 * can't schedule any more.
1021 */
1022 if (is_pebs_pt(leader) && !leader->aux_event)
1023 return -EINVAL;
1024
1025 /*
1026 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1027 */
1028 if (cpuc->pebs_output &&
1029 cpuc->pebs_output != is_pebs_pt(leader) + 1)
1030 return -EINVAL;
1031
1032 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1033 }
1034
1035 if (is_x86_event(leader)) {
1036 if (n >= max_count)
1037 return -EINVAL;
1038 cpuc->event_list[n] = leader;
1039 n++;
1040 }
1041 if (!dogrp)
1042 return n;
1043
1044 for_each_sibling_event(event, leader) {
1045 if (!is_x86_event(event) ||
1046 event->state <= PERF_EVENT_STATE_OFF)
1047 continue;
1048
1049 if (n >= max_count)
1050 return -EINVAL;
1051
1052 cpuc->event_list[n] = event;
1053 n++;
1054 }
1055 return n;
1056 }
1057
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1058 static inline void x86_assign_hw_event(struct perf_event *event,
1059 struct cpu_hw_events *cpuc, int i)
1060 {
1061 struct hw_perf_event *hwc = &event->hw;
1062
1063 hwc->idx = cpuc->assign[i];
1064 hwc->last_cpu = smp_processor_id();
1065 hwc->last_tag = ++cpuc->tags[i];
1066
1067 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1068 hwc->config_base = 0;
1069 hwc->event_base = 0;
1070 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1071 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1072 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1073 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1074 } else {
1075 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1076 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1077 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1078 }
1079 }
1080
1081 /**
1082 * x86_perf_rdpmc_index - Return PMC counter used for event
1083 * @event: the perf_event to which the PMC counter was assigned
1084 *
1085 * The counter assigned to this performance event may change if interrupts
1086 * are enabled. This counter should thus never be used while interrupts are
1087 * enabled. Before this function is used to obtain the assigned counter the
1088 * event should be checked for validity using, for example,
1089 * perf_event_read_local(), within the same interrupt disabled section in
1090 * which this counter is planned to be used.
1091 *
1092 * Return: The index of the performance monitoring counter assigned to
1093 * @perf_event.
1094 */
x86_perf_rdpmc_index(struct perf_event * event)1095 int x86_perf_rdpmc_index(struct perf_event *event)
1096 {
1097 lockdep_assert_irqs_disabled();
1098
1099 return event->hw.event_base_rdpmc;
1100 }
1101
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1102 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1103 struct cpu_hw_events *cpuc,
1104 int i)
1105 {
1106 return hwc->idx == cpuc->assign[i] &&
1107 hwc->last_cpu == smp_processor_id() &&
1108 hwc->last_tag == cpuc->tags[i];
1109 }
1110
1111 static void x86_pmu_start(struct perf_event *event, int flags);
1112
x86_pmu_enable(struct pmu * pmu)1113 static void x86_pmu_enable(struct pmu *pmu)
1114 {
1115 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1116 struct perf_event *event;
1117 struct hw_perf_event *hwc;
1118 int i, added = cpuc->n_added;
1119
1120 if (!x86_pmu_initialized())
1121 return;
1122
1123 if (cpuc->enabled)
1124 return;
1125
1126 if (cpuc->n_added) {
1127 int n_running = cpuc->n_events - cpuc->n_added;
1128 /*
1129 * apply assignment obtained either from
1130 * hw_perf_group_sched_in() or x86_pmu_enable()
1131 *
1132 * step1: save events moving to new counters
1133 */
1134 for (i = 0; i < n_running; i++) {
1135 event = cpuc->event_list[i];
1136 hwc = &event->hw;
1137
1138 /*
1139 * we can avoid reprogramming counter if:
1140 * - assigned same counter as last time
1141 * - running on same CPU as last time
1142 * - no other event has used the counter since
1143 */
1144 if (hwc->idx == -1 ||
1145 match_prev_assignment(hwc, cpuc, i))
1146 continue;
1147
1148 /*
1149 * Ensure we don't accidentally enable a stopped
1150 * counter simply because we rescheduled.
1151 */
1152 if (hwc->state & PERF_HES_STOPPED)
1153 hwc->state |= PERF_HES_ARCH;
1154
1155 x86_pmu_stop(event, PERF_EF_UPDATE);
1156 }
1157
1158 /*
1159 * step2: reprogram moved events into new counters
1160 */
1161 for (i = 0; i < cpuc->n_events; i++) {
1162 event = cpuc->event_list[i];
1163 hwc = &event->hw;
1164
1165 if (!match_prev_assignment(hwc, cpuc, i))
1166 x86_assign_hw_event(event, cpuc, i);
1167 else if (i < n_running)
1168 continue;
1169
1170 if (hwc->state & PERF_HES_ARCH)
1171 continue;
1172
1173 x86_pmu_start(event, PERF_EF_RELOAD);
1174 }
1175 cpuc->n_added = 0;
1176 perf_events_lapic_init();
1177 }
1178
1179 cpuc->enabled = 1;
1180 barrier();
1181
1182 x86_pmu.enable_all(added);
1183 }
1184
1185 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1186
1187 /*
1188 * Set the next IRQ period, based on the hwc->period_left value.
1189 * To be called with the event disabled in hw:
1190 */
x86_perf_event_set_period(struct perf_event * event)1191 int x86_perf_event_set_period(struct perf_event *event)
1192 {
1193 struct hw_perf_event *hwc = &event->hw;
1194 s64 left = local64_read(&hwc->period_left);
1195 s64 period = hwc->sample_period;
1196 int ret = 0, idx = hwc->idx;
1197
1198 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1199 return 0;
1200
1201 /*
1202 * If we are way outside a reasonable range then just skip forward:
1203 */
1204 if (unlikely(left <= -period)) {
1205 left = period;
1206 local64_set(&hwc->period_left, left);
1207 hwc->last_period = period;
1208 ret = 1;
1209 }
1210
1211 if (unlikely(left <= 0)) {
1212 left += period;
1213 local64_set(&hwc->period_left, left);
1214 hwc->last_period = period;
1215 ret = 1;
1216 }
1217 /*
1218 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1219 */
1220 if (unlikely(left < 2))
1221 left = 2;
1222
1223 if (left > x86_pmu.max_period)
1224 left = x86_pmu.max_period;
1225
1226 if (x86_pmu.limit_period)
1227 left = x86_pmu.limit_period(event, left);
1228
1229 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1230
1231 /*
1232 * The hw event starts counting from this event offset,
1233 * mark it to be able to extra future deltas:
1234 */
1235 local64_set(&hwc->prev_count, (u64)-left);
1236
1237 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1238
1239 /*
1240 * Due to erratum on certan cpu we need
1241 * a second write to be sure the register
1242 * is updated properly
1243 */
1244 if (x86_pmu.perfctr_second_write) {
1245 wrmsrl(hwc->event_base,
1246 (u64)(-left) & x86_pmu.cntval_mask);
1247 }
1248
1249 perf_event_update_userpage(event);
1250
1251 return ret;
1252 }
1253
x86_pmu_enable_event(struct perf_event * event)1254 void x86_pmu_enable_event(struct perf_event *event)
1255 {
1256 if (__this_cpu_read(cpu_hw_events.enabled))
1257 __x86_pmu_enable_event(&event->hw,
1258 ARCH_PERFMON_EVENTSEL_ENABLE);
1259 }
1260
1261 /*
1262 * Add a single event to the PMU.
1263 *
1264 * The event is added to the group of enabled events
1265 * but only if it can be scheduled with existing events.
1266 */
x86_pmu_add(struct perf_event * event,int flags)1267 static int x86_pmu_add(struct perf_event *event, int flags)
1268 {
1269 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1270 struct hw_perf_event *hwc;
1271 int assign[X86_PMC_IDX_MAX];
1272 int n, n0, ret;
1273
1274 hwc = &event->hw;
1275
1276 n0 = cpuc->n_events;
1277 ret = n = collect_events(cpuc, event, false);
1278 if (ret < 0)
1279 goto out;
1280
1281 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1282 if (!(flags & PERF_EF_START))
1283 hwc->state |= PERF_HES_ARCH;
1284
1285 /*
1286 * If group events scheduling transaction was started,
1287 * skip the schedulability test here, it will be performed
1288 * at commit time (->commit_txn) as a whole.
1289 *
1290 * If commit fails, we'll call ->del() on all events
1291 * for which ->add() was called.
1292 */
1293 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1294 goto done_collect;
1295
1296 ret = x86_pmu.schedule_events(cpuc, n, assign);
1297 if (ret)
1298 goto out;
1299 /*
1300 * copy new assignment, now we know it is possible
1301 * will be used by hw_perf_enable()
1302 */
1303 memcpy(cpuc->assign, assign, n*sizeof(int));
1304
1305 done_collect:
1306 /*
1307 * Commit the collect_events() state. See x86_pmu_del() and
1308 * x86_pmu_*_txn().
1309 */
1310 cpuc->n_events = n;
1311 cpuc->n_added += n - n0;
1312 cpuc->n_txn += n - n0;
1313
1314 if (x86_pmu.add) {
1315 /*
1316 * This is before x86_pmu_enable() will call x86_pmu_start(),
1317 * so we enable LBRs before an event needs them etc..
1318 */
1319 x86_pmu.add(event);
1320 }
1321
1322 ret = 0;
1323 out:
1324 return ret;
1325 }
1326
x86_pmu_start(struct perf_event * event,int flags)1327 static void x86_pmu_start(struct perf_event *event, int flags)
1328 {
1329 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1330 int idx = event->hw.idx;
1331
1332 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1333 return;
1334
1335 if (WARN_ON_ONCE(idx == -1))
1336 return;
1337
1338 if (flags & PERF_EF_RELOAD) {
1339 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1340 x86_perf_event_set_period(event);
1341 }
1342
1343 event->hw.state = 0;
1344
1345 cpuc->events[idx] = event;
1346 __set_bit(idx, cpuc->active_mask);
1347 __set_bit(idx, cpuc->running);
1348 x86_pmu.enable(event);
1349 perf_event_update_userpage(event);
1350 }
1351
perf_event_print_debug(void)1352 void perf_event_print_debug(void)
1353 {
1354 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1355 u64 pebs, debugctl;
1356 struct cpu_hw_events *cpuc;
1357 unsigned long flags;
1358 int cpu, idx;
1359
1360 if (!x86_pmu.num_counters)
1361 return;
1362
1363 local_irq_save(flags);
1364
1365 cpu = smp_processor_id();
1366 cpuc = &per_cpu(cpu_hw_events, cpu);
1367
1368 if (x86_pmu.version >= 2) {
1369 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1370 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1371 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1372 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1373
1374 pr_info("\n");
1375 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1376 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1377 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1378 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1379 if (x86_pmu.pebs_constraints) {
1380 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1381 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1382 }
1383 if (x86_pmu.lbr_nr) {
1384 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1385 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1386 }
1387 }
1388 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1389
1390 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1391 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1392 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1393
1394 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1395
1396 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1397 cpu, idx, pmc_ctrl);
1398 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1399 cpu, idx, pmc_count);
1400 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1401 cpu, idx, prev_left);
1402 }
1403 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1404 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1405
1406 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1407 cpu, idx, pmc_count);
1408 }
1409 local_irq_restore(flags);
1410 }
1411
x86_pmu_stop(struct perf_event * event,int flags)1412 void x86_pmu_stop(struct perf_event *event, int flags)
1413 {
1414 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1415 struct hw_perf_event *hwc = &event->hw;
1416
1417 if (test_bit(hwc->idx, cpuc->active_mask)) {
1418 x86_pmu.disable(event);
1419 __clear_bit(hwc->idx, cpuc->active_mask);
1420 cpuc->events[hwc->idx] = NULL;
1421 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1422 hwc->state |= PERF_HES_STOPPED;
1423 }
1424
1425 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1426 /*
1427 * Drain the remaining delta count out of a event
1428 * that we are disabling:
1429 */
1430 x86_perf_event_update(event);
1431 hwc->state |= PERF_HES_UPTODATE;
1432 }
1433 }
1434
x86_pmu_del(struct perf_event * event,int flags)1435 static void x86_pmu_del(struct perf_event *event, int flags)
1436 {
1437 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1438 int i;
1439
1440 /*
1441 * If we're called during a txn, we only need to undo x86_pmu.add.
1442 * The events never got scheduled and ->cancel_txn will truncate
1443 * the event_list.
1444 *
1445 * XXX assumes any ->del() called during a TXN will only be on
1446 * an event added during that same TXN.
1447 */
1448 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1449 goto do_del;
1450
1451 /*
1452 * Not a TXN, therefore cleanup properly.
1453 */
1454 x86_pmu_stop(event, PERF_EF_UPDATE);
1455
1456 for (i = 0; i < cpuc->n_events; i++) {
1457 if (event == cpuc->event_list[i])
1458 break;
1459 }
1460
1461 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1462 return;
1463
1464 /* If we have a newly added event; make sure to decrease n_added. */
1465 if (i >= cpuc->n_events - cpuc->n_added)
1466 --cpuc->n_added;
1467
1468 if (x86_pmu.put_event_constraints)
1469 x86_pmu.put_event_constraints(cpuc, event);
1470
1471 /* Delete the array entry. */
1472 while (++i < cpuc->n_events) {
1473 cpuc->event_list[i-1] = cpuc->event_list[i];
1474 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1475 }
1476 cpuc->event_constraint[i-1] = NULL;
1477 --cpuc->n_events;
1478
1479 perf_event_update_userpage(event);
1480
1481 do_del:
1482 if (x86_pmu.del) {
1483 /*
1484 * This is after x86_pmu_stop(); so we disable LBRs after any
1485 * event can need them etc..
1486 */
1487 x86_pmu.del(event);
1488 }
1489 }
1490
x86_pmu_handle_irq(struct pt_regs * regs)1491 int x86_pmu_handle_irq(struct pt_regs *regs)
1492 {
1493 struct perf_sample_data data;
1494 struct cpu_hw_events *cpuc;
1495 struct perf_event *event;
1496 int idx, handled = 0;
1497 u64 val;
1498
1499 cpuc = this_cpu_ptr(&cpu_hw_events);
1500
1501 /*
1502 * Some chipsets need to unmask the LVTPC in a particular spot
1503 * inside the nmi handler. As a result, the unmasking was pushed
1504 * into all the nmi handlers.
1505 *
1506 * This generic handler doesn't seem to have any issues where the
1507 * unmasking occurs so it was left at the top.
1508 */
1509 apic_write(APIC_LVTPC, APIC_DM_NMI);
1510
1511 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1512 if (!test_bit(idx, cpuc->active_mask))
1513 continue;
1514
1515 event = cpuc->events[idx];
1516
1517 val = x86_perf_event_update(event);
1518 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1519 continue;
1520
1521 /*
1522 * event overflow
1523 */
1524 handled++;
1525 perf_sample_data_init(&data, 0, event->hw.last_period);
1526
1527 if (!x86_perf_event_set_period(event))
1528 continue;
1529
1530 if (perf_event_overflow(event, &data, regs))
1531 x86_pmu_stop(event, 0);
1532 }
1533
1534 if (handled)
1535 inc_irq_stat(apic_perf_irqs);
1536
1537 return handled;
1538 }
1539
perf_events_lapic_init(void)1540 void perf_events_lapic_init(void)
1541 {
1542 if (!x86_pmu.apic || !x86_pmu_initialized())
1543 return;
1544
1545 /*
1546 * Always use NMI for PMU
1547 */
1548 apic_write(APIC_LVTPC, APIC_DM_NMI);
1549 }
1550
1551 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1552 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1553 {
1554 u64 start_clock;
1555 u64 finish_clock;
1556 int ret;
1557
1558 /*
1559 * All PMUs/events that share this PMI handler should make sure to
1560 * increment active_events for their events.
1561 */
1562 if (!atomic_read(&active_events))
1563 return NMI_DONE;
1564
1565 start_clock = sched_clock();
1566 ret = x86_pmu.handle_irq(regs);
1567 finish_clock = sched_clock();
1568
1569 perf_sample_event_took(finish_clock - start_clock);
1570
1571 return ret;
1572 }
1573 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1574
1575 struct event_constraint emptyconstraint;
1576 struct event_constraint unconstrained;
1577
x86_pmu_prepare_cpu(unsigned int cpu)1578 static int x86_pmu_prepare_cpu(unsigned int cpu)
1579 {
1580 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1581 int i;
1582
1583 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1584 cpuc->kfree_on_online[i] = NULL;
1585 if (x86_pmu.cpu_prepare)
1586 return x86_pmu.cpu_prepare(cpu);
1587 return 0;
1588 }
1589
x86_pmu_dead_cpu(unsigned int cpu)1590 static int x86_pmu_dead_cpu(unsigned int cpu)
1591 {
1592 if (x86_pmu.cpu_dead)
1593 x86_pmu.cpu_dead(cpu);
1594 return 0;
1595 }
1596
x86_pmu_online_cpu(unsigned int cpu)1597 static int x86_pmu_online_cpu(unsigned int cpu)
1598 {
1599 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1600 int i;
1601
1602 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1603 kfree(cpuc->kfree_on_online[i]);
1604 cpuc->kfree_on_online[i] = NULL;
1605 }
1606 return 0;
1607 }
1608
x86_pmu_starting_cpu(unsigned int cpu)1609 static int x86_pmu_starting_cpu(unsigned int cpu)
1610 {
1611 if (x86_pmu.cpu_starting)
1612 x86_pmu.cpu_starting(cpu);
1613 return 0;
1614 }
1615
x86_pmu_dying_cpu(unsigned int cpu)1616 static int x86_pmu_dying_cpu(unsigned int cpu)
1617 {
1618 if (x86_pmu.cpu_dying)
1619 x86_pmu.cpu_dying(cpu);
1620 return 0;
1621 }
1622
pmu_check_apic(void)1623 static void __init pmu_check_apic(void)
1624 {
1625 if (boot_cpu_has(X86_FEATURE_APIC))
1626 return;
1627
1628 x86_pmu.apic = 0;
1629 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1630 pr_info("no hardware sampling interrupt available.\n");
1631
1632 /*
1633 * If we have a PMU initialized but no APIC
1634 * interrupts, we cannot sample hardware
1635 * events (user-space has to fall back and
1636 * sample via a hrtimer based software event):
1637 */
1638 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1639
1640 }
1641
1642 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1643 .name = "format",
1644 .attrs = NULL,
1645 };
1646
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1647 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1648 {
1649 struct perf_pmu_events_attr *pmu_attr =
1650 container_of(attr, struct perf_pmu_events_attr, attr);
1651 u64 config = 0;
1652
1653 if (pmu_attr->id < x86_pmu.max_events)
1654 config = x86_pmu.event_map(pmu_attr->id);
1655
1656 /* string trumps id */
1657 if (pmu_attr->event_str)
1658 return sprintf(page, "%s", pmu_attr->event_str);
1659
1660 return x86_pmu.events_sysfs_show(page, config);
1661 }
1662 EXPORT_SYMBOL_GPL(events_sysfs_show);
1663
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1664 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1665 char *page)
1666 {
1667 struct perf_pmu_events_ht_attr *pmu_attr =
1668 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1669
1670 /*
1671 * Report conditional events depending on Hyper-Threading.
1672 *
1673 * This is overly conservative as usually the HT special
1674 * handling is not needed if the other CPU thread is idle.
1675 *
1676 * Note this does not (and cannot) handle the case when thread
1677 * siblings are invisible, for example with virtualization
1678 * if they are owned by some other guest. The user tool
1679 * has to re-read when a thread sibling gets onlined later.
1680 */
1681 return sprintf(page, "%s",
1682 topology_max_smt_threads() > 1 ?
1683 pmu_attr->event_str_ht :
1684 pmu_attr->event_str_noht);
1685 }
1686
1687 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1688 EVENT_ATTR(instructions, INSTRUCTIONS );
1689 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1690 EVENT_ATTR(cache-misses, CACHE_MISSES );
1691 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1692 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1693 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1694 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1695 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1696 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1697
1698 static struct attribute *empty_attrs;
1699
1700 static struct attribute *events_attr[] = {
1701 EVENT_PTR(CPU_CYCLES),
1702 EVENT_PTR(INSTRUCTIONS),
1703 EVENT_PTR(CACHE_REFERENCES),
1704 EVENT_PTR(CACHE_MISSES),
1705 EVENT_PTR(BRANCH_INSTRUCTIONS),
1706 EVENT_PTR(BRANCH_MISSES),
1707 EVENT_PTR(BUS_CYCLES),
1708 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1709 EVENT_PTR(STALLED_CYCLES_BACKEND),
1710 EVENT_PTR(REF_CPU_CYCLES),
1711 NULL,
1712 };
1713
1714 /*
1715 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1716 * out of events_attr attributes.
1717 */
1718 static umode_t
is_visible(struct kobject * kobj,struct attribute * attr,int idx)1719 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1720 {
1721 struct perf_pmu_events_attr *pmu_attr;
1722
1723 if (idx >= x86_pmu.max_events)
1724 return 0;
1725
1726 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1727 /* str trumps id */
1728 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1729 }
1730
1731 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1732 .name = "events",
1733 .attrs = events_attr,
1734 .is_visible = is_visible,
1735 };
1736
x86_event_sysfs_show(char * page,u64 config,u64 event)1737 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1738 {
1739 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1740 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1741 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1742 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1743 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1744 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1745 ssize_t ret;
1746
1747 /*
1748 * We have whole page size to spend and just little data
1749 * to write, so we can safely use sprintf.
1750 */
1751 ret = sprintf(page, "event=0x%02llx", event);
1752
1753 if (umask)
1754 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1755
1756 if (edge)
1757 ret += sprintf(page + ret, ",edge");
1758
1759 if (pc)
1760 ret += sprintf(page + ret, ",pc");
1761
1762 if (any)
1763 ret += sprintf(page + ret, ",any");
1764
1765 if (inv)
1766 ret += sprintf(page + ret, ",inv");
1767
1768 if (cmask)
1769 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1770
1771 ret += sprintf(page + ret, "\n");
1772
1773 return ret;
1774 }
1775
1776 static struct attribute_group x86_pmu_attr_group;
1777 static struct attribute_group x86_pmu_caps_group;
1778
init_hw_perf_events(void)1779 static int __init init_hw_perf_events(void)
1780 {
1781 struct x86_pmu_quirk *quirk;
1782 int err;
1783
1784 pr_info("Performance Events: ");
1785
1786 switch (boot_cpu_data.x86_vendor) {
1787 case X86_VENDOR_INTEL:
1788 err = intel_pmu_init();
1789 break;
1790 case X86_VENDOR_AMD:
1791 err = amd_pmu_init();
1792 break;
1793 case X86_VENDOR_HYGON:
1794 err = amd_pmu_init();
1795 x86_pmu.name = "HYGON";
1796 break;
1797 default:
1798 err = -ENOTSUPP;
1799 }
1800 if (err != 0) {
1801 pr_cont("no PMU driver, software events only.\n");
1802 return 0;
1803 }
1804
1805 pmu_check_apic();
1806
1807 /* sanity check that the hardware exists or is emulated */
1808 if (!check_hw_exists())
1809 return 0;
1810
1811 pr_cont("%s PMU driver.\n", x86_pmu.name);
1812
1813 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1814
1815 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1816 quirk->func();
1817
1818 if (!x86_pmu.intel_ctrl)
1819 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1820
1821 perf_events_lapic_init();
1822 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1823
1824 unconstrained = (struct event_constraint)
1825 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1826 0, x86_pmu.num_counters, 0, 0);
1827
1828 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1829
1830 if (!x86_pmu.events_sysfs_show)
1831 x86_pmu_events_group.attrs = &empty_attrs;
1832
1833 pmu.attr_update = x86_pmu.attr_update;
1834
1835 pr_info("... version: %d\n", x86_pmu.version);
1836 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1837 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1838 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1839 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1840 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1841 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1842
1843 /*
1844 * Install callbacks. Core will call them for each online
1845 * cpu.
1846 */
1847 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1848 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1849 if (err)
1850 return err;
1851
1852 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1853 "perf/x86:starting", x86_pmu_starting_cpu,
1854 x86_pmu_dying_cpu);
1855 if (err)
1856 goto out;
1857
1858 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1859 x86_pmu_online_cpu, NULL);
1860 if (err)
1861 goto out1;
1862
1863 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1864 if (err)
1865 goto out2;
1866
1867 return 0;
1868
1869 out2:
1870 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1871 out1:
1872 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1873 out:
1874 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1875 return err;
1876 }
1877 early_initcall(init_hw_perf_events);
1878
x86_pmu_read(struct perf_event * event)1879 static inline void x86_pmu_read(struct perf_event *event)
1880 {
1881 if (x86_pmu.read)
1882 return x86_pmu.read(event);
1883 x86_perf_event_update(event);
1884 }
1885
1886 /*
1887 * Start group events scheduling transaction
1888 * Set the flag to make pmu::enable() not perform the
1889 * schedulability test, it will be performed at commit time
1890 *
1891 * We only support PERF_PMU_TXN_ADD transactions. Save the
1892 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1893 * transactions.
1894 */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1895 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1896 {
1897 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1898
1899 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1900
1901 cpuc->txn_flags = txn_flags;
1902 if (txn_flags & ~PERF_PMU_TXN_ADD)
1903 return;
1904
1905 perf_pmu_disable(pmu);
1906 __this_cpu_write(cpu_hw_events.n_txn, 0);
1907 }
1908
1909 /*
1910 * Stop group events scheduling transaction
1911 * Clear the flag and pmu::enable() will perform the
1912 * schedulability test.
1913 */
x86_pmu_cancel_txn(struct pmu * pmu)1914 static void x86_pmu_cancel_txn(struct pmu *pmu)
1915 {
1916 unsigned int txn_flags;
1917 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1918
1919 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1920
1921 txn_flags = cpuc->txn_flags;
1922 cpuc->txn_flags = 0;
1923 if (txn_flags & ~PERF_PMU_TXN_ADD)
1924 return;
1925
1926 /*
1927 * Truncate collected array by the number of events added in this
1928 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1929 */
1930 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1931 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1932 perf_pmu_enable(pmu);
1933 }
1934
1935 /*
1936 * Commit group events scheduling transaction
1937 * Perform the group schedulability test as a whole
1938 * Return 0 if success
1939 *
1940 * Does not cancel the transaction on failure; expects the caller to do this.
1941 */
x86_pmu_commit_txn(struct pmu * pmu)1942 static int x86_pmu_commit_txn(struct pmu *pmu)
1943 {
1944 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1945 int assign[X86_PMC_IDX_MAX];
1946 int n, ret;
1947
1948 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1949
1950 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1951 cpuc->txn_flags = 0;
1952 return 0;
1953 }
1954
1955 n = cpuc->n_events;
1956
1957 if (!x86_pmu_initialized())
1958 return -EAGAIN;
1959
1960 ret = x86_pmu.schedule_events(cpuc, n, assign);
1961 if (ret)
1962 return ret;
1963
1964 /*
1965 * copy new assignment, now we know it is possible
1966 * will be used by hw_perf_enable()
1967 */
1968 memcpy(cpuc->assign, assign, n*sizeof(int));
1969
1970 cpuc->txn_flags = 0;
1971 perf_pmu_enable(pmu);
1972 return 0;
1973 }
1974 /*
1975 * a fake_cpuc is used to validate event groups. Due to
1976 * the extra reg logic, we need to also allocate a fake
1977 * per_core and per_cpu structure. Otherwise, group events
1978 * using extra reg may conflict without the kernel being
1979 * able to catch this when the last event gets added to
1980 * the group.
1981 */
free_fake_cpuc(struct cpu_hw_events * cpuc)1982 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1983 {
1984 intel_cpuc_finish(cpuc);
1985 kfree(cpuc);
1986 }
1987
allocate_fake_cpuc(void)1988 static struct cpu_hw_events *allocate_fake_cpuc(void)
1989 {
1990 struct cpu_hw_events *cpuc;
1991 int cpu = raw_smp_processor_id();
1992
1993 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1994 if (!cpuc)
1995 return ERR_PTR(-ENOMEM);
1996 cpuc->is_fake = 1;
1997
1998 if (intel_cpuc_prepare(cpuc, cpu))
1999 goto error;
2000
2001 return cpuc;
2002 error:
2003 free_fake_cpuc(cpuc);
2004 return ERR_PTR(-ENOMEM);
2005 }
2006
2007 /*
2008 * validate that we can schedule this event
2009 */
validate_event(struct perf_event * event)2010 static int validate_event(struct perf_event *event)
2011 {
2012 struct cpu_hw_events *fake_cpuc;
2013 struct event_constraint *c;
2014 int ret = 0;
2015
2016 fake_cpuc = allocate_fake_cpuc();
2017 if (IS_ERR(fake_cpuc))
2018 return PTR_ERR(fake_cpuc);
2019
2020 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2021
2022 if (!c || !c->weight)
2023 ret = -EINVAL;
2024
2025 if (x86_pmu.put_event_constraints)
2026 x86_pmu.put_event_constraints(fake_cpuc, event);
2027
2028 free_fake_cpuc(fake_cpuc);
2029
2030 return ret;
2031 }
2032
2033 /*
2034 * validate a single event group
2035 *
2036 * validation include:
2037 * - check events are compatible which each other
2038 * - events do not compete for the same counter
2039 * - number of events <= number of counters
2040 *
2041 * validation ensures the group can be loaded onto the
2042 * PMU if it was the only group available.
2043 */
validate_group(struct perf_event * event)2044 static int validate_group(struct perf_event *event)
2045 {
2046 struct perf_event *leader = event->group_leader;
2047 struct cpu_hw_events *fake_cpuc;
2048 int ret = -EINVAL, n;
2049
2050 fake_cpuc = allocate_fake_cpuc();
2051 if (IS_ERR(fake_cpuc))
2052 return PTR_ERR(fake_cpuc);
2053 /*
2054 * the event is not yet connected with its
2055 * siblings therefore we must first collect
2056 * existing siblings, then add the new event
2057 * before we can simulate the scheduling
2058 */
2059 n = collect_events(fake_cpuc, leader, true);
2060 if (n < 0)
2061 goto out;
2062
2063 fake_cpuc->n_events = n;
2064 n = collect_events(fake_cpuc, event, false);
2065 if (n < 0)
2066 goto out;
2067
2068 fake_cpuc->n_events = 0;
2069 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2070
2071 out:
2072 free_fake_cpuc(fake_cpuc);
2073 return ret;
2074 }
2075
x86_pmu_event_init(struct perf_event * event)2076 static int x86_pmu_event_init(struct perf_event *event)
2077 {
2078 struct pmu *tmp;
2079 int err;
2080
2081 switch (event->attr.type) {
2082 case PERF_TYPE_RAW:
2083 case PERF_TYPE_HARDWARE:
2084 case PERF_TYPE_HW_CACHE:
2085 break;
2086
2087 default:
2088 return -ENOENT;
2089 }
2090
2091 err = __x86_pmu_event_init(event);
2092 if (!err) {
2093 /*
2094 * we temporarily connect event to its pmu
2095 * such that validate_group() can classify
2096 * it as an x86 event using is_x86_event()
2097 */
2098 tmp = event->pmu;
2099 event->pmu = &pmu;
2100
2101 if (event->group_leader != event)
2102 err = validate_group(event);
2103 else
2104 err = validate_event(event);
2105
2106 event->pmu = tmp;
2107 }
2108 if (err) {
2109 if (event->destroy)
2110 event->destroy(event);
2111 event->destroy = NULL;
2112 }
2113
2114 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2115 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2116 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2117
2118 return err;
2119 }
2120
refresh_pce(void * ignored)2121 static void refresh_pce(void *ignored)
2122 {
2123 load_mm_cr4_irqsoff(this_cpu_read(cpu_tlbstate.loaded_mm));
2124 }
2125
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2126 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2127 {
2128 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2129 return;
2130
2131 /*
2132 * This function relies on not being called concurrently in two
2133 * tasks in the same mm. Otherwise one task could observe
2134 * perf_rdpmc_allowed > 1 and return all the way back to
2135 * userspace with CR4.PCE clear while another task is still
2136 * doing on_each_cpu_mask() to propagate CR4.PCE.
2137 *
2138 * For now, this can't happen because all callers hold mmap_sem
2139 * for write. If this changes, we'll need a different solution.
2140 */
2141 lockdep_assert_held_write(&mm->mmap_sem);
2142
2143 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2144 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2145 }
2146
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2147 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2148 {
2149
2150 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2151 return;
2152
2153 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2154 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2155 }
2156
x86_pmu_event_idx(struct perf_event * event)2157 static int x86_pmu_event_idx(struct perf_event *event)
2158 {
2159 int idx = event->hw.idx;
2160
2161 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2162 return 0;
2163
2164 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2165 idx -= INTEL_PMC_IDX_FIXED;
2166 idx |= 1 << 30;
2167 }
2168
2169 return idx + 1;
2170 }
2171
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2172 static ssize_t get_attr_rdpmc(struct device *cdev,
2173 struct device_attribute *attr,
2174 char *buf)
2175 {
2176 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2177 }
2178
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2179 static ssize_t set_attr_rdpmc(struct device *cdev,
2180 struct device_attribute *attr,
2181 const char *buf, size_t count)
2182 {
2183 unsigned long val;
2184 ssize_t ret;
2185
2186 ret = kstrtoul(buf, 0, &val);
2187 if (ret)
2188 return ret;
2189
2190 if (val > 2)
2191 return -EINVAL;
2192
2193 if (x86_pmu.attr_rdpmc_broken)
2194 return -ENOTSUPP;
2195
2196 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2197 /*
2198 * Changing into or out of always available, aka
2199 * perf-event-bypassing mode. This path is extremely slow,
2200 * but only root can trigger it, so it's okay.
2201 */
2202 if (val == 2)
2203 static_branch_inc(&rdpmc_always_available_key);
2204 else
2205 static_branch_dec(&rdpmc_always_available_key);
2206 on_each_cpu(refresh_pce, NULL, 1);
2207 }
2208
2209 x86_pmu.attr_rdpmc = val;
2210
2211 return count;
2212 }
2213
2214 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2215
2216 static struct attribute *x86_pmu_attrs[] = {
2217 &dev_attr_rdpmc.attr,
2218 NULL,
2219 };
2220
2221 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2222 .attrs = x86_pmu_attrs,
2223 };
2224
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2225 static ssize_t max_precise_show(struct device *cdev,
2226 struct device_attribute *attr,
2227 char *buf)
2228 {
2229 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2230 }
2231
2232 static DEVICE_ATTR_RO(max_precise);
2233
2234 static struct attribute *x86_pmu_caps_attrs[] = {
2235 &dev_attr_max_precise.attr,
2236 NULL
2237 };
2238
2239 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2240 .name = "caps",
2241 .attrs = x86_pmu_caps_attrs,
2242 };
2243
2244 static const struct attribute_group *x86_pmu_attr_groups[] = {
2245 &x86_pmu_attr_group,
2246 &x86_pmu_format_group,
2247 &x86_pmu_events_group,
2248 &x86_pmu_caps_group,
2249 NULL,
2250 };
2251
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2252 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2253 {
2254 if (x86_pmu.sched_task)
2255 x86_pmu.sched_task(ctx, sched_in);
2256 }
2257
perf_check_microcode(void)2258 void perf_check_microcode(void)
2259 {
2260 if (x86_pmu.check_microcode)
2261 x86_pmu.check_microcode();
2262 }
2263
x86_pmu_check_period(struct perf_event * event,u64 value)2264 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2265 {
2266 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2267 return -EINVAL;
2268
2269 if (value && x86_pmu.limit_period) {
2270 if (x86_pmu.limit_period(event, value) > value)
2271 return -EINVAL;
2272 }
2273
2274 return 0;
2275 }
2276
x86_pmu_aux_output_match(struct perf_event * event)2277 static int x86_pmu_aux_output_match(struct perf_event *event)
2278 {
2279 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2280 return 0;
2281
2282 if (x86_pmu.aux_output_match)
2283 return x86_pmu.aux_output_match(event);
2284
2285 return 0;
2286 }
2287
2288 static struct pmu pmu = {
2289 .pmu_enable = x86_pmu_enable,
2290 .pmu_disable = x86_pmu_disable,
2291
2292 .attr_groups = x86_pmu_attr_groups,
2293
2294 .event_init = x86_pmu_event_init,
2295
2296 .event_mapped = x86_pmu_event_mapped,
2297 .event_unmapped = x86_pmu_event_unmapped,
2298
2299 .add = x86_pmu_add,
2300 .del = x86_pmu_del,
2301 .start = x86_pmu_start,
2302 .stop = x86_pmu_stop,
2303 .read = x86_pmu_read,
2304
2305 .start_txn = x86_pmu_start_txn,
2306 .cancel_txn = x86_pmu_cancel_txn,
2307 .commit_txn = x86_pmu_commit_txn,
2308
2309 .event_idx = x86_pmu_event_idx,
2310 .sched_task = x86_pmu_sched_task,
2311 .task_ctx_size = sizeof(struct x86_perf_task_context),
2312 .check_period = x86_pmu_check_period,
2313
2314 .aux_output_match = x86_pmu_aux_output_match,
2315 };
2316
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2317 void arch_perf_update_userpage(struct perf_event *event,
2318 struct perf_event_mmap_page *userpg, u64 now)
2319 {
2320 struct cyc2ns_data data;
2321 u64 offset;
2322
2323 userpg->cap_user_time = 0;
2324 userpg->cap_user_time_zero = 0;
2325 userpg->cap_user_rdpmc =
2326 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2327 userpg->pmc_width = x86_pmu.cntval_bits;
2328
2329 if (!using_native_sched_clock() || !sched_clock_stable())
2330 return;
2331
2332 cyc2ns_read_begin(&data);
2333
2334 offset = data.cyc2ns_offset + __sched_clock_offset;
2335
2336 /*
2337 * Internal timekeeping for enabled/running/stopped times
2338 * is always in the local_clock domain.
2339 */
2340 userpg->cap_user_time = 1;
2341 userpg->time_mult = data.cyc2ns_mul;
2342 userpg->time_shift = data.cyc2ns_shift;
2343 userpg->time_offset = offset - now;
2344
2345 /*
2346 * cap_user_time_zero doesn't make sense when we're using a different
2347 * time base for the records.
2348 */
2349 if (!event->attr.use_clockid) {
2350 userpg->cap_user_time_zero = 1;
2351 userpg->time_zero = offset;
2352 }
2353
2354 cyc2ns_read_end();
2355 }
2356
2357 /*
2358 * Determine whether the regs were taken from an irq/exception handler rather
2359 * than from perf_arch_fetch_caller_regs().
2360 */
perf_hw_regs(struct pt_regs * regs)2361 static bool perf_hw_regs(struct pt_regs *regs)
2362 {
2363 return regs->flags & X86_EFLAGS_FIXED;
2364 }
2365
2366 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2367 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2368 {
2369 struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2370 struct unwind_state state;
2371 unsigned long addr;
2372
2373 if (guest_cbs && guest_cbs->is_in_guest()) {
2374 /* TODO: We don't support guest os callchain now */
2375 return;
2376 }
2377
2378 if (perf_callchain_store(entry, regs->ip))
2379 return;
2380
2381 if (perf_hw_regs(regs))
2382 unwind_start(&state, current, regs, NULL);
2383 else
2384 unwind_start(&state, current, NULL, (void *)regs->sp);
2385
2386 for (; !unwind_done(&state); unwind_next_frame(&state)) {
2387 addr = unwind_get_return_address(&state);
2388 if (!addr || perf_callchain_store(entry, addr))
2389 return;
2390 }
2391 }
2392
2393 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2394 valid_user_frame(const void __user *fp, unsigned long size)
2395 {
2396 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2397 }
2398
get_segment_base(unsigned int segment)2399 static unsigned long get_segment_base(unsigned int segment)
2400 {
2401 struct desc_struct *desc;
2402 unsigned int idx = segment >> 3;
2403
2404 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2405 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2406 struct ldt_struct *ldt;
2407
2408 /* IRQs are off, so this synchronizes with smp_store_release */
2409 ldt = READ_ONCE(current->active_mm->context.ldt);
2410 if (!ldt || idx >= ldt->nr_entries)
2411 return 0;
2412
2413 desc = &ldt->entries[idx];
2414 #else
2415 return 0;
2416 #endif
2417 } else {
2418 if (idx >= GDT_ENTRIES)
2419 return 0;
2420
2421 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2422 }
2423
2424 return get_desc_base(desc);
2425 }
2426
2427 #ifdef CONFIG_IA32_EMULATION
2428
2429 #include <linux/compat.h>
2430
2431 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2432 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2433 {
2434 /* 32-bit process in 64-bit kernel. */
2435 unsigned long ss_base, cs_base;
2436 struct stack_frame_ia32 frame;
2437 const void __user *fp;
2438
2439 if (!test_thread_flag(TIF_IA32))
2440 return 0;
2441
2442 cs_base = get_segment_base(regs->cs);
2443 ss_base = get_segment_base(regs->ss);
2444
2445 fp = compat_ptr(ss_base + regs->bp);
2446 pagefault_disable();
2447 while (entry->nr < entry->max_stack) {
2448 unsigned long bytes;
2449 frame.next_frame = 0;
2450 frame.return_address = 0;
2451
2452 if (!valid_user_frame(fp, sizeof(frame)))
2453 break;
2454
2455 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2456 if (bytes != 0)
2457 break;
2458 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2459 if (bytes != 0)
2460 break;
2461
2462 perf_callchain_store(entry, cs_base + frame.return_address);
2463 fp = compat_ptr(ss_base + frame.next_frame);
2464 }
2465 pagefault_enable();
2466 return 1;
2467 }
2468 #else
2469 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2470 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2471 {
2472 return 0;
2473 }
2474 #endif
2475
2476 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2477 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2478 {
2479 struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2480 struct stack_frame frame;
2481 const unsigned long __user *fp;
2482
2483 if (guest_cbs && guest_cbs->is_in_guest()) {
2484 /* TODO: We don't support guest os callchain now */
2485 return;
2486 }
2487
2488 /*
2489 * We don't know what to do with VM86 stacks.. ignore them for now.
2490 */
2491 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2492 return;
2493
2494 fp = (unsigned long __user *)regs->bp;
2495
2496 perf_callchain_store(entry, regs->ip);
2497
2498 if (!nmi_uaccess_okay())
2499 return;
2500
2501 if (perf_callchain_user32(regs, entry))
2502 return;
2503
2504 pagefault_disable();
2505 while (entry->nr < entry->max_stack) {
2506 unsigned long bytes;
2507
2508 frame.next_frame = NULL;
2509 frame.return_address = 0;
2510
2511 if (!valid_user_frame(fp, sizeof(frame)))
2512 break;
2513
2514 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2515 if (bytes != 0)
2516 break;
2517 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2518 if (bytes != 0)
2519 break;
2520
2521 perf_callchain_store(entry, frame.return_address);
2522 fp = (void __user *)frame.next_frame;
2523 }
2524 pagefault_enable();
2525 }
2526
2527 /*
2528 * Deal with code segment offsets for the various execution modes:
2529 *
2530 * VM86 - the good olde 16 bit days, where the linear address is
2531 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2532 *
2533 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2534 * to figure out what the 32bit base address is.
2535 *
2536 * X32 - has TIF_X32 set, but is running in x86_64
2537 *
2538 * X86_64 - CS,DS,SS,ES are all zero based.
2539 */
code_segment_base(struct pt_regs * regs)2540 static unsigned long code_segment_base(struct pt_regs *regs)
2541 {
2542 /*
2543 * For IA32 we look at the GDT/LDT segment base to convert the
2544 * effective IP to a linear address.
2545 */
2546
2547 #ifdef CONFIG_X86_32
2548 /*
2549 * If we are in VM86 mode, add the segment offset to convert to a
2550 * linear address.
2551 */
2552 if (regs->flags & X86_VM_MASK)
2553 return 0x10 * regs->cs;
2554
2555 if (user_mode(regs) && regs->cs != __USER_CS)
2556 return get_segment_base(regs->cs);
2557 #else
2558 if (user_mode(regs) && !user_64bit_mode(regs) &&
2559 regs->cs != __USER32_CS)
2560 return get_segment_base(regs->cs);
2561 #endif
2562 return 0;
2563 }
2564
perf_instruction_pointer(struct pt_regs * regs)2565 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2566 {
2567 struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2568
2569 if (guest_cbs && guest_cbs->is_in_guest())
2570 return guest_cbs->get_guest_ip();
2571
2572 return regs->ip + code_segment_base(regs);
2573 }
2574
perf_misc_flags(struct pt_regs * regs)2575 unsigned long perf_misc_flags(struct pt_regs *regs)
2576 {
2577 struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2578 int misc = 0;
2579
2580 if (guest_cbs && guest_cbs->is_in_guest()) {
2581 if (guest_cbs->is_user_mode())
2582 misc |= PERF_RECORD_MISC_GUEST_USER;
2583 else
2584 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2585 } else {
2586 if (user_mode(regs))
2587 misc |= PERF_RECORD_MISC_USER;
2588 else
2589 misc |= PERF_RECORD_MISC_KERNEL;
2590 }
2591
2592 if (regs->flags & PERF_EFLAGS_EXACT)
2593 misc |= PERF_RECORD_MISC_EXACT_IP;
2594
2595 return misc;
2596 }
2597
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2598 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2599 {
2600 cap->version = x86_pmu.version;
2601 cap->num_counters_gp = x86_pmu.num_counters;
2602 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2603 cap->bit_width_gp = x86_pmu.cntval_bits;
2604 cap->bit_width_fixed = x86_pmu.cntval_bits;
2605 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2606 cap->events_mask_len = x86_pmu.events_mask_len;
2607 }
2608 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2609