1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * PowerPC Memory Protection Keys management
4 *
5 * Copyright 2017, Ram Pai, IBM Corporation.
6 */
7
8 #include <asm/mman.h>
9 #include <asm/mmu_context.h>
10 #include <asm/mmu.h>
11 #include <asm/setup.h>
12 #include <linux/pkeys.h>
13 #include <linux/of_device.h>
14
15 DEFINE_STATIC_KEY_TRUE(pkey_disabled);
16 int pkeys_total; /* Total pkeys as per device tree */
17 u32 initial_allocation_mask; /* Bits set for the initially allocated keys */
18 u32 reserved_allocation_mask; /* Bits set for reserved keys */
19 static bool pkey_execute_disable_supported;
20 static bool pkeys_devtree_defined; /* property exported by device tree */
21 static u64 pkey_amr_mask; /* Bits in AMR not to be touched */
22 static u64 pkey_iamr_mask; /* Bits in AMR not to be touched */
23 static u64 pkey_uamor_mask; /* Bits in UMOR not to be touched */
24 static int execute_only_key = 2;
25
26 #define AMR_BITS_PER_PKEY 2
27 #define AMR_RD_BIT 0x1UL
28 #define AMR_WR_BIT 0x2UL
29 #define IAMR_EX_BIT 0x1UL
30 #define PKEY_REG_BITS (sizeof(u64)*8)
31 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
32
scan_pkey_feature(void)33 static void scan_pkey_feature(void)
34 {
35 u32 vals[2];
36 struct device_node *cpu;
37
38 cpu = of_find_node_by_type(NULL, "cpu");
39 if (!cpu)
40 return;
41
42 if (of_property_read_u32_array(cpu,
43 "ibm,processor-storage-keys", vals, 2))
44 return;
45
46 /*
47 * Since any pkey can be used for data or execute, we will just treat
48 * all keys as equal and track them as one entity.
49 */
50 pkeys_total = vals[0];
51 pkeys_devtree_defined = true;
52 }
53
pkey_mmu_enabled(void)54 static inline bool pkey_mmu_enabled(void)
55 {
56 if (firmware_has_feature(FW_FEATURE_LPAR))
57 return pkeys_total;
58 else
59 return cpu_has_feature(CPU_FTR_PKEY);
60 }
61
pkey_initialize(void)62 static int pkey_initialize(void)
63 {
64 int os_reserved, i;
65
66 /*
67 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
68 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
69 * Ensure that the bits a distinct.
70 */
71 BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
72 (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
73
74 /*
75 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
76 * in the vmaflag. Make sure that is really the case.
77 */
78 BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
79 __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
80 != (sizeof(u64) * BITS_PER_BYTE));
81
82 /* scan the device tree for pkey feature */
83 scan_pkey_feature();
84
85 /*
86 * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device
87 * tree. We make this exception since some version of skiboot forgot to
88 * expose this property on power8/9.
89 */
90 if (!pkeys_devtree_defined && !firmware_has_feature(FW_FEATURE_LPAR)) {
91 unsigned long pvr = mfspr(SPRN_PVR);
92
93 if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E ||
94 PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9)
95 pkeys_total = 32;
96 }
97
98 /*
99 * Adjust the upper limit, based on the number of bits supported by
100 * arch-neutral code.
101 */
102 pkeys_total = min_t(int, pkeys_total,
103 ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)+1));
104
105 if (!pkey_mmu_enabled() || radix_enabled() || !pkeys_total)
106 static_branch_enable(&pkey_disabled);
107 else
108 static_branch_disable(&pkey_disabled);
109
110 if (static_branch_likely(&pkey_disabled))
111 return 0;
112
113 /*
114 * The device tree cannot be relied to indicate support for
115 * execute_disable support. Instead we use a PVR check.
116 */
117 if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
118 pkey_execute_disable_supported = false;
119 else
120 pkey_execute_disable_supported = true;
121
122 #ifdef CONFIG_PPC_4K_PAGES
123 /*
124 * The OS can manage only 8 pkeys due to its inability to represent them
125 * in the Linux 4K PTE.
126 */
127 os_reserved = pkeys_total - 8;
128 #else
129 os_reserved = 0;
130 #endif
131 /* Bits are in LE format. */
132 reserved_allocation_mask = (0x1 << 1) | (0x1 << execute_only_key);
133
134 /* register mask is in BE format */
135 pkey_amr_mask = ~0x0ul;
136 pkey_amr_mask &= ~(0x3ul << pkeyshift(0));
137
138 pkey_iamr_mask = ~0x0ul;
139 pkey_iamr_mask &= ~(0x3ul << pkeyshift(0));
140 pkey_iamr_mask &= ~(0x3ul << pkeyshift(execute_only_key));
141
142 pkey_uamor_mask = ~0x0ul;
143 pkey_uamor_mask &= ~(0x3ul << pkeyshift(0));
144 pkey_uamor_mask &= ~(0x3ul << pkeyshift(execute_only_key));
145
146 /* mark the rest of the keys as reserved and hence unavailable */
147 for (i = (pkeys_total - os_reserved); i < pkeys_total; i++) {
148 reserved_allocation_mask |= (0x1 << i);
149 pkey_uamor_mask &= ~(0x3ul << pkeyshift(i));
150 }
151 initial_allocation_mask = reserved_allocation_mask | (0x1 << 0);
152
153 if (unlikely((pkeys_total - os_reserved) <= execute_only_key)) {
154 /*
155 * Insufficient number of keys to support
156 * execute only key. Mark it unavailable.
157 * Any AMR, UAMOR, IAMR bit set for
158 * this key is irrelevant since this key
159 * can never be allocated.
160 */
161 execute_only_key = -1;
162 }
163
164 return 0;
165 }
166
167 arch_initcall(pkey_initialize);
168
pkey_mm_init(struct mm_struct * mm)169 void pkey_mm_init(struct mm_struct *mm)
170 {
171 if (static_branch_likely(&pkey_disabled))
172 return;
173 mm_pkey_allocation_map(mm) = initial_allocation_mask;
174 mm->context.execute_only_pkey = execute_only_key;
175 }
176
read_amr(void)177 static inline u64 read_amr(void)
178 {
179 return mfspr(SPRN_AMR);
180 }
181
write_amr(u64 value)182 static inline void write_amr(u64 value)
183 {
184 mtspr(SPRN_AMR, value);
185 }
186
read_iamr(void)187 static inline u64 read_iamr(void)
188 {
189 if (!likely(pkey_execute_disable_supported))
190 return 0x0UL;
191
192 return mfspr(SPRN_IAMR);
193 }
194
write_iamr(u64 value)195 static inline void write_iamr(u64 value)
196 {
197 if (!likely(pkey_execute_disable_supported))
198 return;
199
200 mtspr(SPRN_IAMR, value);
201 }
202
read_uamor(void)203 static inline u64 read_uamor(void)
204 {
205 return mfspr(SPRN_UAMOR);
206 }
207
write_uamor(u64 value)208 static inline void write_uamor(u64 value)
209 {
210 mtspr(SPRN_UAMOR, value);
211 }
212
is_pkey_enabled(int pkey)213 static bool is_pkey_enabled(int pkey)
214 {
215 u64 uamor = read_uamor();
216 u64 pkey_bits = 0x3ul << pkeyshift(pkey);
217 u64 uamor_pkey_bits = (uamor & pkey_bits);
218
219 /*
220 * Both the bits in UAMOR corresponding to the key should be set or
221 * reset.
222 */
223 WARN_ON(uamor_pkey_bits && (uamor_pkey_bits != pkey_bits));
224 return !!(uamor_pkey_bits);
225 }
226
init_amr(int pkey,u8 init_bits)227 static inline void init_amr(int pkey, u8 init_bits)
228 {
229 u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
230 u64 old_amr = read_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
231
232 write_amr(old_amr | new_amr_bits);
233 }
234
init_iamr(int pkey,u8 init_bits)235 static inline void init_iamr(int pkey, u8 init_bits)
236 {
237 u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
238 u64 old_iamr = read_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
239
240 write_iamr(old_iamr | new_iamr_bits);
241 }
242
243 /*
244 * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
245 * specified in @init_val.
246 */
__arch_set_user_pkey_access(struct task_struct * tsk,int pkey,unsigned long init_val)247 int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
248 unsigned long init_val)
249 {
250 u64 new_amr_bits = 0x0ul;
251 u64 new_iamr_bits = 0x0ul;
252
253 if (!is_pkey_enabled(pkey))
254 return -EINVAL;
255
256 if (init_val & PKEY_DISABLE_EXECUTE) {
257 if (!pkey_execute_disable_supported)
258 return -EINVAL;
259 new_iamr_bits |= IAMR_EX_BIT;
260 }
261 init_iamr(pkey, new_iamr_bits);
262
263 /* Set the bits we need in AMR: */
264 if (init_val & PKEY_DISABLE_ACCESS)
265 new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
266 else if (init_val & PKEY_DISABLE_WRITE)
267 new_amr_bits |= AMR_WR_BIT;
268
269 init_amr(pkey, new_amr_bits);
270 return 0;
271 }
272
thread_pkey_regs_save(struct thread_struct * thread)273 void thread_pkey_regs_save(struct thread_struct *thread)
274 {
275 if (static_branch_likely(&pkey_disabled))
276 return;
277
278 /*
279 * TODO: Skip saving registers if @thread hasn't used any keys yet.
280 */
281 thread->amr = read_amr();
282 thread->iamr = read_iamr();
283 thread->uamor = read_uamor();
284 }
285
thread_pkey_regs_restore(struct thread_struct * new_thread,struct thread_struct * old_thread)286 void thread_pkey_regs_restore(struct thread_struct *new_thread,
287 struct thread_struct *old_thread)
288 {
289 if (static_branch_likely(&pkey_disabled))
290 return;
291
292 if (old_thread->amr != new_thread->amr)
293 write_amr(new_thread->amr);
294 if (old_thread->iamr != new_thread->iamr)
295 write_iamr(new_thread->iamr);
296 if (old_thread->uamor != new_thread->uamor)
297 write_uamor(new_thread->uamor);
298 }
299
thread_pkey_regs_init(struct thread_struct * thread)300 void thread_pkey_regs_init(struct thread_struct *thread)
301 {
302 if (static_branch_likely(&pkey_disabled))
303 return;
304
305 thread->amr = pkey_amr_mask;
306 thread->iamr = pkey_iamr_mask;
307 thread->uamor = pkey_uamor_mask;
308
309 write_uamor(pkey_uamor_mask);
310 write_amr(pkey_amr_mask);
311 write_iamr(pkey_iamr_mask);
312 }
313
pkey_allows_readwrite(int pkey)314 static inline bool pkey_allows_readwrite(int pkey)
315 {
316 int pkey_shift = pkeyshift(pkey);
317
318 if (!is_pkey_enabled(pkey))
319 return true;
320
321 return !(read_amr() & ((AMR_RD_BIT|AMR_WR_BIT) << pkey_shift));
322 }
323
__execute_only_pkey(struct mm_struct * mm)324 int __execute_only_pkey(struct mm_struct *mm)
325 {
326 return mm->context.execute_only_pkey;
327 }
328
vma_is_pkey_exec_only(struct vm_area_struct * vma)329 static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
330 {
331 /* Do this check first since the vm_flags should be hot */
332 if ((vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) != VM_EXEC)
333 return false;
334
335 return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
336 }
337
338 /*
339 * This should only be called for *plain* mprotect calls.
340 */
__arch_override_mprotect_pkey(struct vm_area_struct * vma,int prot,int pkey)341 int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
342 int pkey)
343 {
344 /*
345 * If the currently associated pkey is execute-only, but the requested
346 * protection is not execute-only, move it back to the default pkey.
347 */
348 if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC))
349 return 0;
350
351 /*
352 * The requested protection is execute-only. Hence let's use an
353 * execute-only pkey.
354 */
355 if (prot == PROT_EXEC) {
356 pkey = execute_only_pkey(vma->vm_mm);
357 if (pkey > 0)
358 return pkey;
359 }
360
361 /* Nothing to override. */
362 return vma_pkey(vma);
363 }
364
pkey_access_permitted(int pkey,bool write,bool execute)365 static bool pkey_access_permitted(int pkey, bool write, bool execute)
366 {
367 int pkey_shift;
368 u64 amr;
369
370 if (!is_pkey_enabled(pkey))
371 return true;
372
373 pkey_shift = pkeyshift(pkey);
374 if (execute)
375 return !(read_iamr() & (IAMR_EX_BIT << pkey_shift));
376
377 amr = read_amr();
378 if (write)
379 return !(amr & (AMR_WR_BIT << pkey_shift));
380
381 return !(amr & (AMR_RD_BIT << pkey_shift));
382 }
383
arch_pte_access_permitted(u64 pte,bool write,bool execute)384 bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
385 {
386 if (static_branch_likely(&pkey_disabled))
387 return true;
388
389 return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
390 }
391
392 /*
393 * We only want to enforce protection keys on the current thread because we
394 * effectively have no access to AMR/IAMR for other threads or any way to tell
395 * which AMR/IAMR in a threaded process we could use.
396 *
397 * So do not enforce things if the VMA is not from the current mm, or if we are
398 * in a kernel thread.
399 */
vma_is_foreign(struct vm_area_struct * vma)400 static inline bool vma_is_foreign(struct vm_area_struct *vma)
401 {
402 if (!current->mm)
403 return true;
404
405 /* if it is not our ->mm, it has to be foreign */
406 if (current->mm != vma->vm_mm)
407 return true;
408
409 return false;
410 }
411
arch_vma_access_permitted(struct vm_area_struct * vma,bool write,bool execute,bool foreign)412 bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
413 bool execute, bool foreign)
414 {
415 if (static_branch_likely(&pkey_disabled))
416 return true;
417 /*
418 * Do not enforce our key-permissions on a foreign vma.
419 */
420 if (foreign || vma_is_foreign(vma))
421 return true;
422
423 return pkey_access_permitted(vma_pkey(vma), write, execute);
424 }
425
arch_dup_pkeys(struct mm_struct * oldmm,struct mm_struct * mm)426 void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm)
427 {
428 if (static_branch_likely(&pkey_disabled))
429 return;
430
431 /* Duplicate the oldmm pkey state in mm: */
432 mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm);
433 mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
434 }
435