1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Architecture-specific setup.
4 *
5 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Stephane Eranian <eranian@hpl.hp.com>
8 * Copyright (C) 2000, 2004 Intel Corp
9 * Rohit Seth <rohit.seth@intel.com>
10 * Suresh Siddha <suresh.b.siddha@intel.com>
11 * Gordon Jin <gordon.jin@intel.com>
12 * Copyright (C) 1999 VA Linux Systems
13 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 *
15 * 12/26/04 S.Siddha, G.Jin, R.Seth
16 * Add multi-threading and multi-core detection
17 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
18 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
19 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
20 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
21 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
22 * 01/07/99 S.Eranian added the support for command line argument
23 * 06/24/99 W.Drummond added boot_cpu_data.
24 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
25 */
26 #include <linux/module.h>
27 #include <linux/init.h>
28
29 #include <linux/acpi.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/cpu.h>
33 #include <linux/kdev_t.h>
34 #include <linux/kernel.h>
35 #include <linux/memblock.h>
36 #include <linux/reboot.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/clock.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/seq_file.h>
41 #include <linux/string.h>
42 #include <linux/threads.h>
43 #include <linux/screen_info.h>
44 #include <linux/dmi.h>
45 #include <linux/root_dev.h>
46 #include <linux/serial.h>
47 #include <linux/serial_core.h>
48 #include <linux/efi.h>
49 #include <linux/initrd.h>
50 #include <linux/pm.h>
51 #include <linux/cpufreq.h>
52 #include <linux/kexec.h>
53 #include <linux/crash_dump.h>
54
55 #include <asm/mca.h>
56 #include <asm/meminit.h>
57 #include <asm/page.h>
58 #include <asm/patch.h>
59 #include <asm/pgtable.h>
60 #include <asm/processor.h>
61 #include <asm/sal.h>
62 #include <asm/sections.h>
63 #include <asm/setup.h>
64 #include <asm/smp.h>
65 #include <asm/tlbflush.h>
66 #include <asm/unistd.h>
67 #include <asm/uv/uv.h>
68
69 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
70 # error "struct cpuinfo_ia64 too big!"
71 #endif
72
73 char ia64_platform_name[64];
74
75 #ifdef CONFIG_SMP
76 unsigned long __per_cpu_offset[NR_CPUS];
77 EXPORT_SYMBOL(__per_cpu_offset);
78 #endif
79
80 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
81 EXPORT_SYMBOL(ia64_cpu_info);
82 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
83 #ifdef CONFIG_SMP
84 EXPORT_SYMBOL(local_per_cpu_offset);
85 #endif
86 unsigned long ia64_cycles_per_usec;
87 struct ia64_boot_param *ia64_boot_param;
88 struct screen_info screen_info;
89 unsigned long vga_console_iobase;
90 unsigned long vga_console_membase;
91
92 static struct resource data_resource = {
93 .name = "Kernel data",
94 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
95 };
96
97 static struct resource code_resource = {
98 .name = "Kernel code",
99 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
100 };
101
102 static struct resource bss_resource = {
103 .name = "Kernel bss",
104 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
105 };
106
107 unsigned long ia64_max_cacheline_size;
108
109 unsigned long ia64_iobase; /* virtual address for I/O accesses */
110 EXPORT_SYMBOL(ia64_iobase);
111 struct io_space io_space[MAX_IO_SPACES];
112 EXPORT_SYMBOL(io_space);
113 unsigned int num_io_spaces;
114
115 /*
116 * "flush_icache_range()" needs to know what processor dependent stride size to use
117 * when it makes i-cache(s) coherent with d-caches.
118 */
119 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
120 unsigned long ia64_i_cache_stride_shift = ~0;
121 /*
122 * "clflush_cache_range()" needs to know what processor dependent stride size to
123 * use when it flushes cache lines including both d-cache and i-cache.
124 */
125 /* Safest way to go: 32 bytes by 32 bytes */
126 #define CACHE_STRIDE_SHIFT 5
127 unsigned long ia64_cache_stride_shift = ~0;
128
129 /*
130 * We use a special marker for the end of memory and it uses the extra (+1) slot
131 */
132 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
133 int num_rsvd_regions __initdata;
134
135
136 /*
137 * Filter incoming memory segments based on the primitive map created from the boot
138 * parameters. Segments contained in the map are removed from the memory ranges. A
139 * caller-specified function is called with the memory ranges that remain after filtering.
140 * This routine does not assume the incoming segments are sorted.
141 */
142 int __init
filter_rsvd_memory(u64 start,u64 end,void * arg)143 filter_rsvd_memory (u64 start, u64 end, void *arg)
144 {
145 u64 range_start, range_end, prev_start;
146 void (*func)(unsigned long, unsigned long, int);
147 int i;
148
149 #if IGNORE_PFN0
150 if (start == PAGE_OFFSET) {
151 printk(KERN_WARNING "warning: skipping physical page 0\n");
152 start += PAGE_SIZE;
153 if (start >= end) return 0;
154 }
155 #endif
156 /*
157 * lowest possible address(walker uses virtual)
158 */
159 prev_start = PAGE_OFFSET;
160 func = arg;
161
162 for (i = 0; i < num_rsvd_regions; ++i) {
163 range_start = max(start, prev_start);
164 range_end = min(end, rsvd_region[i].start);
165
166 if (range_start < range_end)
167 call_pernode_memory(__pa(range_start), range_end - range_start, func);
168
169 /* nothing more available in this segment */
170 if (range_end == end) return 0;
171
172 prev_start = rsvd_region[i].end;
173 }
174 /* end of memory marker allows full processing inside loop body */
175 return 0;
176 }
177
178 /*
179 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
180 * are not filtered out.
181 */
182 int __init
filter_memory(u64 start,u64 end,void * arg)183 filter_memory(u64 start, u64 end, void *arg)
184 {
185 void (*func)(unsigned long, unsigned long, int);
186
187 #if IGNORE_PFN0
188 if (start == PAGE_OFFSET) {
189 printk(KERN_WARNING "warning: skipping physical page 0\n");
190 start += PAGE_SIZE;
191 if (start >= end)
192 return 0;
193 }
194 #endif
195 func = arg;
196 if (start < end)
197 call_pernode_memory(__pa(start), end - start, func);
198 return 0;
199 }
200
201 static void __init
sort_regions(struct rsvd_region * rsvd_region,int max)202 sort_regions (struct rsvd_region *rsvd_region, int max)
203 {
204 int j;
205
206 /* simple bubble sorting */
207 while (max--) {
208 for (j = 0; j < max; ++j) {
209 if (rsvd_region[j].start > rsvd_region[j+1].start) {
210 struct rsvd_region tmp;
211 tmp = rsvd_region[j];
212 rsvd_region[j] = rsvd_region[j + 1];
213 rsvd_region[j + 1] = tmp;
214 }
215 }
216 }
217 }
218
219 /* merge overlaps */
220 static int __init
merge_regions(struct rsvd_region * rsvd_region,int max)221 merge_regions (struct rsvd_region *rsvd_region, int max)
222 {
223 int i;
224 for (i = 1; i < max; ++i) {
225 if (rsvd_region[i].start >= rsvd_region[i-1].end)
226 continue;
227 if (rsvd_region[i].end > rsvd_region[i-1].end)
228 rsvd_region[i-1].end = rsvd_region[i].end;
229 --max;
230 memmove(&rsvd_region[i], &rsvd_region[i+1],
231 (max - i) * sizeof(struct rsvd_region));
232 }
233 return max;
234 }
235
236 /*
237 * Request address space for all standard resources
238 */
register_memory(void)239 static int __init register_memory(void)
240 {
241 code_resource.start = ia64_tpa(_text);
242 code_resource.end = ia64_tpa(_etext) - 1;
243 data_resource.start = ia64_tpa(_etext);
244 data_resource.end = ia64_tpa(_edata) - 1;
245 bss_resource.start = ia64_tpa(__bss_start);
246 bss_resource.end = ia64_tpa(_end) - 1;
247 efi_initialize_iomem_resources(&code_resource, &data_resource,
248 &bss_resource);
249
250 return 0;
251 }
252
253 __initcall(register_memory);
254
255
256 #ifdef CONFIG_KEXEC
257
258 /*
259 * This function checks if the reserved crashkernel is allowed on the specific
260 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
261 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
262 * kernel/dma/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
263 * in kdump case. See the comment in sba_init() in sba_iommu.c.
264 *
265 * So, the only machvec that really supports loading the kdump kernel
266 * over 4 GB is "uv".
267 */
check_crashkernel_memory(unsigned long pbase,size_t size)268 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
269 {
270 if (is_uv_system())
271 return 1;
272 else
273 return pbase < (1UL << 32);
274 }
275
setup_crashkernel(unsigned long total,int * n)276 static void __init setup_crashkernel(unsigned long total, int *n)
277 {
278 unsigned long long base = 0, size = 0;
279 int ret;
280
281 ret = parse_crashkernel(boot_command_line, total,
282 &size, &base);
283 if (ret == 0 && size > 0) {
284 if (!base) {
285 sort_regions(rsvd_region, *n);
286 *n = merge_regions(rsvd_region, *n);
287 base = kdump_find_rsvd_region(size,
288 rsvd_region, *n);
289 }
290
291 if (!check_crashkernel_memory(base, size)) {
292 pr_warning("crashkernel: There would be kdump memory "
293 "at %ld GB but this is unusable because it "
294 "must\nbe below 4 GB. Change the memory "
295 "configuration of the machine.\n",
296 (unsigned long)(base >> 30));
297 return;
298 }
299
300 if (base != ~0UL) {
301 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
302 "for crashkernel (System RAM: %ldMB)\n",
303 (unsigned long)(size >> 20),
304 (unsigned long)(base >> 20),
305 (unsigned long)(total >> 20));
306 rsvd_region[*n].start =
307 (unsigned long)__va(base);
308 rsvd_region[*n].end =
309 (unsigned long)__va(base + size);
310 (*n)++;
311 crashk_res.start = base;
312 crashk_res.end = base + size - 1;
313 }
314 }
315 efi_memmap_res.start = ia64_boot_param->efi_memmap;
316 efi_memmap_res.end = efi_memmap_res.start +
317 ia64_boot_param->efi_memmap_size;
318 boot_param_res.start = __pa(ia64_boot_param);
319 boot_param_res.end = boot_param_res.start +
320 sizeof(*ia64_boot_param);
321 }
322 #else
setup_crashkernel(unsigned long total,int * n)323 static inline void __init setup_crashkernel(unsigned long total, int *n)
324 {}
325 #endif
326
327 /**
328 * reserve_memory - setup reserved memory areas
329 *
330 * Setup the reserved memory areas set aside for the boot parameters,
331 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
332 * see arch/ia64/include/asm/meminit.h if you need to define more.
333 */
334 void __init
reserve_memory(void)335 reserve_memory (void)
336 {
337 int n = 0;
338 unsigned long total_memory;
339
340 /*
341 * none of the entries in this table overlap
342 */
343 rsvd_region[n].start = (unsigned long) ia64_boot_param;
344 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
345 n++;
346
347 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
348 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
349 n++;
350
351 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
352 rsvd_region[n].end = (rsvd_region[n].start
353 + strlen(__va(ia64_boot_param->command_line)) + 1);
354 n++;
355
356 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
357 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
358 n++;
359
360 #ifdef CONFIG_BLK_DEV_INITRD
361 if (ia64_boot_param->initrd_start) {
362 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
363 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
364 n++;
365 }
366 #endif
367
368 #ifdef CONFIG_CRASH_DUMP
369 if (reserve_elfcorehdr(&rsvd_region[n].start,
370 &rsvd_region[n].end) == 0)
371 n++;
372 #endif
373
374 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
375 n++;
376
377 setup_crashkernel(total_memory, &n);
378
379 /* end of memory marker */
380 rsvd_region[n].start = ~0UL;
381 rsvd_region[n].end = ~0UL;
382 n++;
383
384 num_rsvd_regions = n;
385 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
386
387 sort_regions(rsvd_region, num_rsvd_regions);
388 num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
389
390 /* reserve all regions except the end of memory marker with memblock */
391 for (n = 0; n < num_rsvd_regions - 1; n++) {
392 struct rsvd_region *region = &rsvd_region[n];
393 phys_addr_t addr = __pa(region->start);
394 phys_addr_t size = region->end - region->start;
395
396 memblock_reserve(addr, size);
397 }
398 }
399
400 /**
401 * find_initrd - get initrd parameters from the boot parameter structure
402 *
403 * Grab the initrd start and end from the boot parameter struct given us by
404 * the boot loader.
405 */
406 void __init
find_initrd(void)407 find_initrd (void)
408 {
409 #ifdef CONFIG_BLK_DEV_INITRD
410 if (ia64_boot_param->initrd_start) {
411 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
412 initrd_end = initrd_start+ia64_boot_param->initrd_size;
413
414 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
415 initrd_start, ia64_boot_param->initrd_size);
416 }
417 #endif
418 }
419
420 static void __init
io_port_init(void)421 io_port_init (void)
422 {
423 unsigned long phys_iobase;
424
425 /*
426 * Set `iobase' based on the EFI memory map or, failing that, the
427 * value firmware left in ar.k0.
428 *
429 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
430 * the port's virtual address, so ia32_load_state() loads it with a
431 * user virtual address. But in ia64 mode, glibc uses the
432 * *physical* address in ar.k0 to mmap the appropriate area from
433 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
434 * cases, user-mode can only use the legacy 0-64K I/O port space.
435 *
436 * ar.k0 is not involved in kernel I/O port accesses, which can use
437 * any of the I/O port spaces and are done via MMIO using the
438 * virtual mmio_base from the appropriate io_space[].
439 */
440 phys_iobase = efi_get_iobase();
441 if (!phys_iobase) {
442 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
443 printk(KERN_INFO "No I/O port range found in EFI memory map, "
444 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
445 }
446 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
447 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
448
449 /* setup legacy IO port space */
450 io_space[0].mmio_base = ia64_iobase;
451 io_space[0].sparse = 1;
452 num_io_spaces = 1;
453 }
454
455 /**
456 * early_console_setup - setup debugging console
457 *
458 * Consoles started here require little enough setup that we can start using
459 * them very early in the boot process, either right after the machine
460 * vector initialization, or even before if the drivers can detect their hw.
461 *
462 * Returns non-zero if a console couldn't be setup.
463 */
464 static inline int __init
early_console_setup(char * cmdline)465 early_console_setup (char *cmdline)
466 {
467 #ifdef CONFIG_EFI_PCDP
468 if (!efi_setup_pcdp_console(cmdline))
469 return 0;
470 #endif
471 return -1;
472 }
473
474 static void __init
screen_info_setup(void)475 screen_info_setup(void)
476 {
477 unsigned int orig_x, orig_y, num_cols, num_rows, font_height;
478
479 memset(&screen_info, 0, sizeof(screen_info));
480
481 if (!ia64_boot_param->console_info.num_rows ||
482 !ia64_boot_param->console_info.num_cols) {
483 printk(KERN_WARNING "invalid screen-info, guessing 80x25\n");
484 orig_x = 0;
485 orig_y = 0;
486 num_cols = 80;
487 num_rows = 25;
488 font_height = 16;
489 } else {
490 orig_x = ia64_boot_param->console_info.orig_x;
491 orig_y = ia64_boot_param->console_info.orig_y;
492 num_cols = ia64_boot_param->console_info.num_cols;
493 num_rows = ia64_boot_param->console_info.num_rows;
494 font_height = 400 / num_rows;
495 }
496
497 screen_info.orig_x = orig_x;
498 screen_info.orig_y = orig_y;
499 screen_info.orig_video_cols = num_cols;
500 screen_info.orig_video_lines = num_rows;
501 screen_info.orig_video_points = font_height;
502 screen_info.orig_video_mode = 3; /* XXX fake */
503 screen_info.orig_video_isVGA = 1; /* XXX fake */
504 screen_info.orig_video_ega_bx = 3; /* XXX fake */
505 }
506
507 static inline void
mark_bsp_online(void)508 mark_bsp_online (void)
509 {
510 #ifdef CONFIG_SMP
511 /* If we register an early console, allow CPU 0 to printk */
512 set_cpu_online(smp_processor_id(), true);
513 #endif
514 }
515
516 static __initdata int nomca;
setup_nomca(char * s)517 static __init int setup_nomca(char *s)
518 {
519 nomca = 1;
520 return 0;
521 }
522 early_param("nomca", setup_nomca);
523
524 #ifdef CONFIG_CRASH_DUMP
reserve_elfcorehdr(u64 * start,u64 * end)525 int __init reserve_elfcorehdr(u64 *start, u64 *end)
526 {
527 u64 length;
528
529 /* We get the address using the kernel command line,
530 * but the size is extracted from the EFI tables.
531 * Both address and size are required for reservation
532 * to work properly.
533 */
534
535 if (!is_vmcore_usable())
536 return -EINVAL;
537
538 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
539 vmcore_unusable();
540 return -EINVAL;
541 }
542
543 *start = (unsigned long)__va(elfcorehdr_addr);
544 *end = *start + length;
545 return 0;
546 }
547
548 #endif /* CONFIG_PROC_VMCORE */
549
550 void __init
setup_arch(char ** cmdline_p)551 setup_arch (char **cmdline_p)
552 {
553 unw_init();
554
555 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
556
557 *cmdline_p = __va(ia64_boot_param->command_line);
558 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
559
560 efi_init();
561 io_port_init();
562
563 uv_probe_system_type();
564 parse_early_param();
565
566 if (early_console_setup(*cmdline_p) == 0)
567 mark_bsp_online();
568
569 /* Initialize the ACPI boot-time table parser */
570 acpi_table_init();
571 early_acpi_boot_init();
572 #ifdef CONFIG_ACPI_NUMA
573 acpi_numa_init();
574 acpi_numa_fixup();
575 #ifdef CONFIG_ACPI_HOTPLUG_CPU
576 prefill_possible_map();
577 #endif
578 per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
579 32 : cpumask_weight(&early_cpu_possible_map)),
580 additional_cpus > 0 ? additional_cpus : 0);
581 #endif /* CONFIG_ACPI_NUMA */
582
583 #ifdef CONFIG_SMP
584 smp_build_cpu_map();
585 #endif
586 find_memory();
587
588 /* process SAL system table: */
589 ia64_sal_init(__va(sal_systab_phys));
590
591 #ifdef CONFIG_ITANIUM
592 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
593 #else
594 {
595 unsigned long num_phys_stacked;
596
597 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
598 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
599 }
600 #endif
601
602 #ifdef CONFIG_SMP
603 cpu_physical_id(0) = hard_smp_processor_id();
604 #endif
605
606 cpu_init(); /* initialize the bootstrap CPU */
607 mmu_context_init(); /* initialize context_id bitmap */
608
609 #ifdef CONFIG_VT
610 if (!conswitchp) {
611 # if defined(CONFIG_DUMMY_CONSOLE)
612 conswitchp = &dummy_con;
613 # endif
614 # if defined(CONFIG_VGA_CONSOLE)
615 /*
616 * Non-legacy systems may route legacy VGA MMIO range to system
617 * memory. vga_con probes the MMIO hole, so memory looks like
618 * a VGA device to it. The EFI memory map can tell us if it's
619 * memory so we can avoid this problem.
620 */
621 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
622 conswitchp = &vga_con;
623 # endif
624 }
625 #endif
626
627 /* enable IA-64 Machine Check Abort Handling unless disabled */
628 if (!nomca)
629 ia64_mca_init();
630
631 /*
632 * Default to /dev/sda2. This assumes that the EFI partition
633 * is physical disk 1 partition 1 and the Linux root disk is
634 * physical disk 1 partition 2.
635 */
636 ROOT_DEV = Root_SDA2; /* default to second partition on first drive */
637
638 if (is_uv_system())
639 uv_setup(cmdline_p);
640 #ifdef CONFIG_SMP
641 else
642 init_smp_config();
643 #endif
644
645 screen_info_setup();
646 paging_init();
647
648 clear_sched_clock_stable();
649 }
650
651 /*
652 * Display cpu info for all CPUs.
653 */
654 static int
show_cpuinfo(struct seq_file * m,void * v)655 show_cpuinfo (struct seq_file *m, void *v)
656 {
657 #ifdef CONFIG_SMP
658 # define lpj c->loops_per_jiffy
659 # define cpunum c->cpu
660 #else
661 # define lpj loops_per_jiffy
662 # define cpunum 0
663 #endif
664 static struct {
665 unsigned long mask;
666 const char *feature_name;
667 } feature_bits[] = {
668 { 1UL << 0, "branchlong" },
669 { 1UL << 1, "spontaneous deferral"},
670 { 1UL << 2, "16-byte atomic ops" }
671 };
672 char features[128], *cp, *sep;
673 struct cpuinfo_ia64 *c = v;
674 unsigned long mask;
675 unsigned long proc_freq;
676 int i, size;
677
678 mask = c->features;
679
680 /* build the feature string: */
681 memcpy(features, "standard", 9);
682 cp = features;
683 size = sizeof(features);
684 sep = "";
685 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
686 if (mask & feature_bits[i].mask) {
687 cp += snprintf(cp, size, "%s%s", sep,
688 feature_bits[i].feature_name),
689 sep = ", ";
690 mask &= ~feature_bits[i].mask;
691 size = sizeof(features) - (cp - features);
692 }
693 }
694 if (mask && size > 1) {
695 /* print unknown features as a hex value */
696 snprintf(cp, size, "%s0x%lx", sep, mask);
697 }
698
699 proc_freq = cpufreq_quick_get(cpunum);
700 if (!proc_freq)
701 proc_freq = c->proc_freq / 1000;
702
703 seq_printf(m,
704 "processor : %d\n"
705 "vendor : %s\n"
706 "arch : IA-64\n"
707 "family : %u\n"
708 "model : %u\n"
709 "model name : %s\n"
710 "revision : %u\n"
711 "archrev : %u\n"
712 "features : %s\n"
713 "cpu number : %lu\n"
714 "cpu regs : %u\n"
715 "cpu MHz : %lu.%03lu\n"
716 "itc MHz : %lu.%06lu\n"
717 "BogoMIPS : %lu.%02lu\n",
718 cpunum, c->vendor, c->family, c->model,
719 c->model_name, c->revision, c->archrev,
720 features, c->ppn, c->number,
721 proc_freq / 1000, proc_freq % 1000,
722 c->itc_freq / 1000000, c->itc_freq % 1000000,
723 lpj*HZ/500000, (lpj*HZ/5000) % 100);
724 #ifdef CONFIG_SMP
725 seq_printf(m, "siblings : %u\n",
726 cpumask_weight(&cpu_core_map[cpunum]));
727 if (c->socket_id != -1)
728 seq_printf(m, "physical id: %u\n", c->socket_id);
729 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
730 seq_printf(m,
731 "core id : %u\n"
732 "thread id : %u\n",
733 c->core_id, c->thread_id);
734 #endif
735 seq_printf(m,"\n");
736
737 return 0;
738 }
739
740 static void *
c_start(struct seq_file * m,loff_t * pos)741 c_start (struct seq_file *m, loff_t *pos)
742 {
743 #ifdef CONFIG_SMP
744 while (*pos < nr_cpu_ids && !cpu_online(*pos))
745 ++*pos;
746 #endif
747 return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
748 }
749
750 static void *
c_next(struct seq_file * m,void * v,loff_t * pos)751 c_next (struct seq_file *m, void *v, loff_t *pos)
752 {
753 ++*pos;
754 return c_start(m, pos);
755 }
756
757 static void
c_stop(struct seq_file * m,void * v)758 c_stop (struct seq_file *m, void *v)
759 {
760 }
761
762 const struct seq_operations cpuinfo_op = {
763 .start = c_start,
764 .next = c_next,
765 .stop = c_stop,
766 .show = show_cpuinfo
767 };
768
769 #define MAX_BRANDS 8
770 static char brandname[MAX_BRANDS][128];
771
772 static char *
get_model_name(__u8 family,__u8 model)773 get_model_name(__u8 family, __u8 model)
774 {
775 static int overflow;
776 char brand[128];
777 int i;
778
779 memcpy(brand, "Unknown", 8);
780 if (ia64_pal_get_brand_info(brand)) {
781 if (family == 0x7)
782 memcpy(brand, "Merced", 7);
783 else if (family == 0x1f) switch (model) {
784 case 0: memcpy(brand, "McKinley", 9); break;
785 case 1: memcpy(brand, "Madison", 8); break;
786 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
787 }
788 }
789 for (i = 0; i < MAX_BRANDS; i++)
790 if (strcmp(brandname[i], brand) == 0)
791 return brandname[i];
792 for (i = 0; i < MAX_BRANDS; i++)
793 if (brandname[i][0] == '\0')
794 return strcpy(brandname[i], brand);
795 if (overflow++ == 0)
796 printk(KERN_ERR
797 "%s: Table overflow. Some processor model information will be missing\n",
798 __func__);
799 return "Unknown";
800 }
801
802 static void
identify_cpu(struct cpuinfo_ia64 * c)803 identify_cpu (struct cpuinfo_ia64 *c)
804 {
805 union {
806 unsigned long bits[5];
807 struct {
808 /* id 0 & 1: */
809 char vendor[16];
810
811 /* id 2 */
812 u64 ppn; /* processor serial number */
813
814 /* id 3: */
815 unsigned number : 8;
816 unsigned revision : 8;
817 unsigned model : 8;
818 unsigned family : 8;
819 unsigned archrev : 8;
820 unsigned reserved : 24;
821
822 /* id 4: */
823 u64 features;
824 } field;
825 } cpuid;
826 pal_vm_info_1_u_t vm1;
827 pal_vm_info_2_u_t vm2;
828 pal_status_t status;
829 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
830 int i;
831 for (i = 0; i < 5; ++i)
832 cpuid.bits[i] = ia64_get_cpuid(i);
833
834 memcpy(c->vendor, cpuid.field.vendor, 16);
835 #ifdef CONFIG_SMP
836 c->cpu = smp_processor_id();
837
838 /* below default values will be overwritten by identify_siblings()
839 * for Multi-Threading/Multi-Core capable CPUs
840 */
841 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
842 c->socket_id = -1;
843
844 identify_siblings(c);
845
846 if (c->threads_per_core > smp_num_siblings)
847 smp_num_siblings = c->threads_per_core;
848 #endif
849 c->ppn = cpuid.field.ppn;
850 c->number = cpuid.field.number;
851 c->revision = cpuid.field.revision;
852 c->model = cpuid.field.model;
853 c->family = cpuid.field.family;
854 c->archrev = cpuid.field.archrev;
855 c->features = cpuid.field.features;
856 c->model_name = get_model_name(c->family, c->model);
857
858 status = ia64_pal_vm_summary(&vm1, &vm2);
859 if (status == PAL_STATUS_SUCCESS) {
860 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
861 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
862 }
863 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
864 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
865 }
866
867 /*
868 * Do the following calculations:
869 *
870 * 1. the max. cache line size.
871 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
872 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
873 */
874 static void
get_cache_info(void)875 get_cache_info(void)
876 {
877 unsigned long line_size, max = 1;
878 unsigned long l, levels, unique_caches;
879 pal_cache_config_info_t cci;
880 long status;
881
882 status = ia64_pal_cache_summary(&levels, &unique_caches);
883 if (status != 0) {
884 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
885 __func__, status);
886 max = SMP_CACHE_BYTES;
887 /* Safest setup for "flush_icache_range()" */
888 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
889 /* Safest setup for "clflush_cache_range()" */
890 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
891 goto out;
892 }
893
894 for (l = 0; l < levels; ++l) {
895 /* cache_type (data_or_unified)=2 */
896 status = ia64_pal_cache_config_info(l, 2, &cci);
897 if (status != 0) {
898 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
899 "(l=%lu, 2) failed (status=%ld)\n",
900 __func__, l, status);
901 max = SMP_CACHE_BYTES;
902 /* The safest setup for "flush_icache_range()" */
903 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
904 /* The safest setup for "clflush_cache_range()" */
905 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
906 cci.pcci_unified = 1;
907 } else {
908 if (cci.pcci_stride < ia64_cache_stride_shift)
909 ia64_cache_stride_shift = cci.pcci_stride;
910
911 line_size = 1 << cci.pcci_line_size;
912 if (line_size > max)
913 max = line_size;
914 }
915
916 if (!cci.pcci_unified) {
917 /* cache_type (instruction)=1*/
918 status = ia64_pal_cache_config_info(l, 1, &cci);
919 if (status != 0) {
920 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
921 "(l=%lu, 1) failed (status=%ld)\n",
922 __func__, l, status);
923 /* The safest setup for flush_icache_range() */
924 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
925 }
926 }
927 if (cci.pcci_stride < ia64_i_cache_stride_shift)
928 ia64_i_cache_stride_shift = cci.pcci_stride;
929 }
930 out:
931 if (max > ia64_max_cacheline_size)
932 ia64_max_cacheline_size = max;
933 }
934
935 /*
936 * cpu_init() initializes state that is per-CPU. This function acts
937 * as a 'CPU state barrier', nothing should get across.
938 */
939 void
cpu_init(void)940 cpu_init (void)
941 {
942 extern void ia64_mmu_init(void *);
943 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
944 unsigned long num_phys_stacked;
945 pal_vm_info_2_u_t vmi;
946 unsigned int max_ctx;
947 struct cpuinfo_ia64 *cpu_info;
948 void *cpu_data;
949
950 cpu_data = per_cpu_init();
951 #ifdef CONFIG_SMP
952 /*
953 * insert boot cpu into sibling and core mapes
954 * (must be done after per_cpu area is setup)
955 */
956 if (smp_processor_id() == 0) {
957 cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
958 cpumask_set_cpu(0, &cpu_core_map[0]);
959 } else {
960 /*
961 * Set ar.k3 so that assembly code in MCA handler can compute
962 * physical addresses of per cpu variables with a simple:
963 * phys = ar.k3 + &per_cpu_var
964 * and the alt-dtlb-miss handler can set per-cpu mapping into
965 * the TLB when needed. head.S already did this for cpu0.
966 */
967 ia64_set_kr(IA64_KR_PER_CPU_DATA,
968 ia64_tpa(cpu_data) - (long) __per_cpu_start);
969 }
970 #endif
971
972 get_cache_info();
973
974 /*
975 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
976 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
977 * depends on the data returned by identify_cpu(). We break the dependency by
978 * accessing cpu_data() through the canonical per-CPU address.
979 */
980 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
981 identify_cpu(cpu_info);
982
983 #ifdef CONFIG_MCKINLEY
984 {
985 # define FEATURE_SET 16
986 struct ia64_pal_retval iprv;
987
988 if (cpu_info->family == 0x1f) {
989 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
990 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
991 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
992 (iprv.v1 | 0x80), FEATURE_SET, 0);
993 }
994 }
995 #endif
996
997 /* Clear the stack memory reserved for pt_regs: */
998 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
999
1000 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
1001
1002 /*
1003 * Initialize the page-table base register to a global
1004 * directory with all zeroes. This ensure that we can handle
1005 * TLB-misses to user address-space even before we created the
1006 * first user address-space. This may happen, e.g., due to
1007 * aggressive use of lfetch.fault.
1008 */
1009 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
1010
1011 /*
1012 * Initialize default control register to defer speculative faults except
1013 * for those arising from TLB misses, which are not deferred. The
1014 * kernel MUST NOT depend on a particular setting of these bits (in other words,
1015 * the kernel must have recovery code for all speculative accesses). Turn on
1016 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
1017 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
1018 * be fine).
1019 */
1020 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1021 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1022 mmgrab(&init_mm);
1023 current->active_mm = &init_mm;
1024 BUG_ON(current->mm);
1025
1026 ia64_mmu_init(ia64_imva(cpu_data));
1027 ia64_mca_cpu_init(ia64_imva(cpu_data));
1028
1029 /* Clear ITC to eliminate sched_clock() overflows in human time. */
1030 ia64_set_itc(0);
1031
1032 /* disable all local interrupt sources: */
1033 ia64_set_itv(1 << 16);
1034 ia64_set_lrr0(1 << 16);
1035 ia64_set_lrr1(1 << 16);
1036 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1037 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1038
1039 /* clear TPR & XTP to enable all interrupt classes: */
1040 ia64_setreg(_IA64_REG_CR_TPR, 0);
1041
1042 /* Clear any pending interrupts left by SAL/EFI */
1043 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1044 ia64_eoi();
1045
1046 #ifdef CONFIG_SMP
1047 normal_xtp();
1048 #endif
1049
1050 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1051 if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1052 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1053 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1054 } else {
1055 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1056 max_ctx = (1U << 15) - 1; /* use architected minimum */
1057 }
1058 while (max_ctx < ia64_ctx.max_ctx) {
1059 unsigned int old = ia64_ctx.max_ctx;
1060 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1061 break;
1062 }
1063
1064 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1065 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1066 "stacked regs\n");
1067 num_phys_stacked = 96;
1068 }
1069 /* size of physical stacked register partition plus 8 bytes: */
1070 if (num_phys_stacked > max_num_phys_stacked) {
1071 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1072 max_num_phys_stacked = num_phys_stacked;
1073 }
1074 }
1075
arch_cpu_finalize_init(void)1076 void __init arch_cpu_finalize_init(void)
1077 {
1078 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1079 (unsigned long) __end___mckinley_e9_bundles);
1080 }
1081
run_dmi_scan(void)1082 static int __init run_dmi_scan(void)
1083 {
1084 dmi_setup();
1085 return 0;
1086 }
1087 core_initcall(run_dmi_scan);
1088