1 /*
2 * I/O Processor (IOP) management
3 * Written and (C) 1999 by Joshua M. Thompson (funaho@jurai.org)
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice and this list of conditions.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice and this list of conditions in the documentation and/or other
12 * materials provided with the distribution.
13 */
14
15 /*
16 * The IOP chips are used in the IIfx and some Quadras (900, 950) to manage
17 * serial and ADB. They are actually a 6502 processor and some glue logic.
18 *
19 * 990429 (jmt) - Initial implementation, just enough to knock the SCC IOP
20 * into compatible mode so nobody has to fiddle with the
21 * Serial Switch control panel anymore.
22 * 990603 (jmt) - Added code to grab the correct ISM IOP interrupt for OSS
23 * and non-OSS machines (at least I hope it's correct on a
24 * non-OSS machine -- someone with a Q900 or Q950 needs to
25 * check this.)
26 * 990605 (jmt) - Rearranged things a bit wrt IOP detection; iop_present is
27 * gone, IOP base addresses are now in an array and the
28 * globally-visible functions take an IOP number instead of an
29 * an actual base address.
30 * 990610 (jmt) - Finished the message passing framework and it seems to work.
31 * Sending _definitely_ works; my adb-bus.c mods can send
32 * messages and receive the MSG_COMPLETED status back from the
33 * IOP. The trick now is figuring out the message formats.
34 * 990611 (jmt) - More cleanups. Fixed problem where unclaimed messages on a
35 * receive channel were never properly acknowledged. Bracketed
36 * the remaining debug printk's with #ifdef's and disabled
37 * debugging. I can now type on the console.
38 * 990612 (jmt) - Copyright notice added. Reworked the way replies are handled.
39 * It turns out that replies are placed back in the send buffer
40 * for that channel; messages on the receive channels are always
41 * unsolicited messages from the IOP (and our replies to them
42 * should go back in the receive channel.) Also added tracking
43 * of device names to the listener functions ala the interrupt
44 * handlers.
45 * 990729 (jmt) - Added passing of pt_regs structure to IOP handlers. This is
46 * used by the new unified ADB driver.
47 *
48 * TODO:
49 *
50 * o Something should be periodically checking iop_alive() to make sure the
51 * IOP hasn't died.
52 * o Some of the IOP manager routines need better error checking and
53 * return codes. Nothing major, just prettying up.
54 */
55
56 /*
57 * -----------------------
58 * IOP Message Passing 101
59 * -----------------------
60 *
61 * The host talks to the IOPs using a rather simple message-passing scheme via
62 * a shared memory area in the IOP RAM. Each IOP has seven "channels"; each
63 * channel is connected to a specific software driver on the IOP. For example
64 * on the SCC IOP there is one channel for each serial port. Each channel has
65 * an incoming and and outgoing message queue with a depth of one.
66 *
67 * A message is 32 bytes plus a state byte for the channel (MSG_IDLE, MSG_NEW,
68 * MSG_RCVD, MSG_COMPLETE). To send a message you copy the message into the
69 * buffer, set the state to MSG_NEW and signal the IOP by setting the IRQ flag
70 * in the IOP control to 1. The IOP will move the state to MSG_RCVD when it
71 * receives the message and then to MSG_COMPLETE when the message processing
72 * has completed. It is the host's responsibility at that point to read the
73 * reply back out of the send channel buffer and reset the channel state back
74 * to MSG_IDLE.
75 *
76 * To receive message from the IOP the same procedure is used except the roles
77 * are reversed. That is, the IOP puts message in the channel with a state of
78 * MSG_NEW, and the host receives the message and move its state to MSG_RCVD
79 * and then to MSG_COMPLETE when processing is completed and the reply (if any)
80 * has been placed back in the receive channel. The IOP will then reset the
81 * channel state to MSG_IDLE.
82 *
83 * Two sets of host interrupts are provided, INT0 and INT1. Both appear on one
84 * interrupt level; they are distinguished by a pair of bits in the IOP status
85 * register. The IOP will raise INT0 when one or more messages in the send
86 * channels have gone to the MSG_COMPLETE state and it will raise INT1 when one
87 * or more messages on the receive channels have gone to the MSG_NEW state.
88 *
89 * Since each channel handles only one message we have to implement a small
90 * interrupt-driven queue on our end. Messages to be sent are placed on the
91 * queue for sending and contain a pointer to an optional callback function.
92 * The handler for a message is called when the message state goes to
93 * MSG_COMPLETE.
94 *
95 * For receiving message we maintain a list of handler functions to call when
96 * a message is received on that IOP/channel combination. The handlers are
97 * called much like an interrupt handler and are passed a copy of the message
98 * from the IOP. The message state will be in MSG_RCVD while the handler runs;
99 * it is the handler's responsibility to call iop_complete_message() when
100 * finished; this function moves the message state to MSG_COMPLETE and signals
101 * the IOP. This two-step process is provided to allow the handler to defer
102 * message processing to a bottom-half handler if the processing will take
103 * a significant amount of time (handlers are called at interrupt time so they
104 * should execute quickly.)
105 */
106
107 #include <linux/types.h>
108 #include <linux/kernel.h>
109 #include <linux/mm.h>
110 #include <linux/delay.h>
111 #include <linux/init.h>
112 #include <linux/interrupt.h>
113
114 #include <asm/macintosh.h>
115 #include <asm/macints.h>
116 #include <asm/mac_iop.h>
117
118 #ifdef DEBUG
119 #define iop_pr_debug(fmt, ...) \
120 printk(KERN_DEBUG "%s: " fmt, __func__, ##__VA_ARGS__)
121 #define iop_pr_cont(fmt, ...) \
122 printk(KERN_CONT fmt, ##__VA_ARGS__)
123 #else
124 #define iop_pr_debug(fmt, ...) \
125 no_printk(KERN_DEBUG "%s: " fmt, __func__, ##__VA_ARGS__)
126 #define iop_pr_cont(fmt, ...) \
127 no_printk(KERN_CONT fmt, ##__VA_ARGS__)
128 #endif
129
130 /* Non-zero if the IOPs are present */
131
132 int iop_scc_present, iop_ism_present;
133
134 /* structure for tracking channel listeners */
135
136 struct listener {
137 const char *devname;
138 void (*handler)(struct iop_msg *);
139 };
140
141 /*
142 * IOP structures for the two IOPs
143 *
144 * The SCC IOP controls both serial ports (A and B) as its two functions.
145 * The ISM IOP controls the SWIM (floppy drive) and ADB.
146 */
147
148 static volatile struct mac_iop *iop_base[NUM_IOPS];
149
150 /*
151 * IOP message queues
152 */
153
154 static struct iop_msg iop_msg_pool[NUM_IOP_MSGS];
155 static struct iop_msg *iop_send_queue[NUM_IOPS][NUM_IOP_CHAN];
156 static struct listener iop_listeners[NUM_IOPS][NUM_IOP_CHAN];
157
158 irqreturn_t iop_ism_irq(int, void *);
159
160 /*
161 * Private access functions
162 */
163
iop_loadaddr(volatile struct mac_iop * iop,__u16 addr)164 static __inline__ void iop_loadaddr(volatile struct mac_iop *iop, __u16 addr)
165 {
166 iop->ram_addr_lo = addr;
167 iop->ram_addr_hi = addr >> 8;
168 }
169
iop_readb(volatile struct mac_iop * iop,__u16 addr)170 static __inline__ __u8 iop_readb(volatile struct mac_iop *iop, __u16 addr)
171 {
172 iop->ram_addr_lo = addr;
173 iop->ram_addr_hi = addr >> 8;
174 return iop->ram_data;
175 }
176
iop_writeb(volatile struct mac_iop * iop,__u16 addr,__u8 data)177 static __inline__ void iop_writeb(volatile struct mac_iop *iop, __u16 addr, __u8 data)
178 {
179 iop->ram_addr_lo = addr;
180 iop->ram_addr_hi = addr >> 8;
181 iop->ram_data = data;
182 }
183
iop_stop(volatile struct mac_iop * iop)184 static __inline__ void iop_stop(volatile struct mac_iop *iop)
185 {
186 iop->status_ctrl = IOP_AUTOINC;
187 }
188
iop_start(volatile struct mac_iop * iop)189 static __inline__ void iop_start(volatile struct mac_iop *iop)
190 {
191 iop->status_ctrl = IOP_RUN | IOP_AUTOINC;
192 }
193
iop_interrupt(volatile struct mac_iop * iop)194 static __inline__ void iop_interrupt(volatile struct mac_iop *iop)
195 {
196 iop->status_ctrl = IOP_IRQ | IOP_RUN | IOP_AUTOINC;
197 }
198
iop_alive(volatile struct mac_iop * iop)199 static int iop_alive(volatile struct mac_iop *iop)
200 {
201 int retval;
202
203 retval = (iop_readb(iop, IOP_ADDR_ALIVE) == 0xFF);
204 iop_writeb(iop, IOP_ADDR_ALIVE, 0);
205 return retval;
206 }
207
iop_get_unused_msg(void)208 static struct iop_msg *iop_get_unused_msg(void)
209 {
210 int i;
211 unsigned long flags;
212
213 local_irq_save(flags);
214
215 for (i = 0 ; i < NUM_IOP_MSGS ; i++) {
216 if (iop_msg_pool[i].status == IOP_MSGSTATUS_UNUSED) {
217 iop_msg_pool[i].status = IOP_MSGSTATUS_WAITING;
218 local_irq_restore(flags);
219 return &iop_msg_pool[i];
220 }
221 }
222
223 local_irq_restore(flags);
224 return NULL;
225 }
226
227 /*
228 * This is called by the startup code before anything else. Its purpose
229 * is to find and initialize the IOPs early in the boot sequence, so that
230 * the serial IOP can be placed into bypass mode _before_ we try to
231 * initialize the serial console.
232 */
233
iop_preinit(void)234 void __init iop_preinit(void)
235 {
236 if (macintosh_config->scc_type == MAC_SCC_IOP) {
237 if (macintosh_config->ident == MAC_MODEL_IIFX) {
238 iop_base[IOP_NUM_SCC] = (struct mac_iop *) SCC_IOP_BASE_IIFX;
239 } else {
240 iop_base[IOP_NUM_SCC] = (struct mac_iop *) SCC_IOP_BASE_QUADRA;
241 }
242 iop_scc_present = 1;
243 } else {
244 iop_base[IOP_NUM_SCC] = NULL;
245 iop_scc_present = 0;
246 }
247 if (macintosh_config->adb_type == MAC_ADB_IOP) {
248 if (macintosh_config->ident == MAC_MODEL_IIFX) {
249 iop_base[IOP_NUM_ISM] = (struct mac_iop *) ISM_IOP_BASE_IIFX;
250 } else {
251 iop_base[IOP_NUM_ISM] = (struct mac_iop *) ISM_IOP_BASE_QUADRA;
252 }
253 iop_stop(iop_base[IOP_NUM_ISM]);
254 iop_ism_present = 1;
255 } else {
256 iop_base[IOP_NUM_ISM] = NULL;
257 iop_ism_present = 0;
258 }
259 }
260
261 /*
262 * Initialize the IOPs, if present.
263 */
264
iop_init(void)265 void __init iop_init(void)
266 {
267 int i;
268
269 if (iop_scc_present) {
270 pr_debug("SCC IOP detected at %p\n", iop_base[IOP_NUM_SCC]);
271 }
272 if (iop_ism_present) {
273 pr_debug("ISM IOP detected at %p\n", iop_base[IOP_NUM_ISM]);
274 iop_start(iop_base[IOP_NUM_ISM]);
275 iop_alive(iop_base[IOP_NUM_ISM]); /* clears the alive flag */
276 }
277
278 /* Make the whole pool available and empty the queues */
279
280 for (i = 0 ; i < NUM_IOP_MSGS ; i++) {
281 iop_msg_pool[i].status = IOP_MSGSTATUS_UNUSED;
282 }
283
284 for (i = 0 ; i < NUM_IOP_CHAN ; i++) {
285 iop_send_queue[IOP_NUM_SCC][i] = NULL;
286 iop_send_queue[IOP_NUM_ISM][i] = NULL;
287 iop_listeners[IOP_NUM_SCC][i].devname = NULL;
288 iop_listeners[IOP_NUM_SCC][i].handler = NULL;
289 iop_listeners[IOP_NUM_ISM][i].devname = NULL;
290 iop_listeners[IOP_NUM_ISM][i].handler = NULL;
291 }
292 }
293
294 /*
295 * Register the interrupt handler for the IOPs.
296 * TODO: might be wrong for non-OSS machines. Anyone?
297 */
298
iop_register_interrupts(void)299 void __init iop_register_interrupts(void)
300 {
301 if (iop_ism_present) {
302 if (macintosh_config->ident == MAC_MODEL_IIFX) {
303 if (request_irq(IRQ_MAC_ADB, iop_ism_irq, 0,
304 "ISM IOP", (void *)IOP_NUM_ISM))
305 pr_err("Couldn't register ISM IOP interrupt\n");
306 } else {
307 if (request_irq(IRQ_VIA2_0, iop_ism_irq, 0, "ISM IOP",
308 (void *)IOP_NUM_ISM))
309 pr_err("Couldn't register ISM IOP interrupt\n");
310 }
311 if (!iop_alive(iop_base[IOP_NUM_ISM])) {
312 pr_warn("IOP: oh my god, they killed the ISM IOP!\n");
313 } else {
314 pr_warn("IOP: the ISM IOP seems to be alive.\n");
315 }
316 }
317 }
318
319 /*
320 * Register or unregister a listener for a specific IOP and channel
321 *
322 * If the handler pointer is NULL the current listener (if any) is
323 * unregistered. Otherwise the new listener is registered provided
324 * there is no existing listener registered.
325 */
326
iop_listen(uint iop_num,uint chan,void (* handler)(struct iop_msg *),const char * devname)327 int iop_listen(uint iop_num, uint chan,
328 void (*handler)(struct iop_msg *),
329 const char *devname)
330 {
331 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return -EINVAL;
332 if (chan >= NUM_IOP_CHAN) return -EINVAL;
333 if (iop_listeners[iop_num][chan].handler && handler) return -EINVAL;
334 iop_listeners[iop_num][chan].devname = devname;
335 iop_listeners[iop_num][chan].handler = handler;
336 return 0;
337 }
338
339 /*
340 * Complete reception of a message, which just means copying the reply
341 * into the buffer, setting the channel state to MSG_COMPLETE and
342 * notifying the IOP.
343 */
344
iop_complete_message(struct iop_msg * msg)345 void iop_complete_message(struct iop_msg *msg)
346 {
347 int iop_num = msg->iop_num;
348 int chan = msg->channel;
349 int i,offset;
350
351 iop_pr_debug("msg %p iop_num %d channel %d\n", msg, msg->iop_num,
352 msg->channel);
353
354 offset = IOP_ADDR_RECV_MSG + (msg->channel * IOP_MSG_LEN);
355
356 for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) {
357 iop_writeb(iop_base[iop_num], offset, msg->reply[i]);
358 }
359
360 iop_writeb(iop_base[iop_num],
361 IOP_ADDR_RECV_STATE + chan, IOP_MSG_COMPLETE);
362 iop_interrupt(iop_base[msg->iop_num]);
363
364 msg->status = IOP_MSGSTATUS_UNUSED;
365 }
366
367 /*
368 * Actually put a message into a send channel buffer
369 */
370
iop_do_send(struct iop_msg * msg)371 static void iop_do_send(struct iop_msg *msg)
372 {
373 volatile struct mac_iop *iop = iop_base[msg->iop_num];
374 int i,offset;
375
376 offset = IOP_ADDR_SEND_MSG + (msg->channel * IOP_MSG_LEN);
377
378 for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) {
379 iop_writeb(iop, offset, msg->message[i]);
380 }
381
382 iop_writeb(iop, IOP_ADDR_SEND_STATE + msg->channel, IOP_MSG_NEW);
383
384 iop_interrupt(iop);
385 }
386
387 /*
388 * Handle sending a message on a channel that
389 * has gone into the IOP_MSG_COMPLETE state.
390 */
391
iop_handle_send(uint iop_num,uint chan)392 static void iop_handle_send(uint iop_num, uint chan)
393 {
394 volatile struct mac_iop *iop = iop_base[iop_num];
395 struct iop_msg *msg;
396 int i,offset;
397
398 iop_pr_debug("iop_num %d chan %d\n", iop_num, chan);
399
400 iop_writeb(iop, IOP_ADDR_SEND_STATE + chan, IOP_MSG_IDLE);
401
402 if (!(msg = iop_send_queue[iop_num][chan])) return;
403
404 msg->status = IOP_MSGSTATUS_COMPLETE;
405 offset = IOP_ADDR_SEND_MSG + (chan * IOP_MSG_LEN);
406 for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) {
407 msg->reply[i] = iop_readb(iop, offset);
408 }
409 if (msg->handler) (*msg->handler)(msg);
410 msg->status = IOP_MSGSTATUS_UNUSED;
411 msg = msg->next;
412 iop_send_queue[iop_num][chan] = msg;
413 if (msg && iop_readb(iop, IOP_ADDR_SEND_STATE + chan) == IOP_MSG_IDLE)
414 iop_do_send(msg);
415 }
416
417 /*
418 * Handle reception of a message on a channel that has
419 * gone into the IOP_MSG_NEW state.
420 */
421
iop_handle_recv(uint iop_num,uint chan)422 static void iop_handle_recv(uint iop_num, uint chan)
423 {
424 volatile struct mac_iop *iop = iop_base[iop_num];
425 int i,offset;
426 struct iop_msg *msg;
427
428 iop_pr_debug("iop_num %d chan %d\n", iop_num, chan);
429
430 msg = iop_get_unused_msg();
431 msg->iop_num = iop_num;
432 msg->channel = chan;
433 msg->status = IOP_MSGSTATUS_UNSOL;
434 msg->handler = iop_listeners[iop_num][chan].handler;
435
436 offset = IOP_ADDR_RECV_MSG + (chan * IOP_MSG_LEN);
437
438 for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) {
439 msg->message[i] = iop_readb(iop, offset);
440 }
441
442 iop_writeb(iop, IOP_ADDR_RECV_STATE + chan, IOP_MSG_RCVD);
443
444 /* If there is a listener, call it now. Otherwise complete */
445 /* the message ourselves to avoid possible stalls. */
446
447 if (msg->handler) {
448 (*msg->handler)(msg);
449 } else {
450 iop_pr_debug("unclaimed message on iop_num %d chan %d\n",
451 iop_num, chan);
452 iop_pr_debug("%*ph\n", IOP_MSG_LEN, msg->message);
453 iop_complete_message(msg);
454 }
455 }
456
457 /*
458 * Send a message
459 *
460 * The message is placed at the end of the send queue. Afterwards if the
461 * channel is idle we force an immediate send of the next message in the
462 * queue.
463 */
464
iop_send_message(uint iop_num,uint chan,void * privdata,uint msg_len,__u8 * msg_data,void (* handler)(struct iop_msg *))465 int iop_send_message(uint iop_num, uint chan, void *privdata,
466 uint msg_len, __u8 *msg_data,
467 void (*handler)(struct iop_msg *))
468 {
469 struct iop_msg *msg, *q;
470
471 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return -EINVAL;
472 if (chan >= NUM_IOP_CHAN) return -EINVAL;
473 if (msg_len > IOP_MSG_LEN) return -EINVAL;
474
475 msg = iop_get_unused_msg();
476 if (!msg) return -ENOMEM;
477
478 msg->next = NULL;
479 msg->status = IOP_MSGSTATUS_WAITING;
480 msg->iop_num = iop_num;
481 msg->channel = chan;
482 msg->caller_priv = privdata;
483 memcpy(msg->message, msg_data, msg_len);
484 msg->handler = handler;
485
486 if (!(q = iop_send_queue[iop_num][chan])) {
487 iop_send_queue[iop_num][chan] = msg;
488 iop_do_send(msg);
489 } else {
490 while (q->next) q = q->next;
491 q->next = msg;
492 }
493
494 return 0;
495 }
496
497 /*
498 * Upload code to the shared RAM of an IOP.
499 */
500
iop_upload_code(uint iop_num,__u8 * code_start,uint code_len,__u16 shared_ram_start)501 void iop_upload_code(uint iop_num, __u8 *code_start,
502 uint code_len, __u16 shared_ram_start)
503 {
504 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return;
505
506 iop_loadaddr(iop_base[iop_num], shared_ram_start);
507
508 while (code_len--) {
509 iop_base[iop_num]->ram_data = *code_start++;
510 }
511 }
512
513 /*
514 * Download code from the shared RAM of an IOP.
515 */
516
iop_download_code(uint iop_num,__u8 * code_start,uint code_len,__u16 shared_ram_start)517 void iop_download_code(uint iop_num, __u8 *code_start,
518 uint code_len, __u16 shared_ram_start)
519 {
520 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return;
521
522 iop_loadaddr(iop_base[iop_num], shared_ram_start);
523
524 while (code_len--) {
525 *code_start++ = iop_base[iop_num]->ram_data;
526 }
527 }
528
529 /*
530 * Compare the code in the shared RAM of an IOP with a copy in system memory
531 * and return 0 on match or the first nonmatching system memory address on
532 * failure.
533 */
534
iop_compare_code(uint iop_num,__u8 * code_start,uint code_len,__u16 shared_ram_start)535 __u8 *iop_compare_code(uint iop_num, __u8 *code_start,
536 uint code_len, __u16 shared_ram_start)
537 {
538 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return code_start;
539
540 iop_loadaddr(iop_base[iop_num], shared_ram_start);
541
542 while (code_len--) {
543 if (*code_start != iop_base[iop_num]->ram_data) {
544 return code_start;
545 }
546 code_start++;
547 }
548 return (__u8 *) 0;
549 }
550
551 /*
552 * Handle an ISM IOP interrupt
553 */
554
iop_ism_irq(int irq,void * dev_id)555 irqreturn_t iop_ism_irq(int irq, void *dev_id)
556 {
557 uint iop_num = (uint) dev_id;
558 volatile struct mac_iop *iop = iop_base[iop_num];
559 int i,state;
560
561 iop_pr_debug("status %02X\n", iop->status_ctrl);
562
563 /* INT0 indicates a state change on an outgoing message channel */
564
565 if (iop->status_ctrl & IOP_INT0) {
566 iop->status_ctrl = IOP_INT0 | IOP_RUN | IOP_AUTOINC;
567 iop_pr_debug("new status %02X, send states", iop->status_ctrl);
568 for (i = 0 ; i < NUM_IOP_CHAN ; i++) {
569 state = iop_readb(iop, IOP_ADDR_SEND_STATE + i);
570 iop_pr_cont(" %02X", state);
571 if (state == IOP_MSG_COMPLETE) {
572 iop_handle_send(iop_num, i);
573 }
574 }
575 iop_pr_cont("\n");
576 }
577
578 if (iop->status_ctrl & IOP_INT1) { /* INT1 for incoming msgs */
579 iop->status_ctrl = IOP_INT1 | IOP_RUN | IOP_AUTOINC;
580 iop_pr_debug("new status %02X, recv states", iop->status_ctrl);
581 for (i = 0 ; i < NUM_IOP_CHAN ; i++) {
582 state = iop_readb(iop, IOP_ADDR_RECV_STATE + i);
583 iop_pr_cont(" %02X", state);
584 if (state == IOP_MSG_NEW) {
585 iop_handle_recv(iop_num, i);
586 }
587 }
588 iop_pr_cont("\n");
589 }
590 return IRQ_HANDLED;
591 }
592
iop_ism_irq_poll(uint iop_num)593 void iop_ism_irq_poll(uint iop_num)
594 {
595 unsigned long flags;
596
597 local_irq_save(flags);
598 iop_ism_irq(0, (void *)iop_num);
599 local_irq_restore(flags);
600 }
601