• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *				if IPv6 only, and any IPv4 addresses
29  *				if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *				and 0.0.0.0 equals to 0.0.0.0 only
33  */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 				 const struct in6_addr *sk2_rcv_saddr6,
36 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 				 bool sk1_ipv6only, bool sk2_ipv6only,
38 				 bool match_sk1_wildcard,
39 				 bool match_sk2_wildcard)
40 {
41 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43 
44 	/* if both are mapped, treat as IPv4 */
45 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 		if (!sk2_ipv6only) {
47 			if (sk1_rcv_saddr == sk2_rcv_saddr)
48 				return true;
49 			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 				(match_sk2_wildcard && !sk2_rcv_saddr);
51 		}
52 		return false;
53 	}
54 
55 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 		return true;
57 
58 	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 		return true;
61 
62 	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 		return true;
65 
66 	if (sk2_rcv_saddr6 &&
67 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 		return true;
69 
70 	return false;
71 }
72 #endif
73 
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *				0.0.0.0 only equals to 0.0.0.0
77  */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 				 bool sk2_ipv6only, bool match_sk1_wildcard,
80 				 bool match_sk2_wildcard)
81 {
82 	if (!sk2_ipv6only) {
83 		if (sk1_rcv_saddr == sk2_rcv_saddr)
84 			return true;
85 		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 			(match_sk2_wildcard && !sk2_rcv_saddr);
87 	}
88 	return false;
89 }
90 
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 			  bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 	if (sk->sk_family == AF_INET6)
96 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 					    inet6_rcv_saddr(sk2),
98 					    sk->sk_rcv_saddr,
99 					    sk2->sk_rcv_saddr,
100 					    ipv6_only_sock(sk),
101 					    ipv6_only_sock(sk2),
102 					    match_wildcard,
103 					    match_wildcard);
104 #endif
105 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 				    ipv6_only_sock(sk2), match_wildcard,
107 				    match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110 
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 	if (sk->sk_family == AF_INET6)
115 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 	return !sk->sk_rcv_saddr;
118 }
119 
inet_get_local_port_range(struct net * net,int * low,int * high)120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122 	unsigned int seq;
123 
124 	do {
125 		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126 
127 		*low = net->ipv4.ip_local_ports.range[0];
128 		*high = net->ipv4.ip_local_ports.range[1];
129 	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132 
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,bool relax,bool reuseport_ok)133 static int inet_csk_bind_conflict(const struct sock *sk,
134 				  const struct inet_bind_bucket *tb,
135 				  bool relax, bool reuseport_ok)
136 {
137 	struct sock *sk2;
138 	bool reuse = sk->sk_reuse;
139 	bool reuseport = !!sk->sk_reuseport && reuseport_ok;
140 	kuid_t uid = sock_i_uid((struct sock *)sk);
141 
142 	/*
143 	 * Unlike other sk lookup places we do not check
144 	 * for sk_net here, since _all_ the socks listed
145 	 * in tb->owners list belong to the same net - the
146 	 * one this bucket belongs to.
147 	 */
148 
149 	sk_for_each_bound(sk2, &tb->owners) {
150 		if (sk != sk2 &&
151 		    (!sk->sk_bound_dev_if ||
152 		     !sk2->sk_bound_dev_if ||
153 		     sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
154 			if ((!reuse || !sk2->sk_reuse ||
155 			    sk2->sk_state == TCP_LISTEN) &&
156 			    (!reuseport || !sk2->sk_reuseport ||
157 			     rcu_access_pointer(sk->sk_reuseport_cb) ||
158 			     (sk2->sk_state != TCP_TIME_WAIT &&
159 			     !uid_eq(uid, sock_i_uid(sk2))))) {
160 				if (inet_rcv_saddr_equal(sk, sk2, true))
161 					break;
162 			}
163 			if (!relax && reuse && sk2->sk_reuse &&
164 			    sk2->sk_state != TCP_LISTEN) {
165 				if (inet_rcv_saddr_equal(sk, sk2, true))
166 					break;
167 			}
168 		}
169 	}
170 	return sk2 != NULL;
171 }
172 
173 /*
174  * Find an open port number for the socket.  Returns with the
175  * inet_bind_hashbucket lock held.
176  */
177 static struct inet_bind_hashbucket *
inet_csk_find_open_port(struct sock * sk,struct inet_bind_bucket ** tb_ret,int * port_ret)178 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
179 {
180 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
181 	int port = 0;
182 	struct inet_bind_hashbucket *head;
183 	struct net *net = sock_net(sk);
184 	int i, low, high, attempt_half;
185 	struct inet_bind_bucket *tb;
186 	u32 remaining, offset;
187 	int l3mdev;
188 
189 	l3mdev = inet_sk_bound_l3mdev(sk);
190 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
191 other_half_scan:
192 	inet_get_local_port_range(net, &low, &high);
193 	high++; /* [32768, 60999] -> [32768, 61000[ */
194 	if (high - low < 4)
195 		attempt_half = 0;
196 	if (attempt_half) {
197 		int half = low + (((high - low) >> 2) << 1);
198 
199 		if (attempt_half == 1)
200 			high = half;
201 		else
202 			low = half;
203 	}
204 	remaining = high - low;
205 	if (likely(remaining > 1))
206 		remaining &= ~1U;
207 
208 	offset = prandom_u32() % remaining;
209 	/* __inet_hash_connect() favors ports having @low parity
210 	 * We do the opposite to not pollute connect() users.
211 	 */
212 	offset |= 1U;
213 
214 other_parity_scan:
215 	port = low + offset;
216 	for (i = 0; i < remaining; i += 2, port += 2) {
217 		if (unlikely(port >= high))
218 			port -= remaining;
219 		if (inet_is_local_reserved_port(net, port))
220 			continue;
221 		head = &hinfo->bhash[inet_bhashfn(net, port,
222 						  hinfo->bhash_size)];
223 		spin_lock_bh(&head->lock);
224 		inet_bind_bucket_for_each(tb, &head->chain)
225 			if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
226 			    tb->port == port) {
227 				if (!inet_csk_bind_conflict(sk, tb, false, false))
228 					goto success;
229 				goto next_port;
230 			}
231 		tb = NULL;
232 		goto success;
233 next_port:
234 		spin_unlock_bh(&head->lock);
235 		cond_resched();
236 	}
237 
238 	offset--;
239 	if (!(offset & 1))
240 		goto other_parity_scan;
241 
242 	if (attempt_half == 1) {
243 		/* OK we now try the upper half of the range */
244 		attempt_half = 2;
245 		goto other_half_scan;
246 	}
247 	return NULL;
248 success:
249 	*port_ret = port;
250 	*tb_ret = tb;
251 	return head;
252 }
253 
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)254 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
255 				     struct sock *sk)
256 {
257 	kuid_t uid = sock_i_uid(sk);
258 
259 	if (tb->fastreuseport <= 0)
260 		return 0;
261 	if (!sk->sk_reuseport)
262 		return 0;
263 	if (rcu_access_pointer(sk->sk_reuseport_cb))
264 		return 0;
265 	if (!uid_eq(tb->fastuid, uid))
266 		return 0;
267 	/* We only need to check the rcv_saddr if this tb was once marked
268 	 * without fastreuseport and then was reset, as we can only know that
269 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
270 	 * owners list.
271 	 */
272 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
273 		return 1;
274 #if IS_ENABLED(CONFIG_IPV6)
275 	if (tb->fast_sk_family == AF_INET6)
276 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
277 					    inet6_rcv_saddr(sk),
278 					    tb->fast_rcv_saddr,
279 					    sk->sk_rcv_saddr,
280 					    tb->fast_ipv6_only,
281 					    ipv6_only_sock(sk), true, false);
282 #endif
283 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
284 				    ipv6_only_sock(sk), true, false);
285 }
286 
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)287 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
288 			       struct sock *sk)
289 {
290 	kuid_t uid = sock_i_uid(sk);
291 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
292 
293 	if (hlist_empty(&tb->owners)) {
294 		tb->fastreuse = reuse;
295 		if (sk->sk_reuseport) {
296 			tb->fastreuseport = FASTREUSEPORT_ANY;
297 			tb->fastuid = uid;
298 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
299 			tb->fast_ipv6_only = ipv6_only_sock(sk);
300 			tb->fast_sk_family = sk->sk_family;
301 #if IS_ENABLED(CONFIG_IPV6)
302 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
303 #endif
304 		} else {
305 			tb->fastreuseport = 0;
306 		}
307 	} else {
308 		if (!reuse)
309 			tb->fastreuse = 0;
310 		if (sk->sk_reuseport) {
311 			/* We didn't match or we don't have fastreuseport set on
312 			 * the tb, but we have sk_reuseport set on this socket
313 			 * and we know that there are no bind conflicts with
314 			 * this socket in this tb, so reset our tb's reuseport
315 			 * settings so that any subsequent sockets that match
316 			 * our current socket will be put on the fast path.
317 			 *
318 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
319 			 * do extra checking for all subsequent sk_reuseport
320 			 * socks.
321 			 */
322 			if (!sk_reuseport_match(tb, sk)) {
323 				tb->fastreuseport = FASTREUSEPORT_STRICT;
324 				tb->fastuid = uid;
325 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
326 				tb->fast_ipv6_only = ipv6_only_sock(sk);
327 				tb->fast_sk_family = sk->sk_family;
328 #if IS_ENABLED(CONFIG_IPV6)
329 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
330 #endif
331 			}
332 		} else {
333 			tb->fastreuseport = 0;
334 		}
335 	}
336 }
337 
338 /* Obtain a reference to a local port for the given sock,
339  * if snum is zero it means select any available local port.
340  * We try to allocate an odd port (and leave even ports for connect())
341  */
inet_csk_get_port(struct sock * sk,unsigned short snum)342 int inet_csk_get_port(struct sock *sk, unsigned short snum)
343 {
344 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
345 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
346 	int ret = 1, port = snum;
347 	struct inet_bind_hashbucket *head;
348 	struct net *net = sock_net(sk);
349 	struct inet_bind_bucket *tb = NULL;
350 	int l3mdev;
351 
352 	l3mdev = inet_sk_bound_l3mdev(sk);
353 
354 	if (!port) {
355 		head = inet_csk_find_open_port(sk, &tb, &port);
356 		if (!head)
357 			return ret;
358 		if (!tb)
359 			goto tb_not_found;
360 		goto success;
361 	}
362 	head = &hinfo->bhash[inet_bhashfn(net, port,
363 					  hinfo->bhash_size)];
364 	spin_lock_bh(&head->lock);
365 	inet_bind_bucket_for_each(tb, &head->chain)
366 		if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
367 		    tb->port == port)
368 			goto tb_found;
369 tb_not_found:
370 	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
371 				     net, head, port, l3mdev);
372 	if (!tb)
373 		goto fail_unlock;
374 tb_found:
375 	if (!hlist_empty(&tb->owners)) {
376 		if (sk->sk_reuse == SK_FORCE_REUSE)
377 			goto success;
378 
379 		if ((tb->fastreuse > 0 && reuse) ||
380 		    sk_reuseport_match(tb, sk))
381 			goto success;
382 		if (inet_csk_bind_conflict(sk, tb, true, true))
383 			goto fail_unlock;
384 	}
385 success:
386 	inet_csk_update_fastreuse(tb, sk);
387 
388 	if (!inet_csk(sk)->icsk_bind_hash)
389 		inet_bind_hash(sk, tb, port);
390 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
391 	ret = 0;
392 
393 fail_unlock:
394 	spin_unlock_bh(&head->lock);
395 	return ret;
396 }
397 EXPORT_SYMBOL_GPL(inet_csk_get_port);
398 
399 /*
400  * Wait for an incoming connection, avoid race conditions. This must be called
401  * with the socket locked.
402  */
inet_csk_wait_for_connect(struct sock * sk,long timeo)403 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
404 {
405 	struct inet_connection_sock *icsk = inet_csk(sk);
406 	DEFINE_WAIT(wait);
407 	int err;
408 
409 	/*
410 	 * True wake-one mechanism for incoming connections: only
411 	 * one process gets woken up, not the 'whole herd'.
412 	 * Since we do not 'race & poll' for established sockets
413 	 * anymore, the common case will execute the loop only once.
414 	 *
415 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
416 	 * after any current non-exclusive waiters, and we know that
417 	 * it will always _stay_ after any new non-exclusive waiters
418 	 * because all non-exclusive waiters are added at the
419 	 * beginning of the wait-queue. As such, it's ok to "drop"
420 	 * our exclusiveness temporarily when we get woken up without
421 	 * having to remove and re-insert us on the wait queue.
422 	 */
423 	for (;;) {
424 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
425 					  TASK_INTERRUPTIBLE);
426 		release_sock(sk);
427 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
428 			timeo = schedule_timeout(timeo);
429 		sched_annotate_sleep();
430 		lock_sock(sk);
431 		err = 0;
432 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
433 			break;
434 		err = -EINVAL;
435 		if (sk->sk_state != TCP_LISTEN)
436 			break;
437 		err = sock_intr_errno(timeo);
438 		if (signal_pending(current))
439 			break;
440 		err = -EAGAIN;
441 		if (!timeo)
442 			break;
443 	}
444 	finish_wait(sk_sleep(sk), &wait);
445 	return err;
446 }
447 
448 /*
449  * This will accept the next outstanding connection.
450  */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)451 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
452 {
453 	struct inet_connection_sock *icsk = inet_csk(sk);
454 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
455 	struct request_sock *req;
456 	struct sock *newsk;
457 	int error;
458 
459 	lock_sock(sk);
460 
461 	/* We need to make sure that this socket is listening,
462 	 * and that it has something pending.
463 	 */
464 	error = -EINVAL;
465 	if (sk->sk_state != TCP_LISTEN)
466 		goto out_err;
467 
468 	/* Find already established connection */
469 	if (reqsk_queue_empty(queue)) {
470 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
471 
472 		/* If this is a non blocking socket don't sleep */
473 		error = -EAGAIN;
474 		if (!timeo)
475 			goto out_err;
476 
477 		error = inet_csk_wait_for_connect(sk, timeo);
478 		if (error)
479 			goto out_err;
480 	}
481 	req = reqsk_queue_remove(queue, sk);
482 	newsk = req->sk;
483 
484 	if (sk->sk_protocol == IPPROTO_TCP &&
485 	    tcp_rsk(req)->tfo_listener) {
486 		spin_lock_bh(&queue->fastopenq.lock);
487 		if (tcp_rsk(req)->tfo_listener) {
488 			/* We are still waiting for the final ACK from 3WHS
489 			 * so can't free req now. Instead, we set req->sk to
490 			 * NULL to signify that the child socket is taken
491 			 * so reqsk_fastopen_remove() will free the req
492 			 * when 3WHS finishes (or is aborted).
493 			 */
494 			req->sk = NULL;
495 			req = NULL;
496 		}
497 		spin_unlock_bh(&queue->fastopenq.lock);
498 	}
499 
500 out:
501 	release_sock(sk);
502 	if (newsk && mem_cgroup_sockets_enabled) {
503 		int amt;
504 
505 		/* atomically get the memory usage, set and charge the
506 		 * newsk->sk_memcg.
507 		 */
508 		lock_sock(newsk);
509 
510 		/* The socket has not been accepted yet, no need to look at
511 		 * newsk->sk_wmem_queued.
512 		 */
513 		amt = sk_mem_pages(newsk->sk_forward_alloc +
514 				   atomic_read(&newsk->sk_rmem_alloc));
515 		mem_cgroup_sk_alloc(newsk);
516 		if (newsk->sk_memcg && amt)
517 			mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
518 
519 		release_sock(newsk);
520 	}
521 	if (req)
522 		reqsk_put(req);
523 	return newsk;
524 out_err:
525 	newsk = NULL;
526 	req = NULL;
527 	*err = error;
528 	goto out;
529 }
530 EXPORT_SYMBOL(inet_csk_accept);
531 
532 /*
533  * Using different timers for retransmit, delayed acks and probes
534  * We may wish use just one timer maintaining a list of expire jiffies
535  * to optimize.
536  */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))537 void inet_csk_init_xmit_timers(struct sock *sk,
538 			       void (*retransmit_handler)(struct timer_list *t),
539 			       void (*delack_handler)(struct timer_list *t),
540 			       void (*keepalive_handler)(struct timer_list *t))
541 {
542 	struct inet_connection_sock *icsk = inet_csk(sk);
543 
544 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
545 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
546 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
547 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
548 }
549 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
550 
inet_csk_clear_xmit_timers(struct sock * sk)551 void inet_csk_clear_xmit_timers(struct sock *sk)
552 {
553 	struct inet_connection_sock *icsk = inet_csk(sk);
554 
555 	icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
556 
557 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
558 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
559 	sk_stop_timer(sk, &sk->sk_timer);
560 }
561 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
562 
inet_csk_clear_xmit_timers_sync(struct sock * sk)563 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
564 {
565 	struct inet_connection_sock *icsk = inet_csk(sk);
566 
567 	/* ongoing timer handlers need to acquire socket lock. */
568 	sock_not_owned_by_me(sk);
569 
570 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
571 
572 	sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
573 	sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
574 	sk_stop_timer_sync(sk, &sk->sk_timer);
575 }
576 
inet_csk_delete_keepalive_timer(struct sock * sk)577 void inet_csk_delete_keepalive_timer(struct sock *sk)
578 {
579 	sk_stop_timer(sk, &sk->sk_timer);
580 }
581 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
582 
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)583 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
584 {
585 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
586 }
587 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
588 
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)589 struct dst_entry *inet_csk_route_req(const struct sock *sk,
590 				     struct flowi4 *fl4,
591 				     const struct request_sock *req)
592 {
593 	const struct inet_request_sock *ireq = inet_rsk(req);
594 	struct net *net = read_pnet(&ireq->ireq_net);
595 	struct ip_options_rcu *opt;
596 	struct rtable *rt;
597 
598 	rcu_read_lock();
599 	opt = rcu_dereference(ireq->ireq_opt);
600 
601 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
602 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
603 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
604 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
605 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
606 			   htons(ireq->ir_num), sk->sk_uid);
607 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
608 	rt = ip_route_output_flow(net, fl4, sk);
609 	if (IS_ERR(rt))
610 		goto no_route;
611 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
612 		goto route_err;
613 	rcu_read_unlock();
614 	return &rt->dst;
615 
616 route_err:
617 	ip_rt_put(rt);
618 no_route:
619 	rcu_read_unlock();
620 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
621 	return NULL;
622 }
623 EXPORT_SYMBOL_GPL(inet_csk_route_req);
624 
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)625 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
626 					    struct sock *newsk,
627 					    const struct request_sock *req)
628 {
629 	const struct inet_request_sock *ireq = inet_rsk(req);
630 	struct net *net = read_pnet(&ireq->ireq_net);
631 	struct inet_sock *newinet = inet_sk(newsk);
632 	struct ip_options_rcu *opt;
633 	struct flowi4 *fl4;
634 	struct rtable *rt;
635 
636 	opt = rcu_dereference(ireq->ireq_opt);
637 	fl4 = &newinet->cork.fl.u.ip4;
638 
639 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
640 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
641 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
642 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
643 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
644 			   htons(ireq->ir_num), sk->sk_uid);
645 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
646 	rt = ip_route_output_flow(net, fl4, sk);
647 	if (IS_ERR(rt))
648 		goto no_route;
649 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
650 		goto route_err;
651 	return &rt->dst;
652 
653 route_err:
654 	ip_rt_put(rt);
655 no_route:
656 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
657 	return NULL;
658 }
659 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
660 
661 #if IS_ENABLED(CONFIG_IPV6)
662 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
663 #else
664 #define AF_INET_FAMILY(fam) true
665 #endif
666 
667 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int thresh,const int max_retries,const u8 rskq_defer_accept,int * expire,int * resend)668 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
669 				  const int max_retries,
670 				  const u8 rskq_defer_accept,
671 				  int *expire, int *resend)
672 {
673 	if (!rskq_defer_accept) {
674 		*expire = req->num_timeout >= thresh;
675 		*resend = 1;
676 		return;
677 	}
678 	*expire = req->num_timeout >= thresh &&
679 		  (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
680 	/*
681 	 * Do not resend while waiting for data after ACK,
682 	 * start to resend on end of deferring period to give
683 	 * last chance for data or ACK to create established socket.
684 	 */
685 	*resend = !inet_rsk(req)->acked ||
686 		  req->num_timeout >= rskq_defer_accept - 1;
687 }
688 
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)689 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
690 {
691 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
692 
693 	if (!err)
694 		req->num_retrans++;
695 	return err;
696 }
697 EXPORT_SYMBOL(inet_rtx_syn_ack);
698 
699 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)700 static bool reqsk_queue_unlink(struct request_sock *req)
701 {
702 	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
703 	bool found = false;
704 
705 	if (sk_hashed(req_to_sk(req))) {
706 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
707 
708 		spin_lock(lock);
709 		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
710 		spin_unlock(lock);
711 	}
712 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
713 		reqsk_put(req);
714 	return found;
715 }
716 
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)717 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
718 {
719 	bool unlinked = reqsk_queue_unlink(req);
720 
721 	if (unlinked) {
722 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
723 		reqsk_put(req);
724 	}
725 	return unlinked;
726 }
727 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
728 
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)729 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
730 {
731 	inet_csk_reqsk_queue_drop(sk, req);
732 	reqsk_put(req);
733 }
734 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
735 
reqsk_timer_handler(struct timer_list * t)736 static void reqsk_timer_handler(struct timer_list *t)
737 {
738 	struct request_sock *req = from_timer(req, t, rsk_timer);
739 	struct sock *sk_listener = req->rsk_listener;
740 	struct net *net = sock_net(sk_listener);
741 	struct inet_connection_sock *icsk = inet_csk(sk_listener);
742 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
743 	int qlen, expire = 0, resend = 0;
744 	int max_retries, thresh;
745 	u8 defer_accept;
746 
747 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
748 		goto drop;
749 
750 	max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
751 	thresh = max_retries;
752 	/* Normally all the openreqs are young and become mature
753 	 * (i.e. converted to established socket) for first timeout.
754 	 * If synack was not acknowledged for 1 second, it means
755 	 * one of the following things: synack was lost, ack was lost,
756 	 * rtt is high or nobody planned to ack (i.e. synflood).
757 	 * When server is a bit loaded, queue is populated with old
758 	 * open requests, reducing effective size of queue.
759 	 * When server is well loaded, queue size reduces to zero
760 	 * after several minutes of work. It is not synflood,
761 	 * it is normal operation. The solution is pruning
762 	 * too old entries overriding normal timeout, when
763 	 * situation becomes dangerous.
764 	 *
765 	 * Essentially, we reserve half of room for young
766 	 * embrions; and abort old ones without pity, if old
767 	 * ones are about to clog our table.
768 	 */
769 	qlen = reqsk_queue_len(queue);
770 	if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
771 		int young = reqsk_queue_len_young(queue) << 1;
772 
773 		while (thresh > 2) {
774 			if (qlen < young)
775 				break;
776 			thresh--;
777 			young <<= 1;
778 		}
779 	}
780 	defer_accept = READ_ONCE(queue->rskq_defer_accept);
781 	if (defer_accept)
782 		max_retries = defer_accept;
783 	syn_ack_recalc(req, thresh, max_retries, defer_accept,
784 		       &expire, &resend);
785 	req->rsk_ops->syn_ack_timeout(req);
786 	if (!expire &&
787 	    (!resend ||
788 	     !inet_rtx_syn_ack(sk_listener, req) ||
789 	     inet_rsk(req)->acked)) {
790 		unsigned long timeo;
791 
792 		if (req->num_timeout++ == 0)
793 			atomic_dec(&queue->young);
794 		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
795 		mod_timer(&req->rsk_timer, jiffies + timeo);
796 		return;
797 	}
798 drop:
799 	inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
800 }
801 
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)802 static void reqsk_queue_hash_req(struct request_sock *req,
803 				 unsigned long timeout)
804 {
805 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
806 	mod_timer(&req->rsk_timer, jiffies + timeout);
807 
808 	inet_ehash_insert(req_to_sk(req), NULL, NULL);
809 	/* before letting lookups find us, make sure all req fields
810 	 * are committed to memory and refcnt initialized.
811 	 */
812 	smp_wmb();
813 	refcount_set(&req->rsk_refcnt, 2 + 1);
814 }
815 
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)816 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
817 				   unsigned long timeout)
818 {
819 	reqsk_queue_hash_req(req, timeout);
820 	inet_csk_reqsk_queue_added(sk);
821 }
822 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
823 
824 /**
825  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
826  *	@sk: the socket to clone
827  *	@req: request_sock
828  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
829  *
830  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
831  */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)832 struct sock *inet_csk_clone_lock(const struct sock *sk,
833 				 const struct request_sock *req,
834 				 const gfp_t priority)
835 {
836 	struct sock *newsk = sk_clone_lock(sk, priority);
837 
838 	if (newsk) {
839 		struct inet_connection_sock *newicsk = inet_csk(newsk);
840 
841 		inet_sk_set_state(newsk, TCP_SYN_RECV);
842 		newicsk->icsk_bind_hash = NULL;
843 
844 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
845 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
846 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
847 
848 		/* listeners have SOCK_RCU_FREE, not the children */
849 		sock_reset_flag(newsk, SOCK_RCU_FREE);
850 
851 		inet_sk(newsk)->mc_list = NULL;
852 
853 		newsk->sk_mark = inet_rsk(req)->ir_mark;
854 		atomic64_set(&newsk->sk_cookie,
855 			     atomic64_read(&inet_rsk(req)->ir_cookie));
856 
857 		newicsk->icsk_retransmits = 0;
858 		newicsk->icsk_backoff	  = 0;
859 		newicsk->icsk_probes_out  = 0;
860 		newicsk->icsk_probes_tstamp = 0;
861 
862 		/* Deinitialize accept_queue to trap illegal accesses. */
863 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
864 
865 		security_inet_csk_clone(newsk, req);
866 	}
867 	return newsk;
868 }
869 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
870 
871 /*
872  * At this point, there should be no process reference to this
873  * socket, and thus no user references at all.  Therefore we
874  * can assume the socket waitqueue is inactive and nobody will
875  * try to jump onto it.
876  */
inet_csk_destroy_sock(struct sock * sk)877 void inet_csk_destroy_sock(struct sock *sk)
878 {
879 	WARN_ON(sk->sk_state != TCP_CLOSE);
880 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
881 
882 	/* It cannot be in hash table! */
883 	WARN_ON(!sk_unhashed(sk));
884 
885 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
886 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
887 
888 	sk->sk_prot->destroy(sk);
889 
890 	sk_stream_kill_queues(sk);
891 
892 	xfrm_sk_free_policy(sk);
893 
894 	sk_refcnt_debug_release(sk);
895 
896 	percpu_counter_dec(sk->sk_prot->orphan_count);
897 
898 	sock_put(sk);
899 }
900 EXPORT_SYMBOL(inet_csk_destroy_sock);
901 
902 /* This function allows to force a closure of a socket after the call to
903  * tcp/dccp_create_openreq_child().
904  */
inet_csk_prepare_forced_close(struct sock * sk)905 void inet_csk_prepare_forced_close(struct sock *sk)
906 	__releases(&sk->sk_lock.slock)
907 {
908 	/* sk_clone_lock locked the socket and set refcnt to 2 */
909 	bh_unlock_sock(sk);
910 	sock_put(sk);
911 
912 	/* The below has to be done to allow calling inet_csk_destroy_sock */
913 	sock_set_flag(sk, SOCK_DEAD);
914 	percpu_counter_inc(sk->sk_prot->orphan_count);
915 	inet_sk(sk)->inet_num = 0;
916 }
917 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
918 
inet_ulp_can_listen(const struct sock * sk)919 static int inet_ulp_can_listen(const struct sock *sk)
920 {
921 	const struct inet_connection_sock *icsk = inet_csk(sk);
922 
923 	if (icsk->icsk_ulp_ops)
924 		return -EINVAL;
925 
926 	return 0;
927 }
928 
inet_csk_listen_start(struct sock * sk,int backlog)929 int inet_csk_listen_start(struct sock *sk, int backlog)
930 {
931 	struct inet_connection_sock *icsk = inet_csk(sk);
932 	struct inet_sock *inet = inet_sk(sk);
933 	int err;
934 
935 	err = inet_ulp_can_listen(sk);
936 	if (unlikely(err))
937 		return err;
938 
939 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
940 
941 	sk->sk_ack_backlog = 0;
942 	inet_csk_delack_init(sk);
943 
944 	/* There is race window here: we announce ourselves listening,
945 	 * but this transition is still not validated by get_port().
946 	 * It is OK, because this socket enters to hash table only
947 	 * after validation is complete.
948 	 */
949 	err = -EADDRINUSE;
950 	inet_sk_state_store(sk, TCP_LISTEN);
951 	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
952 		inet->inet_sport = htons(inet->inet_num);
953 
954 		sk_dst_reset(sk);
955 		err = sk->sk_prot->hash(sk);
956 
957 		if (likely(!err))
958 			return 0;
959 	}
960 
961 	inet_sk_set_state(sk, TCP_CLOSE);
962 	return err;
963 }
964 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
965 
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)966 static void inet_child_forget(struct sock *sk, struct request_sock *req,
967 			      struct sock *child)
968 {
969 	sk->sk_prot->disconnect(child, O_NONBLOCK);
970 
971 	sock_orphan(child);
972 
973 	percpu_counter_inc(sk->sk_prot->orphan_count);
974 
975 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
976 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
977 		BUG_ON(sk != req->rsk_listener);
978 
979 		/* Paranoid, to prevent race condition if
980 		 * an inbound pkt destined for child is
981 		 * blocked by sock lock in tcp_v4_rcv().
982 		 * Also to satisfy an assertion in
983 		 * tcp_v4_destroy_sock().
984 		 */
985 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
986 	}
987 	inet_csk_destroy_sock(child);
988 }
989 
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)990 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
991 				      struct request_sock *req,
992 				      struct sock *child)
993 {
994 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
995 
996 	spin_lock(&queue->rskq_lock);
997 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
998 		inet_child_forget(sk, req, child);
999 		child = NULL;
1000 	} else {
1001 		req->sk = child;
1002 		req->dl_next = NULL;
1003 		if (queue->rskq_accept_head == NULL)
1004 			WRITE_ONCE(queue->rskq_accept_head, req);
1005 		else
1006 			queue->rskq_accept_tail->dl_next = req;
1007 		queue->rskq_accept_tail = req;
1008 		sk_acceptq_added(sk);
1009 	}
1010 	spin_unlock(&queue->rskq_lock);
1011 	return child;
1012 }
1013 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1014 
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1015 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1016 					 struct request_sock *req, bool own_req)
1017 {
1018 	if (own_req) {
1019 		inet_csk_reqsk_queue_drop(sk, req);
1020 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1021 		if (inet_csk_reqsk_queue_add(sk, req, child))
1022 			return child;
1023 	}
1024 	/* Too bad, another child took ownership of the request, undo. */
1025 	bh_unlock_sock(child);
1026 	sock_put(child);
1027 	return NULL;
1028 }
1029 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1030 
1031 /*
1032  *	This routine closes sockets which have been at least partially
1033  *	opened, but not yet accepted.
1034  */
inet_csk_listen_stop(struct sock * sk)1035 void inet_csk_listen_stop(struct sock *sk)
1036 {
1037 	struct inet_connection_sock *icsk = inet_csk(sk);
1038 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1039 	struct request_sock *next, *req;
1040 
1041 	/* Following specs, it would be better either to send FIN
1042 	 * (and enter FIN-WAIT-1, it is normal close)
1043 	 * or to send active reset (abort).
1044 	 * Certainly, it is pretty dangerous while synflood, but it is
1045 	 * bad justification for our negligence 8)
1046 	 * To be honest, we are not able to make either
1047 	 * of the variants now.			--ANK
1048 	 */
1049 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1050 		struct sock *child = req->sk;
1051 
1052 		local_bh_disable();
1053 		bh_lock_sock(child);
1054 		WARN_ON(sock_owned_by_user(child));
1055 		sock_hold(child);
1056 
1057 		inet_child_forget(sk, req, child);
1058 		reqsk_put(req);
1059 		bh_unlock_sock(child);
1060 		local_bh_enable();
1061 		sock_put(child);
1062 
1063 		cond_resched();
1064 	}
1065 	if (queue->fastopenq.rskq_rst_head) {
1066 		/* Free all the reqs queued in rskq_rst_head. */
1067 		spin_lock_bh(&queue->fastopenq.lock);
1068 		req = queue->fastopenq.rskq_rst_head;
1069 		queue->fastopenq.rskq_rst_head = NULL;
1070 		spin_unlock_bh(&queue->fastopenq.lock);
1071 		while (req != NULL) {
1072 			next = req->dl_next;
1073 			reqsk_put(req);
1074 			req = next;
1075 		}
1076 	}
1077 	WARN_ON_ONCE(sk->sk_ack_backlog);
1078 }
1079 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1080 
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1081 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1082 {
1083 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1084 	const struct inet_sock *inet = inet_sk(sk);
1085 
1086 	sin->sin_family		= AF_INET;
1087 	sin->sin_addr.s_addr	= inet->inet_daddr;
1088 	sin->sin_port		= inet->inet_dport;
1089 }
1090 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1091 
1092 #ifdef CONFIG_COMPAT
inet_csk_compat_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1093 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1094 			       char __user *optval, int __user *optlen)
1095 {
1096 	const struct inet_connection_sock *icsk = inet_csk(sk);
1097 
1098 	if (icsk->icsk_af_ops->compat_getsockopt)
1099 		return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1100 							    optval, optlen);
1101 	return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1102 					     optval, optlen);
1103 }
1104 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1105 
inet_csk_compat_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1106 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1107 			       char __user *optval, unsigned int optlen)
1108 {
1109 	const struct inet_connection_sock *icsk = inet_csk(sk);
1110 
1111 	if (icsk->icsk_af_ops->compat_setsockopt)
1112 		return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1113 							    optval, optlen);
1114 	return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1115 					     optval, optlen);
1116 }
1117 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1118 #endif
1119 
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1120 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1121 {
1122 	const struct inet_sock *inet = inet_sk(sk);
1123 	const struct ip_options_rcu *inet_opt;
1124 	__be32 daddr = inet->inet_daddr;
1125 	struct flowi4 *fl4;
1126 	struct rtable *rt;
1127 
1128 	rcu_read_lock();
1129 	inet_opt = rcu_dereference(inet->inet_opt);
1130 	if (inet_opt && inet_opt->opt.srr)
1131 		daddr = inet_opt->opt.faddr;
1132 	fl4 = &fl->u.ip4;
1133 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1134 				   inet->inet_saddr, inet->inet_dport,
1135 				   inet->inet_sport, sk->sk_protocol,
1136 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1137 	if (IS_ERR(rt))
1138 		rt = NULL;
1139 	if (rt)
1140 		sk_setup_caps(sk, &rt->dst);
1141 	rcu_read_unlock();
1142 
1143 	return &rt->dst;
1144 }
1145 
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1146 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1147 {
1148 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1149 	struct inet_sock *inet = inet_sk(sk);
1150 
1151 	if (!dst) {
1152 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1153 		if (!dst)
1154 			goto out;
1155 	}
1156 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1157 
1158 	dst = __sk_dst_check(sk, 0);
1159 	if (!dst)
1160 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1161 out:
1162 	return dst;
1163 }
1164 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1165