• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Architecture-specific setup.
4  *
5  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  *	Stephane Eranian <eranian@hpl.hp.com>
8  * Copyright (C) 2000, 2004 Intel Corp
9  * 	Rohit Seth <rohit.seth@intel.com>
10  * 	Suresh Siddha <suresh.b.siddha@intel.com>
11  * 	Gordon Jin <gordon.jin@intel.com>
12  * Copyright (C) 1999 VA Linux Systems
13  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14  *
15  * 12/26/04 S.Siddha, G.Jin, R.Seth
16  *			Add multi-threading and multi-core detection
17  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
18  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
19  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
20  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
21  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
22  * 01/07/99 S.Eranian	added the support for command line argument
23  * 06/24/99 W.Drummond	added boot_cpu_data.
24  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
25  */
26 #include <linux/module.h>
27 #include <linux/init.h>
28 
29 #include <linux/acpi.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/cpu.h>
33 #include <linux/kdev_t.h>
34 #include <linux/kernel.h>
35 #include <linux/memblock.h>
36 #include <linux/reboot.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/clock.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/seq_file.h>
41 #include <linux/string.h>
42 #include <linux/threads.h>
43 #include <linux/screen_info.h>
44 #include <linux/dmi.h>
45 #include <linux/root_dev.h>
46 #include <linux/serial.h>
47 #include <linux/serial_core.h>
48 #include <linux/efi.h>
49 #include <linux/initrd.h>
50 #include <linux/pm.h>
51 #include <linux/cpufreq.h>
52 #include <linux/kexec.h>
53 #include <linux/crash_dump.h>
54 
55 #include <asm/mca.h>
56 #include <asm/meminit.h>
57 #include <asm/page.h>
58 #include <asm/patch.h>
59 #include <asm/pgtable.h>
60 #include <asm/processor.h>
61 #include <asm/sal.h>
62 #include <asm/sections.h>
63 #include <asm/setup.h>
64 #include <asm/smp.h>
65 #include <asm/tlbflush.h>
66 #include <asm/unistd.h>
67 #include <asm/uv/uv.h>
68 
69 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
70 # error "struct cpuinfo_ia64 too big!"
71 #endif
72 
73 char ia64_platform_name[64];
74 
75 #ifdef CONFIG_SMP
76 unsigned long __per_cpu_offset[NR_CPUS];
77 EXPORT_SYMBOL(__per_cpu_offset);
78 #endif
79 
80 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
81 EXPORT_SYMBOL(ia64_cpu_info);
82 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
83 #ifdef CONFIG_SMP
84 EXPORT_SYMBOL(local_per_cpu_offset);
85 #endif
86 unsigned long ia64_cycles_per_usec;
87 struct ia64_boot_param *ia64_boot_param;
88 struct screen_info screen_info;
89 unsigned long vga_console_iobase;
90 unsigned long vga_console_membase;
91 
92 static struct resource data_resource = {
93 	.name	= "Kernel data",
94 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
95 };
96 
97 static struct resource code_resource = {
98 	.name	= "Kernel code",
99 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
100 };
101 
102 static struct resource bss_resource = {
103 	.name	= "Kernel bss",
104 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
105 };
106 
107 unsigned long ia64_max_cacheline_size;
108 
109 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
110 EXPORT_SYMBOL(ia64_iobase);
111 struct io_space io_space[MAX_IO_SPACES];
112 EXPORT_SYMBOL(io_space);
113 unsigned int num_io_spaces;
114 
115 /*
116  * "flush_icache_range()" needs to know what processor dependent stride size to use
117  * when it makes i-cache(s) coherent with d-caches.
118  */
119 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
120 unsigned long ia64_i_cache_stride_shift = ~0;
121 /*
122  * "clflush_cache_range()" needs to know what processor dependent stride size to
123  * use when it flushes cache lines including both d-cache and i-cache.
124  */
125 /* Safest way to go: 32 bytes by 32 bytes */
126 #define	CACHE_STRIDE_SHIFT	5
127 unsigned long ia64_cache_stride_shift = ~0;
128 
129 /*
130  * We use a special marker for the end of memory and it uses the extra (+1) slot
131  */
132 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
133 int num_rsvd_regions __initdata;
134 
135 
136 /*
137  * Filter incoming memory segments based on the primitive map created from the boot
138  * parameters. Segments contained in the map are removed from the memory ranges. A
139  * caller-specified function is called with the memory ranges that remain after filtering.
140  * This routine does not assume the incoming segments are sorted.
141  */
142 int __init
filter_rsvd_memory(u64 start,u64 end,void * arg)143 filter_rsvd_memory (u64 start, u64 end, void *arg)
144 {
145 	u64 range_start, range_end, prev_start;
146 	void (*func)(unsigned long, unsigned long, int);
147 	int i;
148 
149 #if IGNORE_PFN0
150 	if (start == PAGE_OFFSET) {
151 		printk(KERN_WARNING "warning: skipping physical page 0\n");
152 		start += PAGE_SIZE;
153 		if (start >= end) return 0;
154 	}
155 #endif
156 	/*
157 	 * lowest possible address(walker uses virtual)
158 	 */
159 	prev_start = PAGE_OFFSET;
160 	func = arg;
161 
162 	for (i = 0; i < num_rsvd_regions; ++i) {
163 		range_start = max(start, prev_start);
164 		range_end   = min(end, rsvd_region[i].start);
165 
166 		if (range_start < range_end)
167 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
168 
169 		/* nothing more available in this segment */
170 		if (range_end == end) return 0;
171 
172 		prev_start = rsvd_region[i].end;
173 	}
174 	/* end of memory marker allows full processing inside loop body */
175 	return 0;
176 }
177 
178 /*
179  * Similar to "filter_rsvd_memory()", but the reserved memory ranges
180  * are not filtered out.
181  */
182 int __init
filter_memory(u64 start,u64 end,void * arg)183 filter_memory(u64 start, u64 end, void *arg)
184 {
185 	void (*func)(unsigned long, unsigned long, int);
186 
187 #if IGNORE_PFN0
188 	if (start == PAGE_OFFSET) {
189 		printk(KERN_WARNING "warning: skipping physical page 0\n");
190 		start += PAGE_SIZE;
191 		if (start >= end)
192 			return 0;
193 	}
194 #endif
195 	func = arg;
196 	if (start < end)
197 		call_pernode_memory(__pa(start), end - start, func);
198 	return 0;
199 }
200 
201 static void __init
sort_regions(struct rsvd_region * rsvd_region,int max)202 sort_regions (struct rsvd_region *rsvd_region, int max)
203 {
204 	int j;
205 
206 	/* simple bubble sorting */
207 	while (max--) {
208 		for (j = 0; j < max; ++j) {
209 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
210 				struct rsvd_region tmp;
211 				tmp = rsvd_region[j];
212 				rsvd_region[j] = rsvd_region[j + 1];
213 				rsvd_region[j + 1] = tmp;
214 			}
215 		}
216 	}
217 }
218 
219 /* merge overlaps */
220 static int __init
merge_regions(struct rsvd_region * rsvd_region,int max)221 merge_regions (struct rsvd_region *rsvd_region, int max)
222 {
223 	int i;
224 	for (i = 1; i < max; ++i) {
225 		if (rsvd_region[i].start >= rsvd_region[i-1].end)
226 			continue;
227 		if (rsvd_region[i].end > rsvd_region[i-1].end)
228 			rsvd_region[i-1].end = rsvd_region[i].end;
229 		--max;
230 		memmove(&rsvd_region[i], &rsvd_region[i+1],
231 			(max - i) * sizeof(struct rsvd_region));
232 	}
233 	return max;
234 }
235 
236 /*
237  * Request address space for all standard resources
238  */
register_memory(void)239 static int __init register_memory(void)
240 {
241 	code_resource.start = ia64_tpa(_text);
242 	code_resource.end   = ia64_tpa(_etext) - 1;
243 	data_resource.start = ia64_tpa(_etext);
244 	data_resource.end   = ia64_tpa(_edata) - 1;
245 	bss_resource.start  = ia64_tpa(__bss_start);
246 	bss_resource.end    = ia64_tpa(_end) - 1;
247 	efi_initialize_iomem_resources(&code_resource, &data_resource,
248 			&bss_resource);
249 
250 	return 0;
251 }
252 
253 __initcall(register_memory);
254 
255 
256 #ifdef CONFIG_KEXEC
257 
258 /*
259  * This function checks if the reserved crashkernel is allowed on the specific
260  * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
261  * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
262  * kernel/dma/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
263  * in kdump case. See the comment in sba_init() in sba_iommu.c.
264  *
265  * So, the only machvec that really supports loading the kdump kernel
266  * over 4 GB is "uv".
267  */
check_crashkernel_memory(unsigned long pbase,size_t size)268 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
269 {
270 	if (is_uv_system())
271 		return 1;
272 	else
273 		return pbase < (1UL << 32);
274 }
275 
setup_crashkernel(unsigned long total,int * n)276 static void __init setup_crashkernel(unsigned long total, int *n)
277 {
278 	unsigned long long base = 0, size = 0;
279 	int ret;
280 
281 	ret = parse_crashkernel(boot_command_line, total,
282 			&size, &base);
283 	if (ret == 0 && size > 0) {
284 		if (!base) {
285 			sort_regions(rsvd_region, *n);
286 			*n = merge_regions(rsvd_region, *n);
287 			base = kdump_find_rsvd_region(size,
288 					rsvd_region, *n);
289 		}
290 
291 		if (!check_crashkernel_memory(base, size)) {
292 			pr_warning("crashkernel: There would be kdump memory "
293 				"at %ld GB but this is unusable because it "
294 				"must\nbe below 4 GB. Change the memory "
295 				"configuration of the machine.\n",
296 				(unsigned long)(base >> 30));
297 			return;
298 		}
299 
300 		if (base != ~0UL) {
301 			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
302 					"for crashkernel (System RAM: %ldMB)\n",
303 					(unsigned long)(size >> 20),
304 					(unsigned long)(base >> 20),
305 					(unsigned long)(total >> 20));
306 			rsvd_region[*n].start =
307 				(unsigned long)__va(base);
308 			rsvd_region[*n].end =
309 				(unsigned long)__va(base + size);
310 			(*n)++;
311 			crashk_res.start = base;
312 			crashk_res.end = base + size - 1;
313 		}
314 	}
315 	efi_memmap_res.start = ia64_boot_param->efi_memmap;
316 	efi_memmap_res.end = efi_memmap_res.start +
317 		ia64_boot_param->efi_memmap_size;
318 	boot_param_res.start = __pa(ia64_boot_param);
319 	boot_param_res.end = boot_param_res.start +
320 		sizeof(*ia64_boot_param);
321 }
322 #else
setup_crashkernel(unsigned long total,int * n)323 static inline void __init setup_crashkernel(unsigned long total, int *n)
324 {}
325 #endif
326 
327 /**
328  * reserve_memory - setup reserved memory areas
329  *
330  * Setup the reserved memory areas set aside for the boot parameters,
331  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
332  * see arch/ia64/include/asm/meminit.h if you need to define more.
333  */
334 void __init
reserve_memory(void)335 reserve_memory (void)
336 {
337 	int n = 0;
338 	unsigned long total_memory;
339 
340 	/*
341 	 * none of the entries in this table overlap
342 	 */
343 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
344 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
345 	n++;
346 
347 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
348 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
349 	n++;
350 
351 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
352 	rsvd_region[n].end   = (rsvd_region[n].start
353 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
354 	n++;
355 
356 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
357 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
358 	n++;
359 
360 #ifdef CONFIG_BLK_DEV_INITRD
361 	if (ia64_boot_param->initrd_start) {
362 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
363 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
364 		n++;
365 	}
366 #endif
367 
368 #ifdef CONFIG_CRASH_DUMP
369 	if (reserve_elfcorehdr(&rsvd_region[n].start,
370 			       &rsvd_region[n].end) == 0)
371 		n++;
372 #endif
373 
374 	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
375 	n++;
376 
377 	setup_crashkernel(total_memory, &n);
378 
379 	/* end of memory marker */
380 	rsvd_region[n].start = ~0UL;
381 	rsvd_region[n].end   = ~0UL;
382 	n++;
383 
384 	num_rsvd_regions = n;
385 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
386 
387 	sort_regions(rsvd_region, num_rsvd_regions);
388 	num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
389 
390 	/* reserve all regions except the end of memory marker with memblock */
391 	for (n = 0; n < num_rsvd_regions - 1; n++) {
392 		struct rsvd_region *region = &rsvd_region[n];
393 		phys_addr_t addr = __pa(region->start);
394 		phys_addr_t size = region->end - region->start;
395 
396 		memblock_reserve(addr, size);
397 	}
398 }
399 
400 /**
401  * find_initrd - get initrd parameters from the boot parameter structure
402  *
403  * Grab the initrd start and end from the boot parameter struct given us by
404  * the boot loader.
405  */
406 void __init
find_initrd(void)407 find_initrd (void)
408 {
409 #ifdef CONFIG_BLK_DEV_INITRD
410 	if (ia64_boot_param->initrd_start) {
411 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
412 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
413 
414 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
415 		       initrd_start, ia64_boot_param->initrd_size);
416 	}
417 #endif
418 }
419 
420 static void __init
io_port_init(void)421 io_port_init (void)
422 {
423 	unsigned long phys_iobase;
424 
425 	/*
426 	 * Set `iobase' based on the EFI memory map or, failing that, the
427 	 * value firmware left in ar.k0.
428 	 *
429 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
430 	 * the port's virtual address, so ia32_load_state() loads it with a
431 	 * user virtual address.  But in ia64 mode, glibc uses the
432 	 * *physical* address in ar.k0 to mmap the appropriate area from
433 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
434 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
435 	 *
436 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
437 	 * any of the I/O port spaces and are done via MMIO using the
438 	 * virtual mmio_base from the appropriate io_space[].
439 	 */
440 	phys_iobase = efi_get_iobase();
441 	if (!phys_iobase) {
442 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
443 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
444 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
445 	}
446 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
447 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
448 
449 	/* setup legacy IO port space */
450 	io_space[0].mmio_base = ia64_iobase;
451 	io_space[0].sparse = 1;
452 	num_io_spaces = 1;
453 }
454 
455 /**
456  * early_console_setup - setup debugging console
457  *
458  * Consoles started here require little enough setup that we can start using
459  * them very early in the boot process, either right after the machine
460  * vector initialization, or even before if the drivers can detect their hw.
461  *
462  * Returns non-zero if a console couldn't be setup.
463  */
464 static inline int __init
early_console_setup(char * cmdline)465 early_console_setup (char *cmdline)
466 {
467 #ifdef CONFIG_EFI_PCDP
468 	if (!efi_setup_pcdp_console(cmdline))
469 		return 0;
470 #endif
471 	return -1;
472 }
473 
474 static void __init
screen_info_setup(void)475 screen_info_setup(void)
476 {
477 	unsigned int orig_x, orig_y, num_cols, num_rows, font_height;
478 
479 	memset(&screen_info, 0, sizeof(screen_info));
480 
481 	if (!ia64_boot_param->console_info.num_rows ||
482 	    !ia64_boot_param->console_info.num_cols) {
483 		printk(KERN_WARNING "invalid screen-info, guessing 80x25\n");
484 		orig_x = 0;
485 		orig_y = 0;
486 		num_cols = 80;
487 		num_rows = 25;
488 		font_height = 16;
489 	} else {
490 		orig_x = ia64_boot_param->console_info.orig_x;
491 		orig_y = ia64_boot_param->console_info.orig_y;
492 		num_cols = ia64_boot_param->console_info.num_cols;
493 		num_rows = ia64_boot_param->console_info.num_rows;
494 		font_height = 400 / num_rows;
495 	}
496 
497 	screen_info.orig_x = orig_x;
498 	screen_info.orig_y = orig_y;
499 	screen_info.orig_video_cols  = num_cols;
500 	screen_info.orig_video_lines = num_rows;
501 	screen_info.orig_video_points = font_height;
502 	screen_info.orig_video_mode = 3;	/* XXX fake */
503 	screen_info.orig_video_isVGA = 1;	/* XXX fake */
504 	screen_info.orig_video_ega_bx = 3;	/* XXX fake */
505 }
506 
507 static inline void
mark_bsp_online(void)508 mark_bsp_online (void)
509 {
510 #ifdef CONFIG_SMP
511 	/* If we register an early console, allow CPU 0 to printk */
512 	set_cpu_online(smp_processor_id(), true);
513 #endif
514 }
515 
516 static __initdata int nomca;
setup_nomca(char * s)517 static __init int setup_nomca(char *s)
518 {
519 	nomca = 1;
520 	return 0;
521 }
522 early_param("nomca", setup_nomca);
523 
524 #ifdef CONFIG_CRASH_DUMP
reserve_elfcorehdr(u64 * start,u64 * end)525 int __init reserve_elfcorehdr(u64 *start, u64 *end)
526 {
527 	u64 length;
528 
529 	/* We get the address using the kernel command line,
530 	 * but the size is extracted from the EFI tables.
531 	 * Both address and size are required for reservation
532 	 * to work properly.
533 	 */
534 
535 	if (!is_vmcore_usable())
536 		return -EINVAL;
537 
538 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
539 		vmcore_unusable();
540 		return -EINVAL;
541 	}
542 
543 	*start = (unsigned long)__va(elfcorehdr_addr);
544 	*end = *start + length;
545 	return 0;
546 }
547 
548 #endif /* CONFIG_PROC_VMCORE */
549 
550 void __init
setup_arch(char ** cmdline_p)551 setup_arch (char **cmdline_p)
552 {
553 	unw_init();
554 
555 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
556 
557 	*cmdline_p = __va(ia64_boot_param->command_line);
558 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
559 
560 	efi_init();
561 	io_port_init();
562 
563 	uv_probe_system_type();
564 	parse_early_param();
565 
566 	if (early_console_setup(*cmdline_p) == 0)
567 		mark_bsp_online();
568 
569 	/* Initialize the ACPI boot-time table parser */
570 	acpi_table_init();
571 	early_acpi_boot_init();
572 #ifdef CONFIG_ACPI_NUMA
573 	acpi_numa_init();
574 	acpi_numa_fixup();
575 #ifdef CONFIG_ACPI_HOTPLUG_CPU
576 	prefill_possible_map();
577 #endif
578 	per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
579 		32 : cpumask_weight(&early_cpu_possible_map)),
580 		additional_cpus > 0 ? additional_cpus : 0);
581 #endif /* CONFIG_ACPI_NUMA */
582 
583 #ifdef CONFIG_SMP
584 	smp_build_cpu_map();
585 #endif
586 	find_memory();
587 
588 	/* process SAL system table: */
589 	ia64_sal_init(__va(sal_systab_phys));
590 
591 #ifdef CONFIG_ITANIUM
592 	ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
593 #else
594 	{
595 		unsigned long num_phys_stacked;
596 
597 		if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
598 			ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
599 	}
600 #endif
601 
602 #ifdef CONFIG_SMP
603 	cpu_physical_id(0) = hard_smp_processor_id();
604 #endif
605 
606 	cpu_init();	/* initialize the bootstrap CPU */
607 	mmu_context_init();	/* initialize context_id bitmap */
608 
609 #ifdef CONFIG_VT
610 	if (!conswitchp) {
611 # if defined(CONFIG_DUMMY_CONSOLE)
612 		conswitchp = &dummy_con;
613 # endif
614 # if defined(CONFIG_VGA_CONSOLE)
615 		/*
616 		 * Non-legacy systems may route legacy VGA MMIO range to system
617 		 * memory.  vga_con probes the MMIO hole, so memory looks like
618 		 * a VGA device to it.  The EFI memory map can tell us if it's
619 		 * memory so we can avoid this problem.
620 		 */
621 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
622 			conswitchp = &vga_con;
623 # endif
624 	}
625 #endif
626 
627 	/* enable IA-64 Machine Check Abort Handling unless disabled */
628 	if (!nomca)
629 		ia64_mca_init();
630 
631 	/*
632 	 * Default to /dev/sda2.  This assumes that the EFI partition
633 	 * is physical disk 1 partition 1 and the Linux root disk is
634 	 * physical disk 1 partition 2.
635 	 */
636 	ROOT_DEV = Root_SDA2;		/* default to second partition on first drive */
637 
638 	if (is_uv_system())
639 		uv_setup(cmdline_p);
640 #ifdef CONFIG_SMP
641 	else
642 		init_smp_config();
643 #endif
644 
645 	screen_info_setup();
646 	paging_init();
647 
648 	clear_sched_clock_stable();
649 }
650 
651 /*
652  * Display cpu info for all CPUs.
653  */
654 static int
show_cpuinfo(struct seq_file * m,void * v)655 show_cpuinfo (struct seq_file *m, void *v)
656 {
657 #ifdef CONFIG_SMP
658 #	define lpj	c->loops_per_jiffy
659 #	define cpunum	c->cpu
660 #else
661 #	define lpj	loops_per_jiffy
662 #	define cpunum	0
663 #endif
664 	static struct {
665 		unsigned long mask;
666 		const char *feature_name;
667 	} feature_bits[] = {
668 		{ 1UL << 0, "branchlong" },
669 		{ 1UL << 1, "spontaneous deferral"},
670 		{ 1UL << 2, "16-byte atomic ops" }
671 	};
672 	char features[128], *cp, *sep;
673 	struct cpuinfo_ia64 *c = v;
674 	unsigned long mask;
675 	unsigned long proc_freq;
676 	int i, size;
677 
678 	mask = c->features;
679 
680 	/* build the feature string: */
681 	memcpy(features, "standard", 9);
682 	cp = features;
683 	size = sizeof(features);
684 	sep = "";
685 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
686 		if (mask & feature_bits[i].mask) {
687 			cp += snprintf(cp, size, "%s%s", sep,
688 				       feature_bits[i].feature_name),
689 			sep = ", ";
690 			mask &= ~feature_bits[i].mask;
691 			size = sizeof(features) - (cp - features);
692 		}
693 	}
694 	if (mask && size > 1) {
695 		/* print unknown features as a hex value */
696 		snprintf(cp, size, "%s0x%lx", sep, mask);
697 	}
698 
699 	proc_freq = cpufreq_quick_get(cpunum);
700 	if (!proc_freq)
701 		proc_freq = c->proc_freq / 1000;
702 
703 	seq_printf(m,
704 		   "processor  : %d\n"
705 		   "vendor     : %s\n"
706 		   "arch       : IA-64\n"
707 		   "family     : %u\n"
708 		   "model      : %u\n"
709 		   "model name : %s\n"
710 		   "revision   : %u\n"
711 		   "archrev    : %u\n"
712 		   "features   : %s\n"
713 		   "cpu number : %lu\n"
714 		   "cpu regs   : %u\n"
715 		   "cpu MHz    : %lu.%03lu\n"
716 		   "itc MHz    : %lu.%06lu\n"
717 		   "BogoMIPS   : %lu.%02lu\n",
718 		   cpunum, c->vendor, c->family, c->model,
719 		   c->model_name, c->revision, c->archrev,
720 		   features, c->ppn, c->number,
721 		   proc_freq / 1000, proc_freq % 1000,
722 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
723 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
724 #ifdef CONFIG_SMP
725 	seq_printf(m, "siblings   : %u\n",
726 		   cpumask_weight(&cpu_core_map[cpunum]));
727 	if (c->socket_id != -1)
728 		seq_printf(m, "physical id: %u\n", c->socket_id);
729 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
730 		seq_printf(m,
731 			   "core id    : %u\n"
732 			   "thread id  : %u\n",
733 			   c->core_id, c->thread_id);
734 #endif
735 	seq_printf(m,"\n");
736 
737 	return 0;
738 }
739 
740 static void *
c_start(struct seq_file * m,loff_t * pos)741 c_start (struct seq_file *m, loff_t *pos)
742 {
743 #ifdef CONFIG_SMP
744 	while (*pos < nr_cpu_ids && !cpu_online(*pos))
745 		++*pos;
746 #endif
747 	return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
748 }
749 
750 static void *
c_next(struct seq_file * m,void * v,loff_t * pos)751 c_next (struct seq_file *m, void *v, loff_t *pos)
752 {
753 	++*pos;
754 	return c_start(m, pos);
755 }
756 
757 static void
c_stop(struct seq_file * m,void * v)758 c_stop (struct seq_file *m, void *v)
759 {
760 }
761 
762 const struct seq_operations cpuinfo_op = {
763 	.start =	c_start,
764 	.next =		c_next,
765 	.stop =		c_stop,
766 	.show =		show_cpuinfo
767 };
768 
769 #define MAX_BRANDS	8
770 static char brandname[MAX_BRANDS][128];
771 
772 static char *
get_model_name(__u8 family,__u8 model)773 get_model_name(__u8 family, __u8 model)
774 {
775 	static int overflow;
776 	char brand[128];
777 	int i;
778 
779 	memcpy(brand, "Unknown", 8);
780 	if (ia64_pal_get_brand_info(brand)) {
781 		if (family == 0x7)
782 			memcpy(brand, "Merced", 7);
783 		else if (family == 0x1f) switch (model) {
784 			case 0: memcpy(brand, "McKinley", 9); break;
785 			case 1: memcpy(brand, "Madison", 8); break;
786 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
787 		}
788 	}
789 	for (i = 0; i < MAX_BRANDS; i++)
790 		if (strcmp(brandname[i], brand) == 0)
791 			return brandname[i];
792 	for (i = 0; i < MAX_BRANDS; i++)
793 		if (brandname[i][0] == '\0')
794 			return strcpy(brandname[i], brand);
795 	if (overflow++ == 0)
796 		printk(KERN_ERR
797 		       "%s: Table overflow. Some processor model information will be missing\n",
798 		       __func__);
799 	return "Unknown";
800 }
801 
802 static void
identify_cpu(struct cpuinfo_ia64 * c)803 identify_cpu (struct cpuinfo_ia64 *c)
804 {
805 	union {
806 		unsigned long bits[5];
807 		struct {
808 			/* id 0 & 1: */
809 			char vendor[16];
810 
811 			/* id 2 */
812 			u64 ppn;		/* processor serial number */
813 
814 			/* id 3: */
815 			unsigned number		:  8;
816 			unsigned revision	:  8;
817 			unsigned model		:  8;
818 			unsigned family		:  8;
819 			unsigned archrev	:  8;
820 			unsigned reserved	: 24;
821 
822 			/* id 4: */
823 			u64 features;
824 		} field;
825 	} cpuid;
826 	pal_vm_info_1_u_t vm1;
827 	pal_vm_info_2_u_t vm2;
828 	pal_status_t status;
829 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
830 	int i;
831 	for (i = 0; i < 5; ++i)
832 		cpuid.bits[i] = ia64_get_cpuid(i);
833 
834 	memcpy(c->vendor, cpuid.field.vendor, 16);
835 #ifdef CONFIG_SMP
836 	c->cpu = smp_processor_id();
837 
838 	/* below default values will be overwritten  by identify_siblings()
839 	 * for Multi-Threading/Multi-Core capable CPUs
840 	 */
841 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
842 	c->socket_id = -1;
843 
844 	identify_siblings(c);
845 
846 	if (c->threads_per_core > smp_num_siblings)
847 		smp_num_siblings = c->threads_per_core;
848 #endif
849 	c->ppn = cpuid.field.ppn;
850 	c->number = cpuid.field.number;
851 	c->revision = cpuid.field.revision;
852 	c->model = cpuid.field.model;
853 	c->family = cpuid.field.family;
854 	c->archrev = cpuid.field.archrev;
855 	c->features = cpuid.field.features;
856 	c->model_name = get_model_name(c->family, c->model);
857 
858 	status = ia64_pal_vm_summary(&vm1, &vm2);
859 	if (status == PAL_STATUS_SUCCESS) {
860 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
861 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
862 	}
863 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
864 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
865 }
866 
867 /*
868  * Do the following calculations:
869  *
870  * 1. the max. cache line size.
871  * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
872  * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
873  */
874 static void
get_cache_info(void)875 get_cache_info(void)
876 {
877 	unsigned long line_size, max = 1;
878 	unsigned long l, levels, unique_caches;
879 	pal_cache_config_info_t cci;
880 	long status;
881 
882         status = ia64_pal_cache_summary(&levels, &unique_caches);
883         if (status != 0) {
884                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
885                        __func__, status);
886                 max = SMP_CACHE_BYTES;
887 		/* Safest setup for "flush_icache_range()" */
888 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
889 		/* Safest setup for "clflush_cache_range()" */
890 		ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
891 		goto out;
892         }
893 
894 	for (l = 0; l < levels; ++l) {
895 		/* cache_type (data_or_unified)=2 */
896 		status = ia64_pal_cache_config_info(l, 2, &cci);
897 		if (status != 0) {
898 			printk(KERN_ERR "%s: ia64_pal_cache_config_info"
899 				"(l=%lu, 2) failed (status=%ld)\n",
900 				__func__, l, status);
901 			max = SMP_CACHE_BYTES;
902 			/* The safest setup for "flush_icache_range()" */
903 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
904 			/* The safest setup for "clflush_cache_range()" */
905 			ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
906 			cci.pcci_unified = 1;
907 		} else {
908 			if (cci.pcci_stride < ia64_cache_stride_shift)
909 				ia64_cache_stride_shift = cci.pcci_stride;
910 
911 			line_size = 1 << cci.pcci_line_size;
912 			if (line_size > max)
913 				max = line_size;
914 		}
915 
916 		if (!cci.pcci_unified) {
917 			/* cache_type (instruction)=1*/
918 			status = ia64_pal_cache_config_info(l, 1, &cci);
919 			if (status != 0) {
920 				printk(KERN_ERR "%s: ia64_pal_cache_config_info"
921 					"(l=%lu, 1) failed (status=%ld)\n",
922 					__func__, l, status);
923 				/* The safest setup for flush_icache_range() */
924 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
925 			}
926 		}
927 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
928 			ia64_i_cache_stride_shift = cci.pcci_stride;
929 	}
930   out:
931 	if (max > ia64_max_cacheline_size)
932 		ia64_max_cacheline_size = max;
933 }
934 
935 /*
936  * cpu_init() initializes state that is per-CPU.  This function acts
937  * as a 'CPU state barrier', nothing should get across.
938  */
939 void
cpu_init(void)940 cpu_init (void)
941 {
942 	extern void ia64_mmu_init(void *);
943 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
944 	unsigned long num_phys_stacked;
945 	pal_vm_info_2_u_t vmi;
946 	unsigned int max_ctx;
947 	struct cpuinfo_ia64 *cpu_info;
948 	void *cpu_data;
949 
950 	cpu_data = per_cpu_init();
951 #ifdef CONFIG_SMP
952 	/*
953 	 * insert boot cpu into sibling and core mapes
954 	 * (must be done after per_cpu area is setup)
955 	 */
956 	if (smp_processor_id() == 0) {
957 		cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
958 		cpumask_set_cpu(0, &cpu_core_map[0]);
959 	} else {
960 		/*
961 		 * Set ar.k3 so that assembly code in MCA handler can compute
962 		 * physical addresses of per cpu variables with a simple:
963 		 *   phys = ar.k3 + &per_cpu_var
964 		 * and the alt-dtlb-miss handler can set per-cpu mapping into
965 		 * the TLB when needed. head.S already did this for cpu0.
966 		 */
967 		ia64_set_kr(IA64_KR_PER_CPU_DATA,
968 			    ia64_tpa(cpu_data) - (long) __per_cpu_start);
969 	}
970 #endif
971 
972 	get_cache_info();
973 
974 	/*
975 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
976 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
977 	 * depends on the data returned by identify_cpu().  We break the dependency by
978 	 * accessing cpu_data() through the canonical per-CPU address.
979 	 */
980 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
981 	identify_cpu(cpu_info);
982 
983 #ifdef CONFIG_MCKINLEY
984 	{
985 #		define FEATURE_SET 16
986 		struct ia64_pal_retval iprv;
987 
988 		if (cpu_info->family == 0x1f) {
989 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
990 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
991 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
992 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
993 		}
994 	}
995 #endif
996 
997 	/* Clear the stack memory reserved for pt_regs: */
998 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
999 
1000 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
1001 
1002 	/*
1003 	 * Initialize the page-table base register to a global
1004 	 * directory with all zeroes.  This ensure that we can handle
1005 	 * TLB-misses to user address-space even before we created the
1006 	 * first user address-space.  This may happen, e.g., due to
1007 	 * aggressive use of lfetch.fault.
1008 	 */
1009 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
1010 
1011 	/*
1012 	 * Initialize default control register to defer speculative faults except
1013 	 * for those arising from TLB misses, which are not deferred.  The
1014 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
1015 	 * the kernel must have recovery code for all speculative accesses).  Turn on
1016 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
1017 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
1018 	 * be fine).
1019 	 */
1020 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1021 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1022 	mmgrab(&init_mm);
1023 	current->active_mm = &init_mm;
1024 	BUG_ON(current->mm);
1025 
1026 	ia64_mmu_init(ia64_imva(cpu_data));
1027 	ia64_mca_cpu_init(ia64_imva(cpu_data));
1028 
1029 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
1030 	ia64_set_itc(0);
1031 
1032 	/* disable all local interrupt sources: */
1033 	ia64_set_itv(1 << 16);
1034 	ia64_set_lrr0(1 << 16);
1035 	ia64_set_lrr1(1 << 16);
1036 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1037 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1038 
1039 	/* clear TPR & XTP to enable all interrupt classes: */
1040 	ia64_setreg(_IA64_REG_CR_TPR, 0);
1041 
1042 	/* Clear any pending interrupts left by SAL/EFI */
1043 	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1044 		ia64_eoi();
1045 
1046 #ifdef CONFIG_SMP
1047 	normal_xtp();
1048 #endif
1049 
1050 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1051 	if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1052 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1053 		setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1054 	} else {
1055 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1056 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
1057 	}
1058 	while (max_ctx < ia64_ctx.max_ctx) {
1059 		unsigned int old = ia64_ctx.max_ctx;
1060 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1061 			break;
1062 	}
1063 
1064 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1065 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1066 		       "stacked regs\n");
1067 		num_phys_stacked = 96;
1068 	}
1069 	/* size of physical stacked register partition plus 8 bytes: */
1070 	if (num_phys_stacked > max_num_phys_stacked) {
1071 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1072 		max_num_phys_stacked = num_phys_stacked;
1073 	}
1074 }
1075 
arch_cpu_finalize_init(void)1076 void __init arch_cpu_finalize_init(void)
1077 {
1078 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1079 			       (unsigned long) __end___mckinley_e9_bundles);
1080 }
1081 
run_dmi_scan(void)1082 static int __init run_dmi_scan(void)
1083 {
1084 	dmi_setup();
1085 	return 0;
1086 }
1087 core_initcall(run_dmi_scan);
1088