1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10
11 #include "../perf_event.h"
12
13 /* Waste a full page so it can be mapped into the cpu_entry_area */
14 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
15
16 /* The size of a BTS record in bytes: */
17 #define BTS_RECORD_SIZE 24
18
19 #define PEBS_FIXUP_SIZE PAGE_SIZE
20
21 /*
22 * pebs_record_32 for p4 and core not supported
23
24 struct pebs_record_32 {
25 u32 flags, ip;
26 u32 ax, bc, cx, dx;
27 u32 si, di, bp, sp;
28 };
29
30 */
31
32 union intel_x86_pebs_dse {
33 u64 val;
34 struct {
35 unsigned int ld_dse:4;
36 unsigned int ld_stlb_miss:1;
37 unsigned int ld_locked:1;
38 unsigned int ld_reserved:26;
39 };
40 struct {
41 unsigned int st_l1d_hit:1;
42 unsigned int st_reserved1:3;
43 unsigned int st_stlb_miss:1;
44 unsigned int st_locked:1;
45 unsigned int st_reserved2:26;
46 };
47 };
48
49
50 /*
51 * Map PEBS Load Latency Data Source encodings to generic
52 * memory data source information
53 */
54 #define P(a, b) PERF_MEM_S(a, b)
55 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
56 #define LEVEL(x) P(LVLNUM, x)
57 #define REM P(REMOTE, REMOTE)
58 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
59
60 /* Version for Sandy Bridge and later */
61 static u64 pebs_data_source[] = {
62 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
63 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
64 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
65 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
66 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
67 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
68 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
69 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
70 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
71 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
72 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
73 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
74 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
75 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
76 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
77 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
78 };
79
80 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)81 void __init intel_pmu_pebs_data_source_nhm(void)
82 {
83 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
84 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
85 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
86 }
87
intel_pmu_pebs_data_source_skl(bool pmem)88 void __init intel_pmu_pebs_data_source_skl(bool pmem)
89 {
90 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
91
92 pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
93 pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
94 pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
95 pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
96 pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
97 }
98
precise_store_data(u64 status)99 static u64 precise_store_data(u64 status)
100 {
101 union intel_x86_pebs_dse dse;
102 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
103
104 dse.val = status;
105
106 /*
107 * bit 4: TLB access
108 * 1 = stored missed 2nd level TLB
109 *
110 * so it either hit the walker or the OS
111 * otherwise hit 2nd level TLB
112 */
113 if (dse.st_stlb_miss)
114 val |= P(TLB, MISS);
115 else
116 val |= P(TLB, HIT);
117
118 /*
119 * bit 0: hit L1 data cache
120 * if not set, then all we know is that
121 * it missed L1D
122 */
123 if (dse.st_l1d_hit)
124 val |= P(LVL, HIT);
125 else
126 val |= P(LVL, MISS);
127
128 /*
129 * bit 5: Locked prefix
130 */
131 if (dse.st_locked)
132 val |= P(LOCK, LOCKED);
133
134 return val;
135 }
136
precise_datala_hsw(struct perf_event * event,u64 status)137 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
138 {
139 union perf_mem_data_src dse;
140
141 dse.val = PERF_MEM_NA;
142
143 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
144 dse.mem_op = PERF_MEM_OP_STORE;
145 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
146 dse.mem_op = PERF_MEM_OP_LOAD;
147
148 /*
149 * L1 info only valid for following events:
150 *
151 * MEM_UOPS_RETIRED.STLB_MISS_STORES
152 * MEM_UOPS_RETIRED.LOCK_STORES
153 * MEM_UOPS_RETIRED.SPLIT_STORES
154 * MEM_UOPS_RETIRED.ALL_STORES
155 */
156 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
157 if (status & 1)
158 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
159 else
160 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
161 }
162 return dse.val;
163 }
164
load_latency_data(u64 status)165 static u64 load_latency_data(u64 status)
166 {
167 union intel_x86_pebs_dse dse;
168 u64 val;
169
170 dse.val = status;
171
172 /*
173 * use the mapping table for bit 0-3
174 */
175 val = pebs_data_source[dse.ld_dse];
176
177 /*
178 * Nehalem models do not support TLB, Lock infos
179 */
180 if (x86_pmu.pebs_no_tlb) {
181 val |= P(TLB, NA) | P(LOCK, NA);
182 return val;
183 }
184 /*
185 * bit 4: TLB access
186 * 0 = did not miss 2nd level TLB
187 * 1 = missed 2nd level TLB
188 */
189 if (dse.ld_stlb_miss)
190 val |= P(TLB, MISS) | P(TLB, L2);
191 else
192 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
193
194 /*
195 * bit 5: locked prefix
196 */
197 if (dse.ld_locked)
198 val |= P(LOCK, LOCKED);
199
200 return val;
201 }
202
203 struct pebs_record_core {
204 u64 flags, ip;
205 u64 ax, bx, cx, dx;
206 u64 si, di, bp, sp;
207 u64 r8, r9, r10, r11;
208 u64 r12, r13, r14, r15;
209 };
210
211 struct pebs_record_nhm {
212 u64 flags, ip;
213 u64 ax, bx, cx, dx;
214 u64 si, di, bp, sp;
215 u64 r8, r9, r10, r11;
216 u64 r12, r13, r14, r15;
217 u64 status, dla, dse, lat;
218 };
219
220 /*
221 * Same as pebs_record_nhm, with two additional fields.
222 */
223 struct pebs_record_hsw {
224 u64 flags, ip;
225 u64 ax, bx, cx, dx;
226 u64 si, di, bp, sp;
227 u64 r8, r9, r10, r11;
228 u64 r12, r13, r14, r15;
229 u64 status, dla, dse, lat;
230 u64 real_ip, tsx_tuning;
231 };
232
233 union hsw_tsx_tuning {
234 struct {
235 u32 cycles_last_block : 32,
236 hle_abort : 1,
237 rtm_abort : 1,
238 instruction_abort : 1,
239 non_instruction_abort : 1,
240 retry : 1,
241 data_conflict : 1,
242 capacity_writes : 1,
243 capacity_reads : 1;
244 };
245 u64 value;
246 };
247
248 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
249
250 /* Same as HSW, plus TSC */
251
252 struct pebs_record_skl {
253 u64 flags, ip;
254 u64 ax, bx, cx, dx;
255 u64 si, di, bp, sp;
256 u64 r8, r9, r10, r11;
257 u64 r12, r13, r14, r15;
258 u64 status, dla, dse, lat;
259 u64 real_ip, tsx_tuning;
260 u64 tsc;
261 };
262
init_debug_store_on_cpu(int cpu)263 void init_debug_store_on_cpu(int cpu)
264 {
265 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
266
267 if (!ds)
268 return;
269
270 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
271 (u32)((u64)(unsigned long)ds),
272 (u32)((u64)(unsigned long)ds >> 32));
273 }
274
fini_debug_store_on_cpu(int cpu)275 void fini_debug_store_on_cpu(int cpu)
276 {
277 if (!per_cpu(cpu_hw_events, cpu).ds)
278 return;
279
280 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
281 }
282
283 static DEFINE_PER_CPU(void *, insn_buffer);
284
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)285 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
286 {
287 unsigned long start = (unsigned long)cea;
288 phys_addr_t pa;
289 size_t msz = 0;
290
291 pa = virt_to_phys(addr);
292
293 preempt_disable();
294 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
295 cea_set_pte(cea, pa, prot);
296
297 /*
298 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
299 * all TLB entries for it.
300 */
301 flush_tlb_kernel_range(start, start + size);
302 preempt_enable();
303 }
304
ds_clear_cea(void * cea,size_t size)305 static void ds_clear_cea(void *cea, size_t size)
306 {
307 unsigned long start = (unsigned long)cea;
308 size_t msz = 0;
309
310 preempt_disable();
311 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
312 cea_set_pte(cea, 0, PAGE_NONE);
313
314 flush_tlb_kernel_range(start, start + size);
315 preempt_enable();
316 }
317
dsalloc_pages(size_t size,gfp_t flags,int cpu)318 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
319 {
320 unsigned int order = get_order(size);
321 int node = cpu_to_node(cpu);
322 struct page *page;
323
324 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
325 return page ? page_address(page) : NULL;
326 }
327
dsfree_pages(const void * buffer,size_t size)328 static void dsfree_pages(const void *buffer, size_t size)
329 {
330 if (buffer)
331 free_pages((unsigned long)buffer, get_order(size));
332 }
333
alloc_pebs_buffer(int cpu)334 static int alloc_pebs_buffer(int cpu)
335 {
336 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
337 struct debug_store *ds = hwev->ds;
338 size_t bsiz = x86_pmu.pebs_buffer_size;
339 int max, node = cpu_to_node(cpu);
340 void *buffer, *insn_buff, *cea;
341
342 if (!x86_pmu.pebs)
343 return 0;
344
345 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
346 if (unlikely(!buffer))
347 return -ENOMEM;
348
349 /*
350 * HSW+ already provides us the eventing ip; no need to allocate this
351 * buffer then.
352 */
353 if (x86_pmu.intel_cap.pebs_format < 2) {
354 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
355 if (!insn_buff) {
356 dsfree_pages(buffer, bsiz);
357 return -ENOMEM;
358 }
359 per_cpu(insn_buffer, cpu) = insn_buff;
360 }
361 hwev->ds_pebs_vaddr = buffer;
362 /* Update the cpu entry area mapping */
363 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
364 ds->pebs_buffer_base = (unsigned long) cea;
365 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
366 ds->pebs_index = ds->pebs_buffer_base;
367 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
368 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
369 return 0;
370 }
371
release_pebs_buffer(int cpu)372 static void release_pebs_buffer(int cpu)
373 {
374 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
375 void *cea;
376
377 if (!x86_pmu.pebs)
378 return;
379
380 kfree(per_cpu(insn_buffer, cpu));
381 per_cpu(insn_buffer, cpu) = NULL;
382
383 /* Clear the fixmap */
384 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
385 ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
386 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
387 hwev->ds_pebs_vaddr = NULL;
388 }
389
alloc_bts_buffer(int cpu)390 static int alloc_bts_buffer(int cpu)
391 {
392 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
393 struct debug_store *ds = hwev->ds;
394 void *buffer, *cea;
395 int max;
396
397 if (!x86_pmu.bts)
398 return 0;
399
400 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
401 if (unlikely(!buffer)) {
402 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
403 return -ENOMEM;
404 }
405 hwev->ds_bts_vaddr = buffer;
406 /* Update the fixmap */
407 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
408 ds->bts_buffer_base = (unsigned long) cea;
409 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
410 ds->bts_index = ds->bts_buffer_base;
411 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
412 ds->bts_absolute_maximum = ds->bts_buffer_base +
413 max * BTS_RECORD_SIZE;
414 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
415 (max / 16) * BTS_RECORD_SIZE;
416 return 0;
417 }
418
release_bts_buffer(int cpu)419 static void release_bts_buffer(int cpu)
420 {
421 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
422 void *cea;
423
424 if (!x86_pmu.bts)
425 return;
426
427 /* Clear the fixmap */
428 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
429 ds_clear_cea(cea, BTS_BUFFER_SIZE);
430 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
431 hwev->ds_bts_vaddr = NULL;
432 }
433
alloc_ds_buffer(int cpu)434 static int alloc_ds_buffer(int cpu)
435 {
436 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
437
438 memset(ds, 0, sizeof(*ds));
439 per_cpu(cpu_hw_events, cpu).ds = ds;
440 return 0;
441 }
442
release_ds_buffer(int cpu)443 static void release_ds_buffer(int cpu)
444 {
445 per_cpu(cpu_hw_events, cpu).ds = NULL;
446 }
447
release_ds_buffers(void)448 void release_ds_buffers(void)
449 {
450 int cpu;
451
452 if (!x86_pmu.bts && !x86_pmu.pebs)
453 return;
454
455 for_each_possible_cpu(cpu)
456 release_ds_buffer(cpu);
457
458 for_each_possible_cpu(cpu) {
459 /*
460 * Again, ignore errors from offline CPUs, they will no longer
461 * observe cpu_hw_events.ds and not program the DS_AREA when
462 * they come up.
463 */
464 fini_debug_store_on_cpu(cpu);
465 }
466
467 for_each_possible_cpu(cpu) {
468 release_pebs_buffer(cpu);
469 release_bts_buffer(cpu);
470 }
471 }
472
reserve_ds_buffers(void)473 void reserve_ds_buffers(void)
474 {
475 int bts_err = 0, pebs_err = 0;
476 int cpu;
477
478 x86_pmu.bts_active = 0;
479 x86_pmu.pebs_active = 0;
480
481 if (!x86_pmu.bts && !x86_pmu.pebs)
482 return;
483
484 if (!x86_pmu.bts)
485 bts_err = 1;
486
487 if (!x86_pmu.pebs)
488 pebs_err = 1;
489
490 for_each_possible_cpu(cpu) {
491 if (alloc_ds_buffer(cpu)) {
492 bts_err = 1;
493 pebs_err = 1;
494 }
495
496 if (!bts_err && alloc_bts_buffer(cpu))
497 bts_err = 1;
498
499 if (!pebs_err && alloc_pebs_buffer(cpu))
500 pebs_err = 1;
501
502 if (bts_err && pebs_err)
503 break;
504 }
505
506 if (bts_err) {
507 for_each_possible_cpu(cpu)
508 release_bts_buffer(cpu);
509 }
510
511 if (pebs_err) {
512 for_each_possible_cpu(cpu)
513 release_pebs_buffer(cpu);
514 }
515
516 if (bts_err && pebs_err) {
517 for_each_possible_cpu(cpu)
518 release_ds_buffer(cpu);
519 } else {
520 if (x86_pmu.bts && !bts_err)
521 x86_pmu.bts_active = 1;
522
523 if (x86_pmu.pebs && !pebs_err)
524 x86_pmu.pebs_active = 1;
525
526 for_each_possible_cpu(cpu) {
527 /*
528 * Ignores wrmsr_on_cpu() errors for offline CPUs they
529 * will get this call through intel_pmu_cpu_starting().
530 */
531 init_debug_store_on_cpu(cpu);
532 }
533 }
534 }
535
536 /*
537 * BTS
538 */
539
540 struct event_constraint bts_constraint =
541 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
542
intel_pmu_enable_bts(u64 config)543 void intel_pmu_enable_bts(u64 config)
544 {
545 unsigned long debugctlmsr;
546
547 debugctlmsr = get_debugctlmsr();
548
549 debugctlmsr |= DEBUGCTLMSR_TR;
550 debugctlmsr |= DEBUGCTLMSR_BTS;
551 if (config & ARCH_PERFMON_EVENTSEL_INT)
552 debugctlmsr |= DEBUGCTLMSR_BTINT;
553
554 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
555 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
556
557 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
558 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
559
560 update_debugctlmsr(debugctlmsr);
561 }
562
intel_pmu_disable_bts(void)563 void intel_pmu_disable_bts(void)
564 {
565 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
566 unsigned long debugctlmsr;
567
568 if (!cpuc->ds)
569 return;
570
571 debugctlmsr = get_debugctlmsr();
572
573 debugctlmsr &=
574 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
575 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
576
577 update_debugctlmsr(debugctlmsr);
578 }
579
intel_pmu_drain_bts_buffer(void)580 int intel_pmu_drain_bts_buffer(void)
581 {
582 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
583 struct debug_store *ds = cpuc->ds;
584 struct bts_record {
585 u64 from;
586 u64 to;
587 u64 flags;
588 };
589 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
590 struct bts_record *at, *base, *top;
591 struct perf_output_handle handle;
592 struct perf_event_header header;
593 struct perf_sample_data data;
594 unsigned long skip = 0;
595 struct pt_regs regs;
596
597 if (!event)
598 return 0;
599
600 if (!x86_pmu.bts_active)
601 return 0;
602
603 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
604 top = (struct bts_record *)(unsigned long)ds->bts_index;
605
606 if (top <= base)
607 return 0;
608
609 memset(®s, 0, sizeof(regs));
610
611 ds->bts_index = ds->bts_buffer_base;
612
613 perf_sample_data_init(&data, 0, event->hw.last_period);
614
615 /*
616 * BTS leaks kernel addresses in branches across the cpl boundary,
617 * such as traps or system calls, so unless the user is asking for
618 * kernel tracing (and right now it's not possible), we'd need to
619 * filter them out. But first we need to count how many of those we
620 * have in the current batch. This is an extra O(n) pass, however,
621 * it's much faster than the other one especially considering that
622 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
623 * alloc_bts_buffer()).
624 */
625 for (at = base; at < top; at++) {
626 /*
627 * Note that right now *this* BTS code only works if
628 * attr::exclude_kernel is set, but let's keep this extra
629 * check here in case that changes.
630 */
631 if (event->attr.exclude_kernel &&
632 (kernel_ip(at->from) || kernel_ip(at->to)))
633 skip++;
634 }
635
636 /*
637 * Prepare a generic sample, i.e. fill in the invariant fields.
638 * We will overwrite the from and to address before we output
639 * the sample.
640 */
641 rcu_read_lock();
642 perf_prepare_sample(&header, &data, event, ®s);
643
644 if (perf_output_begin(&handle, event, header.size *
645 (top - base - skip)))
646 goto unlock;
647
648 for (at = base; at < top; at++) {
649 /* Filter out any records that contain kernel addresses. */
650 if (event->attr.exclude_kernel &&
651 (kernel_ip(at->from) || kernel_ip(at->to)))
652 continue;
653
654 data.ip = at->from;
655 data.addr = at->to;
656
657 perf_output_sample(&handle, &header, &data, event);
658 }
659
660 perf_output_end(&handle);
661
662 /* There's new data available. */
663 event->hw.interrupts++;
664 event->pending_kill = POLL_IN;
665 unlock:
666 rcu_read_unlock();
667 return 1;
668 }
669
intel_pmu_drain_pebs_buffer(void)670 static inline void intel_pmu_drain_pebs_buffer(void)
671 {
672 x86_pmu.drain_pebs(NULL);
673 }
674
675 /*
676 * PEBS
677 */
678 struct event_constraint intel_core2_pebs_event_constraints[] = {
679 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
680 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
681 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
682 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
683 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
684 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
685 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
686 EVENT_CONSTRAINT_END
687 };
688
689 struct event_constraint intel_atom_pebs_event_constraints[] = {
690 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
691 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
692 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
693 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
694 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
695 /* Allow all events as PEBS with no flags */
696 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
697 EVENT_CONSTRAINT_END
698 };
699
700 struct event_constraint intel_slm_pebs_event_constraints[] = {
701 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
702 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
703 /* Allow all events as PEBS with no flags */
704 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
705 EVENT_CONSTRAINT_END
706 };
707
708 struct event_constraint intel_glm_pebs_event_constraints[] = {
709 /* Allow all events as PEBS with no flags */
710 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
711 EVENT_CONSTRAINT_END
712 };
713
714 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
715 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
716 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
717 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
718 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
719 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
720 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
721 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
722 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
723 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
724 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
725 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
726 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
727 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
728 EVENT_CONSTRAINT_END
729 };
730
731 struct event_constraint intel_westmere_pebs_event_constraints[] = {
732 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
733 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
734 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
735 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
736 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
737 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
738 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
739 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
740 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
741 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
742 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
743 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
744 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
745 EVENT_CONSTRAINT_END
746 };
747
748 struct event_constraint intel_snb_pebs_event_constraints[] = {
749 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
750 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
751 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
752 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
753 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
754 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
755 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
756 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
757 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
758 /* Allow all events as PEBS with no flags */
759 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
760 EVENT_CONSTRAINT_END
761 };
762
763 struct event_constraint intel_ivb_pebs_event_constraints[] = {
764 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
765 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
766 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
767 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
768 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
769 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
770 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
771 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
772 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
773 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
774 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
775 /* Allow all events as PEBS with no flags */
776 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
777 EVENT_CONSTRAINT_END
778 };
779
780 struct event_constraint intel_hsw_pebs_event_constraints[] = {
781 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
782 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
783 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
784 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
785 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
786 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
787 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
788 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
789 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
790 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
791 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
792 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
793 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
794 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
795 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
796 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
797 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
798 /* Allow all events as PEBS with no flags */
799 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
800 EVENT_CONSTRAINT_END
801 };
802
803 struct event_constraint intel_bdw_pebs_event_constraints[] = {
804 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
805 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
806 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
807 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
808 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
809 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
810 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
811 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
812 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
813 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
814 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
815 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
816 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
817 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
818 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
819 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
820 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
821 /* Allow all events as PEBS with no flags */
822 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
823 EVENT_CONSTRAINT_END
824 };
825
826
827 struct event_constraint intel_skl_pebs_event_constraints[] = {
828 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
829 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
830 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
831 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
832 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
833 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
834 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
835 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
836 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
837 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
838 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
839 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
840 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
841 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
842 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
843 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
844 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
845 /* Allow all events as PEBS with no flags */
846 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
847 EVENT_CONSTRAINT_END
848 };
849
850 struct event_constraint intel_icl_pebs_event_constraints[] = {
851 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
852 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */
853
854 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
855 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
856 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
857 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
858 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
859 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
860 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
861 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
862
863 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
864
865 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
866
867 /*
868 * Everything else is handled by PMU_FL_PEBS_ALL, because we
869 * need the full constraints from the main table.
870 */
871
872 EVENT_CONSTRAINT_END
873 };
874
intel_pebs_constraints(struct perf_event * event)875 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
876 {
877 struct event_constraint *c;
878
879 if (!event->attr.precise_ip)
880 return NULL;
881
882 if (x86_pmu.pebs_constraints) {
883 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
884 if (constraint_match(c, event->hw.config)) {
885 event->hw.flags |= c->flags;
886 return c;
887 }
888 }
889 }
890
891 /*
892 * Extended PEBS support
893 * Makes the PEBS code search the normal constraints.
894 */
895 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
896 return NULL;
897
898 return &emptyconstraint;
899 }
900
901 /*
902 * We need the sched_task callback even for per-cpu events when we use
903 * the large interrupt threshold, such that we can provide PID and TID
904 * to PEBS samples.
905 */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)906 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
907 {
908 if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
909 return false;
910
911 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
912 }
913
intel_pmu_pebs_sched_task(struct perf_event_context * ctx,bool sched_in)914 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
915 {
916 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
917
918 if (!sched_in && pebs_needs_sched_cb(cpuc))
919 intel_pmu_drain_pebs_buffer();
920 }
921
pebs_update_threshold(struct cpu_hw_events * cpuc)922 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
923 {
924 struct debug_store *ds = cpuc->ds;
925 u64 threshold;
926 int reserved;
927
928 if (cpuc->n_pebs_via_pt)
929 return;
930
931 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
932 reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed;
933 else
934 reserved = x86_pmu.max_pebs_events;
935
936 if (cpuc->n_pebs == cpuc->n_large_pebs) {
937 threshold = ds->pebs_absolute_maximum -
938 reserved * cpuc->pebs_record_size;
939 } else {
940 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
941 }
942
943 ds->pebs_interrupt_threshold = threshold;
944 }
945
adaptive_pebs_record_size_update(void)946 static void adaptive_pebs_record_size_update(void)
947 {
948 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
949 u64 pebs_data_cfg = cpuc->pebs_data_cfg;
950 int sz = sizeof(struct pebs_basic);
951
952 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
953 sz += sizeof(struct pebs_meminfo);
954 if (pebs_data_cfg & PEBS_DATACFG_GP)
955 sz += sizeof(struct pebs_gprs);
956 if (pebs_data_cfg & PEBS_DATACFG_XMMS)
957 sz += sizeof(struct pebs_xmm);
958 if (pebs_data_cfg & PEBS_DATACFG_LBRS)
959 sz += x86_pmu.lbr_nr * sizeof(struct pebs_lbr_entry);
960
961 cpuc->pebs_record_size = sz;
962 }
963
964 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \
965 PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_WEIGHT | \
966 PERF_SAMPLE_TRANSACTION)
967
pebs_update_adaptive_cfg(struct perf_event * event)968 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
969 {
970 struct perf_event_attr *attr = &event->attr;
971 u64 sample_type = attr->sample_type;
972 u64 pebs_data_cfg = 0;
973 bool gprs, tsx_weight;
974
975 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
976 attr->precise_ip > 1)
977 return pebs_data_cfg;
978
979 if (sample_type & PERF_PEBS_MEMINFO_TYPE)
980 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
981
982 /*
983 * We need GPRs when:
984 * + user requested them
985 * + precise_ip < 2 for the non event IP
986 * + For RTM TSX weight we need GPRs for the abort code.
987 */
988 gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
989 (attr->sample_regs_intr & PEBS_GP_REGS);
990
991 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT) &&
992 ((attr->config & INTEL_ARCH_EVENT_MASK) ==
993 x86_pmu.rtm_abort_event);
994
995 if (gprs || (attr->precise_ip < 2) || tsx_weight)
996 pebs_data_cfg |= PEBS_DATACFG_GP;
997
998 if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
999 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1000 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1001
1002 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1003 /*
1004 * For now always log all LBRs. Could configure this
1005 * later.
1006 */
1007 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1008 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1009 }
1010
1011 return pebs_data_cfg;
1012 }
1013
1014 static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1015 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1016 struct perf_event *event, bool add)
1017 {
1018 struct pmu *pmu = event->ctx->pmu;
1019 /*
1020 * Make sure we get updated with the first PEBS
1021 * event. It will trigger also during removal, but
1022 * that does not hurt:
1023 */
1024 bool update = cpuc->n_pebs == 1;
1025
1026 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1027 if (!needed_cb)
1028 perf_sched_cb_inc(pmu);
1029 else
1030 perf_sched_cb_dec(pmu);
1031
1032 update = true;
1033 }
1034
1035 /*
1036 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1037 * iterating all remaining PEBS events to reconstruct the config.
1038 */
1039 if (x86_pmu.intel_cap.pebs_baseline && add) {
1040 u64 pebs_data_cfg;
1041
1042 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1043 if (cpuc->n_pebs == 1) {
1044 cpuc->pebs_data_cfg = 0;
1045 cpuc->pebs_record_size = sizeof(struct pebs_basic);
1046 }
1047
1048 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1049
1050 /* Update pebs_record_size if new event requires more data. */
1051 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1052 cpuc->pebs_data_cfg |= pebs_data_cfg;
1053 adaptive_pebs_record_size_update();
1054 update = true;
1055 }
1056 }
1057
1058 if (update)
1059 pebs_update_threshold(cpuc);
1060 }
1061
intel_pmu_pebs_add(struct perf_event * event)1062 void intel_pmu_pebs_add(struct perf_event *event)
1063 {
1064 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1065 struct hw_perf_event *hwc = &event->hw;
1066 bool needed_cb = pebs_needs_sched_cb(cpuc);
1067
1068 cpuc->n_pebs++;
1069 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1070 cpuc->n_large_pebs++;
1071 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1072 cpuc->n_pebs_via_pt++;
1073
1074 pebs_update_state(needed_cb, cpuc, event, true);
1075 }
1076
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1077 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1078 {
1079 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1080
1081 if (!is_pebs_pt(event))
1082 return;
1083
1084 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1085 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1086 }
1087
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1088 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1089 {
1090 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1091 struct hw_perf_event *hwc = &event->hw;
1092 struct debug_store *ds = cpuc->ds;
1093
1094 if (!is_pebs_pt(event))
1095 return;
1096
1097 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1098 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1099
1100 cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1101
1102 wrmsrl(MSR_RELOAD_PMC0 + hwc->idx, ds->pebs_event_reset[hwc->idx]);
1103 }
1104
intel_pmu_pebs_enable(struct perf_event * event)1105 void intel_pmu_pebs_enable(struct perf_event *event)
1106 {
1107 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1108 struct hw_perf_event *hwc = &event->hw;
1109 struct debug_store *ds = cpuc->ds;
1110
1111 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1112
1113 cpuc->pebs_enabled |= 1ULL << hwc->idx;
1114
1115 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1116 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1117 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1118 cpuc->pebs_enabled |= 1ULL << 63;
1119
1120 if (x86_pmu.intel_cap.pebs_baseline) {
1121 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1122 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1123 wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1124 cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1125 }
1126 }
1127
1128 /*
1129 * Use auto-reload if possible to save a MSR write in the PMI.
1130 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1131 */
1132 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1133 unsigned int idx = hwc->idx;
1134
1135 if (idx >= INTEL_PMC_IDX_FIXED)
1136 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1137 ds->pebs_event_reset[idx] =
1138 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1139 } else {
1140 ds->pebs_event_reset[hwc->idx] = 0;
1141 }
1142
1143 intel_pmu_pebs_via_pt_enable(event);
1144 }
1145
intel_pmu_pebs_del(struct perf_event * event)1146 void intel_pmu_pebs_del(struct perf_event *event)
1147 {
1148 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1149 struct hw_perf_event *hwc = &event->hw;
1150 bool needed_cb = pebs_needs_sched_cb(cpuc);
1151
1152 cpuc->n_pebs--;
1153 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1154 cpuc->n_large_pebs--;
1155 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1156 cpuc->n_pebs_via_pt--;
1157
1158 pebs_update_state(needed_cb, cpuc, event, false);
1159 }
1160
intel_pmu_pebs_disable(struct perf_event * event)1161 void intel_pmu_pebs_disable(struct perf_event *event)
1162 {
1163 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1164 struct hw_perf_event *hwc = &event->hw;
1165
1166 if (cpuc->n_pebs == cpuc->n_large_pebs &&
1167 cpuc->n_pebs != cpuc->n_pebs_via_pt)
1168 intel_pmu_drain_pebs_buffer();
1169
1170 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1171
1172 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1173 (x86_pmu.version < 5))
1174 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1175 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1176 cpuc->pebs_enabled &= ~(1ULL << 63);
1177
1178 intel_pmu_pebs_via_pt_disable(event);
1179
1180 if (cpuc->enabled)
1181 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1182
1183 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1184 }
1185
intel_pmu_pebs_enable_all(void)1186 void intel_pmu_pebs_enable_all(void)
1187 {
1188 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1189
1190 if (cpuc->pebs_enabled)
1191 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1192 }
1193
intel_pmu_pebs_disable_all(void)1194 void intel_pmu_pebs_disable_all(void)
1195 {
1196 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1197
1198 if (cpuc->pebs_enabled)
1199 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1200 }
1201
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1202 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1203 {
1204 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1205 unsigned long from = cpuc->lbr_entries[0].from;
1206 unsigned long old_to, to = cpuc->lbr_entries[0].to;
1207 unsigned long ip = regs->ip;
1208 int is_64bit = 0;
1209 void *kaddr;
1210 int size;
1211
1212 /*
1213 * We don't need to fixup if the PEBS assist is fault like
1214 */
1215 if (!x86_pmu.intel_cap.pebs_trap)
1216 return 1;
1217
1218 /*
1219 * No LBR entry, no basic block, no rewinding
1220 */
1221 if (!cpuc->lbr_stack.nr || !from || !to)
1222 return 0;
1223
1224 /*
1225 * Basic blocks should never cross user/kernel boundaries
1226 */
1227 if (kernel_ip(ip) != kernel_ip(to))
1228 return 0;
1229
1230 /*
1231 * unsigned math, either ip is before the start (impossible) or
1232 * the basic block is larger than 1 page (sanity)
1233 */
1234 if ((ip - to) > PEBS_FIXUP_SIZE)
1235 return 0;
1236
1237 /*
1238 * We sampled a branch insn, rewind using the LBR stack
1239 */
1240 if (ip == to) {
1241 set_linear_ip(regs, from);
1242 return 1;
1243 }
1244
1245 size = ip - to;
1246 if (!kernel_ip(ip)) {
1247 int bytes;
1248 u8 *buf = this_cpu_read(insn_buffer);
1249
1250 /* 'size' must fit our buffer, see above */
1251 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1252 if (bytes != 0)
1253 return 0;
1254
1255 kaddr = buf;
1256 } else {
1257 kaddr = (void *)to;
1258 }
1259
1260 do {
1261 struct insn insn;
1262
1263 old_to = to;
1264
1265 #ifdef CONFIG_X86_64
1266 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
1267 #endif
1268 insn_init(&insn, kaddr, size, is_64bit);
1269 insn_get_length(&insn);
1270 /*
1271 * Make sure there was not a problem decoding the
1272 * instruction and getting the length. This is
1273 * doubly important because we have an infinite
1274 * loop if insn.length=0.
1275 */
1276 if (!insn.length)
1277 break;
1278
1279 to += insn.length;
1280 kaddr += insn.length;
1281 size -= insn.length;
1282 } while (to < ip);
1283
1284 if (to == ip) {
1285 set_linear_ip(regs, old_to);
1286 return 1;
1287 }
1288
1289 /*
1290 * Even though we decoded the basic block, the instruction stream
1291 * never matched the given IP, either the TO or the IP got corrupted.
1292 */
1293 return 0;
1294 }
1295
intel_get_tsx_weight(u64 tsx_tuning)1296 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1297 {
1298 if (tsx_tuning) {
1299 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1300 return tsx.cycles_last_block;
1301 }
1302 return 0;
1303 }
1304
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1305 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1306 {
1307 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1308
1309 /* For RTM XABORTs also log the abort code from AX */
1310 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1311 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1312 return txn;
1313 }
1314
get_pebs_status(void * n)1315 static inline u64 get_pebs_status(void *n)
1316 {
1317 if (x86_pmu.intel_cap.pebs_format < 4)
1318 return ((struct pebs_record_nhm *)n)->status;
1319 return ((struct pebs_basic *)n)->applicable_counters;
1320 }
1321
1322 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1323 (PERF_X86_EVENT_PEBS_ST_HSW | \
1324 PERF_X86_EVENT_PEBS_LD_HSW | \
1325 PERF_X86_EVENT_PEBS_NA_HSW)
1326
get_data_src(struct perf_event * event,u64 aux)1327 static u64 get_data_src(struct perf_event *event, u64 aux)
1328 {
1329 u64 val = PERF_MEM_NA;
1330 int fl = event->hw.flags;
1331 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1332
1333 if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1334 val = load_latency_data(aux);
1335 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1336 val = precise_datala_hsw(event, aux);
1337 else if (fst)
1338 val = precise_store_data(aux);
1339 return val;
1340 }
1341
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1342 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1343 struct pt_regs *iregs, void *__pebs,
1344 struct perf_sample_data *data,
1345 struct pt_regs *regs)
1346 {
1347 /*
1348 * We cast to the biggest pebs_record but are careful not to
1349 * unconditionally access the 'extra' entries.
1350 */
1351 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1352 struct pebs_record_skl *pebs = __pebs;
1353 u64 sample_type;
1354 int fll;
1355
1356 if (pebs == NULL)
1357 return;
1358
1359 sample_type = event->attr.sample_type;
1360 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1361
1362 perf_sample_data_init(data, 0, event->hw.last_period);
1363
1364 data->period = event->hw.last_period;
1365
1366 /*
1367 * Use latency for weight (only avail with PEBS-LL)
1368 */
1369 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1370 data->weight = pebs->lat;
1371
1372 /*
1373 * data.data_src encodes the data source
1374 */
1375 if (sample_type & PERF_SAMPLE_DATA_SRC)
1376 data->data_src.val = get_data_src(event, pebs->dse);
1377
1378 /*
1379 * We must however always use iregs for the unwinder to stay sane; the
1380 * record BP,SP,IP can point into thin air when the record is from a
1381 * previous PMI context or an (I)RET happened between the record and
1382 * PMI.
1383 */
1384 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1385 data->callchain = perf_callchain(event, iregs);
1386
1387 /*
1388 * We use the interrupt regs as a base because the PEBS record does not
1389 * contain a full regs set, specifically it seems to lack segment
1390 * descriptors, which get used by things like user_mode().
1391 *
1392 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1393 */
1394 *regs = *iregs;
1395
1396 /*
1397 * Initialize regs_>flags from PEBS,
1398 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1399 * i.e., do not rely on it being zero:
1400 */
1401 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1402
1403 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1404 regs->ax = pebs->ax;
1405 regs->bx = pebs->bx;
1406 regs->cx = pebs->cx;
1407 regs->dx = pebs->dx;
1408 regs->si = pebs->si;
1409 regs->di = pebs->di;
1410
1411 regs->bp = pebs->bp;
1412 regs->sp = pebs->sp;
1413
1414 #ifndef CONFIG_X86_32
1415 regs->r8 = pebs->r8;
1416 regs->r9 = pebs->r9;
1417 regs->r10 = pebs->r10;
1418 regs->r11 = pebs->r11;
1419 regs->r12 = pebs->r12;
1420 regs->r13 = pebs->r13;
1421 regs->r14 = pebs->r14;
1422 regs->r15 = pebs->r15;
1423 #endif
1424 }
1425
1426 if (event->attr.precise_ip > 1) {
1427 /*
1428 * Haswell and later processors have an 'eventing IP'
1429 * (real IP) which fixes the off-by-1 skid in hardware.
1430 * Use it when precise_ip >= 2 :
1431 */
1432 if (x86_pmu.intel_cap.pebs_format >= 2) {
1433 set_linear_ip(regs, pebs->real_ip);
1434 regs->flags |= PERF_EFLAGS_EXACT;
1435 } else {
1436 /* Otherwise, use PEBS off-by-1 IP: */
1437 set_linear_ip(regs, pebs->ip);
1438
1439 /*
1440 * With precise_ip >= 2, try to fix up the off-by-1 IP
1441 * using the LBR. If successful, the fixup function
1442 * corrects regs->ip and calls set_linear_ip() on regs:
1443 */
1444 if (intel_pmu_pebs_fixup_ip(regs))
1445 regs->flags |= PERF_EFLAGS_EXACT;
1446 }
1447 } else {
1448 /*
1449 * When precise_ip == 1, return the PEBS off-by-1 IP,
1450 * no fixup attempted:
1451 */
1452 set_linear_ip(regs, pebs->ip);
1453 }
1454
1455
1456 if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1457 x86_pmu.intel_cap.pebs_format >= 1)
1458 data->addr = pebs->dla;
1459
1460 if (x86_pmu.intel_cap.pebs_format >= 2) {
1461 /* Only set the TSX weight when no memory weight. */
1462 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1463 data->weight = intel_get_tsx_weight(pebs->tsx_tuning);
1464
1465 if (sample_type & PERF_SAMPLE_TRANSACTION)
1466 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1467 pebs->ax);
1468 }
1469
1470 /*
1471 * v3 supplies an accurate time stamp, so we use that
1472 * for the time stamp.
1473 *
1474 * We can only do this for the default trace clock.
1475 */
1476 if (x86_pmu.intel_cap.pebs_format >= 3 &&
1477 event->attr.use_clockid == 0)
1478 data->time = native_sched_clock_from_tsc(pebs->tsc);
1479
1480 if (has_branch_stack(event))
1481 data->br_stack = &cpuc->lbr_stack;
1482 }
1483
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1484 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1485 struct pebs_gprs *gprs)
1486 {
1487 regs->ax = gprs->ax;
1488 regs->bx = gprs->bx;
1489 regs->cx = gprs->cx;
1490 regs->dx = gprs->dx;
1491 regs->si = gprs->si;
1492 regs->di = gprs->di;
1493 regs->bp = gprs->bp;
1494 regs->sp = gprs->sp;
1495 #ifndef CONFIG_X86_32
1496 regs->r8 = gprs->r8;
1497 regs->r9 = gprs->r9;
1498 regs->r10 = gprs->r10;
1499 regs->r11 = gprs->r11;
1500 regs->r12 = gprs->r12;
1501 regs->r13 = gprs->r13;
1502 regs->r14 = gprs->r14;
1503 regs->r15 = gprs->r15;
1504 #endif
1505 }
1506
1507 /*
1508 * With adaptive PEBS the layout depends on what fields are configured.
1509 */
1510
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1511 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1512 struct pt_regs *iregs, void *__pebs,
1513 struct perf_sample_data *data,
1514 struct pt_regs *regs)
1515 {
1516 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1517 struct pebs_basic *basic = __pebs;
1518 void *next_record = basic + 1;
1519 u64 sample_type;
1520 u64 format_size;
1521 struct pebs_meminfo *meminfo = NULL;
1522 struct pebs_gprs *gprs = NULL;
1523 struct x86_perf_regs *perf_regs;
1524
1525 if (basic == NULL)
1526 return;
1527
1528 perf_regs = container_of(regs, struct x86_perf_regs, regs);
1529 perf_regs->xmm_regs = NULL;
1530
1531 sample_type = event->attr.sample_type;
1532 format_size = basic->format_size;
1533 perf_sample_data_init(data, 0, event->hw.last_period);
1534 data->period = event->hw.last_period;
1535
1536 if (event->attr.use_clockid == 0)
1537 data->time = native_sched_clock_from_tsc(basic->tsc);
1538
1539 /*
1540 * We must however always use iregs for the unwinder to stay sane; the
1541 * record BP,SP,IP can point into thin air when the record is from a
1542 * previous PMI context or an (I)RET happened between the record and
1543 * PMI.
1544 */
1545 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1546 data->callchain = perf_callchain(event, iregs);
1547
1548 *regs = *iregs;
1549 /* The ip in basic is EventingIP */
1550 set_linear_ip(regs, basic->ip);
1551 regs->flags = PERF_EFLAGS_EXACT;
1552
1553 /*
1554 * The record for MEMINFO is in front of GP
1555 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1556 * Save the pointer here but process later.
1557 */
1558 if (format_size & PEBS_DATACFG_MEMINFO) {
1559 meminfo = next_record;
1560 next_record = meminfo + 1;
1561 }
1562
1563 if (format_size & PEBS_DATACFG_GP) {
1564 gprs = next_record;
1565 next_record = gprs + 1;
1566
1567 if (event->attr.precise_ip < 2) {
1568 set_linear_ip(regs, gprs->ip);
1569 regs->flags &= ~PERF_EFLAGS_EXACT;
1570 }
1571
1572 if (sample_type & PERF_SAMPLE_REGS_INTR)
1573 adaptive_pebs_save_regs(regs, gprs);
1574 }
1575
1576 if (format_size & PEBS_DATACFG_MEMINFO) {
1577 if (sample_type & PERF_SAMPLE_WEIGHT)
1578 data->weight = meminfo->latency ?:
1579 intel_get_tsx_weight(meminfo->tsx_tuning);
1580
1581 if (sample_type & PERF_SAMPLE_DATA_SRC)
1582 data->data_src.val = get_data_src(event, meminfo->aux);
1583
1584 if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
1585 data->addr = meminfo->address;
1586
1587 if (sample_type & PERF_SAMPLE_TRANSACTION)
1588 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1589 gprs ? gprs->ax : 0);
1590 }
1591
1592 if (format_size & PEBS_DATACFG_XMMS) {
1593 struct pebs_xmm *xmm = next_record;
1594
1595 next_record = xmm + 1;
1596 perf_regs->xmm_regs = xmm->xmm;
1597 }
1598
1599 if (format_size & PEBS_DATACFG_LBRS) {
1600 struct pebs_lbr *lbr = next_record;
1601 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1602 & 0xff) + 1;
1603 next_record = next_record + num_lbr*sizeof(struct pebs_lbr_entry);
1604
1605 if (has_branch_stack(event)) {
1606 intel_pmu_store_pebs_lbrs(lbr);
1607 data->br_stack = &cpuc->lbr_stack;
1608 }
1609 }
1610
1611 WARN_ONCE(next_record != __pebs + (format_size >> 48),
1612 "PEBS record size %llu, expected %llu, config %llx\n",
1613 format_size >> 48,
1614 (u64)(next_record - __pebs),
1615 basic->format_size);
1616 }
1617
1618 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)1619 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1620 {
1621 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1622 void *at;
1623 u64 pebs_status;
1624
1625 /*
1626 * fmt0 does not have a status bitfield (does not use
1627 * perf_record_nhm format)
1628 */
1629 if (x86_pmu.intel_cap.pebs_format < 1)
1630 return base;
1631
1632 if (base == NULL)
1633 return NULL;
1634
1635 for (at = base; at < top; at += cpuc->pebs_record_size) {
1636 unsigned long status = get_pebs_status(at);
1637
1638 if (test_bit(bit, (unsigned long *)&status)) {
1639 /* PEBS v3 has accurate status bits */
1640 if (x86_pmu.intel_cap.pebs_format >= 3)
1641 return at;
1642
1643 if (status == (1 << bit))
1644 return at;
1645
1646 /* clear non-PEBS bit and re-check */
1647 pebs_status = status & cpuc->pebs_enabled;
1648 pebs_status &= PEBS_COUNTER_MASK;
1649 if (pebs_status == (1 << bit))
1650 return at;
1651 }
1652 }
1653 return NULL;
1654 }
1655
intel_pmu_auto_reload_read(struct perf_event * event)1656 void intel_pmu_auto_reload_read(struct perf_event *event)
1657 {
1658 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1659
1660 perf_pmu_disable(event->pmu);
1661 intel_pmu_drain_pebs_buffer();
1662 perf_pmu_enable(event->pmu);
1663 }
1664
1665 /*
1666 * Special variant of intel_pmu_save_and_restart() for auto-reload.
1667 */
1668 static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)1669 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1670 {
1671 struct hw_perf_event *hwc = &event->hw;
1672 int shift = 64 - x86_pmu.cntval_bits;
1673 u64 period = hwc->sample_period;
1674 u64 prev_raw_count, new_raw_count;
1675 s64 new, old;
1676
1677 WARN_ON(!period);
1678
1679 /*
1680 * drain_pebs() only happens when the PMU is disabled.
1681 */
1682 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1683
1684 prev_raw_count = local64_read(&hwc->prev_count);
1685 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1686 local64_set(&hwc->prev_count, new_raw_count);
1687
1688 /*
1689 * Since the counter increments a negative counter value and
1690 * overflows on the sign switch, giving the interval:
1691 *
1692 * [-period, 0]
1693 *
1694 * the difference between two consequtive reads is:
1695 *
1696 * A) value2 - value1;
1697 * when no overflows have happened in between,
1698 *
1699 * B) (0 - value1) + (value2 - (-period));
1700 * when one overflow happened in between,
1701 *
1702 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1703 * when @n overflows happened in between.
1704 *
1705 * Here A) is the obvious difference, B) is the extension to the
1706 * discrete interval, where the first term is to the top of the
1707 * interval and the second term is from the bottom of the next
1708 * interval and C) the extension to multiple intervals, where the
1709 * middle term is the whole intervals covered.
1710 *
1711 * An equivalent of C, by reduction, is:
1712 *
1713 * value2 - value1 + n * period
1714 */
1715 new = ((s64)(new_raw_count << shift) >> shift);
1716 old = ((s64)(prev_raw_count << shift) >> shift);
1717 local64_add(new - old + count * period, &event->count);
1718
1719 local64_set(&hwc->period_left, -new);
1720
1721 perf_event_update_userpage(event);
1722
1723 return 0;
1724 }
1725
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,void * base,void * top,int bit,int count,void (* setup_sample)(struct perf_event *,struct pt_regs *,void *,struct perf_sample_data *,struct pt_regs *))1726 static void __intel_pmu_pebs_event(struct perf_event *event,
1727 struct pt_regs *iregs,
1728 void *base, void *top,
1729 int bit, int count,
1730 void (*setup_sample)(struct perf_event *,
1731 struct pt_regs *,
1732 void *,
1733 struct perf_sample_data *,
1734 struct pt_regs *))
1735 {
1736 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1737 struct hw_perf_event *hwc = &event->hw;
1738 struct perf_sample_data data;
1739 struct x86_perf_regs perf_regs;
1740 struct pt_regs *regs = &perf_regs.regs;
1741 void *at = get_next_pebs_record_by_bit(base, top, bit);
1742 struct pt_regs dummy_iregs;
1743
1744 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1745 /*
1746 * Now, auto-reload is only enabled in fixed period mode.
1747 * The reload value is always hwc->sample_period.
1748 * May need to change it, if auto-reload is enabled in
1749 * freq mode later.
1750 */
1751 intel_pmu_save_and_restart_reload(event, count);
1752 } else if (!intel_pmu_save_and_restart(event))
1753 return;
1754
1755 if (!iregs)
1756 iregs = &dummy_iregs;
1757
1758 while (count > 1) {
1759 setup_sample(event, iregs, at, &data, regs);
1760 perf_event_output(event, &data, regs);
1761 at += cpuc->pebs_record_size;
1762 at = get_next_pebs_record_by_bit(at, top, bit);
1763 count--;
1764 }
1765
1766 setup_sample(event, iregs, at, &data, regs);
1767 if (iregs == &dummy_iregs) {
1768 /*
1769 * The PEBS records may be drained in the non-overflow context,
1770 * e.g., large PEBS + context switch. Perf should treat the
1771 * last record the same as other PEBS records, and doesn't
1772 * invoke the generic overflow handler.
1773 */
1774 perf_event_output(event, &data, regs);
1775 } else {
1776 /*
1777 * All but the last records are processed.
1778 * The last one is left to be able to call the overflow handler.
1779 */
1780 if (perf_event_overflow(event, &data, regs))
1781 x86_pmu_stop(event, 0);
1782 }
1783 }
1784
intel_pmu_drain_pebs_core(struct pt_regs * iregs)1785 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1786 {
1787 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1788 struct debug_store *ds = cpuc->ds;
1789 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1790 struct pebs_record_core *at, *top;
1791 int n;
1792
1793 if (!x86_pmu.pebs_active)
1794 return;
1795
1796 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1797 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1798
1799 /*
1800 * Whatever else happens, drain the thing
1801 */
1802 ds->pebs_index = ds->pebs_buffer_base;
1803
1804 if (!test_bit(0, cpuc->active_mask))
1805 return;
1806
1807 WARN_ON_ONCE(!event);
1808
1809 if (!event->attr.precise_ip)
1810 return;
1811
1812 n = top - at;
1813 if (n <= 0) {
1814 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1815 intel_pmu_save_and_restart_reload(event, 0);
1816 return;
1817 }
1818
1819 __intel_pmu_pebs_event(event, iregs, at, top, 0, n,
1820 setup_pebs_fixed_sample_data);
1821 }
1822
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,int size)1823 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
1824 {
1825 struct perf_event *event;
1826 int bit;
1827
1828 /*
1829 * The drain_pebs() could be called twice in a short period
1830 * for auto-reload event in pmu::read(). There are no
1831 * overflows have happened in between.
1832 * It needs to call intel_pmu_save_and_restart_reload() to
1833 * update the event->count for this case.
1834 */
1835 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
1836 event = cpuc->events[bit];
1837 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1838 intel_pmu_save_and_restart_reload(event, 0);
1839 }
1840 }
1841
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs)1842 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1843 {
1844 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1845 struct debug_store *ds = cpuc->ds;
1846 struct perf_event *event;
1847 void *base, *at, *top;
1848 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1849 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1850 int bit, i, size;
1851 u64 mask;
1852
1853 if (!x86_pmu.pebs_active)
1854 return;
1855
1856 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1857 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1858
1859 ds->pebs_index = ds->pebs_buffer_base;
1860
1861 mask = (1ULL << x86_pmu.max_pebs_events) - 1;
1862 size = x86_pmu.max_pebs_events;
1863 if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
1864 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
1865 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1866 }
1867
1868 if (unlikely(base >= top)) {
1869 intel_pmu_pebs_event_update_no_drain(cpuc, size);
1870 return;
1871 }
1872
1873 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1874 struct pebs_record_nhm *p = at;
1875 u64 pebs_status;
1876
1877 pebs_status = p->status & cpuc->pebs_enabled;
1878 pebs_status &= mask;
1879
1880 /* PEBS v3 has more accurate status bits */
1881 if (x86_pmu.intel_cap.pebs_format >= 3) {
1882 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1883 counts[bit]++;
1884
1885 continue;
1886 }
1887
1888 /*
1889 * On some CPUs the PEBS status can be zero when PEBS is
1890 * racing with clearing of GLOBAL_STATUS.
1891 *
1892 * Normally we would drop that record, but in the
1893 * case when there is only a single active PEBS event
1894 * we can assume it's for that event.
1895 */
1896 if (!pebs_status && cpuc->pebs_enabled &&
1897 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1898 pebs_status = p->status = cpuc->pebs_enabled;
1899
1900 bit = find_first_bit((unsigned long *)&pebs_status,
1901 x86_pmu.max_pebs_events);
1902 if (bit >= x86_pmu.max_pebs_events)
1903 continue;
1904
1905 /*
1906 * The PEBS hardware does not deal well with the situation
1907 * when events happen near to each other and multiple bits
1908 * are set. But it should happen rarely.
1909 *
1910 * If these events include one PEBS and multiple non-PEBS
1911 * events, it doesn't impact PEBS record. The record will
1912 * be handled normally. (slow path)
1913 *
1914 * If these events include two or more PEBS events, the
1915 * records for the events can be collapsed into a single
1916 * one, and it's not possible to reconstruct all events
1917 * that caused the PEBS record. It's called collision.
1918 * If collision happened, the record will be dropped.
1919 */
1920 if (pebs_status != (1ULL << bit)) {
1921 for_each_set_bit(i, (unsigned long *)&pebs_status, size)
1922 error[i]++;
1923 continue;
1924 }
1925
1926 counts[bit]++;
1927 }
1928
1929 for_each_set_bit(bit, (unsigned long *)&mask, size) {
1930 if ((counts[bit] == 0) && (error[bit] == 0))
1931 continue;
1932
1933 event = cpuc->events[bit];
1934 if (WARN_ON_ONCE(!event))
1935 continue;
1936
1937 if (WARN_ON_ONCE(!event->attr.precise_ip))
1938 continue;
1939
1940 /* log dropped samples number */
1941 if (error[bit]) {
1942 perf_log_lost_samples(event, error[bit]);
1943
1944 if (perf_event_account_interrupt(event))
1945 x86_pmu_stop(event, 0);
1946 }
1947
1948 if (counts[bit]) {
1949 __intel_pmu_pebs_event(event, iregs, base,
1950 top, bit, counts[bit],
1951 setup_pebs_fixed_sample_data);
1952 }
1953 }
1954 }
1955
intel_pmu_drain_pebs_icl(struct pt_regs * iregs)1956 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs)
1957 {
1958 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1959 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1960 struct debug_store *ds = cpuc->ds;
1961 struct perf_event *event;
1962 void *base, *at, *top;
1963 int bit, size;
1964 u64 mask;
1965
1966 if (!x86_pmu.pebs_active)
1967 return;
1968
1969 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
1970 top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
1971
1972 ds->pebs_index = ds->pebs_buffer_base;
1973
1974 mask = ((1ULL << x86_pmu.max_pebs_events) - 1) |
1975 (((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
1976 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1977
1978 if (unlikely(base >= top)) {
1979 intel_pmu_pebs_event_update_no_drain(cpuc, size);
1980 return;
1981 }
1982
1983 for (at = base; at < top; at += cpuc->pebs_record_size) {
1984 u64 pebs_status;
1985
1986 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
1987 pebs_status &= mask;
1988
1989 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
1990 counts[bit]++;
1991 }
1992
1993 for_each_set_bit(bit, (unsigned long *)&mask, size) {
1994 if (counts[bit] == 0)
1995 continue;
1996
1997 event = cpuc->events[bit];
1998 if (WARN_ON_ONCE(!event))
1999 continue;
2000
2001 if (WARN_ON_ONCE(!event->attr.precise_ip))
2002 continue;
2003
2004 __intel_pmu_pebs_event(event, iregs, base,
2005 top, bit, counts[bit],
2006 setup_pebs_adaptive_sample_data);
2007 }
2008 }
2009
2010 /*
2011 * BTS, PEBS probe and setup
2012 */
2013
intel_ds_init(void)2014 void __init intel_ds_init(void)
2015 {
2016 /*
2017 * No support for 32bit formats
2018 */
2019 if (!boot_cpu_has(X86_FEATURE_DTES64))
2020 return;
2021
2022 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
2023 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2024 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2025 if (x86_pmu.version <= 4)
2026 x86_pmu.pebs_no_isolation = 1;
2027
2028 if (x86_pmu.pebs) {
2029 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
2030 char *pebs_qual = "";
2031 int format = x86_pmu.intel_cap.pebs_format;
2032
2033 if (format < 4)
2034 x86_pmu.intel_cap.pebs_baseline = 0;
2035
2036 switch (format) {
2037 case 0:
2038 pr_cont("PEBS fmt0%c, ", pebs_type);
2039 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2040 /*
2041 * Using >PAGE_SIZE buffers makes the WRMSR to
2042 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2043 * mysteriously hang on Core2.
2044 *
2045 * As a workaround, we don't do this.
2046 */
2047 x86_pmu.pebs_buffer_size = PAGE_SIZE;
2048 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2049 break;
2050
2051 case 1:
2052 pr_cont("PEBS fmt1%c, ", pebs_type);
2053 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2054 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2055 break;
2056
2057 case 2:
2058 pr_cont("PEBS fmt2%c, ", pebs_type);
2059 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2060 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2061 break;
2062
2063 case 3:
2064 pr_cont("PEBS fmt3%c, ", pebs_type);
2065 x86_pmu.pebs_record_size =
2066 sizeof(struct pebs_record_skl);
2067 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2068 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2069 break;
2070
2071 case 4:
2072 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2073 x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2074 if (x86_pmu.intel_cap.pebs_baseline) {
2075 x86_pmu.large_pebs_flags |=
2076 PERF_SAMPLE_BRANCH_STACK |
2077 PERF_SAMPLE_TIME;
2078 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2079 pebs_qual = "-baseline";
2080 x86_get_pmu()->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2081 } else {
2082 /* Only basic record supported */
2083 x86_pmu.large_pebs_flags &=
2084 ~(PERF_SAMPLE_ADDR |
2085 PERF_SAMPLE_TIME |
2086 PERF_SAMPLE_DATA_SRC |
2087 PERF_SAMPLE_TRANSACTION |
2088 PERF_SAMPLE_REGS_USER |
2089 PERF_SAMPLE_REGS_INTR);
2090 }
2091 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2092
2093 if (x86_pmu.intel_cap.pebs_output_pt_available) {
2094 pr_cont("PEBS-via-PT, ");
2095 x86_get_pmu()->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2096 }
2097
2098 break;
2099
2100 default:
2101 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2102 x86_pmu.pebs = 0;
2103 }
2104 }
2105 }
2106
perf_restore_debug_store(void)2107 void perf_restore_debug_store(void)
2108 {
2109 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2110
2111 if (!x86_pmu.bts && !x86_pmu.pebs)
2112 return;
2113
2114 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2115 }
2116