• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43 
44 #include "perf_event.h"
45 
46 struct x86_pmu x86_pmu __read_mostly;
47 
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 	.enabled = 1,
50 };
51 
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
53 
54 u64 __read_mostly hw_cache_event_ids
55 				[PERF_COUNT_HW_CACHE_MAX]
56 				[PERF_COUNT_HW_CACHE_OP_MAX]
57 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 				[PERF_COUNT_HW_CACHE_MAX]
60 				[PERF_COUNT_HW_CACHE_OP_MAX]
61 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
62 
63 /*
64  * Propagate event elapsed time into the generic event.
65  * Can only be executed on the CPU where the event is active.
66  * Returns the delta events processed.
67  */
x86_perf_event_update(struct perf_event * event)68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70 	struct hw_perf_event *hwc = &event->hw;
71 	int shift = 64 - x86_pmu.cntval_bits;
72 	u64 prev_raw_count, new_raw_count;
73 	int idx = hwc->idx;
74 	u64 delta;
75 
76 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
77 		return 0;
78 
79 	/*
80 	 * Careful: an NMI might modify the previous event value.
81 	 *
82 	 * Our tactic to handle this is to first atomically read and
83 	 * exchange a new raw count - then add that new-prev delta
84 	 * count to the generic event atomically:
85 	 */
86 again:
87 	prev_raw_count = local64_read(&hwc->prev_count);
88 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89 
90 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 					new_raw_count) != prev_raw_count)
92 		goto again;
93 
94 	/*
95 	 * Now we have the new raw value and have updated the prev
96 	 * timestamp already. We can now calculate the elapsed delta
97 	 * (event-)time and add that to the generic event.
98 	 *
99 	 * Careful, not all hw sign-extends above the physical width
100 	 * of the count.
101 	 */
102 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 	delta >>= shift;
104 
105 	local64_add(delta, &event->count);
106 	local64_sub(delta, &hwc->period_left);
107 
108 	return new_raw_count;
109 }
110 
111 /*
112  * Find and validate any extra registers to set up.
113  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116 	struct hw_perf_event_extra *reg;
117 	struct extra_reg *er;
118 
119 	reg = &event->hw.extra_reg;
120 
121 	if (!x86_pmu.extra_regs)
122 		return 0;
123 
124 	for (er = x86_pmu.extra_regs; er->msr; er++) {
125 		if (er->event != (config & er->config_mask))
126 			continue;
127 		if (event->attr.config1 & ~er->valid_mask)
128 			return -EINVAL;
129 		/* Check if the extra msrs can be safely accessed*/
130 		if (!er->extra_msr_access)
131 			return -ENXIO;
132 
133 		reg->idx = er->idx;
134 		reg->config = event->attr.config1;
135 		reg->reg = er->msr;
136 		break;
137 	}
138 	return 0;
139 }
140 
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144 
145 #ifdef CONFIG_X86_LOCAL_APIC
146 
reserve_pmc_hardware(void)147 static bool reserve_pmc_hardware(void)
148 {
149 	int i;
150 
151 	for (i = 0; i < x86_pmu.num_counters; i++) {
152 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153 			goto perfctr_fail;
154 	}
155 
156 	for (i = 0; i < x86_pmu.num_counters; i++) {
157 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158 			goto eventsel_fail;
159 	}
160 
161 	return true;
162 
163 eventsel_fail:
164 	for (i--; i >= 0; i--)
165 		release_evntsel_nmi(x86_pmu_config_addr(i));
166 
167 	i = x86_pmu.num_counters;
168 
169 perfctr_fail:
170 	for (i--; i >= 0; i--)
171 		release_perfctr_nmi(x86_pmu_event_addr(i));
172 
173 	return false;
174 }
175 
release_pmc_hardware(void)176 static void release_pmc_hardware(void)
177 {
178 	int i;
179 
180 	for (i = 0; i < x86_pmu.num_counters; i++) {
181 		release_perfctr_nmi(x86_pmu_event_addr(i));
182 		release_evntsel_nmi(x86_pmu_config_addr(i));
183 	}
184 }
185 
186 #else
187 
reserve_pmc_hardware(void)188 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)189 static void release_pmc_hardware(void) {}
190 
191 #endif
192 
check_hw_exists(void)193 static bool check_hw_exists(void)
194 {
195 	u64 val, val_fail = -1, val_new= ~0;
196 	int i, reg, reg_fail = -1, ret = 0;
197 	int bios_fail = 0;
198 	int reg_safe = -1;
199 
200 	/*
201 	 * Check to see if the BIOS enabled any of the counters, if so
202 	 * complain and bail.
203 	 */
204 	for (i = 0; i < x86_pmu.num_counters; i++) {
205 		reg = x86_pmu_config_addr(i);
206 		ret = rdmsrl_safe(reg, &val);
207 		if (ret)
208 			goto msr_fail;
209 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210 			bios_fail = 1;
211 			val_fail = val;
212 			reg_fail = reg;
213 		} else {
214 			reg_safe = i;
215 		}
216 	}
217 
218 	if (x86_pmu.num_counters_fixed) {
219 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 		ret = rdmsrl_safe(reg, &val);
221 		if (ret)
222 			goto msr_fail;
223 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 			if (val & (0x03 << i*4)) {
225 				bios_fail = 1;
226 				val_fail = val;
227 				reg_fail = reg;
228 			}
229 		}
230 	}
231 
232 	/*
233 	 * If all the counters are enabled, the below test will always
234 	 * fail.  The tools will also become useless in this scenario.
235 	 * Just fail and disable the hardware counters.
236 	 */
237 
238 	if (reg_safe == -1) {
239 		reg = reg_safe;
240 		goto msr_fail;
241 	}
242 
243 	/*
244 	 * Read the current value, change it and read it back to see if it
245 	 * matches, this is needed to detect certain hardware emulators
246 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247 	 */
248 	reg = x86_pmu_event_addr(reg_safe);
249 	if (rdmsrl_safe(reg, &val))
250 		goto msr_fail;
251 	val ^= 0xffffUL;
252 	ret = wrmsrl_safe(reg, val);
253 	ret |= rdmsrl_safe(reg, &val_new);
254 	if (ret || val != val_new)
255 		goto msr_fail;
256 
257 	/*
258 	 * We still allow the PMU driver to operate:
259 	 */
260 	if (bios_fail) {
261 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263 			      reg_fail, val_fail);
264 	}
265 
266 	return true;
267 
268 msr_fail:
269 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 		pr_cont("PMU not available due to virtualization, using software events only.\n");
271 	} else {
272 		pr_cont("Broken PMU hardware detected, using software events only.\n");
273 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274 		       reg, val_new);
275 	}
276 
277 	return false;
278 }
279 
hw_perf_event_destroy(struct perf_event * event)280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282 	x86_release_hardware();
283 	atomic_dec(&active_events);
284 }
285 
hw_perf_lbr_event_destroy(struct perf_event * event)286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288 	hw_perf_event_destroy(event);
289 
290 	/* undo the lbr/bts event accounting */
291 	x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293 
x86_pmu_initialized(void)294 static inline int x86_pmu_initialized(void)
295 {
296 	return x86_pmu.handle_irq != NULL;
297 }
298 
299 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302 	struct perf_event_attr *attr = &event->attr;
303 	unsigned int cache_type, cache_op, cache_result;
304 	u64 config, val;
305 
306 	config = attr->config;
307 
308 	cache_type = (config >> 0) & 0xff;
309 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 		return -EINVAL;
311 	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312 
313 	cache_op = (config >>  8) & 0xff;
314 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315 		return -EINVAL;
316 	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317 
318 	cache_result = (config >> 16) & 0xff;
319 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320 		return -EINVAL;
321 	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322 
323 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324 
325 	if (val == 0)
326 		return -ENOENT;
327 
328 	if (val == -1)
329 		return -EINVAL;
330 
331 	hwc->config |= val;
332 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 	return x86_pmu_extra_regs(val, event);
334 }
335 
x86_reserve_hardware(void)336 int x86_reserve_hardware(void)
337 {
338 	int err = 0;
339 
340 	if (!atomic_inc_not_zero(&pmc_refcount)) {
341 		mutex_lock(&pmc_reserve_mutex);
342 		if (atomic_read(&pmc_refcount) == 0) {
343 			if (!reserve_pmc_hardware())
344 				err = -EBUSY;
345 			else
346 				reserve_ds_buffers();
347 		}
348 		if (!err)
349 			atomic_inc(&pmc_refcount);
350 		mutex_unlock(&pmc_reserve_mutex);
351 	}
352 
353 	return err;
354 }
355 
x86_release_hardware(void)356 void x86_release_hardware(void)
357 {
358 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 		release_pmc_hardware();
360 		release_ds_buffers();
361 		mutex_unlock(&pmc_reserve_mutex);
362 	}
363 }
364 
365 /*
366  * Check if we can create event of a certain type (that no conflicting events
367  * are present).
368  */
x86_add_exclusive(unsigned int what)369 int x86_add_exclusive(unsigned int what)
370 {
371 	int i;
372 
373 	/*
374 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 	 * LBR and BTS are still mutually exclusive.
376 	 */
377 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378 		goto out;
379 
380 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381 		mutex_lock(&pmc_reserve_mutex);
382 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384 				goto fail_unlock;
385 		}
386 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
387 		mutex_unlock(&pmc_reserve_mutex);
388 	}
389 
390 out:
391 	atomic_inc(&active_events);
392 	return 0;
393 
394 fail_unlock:
395 	mutex_unlock(&pmc_reserve_mutex);
396 	return -EBUSY;
397 }
398 
x86_del_exclusive(unsigned int what)399 void x86_del_exclusive(unsigned int what)
400 {
401 	atomic_dec(&active_events);
402 
403 	/*
404 	 * See the comment in x86_add_exclusive().
405 	 */
406 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
407 		return;
408 
409 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
410 }
411 
x86_setup_perfctr(struct perf_event * event)412 int x86_setup_perfctr(struct perf_event *event)
413 {
414 	struct perf_event_attr *attr = &event->attr;
415 	struct hw_perf_event *hwc = &event->hw;
416 	u64 config;
417 
418 	if (!is_sampling_event(event)) {
419 		hwc->sample_period = x86_pmu.max_period;
420 		hwc->last_period = hwc->sample_period;
421 		local64_set(&hwc->period_left, hwc->sample_period);
422 	}
423 
424 	if (attr->type == PERF_TYPE_RAW)
425 		return x86_pmu_extra_regs(event->attr.config, event);
426 
427 	if (attr->type == PERF_TYPE_HW_CACHE)
428 		return set_ext_hw_attr(hwc, event);
429 
430 	if (attr->config >= x86_pmu.max_events)
431 		return -EINVAL;
432 
433 	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
434 
435 	/*
436 	 * The generic map:
437 	 */
438 	config = x86_pmu.event_map(attr->config);
439 
440 	if (config == 0)
441 		return -ENOENT;
442 
443 	if (config == -1LL)
444 		return -EINVAL;
445 
446 	hwc->config |= config;
447 
448 	return 0;
449 }
450 
451 /*
452  * check that branch_sample_type is compatible with
453  * settings needed for precise_ip > 1 which implies
454  * using the LBR to capture ALL taken branches at the
455  * priv levels of the measurement
456  */
precise_br_compat(struct perf_event * event)457 static inline int precise_br_compat(struct perf_event *event)
458 {
459 	u64 m = event->attr.branch_sample_type;
460 	u64 b = 0;
461 
462 	/* must capture all branches */
463 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
464 		return 0;
465 
466 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
467 
468 	if (!event->attr.exclude_user)
469 		b |= PERF_SAMPLE_BRANCH_USER;
470 
471 	if (!event->attr.exclude_kernel)
472 		b |= PERF_SAMPLE_BRANCH_KERNEL;
473 
474 	/*
475 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
476 	 */
477 
478 	return m == b;
479 }
480 
x86_pmu_max_precise(void)481 int x86_pmu_max_precise(void)
482 {
483 	int precise = 0;
484 
485 	/* Support for constant skid */
486 	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
487 		precise++;
488 
489 		/* Support for IP fixup */
490 		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
491 			precise++;
492 
493 		if (x86_pmu.pebs_prec_dist)
494 			precise++;
495 	}
496 	return precise;
497 }
498 
x86_pmu_hw_config(struct perf_event * event)499 int x86_pmu_hw_config(struct perf_event *event)
500 {
501 	if (event->attr.precise_ip) {
502 		int precise = x86_pmu_max_precise();
503 
504 		if (event->attr.precise_ip > precise)
505 			return -EOPNOTSUPP;
506 
507 		/* There's no sense in having PEBS for non sampling events: */
508 		if (!is_sampling_event(event))
509 			return -EINVAL;
510 	}
511 	/*
512 	 * check that PEBS LBR correction does not conflict with
513 	 * whatever the user is asking with attr->branch_sample_type
514 	 */
515 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
516 		u64 *br_type = &event->attr.branch_sample_type;
517 
518 		if (has_branch_stack(event)) {
519 			if (!precise_br_compat(event))
520 				return -EOPNOTSUPP;
521 
522 			/* branch_sample_type is compatible */
523 
524 		} else {
525 			/*
526 			 * user did not specify  branch_sample_type
527 			 *
528 			 * For PEBS fixups, we capture all
529 			 * the branches at the priv level of the
530 			 * event.
531 			 */
532 			*br_type = PERF_SAMPLE_BRANCH_ANY;
533 
534 			if (!event->attr.exclude_user)
535 				*br_type |= PERF_SAMPLE_BRANCH_USER;
536 
537 			if (!event->attr.exclude_kernel)
538 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
539 		}
540 	}
541 
542 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
543 		event->attach_state |= PERF_ATTACH_TASK_DATA;
544 
545 	/*
546 	 * Generate PMC IRQs:
547 	 * (keep 'enabled' bit clear for now)
548 	 */
549 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
550 
551 	/*
552 	 * Count user and OS events unless requested not to
553 	 */
554 	if (!event->attr.exclude_user)
555 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
556 	if (!event->attr.exclude_kernel)
557 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
558 
559 	if (event->attr.type == PERF_TYPE_RAW)
560 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
561 
562 	if (event->attr.sample_period && x86_pmu.limit_period) {
563 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
564 				event->attr.sample_period)
565 			return -EINVAL;
566 	}
567 
568 	/* sample_regs_user never support XMM registers */
569 	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
570 		return -EINVAL;
571 	/*
572 	 * Besides the general purpose registers, XMM registers may
573 	 * be collected in PEBS on some platforms, e.g. Icelake
574 	 */
575 	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
576 		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
577 			return -EINVAL;
578 
579 		if (!event->attr.precise_ip)
580 			return -EINVAL;
581 	}
582 
583 	return x86_setup_perfctr(event);
584 }
585 
586 /*
587  * Setup the hardware configuration for a given attr_type
588  */
__x86_pmu_event_init(struct perf_event * event)589 static int __x86_pmu_event_init(struct perf_event *event)
590 {
591 	int err;
592 
593 	if (!x86_pmu_initialized())
594 		return -ENODEV;
595 
596 	err = x86_reserve_hardware();
597 	if (err)
598 		return err;
599 
600 	atomic_inc(&active_events);
601 	event->destroy = hw_perf_event_destroy;
602 
603 	event->hw.idx = -1;
604 	event->hw.last_cpu = -1;
605 	event->hw.last_tag = ~0ULL;
606 
607 	/* mark unused */
608 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
609 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
610 
611 	return x86_pmu.hw_config(event);
612 }
613 
x86_pmu_disable_all(void)614 void x86_pmu_disable_all(void)
615 {
616 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
617 	int idx;
618 
619 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
620 		u64 val;
621 
622 		if (!test_bit(idx, cpuc->active_mask))
623 			continue;
624 		rdmsrl(x86_pmu_config_addr(idx), val);
625 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
626 			continue;
627 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
628 		wrmsrl(x86_pmu_config_addr(idx), val);
629 	}
630 }
631 
632 /*
633  * There may be PMI landing after enabled=0. The PMI hitting could be before or
634  * after disable_all.
635  *
636  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
637  * It will not be re-enabled in the NMI handler again, because enabled=0. After
638  * handling the NMI, disable_all will be called, which will not change the
639  * state either. If PMI hits after disable_all, the PMU is already disabled
640  * before entering NMI handler. The NMI handler will not change the state
641  * either.
642  *
643  * So either situation is harmless.
644  */
x86_pmu_disable(struct pmu * pmu)645 static void x86_pmu_disable(struct pmu *pmu)
646 {
647 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
648 
649 	if (!x86_pmu_initialized())
650 		return;
651 
652 	if (!cpuc->enabled)
653 		return;
654 
655 	cpuc->n_added = 0;
656 	cpuc->enabled = 0;
657 	barrier();
658 
659 	x86_pmu.disable_all();
660 }
661 
x86_pmu_enable_all(int added)662 void x86_pmu_enable_all(int added)
663 {
664 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
665 	int idx;
666 
667 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
668 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
669 
670 		if (!test_bit(idx, cpuc->active_mask))
671 			continue;
672 
673 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
674 	}
675 }
676 
677 static struct pmu pmu;
678 
is_x86_event(struct perf_event * event)679 static inline int is_x86_event(struct perf_event *event)
680 {
681 	return event->pmu == &pmu;
682 }
683 
x86_get_pmu(void)684 struct pmu *x86_get_pmu(void)
685 {
686 	return &pmu;
687 }
688 /*
689  * Event scheduler state:
690  *
691  * Assign events iterating over all events and counters, beginning
692  * with events with least weights first. Keep the current iterator
693  * state in struct sched_state.
694  */
695 struct sched_state {
696 	int	weight;
697 	int	event;		/* event index */
698 	int	counter;	/* counter index */
699 	int	unassigned;	/* number of events to be assigned left */
700 	int	nr_gp;		/* number of GP counters used */
701 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
702 };
703 
704 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
705 #define	SCHED_STATES_MAX	2
706 
707 struct perf_sched {
708 	int			max_weight;
709 	int			max_events;
710 	int			max_gp;
711 	int			saved_states;
712 	struct event_constraint	**constraints;
713 	struct sched_state	state;
714 	struct sched_state	saved[SCHED_STATES_MAX];
715 };
716 
717 /*
718  * Initialize interator that runs through all events and counters.
719  */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)720 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
721 			    int num, int wmin, int wmax, int gpmax)
722 {
723 	int idx;
724 
725 	memset(sched, 0, sizeof(*sched));
726 	sched->max_events	= num;
727 	sched->max_weight	= wmax;
728 	sched->max_gp		= gpmax;
729 	sched->constraints	= constraints;
730 
731 	for (idx = 0; idx < num; idx++) {
732 		if (constraints[idx]->weight == wmin)
733 			break;
734 	}
735 
736 	sched->state.event	= idx;		/* start with min weight */
737 	sched->state.weight	= wmin;
738 	sched->state.unassigned	= num;
739 }
740 
perf_sched_save_state(struct perf_sched * sched)741 static void perf_sched_save_state(struct perf_sched *sched)
742 {
743 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
744 		return;
745 
746 	sched->saved[sched->saved_states] = sched->state;
747 	sched->saved_states++;
748 }
749 
perf_sched_restore_state(struct perf_sched * sched)750 static bool perf_sched_restore_state(struct perf_sched *sched)
751 {
752 	if (!sched->saved_states)
753 		return false;
754 
755 	sched->saved_states--;
756 	sched->state = sched->saved[sched->saved_states];
757 
758 	/* continue with next counter: */
759 	clear_bit(sched->state.counter++, sched->state.used);
760 
761 	return true;
762 }
763 
764 /*
765  * Select a counter for the current event to schedule. Return true on
766  * success.
767  */
__perf_sched_find_counter(struct perf_sched * sched)768 static bool __perf_sched_find_counter(struct perf_sched *sched)
769 {
770 	struct event_constraint *c;
771 	int idx;
772 
773 	if (!sched->state.unassigned)
774 		return false;
775 
776 	if (sched->state.event >= sched->max_events)
777 		return false;
778 
779 	c = sched->constraints[sched->state.event];
780 	/* Prefer fixed purpose counters */
781 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
782 		idx = INTEL_PMC_IDX_FIXED;
783 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
784 			if (!__test_and_set_bit(idx, sched->state.used))
785 				goto done;
786 		}
787 	}
788 
789 	/* Grab the first unused counter starting with idx */
790 	idx = sched->state.counter;
791 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
792 		if (!__test_and_set_bit(idx, sched->state.used)) {
793 			if (sched->state.nr_gp++ >= sched->max_gp)
794 				return false;
795 
796 			goto done;
797 		}
798 	}
799 
800 	return false;
801 
802 done:
803 	sched->state.counter = idx;
804 
805 	if (c->overlap)
806 		perf_sched_save_state(sched);
807 
808 	return true;
809 }
810 
perf_sched_find_counter(struct perf_sched * sched)811 static bool perf_sched_find_counter(struct perf_sched *sched)
812 {
813 	while (!__perf_sched_find_counter(sched)) {
814 		if (!perf_sched_restore_state(sched))
815 			return false;
816 	}
817 
818 	return true;
819 }
820 
821 /*
822  * Go through all unassigned events and find the next one to schedule.
823  * Take events with the least weight first. Return true on success.
824  */
perf_sched_next_event(struct perf_sched * sched)825 static bool perf_sched_next_event(struct perf_sched *sched)
826 {
827 	struct event_constraint *c;
828 
829 	if (!sched->state.unassigned || !--sched->state.unassigned)
830 		return false;
831 
832 	do {
833 		/* next event */
834 		sched->state.event++;
835 		if (sched->state.event >= sched->max_events) {
836 			/* next weight */
837 			sched->state.event = 0;
838 			sched->state.weight++;
839 			if (sched->state.weight > sched->max_weight)
840 				return false;
841 		}
842 		c = sched->constraints[sched->state.event];
843 	} while (c->weight != sched->state.weight);
844 
845 	sched->state.counter = 0;	/* start with first counter */
846 
847 	return true;
848 }
849 
850 /*
851  * Assign a counter for each event.
852  */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)853 int perf_assign_events(struct event_constraint **constraints, int n,
854 			int wmin, int wmax, int gpmax, int *assign)
855 {
856 	struct perf_sched sched;
857 
858 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
859 
860 	do {
861 		if (!perf_sched_find_counter(&sched))
862 			break;	/* failed */
863 		if (assign)
864 			assign[sched.state.event] = sched.state.counter;
865 	} while (perf_sched_next_event(&sched));
866 
867 	return sched.state.unassigned;
868 }
869 EXPORT_SYMBOL_GPL(perf_assign_events);
870 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)871 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
872 {
873 	struct event_constraint *c;
874 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
875 	struct perf_event *e;
876 	int n0, i, wmin, wmax, unsched = 0;
877 	struct hw_perf_event *hwc;
878 
879 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
880 
881 	/*
882 	 * Compute the number of events already present; see x86_pmu_add(),
883 	 * validate_group() and x86_pmu_commit_txn(). For the former two
884 	 * cpuc->n_events hasn't been updated yet, while for the latter
885 	 * cpuc->n_txn contains the number of events added in the current
886 	 * transaction.
887 	 */
888 	n0 = cpuc->n_events;
889 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
890 		n0 -= cpuc->n_txn;
891 
892 	if (x86_pmu.start_scheduling)
893 		x86_pmu.start_scheduling(cpuc);
894 
895 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
896 		c = cpuc->event_constraint[i];
897 
898 		/*
899 		 * Previously scheduled events should have a cached constraint,
900 		 * while new events should not have one.
901 		 */
902 		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
903 
904 		/*
905 		 * Request constraints for new events; or for those events that
906 		 * have a dynamic constraint -- for those the constraint can
907 		 * change due to external factors (sibling state, allow_tfa).
908 		 */
909 		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
910 			c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
911 			cpuc->event_constraint[i] = c;
912 		}
913 
914 		wmin = min(wmin, c->weight);
915 		wmax = max(wmax, c->weight);
916 	}
917 
918 	/*
919 	 * fastpath, try to reuse previous register
920 	 */
921 	for (i = 0; i < n; i++) {
922 		hwc = &cpuc->event_list[i]->hw;
923 		c = cpuc->event_constraint[i];
924 
925 		/* never assigned */
926 		if (hwc->idx == -1)
927 			break;
928 
929 		/* constraint still honored */
930 		if (!test_bit(hwc->idx, c->idxmsk))
931 			break;
932 
933 		/* not already used */
934 		if (test_bit(hwc->idx, used_mask))
935 			break;
936 
937 		__set_bit(hwc->idx, used_mask);
938 		if (assign)
939 			assign[i] = hwc->idx;
940 	}
941 
942 	/* slow path */
943 	if (i != n) {
944 		int gpmax = x86_pmu.num_counters;
945 
946 		/*
947 		 * Do not allow scheduling of more than half the available
948 		 * generic counters.
949 		 *
950 		 * This helps avoid counter starvation of sibling thread by
951 		 * ensuring at most half the counters cannot be in exclusive
952 		 * mode. There is no designated counters for the limits. Any
953 		 * N/2 counters can be used. This helps with events with
954 		 * specific counter constraints.
955 		 */
956 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
957 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
958 			gpmax /= 2;
959 
960 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
961 					     wmax, gpmax, assign);
962 	}
963 
964 	/*
965 	 * In case of success (unsched = 0), mark events as committed,
966 	 * so we do not put_constraint() in case new events are added
967 	 * and fail to be scheduled
968 	 *
969 	 * We invoke the lower level commit callback to lock the resource
970 	 *
971 	 * We do not need to do all of this in case we are called to
972 	 * validate an event group (assign == NULL)
973 	 */
974 	if (!unsched && assign) {
975 		for (i = 0; i < n; i++) {
976 			e = cpuc->event_list[i];
977 			if (x86_pmu.commit_scheduling)
978 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
979 		}
980 	} else {
981 		for (i = n0; i < n; i++) {
982 			e = cpuc->event_list[i];
983 
984 			/*
985 			 * release events that failed scheduling
986 			 */
987 			if (x86_pmu.put_event_constraints)
988 				x86_pmu.put_event_constraints(cpuc, e);
989 
990 			cpuc->event_constraint[i] = NULL;
991 		}
992 	}
993 
994 	if (x86_pmu.stop_scheduling)
995 		x86_pmu.stop_scheduling(cpuc);
996 
997 	return unsched ? -EINVAL : 0;
998 }
999 
1000 /*
1001  * dogrp: true if must collect siblings events (group)
1002  * returns total number of events and error code
1003  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)1004 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1005 {
1006 	struct perf_event *event;
1007 	int n, max_count;
1008 
1009 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1010 
1011 	/* current number of events already accepted */
1012 	n = cpuc->n_events;
1013 	if (!cpuc->n_events)
1014 		cpuc->pebs_output = 0;
1015 
1016 	if (!cpuc->is_fake && leader->attr.precise_ip) {
1017 		/*
1018 		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1019 		 * away, the group was broken down and this singleton event
1020 		 * can't schedule any more.
1021 		 */
1022 		if (is_pebs_pt(leader) && !leader->aux_event)
1023 			return -EINVAL;
1024 
1025 		/*
1026 		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1027 		 */
1028 		if (cpuc->pebs_output &&
1029 		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1030 			return -EINVAL;
1031 
1032 		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1033 	}
1034 
1035 	if (is_x86_event(leader)) {
1036 		if (n >= max_count)
1037 			return -EINVAL;
1038 		cpuc->event_list[n] = leader;
1039 		n++;
1040 	}
1041 	if (!dogrp)
1042 		return n;
1043 
1044 	for_each_sibling_event(event, leader) {
1045 		if (!is_x86_event(event) ||
1046 		    event->state <= PERF_EVENT_STATE_OFF)
1047 			continue;
1048 
1049 		if (n >= max_count)
1050 			return -EINVAL;
1051 
1052 		cpuc->event_list[n] = event;
1053 		n++;
1054 	}
1055 	return n;
1056 }
1057 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1058 static inline void x86_assign_hw_event(struct perf_event *event,
1059 				struct cpu_hw_events *cpuc, int i)
1060 {
1061 	struct hw_perf_event *hwc = &event->hw;
1062 
1063 	hwc->idx = cpuc->assign[i];
1064 	hwc->last_cpu = smp_processor_id();
1065 	hwc->last_tag = ++cpuc->tags[i];
1066 
1067 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1068 		hwc->config_base = 0;
1069 		hwc->event_base	= 0;
1070 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1071 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1072 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1073 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1074 	} else {
1075 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1076 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1077 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1078 	}
1079 }
1080 
1081 /**
1082  * x86_perf_rdpmc_index - Return PMC counter used for event
1083  * @event: the perf_event to which the PMC counter was assigned
1084  *
1085  * The counter assigned to this performance event may change if interrupts
1086  * are enabled. This counter should thus never be used while interrupts are
1087  * enabled. Before this function is used to obtain the assigned counter the
1088  * event should be checked for validity using, for example,
1089  * perf_event_read_local(), within the same interrupt disabled section in
1090  * which this counter is planned to be used.
1091  *
1092  * Return: The index of the performance monitoring counter assigned to
1093  * @perf_event.
1094  */
x86_perf_rdpmc_index(struct perf_event * event)1095 int x86_perf_rdpmc_index(struct perf_event *event)
1096 {
1097 	lockdep_assert_irqs_disabled();
1098 
1099 	return event->hw.event_base_rdpmc;
1100 }
1101 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1102 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1103 					struct cpu_hw_events *cpuc,
1104 					int i)
1105 {
1106 	return hwc->idx == cpuc->assign[i] &&
1107 		hwc->last_cpu == smp_processor_id() &&
1108 		hwc->last_tag == cpuc->tags[i];
1109 }
1110 
1111 static void x86_pmu_start(struct perf_event *event, int flags);
1112 
x86_pmu_enable(struct pmu * pmu)1113 static void x86_pmu_enable(struct pmu *pmu)
1114 {
1115 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1116 	struct perf_event *event;
1117 	struct hw_perf_event *hwc;
1118 	int i, added = cpuc->n_added;
1119 
1120 	if (!x86_pmu_initialized())
1121 		return;
1122 
1123 	if (cpuc->enabled)
1124 		return;
1125 
1126 	if (cpuc->n_added) {
1127 		int n_running = cpuc->n_events - cpuc->n_added;
1128 		/*
1129 		 * apply assignment obtained either from
1130 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1131 		 *
1132 		 * step1: save events moving to new counters
1133 		 */
1134 		for (i = 0; i < n_running; i++) {
1135 			event = cpuc->event_list[i];
1136 			hwc = &event->hw;
1137 
1138 			/*
1139 			 * we can avoid reprogramming counter if:
1140 			 * - assigned same counter as last time
1141 			 * - running on same CPU as last time
1142 			 * - no other event has used the counter since
1143 			 */
1144 			if (hwc->idx == -1 ||
1145 			    match_prev_assignment(hwc, cpuc, i))
1146 				continue;
1147 
1148 			/*
1149 			 * Ensure we don't accidentally enable a stopped
1150 			 * counter simply because we rescheduled.
1151 			 */
1152 			if (hwc->state & PERF_HES_STOPPED)
1153 				hwc->state |= PERF_HES_ARCH;
1154 
1155 			x86_pmu_stop(event, PERF_EF_UPDATE);
1156 		}
1157 
1158 		/*
1159 		 * step2: reprogram moved events into new counters
1160 		 */
1161 		for (i = 0; i < cpuc->n_events; i++) {
1162 			event = cpuc->event_list[i];
1163 			hwc = &event->hw;
1164 
1165 			if (!match_prev_assignment(hwc, cpuc, i))
1166 				x86_assign_hw_event(event, cpuc, i);
1167 			else if (i < n_running)
1168 				continue;
1169 
1170 			if (hwc->state & PERF_HES_ARCH)
1171 				continue;
1172 
1173 			x86_pmu_start(event, PERF_EF_RELOAD);
1174 		}
1175 		cpuc->n_added = 0;
1176 		perf_events_lapic_init();
1177 	}
1178 
1179 	cpuc->enabled = 1;
1180 	barrier();
1181 
1182 	x86_pmu.enable_all(added);
1183 }
1184 
1185 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1186 
1187 /*
1188  * Set the next IRQ period, based on the hwc->period_left value.
1189  * To be called with the event disabled in hw:
1190  */
x86_perf_event_set_period(struct perf_event * event)1191 int x86_perf_event_set_period(struct perf_event *event)
1192 {
1193 	struct hw_perf_event *hwc = &event->hw;
1194 	s64 left = local64_read(&hwc->period_left);
1195 	s64 period = hwc->sample_period;
1196 	int ret = 0, idx = hwc->idx;
1197 
1198 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1199 		return 0;
1200 
1201 	/*
1202 	 * If we are way outside a reasonable range then just skip forward:
1203 	 */
1204 	if (unlikely(left <= -period)) {
1205 		left = period;
1206 		local64_set(&hwc->period_left, left);
1207 		hwc->last_period = period;
1208 		ret = 1;
1209 	}
1210 
1211 	if (unlikely(left <= 0)) {
1212 		left += period;
1213 		local64_set(&hwc->period_left, left);
1214 		hwc->last_period = period;
1215 		ret = 1;
1216 	}
1217 	/*
1218 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1219 	 */
1220 	if (unlikely(left < 2))
1221 		left = 2;
1222 
1223 	if (left > x86_pmu.max_period)
1224 		left = x86_pmu.max_period;
1225 
1226 	if (x86_pmu.limit_period)
1227 		left = x86_pmu.limit_period(event, left);
1228 
1229 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1230 
1231 	/*
1232 	 * The hw event starts counting from this event offset,
1233 	 * mark it to be able to extra future deltas:
1234 	 */
1235 	local64_set(&hwc->prev_count, (u64)-left);
1236 
1237 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1238 
1239 	/*
1240 	 * Due to erratum on certan cpu we need
1241 	 * a second write to be sure the register
1242 	 * is updated properly
1243 	 */
1244 	if (x86_pmu.perfctr_second_write) {
1245 		wrmsrl(hwc->event_base,
1246 			(u64)(-left) & x86_pmu.cntval_mask);
1247 	}
1248 
1249 	perf_event_update_userpage(event);
1250 
1251 	return ret;
1252 }
1253 
x86_pmu_enable_event(struct perf_event * event)1254 void x86_pmu_enable_event(struct perf_event *event)
1255 {
1256 	if (__this_cpu_read(cpu_hw_events.enabled))
1257 		__x86_pmu_enable_event(&event->hw,
1258 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1259 }
1260 
1261 /*
1262  * Add a single event to the PMU.
1263  *
1264  * The event is added to the group of enabled events
1265  * but only if it can be scheduled with existing events.
1266  */
x86_pmu_add(struct perf_event * event,int flags)1267 static int x86_pmu_add(struct perf_event *event, int flags)
1268 {
1269 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1270 	struct hw_perf_event *hwc;
1271 	int assign[X86_PMC_IDX_MAX];
1272 	int n, n0, ret;
1273 
1274 	hwc = &event->hw;
1275 
1276 	n0 = cpuc->n_events;
1277 	ret = n = collect_events(cpuc, event, false);
1278 	if (ret < 0)
1279 		goto out;
1280 
1281 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1282 	if (!(flags & PERF_EF_START))
1283 		hwc->state |= PERF_HES_ARCH;
1284 
1285 	/*
1286 	 * If group events scheduling transaction was started,
1287 	 * skip the schedulability test here, it will be performed
1288 	 * at commit time (->commit_txn) as a whole.
1289 	 *
1290 	 * If commit fails, we'll call ->del() on all events
1291 	 * for which ->add() was called.
1292 	 */
1293 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1294 		goto done_collect;
1295 
1296 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1297 	if (ret)
1298 		goto out;
1299 	/*
1300 	 * copy new assignment, now we know it is possible
1301 	 * will be used by hw_perf_enable()
1302 	 */
1303 	memcpy(cpuc->assign, assign, n*sizeof(int));
1304 
1305 done_collect:
1306 	/*
1307 	 * Commit the collect_events() state. See x86_pmu_del() and
1308 	 * x86_pmu_*_txn().
1309 	 */
1310 	cpuc->n_events = n;
1311 	cpuc->n_added += n - n0;
1312 	cpuc->n_txn += n - n0;
1313 
1314 	if (x86_pmu.add) {
1315 		/*
1316 		 * This is before x86_pmu_enable() will call x86_pmu_start(),
1317 		 * so we enable LBRs before an event needs them etc..
1318 		 */
1319 		x86_pmu.add(event);
1320 	}
1321 
1322 	ret = 0;
1323 out:
1324 	return ret;
1325 }
1326 
x86_pmu_start(struct perf_event * event,int flags)1327 static void x86_pmu_start(struct perf_event *event, int flags)
1328 {
1329 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1330 	int idx = event->hw.idx;
1331 
1332 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1333 		return;
1334 
1335 	if (WARN_ON_ONCE(idx == -1))
1336 		return;
1337 
1338 	if (flags & PERF_EF_RELOAD) {
1339 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1340 		x86_perf_event_set_period(event);
1341 	}
1342 
1343 	event->hw.state = 0;
1344 
1345 	cpuc->events[idx] = event;
1346 	__set_bit(idx, cpuc->active_mask);
1347 	__set_bit(idx, cpuc->running);
1348 	x86_pmu.enable(event);
1349 	perf_event_update_userpage(event);
1350 }
1351 
perf_event_print_debug(void)1352 void perf_event_print_debug(void)
1353 {
1354 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1355 	u64 pebs, debugctl;
1356 	struct cpu_hw_events *cpuc;
1357 	unsigned long flags;
1358 	int cpu, idx;
1359 
1360 	if (!x86_pmu.num_counters)
1361 		return;
1362 
1363 	local_irq_save(flags);
1364 
1365 	cpu = smp_processor_id();
1366 	cpuc = &per_cpu(cpu_hw_events, cpu);
1367 
1368 	if (x86_pmu.version >= 2) {
1369 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1370 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1371 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1372 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1373 
1374 		pr_info("\n");
1375 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1376 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1377 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1378 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1379 		if (x86_pmu.pebs_constraints) {
1380 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1381 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1382 		}
1383 		if (x86_pmu.lbr_nr) {
1384 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1385 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1386 		}
1387 	}
1388 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1389 
1390 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1391 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1392 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1393 
1394 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1395 
1396 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1397 			cpu, idx, pmc_ctrl);
1398 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1399 			cpu, idx, pmc_count);
1400 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1401 			cpu, idx, prev_left);
1402 	}
1403 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1404 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1405 
1406 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1407 			cpu, idx, pmc_count);
1408 	}
1409 	local_irq_restore(flags);
1410 }
1411 
x86_pmu_stop(struct perf_event * event,int flags)1412 void x86_pmu_stop(struct perf_event *event, int flags)
1413 {
1414 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1415 	struct hw_perf_event *hwc = &event->hw;
1416 
1417 	if (test_bit(hwc->idx, cpuc->active_mask)) {
1418 		x86_pmu.disable(event);
1419 		__clear_bit(hwc->idx, cpuc->active_mask);
1420 		cpuc->events[hwc->idx] = NULL;
1421 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1422 		hwc->state |= PERF_HES_STOPPED;
1423 	}
1424 
1425 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1426 		/*
1427 		 * Drain the remaining delta count out of a event
1428 		 * that we are disabling:
1429 		 */
1430 		x86_perf_event_update(event);
1431 		hwc->state |= PERF_HES_UPTODATE;
1432 	}
1433 }
1434 
x86_pmu_del(struct perf_event * event,int flags)1435 static void x86_pmu_del(struct perf_event *event, int flags)
1436 {
1437 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1438 	int i;
1439 
1440 	/*
1441 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1442 	 * The events never got scheduled and ->cancel_txn will truncate
1443 	 * the event_list.
1444 	 *
1445 	 * XXX assumes any ->del() called during a TXN will only be on
1446 	 * an event added during that same TXN.
1447 	 */
1448 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1449 		goto do_del;
1450 
1451 	/*
1452 	 * Not a TXN, therefore cleanup properly.
1453 	 */
1454 	x86_pmu_stop(event, PERF_EF_UPDATE);
1455 
1456 	for (i = 0; i < cpuc->n_events; i++) {
1457 		if (event == cpuc->event_list[i])
1458 			break;
1459 	}
1460 
1461 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1462 		return;
1463 
1464 	/* If we have a newly added event; make sure to decrease n_added. */
1465 	if (i >= cpuc->n_events - cpuc->n_added)
1466 		--cpuc->n_added;
1467 
1468 	if (x86_pmu.put_event_constraints)
1469 		x86_pmu.put_event_constraints(cpuc, event);
1470 
1471 	/* Delete the array entry. */
1472 	while (++i < cpuc->n_events) {
1473 		cpuc->event_list[i-1] = cpuc->event_list[i];
1474 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1475 	}
1476 	cpuc->event_constraint[i-1] = NULL;
1477 	--cpuc->n_events;
1478 
1479 	perf_event_update_userpage(event);
1480 
1481 do_del:
1482 	if (x86_pmu.del) {
1483 		/*
1484 		 * This is after x86_pmu_stop(); so we disable LBRs after any
1485 		 * event can need them etc..
1486 		 */
1487 		x86_pmu.del(event);
1488 	}
1489 }
1490 
x86_pmu_handle_irq(struct pt_regs * regs)1491 int x86_pmu_handle_irq(struct pt_regs *regs)
1492 {
1493 	struct perf_sample_data data;
1494 	struct cpu_hw_events *cpuc;
1495 	struct perf_event *event;
1496 	int idx, handled = 0;
1497 	u64 val;
1498 
1499 	cpuc = this_cpu_ptr(&cpu_hw_events);
1500 
1501 	/*
1502 	 * Some chipsets need to unmask the LVTPC in a particular spot
1503 	 * inside the nmi handler.  As a result, the unmasking was pushed
1504 	 * into all the nmi handlers.
1505 	 *
1506 	 * This generic handler doesn't seem to have any issues where the
1507 	 * unmasking occurs so it was left at the top.
1508 	 */
1509 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1510 
1511 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1512 		if (!test_bit(idx, cpuc->active_mask))
1513 			continue;
1514 
1515 		event = cpuc->events[idx];
1516 
1517 		val = x86_perf_event_update(event);
1518 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1519 			continue;
1520 
1521 		/*
1522 		 * event overflow
1523 		 */
1524 		handled++;
1525 		perf_sample_data_init(&data, 0, event->hw.last_period);
1526 
1527 		if (!x86_perf_event_set_period(event))
1528 			continue;
1529 
1530 		if (perf_event_overflow(event, &data, regs))
1531 			x86_pmu_stop(event, 0);
1532 	}
1533 
1534 	if (handled)
1535 		inc_irq_stat(apic_perf_irqs);
1536 
1537 	return handled;
1538 }
1539 
perf_events_lapic_init(void)1540 void perf_events_lapic_init(void)
1541 {
1542 	if (!x86_pmu.apic || !x86_pmu_initialized())
1543 		return;
1544 
1545 	/*
1546 	 * Always use NMI for PMU
1547 	 */
1548 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1549 }
1550 
1551 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1552 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1553 {
1554 	u64 start_clock;
1555 	u64 finish_clock;
1556 	int ret;
1557 
1558 	/*
1559 	 * All PMUs/events that share this PMI handler should make sure to
1560 	 * increment active_events for their events.
1561 	 */
1562 	if (!atomic_read(&active_events))
1563 		return NMI_DONE;
1564 
1565 	start_clock = sched_clock();
1566 	ret = x86_pmu.handle_irq(regs);
1567 	finish_clock = sched_clock();
1568 
1569 	perf_sample_event_took(finish_clock - start_clock);
1570 
1571 	return ret;
1572 }
1573 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1574 
1575 struct event_constraint emptyconstraint;
1576 struct event_constraint unconstrained;
1577 
x86_pmu_prepare_cpu(unsigned int cpu)1578 static int x86_pmu_prepare_cpu(unsigned int cpu)
1579 {
1580 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1581 	int i;
1582 
1583 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1584 		cpuc->kfree_on_online[i] = NULL;
1585 	if (x86_pmu.cpu_prepare)
1586 		return x86_pmu.cpu_prepare(cpu);
1587 	return 0;
1588 }
1589 
x86_pmu_dead_cpu(unsigned int cpu)1590 static int x86_pmu_dead_cpu(unsigned int cpu)
1591 {
1592 	if (x86_pmu.cpu_dead)
1593 		x86_pmu.cpu_dead(cpu);
1594 	return 0;
1595 }
1596 
x86_pmu_online_cpu(unsigned int cpu)1597 static int x86_pmu_online_cpu(unsigned int cpu)
1598 {
1599 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1600 	int i;
1601 
1602 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1603 		kfree(cpuc->kfree_on_online[i]);
1604 		cpuc->kfree_on_online[i] = NULL;
1605 	}
1606 	return 0;
1607 }
1608 
x86_pmu_starting_cpu(unsigned int cpu)1609 static int x86_pmu_starting_cpu(unsigned int cpu)
1610 {
1611 	if (x86_pmu.cpu_starting)
1612 		x86_pmu.cpu_starting(cpu);
1613 	return 0;
1614 }
1615 
x86_pmu_dying_cpu(unsigned int cpu)1616 static int x86_pmu_dying_cpu(unsigned int cpu)
1617 {
1618 	if (x86_pmu.cpu_dying)
1619 		x86_pmu.cpu_dying(cpu);
1620 	return 0;
1621 }
1622 
pmu_check_apic(void)1623 static void __init pmu_check_apic(void)
1624 {
1625 	if (boot_cpu_has(X86_FEATURE_APIC))
1626 		return;
1627 
1628 	x86_pmu.apic = 0;
1629 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1630 	pr_info("no hardware sampling interrupt available.\n");
1631 
1632 	/*
1633 	 * If we have a PMU initialized but no APIC
1634 	 * interrupts, we cannot sample hardware
1635 	 * events (user-space has to fall back and
1636 	 * sample via a hrtimer based software event):
1637 	 */
1638 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1639 
1640 }
1641 
1642 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1643 	.name = "format",
1644 	.attrs = NULL,
1645 };
1646 
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1647 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1648 {
1649 	struct perf_pmu_events_attr *pmu_attr =
1650 		container_of(attr, struct perf_pmu_events_attr, attr);
1651 	u64 config = 0;
1652 
1653 	if (pmu_attr->id < x86_pmu.max_events)
1654 		config = x86_pmu.event_map(pmu_attr->id);
1655 
1656 	/* string trumps id */
1657 	if (pmu_attr->event_str)
1658 		return sprintf(page, "%s", pmu_attr->event_str);
1659 
1660 	return x86_pmu.events_sysfs_show(page, config);
1661 }
1662 EXPORT_SYMBOL_GPL(events_sysfs_show);
1663 
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1664 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1665 			  char *page)
1666 {
1667 	struct perf_pmu_events_ht_attr *pmu_attr =
1668 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1669 
1670 	/*
1671 	 * Report conditional events depending on Hyper-Threading.
1672 	 *
1673 	 * This is overly conservative as usually the HT special
1674 	 * handling is not needed if the other CPU thread is idle.
1675 	 *
1676 	 * Note this does not (and cannot) handle the case when thread
1677 	 * siblings are invisible, for example with virtualization
1678 	 * if they are owned by some other guest.  The user tool
1679 	 * has to re-read when a thread sibling gets onlined later.
1680 	 */
1681 	return sprintf(page, "%s",
1682 			topology_max_smt_threads() > 1 ?
1683 			pmu_attr->event_str_ht :
1684 			pmu_attr->event_str_noht);
1685 }
1686 
1687 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1688 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1689 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1690 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1691 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1692 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1693 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1694 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1695 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1696 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1697 
1698 static struct attribute *empty_attrs;
1699 
1700 static struct attribute *events_attr[] = {
1701 	EVENT_PTR(CPU_CYCLES),
1702 	EVENT_PTR(INSTRUCTIONS),
1703 	EVENT_PTR(CACHE_REFERENCES),
1704 	EVENT_PTR(CACHE_MISSES),
1705 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1706 	EVENT_PTR(BRANCH_MISSES),
1707 	EVENT_PTR(BUS_CYCLES),
1708 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1709 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1710 	EVENT_PTR(REF_CPU_CYCLES),
1711 	NULL,
1712 };
1713 
1714 /*
1715  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1716  * out of events_attr attributes.
1717  */
1718 static umode_t
is_visible(struct kobject * kobj,struct attribute * attr,int idx)1719 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1720 {
1721 	struct perf_pmu_events_attr *pmu_attr;
1722 
1723 	if (idx >= x86_pmu.max_events)
1724 		return 0;
1725 
1726 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1727 	/* str trumps id */
1728 	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1729 }
1730 
1731 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1732 	.name = "events",
1733 	.attrs = events_attr,
1734 	.is_visible = is_visible,
1735 };
1736 
x86_event_sysfs_show(char * page,u64 config,u64 event)1737 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1738 {
1739 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1740 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1741 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1742 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1743 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1744 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1745 	ssize_t ret;
1746 
1747 	/*
1748 	* We have whole page size to spend and just little data
1749 	* to write, so we can safely use sprintf.
1750 	*/
1751 	ret = sprintf(page, "event=0x%02llx", event);
1752 
1753 	if (umask)
1754 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1755 
1756 	if (edge)
1757 		ret += sprintf(page + ret, ",edge");
1758 
1759 	if (pc)
1760 		ret += sprintf(page + ret, ",pc");
1761 
1762 	if (any)
1763 		ret += sprintf(page + ret, ",any");
1764 
1765 	if (inv)
1766 		ret += sprintf(page + ret, ",inv");
1767 
1768 	if (cmask)
1769 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1770 
1771 	ret += sprintf(page + ret, "\n");
1772 
1773 	return ret;
1774 }
1775 
1776 static struct attribute_group x86_pmu_attr_group;
1777 static struct attribute_group x86_pmu_caps_group;
1778 
init_hw_perf_events(void)1779 static int __init init_hw_perf_events(void)
1780 {
1781 	struct x86_pmu_quirk *quirk;
1782 	int err;
1783 
1784 	pr_info("Performance Events: ");
1785 
1786 	switch (boot_cpu_data.x86_vendor) {
1787 	case X86_VENDOR_INTEL:
1788 		err = intel_pmu_init();
1789 		break;
1790 	case X86_VENDOR_AMD:
1791 		err = amd_pmu_init();
1792 		break;
1793 	case X86_VENDOR_HYGON:
1794 		err = amd_pmu_init();
1795 		x86_pmu.name = "HYGON";
1796 		break;
1797 	default:
1798 		err = -ENOTSUPP;
1799 	}
1800 	if (err != 0) {
1801 		pr_cont("no PMU driver, software events only.\n");
1802 		return 0;
1803 	}
1804 
1805 	pmu_check_apic();
1806 
1807 	/* sanity check that the hardware exists or is emulated */
1808 	if (!check_hw_exists())
1809 		return 0;
1810 
1811 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1812 
1813 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1814 
1815 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1816 		quirk->func();
1817 
1818 	if (!x86_pmu.intel_ctrl)
1819 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1820 
1821 	perf_events_lapic_init();
1822 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1823 
1824 	unconstrained = (struct event_constraint)
1825 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1826 				   0, x86_pmu.num_counters, 0, 0);
1827 
1828 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1829 
1830 	if (!x86_pmu.events_sysfs_show)
1831 		x86_pmu_events_group.attrs = &empty_attrs;
1832 
1833 	pmu.attr_update = x86_pmu.attr_update;
1834 
1835 	pr_info("... version:                %d\n",     x86_pmu.version);
1836 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1837 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1838 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1839 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1840 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1841 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1842 
1843 	/*
1844 	 * Install callbacks. Core will call them for each online
1845 	 * cpu.
1846 	 */
1847 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1848 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1849 	if (err)
1850 		return err;
1851 
1852 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1853 				"perf/x86:starting", x86_pmu_starting_cpu,
1854 				x86_pmu_dying_cpu);
1855 	if (err)
1856 		goto out;
1857 
1858 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1859 				x86_pmu_online_cpu, NULL);
1860 	if (err)
1861 		goto out1;
1862 
1863 	err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1864 	if (err)
1865 		goto out2;
1866 
1867 	return 0;
1868 
1869 out2:
1870 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1871 out1:
1872 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1873 out:
1874 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1875 	return err;
1876 }
1877 early_initcall(init_hw_perf_events);
1878 
x86_pmu_read(struct perf_event * event)1879 static inline void x86_pmu_read(struct perf_event *event)
1880 {
1881 	if (x86_pmu.read)
1882 		return x86_pmu.read(event);
1883 	x86_perf_event_update(event);
1884 }
1885 
1886 /*
1887  * Start group events scheduling transaction
1888  * Set the flag to make pmu::enable() not perform the
1889  * schedulability test, it will be performed at commit time
1890  *
1891  * We only support PERF_PMU_TXN_ADD transactions. Save the
1892  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1893  * transactions.
1894  */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1895 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1896 {
1897 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1898 
1899 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1900 
1901 	cpuc->txn_flags = txn_flags;
1902 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1903 		return;
1904 
1905 	perf_pmu_disable(pmu);
1906 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1907 }
1908 
1909 /*
1910  * Stop group events scheduling transaction
1911  * Clear the flag and pmu::enable() will perform the
1912  * schedulability test.
1913  */
x86_pmu_cancel_txn(struct pmu * pmu)1914 static void x86_pmu_cancel_txn(struct pmu *pmu)
1915 {
1916 	unsigned int txn_flags;
1917 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1918 
1919 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1920 
1921 	txn_flags = cpuc->txn_flags;
1922 	cpuc->txn_flags = 0;
1923 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1924 		return;
1925 
1926 	/*
1927 	 * Truncate collected array by the number of events added in this
1928 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1929 	 */
1930 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1931 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1932 	perf_pmu_enable(pmu);
1933 }
1934 
1935 /*
1936  * Commit group events scheduling transaction
1937  * Perform the group schedulability test as a whole
1938  * Return 0 if success
1939  *
1940  * Does not cancel the transaction on failure; expects the caller to do this.
1941  */
x86_pmu_commit_txn(struct pmu * pmu)1942 static int x86_pmu_commit_txn(struct pmu *pmu)
1943 {
1944 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1945 	int assign[X86_PMC_IDX_MAX];
1946 	int n, ret;
1947 
1948 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1949 
1950 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1951 		cpuc->txn_flags = 0;
1952 		return 0;
1953 	}
1954 
1955 	n = cpuc->n_events;
1956 
1957 	if (!x86_pmu_initialized())
1958 		return -EAGAIN;
1959 
1960 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1961 	if (ret)
1962 		return ret;
1963 
1964 	/*
1965 	 * copy new assignment, now we know it is possible
1966 	 * will be used by hw_perf_enable()
1967 	 */
1968 	memcpy(cpuc->assign, assign, n*sizeof(int));
1969 
1970 	cpuc->txn_flags = 0;
1971 	perf_pmu_enable(pmu);
1972 	return 0;
1973 }
1974 /*
1975  * a fake_cpuc is used to validate event groups. Due to
1976  * the extra reg logic, we need to also allocate a fake
1977  * per_core and per_cpu structure. Otherwise, group events
1978  * using extra reg may conflict without the kernel being
1979  * able to catch this when the last event gets added to
1980  * the group.
1981  */
free_fake_cpuc(struct cpu_hw_events * cpuc)1982 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1983 {
1984 	intel_cpuc_finish(cpuc);
1985 	kfree(cpuc);
1986 }
1987 
allocate_fake_cpuc(void)1988 static struct cpu_hw_events *allocate_fake_cpuc(void)
1989 {
1990 	struct cpu_hw_events *cpuc;
1991 	int cpu = raw_smp_processor_id();
1992 
1993 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1994 	if (!cpuc)
1995 		return ERR_PTR(-ENOMEM);
1996 	cpuc->is_fake = 1;
1997 
1998 	if (intel_cpuc_prepare(cpuc, cpu))
1999 		goto error;
2000 
2001 	return cpuc;
2002 error:
2003 	free_fake_cpuc(cpuc);
2004 	return ERR_PTR(-ENOMEM);
2005 }
2006 
2007 /*
2008  * validate that we can schedule this event
2009  */
validate_event(struct perf_event * event)2010 static int validate_event(struct perf_event *event)
2011 {
2012 	struct cpu_hw_events *fake_cpuc;
2013 	struct event_constraint *c;
2014 	int ret = 0;
2015 
2016 	fake_cpuc = allocate_fake_cpuc();
2017 	if (IS_ERR(fake_cpuc))
2018 		return PTR_ERR(fake_cpuc);
2019 
2020 	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2021 
2022 	if (!c || !c->weight)
2023 		ret = -EINVAL;
2024 
2025 	if (x86_pmu.put_event_constraints)
2026 		x86_pmu.put_event_constraints(fake_cpuc, event);
2027 
2028 	free_fake_cpuc(fake_cpuc);
2029 
2030 	return ret;
2031 }
2032 
2033 /*
2034  * validate a single event group
2035  *
2036  * validation include:
2037  *	- check events are compatible which each other
2038  *	- events do not compete for the same counter
2039  *	- number of events <= number of counters
2040  *
2041  * validation ensures the group can be loaded onto the
2042  * PMU if it was the only group available.
2043  */
validate_group(struct perf_event * event)2044 static int validate_group(struct perf_event *event)
2045 {
2046 	struct perf_event *leader = event->group_leader;
2047 	struct cpu_hw_events *fake_cpuc;
2048 	int ret = -EINVAL, n;
2049 
2050 	fake_cpuc = allocate_fake_cpuc();
2051 	if (IS_ERR(fake_cpuc))
2052 		return PTR_ERR(fake_cpuc);
2053 	/*
2054 	 * the event is not yet connected with its
2055 	 * siblings therefore we must first collect
2056 	 * existing siblings, then add the new event
2057 	 * before we can simulate the scheduling
2058 	 */
2059 	n = collect_events(fake_cpuc, leader, true);
2060 	if (n < 0)
2061 		goto out;
2062 
2063 	fake_cpuc->n_events = n;
2064 	n = collect_events(fake_cpuc, event, false);
2065 	if (n < 0)
2066 		goto out;
2067 
2068 	fake_cpuc->n_events = 0;
2069 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2070 
2071 out:
2072 	free_fake_cpuc(fake_cpuc);
2073 	return ret;
2074 }
2075 
x86_pmu_event_init(struct perf_event * event)2076 static int x86_pmu_event_init(struct perf_event *event)
2077 {
2078 	struct pmu *tmp;
2079 	int err;
2080 
2081 	switch (event->attr.type) {
2082 	case PERF_TYPE_RAW:
2083 	case PERF_TYPE_HARDWARE:
2084 	case PERF_TYPE_HW_CACHE:
2085 		break;
2086 
2087 	default:
2088 		return -ENOENT;
2089 	}
2090 
2091 	err = __x86_pmu_event_init(event);
2092 	if (!err) {
2093 		/*
2094 		 * we temporarily connect event to its pmu
2095 		 * such that validate_group() can classify
2096 		 * it as an x86 event using is_x86_event()
2097 		 */
2098 		tmp = event->pmu;
2099 		event->pmu = &pmu;
2100 
2101 		if (event->group_leader != event)
2102 			err = validate_group(event);
2103 		else
2104 			err = validate_event(event);
2105 
2106 		event->pmu = tmp;
2107 	}
2108 	if (err) {
2109 		if (event->destroy)
2110 			event->destroy(event);
2111 		event->destroy = NULL;
2112 	}
2113 
2114 	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2115 	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2116 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2117 
2118 	return err;
2119 }
2120 
refresh_pce(void * ignored)2121 static void refresh_pce(void *ignored)
2122 {
2123 	load_mm_cr4_irqsoff(this_cpu_read(cpu_tlbstate.loaded_mm));
2124 }
2125 
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2126 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2127 {
2128 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2129 		return;
2130 
2131 	/*
2132 	 * This function relies on not being called concurrently in two
2133 	 * tasks in the same mm.  Otherwise one task could observe
2134 	 * perf_rdpmc_allowed > 1 and return all the way back to
2135 	 * userspace with CR4.PCE clear while another task is still
2136 	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2137 	 *
2138 	 * For now, this can't happen because all callers hold mmap_sem
2139 	 * for write.  If this changes, we'll need a different solution.
2140 	 */
2141 	lockdep_assert_held_write(&mm->mmap_sem);
2142 
2143 	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2144 		on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2145 }
2146 
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2147 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2148 {
2149 
2150 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2151 		return;
2152 
2153 	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2154 		on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2155 }
2156 
x86_pmu_event_idx(struct perf_event * event)2157 static int x86_pmu_event_idx(struct perf_event *event)
2158 {
2159 	int idx = event->hw.idx;
2160 
2161 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2162 		return 0;
2163 
2164 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2165 		idx -= INTEL_PMC_IDX_FIXED;
2166 		idx |= 1 << 30;
2167 	}
2168 
2169 	return idx + 1;
2170 }
2171 
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2172 static ssize_t get_attr_rdpmc(struct device *cdev,
2173 			      struct device_attribute *attr,
2174 			      char *buf)
2175 {
2176 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2177 }
2178 
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2179 static ssize_t set_attr_rdpmc(struct device *cdev,
2180 			      struct device_attribute *attr,
2181 			      const char *buf, size_t count)
2182 {
2183 	unsigned long val;
2184 	ssize_t ret;
2185 
2186 	ret = kstrtoul(buf, 0, &val);
2187 	if (ret)
2188 		return ret;
2189 
2190 	if (val > 2)
2191 		return -EINVAL;
2192 
2193 	if (x86_pmu.attr_rdpmc_broken)
2194 		return -ENOTSUPP;
2195 
2196 	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2197 		/*
2198 		 * Changing into or out of always available, aka
2199 		 * perf-event-bypassing mode.  This path is extremely slow,
2200 		 * but only root can trigger it, so it's okay.
2201 		 */
2202 		if (val == 2)
2203 			static_branch_inc(&rdpmc_always_available_key);
2204 		else
2205 			static_branch_dec(&rdpmc_always_available_key);
2206 		on_each_cpu(refresh_pce, NULL, 1);
2207 	}
2208 
2209 	x86_pmu.attr_rdpmc = val;
2210 
2211 	return count;
2212 }
2213 
2214 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2215 
2216 static struct attribute *x86_pmu_attrs[] = {
2217 	&dev_attr_rdpmc.attr,
2218 	NULL,
2219 };
2220 
2221 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2222 	.attrs = x86_pmu_attrs,
2223 };
2224 
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2225 static ssize_t max_precise_show(struct device *cdev,
2226 				  struct device_attribute *attr,
2227 				  char *buf)
2228 {
2229 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2230 }
2231 
2232 static DEVICE_ATTR_RO(max_precise);
2233 
2234 static struct attribute *x86_pmu_caps_attrs[] = {
2235 	&dev_attr_max_precise.attr,
2236 	NULL
2237 };
2238 
2239 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2240 	.name = "caps",
2241 	.attrs = x86_pmu_caps_attrs,
2242 };
2243 
2244 static const struct attribute_group *x86_pmu_attr_groups[] = {
2245 	&x86_pmu_attr_group,
2246 	&x86_pmu_format_group,
2247 	&x86_pmu_events_group,
2248 	&x86_pmu_caps_group,
2249 	NULL,
2250 };
2251 
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2252 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2253 {
2254 	if (x86_pmu.sched_task)
2255 		x86_pmu.sched_task(ctx, sched_in);
2256 }
2257 
perf_check_microcode(void)2258 void perf_check_microcode(void)
2259 {
2260 	if (x86_pmu.check_microcode)
2261 		x86_pmu.check_microcode();
2262 }
2263 
x86_pmu_check_period(struct perf_event * event,u64 value)2264 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2265 {
2266 	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2267 		return -EINVAL;
2268 
2269 	if (value && x86_pmu.limit_period) {
2270 		if (x86_pmu.limit_period(event, value) > value)
2271 			return -EINVAL;
2272 	}
2273 
2274 	return 0;
2275 }
2276 
x86_pmu_aux_output_match(struct perf_event * event)2277 static int x86_pmu_aux_output_match(struct perf_event *event)
2278 {
2279 	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2280 		return 0;
2281 
2282 	if (x86_pmu.aux_output_match)
2283 		return x86_pmu.aux_output_match(event);
2284 
2285 	return 0;
2286 }
2287 
2288 static struct pmu pmu = {
2289 	.pmu_enable		= x86_pmu_enable,
2290 	.pmu_disable		= x86_pmu_disable,
2291 
2292 	.attr_groups		= x86_pmu_attr_groups,
2293 
2294 	.event_init		= x86_pmu_event_init,
2295 
2296 	.event_mapped		= x86_pmu_event_mapped,
2297 	.event_unmapped		= x86_pmu_event_unmapped,
2298 
2299 	.add			= x86_pmu_add,
2300 	.del			= x86_pmu_del,
2301 	.start			= x86_pmu_start,
2302 	.stop			= x86_pmu_stop,
2303 	.read			= x86_pmu_read,
2304 
2305 	.start_txn		= x86_pmu_start_txn,
2306 	.cancel_txn		= x86_pmu_cancel_txn,
2307 	.commit_txn		= x86_pmu_commit_txn,
2308 
2309 	.event_idx		= x86_pmu_event_idx,
2310 	.sched_task		= x86_pmu_sched_task,
2311 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2312 	.check_period		= x86_pmu_check_period,
2313 
2314 	.aux_output_match	= x86_pmu_aux_output_match,
2315 };
2316 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2317 void arch_perf_update_userpage(struct perf_event *event,
2318 			       struct perf_event_mmap_page *userpg, u64 now)
2319 {
2320 	struct cyc2ns_data data;
2321 	u64 offset;
2322 
2323 	userpg->cap_user_time = 0;
2324 	userpg->cap_user_time_zero = 0;
2325 	userpg->cap_user_rdpmc =
2326 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2327 	userpg->pmc_width = x86_pmu.cntval_bits;
2328 
2329 	if (!using_native_sched_clock() || !sched_clock_stable())
2330 		return;
2331 
2332 	cyc2ns_read_begin(&data);
2333 
2334 	offset = data.cyc2ns_offset + __sched_clock_offset;
2335 
2336 	/*
2337 	 * Internal timekeeping for enabled/running/stopped times
2338 	 * is always in the local_clock domain.
2339 	 */
2340 	userpg->cap_user_time = 1;
2341 	userpg->time_mult = data.cyc2ns_mul;
2342 	userpg->time_shift = data.cyc2ns_shift;
2343 	userpg->time_offset = offset - now;
2344 
2345 	/*
2346 	 * cap_user_time_zero doesn't make sense when we're using a different
2347 	 * time base for the records.
2348 	 */
2349 	if (!event->attr.use_clockid) {
2350 		userpg->cap_user_time_zero = 1;
2351 		userpg->time_zero = offset;
2352 	}
2353 
2354 	cyc2ns_read_end();
2355 }
2356 
2357 /*
2358  * Determine whether the regs were taken from an irq/exception handler rather
2359  * than from perf_arch_fetch_caller_regs().
2360  */
perf_hw_regs(struct pt_regs * regs)2361 static bool perf_hw_regs(struct pt_regs *regs)
2362 {
2363 	return regs->flags & X86_EFLAGS_FIXED;
2364 }
2365 
2366 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2367 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2368 {
2369 	struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2370 	struct unwind_state state;
2371 	unsigned long addr;
2372 
2373 	if (guest_cbs && guest_cbs->is_in_guest()) {
2374 		/* TODO: We don't support guest os callchain now */
2375 		return;
2376 	}
2377 
2378 	if (perf_callchain_store(entry, regs->ip))
2379 		return;
2380 
2381 	if (perf_hw_regs(regs))
2382 		unwind_start(&state, current, regs, NULL);
2383 	else
2384 		unwind_start(&state, current, NULL, (void *)regs->sp);
2385 
2386 	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2387 		addr = unwind_get_return_address(&state);
2388 		if (!addr || perf_callchain_store(entry, addr))
2389 			return;
2390 	}
2391 }
2392 
2393 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2394 valid_user_frame(const void __user *fp, unsigned long size)
2395 {
2396 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2397 }
2398 
get_segment_base(unsigned int segment)2399 static unsigned long get_segment_base(unsigned int segment)
2400 {
2401 	struct desc_struct *desc;
2402 	unsigned int idx = segment >> 3;
2403 
2404 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2405 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2406 		struct ldt_struct *ldt;
2407 
2408 		/* IRQs are off, so this synchronizes with smp_store_release */
2409 		ldt = READ_ONCE(current->active_mm->context.ldt);
2410 		if (!ldt || idx >= ldt->nr_entries)
2411 			return 0;
2412 
2413 		desc = &ldt->entries[idx];
2414 #else
2415 		return 0;
2416 #endif
2417 	} else {
2418 		if (idx >= GDT_ENTRIES)
2419 			return 0;
2420 
2421 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2422 	}
2423 
2424 	return get_desc_base(desc);
2425 }
2426 
2427 #ifdef CONFIG_IA32_EMULATION
2428 
2429 #include <linux/compat.h>
2430 
2431 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2432 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2433 {
2434 	/* 32-bit process in 64-bit kernel. */
2435 	unsigned long ss_base, cs_base;
2436 	struct stack_frame_ia32 frame;
2437 	const void __user *fp;
2438 
2439 	if (!test_thread_flag(TIF_IA32))
2440 		return 0;
2441 
2442 	cs_base = get_segment_base(regs->cs);
2443 	ss_base = get_segment_base(regs->ss);
2444 
2445 	fp = compat_ptr(ss_base + regs->bp);
2446 	pagefault_disable();
2447 	while (entry->nr < entry->max_stack) {
2448 		unsigned long bytes;
2449 		frame.next_frame     = 0;
2450 		frame.return_address = 0;
2451 
2452 		if (!valid_user_frame(fp, sizeof(frame)))
2453 			break;
2454 
2455 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2456 		if (bytes != 0)
2457 			break;
2458 		bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2459 		if (bytes != 0)
2460 			break;
2461 
2462 		perf_callchain_store(entry, cs_base + frame.return_address);
2463 		fp = compat_ptr(ss_base + frame.next_frame);
2464 	}
2465 	pagefault_enable();
2466 	return 1;
2467 }
2468 #else
2469 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2470 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2471 {
2472     return 0;
2473 }
2474 #endif
2475 
2476 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2477 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2478 {
2479 	struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2480 	struct stack_frame frame;
2481 	const unsigned long __user *fp;
2482 
2483 	if (guest_cbs && guest_cbs->is_in_guest()) {
2484 		/* TODO: We don't support guest os callchain now */
2485 		return;
2486 	}
2487 
2488 	/*
2489 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2490 	 */
2491 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2492 		return;
2493 
2494 	fp = (unsigned long __user *)regs->bp;
2495 
2496 	perf_callchain_store(entry, regs->ip);
2497 
2498 	if (!nmi_uaccess_okay())
2499 		return;
2500 
2501 	if (perf_callchain_user32(regs, entry))
2502 		return;
2503 
2504 	pagefault_disable();
2505 	while (entry->nr < entry->max_stack) {
2506 		unsigned long bytes;
2507 
2508 		frame.next_frame	     = NULL;
2509 		frame.return_address = 0;
2510 
2511 		if (!valid_user_frame(fp, sizeof(frame)))
2512 			break;
2513 
2514 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2515 		if (bytes != 0)
2516 			break;
2517 		bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2518 		if (bytes != 0)
2519 			break;
2520 
2521 		perf_callchain_store(entry, frame.return_address);
2522 		fp = (void __user *)frame.next_frame;
2523 	}
2524 	pagefault_enable();
2525 }
2526 
2527 /*
2528  * Deal with code segment offsets for the various execution modes:
2529  *
2530  *   VM86 - the good olde 16 bit days, where the linear address is
2531  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2532  *
2533  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2534  *          to figure out what the 32bit base address is.
2535  *
2536  *    X32 - has TIF_X32 set, but is running in x86_64
2537  *
2538  * X86_64 - CS,DS,SS,ES are all zero based.
2539  */
code_segment_base(struct pt_regs * regs)2540 static unsigned long code_segment_base(struct pt_regs *regs)
2541 {
2542 	/*
2543 	 * For IA32 we look at the GDT/LDT segment base to convert the
2544 	 * effective IP to a linear address.
2545 	 */
2546 
2547 #ifdef CONFIG_X86_32
2548 	/*
2549 	 * If we are in VM86 mode, add the segment offset to convert to a
2550 	 * linear address.
2551 	 */
2552 	if (regs->flags & X86_VM_MASK)
2553 		return 0x10 * regs->cs;
2554 
2555 	if (user_mode(regs) && regs->cs != __USER_CS)
2556 		return get_segment_base(regs->cs);
2557 #else
2558 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2559 	    regs->cs != __USER32_CS)
2560 		return get_segment_base(regs->cs);
2561 #endif
2562 	return 0;
2563 }
2564 
perf_instruction_pointer(struct pt_regs * regs)2565 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2566 {
2567 	struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2568 
2569 	if (guest_cbs && guest_cbs->is_in_guest())
2570 		return guest_cbs->get_guest_ip();
2571 
2572 	return regs->ip + code_segment_base(regs);
2573 }
2574 
perf_misc_flags(struct pt_regs * regs)2575 unsigned long perf_misc_flags(struct pt_regs *regs)
2576 {
2577 	struct perf_guest_info_callbacks *guest_cbs = perf_get_guest_cbs();
2578 	int misc = 0;
2579 
2580 	if (guest_cbs && guest_cbs->is_in_guest()) {
2581 		if (guest_cbs->is_user_mode())
2582 			misc |= PERF_RECORD_MISC_GUEST_USER;
2583 		else
2584 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2585 	} else {
2586 		if (user_mode(regs))
2587 			misc |= PERF_RECORD_MISC_USER;
2588 		else
2589 			misc |= PERF_RECORD_MISC_KERNEL;
2590 	}
2591 
2592 	if (regs->flags & PERF_EFLAGS_EXACT)
2593 		misc |= PERF_RECORD_MISC_EXACT_IP;
2594 
2595 	return misc;
2596 }
2597 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2598 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2599 {
2600 	cap->version		= x86_pmu.version;
2601 	cap->num_counters_gp	= x86_pmu.num_counters;
2602 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2603 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2604 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2605 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2606 	cap->events_mask_len	= x86_pmu.events_mask_len;
2607 }
2608 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2609