• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * PowerPC Memory Protection Keys management
4  *
5  * Copyright 2017, Ram Pai, IBM Corporation.
6  */
7 
8 #include <asm/mman.h>
9 #include <asm/mmu_context.h>
10 #include <asm/mmu.h>
11 #include <asm/setup.h>
12 #include <linux/pkeys.h>
13 #include <linux/of_device.h>
14 
15 DEFINE_STATIC_KEY_TRUE(pkey_disabled);
16 int  pkeys_total;		/* Total pkeys as per device tree */
17 u32  initial_allocation_mask;   /* Bits set for the initially allocated keys */
18 u32  reserved_allocation_mask;  /* Bits set for reserved keys */
19 static bool pkey_execute_disable_supported;
20 static bool pkeys_devtree_defined;	/* property exported by device tree */
21 static u64 pkey_amr_mask;		/* Bits in AMR not to be touched */
22 static u64 pkey_iamr_mask;		/* Bits in AMR not to be touched */
23 static u64 pkey_uamor_mask;		/* Bits in UMOR not to be touched */
24 static int execute_only_key = 2;
25 
26 #define AMR_BITS_PER_PKEY 2
27 #define AMR_RD_BIT 0x1UL
28 #define AMR_WR_BIT 0x2UL
29 #define IAMR_EX_BIT 0x1UL
30 #define PKEY_REG_BITS (sizeof(u64)*8)
31 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
32 
scan_pkey_feature(void)33 static void scan_pkey_feature(void)
34 {
35 	u32 vals[2];
36 	struct device_node *cpu;
37 
38 	cpu = of_find_node_by_type(NULL, "cpu");
39 	if (!cpu)
40 		return;
41 
42 	if (of_property_read_u32_array(cpu,
43 			"ibm,processor-storage-keys", vals, 2))
44 		return;
45 
46 	/*
47 	 * Since any pkey can be used for data or execute, we will just treat
48 	 * all keys as equal and track them as one entity.
49 	 */
50 	pkeys_total = vals[0];
51 	pkeys_devtree_defined = true;
52 }
53 
pkey_mmu_enabled(void)54 static inline bool pkey_mmu_enabled(void)
55 {
56 	if (firmware_has_feature(FW_FEATURE_LPAR))
57 		return pkeys_total;
58 	else
59 		return cpu_has_feature(CPU_FTR_PKEY);
60 }
61 
pkey_initialize(void)62 static int pkey_initialize(void)
63 {
64 	int os_reserved, i;
65 
66 	/*
67 	 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
68 	 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
69 	 * Ensure that the bits a distinct.
70 	 */
71 	BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
72 		     (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
73 
74 	/*
75 	 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
76 	 * in the vmaflag. Make sure that is really the case.
77 	 */
78 	BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
79 		     __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
80 				!= (sizeof(u64) * BITS_PER_BYTE));
81 
82 	/* scan the device tree for pkey feature */
83 	scan_pkey_feature();
84 
85 	/*
86 	 * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device
87 	 * tree. We make this exception since some version of skiboot forgot to
88 	 * expose this property on power8/9.
89 	 */
90 	if (!pkeys_devtree_defined && !firmware_has_feature(FW_FEATURE_LPAR)) {
91 		unsigned long pvr = mfspr(SPRN_PVR);
92 
93 		if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E ||
94 		    PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9)
95 			pkeys_total = 32;
96 	}
97 
98 	/*
99 	 * Adjust the upper limit, based on the number of bits supported by
100 	 * arch-neutral code.
101 	 */
102 	pkeys_total = min_t(int, pkeys_total,
103 			((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)+1));
104 
105 	if (!pkey_mmu_enabled() || radix_enabled() || !pkeys_total)
106 		static_branch_enable(&pkey_disabled);
107 	else
108 		static_branch_disable(&pkey_disabled);
109 
110 	if (static_branch_likely(&pkey_disabled))
111 		return 0;
112 
113 	/*
114 	 * The device tree cannot be relied to indicate support for
115 	 * execute_disable support. Instead we use a PVR check.
116 	 */
117 	if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
118 		pkey_execute_disable_supported = false;
119 	else
120 		pkey_execute_disable_supported = true;
121 
122 #ifdef CONFIG_PPC_4K_PAGES
123 	/*
124 	 * The OS can manage only 8 pkeys due to its inability to represent them
125 	 * in the Linux 4K PTE.
126 	 */
127 	os_reserved = pkeys_total - 8;
128 #else
129 	os_reserved = 0;
130 #endif
131 	/* Bits are in LE format. */
132 	reserved_allocation_mask = (0x1 << 1) | (0x1 << execute_only_key);
133 
134 	/* register mask is in BE format */
135 	pkey_amr_mask = ~0x0ul;
136 	pkey_amr_mask &= ~(0x3ul << pkeyshift(0));
137 
138 	pkey_iamr_mask = ~0x0ul;
139 	pkey_iamr_mask &= ~(0x3ul << pkeyshift(0));
140 	pkey_iamr_mask &= ~(0x3ul << pkeyshift(execute_only_key));
141 
142 	pkey_uamor_mask = ~0x0ul;
143 	pkey_uamor_mask &= ~(0x3ul << pkeyshift(0));
144 	pkey_uamor_mask &= ~(0x3ul << pkeyshift(execute_only_key));
145 
146 	/* mark the rest of the keys as reserved and hence unavailable */
147 	for (i = (pkeys_total - os_reserved); i < pkeys_total; i++) {
148 		reserved_allocation_mask |= (0x1 << i);
149 		pkey_uamor_mask &= ~(0x3ul << pkeyshift(i));
150 	}
151 	initial_allocation_mask = reserved_allocation_mask | (0x1 << 0);
152 
153 	if (unlikely((pkeys_total - os_reserved) <= execute_only_key)) {
154 		/*
155 		 * Insufficient number of keys to support
156 		 * execute only key. Mark it unavailable.
157 		 * Any AMR, UAMOR, IAMR bit set for
158 		 * this key is irrelevant since this key
159 		 * can never be allocated.
160 		 */
161 		execute_only_key = -1;
162 	}
163 
164 	return 0;
165 }
166 
167 arch_initcall(pkey_initialize);
168 
pkey_mm_init(struct mm_struct * mm)169 void pkey_mm_init(struct mm_struct *mm)
170 {
171 	if (static_branch_likely(&pkey_disabled))
172 		return;
173 	mm_pkey_allocation_map(mm) = initial_allocation_mask;
174 	mm->context.execute_only_pkey = execute_only_key;
175 }
176 
read_amr(void)177 static inline u64 read_amr(void)
178 {
179 	return mfspr(SPRN_AMR);
180 }
181 
write_amr(u64 value)182 static inline void write_amr(u64 value)
183 {
184 	mtspr(SPRN_AMR, value);
185 }
186 
read_iamr(void)187 static inline u64 read_iamr(void)
188 {
189 	if (!likely(pkey_execute_disable_supported))
190 		return 0x0UL;
191 
192 	return mfspr(SPRN_IAMR);
193 }
194 
write_iamr(u64 value)195 static inline void write_iamr(u64 value)
196 {
197 	if (!likely(pkey_execute_disable_supported))
198 		return;
199 
200 	mtspr(SPRN_IAMR, value);
201 }
202 
read_uamor(void)203 static inline u64 read_uamor(void)
204 {
205 	return mfspr(SPRN_UAMOR);
206 }
207 
write_uamor(u64 value)208 static inline void write_uamor(u64 value)
209 {
210 	mtspr(SPRN_UAMOR, value);
211 }
212 
is_pkey_enabled(int pkey)213 static bool is_pkey_enabled(int pkey)
214 {
215 	u64 uamor = read_uamor();
216 	u64 pkey_bits = 0x3ul << pkeyshift(pkey);
217 	u64 uamor_pkey_bits = (uamor & pkey_bits);
218 
219 	/*
220 	 * Both the bits in UAMOR corresponding to the key should be set or
221 	 * reset.
222 	 */
223 	WARN_ON(uamor_pkey_bits && (uamor_pkey_bits != pkey_bits));
224 	return !!(uamor_pkey_bits);
225 }
226 
init_amr(int pkey,u8 init_bits)227 static inline void init_amr(int pkey, u8 init_bits)
228 {
229 	u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
230 	u64 old_amr = read_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
231 
232 	write_amr(old_amr | new_amr_bits);
233 }
234 
init_iamr(int pkey,u8 init_bits)235 static inline void init_iamr(int pkey, u8 init_bits)
236 {
237 	u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
238 	u64 old_iamr = read_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
239 
240 	write_iamr(old_iamr | new_iamr_bits);
241 }
242 
243 /*
244  * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
245  * specified in @init_val.
246  */
__arch_set_user_pkey_access(struct task_struct * tsk,int pkey,unsigned long init_val)247 int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
248 				unsigned long init_val)
249 {
250 	u64 new_amr_bits = 0x0ul;
251 	u64 new_iamr_bits = 0x0ul;
252 
253 	if (!is_pkey_enabled(pkey))
254 		return -EINVAL;
255 
256 	if (init_val & PKEY_DISABLE_EXECUTE) {
257 		if (!pkey_execute_disable_supported)
258 			return -EINVAL;
259 		new_iamr_bits |= IAMR_EX_BIT;
260 	}
261 	init_iamr(pkey, new_iamr_bits);
262 
263 	/* Set the bits we need in AMR: */
264 	if (init_val & PKEY_DISABLE_ACCESS)
265 		new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
266 	else if (init_val & PKEY_DISABLE_WRITE)
267 		new_amr_bits |= AMR_WR_BIT;
268 
269 	init_amr(pkey, new_amr_bits);
270 	return 0;
271 }
272 
thread_pkey_regs_save(struct thread_struct * thread)273 void thread_pkey_regs_save(struct thread_struct *thread)
274 {
275 	if (static_branch_likely(&pkey_disabled))
276 		return;
277 
278 	/*
279 	 * TODO: Skip saving registers if @thread hasn't used any keys yet.
280 	 */
281 	thread->amr = read_amr();
282 	thread->iamr = read_iamr();
283 	thread->uamor = read_uamor();
284 }
285 
thread_pkey_regs_restore(struct thread_struct * new_thread,struct thread_struct * old_thread)286 void thread_pkey_regs_restore(struct thread_struct *new_thread,
287 			      struct thread_struct *old_thread)
288 {
289 	if (static_branch_likely(&pkey_disabled))
290 		return;
291 
292 	if (old_thread->amr != new_thread->amr)
293 		write_amr(new_thread->amr);
294 	if (old_thread->iamr != new_thread->iamr)
295 		write_iamr(new_thread->iamr);
296 	if (old_thread->uamor != new_thread->uamor)
297 		write_uamor(new_thread->uamor);
298 }
299 
thread_pkey_regs_init(struct thread_struct * thread)300 void thread_pkey_regs_init(struct thread_struct *thread)
301 {
302 	if (static_branch_likely(&pkey_disabled))
303 		return;
304 
305 	thread->amr = pkey_amr_mask;
306 	thread->iamr = pkey_iamr_mask;
307 	thread->uamor = pkey_uamor_mask;
308 
309 	write_uamor(pkey_uamor_mask);
310 	write_amr(pkey_amr_mask);
311 	write_iamr(pkey_iamr_mask);
312 }
313 
pkey_allows_readwrite(int pkey)314 static inline bool pkey_allows_readwrite(int pkey)
315 {
316 	int pkey_shift = pkeyshift(pkey);
317 
318 	if (!is_pkey_enabled(pkey))
319 		return true;
320 
321 	return !(read_amr() & ((AMR_RD_BIT|AMR_WR_BIT) << pkey_shift));
322 }
323 
__execute_only_pkey(struct mm_struct * mm)324 int __execute_only_pkey(struct mm_struct *mm)
325 {
326 	return mm->context.execute_only_pkey;
327 }
328 
vma_is_pkey_exec_only(struct vm_area_struct * vma)329 static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
330 {
331 	/* Do this check first since the vm_flags should be hot */
332 	if ((vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) != VM_EXEC)
333 		return false;
334 
335 	return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
336 }
337 
338 /*
339  * This should only be called for *plain* mprotect calls.
340  */
__arch_override_mprotect_pkey(struct vm_area_struct * vma,int prot,int pkey)341 int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
342 				  int pkey)
343 {
344 	/*
345 	 * If the currently associated pkey is execute-only, but the requested
346 	 * protection is not execute-only, move it back to the default pkey.
347 	 */
348 	if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC))
349 		return 0;
350 
351 	/*
352 	 * The requested protection is execute-only. Hence let's use an
353 	 * execute-only pkey.
354 	 */
355 	if (prot == PROT_EXEC) {
356 		pkey = execute_only_pkey(vma->vm_mm);
357 		if (pkey > 0)
358 			return pkey;
359 	}
360 
361 	/* Nothing to override. */
362 	return vma_pkey(vma);
363 }
364 
pkey_access_permitted(int pkey,bool write,bool execute)365 static bool pkey_access_permitted(int pkey, bool write, bool execute)
366 {
367 	int pkey_shift;
368 	u64 amr;
369 
370 	if (!is_pkey_enabled(pkey))
371 		return true;
372 
373 	pkey_shift = pkeyshift(pkey);
374 	if (execute)
375 		return !(read_iamr() & (IAMR_EX_BIT << pkey_shift));
376 
377 	amr = read_amr();
378 	if (write)
379 		return !(amr & (AMR_WR_BIT << pkey_shift));
380 
381 	return !(amr & (AMR_RD_BIT << pkey_shift));
382 }
383 
arch_pte_access_permitted(u64 pte,bool write,bool execute)384 bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
385 {
386 	if (static_branch_likely(&pkey_disabled))
387 		return true;
388 
389 	return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
390 }
391 
392 /*
393  * We only want to enforce protection keys on the current thread because we
394  * effectively have no access to AMR/IAMR for other threads or any way to tell
395  * which AMR/IAMR in a threaded process we could use.
396  *
397  * So do not enforce things if the VMA is not from the current mm, or if we are
398  * in a kernel thread.
399  */
vma_is_foreign(struct vm_area_struct * vma)400 static inline bool vma_is_foreign(struct vm_area_struct *vma)
401 {
402 	if (!current->mm)
403 		return true;
404 
405 	/* if it is not our ->mm, it has to be foreign */
406 	if (current->mm != vma->vm_mm)
407 		return true;
408 
409 	return false;
410 }
411 
arch_vma_access_permitted(struct vm_area_struct * vma,bool write,bool execute,bool foreign)412 bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
413 			       bool execute, bool foreign)
414 {
415 	if (static_branch_likely(&pkey_disabled))
416 		return true;
417 	/*
418 	 * Do not enforce our key-permissions on a foreign vma.
419 	 */
420 	if (foreign || vma_is_foreign(vma))
421 		return true;
422 
423 	return pkey_access_permitted(vma_pkey(vma), write, execute);
424 }
425 
arch_dup_pkeys(struct mm_struct * oldmm,struct mm_struct * mm)426 void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm)
427 {
428 	if (static_branch_likely(&pkey_disabled))
429 		return;
430 
431 	/* Duplicate the oldmm pkey state in mm: */
432 	mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm);
433 	mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
434 }
435