1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/kref.h>
46 #include <linux/list.h>
47 #include <linux/rwsem.h>
48 #include <linux/workqueue.h>
49 #include <linux/irq_poll.h>
50 #include <uapi/linux/if_ether.h>
51 #include <net/ipv6.h>
52 #include <net/ip.h>
53 #include <linux/string.h>
54 #include <linux/slab.h>
55 #include <linux/netdevice.h>
56 #include <linux/refcount.h>
57 #include <linux/if_link.h>
58 #include <linux/atomic.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/uaccess.h>
61 #include <linux/cgroup_rdma.h>
62 #include <linux/irqflags.h>
63 #include <linux/preempt.h>
64 #include <linux/dim.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/rdma_counter.h>
67 #include <rdma/restrack.h>
68 #include <rdma/signature.h>
69 #include <uapi/rdma/rdma_user_ioctl.h>
70 #include <uapi/rdma/ib_user_ioctl_verbs.h>
71
72 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
73
74 struct ib_umem_odp;
75
76 extern struct workqueue_struct *ib_wq;
77 extern struct workqueue_struct *ib_comp_wq;
78 extern struct workqueue_struct *ib_comp_unbound_wq;
79
80 __printf(3, 4) __cold
81 void ibdev_printk(const char *level, const struct ib_device *ibdev,
82 const char *format, ...);
83 __printf(2, 3) __cold
84 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
85 __printf(2, 3) __cold
86 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
87 __printf(2, 3) __cold
88 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
89 __printf(2, 3) __cold
90 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
91 __printf(2, 3) __cold
92 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
93 __printf(2, 3) __cold
94 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
95 __printf(2, 3) __cold
96 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
97
98 #if defined(CONFIG_DYNAMIC_DEBUG) || \
99 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
100 #define ibdev_dbg(__dev, format, args...) \
101 dynamic_ibdev_dbg(__dev, format, ##args)
102 #else
103 __printf(2, 3) __cold
104 static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)105 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
106 #endif
107
108 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
109 do { \
110 static DEFINE_RATELIMIT_STATE(_rs, \
111 DEFAULT_RATELIMIT_INTERVAL, \
112 DEFAULT_RATELIMIT_BURST); \
113 if (__ratelimit(&_rs)) \
114 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
115 } while (0)
116
117 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
118 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
119 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
120 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
121 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
122 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
123 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
124 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
125 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
126 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
127 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
128 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
129 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
130 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
131
132 #if defined(CONFIG_DYNAMIC_DEBUG) || \
133 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
134 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
135 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
136 do { \
137 static DEFINE_RATELIMIT_STATE(_rs, \
138 DEFAULT_RATELIMIT_INTERVAL, \
139 DEFAULT_RATELIMIT_BURST); \
140 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
141 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
142 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
143 ##__VA_ARGS__); \
144 } while (0)
145 #else
146 __printf(2, 3) __cold
147 static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)148 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
149 #endif
150
151 union ib_gid {
152 u8 raw[16];
153 struct {
154 __be64 subnet_prefix;
155 __be64 interface_id;
156 } global;
157 };
158
159 extern union ib_gid zgid;
160
161 enum ib_gid_type {
162 /* If link layer is Ethernet, this is RoCE V1 */
163 IB_GID_TYPE_IB = 0,
164 IB_GID_TYPE_ROCE = 0,
165 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
166 IB_GID_TYPE_SIZE
167 };
168
169 #define ROCE_V2_UDP_DPORT 4791
170 struct ib_gid_attr {
171 struct net_device __rcu *ndev;
172 struct ib_device *device;
173 union ib_gid gid;
174 enum ib_gid_type gid_type;
175 u16 index;
176 u8 port_num;
177 };
178
179 enum {
180 /* set the local administered indication */
181 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
182 };
183
184 enum rdma_transport_type {
185 RDMA_TRANSPORT_IB,
186 RDMA_TRANSPORT_IWARP,
187 RDMA_TRANSPORT_USNIC,
188 RDMA_TRANSPORT_USNIC_UDP,
189 RDMA_TRANSPORT_UNSPECIFIED,
190 };
191
192 enum rdma_protocol_type {
193 RDMA_PROTOCOL_IB,
194 RDMA_PROTOCOL_IBOE,
195 RDMA_PROTOCOL_IWARP,
196 RDMA_PROTOCOL_USNIC_UDP
197 };
198
199 __attribute_const__ enum rdma_transport_type
200 rdma_node_get_transport(unsigned int node_type);
201
202 enum rdma_network_type {
203 RDMA_NETWORK_IB,
204 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
205 RDMA_NETWORK_IPV4,
206 RDMA_NETWORK_IPV6
207 };
208
ib_network_to_gid_type(enum rdma_network_type network_type)209 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
210 {
211 if (network_type == RDMA_NETWORK_IPV4 ||
212 network_type == RDMA_NETWORK_IPV6)
213 return IB_GID_TYPE_ROCE_UDP_ENCAP;
214
215 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
216 return IB_GID_TYPE_IB;
217 }
218
219 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)220 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
221 {
222 if (attr->gid_type == IB_GID_TYPE_IB)
223 return RDMA_NETWORK_IB;
224
225 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
226 return RDMA_NETWORK_IPV4;
227 else
228 return RDMA_NETWORK_IPV6;
229 }
230
231 enum rdma_link_layer {
232 IB_LINK_LAYER_UNSPECIFIED,
233 IB_LINK_LAYER_INFINIBAND,
234 IB_LINK_LAYER_ETHERNET,
235 };
236
237 enum ib_device_cap_flags {
238 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
239 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
240 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
241 IB_DEVICE_RAW_MULTI = (1 << 3),
242 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
243 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
244 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
245 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
246 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
247 /* Not in use, former INIT_TYPE = (1 << 9),*/
248 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
249 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
250 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
251 IB_DEVICE_SRQ_RESIZE = (1 << 13),
252 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
253
254 /*
255 * This device supports a per-device lkey or stag that can be
256 * used without performing a memory registration for the local
257 * memory. Note that ULPs should never check this flag, but
258 * instead of use the local_dma_lkey flag in the ib_pd structure,
259 * which will always contain a usable lkey.
260 */
261 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
262 /* Reserved, old SEND_W_INV = (1 << 16),*/
263 IB_DEVICE_MEM_WINDOW = (1 << 17),
264 /*
265 * Devices should set IB_DEVICE_UD_IP_SUM if they support
266 * insertion of UDP and TCP checksum on outgoing UD IPoIB
267 * messages and can verify the validity of checksum for
268 * incoming messages. Setting this flag implies that the
269 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
270 */
271 IB_DEVICE_UD_IP_CSUM = (1 << 18),
272 IB_DEVICE_UD_TSO = (1 << 19),
273 IB_DEVICE_XRC = (1 << 20),
274
275 /*
276 * This device supports the IB "base memory management extension",
277 * which includes support for fast registrations (IB_WR_REG_MR,
278 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
279 * also be set by any iWarp device which must support FRs to comply
280 * to the iWarp verbs spec. iWarp devices also support the
281 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
282 * stag.
283 */
284 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
285 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
286 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
287 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
288 IB_DEVICE_RC_IP_CSUM = (1 << 25),
289 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
290 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
291 /*
292 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
293 * support execution of WQEs that involve synchronization
294 * of I/O operations with single completion queue managed
295 * by hardware.
296 */
297 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
298 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
299 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30),
300 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
301 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
302 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
303 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
304 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
305 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
306 /* The device supports padding incoming writes to cacheline. */
307 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
308 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37),
309 };
310
311 enum ib_atomic_cap {
312 IB_ATOMIC_NONE,
313 IB_ATOMIC_HCA,
314 IB_ATOMIC_GLOB
315 };
316
317 enum ib_odp_general_cap_bits {
318 IB_ODP_SUPPORT = 1 << 0,
319 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
320 };
321
322 enum ib_odp_transport_cap_bits {
323 IB_ODP_SUPPORT_SEND = 1 << 0,
324 IB_ODP_SUPPORT_RECV = 1 << 1,
325 IB_ODP_SUPPORT_WRITE = 1 << 2,
326 IB_ODP_SUPPORT_READ = 1 << 3,
327 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
328 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
329 };
330
331 struct ib_odp_caps {
332 uint64_t general_caps;
333 struct {
334 uint32_t rc_odp_caps;
335 uint32_t uc_odp_caps;
336 uint32_t ud_odp_caps;
337 uint32_t xrc_odp_caps;
338 } per_transport_caps;
339 };
340
341 struct ib_rss_caps {
342 /* Corresponding bit will be set if qp type from
343 * 'enum ib_qp_type' is supported, e.g.
344 * supported_qpts |= 1 << IB_QPT_UD
345 */
346 u32 supported_qpts;
347 u32 max_rwq_indirection_tables;
348 u32 max_rwq_indirection_table_size;
349 };
350
351 enum ib_tm_cap_flags {
352 /* Support tag matching with rendezvous offload for RC transport */
353 IB_TM_CAP_RNDV_RC = 1 << 0,
354 };
355
356 struct ib_tm_caps {
357 /* Max size of RNDV header */
358 u32 max_rndv_hdr_size;
359 /* Max number of entries in tag matching list */
360 u32 max_num_tags;
361 /* From enum ib_tm_cap_flags */
362 u32 flags;
363 /* Max number of outstanding list operations */
364 u32 max_ops;
365 /* Max number of SGE in tag matching entry */
366 u32 max_sge;
367 };
368
369 struct ib_cq_init_attr {
370 unsigned int cqe;
371 u32 comp_vector;
372 u32 flags;
373 };
374
375 enum ib_cq_attr_mask {
376 IB_CQ_MODERATE = 1 << 0,
377 };
378
379 struct ib_cq_caps {
380 u16 max_cq_moderation_count;
381 u16 max_cq_moderation_period;
382 };
383
384 struct ib_dm_mr_attr {
385 u64 length;
386 u64 offset;
387 u32 access_flags;
388 };
389
390 struct ib_dm_alloc_attr {
391 u64 length;
392 u32 alignment;
393 u32 flags;
394 };
395
396 struct ib_device_attr {
397 u64 fw_ver;
398 __be64 sys_image_guid;
399 u64 max_mr_size;
400 u64 page_size_cap;
401 u32 vendor_id;
402 u32 vendor_part_id;
403 u32 hw_ver;
404 int max_qp;
405 int max_qp_wr;
406 u64 device_cap_flags;
407 int max_send_sge;
408 int max_recv_sge;
409 int max_sge_rd;
410 int max_cq;
411 int max_cqe;
412 int max_mr;
413 int max_pd;
414 int max_qp_rd_atom;
415 int max_ee_rd_atom;
416 int max_res_rd_atom;
417 int max_qp_init_rd_atom;
418 int max_ee_init_rd_atom;
419 enum ib_atomic_cap atomic_cap;
420 enum ib_atomic_cap masked_atomic_cap;
421 int max_ee;
422 int max_rdd;
423 int max_mw;
424 int max_raw_ipv6_qp;
425 int max_raw_ethy_qp;
426 int max_mcast_grp;
427 int max_mcast_qp_attach;
428 int max_total_mcast_qp_attach;
429 int max_ah;
430 int max_fmr;
431 int max_map_per_fmr;
432 int max_srq;
433 int max_srq_wr;
434 int max_srq_sge;
435 unsigned int max_fast_reg_page_list_len;
436 unsigned int max_pi_fast_reg_page_list_len;
437 u16 max_pkeys;
438 u8 local_ca_ack_delay;
439 int sig_prot_cap;
440 int sig_guard_cap;
441 struct ib_odp_caps odp_caps;
442 uint64_t timestamp_mask;
443 uint64_t hca_core_clock; /* in KHZ */
444 struct ib_rss_caps rss_caps;
445 u32 max_wq_type_rq;
446 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
447 struct ib_tm_caps tm_caps;
448 struct ib_cq_caps cq_caps;
449 u64 max_dm_size;
450 };
451
452 enum ib_mtu {
453 IB_MTU_256 = 1,
454 IB_MTU_512 = 2,
455 IB_MTU_1024 = 3,
456 IB_MTU_2048 = 4,
457 IB_MTU_4096 = 5
458 };
459
ib_mtu_enum_to_int(enum ib_mtu mtu)460 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
461 {
462 switch (mtu) {
463 case IB_MTU_256: return 256;
464 case IB_MTU_512: return 512;
465 case IB_MTU_1024: return 1024;
466 case IB_MTU_2048: return 2048;
467 case IB_MTU_4096: return 4096;
468 default: return -1;
469 }
470 }
471
ib_mtu_int_to_enum(int mtu)472 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
473 {
474 if (mtu >= 4096)
475 return IB_MTU_4096;
476 else if (mtu >= 2048)
477 return IB_MTU_2048;
478 else if (mtu >= 1024)
479 return IB_MTU_1024;
480 else if (mtu >= 512)
481 return IB_MTU_512;
482 else
483 return IB_MTU_256;
484 }
485
486 enum ib_port_state {
487 IB_PORT_NOP = 0,
488 IB_PORT_DOWN = 1,
489 IB_PORT_INIT = 2,
490 IB_PORT_ARMED = 3,
491 IB_PORT_ACTIVE = 4,
492 IB_PORT_ACTIVE_DEFER = 5
493 };
494
495 enum ib_port_phys_state {
496 IB_PORT_PHYS_STATE_SLEEP = 1,
497 IB_PORT_PHYS_STATE_POLLING = 2,
498 IB_PORT_PHYS_STATE_DISABLED = 3,
499 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
500 IB_PORT_PHYS_STATE_LINK_UP = 5,
501 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
502 IB_PORT_PHYS_STATE_PHY_TEST = 7,
503 };
504
505 enum ib_port_width {
506 IB_WIDTH_1X = 1,
507 IB_WIDTH_2X = 16,
508 IB_WIDTH_4X = 2,
509 IB_WIDTH_8X = 4,
510 IB_WIDTH_12X = 8
511 };
512
ib_width_enum_to_int(enum ib_port_width width)513 static inline int ib_width_enum_to_int(enum ib_port_width width)
514 {
515 switch (width) {
516 case IB_WIDTH_1X: return 1;
517 case IB_WIDTH_2X: return 2;
518 case IB_WIDTH_4X: return 4;
519 case IB_WIDTH_8X: return 8;
520 case IB_WIDTH_12X: return 12;
521 default: return -1;
522 }
523 }
524
525 enum ib_port_speed {
526 IB_SPEED_SDR = 1,
527 IB_SPEED_DDR = 2,
528 IB_SPEED_QDR = 4,
529 IB_SPEED_FDR10 = 8,
530 IB_SPEED_FDR = 16,
531 IB_SPEED_EDR = 32,
532 IB_SPEED_HDR = 64
533 };
534
535 /**
536 * struct rdma_hw_stats
537 * @lock - Mutex to protect parallel write access to lifespan and values
538 * of counters, which are 64bits and not guaranteeed to be written
539 * atomicaly on 32bits systems.
540 * @timestamp - Used by the core code to track when the last update was
541 * @lifespan - Used by the core code to determine how old the counters
542 * should be before being updated again. Stored in jiffies, defaults
543 * to 10 milliseconds, drivers can override the default be specifying
544 * their own value during their allocation routine.
545 * @name - Array of pointers to static names used for the counters in
546 * directory.
547 * @num_counters - How many hardware counters there are. If name is
548 * shorter than this number, a kernel oops will result. Driver authors
549 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
550 * in their code to prevent this.
551 * @value - Array of u64 counters that are accessed by the sysfs code and
552 * filled in by the drivers get_stats routine
553 */
554 struct rdma_hw_stats {
555 struct mutex lock; /* Protect lifespan and values[] */
556 unsigned long timestamp;
557 unsigned long lifespan;
558 const char * const *names;
559 int num_counters;
560 u64 value[];
561 };
562
563 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
564 /**
565 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
566 * for drivers.
567 * @names - Array of static const char *
568 * @num_counters - How many elements in array
569 * @lifespan - How many milliseconds between updates
570 */
rdma_alloc_hw_stats_struct(const char * const * names,int num_counters,unsigned long lifespan)571 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
572 const char * const *names, int num_counters,
573 unsigned long lifespan)
574 {
575 struct rdma_hw_stats *stats;
576
577 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
578 GFP_KERNEL);
579 if (!stats)
580 return NULL;
581 stats->names = names;
582 stats->num_counters = num_counters;
583 stats->lifespan = msecs_to_jiffies(lifespan);
584
585 return stats;
586 }
587
588
589 /* Define bits for the various functionality this port needs to be supported by
590 * the core.
591 */
592 /* Management 0x00000FFF */
593 #define RDMA_CORE_CAP_IB_MAD 0x00000001
594 #define RDMA_CORE_CAP_IB_SMI 0x00000002
595 #define RDMA_CORE_CAP_IB_CM 0x00000004
596 #define RDMA_CORE_CAP_IW_CM 0x00000008
597 #define RDMA_CORE_CAP_IB_SA 0x00000010
598 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
599
600 /* Address format 0x000FF000 */
601 #define RDMA_CORE_CAP_AF_IB 0x00001000
602 #define RDMA_CORE_CAP_ETH_AH 0x00002000
603 #define RDMA_CORE_CAP_OPA_AH 0x00004000
604 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
605
606 /* Protocol 0xFFF00000 */
607 #define RDMA_CORE_CAP_PROT_IB 0x00100000
608 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
609 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
610 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
611 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
612 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
613
614 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
615 | RDMA_CORE_CAP_PROT_ROCE \
616 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
617
618 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
619 | RDMA_CORE_CAP_IB_MAD \
620 | RDMA_CORE_CAP_IB_SMI \
621 | RDMA_CORE_CAP_IB_CM \
622 | RDMA_CORE_CAP_IB_SA \
623 | RDMA_CORE_CAP_AF_IB)
624 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
625 | RDMA_CORE_CAP_IB_MAD \
626 | RDMA_CORE_CAP_IB_CM \
627 | RDMA_CORE_CAP_AF_IB \
628 | RDMA_CORE_CAP_ETH_AH)
629 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
630 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
631 | RDMA_CORE_CAP_IB_MAD \
632 | RDMA_CORE_CAP_IB_CM \
633 | RDMA_CORE_CAP_AF_IB \
634 | RDMA_CORE_CAP_ETH_AH)
635 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
636 | RDMA_CORE_CAP_IW_CM)
637 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
638 | RDMA_CORE_CAP_OPA_MAD)
639
640 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
641
642 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
643
644 struct ib_port_attr {
645 u64 subnet_prefix;
646 enum ib_port_state state;
647 enum ib_mtu max_mtu;
648 enum ib_mtu active_mtu;
649 int gid_tbl_len;
650 unsigned int ip_gids:1;
651 /* This is the value from PortInfo CapabilityMask, defined by IBA */
652 u32 port_cap_flags;
653 u32 max_msg_sz;
654 u32 bad_pkey_cntr;
655 u32 qkey_viol_cntr;
656 u16 pkey_tbl_len;
657 u32 sm_lid;
658 u32 lid;
659 u8 lmc;
660 u8 max_vl_num;
661 u8 sm_sl;
662 u8 subnet_timeout;
663 u8 init_type_reply;
664 u8 active_width;
665 u8 active_speed;
666 u8 phys_state;
667 u16 port_cap_flags2;
668 };
669
670 enum ib_device_modify_flags {
671 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
672 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
673 };
674
675 #define IB_DEVICE_NODE_DESC_MAX 64
676
677 struct ib_device_modify {
678 u64 sys_image_guid;
679 char node_desc[IB_DEVICE_NODE_DESC_MAX];
680 };
681
682 enum ib_port_modify_flags {
683 IB_PORT_SHUTDOWN = 1,
684 IB_PORT_INIT_TYPE = (1<<2),
685 IB_PORT_RESET_QKEY_CNTR = (1<<3),
686 IB_PORT_OPA_MASK_CHG = (1<<4)
687 };
688
689 struct ib_port_modify {
690 u32 set_port_cap_mask;
691 u32 clr_port_cap_mask;
692 u8 init_type;
693 };
694
695 enum ib_event_type {
696 IB_EVENT_CQ_ERR,
697 IB_EVENT_QP_FATAL,
698 IB_EVENT_QP_REQ_ERR,
699 IB_EVENT_QP_ACCESS_ERR,
700 IB_EVENT_COMM_EST,
701 IB_EVENT_SQ_DRAINED,
702 IB_EVENT_PATH_MIG,
703 IB_EVENT_PATH_MIG_ERR,
704 IB_EVENT_DEVICE_FATAL,
705 IB_EVENT_PORT_ACTIVE,
706 IB_EVENT_PORT_ERR,
707 IB_EVENT_LID_CHANGE,
708 IB_EVENT_PKEY_CHANGE,
709 IB_EVENT_SM_CHANGE,
710 IB_EVENT_SRQ_ERR,
711 IB_EVENT_SRQ_LIMIT_REACHED,
712 IB_EVENT_QP_LAST_WQE_REACHED,
713 IB_EVENT_CLIENT_REREGISTER,
714 IB_EVENT_GID_CHANGE,
715 IB_EVENT_WQ_FATAL,
716 };
717
718 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
719
720 struct ib_event {
721 struct ib_device *device;
722 union {
723 struct ib_cq *cq;
724 struct ib_qp *qp;
725 struct ib_srq *srq;
726 struct ib_wq *wq;
727 u8 port_num;
728 } element;
729 enum ib_event_type event;
730 };
731
732 struct ib_event_handler {
733 struct ib_device *device;
734 void (*handler)(struct ib_event_handler *, struct ib_event *);
735 struct list_head list;
736 };
737
738 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
739 do { \
740 (_ptr)->device = _device; \
741 (_ptr)->handler = _handler; \
742 INIT_LIST_HEAD(&(_ptr)->list); \
743 } while (0)
744
745 struct ib_global_route {
746 const struct ib_gid_attr *sgid_attr;
747 union ib_gid dgid;
748 u32 flow_label;
749 u8 sgid_index;
750 u8 hop_limit;
751 u8 traffic_class;
752 };
753
754 struct ib_grh {
755 __be32 version_tclass_flow;
756 __be16 paylen;
757 u8 next_hdr;
758 u8 hop_limit;
759 union ib_gid sgid;
760 union ib_gid dgid;
761 };
762
763 union rdma_network_hdr {
764 struct ib_grh ibgrh;
765 struct {
766 /* The IB spec states that if it's IPv4, the header
767 * is located in the last 20 bytes of the header.
768 */
769 u8 reserved[20];
770 struct iphdr roce4grh;
771 };
772 };
773
774 #define IB_QPN_MASK 0xFFFFFF
775
776 enum {
777 IB_MULTICAST_QPN = 0xffffff
778 };
779
780 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
781 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
782
783 enum ib_ah_flags {
784 IB_AH_GRH = 1
785 };
786
787 enum ib_rate {
788 IB_RATE_PORT_CURRENT = 0,
789 IB_RATE_2_5_GBPS = 2,
790 IB_RATE_5_GBPS = 5,
791 IB_RATE_10_GBPS = 3,
792 IB_RATE_20_GBPS = 6,
793 IB_RATE_30_GBPS = 4,
794 IB_RATE_40_GBPS = 7,
795 IB_RATE_60_GBPS = 8,
796 IB_RATE_80_GBPS = 9,
797 IB_RATE_120_GBPS = 10,
798 IB_RATE_14_GBPS = 11,
799 IB_RATE_56_GBPS = 12,
800 IB_RATE_112_GBPS = 13,
801 IB_RATE_168_GBPS = 14,
802 IB_RATE_25_GBPS = 15,
803 IB_RATE_100_GBPS = 16,
804 IB_RATE_200_GBPS = 17,
805 IB_RATE_300_GBPS = 18,
806 IB_RATE_28_GBPS = 19,
807 IB_RATE_50_GBPS = 20,
808 IB_RATE_400_GBPS = 21,
809 IB_RATE_600_GBPS = 22,
810 };
811
812 /**
813 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
814 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
815 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
816 * @rate: rate to convert.
817 */
818 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
819
820 /**
821 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
822 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
823 * @rate: rate to convert.
824 */
825 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
826
827
828 /**
829 * enum ib_mr_type - memory region type
830 * @IB_MR_TYPE_MEM_REG: memory region that is used for
831 * normal registration
832 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
833 * register any arbitrary sg lists (without
834 * the normal mr constraints - see
835 * ib_map_mr_sg)
836 * @IB_MR_TYPE_DM: memory region that is used for device
837 * memory registration
838 * @IB_MR_TYPE_USER: memory region that is used for the user-space
839 * application
840 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
841 * without address translations (VA=PA)
842 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
843 * data integrity operations
844 */
845 enum ib_mr_type {
846 IB_MR_TYPE_MEM_REG,
847 IB_MR_TYPE_SG_GAPS,
848 IB_MR_TYPE_DM,
849 IB_MR_TYPE_USER,
850 IB_MR_TYPE_DMA,
851 IB_MR_TYPE_INTEGRITY,
852 };
853
854 enum ib_mr_status_check {
855 IB_MR_CHECK_SIG_STATUS = 1,
856 };
857
858 /**
859 * struct ib_mr_status - Memory region status container
860 *
861 * @fail_status: Bitmask of MR checks status. For each
862 * failed check a corresponding status bit is set.
863 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
864 * failure.
865 */
866 struct ib_mr_status {
867 u32 fail_status;
868 struct ib_sig_err sig_err;
869 };
870
871 /**
872 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
873 * enum.
874 * @mult: multiple to convert.
875 */
876 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
877
878 enum rdma_ah_attr_type {
879 RDMA_AH_ATTR_TYPE_UNDEFINED,
880 RDMA_AH_ATTR_TYPE_IB,
881 RDMA_AH_ATTR_TYPE_ROCE,
882 RDMA_AH_ATTR_TYPE_OPA,
883 };
884
885 struct ib_ah_attr {
886 u16 dlid;
887 u8 src_path_bits;
888 };
889
890 struct roce_ah_attr {
891 u8 dmac[ETH_ALEN];
892 };
893
894 struct opa_ah_attr {
895 u32 dlid;
896 u8 src_path_bits;
897 bool make_grd;
898 };
899
900 struct rdma_ah_attr {
901 struct ib_global_route grh;
902 u8 sl;
903 u8 static_rate;
904 u8 port_num;
905 u8 ah_flags;
906 enum rdma_ah_attr_type type;
907 union {
908 struct ib_ah_attr ib;
909 struct roce_ah_attr roce;
910 struct opa_ah_attr opa;
911 };
912 };
913
914 enum ib_wc_status {
915 IB_WC_SUCCESS,
916 IB_WC_LOC_LEN_ERR,
917 IB_WC_LOC_QP_OP_ERR,
918 IB_WC_LOC_EEC_OP_ERR,
919 IB_WC_LOC_PROT_ERR,
920 IB_WC_WR_FLUSH_ERR,
921 IB_WC_MW_BIND_ERR,
922 IB_WC_BAD_RESP_ERR,
923 IB_WC_LOC_ACCESS_ERR,
924 IB_WC_REM_INV_REQ_ERR,
925 IB_WC_REM_ACCESS_ERR,
926 IB_WC_REM_OP_ERR,
927 IB_WC_RETRY_EXC_ERR,
928 IB_WC_RNR_RETRY_EXC_ERR,
929 IB_WC_LOC_RDD_VIOL_ERR,
930 IB_WC_REM_INV_RD_REQ_ERR,
931 IB_WC_REM_ABORT_ERR,
932 IB_WC_INV_EECN_ERR,
933 IB_WC_INV_EEC_STATE_ERR,
934 IB_WC_FATAL_ERR,
935 IB_WC_RESP_TIMEOUT_ERR,
936 IB_WC_GENERAL_ERR
937 };
938
939 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
940
941 enum ib_wc_opcode {
942 IB_WC_SEND,
943 IB_WC_RDMA_WRITE,
944 IB_WC_RDMA_READ,
945 IB_WC_COMP_SWAP,
946 IB_WC_FETCH_ADD,
947 IB_WC_LSO,
948 IB_WC_LOCAL_INV,
949 IB_WC_REG_MR,
950 IB_WC_MASKED_COMP_SWAP,
951 IB_WC_MASKED_FETCH_ADD,
952 /*
953 * Set value of IB_WC_RECV so consumers can test if a completion is a
954 * receive by testing (opcode & IB_WC_RECV).
955 */
956 IB_WC_RECV = 1 << 7,
957 IB_WC_RECV_RDMA_WITH_IMM
958 };
959
960 enum ib_wc_flags {
961 IB_WC_GRH = 1,
962 IB_WC_WITH_IMM = (1<<1),
963 IB_WC_WITH_INVALIDATE = (1<<2),
964 IB_WC_IP_CSUM_OK = (1<<3),
965 IB_WC_WITH_SMAC = (1<<4),
966 IB_WC_WITH_VLAN = (1<<5),
967 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
968 };
969
970 struct ib_wc {
971 union {
972 u64 wr_id;
973 struct ib_cqe *wr_cqe;
974 };
975 enum ib_wc_status status;
976 enum ib_wc_opcode opcode;
977 u32 vendor_err;
978 u32 byte_len;
979 struct ib_qp *qp;
980 union {
981 __be32 imm_data;
982 u32 invalidate_rkey;
983 } ex;
984 u32 src_qp;
985 u32 slid;
986 int wc_flags;
987 u16 pkey_index;
988 u8 sl;
989 u8 dlid_path_bits;
990 u8 port_num; /* valid only for DR SMPs on switches */
991 u8 smac[ETH_ALEN];
992 u16 vlan_id;
993 u8 network_hdr_type;
994 };
995
996 enum ib_cq_notify_flags {
997 IB_CQ_SOLICITED = 1 << 0,
998 IB_CQ_NEXT_COMP = 1 << 1,
999 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1000 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1001 };
1002
1003 enum ib_srq_type {
1004 IB_SRQT_BASIC,
1005 IB_SRQT_XRC,
1006 IB_SRQT_TM,
1007 };
1008
ib_srq_has_cq(enum ib_srq_type srq_type)1009 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1010 {
1011 return srq_type == IB_SRQT_XRC ||
1012 srq_type == IB_SRQT_TM;
1013 }
1014
1015 enum ib_srq_attr_mask {
1016 IB_SRQ_MAX_WR = 1 << 0,
1017 IB_SRQ_LIMIT = 1 << 1,
1018 };
1019
1020 struct ib_srq_attr {
1021 u32 max_wr;
1022 u32 max_sge;
1023 u32 srq_limit;
1024 };
1025
1026 struct ib_srq_init_attr {
1027 void (*event_handler)(struct ib_event *, void *);
1028 void *srq_context;
1029 struct ib_srq_attr attr;
1030 enum ib_srq_type srq_type;
1031
1032 struct {
1033 struct ib_cq *cq;
1034 union {
1035 struct {
1036 struct ib_xrcd *xrcd;
1037 } xrc;
1038
1039 struct {
1040 u32 max_num_tags;
1041 } tag_matching;
1042 };
1043 } ext;
1044 };
1045
1046 struct ib_qp_cap {
1047 u32 max_send_wr;
1048 u32 max_recv_wr;
1049 u32 max_send_sge;
1050 u32 max_recv_sge;
1051 u32 max_inline_data;
1052
1053 /*
1054 * Maximum number of rdma_rw_ctx structures in flight at a time.
1055 * ib_create_qp() will calculate the right amount of neededed WRs
1056 * and MRs based on this.
1057 */
1058 u32 max_rdma_ctxs;
1059 };
1060
1061 enum ib_sig_type {
1062 IB_SIGNAL_ALL_WR,
1063 IB_SIGNAL_REQ_WR
1064 };
1065
1066 enum ib_qp_type {
1067 /*
1068 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1069 * here (and in that order) since the MAD layer uses them as
1070 * indices into a 2-entry table.
1071 */
1072 IB_QPT_SMI,
1073 IB_QPT_GSI,
1074
1075 IB_QPT_RC,
1076 IB_QPT_UC,
1077 IB_QPT_UD,
1078 IB_QPT_RAW_IPV6,
1079 IB_QPT_RAW_ETHERTYPE,
1080 IB_QPT_RAW_PACKET = 8,
1081 IB_QPT_XRC_INI = 9,
1082 IB_QPT_XRC_TGT,
1083 IB_QPT_MAX,
1084 IB_QPT_DRIVER = 0xFF,
1085 /* Reserve a range for qp types internal to the low level driver.
1086 * These qp types will not be visible at the IB core layer, so the
1087 * IB_QPT_MAX usages should not be affected in the core layer
1088 */
1089 IB_QPT_RESERVED1 = 0x1000,
1090 IB_QPT_RESERVED2,
1091 IB_QPT_RESERVED3,
1092 IB_QPT_RESERVED4,
1093 IB_QPT_RESERVED5,
1094 IB_QPT_RESERVED6,
1095 IB_QPT_RESERVED7,
1096 IB_QPT_RESERVED8,
1097 IB_QPT_RESERVED9,
1098 IB_QPT_RESERVED10,
1099 };
1100
1101 enum ib_qp_create_flags {
1102 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1103 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1104 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1105 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1106 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1107 IB_QP_CREATE_NETIF_QP = 1 << 5,
1108 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1109 /* FREE = 1 << 7, */
1110 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1111 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1112 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1113 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
1114 /* reserve bits 26-31 for low level drivers' internal use */
1115 IB_QP_CREATE_RESERVED_START = 1 << 26,
1116 IB_QP_CREATE_RESERVED_END = 1 << 31,
1117 };
1118
1119 /*
1120 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1121 * callback to destroy the passed in QP.
1122 */
1123
1124 struct ib_qp_init_attr {
1125 /* Consumer's event_handler callback must not block */
1126 void (*event_handler)(struct ib_event *, void *);
1127
1128 void *qp_context;
1129 struct ib_cq *send_cq;
1130 struct ib_cq *recv_cq;
1131 struct ib_srq *srq;
1132 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1133 struct ib_qp_cap cap;
1134 enum ib_sig_type sq_sig_type;
1135 enum ib_qp_type qp_type;
1136 u32 create_flags;
1137
1138 /*
1139 * Only needed for special QP types, or when using the RW API.
1140 */
1141 u8 port_num;
1142 struct ib_rwq_ind_table *rwq_ind_tbl;
1143 u32 source_qpn;
1144 };
1145
1146 struct ib_qp_open_attr {
1147 void (*event_handler)(struct ib_event *, void *);
1148 void *qp_context;
1149 u32 qp_num;
1150 enum ib_qp_type qp_type;
1151 };
1152
1153 enum ib_rnr_timeout {
1154 IB_RNR_TIMER_655_36 = 0,
1155 IB_RNR_TIMER_000_01 = 1,
1156 IB_RNR_TIMER_000_02 = 2,
1157 IB_RNR_TIMER_000_03 = 3,
1158 IB_RNR_TIMER_000_04 = 4,
1159 IB_RNR_TIMER_000_06 = 5,
1160 IB_RNR_TIMER_000_08 = 6,
1161 IB_RNR_TIMER_000_12 = 7,
1162 IB_RNR_TIMER_000_16 = 8,
1163 IB_RNR_TIMER_000_24 = 9,
1164 IB_RNR_TIMER_000_32 = 10,
1165 IB_RNR_TIMER_000_48 = 11,
1166 IB_RNR_TIMER_000_64 = 12,
1167 IB_RNR_TIMER_000_96 = 13,
1168 IB_RNR_TIMER_001_28 = 14,
1169 IB_RNR_TIMER_001_92 = 15,
1170 IB_RNR_TIMER_002_56 = 16,
1171 IB_RNR_TIMER_003_84 = 17,
1172 IB_RNR_TIMER_005_12 = 18,
1173 IB_RNR_TIMER_007_68 = 19,
1174 IB_RNR_TIMER_010_24 = 20,
1175 IB_RNR_TIMER_015_36 = 21,
1176 IB_RNR_TIMER_020_48 = 22,
1177 IB_RNR_TIMER_030_72 = 23,
1178 IB_RNR_TIMER_040_96 = 24,
1179 IB_RNR_TIMER_061_44 = 25,
1180 IB_RNR_TIMER_081_92 = 26,
1181 IB_RNR_TIMER_122_88 = 27,
1182 IB_RNR_TIMER_163_84 = 28,
1183 IB_RNR_TIMER_245_76 = 29,
1184 IB_RNR_TIMER_327_68 = 30,
1185 IB_RNR_TIMER_491_52 = 31
1186 };
1187
1188 enum ib_qp_attr_mask {
1189 IB_QP_STATE = 1,
1190 IB_QP_CUR_STATE = (1<<1),
1191 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1192 IB_QP_ACCESS_FLAGS = (1<<3),
1193 IB_QP_PKEY_INDEX = (1<<4),
1194 IB_QP_PORT = (1<<5),
1195 IB_QP_QKEY = (1<<6),
1196 IB_QP_AV = (1<<7),
1197 IB_QP_PATH_MTU = (1<<8),
1198 IB_QP_TIMEOUT = (1<<9),
1199 IB_QP_RETRY_CNT = (1<<10),
1200 IB_QP_RNR_RETRY = (1<<11),
1201 IB_QP_RQ_PSN = (1<<12),
1202 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1203 IB_QP_ALT_PATH = (1<<14),
1204 IB_QP_MIN_RNR_TIMER = (1<<15),
1205 IB_QP_SQ_PSN = (1<<16),
1206 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1207 IB_QP_PATH_MIG_STATE = (1<<18),
1208 IB_QP_CAP = (1<<19),
1209 IB_QP_DEST_QPN = (1<<20),
1210 IB_QP_RESERVED1 = (1<<21),
1211 IB_QP_RESERVED2 = (1<<22),
1212 IB_QP_RESERVED3 = (1<<23),
1213 IB_QP_RESERVED4 = (1<<24),
1214 IB_QP_RATE_LIMIT = (1<<25),
1215 };
1216
1217 enum ib_qp_state {
1218 IB_QPS_RESET,
1219 IB_QPS_INIT,
1220 IB_QPS_RTR,
1221 IB_QPS_RTS,
1222 IB_QPS_SQD,
1223 IB_QPS_SQE,
1224 IB_QPS_ERR
1225 };
1226
1227 enum ib_mig_state {
1228 IB_MIG_MIGRATED,
1229 IB_MIG_REARM,
1230 IB_MIG_ARMED
1231 };
1232
1233 enum ib_mw_type {
1234 IB_MW_TYPE_1 = 1,
1235 IB_MW_TYPE_2 = 2
1236 };
1237
1238 struct ib_qp_attr {
1239 enum ib_qp_state qp_state;
1240 enum ib_qp_state cur_qp_state;
1241 enum ib_mtu path_mtu;
1242 enum ib_mig_state path_mig_state;
1243 u32 qkey;
1244 u32 rq_psn;
1245 u32 sq_psn;
1246 u32 dest_qp_num;
1247 int qp_access_flags;
1248 struct ib_qp_cap cap;
1249 struct rdma_ah_attr ah_attr;
1250 struct rdma_ah_attr alt_ah_attr;
1251 u16 pkey_index;
1252 u16 alt_pkey_index;
1253 u8 en_sqd_async_notify;
1254 u8 sq_draining;
1255 u8 max_rd_atomic;
1256 u8 max_dest_rd_atomic;
1257 u8 min_rnr_timer;
1258 u8 port_num;
1259 u8 timeout;
1260 u8 retry_cnt;
1261 u8 rnr_retry;
1262 u8 alt_port_num;
1263 u8 alt_timeout;
1264 u32 rate_limit;
1265 };
1266
1267 enum ib_wr_opcode {
1268 /* These are shared with userspace */
1269 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1270 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1271 IB_WR_SEND = IB_UVERBS_WR_SEND,
1272 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1273 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1274 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1275 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1276 IB_WR_LSO = IB_UVERBS_WR_TSO,
1277 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1278 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1279 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1280 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1281 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1282 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1283 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1284
1285 /* These are kernel only and can not be issued by userspace */
1286 IB_WR_REG_MR = 0x20,
1287 IB_WR_REG_MR_INTEGRITY,
1288
1289 /* reserve values for low level drivers' internal use.
1290 * These values will not be used at all in the ib core layer.
1291 */
1292 IB_WR_RESERVED1 = 0xf0,
1293 IB_WR_RESERVED2,
1294 IB_WR_RESERVED3,
1295 IB_WR_RESERVED4,
1296 IB_WR_RESERVED5,
1297 IB_WR_RESERVED6,
1298 IB_WR_RESERVED7,
1299 IB_WR_RESERVED8,
1300 IB_WR_RESERVED9,
1301 IB_WR_RESERVED10,
1302 };
1303
1304 enum ib_send_flags {
1305 IB_SEND_FENCE = 1,
1306 IB_SEND_SIGNALED = (1<<1),
1307 IB_SEND_SOLICITED = (1<<2),
1308 IB_SEND_INLINE = (1<<3),
1309 IB_SEND_IP_CSUM = (1<<4),
1310
1311 /* reserve bits 26-31 for low level drivers' internal use */
1312 IB_SEND_RESERVED_START = (1 << 26),
1313 IB_SEND_RESERVED_END = (1 << 31),
1314 };
1315
1316 struct ib_sge {
1317 u64 addr;
1318 u32 length;
1319 u32 lkey;
1320 };
1321
1322 struct ib_cqe {
1323 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1324 };
1325
1326 struct ib_send_wr {
1327 struct ib_send_wr *next;
1328 union {
1329 u64 wr_id;
1330 struct ib_cqe *wr_cqe;
1331 };
1332 struct ib_sge *sg_list;
1333 int num_sge;
1334 enum ib_wr_opcode opcode;
1335 int send_flags;
1336 union {
1337 __be32 imm_data;
1338 u32 invalidate_rkey;
1339 } ex;
1340 };
1341
1342 struct ib_rdma_wr {
1343 struct ib_send_wr wr;
1344 u64 remote_addr;
1345 u32 rkey;
1346 };
1347
rdma_wr(const struct ib_send_wr * wr)1348 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1349 {
1350 return container_of(wr, struct ib_rdma_wr, wr);
1351 }
1352
1353 struct ib_atomic_wr {
1354 struct ib_send_wr wr;
1355 u64 remote_addr;
1356 u64 compare_add;
1357 u64 swap;
1358 u64 compare_add_mask;
1359 u64 swap_mask;
1360 u32 rkey;
1361 };
1362
atomic_wr(const struct ib_send_wr * wr)1363 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1364 {
1365 return container_of(wr, struct ib_atomic_wr, wr);
1366 }
1367
1368 struct ib_ud_wr {
1369 struct ib_send_wr wr;
1370 struct ib_ah *ah;
1371 void *header;
1372 int hlen;
1373 int mss;
1374 u32 remote_qpn;
1375 u32 remote_qkey;
1376 u16 pkey_index; /* valid for GSI only */
1377 u8 port_num; /* valid for DR SMPs on switch only */
1378 };
1379
ud_wr(const struct ib_send_wr * wr)1380 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1381 {
1382 return container_of(wr, struct ib_ud_wr, wr);
1383 }
1384
1385 struct ib_reg_wr {
1386 struct ib_send_wr wr;
1387 struct ib_mr *mr;
1388 u32 key;
1389 int access;
1390 };
1391
reg_wr(const struct ib_send_wr * wr)1392 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1393 {
1394 return container_of(wr, struct ib_reg_wr, wr);
1395 }
1396
1397 struct ib_recv_wr {
1398 struct ib_recv_wr *next;
1399 union {
1400 u64 wr_id;
1401 struct ib_cqe *wr_cqe;
1402 };
1403 struct ib_sge *sg_list;
1404 int num_sge;
1405 };
1406
1407 enum ib_access_flags {
1408 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1409 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1410 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1411 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1412 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1413 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1414 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1415 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1416
1417 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1418 };
1419
1420 /*
1421 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1422 * are hidden here instead of a uapi header!
1423 */
1424 enum ib_mr_rereg_flags {
1425 IB_MR_REREG_TRANS = 1,
1426 IB_MR_REREG_PD = (1<<1),
1427 IB_MR_REREG_ACCESS = (1<<2),
1428 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1429 };
1430
1431 struct ib_fmr_attr {
1432 int max_pages;
1433 int max_maps;
1434 u8 page_shift;
1435 };
1436
1437 struct ib_umem;
1438
1439 enum rdma_remove_reason {
1440 /*
1441 * Userspace requested uobject deletion or initial try
1442 * to remove uobject via cleanup. Call could fail
1443 */
1444 RDMA_REMOVE_DESTROY,
1445 /* Context deletion. This call should delete the actual object itself */
1446 RDMA_REMOVE_CLOSE,
1447 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1448 RDMA_REMOVE_DRIVER_REMOVE,
1449 /* uobj is being cleaned-up before being committed */
1450 RDMA_REMOVE_ABORT,
1451 };
1452
1453 struct ib_rdmacg_object {
1454 #ifdef CONFIG_CGROUP_RDMA
1455 struct rdma_cgroup *cg; /* owner rdma cgroup */
1456 #endif
1457 };
1458
1459 struct ib_ucontext {
1460 struct ib_device *device;
1461 struct ib_uverbs_file *ufile;
1462 /*
1463 * 'closing' can be read by the driver only during a destroy callback,
1464 * it is set when we are closing the file descriptor and indicates
1465 * that mm_sem may be locked.
1466 */
1467 bool closing;
1468
1469 bool cleanup_retryable;
1470
1471 struct ib_rdmacg_object cg_obj;
1472 /*
1473 * Implementation details of the RDMA core, don't use in drivers:
1474 */
1475 struct rdma_restrack_entry res;
1476 };
1477
1478 struct ib_uobject {
1479 u64 user_handle; /* handle given to us by userspace */
1480 /* ufile & ucontext owning this object */
1481 struct ib_uverbs_file *ufile;
1482 /* FIXME, save memory: ufile->context == context */
1483 struct ib_ucontext *context; /* associated user context */
1484 void *object; /* containing object */
1485 struct list_head list; /* link to context's list */
1486 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1487 int id; /* index into kernel idr */
1488 struct kref ref;
1489 atomic_t usecnt; /* protects exclusive access */
1490 struct rcu_head rcu; /* kfree_rcu() overhead */
1491
1492 const struct uverbs_api_object *uapi_object;
1493 };
1494
1495 struct ib_udata {
1496 const void __user *inbuf;
1497 void __user *outbuf;
1498 size_t inlen;
1499 size_t outlen;
1500 };
1501
1502 struct ib_pd {
1503 u32 local_dma_lkey;
1504 u32 flags;
1505 struct ib_device *device;
1506 struct ib_uobject *uobject;
1507 atomic_t usecnt; /* count all resources */
1508
1509 u32 unsafe_global_rkey;
1510
1511 /*
1512 * Implementation details of the RDMA core, don't use in drivers:
1513 */
1514 struct ib_mr *__internal_mr;
1515 struct rdma_restrack_entry res;
1516 };
1517
1518 struct ib_xrcd {
1519 struct ib_device *device;
1520 atomic_t usecnt; /* count all exposed resources */
1521 struct inode *inode;
1522
1523 struct mutex tgt_qp_mutex;
1524 struct list_head tgt_qp_list;
1525 };
1526
1527 struct ib_ah {
1528 struct ib_device *device;
1529 struct ib_pd *pd;
1530 struct ib_uobject *uobject;
1531 const struct ib_gid_attr *sgid_attr;
1532 enum rdma_ah_attr_type type;
1533 };
1534
1535 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1536
1537 enum ib_poll_context {
1538 IB_POLL_DIRECT, /* caller context, no hw completions */
1539 IB_POLL_SOFTIRQ, /* poll from softirq context */
1540 IB_POLL_WORKQUEUE, /* poll from workqueue */
1541 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1542 };
1543
1544 struct ib_cq {
1545 struct ib_device *device;
1546 struct ib_uobject *uobject;
1547 ib_comp_handler comp_handler;
1548 void (*event_handler)(struct ib_event *, void *);
1549 void *cq_context;
1550 int cqe;
1551 atomic_t usecnt; /* count number of work queues */
1552 enum ib_poll_context poll_ctx;
1553 struct ib_wc *wc;
1554 union {
1555 struct irq_poll iop;
1556 struct work_struct work;
1557 };
1558 struct workqueue_struct *comp_wq;
1559 struct dim *dim;
1560 /*
1561 * Implementation details of the RDMA core, don't use in drivers:
1562 */
1563 struct rdma_restrack_entry res;
1564 };
1565
1566 struct ib_srq {
1567 struct ib_device *device;
1568 struct ib_pd *pd;
1569 struct ib_uobject *uobject;
1570 void (*event_handler)(struct ib_event *, void *);
1571 void *srq_context;
1572 enum ib_srq_type srq_type;
1573 atomic_t usecnt;
1574
1575 struct {
1576 struct ib_cq *cq;
1577 union {
1578 struct {
1579 struct ib_xrcd *xrcd;
1580 u32 srq_num;
1581 } xrc;
1582 };
1583 } ext;
1584 };
1585
1586 enum ib_raw_packet_caps {
1587 /* Strip cvlan from incoming packet and report it in the matching work
1588 * completion is supported.
1589 */
1590 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1591 /* Scatter FCS field of an incoming packet to host memory is supported.
1592 */
1593 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1594 /* Checksum offloads are supported (for both send and receive). */
1595 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1596 /* When a packet is received for an RQ with no receive WQEs, the
1597 * packet processing is delayed.
1598 */
1599 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
1600 };
1601
1602 enum ib_wq_type {
1603 IB_WQT_RQ
1604 };
1605
1606 enum ib_wq_state {
1607 IB_WQS_RESET,
1608 IB_WQS_RDY,
1609 IB_WQS_ERR
1610 };
1611
1612 struct ib_wq {
1613 struct ib_device *device;
1614 struct ib_uobject *uobject;
1615 void *wq_context;
1616 void (*event_handler)(struct ib_event *, void *);
1617 struct ib_pd *pd;
1618 struct ib_cq *cq;
1619 u32 wq_num;
1620 enum ib_wq_state state;
1621 enum ib_wq_type wq_type;
1622 atomic_t usecnt;
1623 };
1624
1625 enum ib_wq_flags {
1626 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1627 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1628 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
1629 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1630 };
1631
1632 struct ib_wq_init_attr {
1633 void *wq_context;
1634 enum ib_wq_type wq_type;
1635 u32 max_wr;
1636 u32 max_sge;
1637 struct ib_cq *cq;
1638 void (*event_handler)(struct ib_event *, void *);
1639 u32 create_flags; /* Use enum ib_wq_flags */
1640 };
1641
1642 enum ib_wq_attr_mask {
1643 IB_WQ_STATE = 1 << 0,
1644 IB_WQ_CUR_STATE = 1 << 1,
1645 IB_WQ_FLAGS = 1 << 2,
1646 };
1647
1648 struct ib_wq_attr {
1649 enum ib_wq_state wq_state;
1650 enum ib_wq_state curr_wq_state;
1651 u32 flags; /* Use enum ib_wq_flags */
1652 u32 flags_mask; /* Use enum ib_wq_flags */
1653 };
1654
1655 struct ib_rwq_ind_table {
1656 struct ib_device *device;
1657 struct ib_uobject *uobject;
1658 atomic_t usecnt;
1659 u32 ind_tbl_num;
1660 u32 log_ind_tbl_size;
1661 struct ib_wq **ind_tbl;
1662 };
1663
1664 struct ib_rwq_ind_table_init_attr {
1665 u32 log_ind_tbl_size;
1666 /* Each entry is a pointer to Receive Work Queue */
1667 struct ib_wq **ind_tbl;
1668 };
1669
1670 enum port_pkey_state {
1671 IB_PORT_PKEY_NOT_VALID = 0,
1672 IB_PORT_PKEY_VALID = 1,
1673 IB_PORT_PKEY_LISTED = 2,
1674 };
1675
1676 struct ib_qp_security;
1677
1678 struct ib_port_pkey {
1679 enum port_pkey_state state;
1680 u16 pkey_index;
1681 u8 port_num;
1682 struct list_head qp_list;
1683 struct list_head to_error_list;
1684 struct ib_qp_security *sec;
1685 };
1686
1687 struct ib_ports_pkeys {
1688 struct ib_port_pkey main;
1689 struct ib_port_pkey alt;
1690 };
1691
1692 struct ib_qp_security {
1693 struct ib_qp *qp;
1694 struct ib_device *dev;
1695 /* Hold this mutex when changing port and pkey settings. */
1696 struct mutex mutex;
1697 struct ib_ports_pkeys *ports_pkeys;
1698 /* A list of all open shared QP handles. Required to enforce security
1699 * properly for all users of a shared QP.
1700 */
1701 struct list_head shared_qp_list;
1702 void *security;
1703 bool destroying;
1704 atomic_t error_list_count;
1705 struct completion error_complete;
1706 int error_comps_pending;
1707 };
1708
1709 /*
1710 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1711 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1712 */
1713 struct ib_qp {
1714 struct ib_device *device;
1715 struct ib_pd *pd;
1716 struct ib_cq *send_cq;
1717 struct ib_cq *recv_cq;
1718 spinlock_t mr_lock;
1719 int mrs_used;
1720 struct list_head rdma_mrs;
1721 struct list_head sig_mrs;
1722 struct ib_srq *srq;
1723 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1724 struct list_head xrcd_list;
1725
1726 /* count times opened, mcast attaches, flow attaches */
1727 atomic_t usecnt;
1728 struct list_head open_list;
1729 struct ib_qp *real_qp;
1730 struct ib_uobject *uobject;
1731 void (*event_handler)(struct ib_event *, void *);
1732 void *qp_context;
1733 /* sgid_attrs associated with the AV's */
1734 const struct ib_gid_attr *av_sgid_attr;
1735 const struct ib_gid_attr *alt_path_sgid_attr;
1736 u32 qp_num;
1737 u32 max_write_sge;
1738 u32 max_read_sge;
1739 enum ib_qp_type qp_type;
1740 struct ib_rwq_ind_table *rwq_ind_tbl;
1741 struct ib_qp_security *qp_sec;
1742 u8 port;
1743
1744 bool integrity_en;
1745 /*
1746 * Implementation details of the RDMA core, don't use in drivers:
1747 */
1748 struct rdma_restrack_entry res;
1749
1750 /* The counter the qp is bind to */
1751 struct rdma_counter *counter;
1752 };
1753
1754 struct ib_dm {
1755 struct ib_device *device;
1756 u32 length;
1757 u32 flags;
1758 struct ib_uobject *uobject;
1759 atomic_t usecnt;
1760 };
1761
1762 struct ib_mr {
1763 struct ib_device *device;
1764 struct ib_pd *pd;
1765 u32 lkey;
1766 u32 rkey;
1767 u64 iova;
1768 u64 length;
1769 unsigned int page_size;
1770 enum ib_mr_type type;
1771 bool need_inval;
1772 union {
1773 struct ib_uobject *uobject; /* user */
1774 struct list_head qp_entry; /* FR */
1775 };
1776
1777 struct ib_dm *dm;
1778 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1779 /*
1780 * Implementation details of the RDMA core, don't use in drivers:
1781 */
1782 struct rdma_restrack_entry res;
1783 };
1784
1785 struct ib_mw {
1786 struct ib_device *device;
1787 struct ib_pd *pd;
1788 struct ib_uobject *uobject;
1789 u32 rkey;
1790 enum ib_mw_type type;
1791 };
1792
1793 struct ib_fmr {
1794 struct ib_device *device;
1795 struct ib_pd *pd;
1796 struct list_head list;
1797 u32 lkey;
1798 u32 rkey;
1799 };
1800
1801 /* Supported steering options */
1802 enum ib_flow_attr_type {
1803 /* steering according to rule specifications */
1804 IB_FLOW_ATTR_NORMAL = 0x0,
1805 /* default unicast and multicast rule -
1806 * receive all Eth traffic which isn't steered to any QP
1807 */
1808 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1809 /* default multicast rule -
1810 * receive all Eth multicast traffic which isn't steered to any QP
1811 */
1812 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1813 /* sniffer rule - receive all port traffic */
1814 IB_FLOW_ATTR_SNIFFER = 0x3
1815 };
1816
1817 /* Supported steering header types */
1818 enum ib_flow_spec_type {
1819 /* L2 headers*/
1820 IB_FLOW_SPEC_ETH = 0x20,
1821 IB_FLOW_SPEC_IB = 0x22,
1822 /* L3 header*/
1823 IB_FLOW_SPEC_IPV4 = 0x30,
1824 IB_FLOW_SPEC_IPV6 = 0x31,
1825 IB_FLOW_SPEC_ESP = 0x34,
1826 /* L4 headers*/
1827 IB_FLOW_SPEC_TCP = 0x40,
1828 IB_FLOW_SPEC_UDP = 0x41,
1829 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1830 IB_FLOW_SPEC_GRE = 0x51,
1831 IB_FLOW_SPEC_MPLS = 0x60,
1832 IB_FLOW_SPEC_INNER = 0x100,
1833 /* Actions */
1834 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1835 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1836 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1837 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1838 };
1839 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1840 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1841
1842 /* Flow steering rule priority is set according to it's domain.
1843 * Lower domain value means higher priority.
1844 */
1845 enum ib_flow_domain {
1846 IB_FLOW_DOMAIN_USER,
1847 IB_FLOW_DOMAIN_ETHTOOL,
1848 IB_FLOW_DOMAIN_RFS,
1849 IB_FLOW_DOMAIN_NIC,
1850 IB_FLOW_DOMAIN_NUM /* Must be last */
1851 };
1852
1853 enum ib_flow_flags {
1854 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1855 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1856 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1857 };
1858
1859 struct ib_flow_eth_filter {
1860 u8 dst_mac[6];
1861 u8 src_mac[6];
1862 __be16 ether_type;
1863 __be16 vlan_tag;
1864 /* Must be last */
1865 u8 real_sz[0];
1866 };
1867
1868 struct ib_flow_spec_eth {
1869 u32 type;
1870 u16 size;
1871 struct ib_flow_eth_filter val;
1872 struct ib_flow_eth_filter mask;
1873 };
1874
1875 struct ib_flow_ib_filter {
1876 __be16 dlid;
1877 __u8 sl;
1878 /* Must be last */
1879 u8 real_sz[0];
1880 };
1881
1882 struct ib_flow_spec_ib {
1883 u32 type;
1884 u16 size;
1885 struct ib_flow_ib_filter val;
1886 struct ib_flow_ib_filter mask;
1887 };
1888
1889 /* IPv4 header flags */
1890 enum ib_ipv4_flags {
1891 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1892 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1893 last have this flag set */
1894 };
1895
1896 struct ib_flow_ipv4_filter {
1897 __be32 src_ip;
1898 __be32 dst_ip;
1899 u8 proto;
1900 u8 tos;
1901 u8 ttl;
1902 u8 flags;
1903 /* Must be last */
1904 u8 real_sz[0];
1905 };
1906
1907 struct ib_flow_spec_ipv4 {
1908 u32 type;
1909 u16 size;
1910 struct ib_flow_ipv4_filter val;
1911 struct ib_flow_ipv4_filter mask;
1912 };
1913
1914 struct ib_flow_ipv6_filter {
1915 u8 src_ip[16];
1916 u8 dst_ip[16];
1917 __be32 flow_label;
1918 u8 next_hdr;
1919 u8 traffic_class;
1920 u8 hop_limit;
1921 /* Must be last */
1922 u8 real_sz[0];
1923 };
1924
1925 struct ib_flow_spec_ipv6 {
1926 u32 type;
1927 u16 size;
1928 struct ib_flow_ipv6_filter val;
1929 struct ib_flow_ipv6_filter mask;
1930 };
1931
1932 struct ib_flow_tcp_udp_filter {
1933 __be16 dst_port;
1934 __be16 src_port;
1935 /* Must be last */
1936 u8 real_sz[0];
1937 };
1938
1939 struct ib_flow_spec_tcp_udp {
1940 u32 type;
1941 u16 size;
1942 struct ib_flow_tcp_udp_filter val;
1943 struct ib_flow_tcp_udp_filter mask;
1944 };
1945
1946 struct ib_flow_tunnel_filter {
1947 __be32 tunnel_id;
1948 u8 real_sz[0];
1949 };
1950
1951 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1952 * the tunnel_id from val has the vni value
1953 */
1954 struct ib_flow_spec_tunnel {
1955 u32 type;
1956 u16 size;
1957 struct ib_flow_tunnel_filter val;
1958 struct ib_flow_tunnel_filter mask;
1959 };
1960
1961 struct ib_flow_esp_filter {
1962 __be32 spi;
1963 __be32 seq;
1964 /* Must be last */
1965 u8 real_sz[0];
1966 };
1967
1968 struct ib_flow_spec_esp {
1969 u32 type;
1970 u16 size;
1971 struct ib_flow_esp_filter val;
1972 struct ib_flow_esp_filter mask;
1973 };
1974
1975 struct ib_flow_gre_filter {
1976 __be16 c_ks_res0_ver;
1977 __be16 protocol;
1978 __be32 key;
1979 /* Must be last */
1980 u8 real_sz[0];
1981 };
1982
1983 struct ib_flow_spec_gre {
1984 u32 type;
1985 u16 size;
1986 struct ib_flow_gre_filter val;
1987 struct ib_flow_gre_filter mask;
1988 };
1989
1990 struct ib_flow_mpls_filter {
1991 __be32 tag;
1992 /* Must be last */
1993 u8 real_sz[0];
1994 };
1995
1996 struct ib_flow_spec_mpls {
1997 u32 type;
1998 u16 size;
1999 struct ib_flow_mpls_filter val;
2000 struct ib_flow_mpls_filter mask;
2001 };
2002
2003 struct ib_flow_spec_action_tag {
2004 enum ib_flow_spec_type type;
2005 u16 size;
2006 u32 tag_id;
2007 };
2008
2009 struct ib_flow_spec_action_drop {
2010 enum ib_flow_spec_type type;
2011 u16 size;
2012 };
2013
2014 struct ib_flow_spec_action_handle {
2015 enum ib_flow_spec_type type;
2016 u16 size;
2017 struct ib_flow_action *act;
2018 };
2019
2020 enum ib_counters_description {
2021 IB_COUNTER_PACKETS,
2022 IB_COUNTER_BYTES,
2023 };
2024
2025 struct ib_flow_spec_action_count {
2026 enum ib_flow_spec_type type;
2027 u16 size;
2028 struct ib_counters *counters;
2029 };
2030
2031 union ib_flow_spec {
2032 struct {
2033 u32 type;
2034 u16 size;
2035 };
2036 struct ib_flow_spec_eth eth;
2037 struct ib_flow_spec_ib ib;
2038 struct ib_flow_spec_ipv4 ipv4;
2039 struct ib_flow_spec_tcp_udp tcp_udp;
2040 struct ib_flow_spec_ipv6 ipv6;
2041 struct ib_flow_spec_tunnel tunnel;
2042 struct ib_flow_spec_esp esp;
2043 struct ib_flow_spec_gre gre;
2044 struct ib_flow_spec_mpls mpls;
2045 struct ib_flow_spec_action_tag flow_tag;
2046 struct ib_flow_spec_action_drop drop;
2047 struct ib_flow_spec_action_handle action;
2048 struct ib_flow_spec_action_count flow_count;
2049 };
2050
2051 struct ib_flow_attr {
2052 enum ib_flow_attr_type type;
2053 u16 size;
2054 u16 priority;
2055 u32 flags;
2056 u8 num_of_specs;
2057 u8 port;
2058 union ib_flow_spec flows[];
2059 };
2060
2061 struct ib_flow {
2062 struct ib_qp *qp;
2063 struct ib_device *device;
2064 struct ib_uobject *uobject;
2065 };
2066
2067 enum ib_flow_action_type {
2068 IB_FLOW_ACTION_UNSPECIFIED,
2069 IB_FLOW_ACTION_ESP = 1,
2070 };
2071
2072 struct ib_flow_action_attrs_esp_keymats {
2073 enum ib_uverbs_flow_action_esp_keymat protocol;
2074 union {
2075 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2076 } keymat;
2077 };
2078
2079 struct ib_flow_action_attrs_esp_replays {
2080 enum ib_uverbs_flow_action_esp_replay protocol;
2081 union {
2082 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2083 } replay;
2084 };
2085
2086 enum ib_flow_action_attrs_esp_flags {
2087 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2088 * This is done in order to share the same flags between user-space and
2089 * kernel and spare an unnecessary translation.
2090 */
2091
2092 /* Kernel flags */
2093 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2094 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2095 };
2096
2097 struct ib_flow_spec_list {
2098 struct ib_flow_spec_list *next;
2099 union ib_flow_spec spec;
2100 };
2101
2102 struct ib_flow_action_attrs_esp {
2103 struct ib_flow_action_attrs_esp_keymats *keymat;
2104 struct ib_flow_action_attrs_esp_replays *replay;
2105 struct ib_flow_spec_list *encap;
2106 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2107 * Value of 0 is a valid value.
2108 */
2109 u32 esn;
2110 u32 spi;
2111 u32 seq;
2112 u32 tfc_pad;
2113 /* Use enum ib_flow_action_attrs_esp_flags */
2114 u64 flags;
2115 u64 hard_limit_pkts;
2116 };
2117
2118 struct ib_flow_action {
2119 struct ib_device *device;
2120 struct ib_uobject *uobject;
2121 enum ib_flow_action_type type;
2122 atomic_t usecnt;
2123 };
2124
2125 struct ib_mad_hdr;
2126 struct ib_grh;
2127
2128 enum ib_process_mad_flags {
2129 IB_MAD_IGNORE_MKEY = 1,
2130 IB_MAD_IGNORE_BKEY = 2,
2131 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2132 };
2133
2134 enum ib_mad_result {
2135 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2136 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2137 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2138 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2139 };
2140
2141 struct ib_port_cache {
2142 u64 subnet_prefix;
2143 struct ib_pkey_cache *pkey;
2144 struct ib_gid_table *gid;
2145 u8 lmc;
2146 enum ib_port_state port_state;
2147 };
2148
2149 struct ib_cache {
2150 rwlock_t lock;
2151 };
2152
2153 struct ib_port_immutable {
2154 int pkey_tbl_len;
2155 int gid_tbl_len;
2156 u32 core_cap_flags;
2157 u32 max_mad_size;
2158 };
2159
2160 struct ib_port_data {
2161 struct ib_device *ib_dev;
2162
2163 struct ib_port_immutable immutable;
2164
2165 spinlock_t pkey_list_lock;
2166 struct list_head pkey_list;
2167
2168 struct ib_port_cache cache;
2169
2170 spinlock_t netdev_lock;
2171 struct net_device __rcu *netdev;
2172 struct hlist_node ndev_hash_link;
2173 struct rdma_port_counter port_counter;
2174 struct rdma_hw_stats *hw_stats;
2175 };
2176
2177 /* rdma netdev type - specifies protocol type */
2178 enum rdma_netdev_t {
2179 RDMA_NETDEV_OPA_VNIC,
2180 RDMA_NETDEV_IPOIB,
2181 };
2182
2183 /**
2184 * struct rdma_netdev - rdma netdev
2185 * For cases where netstack interfacing is required.
2186 */
2187 struct rdma_netdev {
2188 void *clnt_priv;
2189 struct ib_device *hca;
2190 u8 port_num;
2191
2192 /*
2193 * cleanup function must be specified.
2194 * FIXME: This is only used for OPA_VNIC and that usage should be
2195 * removed too.
2196 */
2197 void (*free_rdma_netdev)(struct net_device *netdev);
2198
2199 /* control functions */
2200 void (*set_id)(struct net_device *netdev, int id);
2201 /* send packet */
2202 int (*send)(struct net_device *dev, struct sk_buff *skb,
2203 struct ib_ah *address, u32 dqpn);
2204 /* multicast */
2205 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2206 union ib_gid *gid, u16 mlid,
2207 int set_qkey, u32 qkey);
2208 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2209 union ib_gid *gid, u16 mlid);
2210 };
2211
2212 struct rdma_netdev_alloc_params {
2213 size_t sizeof_priv;
2214 unsigned int txqs;
2215 unsigned int rxqs;
2216 void *param;
2217
2218 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2219 struct net_device *netdev, void *param);
2220 };
2221
2222 struct ib_counters {
2223 struct ib_device *device;
2224 struct ib_uobject *uobject;
2225 /* num of objects attached */
2226 atomic_t usecnt;
2227 };
2228
2229 struct ib_counters_read_attr {
2230 u64 *counters_buff;
2231 u32 ncounters;
2232 u32 flags; /* use enum ib_read_counters_flags */
2233 };
2234
2235 struct uverbs_attr_bundle;
2236 struct iw_cm_id;
2237 struct iw_cm_conn_param;
2238
2239 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2240 .size_##ib_struct = \
2241 (sizeof(struct drv_struct) + \
2242 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2243 BUILD_BUG_ON_ZERO( \
2244 !__same_type(((struct drv_struct *)NULL)->member, \
2245 struct ib_struct)))
2246
2247 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2248 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2249
2250 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2251 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2252
2253 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2254
2255 /**
2256 * struct ib_device_ops - InfiniBand device operations
2257 * This structure defines all the InfiniBand device operations, providers will
2258 * need to define the supported operations, otherwise they will be set to null.
2259 */
2260 struct ib_device_ops {
2261 struct module *owner;
2262 enum rdma_driver_id driver_id;
2263 u32 uverbs_abi_ver;
2264 unsigned int uverbs_no_driver_id_binding:1;
2265
2266 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2267 const struct ib_send_wr **bad_send_wr);
2268 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2269 const struct ib_recv_wr **bad_recv_wr);
2270 void (*drain_rq)(struct ib_qp *qp);
2271 void (*drain_sq)(struct ib_qp *qp);
2272 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2273 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2274 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2275 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2276 int (*post_srq_recv)(struct ib_srq *srq,
2277 const struct ib_recv_wr *recv_wr,
2278 const struct ib_recv_wr **bad_recv_wr);
2279 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2280 u8 port_num, const struct ib_wc *in_wc,
2281 const struct ib_grh *in_grh,
2282 const struct ib_mad_hdr *in_mad, size_t in_mad_size,
2283 struct ib_mad_hdr *out_mad, size_t *out_mad_size,
2284 u16 *out_mad_pkey_index);
2285 int (*query_device)(struct ib_device *device,
2286 struct ib_device_attr *device_attr,
2287 struct ib_udata *udata);
2288 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2289 struct ib_device_modify *device_modify);
2290 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2291 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2292 int comp_vector);
2293 int (*query_port)(struct ib_device *device, u8 port_num,
2294 struct ib_port_attr *port_attr);
2295 int (*modify_port)(struct ib_device *device, u8 port_num,
2296 int port_modify_mask,
2297 struct ib_port_modify *port_modify);
2298 /**
2299 * The following mandatory functions are used only at device
2300 * registration. Keep functions such as these at the end of this
2301 * structure to avoid cache line misses when accessing struct ib_device
2302 * in fast paths.
2303 */
2304 int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2305 struct ib_port_immutable *immutable);
2306 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2307 u8 port_num);
2308 /**
2309 * When calling get_netdev, the HW vendor's driver should return the
2310 * net device of device @device at port @port_num or NULL if such
2311 * a net device doesn't exist. The vendor driver should call dev_hold
2312 * on this net device. The HW vendor's device driver must guarantee
2313 * that this function returns NULL before the net device has finished
2314 * NETDEV_UNREGISTER state.
2315 */
2316 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2317 /**
2318 * rdma netdev operation
2319 *
2320 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2321 * must return -EOPNOTSUPP if it doesn't support the specified type.
2322 */
2323 struct net_device *(*alloc_rdma_netdev)(
2324 struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2325 const char *name, unsigned char name_assign_type,
2326 void (*setup)(struct net_device *));
2327
2328 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2329 enum rdma_netdev_t type,
2330 struct rdma_netdev_alloc_params *params);
2331 /**
2332 * query_gid should be return GID value for @device, when @port_num
2333 * link layer is either IB or iWarp. It is no-op if @port_num port
2334 * is RoCE link layer.
2335 */
2336 int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2337 union ib_gid *gid);
2338 /**
2339 * When calling add_gid, the HW vendor's driver should add the gid
2340 * of device of port at gid index available at @attr. Meta-info of
2341 * that gid (for example, the network device related to this gid) is
2342 * available at @attr. @context allows the HW vendor driver to store
2343 * extra information together with a GID entry. The HW vendor driver may
2344 * allocate memory to contain this information and store it in @context
2345 * when a new GID entry is written to. Params are consistent until the
2346 * next call of add_gid or delete_gid. The function should return 0 on
2347 * success or error otherwise. The function could be called
2348 * concurrently for different ports. This function is only called when
2349 * roce_gid_table is used.
2350 */
2351 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2352 /**
2353 * When calling del_gid, the HW vendor's driver should delete the
2354 * gid of device @device at gid index gid_index of port port_num
2355 * available in @attr.
2356 * Upon the deletion of a GID entry, the HW vendor must free any
2357 * allocated memory. The caller will clear @context afterwards.
2358 * This function is only called when roce_gid_table is used.
2359 */
2360 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2361 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2362 u16 *pkey);
2363 int (*alloc_ucontext)(struct ib_ucontext *context,
2364 struct ib_udata *udata);
2365 void (*dealloc_ucontext)(struct ib_ucontext *context);
2366 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2367 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2368 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2369 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2370 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr,
2371 u32 flags, struct ib_udata *udata);
2372 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2373 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2374 void (*destroy_ah)(struct ib_ah *ah, u32 flags);
2375 int (*create_srq)(struct ib_srq *srq,
2376 struct ib_srq_init_attr *srq_init_attr,
2377 struct ib_udata *udata);
2378 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2379 enum ib_srq_attr_mask srq_attr_mask,
2380 struct ib_udata *udata);
2381 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2382 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2383 struct ib_qp *(*create_qp)(struct ib_pd *pd,
2384 struct ib_qp_init_attr *qp_init_attr,
2385 struct ib_udata *udata);
2386 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2387 int qp_attr_mask, struct ib_udata *udata);
2388 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2389 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2390 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2391 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2392 struct ib_udata *udata);
2393 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2394 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2395 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2396 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2397 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2398 u64 virt_addr, int mr_access_flags,
2399 struct ib_udata *udata);
2400 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2401 u64 virt_addr, int mr_access_flags,
2402 struct ib_pd *pd, struct ib_udata *udata);
2403 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2404 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2405 u32 max_num_sg, struct ib_udata *udata);
2406 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2407 u32 max_num_data_sg,
2408 u32 max_num_meta_sg);
2409 int (*advise_mr)(struct ib_pd *pd,
2410 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2411 struct ib_sge *sg_list, u32 num_sge,
2412 struct uverbs_attr_bundle *attrs);
2413 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2414 unsigned int *sg_offset);
2415 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2416 struct ib_mr_status *mr_status);
2417 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2418 struct ib_udata *udata);
2419 int (*dealloc_mw)(struct ib_mw *mw);
2420 struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
2421 struct ib_fmr_attr *fmr_attr);
2422 int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
2423 u64 iova);
2424 int (*unmap_fmr)(struct list_head *fmr_list);
2425 int (*dealloc_fmr)(struct ib_fmr *fmr);
2426 void (*invalidate_range)(struct ib_umem_odp *umem_odp,
2427 unsigned long start, unsigned long end);
2428 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2429 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2430 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
2431 struct ib_udata *udata);
2432 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2433 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2434 struct ib_flow_attr *flow_attr,
2435 int domain, struct ib_udata *udata);
2436 int (*destroy_flow)(struct ib_flow *flow_id);
2437 struct ib_flow_action *(*create_flow_action_esp)(
2438 struct ib_device *device,
2439 const struct ib_flow_action_attrs_esp *attr,
2440 struct uverbs_attr_bundle *attrs);
2441 int (*destroy_flow_action)(struct ib_flow_action *action);
2442 int (*modify_flow_action_esp)(
2443 struct ib_flow_action *action,
2444 const struct ib_flow_action_attrs_esp *attr,
2445 struct uverbs_attr_bundle *attrs);
2446 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2447 int state);
2448 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2449 struct ifla_vf_info *ivf);
2450 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2451 struct ifla_vf_stats *stats);
2452 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2453 int type);
2454 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2455 struct ib_wq_init_attr *init_attr,
2456 struct ib_udata *udata);
2457 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2458 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2459 u32 wq_attr_mask, struct ib_udata *udata);
2460 struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2461 struct ib_device *device,
2462 struct ib_rwq_ind_table_init_attr *init_attr,
2463 struct ib_udata *udata);
2464 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2465 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2466 struct ib_ucontext *context,
2467 struct ib_dm_alloc_attr *attr,
2468 struct uverbs_attr_bundle *attrs);
2469 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2470 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2471 struct ib_dm_mr_attr *attr,
2472 struct uverbs_attr_bundle *attrs);
2473 struct ib_counters *(*create_counters)(
2474 struct ib_device *device, struct uverbs_attr_bundle *attrs);
2475 int (*destroy_counters)(struct ib_counters *counters);
2476 int (*read_counters)(struct ib_counters *counters,
2477 struct ib_counters_read_attr *counters_read_attr,
2478 struct uverbs_attr_bundle *attrs);
2479 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2480 int data_sg_nents, unsigned int *data_sg_offset,
2481 struct scatterlist *meta_sg, int meta_sg_nents,
2482 unsigned int *meta_sg_offset);
2483
2484 /**
2485 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2486 * driver initialized data. The struct is kfree()'ed by the sysfs
2487 * core when the device is removed. A lifespan of -1 in the return
2488 * struct tells the core to set a default lifespan.
2489 */
2490 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2491 u8 port_num);
2492 /**
2493 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2494 * @index - The index in the value array we wish to have updated, or
2495 * num_counters if we want all stats updated
2496 * Return codes -
2497 * < 0 - Error, no counters updated
2498 * index - Updated the single counter pointed to by index
2499 * num_counters - Updated all counters (will reset the timestamp
2500 * and prevent further calls for lifespan milliseconds)
2501 * Drivers are allowed to update all counters in leiu of just the
2502 * one given in index at their option
2503 */
2504 int (*get_hw_stats)(struct ib_device *device,
2505 struct rdma_hw_stats *stats, u8 port, int index);
2506 /*
2507 * This function is called once for each port when a ib device is
2508 * registered.
2509 */
2510 int (*init_port)(struct ib_device *device, u8 port_num,
2511 struct kobject *port_sysfs);
2512 /**
2513 * Allows rdma drivers to add their own restrack attributes.
2514 */
2515 int (*fill_res_entry)(struct sk_buff *msg,
2516 struct rdma_restrack_entry *entry);
2517
2518 /* Device lifecycle callbacks */
2519 /*
2520 * Called after the device becomes registered, before clients are
2521 * attached
2522 */
2523 int (*enable_driver)(struct ib_device *dev);
2524 /*
2525 * This is called as part of ib_dealloc_device().
2526 */
2527 void (*dealloc_driver)(struct ib_device *dev);
2528
2529 /* iWarp CM callbacks */
2530 void (*iw_add_ref)(struct ib_qp *qp);
2531 void (*iw_rem_ref)(struct ib_qp *qp);
2532 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2533 int (*iw_connect)(struct iw_cm_id *cm_id,
2534 struct iw_cm_conn_param *conn_param);
2535 int (*iw_accept)(struct iw_cm_id *cm_id,
2536 struct iw_cm_conn_param *conn_param);
2537 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2538 u8 pdata_len);
2539 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2540 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2541 /**
2542 * counter_bind_qp - Bind a QP to a counter.
2543 * @counter - The counter to be bound. If counter->id is zero then
2544 * the driver needs to allocate a new counter and set counter->id
2545 */
2546 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2547 /**
2548 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2549 * counter and bind it onto the default one
2550 */
2551 int (*counter_unbind_qp)(struct ib_qp *qp);
2552 /**
2553 * counter_dealloc -De-allocate the hw counter
2554 */
2555 int (*counter_dealloc)(struct rdma_counter *counter);
2556 /**
2557 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2558 * the driver initialized data.
2559 */
2560 struct rdma_hw_stats *(*counter_alloc_stats)(
2561 struct rdma_counter *counter);
2562 /**
2563 * counter_update_stats - Query the stats value of this counter
2564 */
2565 int (*counter_update_stats)(struct rdma_counter *counter);
2566
2567 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2568 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2569 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2570 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2571 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2572 };
2573
2574 struct ib_core_device {
2575 /* device must be the first element in structure until,
2576 * union of ib_core_device and device exists in ib_device.
2577 */
2578 struct device dev;
2579 possible_net_t rdma_net;
2580 struct kobject *ports_kobj;
2581 struct list_head port_list;
2582 struct ib_device *owner; /* reach back to owner ib_device */
2583 };
2584
2585 struct rdma_restrack_root;
2586 struct ib_device {
2587 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2588 struct device *dma_device;
2589 struct ib_device_ops ops;
2590 char name[IB_DEVICE_NAME_MAX];
2591 struct rcu_head rcu_head;
2592
2593 struct list_head event_handler_list;
2594 /* Protects event_handler_list */
2595 struct rw_semaphore event_handler_rwsem;
2596
2597 /* Protects QP's event_handler calls and open_qp list */
2598 spinlock_t event_handler_lock;
2599
2600 struct rw_semaphore client_data_rwsem;
2601 struct xarray client_data;
2602 struct mutex unregistration_lock;
2603
2604 struct ib_cache cache;
2605 /**
2606 * port_data is indexed by port number
2607 */
2608 struct ib_port_data *port_data;
2609
2610 int num_comp_vectors;
2611
2612 union {
2613 struct device dev;
2614 struct ib_core_device coredev;
2615 };
2616
2617 /* First group for device attributes,
2618 * Second group for driver provided attributes (optional).
2619 * It is NULL terminated array.
2620 */
2621 const struct attribute_group *groups[3];
2622
2623 u64 uverbs_cmd_mask;
2624 u64 uverbs_ex_cmd_mask;
2625
2626 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2627 __be64 node_guid;
2628 u32 local_dma_lkey;
2629 u16 is_switch:1;
2630 /* Indicates kernel verbs support, should not be used in drivers */
2631 u16 kverbs_provider:1;
2632 /* CQ adaptive moderation (RDMA DIM) */
2633 u16 use_cq_dim:1;
2634 u8 node_type;
2635 u8 phys_port_cnt;
2636 struct ib_device_attr attrs;
2637 struct attribute_group *hw_stats_ag;
2638 struct rdma_hw_stats *hw_stats;
2639
2640 #ifdef CONFIG_CGROUP_RDMA
2641 struct rdmacg_device cg_device;
2642 #endif
2643
2644 u32 index;
2645 struct rdma_restrack_root *res;
2646
2647 const struct uapi_definition *driver_def;
2648
2649 /*
2650 * Positive refcount indicates that the device is currently
2651 * registered and cannot be unregistered.
2652 */
2653 refcount_t refcount;
2654 struct completion unreg_completion;
2655 struct work_struct unregistration_work;
2656
2657 const struct rdma_link_ops *link_ops;
2658
2659 /* Protects compat_devs xarray modifications */
2660 struct mutex compat_devs_mutex;
2661 /* Maintains compat devices for each net namespace */
2662 struct xarray compat_devs;
2663
2664 /* Used by iWarp CM */
2665 char iw_ifname[IFNAMSIZ];
2666 u32 iw_driver_flags;
2667 };
2668
2669 struct ib_client_nl_info;
2670 struct ib_client {
2671 const char *name;
2672 void (*add) (struct ib_device *);
2673 void (*remove)(struct ib_device *, void *client_data);
2674 void (*rename)(struct ib_device *dev, void *client_data);
2675 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2676 struct ib_client_nl_info *res);
2677 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2678
2679 /* Returns the net_dev belonging to this ib_client and matching the
2680 * given parameters.
2681 * @dev: An RDMA device that the net_dev use for communication.
2682 * @port: A physical port number on the RDMA device.
2683 * @pkey: P_Key that the net_dev uses if applicable.
2684 * @gid: A GID that the net_dev uses to communicate.
2685 * @addr: An IP address the net_dev is configured with.
2686 * @client_data: The device's client data set by ib_set_client_data().
2687 *
2688 * An ib_client that implements a net_dev on top of RDMA devices
2689 * (such as IP over IB) should implement this callback, allowing the
2690 * rdma_cm module to find the right net_dev for a given request.
2691 *
2692 * The caller is responsible for calling dev_put on the returned
2693 * netdev. */
2694 struct net_device *(*get_net_dev_by_params)(
2695 struct ib_device *dev,
2696 u8 port,
2697 u16 pkey,
2698 const union ib_gid *gid,
2699 const struct sockaddr *addr,
2700 void *client_data);
2701
2702 refcount_t uses;
2703 struct completion uses_zero;
2704 u32 client_id;
2705
2706 /* kverbs are not required by the client */
2707 u8 no_kverbs_req:1;
2708 };
2709
2710 /*
2711 * IB block DMA iterator
2712 *
2713 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2714 * to a HW supported page size.
2715 */
2716 struct ib_block_iter {
2717 /* internal states */
2718 struct scatterlist *__sg; /* sg holding the current aligned block */
2719 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2720 unsigned int __sg_nents; /* number of SG entries */
2721 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2722 unsigned int __pg_bit; /* alignment of current block */
2723 };
2724
2725 struct ib_device *_ib_alloc_device(size_t size);
2726 #define ib_alloc_device(drv_struct, member) \
2727 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2728 BUILD_BUG_ON_ZERO(offsetof( \
2729 struct drv_struct, member))), \
2730 struct drv_struct, member)
2731
2732 void ib_dealloc_device(struct ib_device *device);
2733
2734 void ib_get_device_fw_str(struct ib_device *device, char *str);
2735
2736 int ib_register_device(struct ib_device *device, const char *name);
2737 void ib_unregister_device(struct ib_device *device);
2738 void ib_unregister_driver(enum rdma_driver_id driver_id);
2739 void ib_unregister_device_and_put(struct ib_device *device);
2740 void ib_unregister_device_queued(struct ib_device *ib_dev);
2741
2742 int ib_register_client (struct ib_client *client);
2743 void ib_unregister_client(struct ib_client *client);
2744
2745 void __rdma_block_iter_start(struct ib_block_iter *biter,
2746 struct scatterlist *sglist,
2747 unsigned int nents,
2748 unsigned long pgsz);
2749 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2750
2751 /**
2752 * rdma_block_iter_dma_address - get the aligned dma address of the current
2753 * block held by the block iterator.
2754 * @biter: block iterator holding the memory block
2755 */
2756 static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2757 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2758 {
2759 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2760 }
2761
2762 /**
2763 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2764 * @sglist: sglist to iterate over
2765 * @biter: block iterator holding the memory block
2766 * @nents: maximum number of sg entries to iterate over
2767 * @pgsz: best HW supported page size to use
2768 *
2769 * Callers may use rdma_block_iter_dma_address() to get each
2770 * blocks aligned DMA address.
2771 */
2772 #define rdma_for_each_block(sglist, biter, nents, pgsz) \
2773 for (__rdma_block_iter_start(biter, sglist, nents, \
2774 pgsz); \
2775 __rdma_block_iter_next(biter);)
2776
2777 /**
2778 * ib_get_client_data - Get IB client context
2779 * @device:Device to get context for
2780 * @client:Client to get context for
2781 *
2782 * ib_get_client_data() returns the client context data set with
2783 * ib_set_client_data(). This can only be called while the client is
2784 * registered to the device, once the ib_client remove() callback returns this
2785 * cannot be called.
2786 */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2787 static inline void *ib_get_client_data(struct ib_device *device,
2788 struct ib_client *client)
2789 {
2790 return xa_load(&device->client_data, client->client_id);
2791 }
2792 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2793 void *data);
2794 void ib_set_device_ops(struct ib_device *device,
2795 const struct ib_device_ops *ops);
2796
2797 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2798 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2799 unsigned long pfn, unsigned long size, pgprot_t prot);
2800 #else
rdma_user_mmap_io(struct ib_ucontext * ucontext,struct vm_area_struct * vma,unsigned long pfn,unsigned long size,pgprot_t prot)2801 static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2802 struct vm_area_struct *vma,
2803 unsigned long pfn, unsigned long size,
2804 pgprot_t prot)
2805 {
2806 return -EINVAL;
2807 }
2808 #endif
2809
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2810 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2811 {
2812 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2813 }
2814
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2815 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2816 {
2817 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2818 }
2819
ib_is_buffer_cleared(const void __user * p,size_t len)2820 static inline bool ib_is_buffer_cleared(const void __user *p,
2821 size_t len)
2822 {
2823 bool ret;
2824 u8 *buf;
2825
2826 if (len > USHRT_MAX)
2827 return false;
2828
2829 buf = memdup_user(p, len);
2830 if (IS_ERR(buf))
2831 return false;
2832
2833 ret = !memchr_inv(buf, 0, len);
2834 kfree(buf);
2835 return ret;
2836 }
2837
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)2838 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2839 size_t offset,
2840 size_t len)
2841 {
2842 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2843 }
2844
2845 /**
2846 * ib_is_destroy_retryable - Check whether the uobject destruction
2847 * is retryable.
2848 * @ret: The initial destruction return code
2849 * @why: remove reason
2850 * @uobj: The uobject that is destroyed
2851 *
2852 * This function is a helper function that IB layer and low-level drivers
2853 * can use to consider whether the destruction of the given uobject is
2854 * retry-able.
2855 * It checks the original return code, if it wasn't success the destruction
2856 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2857 * the remove reason. (i.e. why).
2858 * Must be called with the object locked for destroy.
2859 */
ib_is_destroy_retryable(int ret,enum rdma_remove_reason why,struct ib_uobject * uobj)2860 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2861 struct ib_uobject *uobj)
2862 {
2863 return ret && (why == RDMA_REMOVE_DESTROY ||
2864 uobj->context->cleanup_retryable);
2865 }
2866
2867 /**
2868 * ib_destroy_usecnt - Called during destruction to check the usecnt
2869 * @usecnt: The usecnt atomic
2870 * @why: remove reason
2871 * @uobj: The uobject that is destroyed
2872 *
2873 * Non-zero usecnts will block destruction unless destruction was triggered by
2874 * a ucontext cleanup.
2875 */
ib_destroy_usecnt(atomic_t * usecnt,enum rdma_remove_reason why,struct ib_uobject * uobj)2876 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2877 enum rdma_remove_reason why,
2878 struct ib_uobject *uobj)
2879 {
2880 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2881 return -EBUSY;
2882 return 0;
2883 }
2884
2885 /**
2886 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2887 * contains all required attributes and no attributes not allowed for
2888 * the given QP state transition.
2889 * @cur_state: Current QP state
2890 * @next_state: Next QP state
2891 * @type: QP type
2892 * @mask: Mask of supplied QP attributes
2893 *
2894 * This function is a helper function that a low-level driver's
2895 * modify_qp method can use to validate the consumer's input. It
2896 * checks that cur_state and next_state are valid QP states, that a
2897 * transition from cur_state to next_state is allowed by the IB spec,
2898 * and that the attribute mask supplied is allowed for the transition.
2899 */
2900 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2901 enum ib_qp_type type, enum ib_qp_attr_mask mask);
2902
2903 void ib_register_event_handler(struct ib_event_handler *event_handler);
2904 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2905 void ib_dispatch_event(const struct ib_event *event);
2906
2907 int ib_query_port(struct ib_device *device,
2908 u8 port_num, struct ib_port_attr *port_attr);
2909
2910 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2911 u8 port_num);
2912
2913 /**
2914 * rdma_cap_ib_switch - Check if the device is IB switch
2915 * @device: Device to check
2916 *
2917 * Device driver is responsible for setting is_switch bit on
2918 * in ib_device structure at init time.
2919 *
2920 * Return: true if the device is IB switch.
2921 */
rdma_cap_ib_switch(const struct ib_device * device)2922 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2923 {
2924 return device->is_switch;
2925 }
2926
2927 /**
2928 * rdma_start_port - Return the first valid port number for the device
2929 * specified
2930 *
2931 * @device: Device to be checked
2932 *
2933 * Return start port number
2934 */
rdma_start_port(const struct ib_device * device)2935 static inline u8 rdma_start_port(const struct ib_device *device)
2936 {
2937 return rdma_cap_ib_switch(device) ? 0 : 1;
2938 }
2939
2940 /**
2941 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2942 * @device - The struct ib_device * to iterate over
2943 * @iter - The unsigned int to store the port number
2944 */
2945 #define rdma_for_each_port(device, iter) \
2946 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \
2947 unsigned int, iter))); \
2948 iter <= rdma_end_port(device); (iter)++)
2949
2950 /**
2951 * rdma_end_port - Return the last valid port number for the device
2952 * specified
2953 *
2954 * @device: Device to be checked
2955 *
2956 * Return last port number
2957 */
rdma_end_port(const struct ib_device * device)2958 static inline u8 rdma_end_port(const struct ib_device *device)
2959 {
2960 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2961 }
2962
rdma_is_port_valid(const struct ib_device * device,unsigned int port)2963 static inline int rdma_is_port_valid(const struct ib_device *device,
2964 unsigned int port)
2965 {
2966 return (port >= rdma_start_port(device) &&
2967 port <= rdma_end_port(device));
2968 }
2969
rdma_is_grh_required(const struct ib_device * device,u8 port_num)2970 static inline bool rdma_is_grh_required(const struct ib_device *device,
2971 u8 port_num)
2972 {
2973 return device->port_data[port_num].immutable.core_cap_flags &
2974 RDMA_CORE_PORT_IB_GRH_REQUIRED;
2975 }
2976
rdma_protocol_ib(const struct ib_device * device,u8 port_num)2977 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2978 {
2979 return device->port_data[port_num].immutable.core_cap_flags &
2980 RDMA_CORE_CAP_PROT_IB;
2981 }
2982
rdma_protocol_roce(const struct ib_device * device,u8 port_num)2983 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2984 {
2985 return device->port_data[port_num].immutable.core_cap_flags &
2986 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2987 }
2988
rdma_protocol_roce_udp_encap(const struct ib_device * device,u8 port_num)2989 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2990 {
2991 return device->port_data[port_num].immutable.core_cap_flags &
2992 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2993 }
2994
rdma_protocol_roce_eth_encap(const struct ib_device * device,u8 port_num)2995 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2996 {
2997 return device->port_data[port_num].immutable.core_cap_flags &
2998 RDMA_CORE_CAP_PROT_ROCE;
2999 }
3000
rdma_protocol_iwarp(const struct ib_device * device,u8 port_num)3001 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
3002 {
3003 return device->port_data[port_num].immutable.core_cap_flags &
3004 RDMA_CORE_CAP_PROT_IWARP;
3005 }
3006
rdma_ib_or_roce(const struct ib_device * device,u8 port_num)3007 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
3008 {
3009 return rdma_protocol_ib(device, port_num) ||
3010 rdma_protocol_roce(device, port_num);
3011 }
3012
rdma_protocol_raw_packet(const struct ib_device * device,u8 port_num)3013 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3014 {
3015 return device->port_data[port_num].immutable.core_cap_flags &
3016 RDMA_CORE_CAP_PROT_RAW_PACKET;
3017 }
3018
rdma_protocol_usnic(const struct ib_device * device,u8 port_num)3019 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3020 {
3021 return device->port_data[port_num].immutable.core_cap_flags &
3022 RDMA_CORE_CAP_PROT_USNIC;
3023 }
3024
3025 /**
3026 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3027 * Management Datagrams.
3028 * @device: Device to check
3029 * @port_num: Port number to check
3030 *
3031 * Management Datagrams (MAD) are a required part of the InfiniBand
3032 * specification and are supported on all InfiniBand devices. A slightly
3033 * extended version are also supported on OPA interfaces.
3034 *
3035 * Return: true if the port supports sending/receiving of MAD packets.
3036 */
rdma_cap_ib_mad(const struct ib_device * device,u8 port_num)3037 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
3038 {
3039 return device->port_data[port_num].immutable.core_cap_flags &
3040 RDMA_CORE_CAP_IB_MAD;
3041 }
3042
3043 /**
3044 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3045 * Management Datagrams.
3046 * @device: Device to check
3047 * @port_num: Port number to check
3048 *
3049 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3050 * datagrams with their own versions. These OPA MADs share many but not all of
3051 * the characteristics of InfiniBand MADs.
3052 *
3053 * OPA MADs differ in the following ways:
3054 *
3055 * 1) MADs are variable size up to 2K
3056 * IBTA defined MADs remain fixed at 256 bytes
3057 * 2) OPA SMPs must carry valid PKeys
3058 * 3) OPA SMP packets are a different format
3059 *
3060 * Return: true if the port supports OPA MAD packet formats.
3061 */
rdma_cap_opa_mad(struct ib_device * device,u8 port_num)3062 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3063 {
3064 return device->port_data[port_num].immutable.core_cap_flags &
3065 RDMA_CORE_CAP_OPA_MAD;
3066 }
3067
3068 /**
3069 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3070 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3071 * @device: Device to check
3072 * @port_num: Port number to check
3073 *
3074 * Each InfiniBand node is required to provide a Subnet Management Agent
3075 * that the subnet manager can access. Prior to the fabric being fully
3076 * configured by the subnet manager, the SMA is accessed via a well known
3077 * interface called the Subnet Management Interface (SMI). This interface
3078 * uses directed route packets to communicate with the SM to get around the
3079 * chicken and egg problem of the SM needing to know what's on the fabric
3080 * in order to configure the fabric, and needing to configure the fabric in
3081 * order to send packets to the devices on the fabric. These directed
3082 * route packets do not need the fabric fully configured in order to reach
3083 * their destination. The SMI is the only method allowed to send
3084 * directed route packets on an InfiniBand fabric.
3085 *
3086 * Return: true if the port provides an SMI.
3087 */
rdma_cap_ib_smi(const struct ib_device * device,u8 port_num)3088 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3089 {
3090 return device->port_data[port_num].immutable.core_cap_flags &
3091 RDMA_CORE_CAP_IB_SMI;
3092 }
3093
3094 /**
3095 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3096 * Communication Manager.
3097 * @device: Device to check
3098 * @port_num: Port number to check
3099 *
3100 * The InfiniBand Communication Manager is one of many pre-defined General
3101 * Service Agents (GSA) that are accessed via the General Service
3102 * Interface (GSI). It's role is to facilitate establishment of connections
3103 * between nodes as well as other management related tasks for established
3104 * connections.
3105 *
3106 * Return: true if the port supports an IB CM (this does not guarantee that
3107 * a CM is actually running however).
3108 */
rdma_cap_ib_cm(const struct ib_device * device,u8 port_num)3109 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3110 {
3111 return device->port_data[port_num].immutable.core_cap_flags &
3112 RDMA_CORE_CAP_IB_CM;
3113 }
3114
3115 /**
3116 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3117 * Communication Manager.
3118 * @device: Device to check
3119 * @port_num: Port number to check
3120 *
3121 * Similar to above, but specific to iWARP connections which have a different
3122 * managment protocol than InfiniBand.
3123 *
3124 * Return: true if the port supports an iWARP CM (this does not guarantee that
3125 * a CM is actually running however).
3126 */
rdma_cap_iw_cm(const struct ib_device * device,u8 port_num)3127 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3128 {
3129 return device->port_data[port_num].immutable.core_cap_flags &
3130 RDMA_CORE_CAP_IW_CM;
3131 }
3132
3133 /**
3134 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3135 * Subnet Administration.
3136 * @device: Device to check
3137 * @port_num: Port number to check
3138 *
3139 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3140 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3141 * fabrics, devices should resolve routes to other hosts by contacting the
3142 * SA to query the proper route.
3143 *
3144 * Return: true if the port should act as a client to the fabric Subnet
3145 * Administration interface. This does not imply that the SA service is
3146 * running locally.
3147 */
rdma_cap_ib_sa(const struct ib_device * device,u8 port_num)3148 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3149 {
3150 return device->port_data[port_num].immutable.core_cap_flags &
3151 RDMA_CORE_CAP_IB_SA;
3152 }
3153
3154 /**
3155 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3156 * Multicast.
3157 * @device: Device to check
3158 * @port_num: Port number to check
3159 *
3160 * InfiniBand multicast registration is more complex than normal IPv4 or
3161 * IPv6 multicast registration. Each Host Channel Adapter must register
3162 * with the Subnet Manager when it wishes to join a multicast group. It
3163 * should do so only once regardless of how many queue pairs it subscribes
3164 * to this group. And it should leave the group only after all queue pairs
3165 * attached to the group have been detached.
3166 *
3167 * Return: true if the port must undertake the additional adminstrative
3168 * overhead of registering/unregistering with the SM and tracking of the
3169 * total number of queue pairs attached to the multicast group.
3170 */
rdma_cap_ib_mcast(const struct ib_device * device,u8 port_num)3171 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3172 {
3173 return rdma_cap_ib_sa(device, port_num);
3174 }
3175
3176 /**
3177 * rdma_cap_af_ib - Check if the port of device has the capability
3178 * Native Infiniband Address.
3179 * @device: Device to check
3180 * @port_num: Port number to check
3181 *
3182 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3183 * GID. RoCE uses a different mechanism, but still generates a GID via
3184 * a prescribed mechanism and port specific data.
3185 *
3186 * Return: true if the port uses a GID address to identify devices on the
3187 * network.
3188 */
rdma_cap_af_ib(const struct ib_device * device,u8 port_num)3189 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3190 {
3191 return device->port_data[port_num].immutable.core_cap_flags &
3192 RDMA_CORE_CAP_AF_IB;
3193 }
3194
3195 /**
3196 * rdma_cap_eth_ah - Check if the port of device has the capability
3197 * Ethernet Address Handle.
3198 * @device: Device to check
3199 * @port_num: Port number to check
3200 *
3201 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3202 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3203 * port. Normally, packet headers are generated by the sending host
3204 * adapter, but when sending connectionless datagrams, we must manually
3205 * inject the proper headers for the fabric we are communicating over.
3206 *
3207 * Return: true if we are running as a RoCE port and must force the
3208 * addition of a Global Route Header built from our Ethernet Address
3209 * Handle into our header list for connectionless packets.
3210 */
rdma_cap_eth_ah(const struct ib_device * device,u8 port_num)3211 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3212 {
3213 return device->port_data[port_num].immutable.core_cap_flags &
3214 RDMA_CORE_CAP_ETH_AH;
3215 }
3216
3217 /**
3218 * rdma_cap_opa_ah - Check if the port of device supports
3219 * OPA Address handles
3220 * @device: Device to check
3221 * @port_num: Port number to check
3222 *
3223 * Return: true if we are running on an OPA device which supports
3224 * the extended OPA addressing.
3225 */
rdma_cap_opa_ah(struct ib_device * device,u8 port_num)3226 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3227 {
3228 return (device->port_data[port_num].immutable.core_cap_flags &
3229 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3230 }
3231
3232 /**
3233 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3234 *
3235 * @device: Device
3236 * @port_num: Port number
3237 *
3238 * This MAD size includes the MAD headers and MAD payload. No other headers
3239 * are included.
3240 *
3241 * Return the max MAD size required by the Port. Will return 0 if the port
3242 * does not support MADs
3243 */
rdma_max_mad_size(const struct ib_device * device,u8 port_num)3244 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3245 {
3246 return device->port_data[port_num].immutable.max_mad_size;
3247 }
3248
3249 /**
3250 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3251 * @device: Device to check
3252 * @port_num: Port number to check
3253 *
3254 * RoCE GID table mechanism manages the various GIDs for a device.
3255 *
3256 * NOTE: if allocating the port's GID table has failed, this call will still
3257 * return true, but any RoCE GID table API will fail.
3258 *
3259 * Return: true if the port uses RoCE GID table mechanism in order to manage
3260 * its GIDs.
3261 */
rdma_cap_roce_gid_table(const struct ib_device * device,u8 port_num)3262 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3263 u8 port_num)
3264 {
3265 return rdma_protocol_roce(device, port_num) &&
3266 device->ops.add_gid && device->ops.del_gid;
3267 }
3268
3269 /*
3270 * Check if the device supports READ W/ INVALIDATE.
3271 */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3272 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3273 {
3274 /*
3275 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3276 * has support for it yet.
3277 */
3278 return rdma_protocol_iwarp(dev, port_num);
3279 }
3280
3281 /**
3282 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3283 *
3284 * @addr: address
3285 * @pgsz_bitmap: bitmap of HW supported page sizes
3286 */
rdma_find_pg_bit(unsigned long addr,unsigned long pgsz_bitmap)3287 static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3288 unsigned long pgsz_bitmap)
3289 {
3290 unsigned long align;
3291 unsigned long pgsz;
3292
3293 align = addr & -addr;
3294
3295 /* Find page bit such that addr is aligned to the highest supported
3296 * HW page size
3297 */
3298 pgsz = pgsz_bitmap & ~(-align << 1);
3299 if (!pgsz)
3300 return __ffs(pgsz_bitmap);
3301
3302 return __fls(pgsz);
3303 }
3304
3305 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3306 int state);
3307 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3308 struct ifla_vf_info *info);
3309 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3310 struct ifla_vf_stats *stats);
3311 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3312 int type);
3313
3314 int ib_query_pkey(struct ib_device *device,
3315 u8 port_num, u16 index, u16 *pkey);
3316
3317 int ib_modify_device(struct ib_device *device,
3318 int device_modify_mask,
3319 struct ib_device_modify *device_modify);
3320
3321 int ib_modify_port(struct ib_device *device,
3322 u8 port_num, int port_modify_mask,
3323 struct ib_port_modify *port_modify);
3324
3325 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3326 u8 *port_num, u16 *index);
3327
3328 int ib_find_pkey(struct ib_device *device,
3329 u8 port_num, u16 pkey, u16 *index);
3330
3331 enum ib_pd_flags {
3332 /*
3333 * Create a memory registration for all memory in the system and place
3334 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3335 * ULPs to avoid the overhead of dynamic MRs.
3336 *
3337 * This flag is generally considered unsafe and must only be used in
3338 * extremly trusted environments. Every use of it will log a warning
3339 * in the kernel log.
3340 */
3341 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3342 };
3343
3344 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3345 const char *caller);
3346
3347 #define ib_alloc_pd(device, flags) \
3348 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3349
3350 /**
3351 * ib_dealloc_pd_user - Deallocate kernel/user PD
3352 * @pd: The protection domain
3353 * @udata: Valid user data or NULL for kernel objects
3354 */
3355 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3356
3357 /**
3358 * ib_dealloc_pd - Deallocate kernel PD
3359 * @pd: The protection domain
3360 *
3361 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3362 */
ib_dealloc_pd(struct ib_pd * pd)3363 static inline void ib_dealloc_pd(struct ib_pd *pd)
3364 {
3365 ib_dealloc_pd_user(pd, NULL);
3366 }
3367
3368 enum rdma_create_ah_flags {
3369 /* In a sleepable context */
3370 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3371 };
3372
3373 /**
3374 * rdma_create_ah - Creates an address handle for the given address vector.
3375 * @pd: The protection domain associated with the address handle.
3376 * @ah_attr: The attributes of the address vector.
3377 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3378 *
3379 * The address handle is used to reference a local or global destination
3380 * in all UD QP post sends.
3381 */
3382 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3383 u32 flags);
3384
3385 /**
3386 * rdma_create_user_ah - Creates an address handle for the given address vector.
3387 * It resolves destination mac address for ah attribute of RoCE type.
3388 * @pd: The protection domain associated with the address handle.
3389 * @ah_attr: The attributes of the address vector.
3390 * @udata: pointer to user's input output buffer information need by
3391 * provider driver.
3392 *
3393 * It returns 0 on success and returns appropriate error code on error.
3394 * The address handle is used to reference a local or global destination
3395 * in all UD QP post sends.
3396 */
3397 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3398 struct rdma_ah_attr *ah_attr,
3399 struct ib_udata *udata);
3400 /**
3401 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3402 * work completion.
3403 * @hdr: the L3 header to parse
3404 * @net_type: type of header to parse
3405 * @sgid: place to store source gid
3406 * @dgid: place to store destination gid
3407 */
3408 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3409 enum rdma_network_type net_type,
3410 union ib_gid *sgid, union ib_gid *dgid);
3411
3412 /**
3413 * ib_get_rdma_header_version - Get the header version
3414 * @hdr: the L3 header to parse
3415 */
3416 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3417
3418 /**
3419 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3420 * work completion.
3421 * @device: Device on which the received message arrived.
3422 * @port_num: Port on which the received message arrived.
3423 * @wc: Work completion associated with the received message.
3424 * @grh: References the received global route header. This parameter is
3425 * ignored unless the work completion indicates that the GRH is valid.
3426 * @ah_attr: Returned attributes that can be used when creating an address
3427 * handle for replying to the message.
3428 * When ib_init_ah_attr_from_wc() returns success,
3429 * (a) for IB link layer it optionally contains a reference to SGID attribute
3430 * when GRH is present for IB link layer.
3431 * (b) for RoCE link layer it contains a reference to SGID attribute.
3432 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3433 * attributes which are initialized using ib_init_ah_attr_from_wc().
3434 *
3435 */
3436 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3437 const struct ib_wc *wc, const struct ib_grh *grh,
3438 struct rdma_ah_attr *ah_attr);
3439
3440 /**
3441 * ib_create_ah_from_wc - Creates an address handle associated with the
3442 * sender of the specified work completion.
3443 * @pd: The protection domain associated with the address handle.
3444 * @wc: Work completion information associated with a received message.
3445 * @grh: References the received global route header. This parameter is
3446 * ignored unless the work completion indicates that the GRH is valid.
3447 * @port_num: The outbound port number to associate with the address.
3448 *
3449 * The address handle is used to reference a local or global destination
3450 * in all UD QP post sends.
3451 */
3452 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3453 const struct ib_grh *grh, u8 port_num);
3454
3455 /**
3456 * rdma_modify_ah - Modifies the address vector associated with an address
3457 * handle.
3458 * @ah: The address handle to modify.
3459 * @ah_attr: The new address vector attributes to associate with the
3460 * address handle.
3461 */
3462 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3463
3464 /**
3465 * rdma_query_ah - Queries the address vector associated with an address
3466 * handle.
3467 * @ah: The address handle to query.
3468 * @ah_attr: The address vector attributes associated with the address
3469 * handle.
3470 */
3471 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3472
3473 enum rdma_destroy_ah_flags {
3474 /* In a sleepable context */
3475 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3476 };
3477
3478 /**
3479 * rdma_destroy_ah_user - Destroys an address handle.
3480 * @ah: The address handle to destroy.
3481 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3482 * @udata: Valid user data or NULL for kernel objects
3483 */
3484 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3485
3486 /**
3487 * rdma_destroy_ah - Destroys an kernel address handle.
3488 * @ah: The address handle to destroy.
3489 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3490 *
3491 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3492 */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3493 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3494 {
3495 return rdma_destroy_ah_user(ah, flags, NULL);
3496 }
3497
3498 /**
3499 * ib_create_srq - Creates a SRQ associated with the specified protection
3500 * domain.
3501 * @pd: The protection domain associated with the SRQ.
3502 * @srq_init_attr: A list of initial attributes required to create the
3503 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3504 * the actual capabilities of the created SRQ.
3505 *
3506 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3507 * requested size of the SRQ, and set to the actual values allocated
3508 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3509 * will always be at least as large as the requested values.
3510 */
3511 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3512 struct ib_srq_init_attr *srq_init_attr);
3513
3514 /**
3515 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3516 * @srq: The SRQ to modify.
3517 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3518 * the current values of selected SRQ attributes are returned.
3519 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3520 * are being modified.
3521 *
3522 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3523 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3524 * the number of receives queued drops below the limit.
3525 */
3526 int ib_modify_srq(struct ib_srq *srq,
3527 struct ib_srq_attr *srq_attr,
3528 enum ib_srq_attr_mask srq_attr_mask);
3529
3530 /**
3531 * ib_query_srq - Returns the attribute list and current values for the
3532 * specified SRQ.
3533 * @srq: The SRQ to query.
3534 * @srq_attr: The attributes of the specified SRQ.
3535 */
3536 int ib_query_srq(struct ib_srq *srq,
3537 struct ib_srq_attr *srq_attr);
3538
3539 /**
3540 * ib_destroy_srq_user - Destroys the specified SRQ.
3541 * @srq: The SRQ to destroy.
3542 * @udata: Valid user data or NULL for kernel objects
3543 */
3544 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3545
3546 /**
3547 * ib_destroy_srq - Destroys the specified kernel SRQ.
3548 * @srq: The SRQ to destroy.
3549 *
3550 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3551 */
ib_destroy_srq(struct ib_srq * srq)3552 static inline int ib_destroy_srq(struct ib_srq *srq)
3553 {
3554 return ib_destroy_srq_user(srq, NULL);
3555 }
3556
3557 /**
3558 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3559 * @srq: The SRQ to post the work request on.
3560 * @recv_wr: A list of work requests to post on the receive queue.
3561 * @bad_recv_wr: On an immediate failure, this parameter will reference
3562 * the work request that failed to be posted on the QP.
3563 */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3564 static inline int ib_post_srq_recv(struct ib_srq *srq,
3565 const struct ib_recv_wr *recv_wr,
3566 const struct ib_recv_wr **bad_recv_wr)
3567 {
3568 const struct ib_recv_wr *dummy;
3569
3570 return srq->device->ops.post_srq_recv(srq, recv_wr,
3571 bad_recv_wr ? : &dummy);
3572 }
3573
3574 /**
3575 * ib_create_qp_user - Creates a QP associated with the specified protection
3576 * domain.
3577 * @pd: The protection domain associated with the QP.
3578 * @qp_init_attr: A list of initial attributes required to create the
3579 * QP. If QP creation succeeds, then the attributes are updated to
3580 * the actual capabilities of the created QP.
3581 * @udata: Valid user data or NULL for kernel objects
3582 */
3583 struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
3584 struct ib_qp_init_attr *qp_init_attr,
3585 struct ib_udata *udata);
3586
3587 /**
3588 * ib_create_qp - Creates a kernel QP associated with the specified protection
3589 * domain.
3590 * @pd: The protection domain associated with the QP.
3591 * @qp_init_attr: A list of initial attributes required to create the
3592 * QP. If QP creation succeeds, then the attributes are updated to
3593 * the actual capabilities of the created QP.
3594 * @udata: Valid user data or NULL for kernel objects
3595 *
3596 * NOTE: for user qp use ib_create_qp_user with valid udata!
3597 */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr)3598 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3599 struct ib_qp_init_attr *qp_init_attr)
3600 {
3601 return ib_create_qp_user(pd, qp_init_attr, NULL);
3602 }
3603
3604 /**
3605 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3606 * @qp: The QP to modify.
3607 * @attr: On input, specifies the QP attributes to modify. On output,
3608 * the current values of selected QP attributes are returned.
3609 * @attr_mask: A bit-mask used to specify which attributes of the QP
3610 * are being modified.
3611 * @udata: pointer to user's input output buffer information
3612 * are being modified.
3613 * It returns 0 on success and returns appropriate error code on error.
3614 */
3615 int ib_modify_qp_with_udata(struct ib_qp *qp,
3616 struct ib_qp_attr *attr,
3617 int attr_mask,
3618 struct ib_udata *udata);
3619
3620 /**
3621 * ib_modify_qp - Modifies the attributes for the specified QP and then
3622 * transitions the QP to the given state.
3623 * @qp: The QP to modify.
3624 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3625 * the current values of selected QP attributes are returned.
3626 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3627 * are being modified.
3628 */
3629 int ib_modify_qp(struct ib_qp *qp,
3630 struct ib_qp_attr *qp_attr,
3631 int qp_attr_mask);
3632
3633 /**
3634 * ib_query_qp - Returns the attribute list and current values for the
3635 * specified QP.
3636 * @qp: The QP to query.
3637 * @qp_attr: The attributes of the specified QP.
3638 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3639 * @qp_init_attr: Additional attributes of the selected QP.
3640 *
3641 * The qp_attr_mask may be used to limit the query to gathering only the
3642 * selected attributes.
3643 */
3644 int ib_query_qp(struct ib_qp *qp,
3645 struct ib_qp_attr *qp_attr,
3646 int qp_attr_mask,
3647 struct ib_qp_init_attr *qp_init_attr);
3648
3649 /**
3650 * ib_destroy_qp - Destroys the specified QP.
3651 * @qp: The QP to destroy.
3652 * @udata: Valid udata or NULL for kernel objects
3653 */
3654 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3655
3656 /**
3657 * ib_destroy_qp - Destroys the specified kernel QP.
3658 * @qp: The QP to destroy.
3659 *
3660 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3661 */
ib_destroy_qp(struct ib_qp * qp)3662 static inline int ib_destroy_qp(struct ib_qp *qp)
3663 {
3664 return ib_destroy_qp_user(qp, NULL);
3665 }
3666
3667 /**
3668 * ib_open_qp - Obtain a reference to an existing sharable QP.
3669 * @xrcd - XRC domain
3670 * @qp_open_attr: Attributes identifying the QP to open.
3671 *
3672 * Returns a reference to a sharable QP.
3673 */
3674 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3675 struct ib_qp_open_attr *qp_open_attr);
3676
3677 /**
3678 * ib_close_qp - Release an external reference to a QP.
3679 * @qp: The QP handle to release
3680 *
3681 * The opened QP handle is released by the caller. The underlying
3682 * shared QP is not destroyed until all internal references are released.
3683 */
3684 int ib_close_qp(struct ib_qp *qp);
3685
3686 /**
3687 * ib_post_send - Posts a list of work requests to the send queue of
3688 * the specified QP.
3689 * @qp: The QP to post the work request on.
3690 * @send_wr: A list of work requests to post on the send queue.
3691 * @bad_send_wr: On an immediate failure, this parameter will reference
3692 * the work request that failed to be posted on the QP.
3693 *
3694 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3695 * error is returned, the QP state shall not be affected,
3696 * ib_post_send() will return an immediate error after queueing any
3697 * earlier work requests in the list.
3698 */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3699 static inline int ib_post_send(struct ib_qp *qp,
3700 const struct ib_send_wr *send_wr,
3701 const struct ib_send_wr **bad_send_wr)
3702 {
3703 const struct ib_send_wr *dummy;
3704
3705 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3706 }
3707
3708 /**
3709 * ib_post_recv - Posts a list of work requests to the receive queue of
3710 * the specified QP.
3711 * @qp: The QP to post the work request on.
3712 * @recv_wr: A list of work requests to post on the receive queue.
3713 * @bad_recv_wr: On an immediate failure, this parameter will reference
3714 * the work request that failed to be posted on the QP.
3715 */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3716 static inline int ib_post_recv(struct ib_qp *qp,
3717 const struct ib_recv_wr *recv_wr,
3718 const struct ib_recv_wr **bad_recv_wr)
3719 {
3720 const struct ib_recv_wr *dummy;
3721
3722 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3723 }
3724
3725 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3726 int nr_cqe, int comp_vector,
3727 enum ib_poll_context poll_ctx,
3728 const char *caller, struct ib_udata *udata);
3729
3730 /**
3731 * ib_alloc_cq_user: Allocate kernel/user CQ
3732 * @dev: The IB device
3733 * @private: Private data attached to the CQE
3734 * @nr_cqe: Number of CQEs in the CQ
3735 * @comp_vector: Completion vector used for the IRQs
3736 * @poll_ctx: Context used for polling the CQ
3737 * @udata: Valid user data or NULL for kernel objects
3738 */
ib_alloc_cq_user(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx,struct ib_udata * udata)3739 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3740 void *private, int nr_cqe,
3741 int comp_vector,
3742 enum ib_poll_context poll_ctx,
3743 struct ib_udata *udata)
3744 {
3745 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3746 KBUILD_MODNAME, udata);
3747 }
3748
3749 /**
3750 * ib_alloc_cq: Allocate kernel CQ
3751 * @dev: The IB device
3752 * @private: Private data attached to the CQE
3753 * @nr_cqe: Number of CQEs in the CQ
3754 * @comp_vector: Completion vector used for the IRQs
3755 * @poll_ctx: Context used for polling the CQ
3756 *
3757 * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3758 */
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3759 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3760 int nr_cqe, int comp_vector,
3761 enum ib_poll_context poll_ctx)
3762 {
3763 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3764 NULL);
3765 }
3766
3767 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3768 int nr_cqe, enum ib_poll_context poll_ctx,
3769 const char *caller);
3770
3771 /**
3772 * ib_alloc_cq_any: Allocate kernel CQ
3773 * @dev: The IB device
3774 * @private: Private data attached to the CQE
3775 * @nr_cqe: Number of CQEs in the CQ
3776 * @poll_ctx: Context used for polling the CQ
3777 */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3778 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3779 void *private, int nr_cqe,
3780 enum ib_poll_context poll_ctx)
3781 {
3782 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3783 KBUILD_MODNAME);
3784 }
3785
3786 /**
3787 * ib_free_cq_user - Free kernel/user CQ
3788 * @cq: The CQ to free
3789 * @udata: Valid user data or NULL for kernel objects
3790 */
3791 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3792
3793 /**
3794 * ib_free_cq - Free kernel CQ
3795 * @cq: The CQ to free
3796 *
3797 * NOTE: for user cq use ib_free_cq_user with valid udata!
3798 */
ib_free_cq(struct ib_cq * cq)3799 static inline void ib_free_cq(struct ib_cq *cq)
3800 {
3801 ib_free_cq_user(cq, NULL);
3802 }
3803
3804 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3805
3806 /**
3807 * ib_create_cq - Creates a CQ on the specified device.
3808 * @device: The device on which to create the CQ.
3809 * @comp_handler: A user-specified callback that is invoked when a
3810 * completion event occurs on the CQ.
3811 * @event_handler: A user-specified callback that is invoked when an
3812 * asynchronous event not associated with a completion occurs on the CQ.
3813 * @cq_context: Context associated with the CQ returned to the user via
3814 * the associated completion and event handlers.
3815 * @cq_attr: The attributes the CQ should be created upon.
3816 *
3817 * Users can examine the cq structure to determine the actual CQ size.
3818 */
3819 struct ib_cq *__ib_create_cq(struct ib_device *device,
3820 ib_comp_handler comp_handler,
3821 void (*event_handler)(struct ib_event *, void *),
3822 void *cq_context,
3823 const struct ib_cq_init_attr *cq_attr,
3824 const char *caller);
3825 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3826 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3827
3828 /**
3829 * ib_resize_cq - Modifies the capacity of the CQ.
3830 * @cq: The CQ to resize.
3831 * @cqe: The minimum size of the CQ.
3832 *
3833 * Users can examine the cq structure to determine the actual CQ size.
3834 */
3835 int ib_resize_cq(struct ib_cq *cq, int cqe);
3836
3837 /**
3838 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3839 * @cq: The CQ to modify.
3840 * @cq_count: number of CQEs that will trigger an event
3841 * @cq_period: max period of time in usec before triggering an event
3842 *
3843 */
3844 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3845
3846 /**
3847 * ib_destroy_cq_user - Destroys the specified CQ.
3848 * @cq: The CQ to destroy.
3849 * @udata: Valid user data or NULL for kernel objects
3850 */
3851 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3852
3853 /**
3854 * ib_destroy_cq - Destroys the specified kernel CQ.
3855 * @cq: The CQ to destroy.
3856 *
3857 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3858 */
ib_destroy_cq(struct ib_cq * cq)3859 static inline void ib_destroy_cq(struct ib_cq *cq)
3860 {
3861 ib_destroy_cq_user(cq, NULL);
3862 }
3863
3864 /**
3865 * ib_poll_cq - poll a CQ for completion(s)
3866 * @cq:the CQ being polled
3867 * @num_entries:maximum number of completions to return
3868 * @wc:array of at least @num_entries &struct ib_wc where completions
3869 * will be returned
3870 *
3871 * Poll a CQ for (possibly multiple) completions. If the return value
3872 * is < 0, an error occurred. If the return value is >= 0, it is the
3873 * number of completions returned. If the return value is
3874 * non-negative and < num_entries, then the CQ was emptied.
3875 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3876 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3877 struct ib_wc *wc)
3878 {
3879 return cq->device->ops.poll_cq(cq, num_entries, wc);
3880 }
3881
3882 /**
3883 * ib_req_notify_cq - Request completion notification on a CQ.
3884 * @cq: The CQ to generate an event for.
3885 * @flags:
3886 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3887 * to request an event on the next solicited event or next work
3888 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3889 * may also be |ed in to request a hint about missed events, as
3890 * described below.
3891 *
3892 * Return Value:
3893 * < 0 means an error occurred while requesting notification
3894 * == 0 means notification was requested successfully, and if
3895 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3896 * were missed and it is safe to wait for another event. In
3897 * this case is it guaranteed that any work completions added
3898 * to the CQ since the last CQ poll will trigger a completion
3899 * notification event.
3900 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3901 * in. It means that the consumer must poll the CQ again to
3902 * make sure it is empty to avoid missing an event because of a
3903 * race between requesting notification and an entry being
3904 * added to the CQ. This return value means it is possible
3905 * (but not guaranteed) that a work completion has been added
3906 * to the CQ since the last poll without triggering a
3907 * completion notification event.
3908 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)3909 static inline int ib_req_notify_cq(struct ib_cq *cq,
3910 enum ib_cq_notify_flags flags)
3911 {
3912 return cq->device->ops.req_notify_cq(cq, flags);
3913 }
3914
3915 /**
3916 * ib_req_ncomp_notif - Request completion notification when there are
3917 * at least the specified number of unreaped completions on the CQ.
3918 * @cq: The CQ to generate an event for.
3919 * @wc_cnt: The number of unreaped completions that should be on the
3920 * CQ before an event is generated.
3921 */
ib_req_ncomp_notif(struct ib_cq * cq,int wc_cnt)3922 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3923 {
3924 return cq->device->ops.req_ncomp_notif ?
3925 cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
3926 -ENOSYS;
3927 }
3928
3929 /**
3930 * ib_dma_mapping_error - check a DMA addr for error
3931 * @dev: The device for which the dma_addr was created
3932 * @dma_addr: The DMA address to check
3933 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)3934 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3935 {
3936 return dma_mapping_error(dev->dma_device, dma_addr);
3937 }
3938
3939 /**
3940 * ib_dma_map_single - Map a kernel virtual address to DMA address
3941 * @dev: The device for which the dma_addr is to be created
3942 * @cpu_addr: The kernel virtual address
3943 * @size: The size of the region in bytes
3944 * @direction: The direction of the DMA
3945 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)3946 static inline u64 ib_dma_map_single(struct ib_device *dev,
3947 void *cpu_addr, size_t size,
3948 enum dma_data_direction direction)
3949 {
3950 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3951 }
3952
3953 /**
3954 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3955 * @dev: The device for which the DMA address was created
3956 * @addr: The DMA address
3957 * @size: The size of the region in bytes
3958 * @direction: The direction of the DMA
3959 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)3960 static inline void ib_dma_unmap_single(struct ib_device *dev,
3961 u64 addr, size_t size,
3962 enum dma_data_direction direction)
3963 {
3964 dma_unmap_single(dev->dma_device, addr, size, direction);
3965 }
3966
3967 /**
3968 * ib_dma_map_page - Map a physical page to DMA address
3969 * @dev: The device for which the dma_addr is to be created
3970 * @page: The page to be mapped
3971 * @offset: The offset within the page
3972 * @size: The size of the region in bytes
3973 * @direction: The direction of the DMA
3974 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)3975 static inline u64 ib_dma_map_page(struct ib_device *dev,
3976 struct page *page,
3977 unsigned long offset,
3978 size_t size,
3979 enum dma_data_direction direction)
3980 {
3981 return dma_map_page(dev->dma_device, page, offset, size, direction);
3982 }
3983
3984 /**
3985 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3986 * @dev: The device for which the DMA address was created
3987 * @addr: The DMA address
3988 * @size: The size of the region in bytes
3989 * @direction: The direction of the DMA
3990 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)3991 static inline void ib_dma_unmap_page(struct ib_device *dev,
3992 u64 addr, size_t size,
3993 enum dma_data_direction direction)
3994 {
3995 dma_unmap_page(dev->dma_device, addr, size, direction);
3996 }
3997
3998 /**
3999 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4000 * @dev: The device for which the DMA addresses are to be created
4001 * @sg: The array of scatter/gather entries
4002 * @nents: The number of scatter/gather entries
4003 * @direction: The direction of the DMA
4004 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4005 static inline int ib_dma_map_sg(struct ib_device *dev,
4006 struct scatterlist *sg, int nents,
4007 enum dma_data_direction direction)
4008 {
4009 return dma_map_sg(dev->dma_device, sg, nents, direction);
4010 }
4011
4012 /**
4013 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4014 * @dev: The device for which the DMA addresses were created
4015 * @sg: The array of scatter/gather entries
4016 * @nents: The number of scatter/gather entries
4017 * @direction: The direction of the DMA
4018 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4019 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4020 struct scatterlist *sg, int nents,
4021 enum dma_data_direction direction)
4022 {
4023 dma_unmap_sg(dev->dma_device, sg, nents, direction);
4024 }
4025
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4026 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4027 struct scatterlist *sg, int nents,
4028 enum dma_data_direction direction,
4029 unsigned long dma_attrs)
4030 {
4031 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4032 dma_attrs);
4033 }
4034
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4035 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4036 struct scatterlist *sg, int nents,
4037 enum dma_data_direction direction,
4038 unsigned long dma_attrs)
4039 {
4040 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
4041 }
4042
4043 /**
4044 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4045 * @dev: The device to query
4046 *
4047 * The returned value represents a size in bytes.
4048 */
ib_dma_max_seg_size(struct ib_device * dev)4049 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4050 {
4051 return dma_get_max_seg_size(dev->dma_device);
4052 }
4053
4054 /**
4055 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4056 * @dev: The device for which the DMA address was created
4057 * @addr: The DMA address
4058 * @size: The size of the region in bytes
4059 * @dir: The direction of the DMA
4060 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4061 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4062 u64 addr,
4063 size_t size,
4064 enum dma_data_direction dir)
4065 {
4066 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4067 }
4068
4069 /**
4070 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4071 * @dev: The device for which the DMA address was created
4072 * @addr: The DMA address
4073 * @size: The size of the region in bytes
4074 * @dir: The direction of the DMA
4075 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4076 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4077 u64 addr,
4078 size_t size,
4079 enum dma_data_direction dir)
4080 {
4081 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4082 }
4083
4084 /**
4085 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4086 * @dev: The device for which the DMA address is requested
4087 * @size: The size of the region to allocate in bytes
4088 * @dma_handle: A pointer for returning the DMA address of the region
4089 * @flag: memory allocator flags
4090 */
ib_dma_alloc_coherent(struct ib_device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag)4091 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4092 size_t size,
4093 dma_addr_t *dma_handle,
4094 gfp_t flag)
4095 {
4096 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
4097 }
4098
4099 /**
4100 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4101 * @dev: The device for which the DMA addresses were allocated
4102 * @size: The size of the region
4103 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4104 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4105 */
ib_dma_free_coherent(struct ib_device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle)4106 static inline void ib_dma_free_coherent(struct ib_device *dev,
4107 size_t size, void *cpu_addr,
4108 dma_addr_t dma_handle)
4109 {
4110 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
4111 }
4112
4113 /**
4114 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4115 * HCA translation table.
4116 * @mr: The memory region to deregister.
4117 * @udata: Valid user data or NULL for kernel object
4118 *
4119 * This function can fail, if the memory region has memory windows bound to it.
4120 */
4121 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4122
4123 /**
4124 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4125 * HCA translation table.
4126 * @mr: The memory region to deregister.
4127 *
4128 * This function can fail, if the memory region has memory windows bound to it.
4129 *
4130 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4131 */
ib_dereg_mr(struct ib_mr * mr)4132 static inline int ib_dereg_mr(struct ib_mr *mr)
4133 {
4134 return ib_dereg_mr_user(mr, NULL);
4135 }
4136
4137 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
4138 u32 max_num_sg, struct ib_udata *udata);
4139
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)4140 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
4141 enum ib_mr_type mr_type, u32 max_num_sg)
4142 {
4143 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
4144 }
4145
4146 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4147 u32 max_num_data_sg,
4148 u32 max_num_meta_sg);
4149
4150 /**
4151 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4152 * R_Key and L_Key.
4153 * @mr - struct ib_mr pointer to be updated.
4154 * @newkey - new key to be used.
4155 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4156 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4157 {
4158 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4159 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4160 }
4161
4162 /**
4163 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4164 * for calculating a new rkey for type 2 memory windows.
4165 * @rkey - the rkey to increment.
4166 */
ib_inc_rkey(u32 rkey)4167 static inline u32 ib_inc_rkey(u32 rkey)
4168 {
4169 const u32 mask = 0x000000ff;
4170 return ((rkey + 1) & mask) | (rkey & ~mask);
4171 }
4172
4173 /**
4174 * ib_alloc_fmr - Allocates a unmapped fast memory region.
4175 * @pd: The protection domain associated with the unmapped region.
4176 * @mr_access_flags: Specifies the memory access rights.
4177 * @fmr_attr: Attributes of the unmapped region.
4178 *
4179 * A fast memory region must be mapped before it can be used as part of
4180 * a work request.
4181 */
4182 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
4183 int mr_access_flags,
4184 struct ib_fmr_attr *fmr_attr);
4185
4186 /**
4187 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
4188 * @fmr: The fast memory region to associate with the pages.
4189 * @page_list: An array of physical pages to map to the fast memory region.
4190 * @list_len: The number of pages in page_list.
4191 * @iova: The I/O virtual address to use with the mapped region.
4192 */
ib_map_phys_fmr(struct ib_fmr * fmr,u64 * page_list,int list_len,u64 iova)4193 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
4194 u64 *page_list, int list_len,
4195 u64 iova)
4196 {
4197 return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
4198 }
4199
4200 /**
4201 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
4202 * @fmr_list: A linked list of fast memory regions to unmap.
4203 */
4204 int ib_unmap_fmr(struct list_head *fmr_list);
4205
4206 /**
4207 * ib_dealloc_fmr - Deallocates a fast memory region.
4208 * @fmr: The fast memory region to deallocate.
4209 */
4210 int ib_dealloc_fmr(struct ib_fmr *fmr);
4211
4212 /**
4213 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4214 * @qp: QP to attach to the multicast group. The QP must be type
4215 * IB_QPT_UD.
4216 * @gid: Multicast group GID.
4217 * @lid: Multicast group LID in host byte order.
4218 *
4219 * In order to send and receive multicast packets, subnet
4220 * administration must have created the multicast group and configured
4221 * the fabric appropriately. The port associated with the specified
4222 * QP must also be a member of the multicast group.
4223 */
4224 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4225
4226 /**
4227 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4228 * @qp: QP to detach from the multicast group.
4229 * @gid: Multicast group GID.
4230 * @lid: Multicast group LID in host byte order.
4231 */
4232 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4233
4234 /**
4235 * ib_alloc_xrcd - Allocates an XRC domain.
4236 * @device: The device on which to allocate the XRC domain.
4237 * @caller: Module name for kernel consumers
4238 */
4239 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
4240 #define ib_alloc_xrcd(device) \
4241 __ib_alloc_xrcd((device), KBUILD_MODNAME)
4242
4243 /**
4244 * ib_dealloc_xrcd - Deallocates an XRC domain.
4245 * @xrcd: The XRC domain to deallocate.
4246 * @udata: Valid user data or NULL for kernel object
4247 */
4248 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
4249
ib_check_mr_access(int flags)4250 static inline int ib_check_mr_access(int flags)
4251 {
4252 /*
4253 * Local write permission is required if remote write or
4254 * remote atomic permission is also requested.
4255 */
4256 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4257 !(flags & IB_ACCESS_LOCAL_WRITE))
4258 return -EINVAL;
4259
4260 if (flags & ~IB_ACCESS_SUPPORTED)
4261 return -EINVAL;
4262
4263 return 0;
4264 }
4265
ib_access_writable(int access_flags)4266 static inline bool ib_access_writable(int access_flags)
4267 {
4268 /*
4269 * We have writable memory backing the MR if any of the following
4270 * access flags are set. "Local write" and "remote write" obviously
4271 * require write access. "Remote atomic" can do things like fetch and
4272 * add, which will modify memory, and "MW bind" can change permissions
4273 * by binding a window.
4274 */
4275 return access_flags &
4276 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4277 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4278 }
4279
4280 /**
4281 * ib_check_mr_status: lightweight check of MR status.
4282 * This routine may provide status checks on a selected
4283 * ib_mr. first use is for signature status check.
4284 *
4285 * @mr: A memory region.
4286 * @check_mask: Bitmask of which checks to perform from
4287 * ib_mr_status_check enumeration.
4288 * @mr_status: The container of relevant status checks.
4289 * failed checks will be indicated in the status bitmask
4290 * and the relevant info shall be in the error item.
4291 */
4292 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4293 struct ib_mr_status *mr_status);
4294
4295 /**
4296 * ib_device_try_get: Hold a registration lock
4297 * device: The device to lock
4298 *
4299 * A device under an active registration lock cannot become unregistered. It
4300 * is only possible to obtain a registration lock on a device that is fully
4301 * registered, otherwise this function returns false.
4302 *
4303 * The registration lock is only necessary for actions which require the
4304 * device to still be registered. Uses that only require the device pointer to
4305 * be valid should use get_device(&ibdev->dev) to hold the memory.
4306 *
4307 */
ib_device_try_get(struct ib_device * dev)4308 static inline bool ib_device_try_get(struct ib_device *dev)
4309 {
4310 return refcount_inc_not_zero(&dev->refcount);
4311 }
4312
4313 void ib_device_put(struct ib_device *device);
4314 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4315 enum rdma_driver_id driver_id);
4316 struct ib_device *ib_device_get_by_name(const char *name,
4317 enum rdma_driver_id driver_id);
4318 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4319 u16 pkey, const union ib_gid *gid,
4320 const struct sockaddr *addr);
4321 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4322 unsigned int port);
4323 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4324
4325 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4326 struct ib_wq_init_attr *init_attr);
4327 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
4328 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4329 u32 wq_attr_mask);
4330 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
4331 struct ib_rwq_ind_table_init_attr*
4332 wq_ind_table_init_attr);
4333 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
4334
4335 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4336 unsigned int *sg_offset, unsigned int page_size);
4337 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4338 int data_sg_nents, unsigned int *data_sg_offset,
4339 struct scatterlist *meta_sg, int meta_sg_nents,
4340 unsigned int *meta_sg_offset, unsigned int page_size);
4341
4342 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4343 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4344 unsigned int *sg_offset, unsigned int page_size)
4345 {
4346 int n;
4347
4348 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4349 mr->iova = 0;
4350
4351 return n;
4352 }
4353
4354 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4355 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4356
4357 void ib_drain_rq(struct ib_qp *qp);
4358 void ib_drain_sq(struct ib_qp *qp);
4359 void ib_drain_qp(struct ib_qp *qp);
4360
4361 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
4362
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4363 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4364 {
4365 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4366 return attr->roce.dmac;
4367 return NULL;
4368 }
4369
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4370 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4371 {
4372 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4373 attr->ib.dlid = (u16)dlid;
4374 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4375 attr->opa.dlid = dlid;
4376 }
4377
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4378 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4379 {
4380 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4381 return attr->ib.dlid;
4382 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4383 return attr->opa.dlid;
4384 return 0;
4385 }
4386
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4387 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4388 {
4389 attr->sl = sl;
4390 }
4391
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4392 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4393 {
4394 return attr->sl;
4395 }
4396
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4397 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4398 u8 src_path_bits)
4399 {
4400 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4401 attr->ib.src_path_bits = src_path_bits;
4402 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4403 attr->opa.src_path_bits = src_path_bits;
4404 }
4405
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4406 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4407 {
4408 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4409 return attr->ib.src_path_bits;
4410 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4411 return attr->opa.src_path_bits;
4412 return 0;
4413 }
4414
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4415 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4416 bool make_grd)
4417 {
4418 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4419 attr->opa.make_grd = make_grd;
4420 }
4421
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4422 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4423 {
4424 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4425 return attr->opa.make_grd;
4426 return false;
4427 }
4428
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u8 port_num)4429 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4430 {
4431 attr->port_num = port_num;
4432 }
4433
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4434 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4435 {
4436 return attr->port_num;
4437 }
4438
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4439 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4440 u8 static_rate)
4441 {
4442 attr->static_rate = static_rate;
4443 }
4444
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4445 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4446 {
4447 return attr->static_rate;
4448 }
4449
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4450 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4451 enum ib_ah_flags flag)
4452 {
4453 attr->ah_flags = flag;
4454 }
4455
4456 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4457 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4458 {
4459 return attr->ah_flags;
4460 }
4461
4462 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4463 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4464 {
4465 return &attr->grh;
4466 }
4467
4468 /*To retrieve and modify the grh */
4469 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4470 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4471 {
4472 return &attr->grh;
4473 }
4474
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4475 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4476 {
4477 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4478
4479 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4480 }
4481
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4482 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4483 __be64 prefix)
4484 {
4485 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4486
4487 grh->dgid.global.subnet_prefix = prefix;
4488 }
4489
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4490 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4491 __be64 if_id)
4492 {
4493 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4494
4495 grh->dgid.global.interface_id = if_id;
4496 }
4497
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4498 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4499 union ib_gid *dgid, u32 flow_label,
4500 u8 sgid_index, u8 hop_limit,
4501 u8 traffic_class)
4502 {
4503 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4504
4505 attr->ah_flags = IB_AH_GRH;
4506 if (dgid)
4507 grh->dgid = *dgid;
4508 grh->flow_label = flow_label;
4509 grh->sgid_index = sgid_index;
4510 grh->hop_limit = hop_limit;
4511 grh->traffic_class = traffic_class;
4512 grh->sgid_attr = NULL;
4513 }
4514
4515 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4516 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4517 u32 flow_label, u8 hop_limit, u8 traffic_class,
4518 const struct ib_gid_attr *sgid_attr);
4519 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4520 const struct rdma_ah_attr *src);
4521 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4522 const struct rdma_ah_attr *new);
4523 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4524
4525 /**
4526 * rdma_ah_find_type - Return address handle type.
4527 *
4528 * @dev: Device to be checked
4529 * @port_num: Port number
4530 */
rdma_ah_find_type(struct ib_device * dev,u8 port_num)4531 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4532 u8 port_num)
4533 {
4534 if (rdma_protocol_roce(dev, port_num))
4535 return RDMA_AH_ATTR_TYPE_ROCE;
4536 if (rdma_protocol_ib(dev, port_num)) {
4537 if (rdma_cap_opa_ah(dev, port_num))
4538 return RDMA_AH_ATTR_TYPE_OPA;
4539 return RDMA_AH_ATTR_TYPE_IB;
4540 }
4541
4542 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4543 }
4544
4545 /**
4546 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4547 * In the current implementation the only way to get
4548 * get the 32bit lid is from other sources for OPA.
4549 * For IB, lids will always be 16bits so cast the
4550 * value accordingly.
4551 *
4552 * @lid: A 32bit LID
4553 */
ib_lid_cpu16(u32 lid)4554 static inline u16 ib_lid_cpu16(u32 lid)
4555 {
4556 WARN_ON_ONCE(lid & 0xFFFF0000);
4557 return (u16)lid;
4558 }
4559
4560 /**
4561 * ib_lid_be16 - Return lid in 16bit BE encoding.
4562 *
4563 * @lid: A 32bit LID
4564 */
ib_lid_be16(u32 lid)4565 static inline __be16 ib_lid_be16(u32 lid)
4566 {
4567 WARN_ON_ONCE(lid & 0xFFFF0000);
4568 return cpu_to_be16((u16)lid);
4569 }
4570
4571 /**
4572 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4573 * vector
4574 * @device: the rdma device
4575 * @comp_vector: index of completion vector
4576 *
4577 * Returns NULL on failure, otherwise a corresponding cpu map of the
4578 * completion vector (returns all-cpus map if the device driver doesn't
4579 * implement get_vector_affinity).
4580 */
4581 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4582 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4583 {
4584 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4585 !device->ops.get_vector_affinity)
4586 return NULL;
4587
4588 return device->ops.get_vector_affinity(device, comp_vector);
4589
4590 }
4591
4592 /**
4593 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4594 * and add their gids, as needed, to the relevant RoCE devices.
4595 *
4596 * @device: the rdma device
4597 */
4598 void rdma_roce_rescan_device(struct ib_device *ibdev);
4599
4600 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4601
4602 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4603
4604 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4605 enum rdma_netdev_t type, const char *name,
4606 unsigned char name_assign_type,
4607 void (*setup)(struct net_device *));
4608
4609 int rdma_init_netdev(struct ib_device *device, u8 port_num,
4610 enum rdma_netdev_t type, const char *name,
4611 unsigned char name_assign_type,
4612 void (*setup)(struct net_device *),
4613 struct net_device *netdev);
4614
4615 /**
4616 * rdma_set_device_sysfs_group - Set device attributes group to have
4617 * driver specific sysfs entries at
4618 * for infiniband class.
4619 *
4620 * @device: device pointer for which attributes to be created
4621 * @group: Pointer to group which should be added when device
4622 * is registered with sysfs.
4623 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4624 * group per device to have sysfs attributes.
4625 *
4626 * NOTE: New drivers should not make use of this API; instead new device
4627 * parameter should be exposed via netlink command. This API and mechanism
4628 * exist only for existing drivers.
4629 */
4630 static inline void
rdma_set_device_sysfs_group(struct ib_device * dev,const struct attribute_group * group)4631 rdma_set_device_sysfs_group(struct ib_device *dev,
4632 const struct attribute_group *group)
4633 {
4634 dev->groups[1] = group;
4635 }
4636
4637 /**
4638 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4639 *
4640 * @device: device pointer for which ib_device pointer to retrieve
4641 *
4642 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4643 *
4644 */
rdma_device_to_ibdev(struct device * device)4645 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4646 {
4647 struct ib_core_device *coredev =
4648 container_of(device, struct ib_core_device, dev);
4649
4650 return coredev->owner;
4651 }
4652
4653 /**
4654 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4655 * ib_device holder structure from device pointer.
4656 *
4657 * NOTE: New drivers should not make use of this API; This API is only for
4658 * existing drivers who have exposed sysfs entries using
4659 * rdma_set_device_sysfs_group().
4660 */
4661 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4662 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4663
4664 bool rdma_dev_access_netns(const struct ib_device *device,
4665 const struct net *net);
4666 #endif /* IB_VERBS_H */
4667