1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Support for INET connection oriented protocols.
8 *
9 * Authors: See the TCP sources
10 */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses
28 * if IPv6 only, and any IPv4 addresses
29 * if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 * and 0.0.0.0 equals to 0.0.0.0 only
33 */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 const struct in6_addr *sk2_rcv_saddr6,
36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 bool sk1_ipv6only, bool sk2_ipv6only,
38 bool match_sk1_wildcard,
39 bool match_sk2_wildcard)
40 {
41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44 /* if both are mapped, treat as IPv4 */
45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 if (!sk2_ipv6only) {
47 if (sk1_rcv_saddr == sk2_rcv_saddr)
48 return true;
49 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 (match_sk2_wildcard && !sk2_rcv_saddr);
51 }
52 return false;
53 }
54
55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 return true;
57
58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 return true;
61
62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 return true;
65
66 if (sk2_rcv_saddr6 &&
67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 return true;
69
70 return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 * 0.0.0.0 only equals to 0.0.0.0
77 */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 bool sk2_ipv6only, bool match_sk1_wildcard,
80 bool match_sk2_wildcard)
81 {
82 if (!sk2_ipv6only) {
83 if (sk1_rcv_saddr == sk2_rcv_saddr)
84 return true;
85 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 (match_sk2_wildcard && !sk2_rcv_saddr);
87 }
88 return false;
89 }
90
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 if (sk->sk_family == AF_INET6)
96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 inet6_rcv_saddr(sk2),
98 sk->sk_rcv_saddr,
99 sk2->sk_rcv_saddr,
100 ipv6_only_sock(sk),
101 ipv6_only_sock(sk2),
102 match_wildcard,
103 match_wildcard);
104 #endif
105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 ipv6_only_sock(sk2), match_wildcard,
107 match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 if (sk->sk_family == AF_INET6)
115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 return !sk->sk_rcv_saddr;
118 }
119
inet_get_local_port_range(struct net * net,int * low,int * high)120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122 unsigned int seq;
123
124 do {
125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127 *low = net->ipv4.ip_local_ports.range[0];
128 *high = net->ipv4.ip_local_ports.range[1];
129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,bool relax,bool reuseport_ok)133 static int inet_csk_bind_conflict(const struct sock *sk,
134 const struct inet_bind_bucket *tb,
135 bool relax, bool reuseport_ok)
136 {
137 struct sock *sk2;
138 bool reuse = sk->sk_reuse;
139 bool reuseport = !!sk->sk_reuseport && reuseport_ok;
140 kuid_t uid = sock_i_uid((struct sock *)sk);
141
142 /*
143 * Unlike other sk lookup places we do not check
144 * for sk_net here, since _all_ the socks listed
145 * in tb->owners list belong to the same net - the
146 * one this bucket belongs to.
147 */
148
149 sk_for_each_bound(sk2, &tb->owners) {
150 if (sk != sk2 &&
151 (!sk->sk_bound_dev_if ||
152 !sk2->sk_bound_dev_if ||
153 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
154 if ((!reuse || !sk2->sk_reuse ||
155 sk2->sk_state == TCP_LISTEN) &&
156 (!reuseport || !sk2->sk_reuseport ||
157 rcu_access_pointer(sk->sk_reuseport_cb) ||
158 (sk2->sk_state != TCP_TIME_WAIT &&
159 !uid_eq(uid, sock_i_uid(sk2))))) {
160 if (inet_rcv_saddr_equal(sk, sk2, true))
161 break;
162 }
163 if (!relax && reuse && sk2->sk_reuse &&
164 sk2->sk_state != TCP_LISTEN) {
165 if (inet_rcv_saddr_equal(sk, sk2, true))
166 break;
167 }
168 }
169 }
170 return sk2 != NULL;
171 }
172
173 /*
174 * Find an open port number for the socket. Returns with the
175 * inet_bind_hashbucket lock held.
176 */
177 static struct inet_bind_hashbucket *
inet_csk_find_open_port(struct sock * sk,struct inet_bind_bucket ** tb_ret,int * port_ret)178 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
179 {
180 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
181 int port = 0;
182 struct inet_bind_hashbucket *head;
183 struct net *net = sock_net(sk);
184 int i, low, high, attempt_half;
185 struct inet_bind_bucket *tb;
186 u32 remaining, offset;
187 int l3mdev;
188
189 l3mdev = inet_sk_bound_l3mdev(sk);
190 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
191 other_half_scan:
192 inet_get_local_port_range(net, &low, &high);
193 high++; /* [32768, 60999] -> [32768, 61000[ */
194 if (high - low < 4)
195 attempt_half = 0;
196 if (attempt_half) {
197 int half = low + (((high - low) >> 2) << 1);
198
199 if (attempt_half == 1)
200 high = half;
201 else
202 low = half;
203 }
204 remaining = high - low;
205 if (likely(remaining > 1))
206 remaining &= ~1U;
207
208 offset = prandom_u32() % remaining;
209 /* __inet_hash_connect() favors ports having @low parity
210 * We do the opposite to not pollute connect() users.
211 */
212 offset |= 1U;
213
214 other_parity_scan:
215 port = low + offset;
216 for (i = 0; i < remaining; i += 2, port += 2) {
217 if (unlikely(port >= high))
218 port -= remaining;
219 if (inet_is_local_reserved_port(net, port))
220 continue;
221 head = &hinfo->bhash[inet_bhashfn(net, port,
222 hinfo->bhash_size)];
223 spin_lock_bh(&head->lock);
224 inet_bind_bucket_for_each(tb, &head->chain)
225 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
226 tb->port == port) {
227 if (!inet_csk_bind_conflict(sk, tb, false, false))
228 goto success;
229 goto next_port;
230 }
231 tb = NULL;
232 goto success;
233 next_port:
234 spin_unlock_bh(&head->lock);
235 cond_resched();
236 }
237
238 offset--;
239 if (!(offset & 1))
240 goto other_parity_scan;
241
242 if (attempt_half == 1) {
243 /* OK we now try the upper half of the range */
244 attempt_half = 2;
245 goto other_half_scan;
246 }
247 return NULL;
248 success:
249 *port_ret = port;
250 *tb_ret = tb;
251 return head;
252 }
253
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)254 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
255 struct sock *sk)
256 {
257 kuid_t uid = sock_i_uid(sk);
258
259 if (tb->fastreuseport <= 0)
260 return 0;
261 if (!sk->sk_reuseport)
262 return 0;
263 if (rcu_access_pointer(sk->sk_reuseport_cb))
264 return 0;
265 if (!uid_eq(tb->fastuid, uid))
266 return 0;
267 /* We only need to check the rcv_saddr if this tb was once marked
268 * without fastreuseport and then was reset, as we can only know that
269 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
270 * owners list.
271 */
272 if (tb->fastreuseport == FASTREUSEPORT_ANY)
273 return 1;
274 #if IS_ENABLED(CONFIG_IPV6)
275 if (tb->fast_sk_family == AF_INET6)
276 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
277 inet6_rcv_saddr(sk),
278 tb->fast_rcv_saddr,
279 sk->sk_rcv_saddr,
280 tb->fast_ipv6_only,
281 ipv6_only_sock(sk), true, false);
282 #endif
283 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
284 ipv6_only_sock(sk), true, false);
285 }
286
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)287 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
288 struct sock *sk)
289 {
290 kuid_t uid = sock_i_uid(sk);
291 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
292
293 if (hlist_empty(&tb->owners)) {
294 tb->fastreuse = reuse;
295 if (sk->sk_reuseport) {
296 tb->fastreuseport = FASTREUSEPORT_ANY;
297 tb->fastuid = uid;
298 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
299 tb->fast_ipv6_only = ipv6_only_sock(sk);
300 tb->fast_sk_family = sk->sk_family;
301 #if IS_ENABLED(CONFIG_IPV6)
302 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
303 #endif
304 } else {
305 tb->fastreuseport = 0;
306 }
307 } else {
308 if (!reuse)
309 tb->fastreuse = 0;
310 if (sk->sk_reuseport) {
311 /* We didn't match or we don't have fastreuseport set on
312 * the tb, but we have sk_reuseport set on this socket
313 * and we know that there are no bind conflicts with
314 * this socket in this tb, so reset our tb's reuseport
315 * settings so that any subsequent sockets that match
316 * our current socket will be put on the fast path.
317 *
318 * If we reset we need to set FASTREUSEPORT_STRICT so we
319 * do extra checking for all subsequent sk_reuseport
320 * socks.
321 */
322 if (!sk_reuseport_match(tb, sk)) {
323 tb->fastreuseport = FASTREUSEPORT_STRICT;
324 tb->fastuid = uid;
325 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
326 tb->fast_ipv6_only = ipv6_only_sock(sk);
327 tb->fast_sk_family = sk->sk_family;
328 #if IS_ENABLED(CONFIG_IPV6)
329 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
330 #endif
331 }
332 } else {
333 tb->fastreuseport = 0;
334 }
335 }
336 }
337
338 /* Obtain a reference to a local port for the given sock,
339 * if snum is zero it means select any available local port.
340 * We try to allocate an odd port (and leave even ports for connect())
341 */
inet_csk_get_port(struct sock * sk,unsigned short snum)342 int inet_csk_get_port(struct sock *sk, unsigned short snum)
343 {
344 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
345 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
346 int ret = 1, port = snum;
347 struct inet_bind_hashbucket *head;
348 struct net *net = sock_net(sk);
349 struct inet_bind_bucket *tb = NULL;
350 int l3mdev;
351
352 l3mdev = inet_sk_bound_l3mdev(sk);
353
354 if (!port) {
355 head = inet_csk_find_open_port(sk, &tb, &port);
356 if (!head)
357 return ret;
358 if (!tb)
359 goto tb_not_found;
360 goto success;
361 }
362 head = &hinfo->bhash[inet_bhashfn(net, port,
363 hinfo->bhash_size)];
364 spin_lock_bh(&head->lock);
365 inet_bind_bucket_for_each(tb, &head->chain)
366 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
367 tb->port == port)
368 goto tb_found;
369 tb_not_found:
370 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
371 net, head, port, l3mdev);
372 if (!tb)
373 goto fail_unlock;
374 tb_found:
375 if (!hlist_empty(&tb->owners)) {
376 if (sk->sk_reuse == SK_FORCE_REUSE)
377 goto success;
378
379 if ((tb->fastreuse > 0 && reuse) ||
380 sk_reuseport_match(tb, sk))
381 goto success;
382 if (inet_csk_bind_conflict(sk, tb, true, true))
383 goto fail_unlock;
384 }
385 success:
386 inet_csk_update_fastreuse(tb, sk);
387
388 if (!inet_csk(sk)->icsk_bind_hash)
389 inet_bind_hash(sk, tb, port);
390 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
391 ret = 0;
392
393 fail_unlock:
394 spin_unlock_bh(&head->lock);
395 return ret;
396 }
397 EXPORT_SYMBOL_GPL(inet_csk_get_port);
398
399 /*
400 * Wait for an incoming connection, avoid race conditions. This must be called
401 * with the socket locked.
402 */
inet_csk_wait_for_connect(struct sock * sk,long timeo)403 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
404 {
405 struct inet_connection_sock *icsk = inet_csk(sk);
406 DEFINE_WAIT(wait);
407 int err;
408
409 /*
410 * True wake-one mechanism for incoming connections: only
411 * one process gets woken up, not the 'whole herd'.
412 * Since we do not 'race & poll' for established sockets
413 * anymore, the common case will execute the loop only once.
414 *
415 * Subtle issue: "add_wait_queue_exclusive()" will be added
416 * after any current non-exclusive waiters, and we know that
417 * it will always _stay_ after any new non-exclusive waiters
418 * because all non-exclusive waiters are added at the
419 * beginning of the wait-queue. As such, it's ok to "drop"
420 * our exclusiveness temporarily when we get woken up without
421 * having to remove and re-insert us on the wait queue.
422 */
423 for (;;) {
424 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
425 TASK_INTERRUPTIBLE);
426 release_sock(sk);
427 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
428 timeo = schedule_timeout(timeo);
429 sched_annotate_sleep();
430 lock_sock(sk);
431 err = 0;
432 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
433 break;
434 err = -EINVAL;
435 if (sk->sk_state != TCP_LISTEN)
436 break;
437 err = sock_intr_errno(timeo);
438 if (signal_pending(current))
439 break;
440 err = -EAGAIN;
441 if (!timeo)
442 break;
443 }
444 finish_wait(sk_sleep(sk), &wait);
445 return err;
446 }
447
448 /*
449 * This will accept the next outstanding connection.
450 */
inet_csk_accept(struct sock * sk,int flags,int * err,bool kern)451 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
452 {
453 struct inet_connection_sock *icsk = inet_csk(sk);
454 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
455 struct request_sock *req;
456 struct sock *newsk;
457 int error;
458
459 lock_sock(sk);
460
461 /* We need to make sure that this socket is listening,
462 * and that it has something pending.
463 */
464 error = -EINVAL;
465 if (sk->sk_state != TCP_LISTEN)
466 goto out_err;
467
468 /* Find already established connection */
469 if (reqsk_queue_empty(queue)) {
470 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
471
472 /* If this is a non blocking socket don't sleep */
473 error = -EAGAIN;
474 if (!timeo)
475 goto out_err;
476
477 error = inet_csk_wait_for_connect(sk, timeo);
478 if (error)
479 goto out_err;
480 }
481 req = reqsk_queue_remove(queue, sk);
482 newsk = req->sk;
483
484 if (sk->sk_protocol == IPPROTO_TCP &&
485 tcp_rsk(req)->tfo_listener) {
486 spin_lock_bh(&queue->fastopenq.lock);
487 if (tcp_rsk(req)->tfo_listener) {
488 /* We are still waiting for the final ACK from 3WHS
489 * so can't free req now. Instead, we set req->sk to
490 * NULL to signify that the child socket is taken
491 * so reqsk_fastopen_remove() will free the req
492 * when 3WHS finishes (or is aborted).
493 */
494 req->sk = NULL;
495 req = NULL;
496 }
497 spin_unlock_bh(&queue->fastopenq.lock);
498 }
499
500 out:
501 release_sock(sk);
502 if (newsk && mem_cgroup_sockets_enabled) {
503 int amt;
504
505 /* atomically get the memory usage, set and charge the
506 * newsk->sk_memcg.
507 */
508 lock_sock(newsk);
509
510 /* The socket has not been accepted yet, no need to look at
511 * newsk->sk_wmem_queued.
512 */
513 amt = sk_mem_pages(newsk->sk_forward_alloc +
514 atomic_read(&newsk->sk_rmem_alloc));
515 mem_cgroup_sk_alloc(newsk);
516 if (newsk->sk_memcg && amt)
517 mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
518
519 release_sock(newsk);
520 }
521 if (req)
522 reqsk_put(req);
523 return newsk;
524 out_err:
525 newsk = NULL;
526 req = NULL;
527 *err = error;
528 goto out;
529 }
530 EXPORT_SYMBOL(inet_csk_accept);
531
532 /*
533 * Using different timers for retransmit, delayed acks and probes
534 * We may wish use just one timer maintaining a list of expire jiffies
535 * to optimize.
536 */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))537 void inet_csk_init_xmit_timers(struct sock *sk,
538 void (*retransmit_handler)(struct timer_list *t),
539 void (*delack_handler)(struct timer_list *t),
540 void (*keepalive_handler)(struct timer_list *t))
541 {
542 struct inet_connection_sock *icsk = inet_csk(sk);
543
544 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
545 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
546 timer_setup(&sk->sk_timer, keepalive_handler, 0);
547 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
548 }
549 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
550
inet_csk_clear_xmit_timers(struct sock * sk)551 void inet_csk_clear_xmit_timers(struct sock *sk)
552 {
553 struct inet_connection_sock *icsk = inet_csk(sk);
554
555 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
556
557 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
558 sk_stop_timer(sk, &icsk->icsk_delack_timer);
559 sk_stop_timer(sk, &sk->sk_timer);
560 }
561 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
562
inet_csk_clear_xmit_timers_sync(struct sock * sk)563 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
564 {
565 struct inet_connection_sock *icsk = inet_csk(sk);
566
567 /* ongoing timer handlers need to acquire socket lock. */
568 sock_not_owned_by_me(sk);
569
570 icsk->icsk_pending = icsk->icsk_ack.pending = 0;
571
572 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
573 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
574 sk_stop_timer_sync(sk, &sk->sk_timer);
575 }
576
inet_csk_delete_keepalive_timer(struct sock * sk)577 void inet_csk_delete_keepalive_timer(struct sock *sk)
578 {
579 sk_stop_timer(sk, &sk->sk_timer);
580 }
581 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
582
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)583 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
584 {
585 sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
586 }
587 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
588
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)589 struct dst_entry *inet_csk_route_req(const struct sock *sk,
590 struct flowi4 *fl4,
591 const struct request_sock *req)
592 {
593 const struct inet_request_sock *ireq = inet_rsk(req);
594 struct net *net = read_pnet(&ireq->ireq_net);
595 struct ip_options_rcu *opt;
596 struct rtable *rt;
597
598 rcu_read_lock();
599 opt = rcu_dereference(ireq->ireq_opt);
600
601 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
602 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
603 sk->sk_protocol, inet_sk_flowi_flags(sk),
604 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
605 ireq->ir_loc_addr, ireq->ir_rmt_port,
606 htons(ireq->ir_num), sk->sk_uid);
607 security_req_classify_flow(req, flowi4_to_flowi(fl4));
608 rt = ip_route_output_flow(net, fl4, sk);
609 if (IS_ERR(rt))
610 goto no_route;
611 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
612 goto route_err;
613 rcu_read_unlock();
614 return &rt->dst;
615
616 route_err:
617 ip_rt_put(rt);
618 no_route:
619 rcu_read_unlock();
620 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
621 return NULL;
622 }
623 EXPORT_SYMBOL_GPL(inet_csk_route_req);
624
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)625 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
626 struct sock *newsk,
627 const struct request_sock *req)
628 {
629 const struct inet_request_sock *ireq = inet_rsk(req);
630 struct net *net = read_pnet(&ireq->ireq_net);
631 struct inet_sock *newinet = inet_sk(newsk);
632 struct ip_options_rcu *opt;
633 struct flowi4 *fl4;
634 struct rtable *rt;
635
636 opt = rcu_dereference(ireq->ireq_opt);
637 fl4 = &newinet->cork.fl.u.ip4;
638
639 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
640 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
641 sk->sk_protocol, inet_sk_flowi_flags(sk),
642 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
643 ireq->ir_loc_addr, ireq->ir_rmt_port,
644 htons(ireq->ir_num), sk->sk_uid);
645 security_req_classify_flow(req, flowi4_to_flowi(fl4));
646 rt = ip_route_output_flow(net, fl4, sk);
647 if (IS_ERR(rt))
648 goto no_route;
649 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
650 goto route_err;
651 return &rt->dst;
652
653 route_err:
654 ip_rt_put(rt);
655 no_route:
656 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
657 return NULL;
658 }
659 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
660
661 #if IS_ENABLED(CONFIG_IPV6)
662 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
663 #else
664 #define AF_INET_FAMILY(fam) true
665 #endif
666
667 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int thresh,const int max_retries,const u8 rskq_defer_accept,int * expire,int * resend)668 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
669 const int max_retries,
670 const u8 rskq_defer_accept,
671 int *expire, int *resend)
672 {
673 if (!rskq_defer_accept) {
674 *expire = req->num_timeout >= thresh;
675 *resend = 1;
676 return;
677 }
678 *expire = req->num_timeout >= thresh &&
679 (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
680 /*
681 * Do not resend while waiting for data after ACK,
682 * start to resend on end of deferring period to give
683 * last chance for data or ACK to create established socket.
684 */
685 *resend = !inet_rsk(req)->acked ||
686 req->num_timeout >= rskq_defer_accept - 1;
687 }
688
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)689 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
690 {
691 int err = req->rsk_ops->rtx_syn_ack(parent, req);
692
693 if (!err)
694 req->num_retrans++;
695 return err;
696 }
697 EXPORT_SYMBOL(inet_rtx_syn_ack);
698
699 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)700 static bool reqsk_queue_unlink(struct request_sock *req)
701 {
702 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
703 bool found = false;
704
705 if (sk_hashed(req_to_sk(req))) {
706 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
707
708 spin_lock(lock);
709 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
710 spin_unlock(lock);
711 }
712 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
713 reqsk_put(req);
714 return found;
715 }
716
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)717 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
718 {
719 bool unlinked = reqsk_queue_unlink(req);
720
721 if (unlinked) {
722 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
723 reqsk_put(req);
724 }
725 return unlinked;
726 }
727 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
728
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)729 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
730 {
731 inet_csk_reqsk_queue_drop(sk, req);
732 reqsk_put(req);
733 }
734 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
735
reqsk_timer_handler(struct timer_list * t)736 static void reqsk_timer_handler(struct timer_list *t)
737 {
738 struct request_sock *req = from_timer(req, t, rsk_timer);
739 struct sock *sk_listener = req->rsk_listener;
740 struct net *net = sock_net(sk_listener);
741 struct inet_connection_sock *icsk = inet_csk(sk_listener);
742 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
743 int qlen, expire = 0, resend = 0;
744 int max_retries, thresh;
745 u8 defer_accept;
746
747 if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
748 goto drop;
749
750 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
751 thresh = max_retries;
752 /* Normally all the openreqs are young and become mature
753 * (i.e. converted to established socket) for first timeout.
754 * If synack was not acknowledged for 1 second, it means
755 * one of the following things: synack was lost, ack was lost,
756 * rtt is high or nobody planned to ack (i.e. synflood).
757 * When server is a bit loaded, queue is populated with old
758 * open requests, reducing effective size of queue.
759 * When server is well loaded, queue size reduces to zero
760 * after several minutes of work. It is not synflood,
761 * it is normal operation. The solution is pruning
762 * too old entries overriding normal timeout, when
763 * situation becomes dangerous.
764 *
765 * Essentially, we reserve half of room for young
766 * embrions; and abort old ones without pity, if old
767 * ones are about to clog our table.
768 */
769 qlen = reqsk_queue_len(queue);
770 if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
771 int young = reqsk_queue_len_young(queue) << 1;
772
773 while (thresh > 2) {
774 if (qlen < young)
775 break;
776 thresh--;
777 young <<= 1;
778 }
779 }
780 defer_accept = READ_ONCE(queue->rskq_defer_accept);
781 if (defer_accept)
782 max_retries = defer_accept;
783 syn_ack_recalc(req, thresh, max_retries, defer_accept,
784 &expire, &resend);
785 req->rsk_ops->syn_ack_timeout(req);
786 if (!expire &&
787 (!resend ||
788 !inet_rtx_syn_ack(sk_listener, req) ||
789 inet_rsk(req)->acked)) {
790 unsigned long timeo;
791
792 if (req->num_timeout++ == 0)
793 atomic_dec(&queue->young);
794 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
795 mod_timer(&req->rsk_timer, jiffies + timeo);
796 return;
797 }
798 drop:
799 inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
800 }
801
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)802 static void reqsk_queue_hash_req(struct request_sock *req,
803 unsigned long timeout)
804 {
805 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
806 mod_timer(&req->rsk_timer, jiffies + timeout);
807
808 inet_ehash_insert(req_to_sk(req), NULL, NULL);
809 /* before letting lookups find us, make sure all req fields
810 * are committed to memory and refcnt initialized.
811 */
812 smp_wmb();
813 refcount_set(&req->rsk_refcnt, 2 + 1);
814 }
815
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)816 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
817 unsigned long timeout)
818 {
819 reqsk_queue_hash_req(req, timeout);
820 inet_csk_reqsk_queue_added(sk);
821 }
822 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
823
824 /**
825 * inet_csk_clone_lock - clone an inet socket, and lock its clone
826 * @sk: the socket to clone
827 * @req: request_sock
828 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
829 *
830 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
831 */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)832 struct sock *inet_csk_clone_lock(const struct sock *sk,
833 const struct request_sock *req,
834 const gfp_t priority)
835 {
836 struct sock *newsk = sk_clone_lock(sk, priority);
837
838 if (newsk) {
839 struct inet_connection_sock *newicsk = inet_csk(newsk);
840
841 inet_sk_set_state(newsk, TCP_SYN_RECV);
842 newicsk->icsk_bind_hash = NULL;
843
844 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
845 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
846 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
847
848 /* listeners have SOCK_RCU_FREE, not the children */
849 sock_reset_flag(newsk, SOCK_RCU_FREE);
850
851 inet_sk(newsk)->mc_list = NULL;
852
853 newsk->sk_mark = inet_rsk(req)->ir_mark;
854 atomic64_set(&newsk->sk_cookie,
855 atomic64_read(&inet_rsk(req)->ir_cookie));
856
857 newicsk->icsk_retransmits = 0;
858 newicsk->icsk_backoff = 0;
859 newicsk->icsk_probes_out = 0;
860 newicsk->icsk_probes_tstamp = 0;
861
862 /* Deinitialize accept_queue to trap illegal accesses. */
863 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
864
865 security_inet_csk_clone(newsk, req);
866 }
867 return newsk;
868 }
869 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
870
871 /*
872 * At this point, there should be no process reference to this
873 * socket, and thus no user references at all. Therefore we
874 * can assume the socket waitqueue is inactive and nobody will
875 * try to jump onto it.
876 */
inet_csk_destroy_sock(struct sock * sk)877 void inet_csk_destroy_sock(struct sock *sk)
878 {
879 WARN_ON(sk->sk_state != TCP_CLOSE);
880 WARN_ON(!sock_flag(sk, SOCK_DEAD));
881
882 /* It cannot be in hash table! */
883 WARN_ON(!sk_unhashed(sk));
884
885 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
886 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
887
888 sk->sk_prot->destroy(sk);
889
890 sk_stream_kill_queues(sk);
891
892 xfrm_sk_free_policy(sk);
893
894 sk_refcnt_debug_release(sk);
895
896 percpu_counter_dec(sk->sk_prot->orphan_count);
897
898 sock_put(sk);
899 }
900 EXPORT_SYMBOL(inet_csk_destroy_sock);
901
902 /* This function allows to force a closure of a socket after the call to
903 * tcp/dccp_create_openreq_child().
904 */
inet_csk_prepare_forced_close(struct sock * sk)905 void inet_csk_prepare_forced_close(struct sock *sk)
906 __releases(&sk->sk_lock.slock)
907 {
908 /* sk_clone_lock locked the socket and set refcnt to 2 */
909 bh_unlock_sock(sk);
910 sock_put(sk);
911
912 /* The below has to be done to allow calling inet_csk_destroy_sock */
913 sock_set_flag(sk, SOCK_DEAD);
914 percpu_counter_inc(sk->sk_prot->orphan_count);
915 inet_sk(sk)->inet_num = 0;
916 }
917 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
918
inet_ulp_can_listen(const struct sock * sk)919 static int inet_ulp_can_listen(const struct sock *sk)
920 {
921 const struct inet_connection_sock *icsk = inet_csk(sk);
922
923 if (icsk->icsk_ulp_ops)
924 return -EINVAL;
925
926 return 0;
927 }
928
inet_csk_listen_start(struct sock * sk,int backlog)929 int inet_csk_listen_start(struct sock *sk, int backlog)
930 {
931 struct inet_connection_sock *icsk = inet_csk(sk);
932 struct inet_sock *inet = inet_sk(sk);
933 int err;
934
935 err = inet_ulp_can_listen(sk);
936 if (unlikely(err))
937 return err;
938
939 reqsk_queue_alloc(&icsk->icsk_accept_queue);
940
941 sk->sk_ack_backlog = 0;
942 inet_csk_delack_init(sk);
943
944 /* There is race window here: we announce ourselves listening,
945 * but this transition is still not validated by get_port().
946 * It is OK, because this socket enters to hash table only
947 * after validation is complete.
948 */
949 err = -EADDRINUSE;
950 inet_sk_state_store(sk, TCP_LISTEN);
951 if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
952 inet->inet_sport = htons(inet->inet_num);
953
954 sk_dst_reset(sk);
955 err = sk->sk_prot->hash(sk);
956
957 if (likely(!err))
958 return 0;
959 }
960
961 inet_sk_set_state(sk, TCP_CLOSE);
962 return err;
963 }
964 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
965
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)966 static void inet_child_forget(struct sock *sk, struct request_sock *req,
967 struct sock *child)
968 {
969 sk->sk_prot->disconnect(child, O_NONBLOCK);
970
971 sock_orphan(child);
972
973 percpu_counter_inc(sk->sk_prot->orphan_count);
974
975 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
976 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
977 BUG_ON(sk != req->rsk_listener);
978
979 /* Paranoid, to prevent race condition if
980 * an inbound pkt destined for child is
981 * blocked by sock lock in tcp_v4_rcv().
982 * Also to satisfy an assertion in
983 * tcp_v4_destroy_sock().
984 */
985 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
986 }
987 inet_csk_destroy_sock(child);
988 }
989
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)990 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
991 struct request_sock *req,
992 struct sock *child)
993 {
994 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
995
996 spin_lock(&queue->rskq_lock);
997 if (unlikely(sk->sk_state != TCP_LISTEN)) {
998 inet_child_forget(sk, req, child);
999 child = NULL;
1000 } else {
1001 req->sk = child;
1002 req->dl_next = NULL;
1003 if (queue->rskq_accept_head == NULL)
1004 WRITE_ONCE(queue->rskq_accept_head, req);
1005 else
1006 queue->rskq_accept_tail->dl_next = req;
1007 queue->rskq_accept_tail = req;
1008 sk_acceptq_added(sk);
1009 }
1010 spin_unlock(&queue->rskq_lock);
1011 return child;
1012 }
1013 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1014
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1015 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1016 struct request_sock *req, bool own_req)
1017 {
1018 if (own_req) {
1019 inet_csk_reqsk_queue_drop(sk, req);
1020 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1021 if (inet_csk_reqsk_queue_add(sk, req, child))
1022 return child;
1023 }
1024 /* Too bad, another child took ownership of the request, undo. */
1025 bh_unlock_sock(child);
1026 sock_put(child);
1027 return NULL;
1028 }
1029 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1030
1031 /*
1032 * This routine closes sockets which have been at least partially
1033 * opened, but not yet accepted.
1034 */
inet_csk_listen_stop(struct sock * sk)1035 void inet_csk_listen_stop(struct sock *sk)
1036 {
1037 struct inet_connection_sock *icsk = inet_csk(sk);
1038 struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1039 struct request_sock *next, *req;
1040
1041 /* Following specs, it would be better either to send FIN
1042 * (and enter FIN-WAIT-1, it is normal close)
1043 * or to send active reset (abort).
1044 * Certainly, it is pretty dangerous while synflood, but it is
1045 * bad justification for our negligence 8)
1046 * To be honest, we are not able to make either
1047 * of the variants now. --ANK
1048 */
1049 while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1050 struct sock *child = req->sk;
1051
1052 local_bh_disable();
1053 bh_lock_sock(child);
1054 WARN_ON(sock_owned_by_user(child));
1055 sock_hold(child);
1056
1057 inet_child_forget(sk, req, child);
1058 reqsk_put(req);
1059 bh_unlock_sock(child);
1060 local_bh_enable();
1061 sock_put(child);
1062
1063 cond_resched();
1064 }
1065 if (queue->fastopenq.rskq_rst_head) {
1066 /* Free all the reqs queued in rskq_rst_head. */
1067 spin_lock_bh(&queue->fastopenq.lock);
1068 req = queue->fastopenq.rskq_rst_head;
1069 queue->fastopenq.rskq_rst_head = NULL;
1070 spin_unlock_bh(&queue->fastopenq.lock);
1071 while (req != NULL) {
1072 next = req->dl_next;
1073 reqsk_put(req);
1074 req = next;
1075 }
1076 }
1077 WARN_ON_ONCE(sk->sk_ack_backlog);
1078 }
1079 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1080
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1081 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1082 {
1083 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1084 const struct inet_sock *inet = inet_sk(sk);
1085
1086 sin->sin_family = AF_INET;
1087 sin->sin_addr.s_addr = inet->inet_daddr;
1088 sin->sin_port = inet->inet_dport;
1089 }
1090 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1091
1092 #ifdef CONFIG_COMPAT
inet_csk_compat_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)1093 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1094 char __user *optval, int __user *optlen)
1095 {
1096 const struct inet_connection_sock *icsk = inet_csk(sk);
1097
1098 if (icsk->icsk_af_ops->compat_getsockopt)
1099 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1100 optval, optlen);
1101 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1102 optval, optlen);
1103 }
1104 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1105
inet_csk_compat_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)1106 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1107 char __user *optval, unsigned int optlen)
1108 {
1109 const struct inet_connection_sock *icsk = inet_csk(sk);
1110
1111 if (icsk->icsk_af_ops->compat_setsockopt)
1112 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1113 optval, optlen);
1114 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1115 optval, optlen);
1116 }
1117 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1118 #endif
1119
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1120 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1121 {
1122 const struct inet_sock *inet = inet_sk(sk);
1123 const struct ip_options_rcu *inet_opt;
1124 __be32 daddr = inet->inet_daddr;
1125 struct flowi4 *fl4;
1126 struct rtable *rt;
1127
1128 rcu_read_lock();
1129 inet_opt = rcu_dereference(inet->inet_opt);
1130 if (inet_opt && inet_opt->opt.srr)
1131 daddr = inet_opt->opt.faddr;
1132 fl4 = &fl->u.ip4;
1133 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1134 inet->inet_saddr, inet->inet_dport,
1135 inet->inet_sport, sk->sk_protocol,
1136 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1137 if (IS_ERR(rt))
1138 rt = NULL;
1139 if (rt)
1140 sk_setup_caps(sk, &rt->dst);
1141 rcu_read_unlock();
1142
1143 return &rt->dst;
1144 }
1145
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1146 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1147 {
1148 struct dst_entry *dst = __sk_dst_check(sk, 0);
1149 struct inet_sock *inet = inet_sk(sk);
1150
1151 if (!dst) {
1152 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1153 if (!dst)
1154 goto out;
1155 }
1156 dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1157
1158 dst = __sk_dst_check(sk, 0);
1159 if (!dst)
1160 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1161 out:
1162 return dst;
1163 }
1164 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1165