• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23 
24 #include "internals.h"
25 
26 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
27 __read_mostly bool force_irqthreads;
28 EXPORT_SYMBOL_GPL(force_irqthreads);
29 
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	force_irqthreads = true;
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 	bool inprogress;
42 
43 	do {
44 		unsigned long flags;
45 
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		raw_spin_lock_irqsave(&desc->lock, flags);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		raw_spin_unlock_irqrestore(&desc->lock, flags);
71 
72 		/* Oops, that failed? */
73 	} while (inprogress);
74 }
75 
76 /**
77  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *	@irq: interrupt number to wait for
79  *
80  *	This function waits for any pending hard IRQ handlers for this
81  *	interrupt to complete before returning. If you use this
82  *	function while holding a resource the IRQ handler may need you
83  *	will deadlock. It does not take associated threaded handlers
84  *	into account.
85  *
86  *	Do not use this for shutdown scenarios where you must be sure
87  *	that all parts (hardirq and threaded handler) have completed.
88  *
89  *	Returns: false if a threaded handler is active.
90  *
91  *	This function may be called - with care - from IRQ context.
92  *
93  *	It does not check whether there is an interrupt in flight at the
94  *	hardware level, but not serviced yet, as this might deadlock when
95  *	called with interrupts disabled and the target CPU of the interrupt
96  *	is the current CPU.
97  */
synchronize_hardirq(unsigned int irq)98 bool synchronize_hardirq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc, false);
104 		return !atomic_read(&desc->threads_active);
105 	}
106 
107 	return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110 
111 /**
112  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *	@irq: interrupt number to wait for
114  *
115  *	This function waits for any pending IRQ handlers for this interrupt
116  *	to complete before returning. If you use this function while
117  *	holding a resource the IRQ handler may need you will deadlock.
118  *
119  *	Can only be called from preemptible code as it might sleep when
120  *	an interrupt thread is associated to @irq.
121  *
122  *	It optionally makes sure (when the irq chip supports that method)
123  *	that the interrupt is not pending in any CPU and waiting for
124  *	service.
125  */
synchronize_irq(unsigned int irq)126 void synchronize_irq(unsigned int irq)
127 {
128 	struct irq_desc *desc = irq_to_desc(irq);
129 
130 	if (desc) {
131 		__synchronize_hardirq(desc, true);
132 		/*
133 		 * We made sure that no hardirq handler is
134 		 * running. Now verify that no threaded handlers are
135 		 * active.
136 		 */
137 		wait_event(desc->wait_for_threads,
138 			   !atomic_read(&desc->threads_active));
139 	}
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142 
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145 
__irq_can_set_affinity(struct irq_desc * desc)146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
149 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150 		return false;
151 	return true;
152 }
153 
154 /**
155  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *	@irq:		Interrupt to check
157  *
158  */
irq_can_set_affinity(unsigned int irq)159 int irq_can_set_affinity(unsigned int irq)
160 {
161 	return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163 
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:	Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
irq_can_set_affinity_usr(unsigned int irq)171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173 	struct irq_desc *desc = irq_to_desc(irq);
174 
175 	return __irq_can_set_affinity(desc) &&
176 		!irqd_affinity_is_managed(&desc->irq_data);
177 }
178 
179 /**
180  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *	@desc:		irq descriptor which has affitnity changed
182  *
183  *	We just set IRQTF_AFFINITY and delegate the affinity setting
184  *	to the interrupt thread itself. We can not call
185  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *	code can be called from hard interrupt context.
187  */
irq_set_thread_affinity(struct irq_desc * desc)188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190 	struct irqaction *action;
191 
192 	for_each_action_of_desc(desc, action)
193 		if (action->thread)
194 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196 
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201 	struct irq_chip *chip = irq_data_get_irq_chip(data);
202 
203 	if (!cpumask_empty(m))
204 		return;
205 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206 		     chip->name, data->irq);
207 }
208 
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)209 static inline void irq_init_effective_affinity(struct irq_data *data,
210 					       const struct cpumask *mask)
211 {
212 	cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
213 }
214 #else
irq_validate_effective_affinity(struct irq_data * data)215 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)216 static inline void irq_init_effective_affinity(struct irq_data *data,
217 					       const struct cpumask *mask) { }
218 #endif
219 
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
221 			bool force)
222 {
223 	struct irq_desc *desc = irq_data_to_desc(data);
224 	struct irq_chip *chip = irq_data_get_irq_chip(data);
225 	int ret;
226 
227 	if (!chip || !chip->irq_set_affinity)
228 		return -EINVAL;
229 
230 	ret = chip->irq_set_affinity(data, mask, force);
231 	switch (ret) {
232 	case IRQ_SET_MASK_OK:
233 	case IRQ_SET_MASK_OK_DONE:
234 		cpumask_copy(desc->irq_common_data.affinity, mask);
235 		/* fall through */
236 	case IRQ_SET_MASK_OK_NOCOPY:
237 		irq_validate_effective_affinity(data);
238 		irq_set_thread_affinity(desc);
239 		ret = 0;
240 	}
241 
242 	return ret;
243 }
244 
245 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)246 static inline int irq_set_affinity_pending(struct irq_data *data,
247 					   const struct cpumask *dest)
248 {
249 	struct irq_desc *desc = irq_data_to_desc(data);
250 
251 	irqd_set_move_pending(data);
252 	irq_copy_pending(desc, dest);
253 	return 0;
254 }
255 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)256 static inline int irq_set_affinity_pending(struct irq_data *data,
257 					   const struct cpumask *dest)
258 {
259 	return -EBUSY;
260 }
261 #endif
262 
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)263 static int irq_try_set_affinity(struct irq_data *data,
264 				const struct cpumask *dest, bool force)
265 {
266 	int ret = irq_do_set_affinity(data, dest, force);
267 
268 	/*
269 	 * In case that the underlying vector management is busy and the
270 	 * architecture supports the generic pending mechanism then utilize
271 	 * this to avoid returning an error to user space.
272 	 */
273 	if (ret == -EBUSY && !force)
274 		ret = irq_set_affinity_pending(data, dest);
275 	return ret;
276 }
277 
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask,bool force)278 static bool irq_set_affinity_deactivated(struct irq_data *data,
279 					 const struct cpumask *mask, bool force)
280 {
281 	struct irq_desc *desc = irq_data_to_desc(data);
282 
283 	/*
284 	 * Handle irq chips which can handle affinity only in activated
285 	 * state correctly
286 	 *
287 	 * If the interrupt is not yet activated, just store the affinity
288 	 * mask and do not call the chip driver at all. On activation the
289 	 * driver has to make sure anyway that the interrupt is in a
290 	 * useable state so startup works.
291 	 */
292 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
293 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
294 		return false;
295 
296 	cpumask_copy(desc->irq_common_data.affinity, mask);
297 	irq_init_effective_affinity(data, mask);
298 	irqd_set(data, IRQD_AFFINITY_SET);
299 	return true;
300 }
301 
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)302 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
303 			    bool force)
304 {
305 	struct irq_chip *chip = irq_data_get_irq_chip(data);
306 	struct irq_desc *desc = irq_data_to_desc(data);
307 	int ret = 0;
308 
309 	if (!chip || !chip->irq_set_affinity)
310 		return -EINVAL;
311 
312 	if (irq_set_affinity_deactivated(data, mask, force))
313 		return 0;
314 
315 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
316 		ret = irq_try_set_affinity(data, mask, force);
317 	} else {
318 		irqd_set_move_pending(data);
319 		irq_copy_pending(desc, mask);
320 	}
321 
322 	if (desc->affinity_notify) {
323 		kref_get(&desc->affinity_notify->kref);
324 		if (!schedule_work(&desc->affinity_notify->work)) {
325 			/* Work was already scheduled, drop our extra ref */
326 			kref_put(&desc->affinity_notify->kref,
327 				 desc->affinity_notify->release);
328 		}
329 	}
330 	irqd_set(data, IRQD_AFFINITY_SET);
331 
332 	return ret;
333 }
334 
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)335 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
336 {
337 	struct irq_desc *desc = irq_to_desc(irq);
338 	unsigned long flags;
339 	int ret;
340 
341 	if (!desc)
342 		return -EINVAL;
343 
344 	raw_spin_lock_irqsave(&desc->lock, flags);
345 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
346 	raw_spin_unlock_irqrestore(&desc->lock, flags);
347 	return ret;
348 }
349 
irq_set_affinity_hint(unsigned int irq,const struct cpumask * m)350 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
351 {
352 	unsigned long flags;
353 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
354 
355 	if (!desc)
356 		return -EINVAL;
357 	desc->affinity_hint = m;
358 	irq_put_desc_unlock(desc, flags);
359 	/* set the initial affinity to prevent every interrupt being on CPU0 */
360 	if (m)
361 		__irq_set_affinity(irq, m, false);
362 	return 0;
363 }
364 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
365 
irq_affinity_notify(struct work_struct * work)366 static void irq_affinity_notify(struct work_struct *work)
367 {
368 	struct irq_affinity_notify *notify =
369 		container_of(work, struct irq_affinity_notify, work);
370 	struct irq_desc *desc = irq_to_desc(notify->irq);
371 	cpumask_var_t cpumask;
372 	unsigned long flags;
373 
374 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
375 		goto out;
376 
377 	raw_spin_lock_irqsave(&desc->lock, flags);
378 	if (irq_move_pending(&desc->irq_data))
379 		irq_get_pending(cpumask, desc);
380 	else
381 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
382 	raw_spin_unlock_irqrestore(&desc->lock, flags);
383 
384 	notify->notify(notify, cpumask);
385 
386 	free_cpumask_var(cpumask);
387 out:
388 	kref_put(&notify->kref, notify->release);
389 }
390 
391 /**
392  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
393  *	@irq:		Interrupt for which to enable/disable notification
394  *	@notify:	Context for notification, or %NULL to disable
395  *			notification.  Function pointers must be initialised;
396  *			the other fields will be initialised by this function.
397  *
398  *	Must be called in process context.  Notification may only be enabled
399  *	after the IRQ is allocated and must be disabled before the IRQ is
400  *	freed using free_irq().
401  */
402 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)403 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
404 {
405 	struct irq_desc *desc = irq_to_desc(irq);
406 	struct irq_affinity_notify *old_notify;
407 	unsigned long flags;
408 
409 	/* The release function is promised process context */
410 	might_sleep();
411 
412 	if (!desc || desc->istate & IRQS_NMI)
413 		return -EINVAL;
414 
415 	/* Complete initialisation of *notify */
416 	if (notify) {
417 		notify->irq = irq;
418 		kref_init(&notify->kref);
419 		INIT_WORK(&notify->work, irq_affinity_notify);
420 	}
421 
422 	raw_spin_lock_irqsave(&desc->lock, flags);
423 	old_notify = desc->affinity_notify;
424 	desc->affinity_notify = notify;
425 	raw_spin_unlock_irqrestore(&desc->lock, flags);
426 
427 	if (old_notify) {
428 		if (cancel_work_sync(&old_notify->work)) {
429 			/* Pending work had a ref, put that one too */
430 			kref_put(&old_notify->kref, old_notify->release);
431 		}
432 		kref_put(&old_notify->kref, old_notify->release);
433 	}
434 
435 	return 0;
436 }
437 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
438 
439 #ifndef CONFIG_AUTO_IRQ_AFFINITY
440 /*
441  * Generic version of the affinity autoselector.
442  */
irq_setup_affinity(struct irq_desc * desc)443 int irq_setup_affinity(struct irq_desc *desc)
444 {
445 	struct cpumask *set = irq_default_affinity;
446 	int ret, node = irq_desc_get_node(desc);
447 	static DEFINE_RAW_SPINLOCK(mask_lock);
448 	static struct cpumask mask;
449 
450 	/* Excludes PER_CPU and NO_BALANCE interrupts */
451 	if (!__irq_can_set_affinity(desc))
452 		return 0;
453 
454 	raw_spin_lock(&mask_lock);
455 	/*
456 	 * Preserve the managed affinity setting and a userspace affinity
457 	 * setup, but make sure that one of the targets is online.
458 	 */
459 	if (irqd_affinity_is_managed(&desc->irq_data) ||
460 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
461 		if (cpumask_intersects(desc->irq_common_data.affinity,
462 				       cpu_online_mask))
463 			set = desc->irq_common_data.affinity;
464 		else
465 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
466 	}
467 
468 	cpumask_and(&mask, cpu_online_mask, set);
469 	if (cpumask_empty(&mask))
470 		cpumask_copy(&mask, cpu_online_mask);
471 
472 	if (node != NUMA_NO_NODE) {
473 		const struct cpumask *nodemask = cpumask_of_node(node);
474 
475 		/* make sure at least one of the cpus in nodemask is online */
476 		if (cpumask_intersects(&mask, nodemask))
477 			cpumask_and(&mask, &mask, nodemask);
478 	}
479 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
480 	raw_spin_unlock(&mask_lock);
481 	return ret;
482 }
483 #else
484 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)485 int irq_setup_affinity(struct irq_desc *desc)
486 {
487 	return irq_select_affinity(irq_desc_get_irq(desc));
488 }
489 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
490 #endif /* CONFIG_SMP */
491 
492 
493 /**
494  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
495  *	@irq: interrupt number to set affinity
496  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
497  *	            specific data for percpu_devid interrupts
498  *
499  *	This function uses the vCPU specific data to set the vCPU
500  *	affinity for an irq. The vCPU specific data is passed from
501  *	outside, such as KVM. One example code path is as below:
502  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
503  */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)504 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
505 {
506 	unsigned long flags;
507 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
508 	struct irq_data *data;
509 	struct irq_chip *chip;
510 	int ret = -ENOSYS;
511 
512 	if (!desc)
513 		return -EINVAL;
514 
515 	data = irq_desc_get_irq_data(desc);
516 	do {
517 		chip = irq_data_get_irq_chip(data);
518 		if (chip && chip->irq_set_vcpu_affinity)
519 			break;
520 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
521 		data = data->parent_data;
522 #else
523 		data = NULL;
524 #endif
525 	} while (data);
526 
527 	if (data)
528 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
529 	irq_put_desc_unlock(desc, flags);
530 
531 	return ret;
532 }
533 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
534 
__disable_irq(struct irq_desc * desc)535 void __disable_irq(struct irq_desc *desc)
536 {
537 	if (!desc->depth++)
538 		irq_disable(desc);
539 }
540 
__disable_irq_nosync(unsigned int irq)541 static int __disable_irq_nosync(unsigned int irq)
542 {
543 	unsigned long flags;
544 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
545 
546 	if (!desc)
547 		return -EINVAL;
548 	__disable_irq(desc);
549 	irq_put_desc_busunlock(desc, flags);
550 	return 0;
551 }
552 
553 /**
554  *	disable_irq_nosync - disable an irq without waiting
555  *	@irq: Interrupt to disable
556  *
557  *	Disable the selected interrupt line.  Disables and Enables are
558  *	nested.
559  *	Unlike disable_irq(), this function does not ensure existing
560  *	instances of the IRQ handler have completed before returning.
561  *
562  *	This function may be called from IRQ context.
563  */
disable_irq_nosync(unsigned int irq)564 void disable_irq_nosync(unsigned int irq)
565 {
566 	__disable_irq_nosync(irq);
567 }
568 EXPORT_SYMBOL(disable_irq_nosync);
569 
570 /**
571  *	disable_irq - disable an irq and wait for completion
572  *	@irq: Interrupt to disable
573  *
574  *	Disable the selected interrupt line.  Enables and Disables are
575  *	nested.
576  *	This function waits for any pending IRQ handlers for this interrupt
577  *	to complete before returning. If you use this function while
578  *	holding a resource the IRQ handler may need you will deadlock.
579  *
580  *	This function may be called - with care - from IRQ context.
581  */
disable_irq(unsigned int irq)582 void disable_irq(unsigned int irq)
583 {
584 	if (!__disable_irq_nosync(irq))
585 		synchronize_irq(irq);
586 }
587 EXPORT_SYMBOL(disable_irq);
588 
589 /**
590  *	disable_hardirq - disables an irq and waits for hardirq completion
591  *	@irq: Interrupt to disable
592  *
593  *	Disable the selected interrupt line.  Enables and Disables are
594  *	nested.
595  *	This function waits for any pending hard IRQ handlers for this
596  *	interrupt to complete before returning. If you use this function while
597  *	holding a resource the hard IRQ handler may need you will deadlock.
598  *
599  *	When used to optimistically disable an interrupt from atomic context
600  *	the return value must be checked.
601  *
602  *	Returns: false if a threaded handler is active.
603  *
604  *	This function may be called - with care - from IRQ context.
605  */
disable_hardirq(unsigned int irq)606 bool disable_hardirq(unsigned int irq)
607 {
608 	if (!__disable_irq_nosync(irq))
609 		return synchronize_hardirq(irq);
610 
611 	return false;
612 }
613 EXPORT_SYMBOL_GPL(disable_hardirq);
614 
615 /**
616  *	disable_nmi_nosync - disable an nmi without waiting
617  *	@irq: Interrupt to disable
618  *
619  *	Disable the selected interrupt line. Disables and enables are
620  *	nested.
621  *	The interrupt to disable must have been requested through request_nmi.
622  *	Unlike disable_nmi(), this function does not ensure existing
623  *	instances of the IRQ handler have completed before returning.
624  */
disable_nmi_nosync(unsigned int irq)625 void disable_nmi_nosync(unsigned int irq)
626 {
627 	disable_irq_nosync(irq);
628 }
629 
__enable_irq(struct irq_desc * desc)630 void __enable_irq(struct irq_desc *desc)
631 {
632 	switch (desc->depth) {
633 	case 0:
634  err_out:
635 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
636 		     irq_desc_get_irq(desc));
637 		break;
638 	case 1: {
639 		if (desc->istate & IRQS_SUSPENDED)
640 			goto err_out;
641 		/* Prevent probing on this irq: */
642 		irq_settings_set_noprobe(desc);
643 		/*
644 		 * Call irq_startup() not irq_enable() here because the
645 		 * interrupt might be marked NOAUTOEN. So irq_startup()
646 		 * needs to be invoked when it gets enabled the first
647 		 * time. If it was already started up, then irq_startup()
648 		 * will invoke irq_enable() under the hood.
649 		 */
650 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
651 		break;
652 	}
653 	default:
654 		desc->depth--;
655 	}
656 }
657 
658 /**
659  *	enable_irq - enable handling of an irq
660  *	@irq: Interrupt to enable
661  *
662  *	Undoes the effect of one call to disable_irq().  If this
663  *	matches the last disable, processing of interrupts on this
664  *	IRQ line is re-enabled.
665  *
666  *	This function may be called from IRQ context only when
667  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
668  */
enable_irq(unsigned int irq)669 void enable_irq(unsigned int irq)
670 {
671 	unsigned long flags;
672 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
673 
674 	if (!desc)
675 		return;
676 	if (WARN(!desc->irq_data.chip,
677 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
678 		goto out;
679 
680 	__enable_irq(desc);
681 out:
682 	irq_put_desc_busunlock(desc, flags);
683 }
684 EXPORT_SYMBOL(enable_irq);
685 
686 /**
687  *	enable_nmi - enable handling of an nmi
688  *	@irq: Interrupt to enable
689  *
690  *	The interrupt to enable must have been requested through request_nmi.
691  *	Undoes the effect of one call to disable_nmi(). If this
692  *	matches the last disable, processing of interrupts on this
693  *	IRQ line is re-enabled.
694  */
enable_nmi(unsigned int irq)695 void enable_nmi(unsigned int irq)
696 {
697 	enable_irq(irq);
698 }
699 
set_irq_wake_real(unsigned int irq,unsigned int on)700 static int set_irq_wake_real(unsigned int irq, unsigned int on)
701 {
702 	struct irq_desc *desc = irq_to_desc(irq);
703 	int ret = -ENXIO;
704 
705 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
706 		return 0;
707 
708 	if (desc->irq_data.chip->irq_set_wake)
709 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
710 
711 	return ret;
712 }
713 
714 /**
715  *	irq_set_irq_wake - control irq power management wakeup
716  *	@irq:	interrupt to control
717  *	@on:	enable/disable power management wakeup
718  *
719  *	Enable/disable power management wakeup mode, which is
720  *	disabled by default.  Enables and disables must match,
721  *	just as they match for non-wakeup mode support.
722  *
723  *	Wakeup mode lets this IRQ wake the system from sleep
724  *	states like "suspend to RAM".
725  */
irq_set_irq_wake(unsigned int irq,unsigned int on)726 int irq_set_irq_wake(unsigned int irq, unsigned int on)
727 {
728 	unsigned long flags;
729 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
730 	int ret = 0;
731 
732 	if (!desc)
733 		return -EINVAL;
734 
735 	/* Don't use NMIs as wake up interrupts please */
736 	if (desc->istate & IRQS_NMI) {
737 		ret = -EINVAL;
738 		goto out_unlock;
739 	}
740 
741 	/* wakeup-capable irqs can be shared between drivers that
742 	 * don't need to have the same sleep mode behaviors.
743 	 */
744 	if (on) {
745 		if (desc->wake_depth++ == 0) {
746 			ret = set_irq_wake_real(irq, on);
747 			if (ret)
748 				desc->wake_depth = 0;
749 			else
750 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
751 		}
752 	} else {
753 		if (desc->wake_depth == 0) {
754 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
755 		} else if (--desc->wake_depth == 0) {
756 			ret = set_irq_wake_real(irq, on);
757 			if (ret)
758 				desc->wake_depth = 1;
759 			else
760 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
761 		}
762 	}
763 
764 out_unlock:
765 	irq_put_desc_busunlock(desc, flags);
766 	return ret;
767 }
768 EXPORT_SYMBOL(irq_set_irq_wake);
769 
770 /*
771  * Internal function that tells the architecture code whether a
772  * particular irq has been exclusively allocated or is available
773  * for driver use.
774  */
can_request_irq(unsigned int irq,unsigned long irqflags)775 int can_request_irq(unsigned int irq, unsigned long irqflags)
776 {
777 	unsigned long flags;
778 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
779 	int canrequest = 0;
780 
781 	if (!desc)
782 		return 0;
783 
784 	if (irq_settings_can_request(desc)) {
785 		if (!desc->action ||
786 		    irqflags & desc->action->flags & IRQF_SHARED)
787 			canrequest = 1;
788 	}
789 	irq_put_desc_unlock(desc, flags);
790 	return canrequest;
791 }
792 
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)793 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
794 {
795 	struct irq_chip *chip = desc->irq_data.chip;
796 	int ret, unmask = 0;
797 
798 	if (!chip || !chip->irq_set_type) {
799 		/*
800 		 * IRQF_TRIGGER_* but the PIC does not support multiple
801 		 * flow-types?
802 		 */
803 		pr_debug("No set_type function for IRQ %d (%s)\n",
804 			 irq_desc_get_irq(desc),
805 			 chip ? (chip->name ? : "unknown") : "unknown");
806 		return 0;
807 	}
808 
809 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
810 		if (!irqd_irq_masked(&desc->irq_data))
811 			mask_irq(desc);
812 		if (!irqd_irq_disabled(&desc->irq_data))
813 			unmask = 1;
814 	}
815 
816 	/* Mask all flags except trigger mode */
817 	flags &= IRQ_TYPE_SENSE_MASK;
818 	ret = chip->irq_set_type(&desc->irq_data, flags);
819 
820 	switch (ret) {
821 	case IRQ_SET_MASK_OK:
822 	case IRQ_SET_MASK_OK_DONE:
823 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
824 		irqd_set(&desc->irq_data, flags);
825 		/* fall through */
826 
827 	case IRQ_SET_MASK_OK_NOCOPY:
828 		flags = irqd_get_trigger_type(&desc->irq_data);
829 		irq_settings_set_trigger_mask(desc, flags);
830 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
831 		irq_settings_clr_level(desc);
832 		if (flags & IRQ_TYPE_LEVEL_MASK) {
833 			irq_settings_set_level(desc);
834 			irqd_set(&desc->irq_data, IRQD_LEVEL);
835 		}
836 
837 		ret = 0;
838 		break;
839 	default:
840 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
841 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
842 	}
843 	if (unmask)
844 		unmask_irq(desc);
845 	return ret;
846 }
847 
848 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)849 int irq_set_parent(int irq, int parent_irq)
850 {
851 	unsigned long flags;
852 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
853 
854 	if (!desc)
855 		return -EINVAL;
856 
857 	desc->parent_irq = parent_irq;
858 
859 	irq_put_desc_unlock(desc, flags);
860 	return 0;
861 }
862 EXPORT_SYMBOL_GPL(irq_set_parent);
863 #endif
864 
865 /*
866  * Default primary interrupt handler for threaded interrupts. Is
867  * assigned as primary handler when request_threaded_irq is called
868  * with handler == NULL. Useful for oneshot interrupts.
869  */
irq_default_primary_handler(int irq,void * dev_id)870 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
871 {
872 	return IRQ_WAKE_THREAD;
873 }
874 
875 /*
876  * Primary handler for nested threaded interrupts. Should never be
877  * called.
878  */
irq_nested_primary_handler(int irq,void * dev_id)879 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
880 {
881 	WARN(1, "Primary handler called for nested irq %d\n", irq);
882 	return IRQ_NONE;
883 }
884 
irq_forced_secondary_handler(int irq,void * dev_id)885 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
886 {
887 	WARN(1, "Secondary action handler called for irq %d\n", irq);
888 	return IRQ_NONE;
889 }
890 
irq_wait_for_interrupt(struct irqaction * action)891 static int irq_wait_for_interrupt(struct irqaction *action)
892 {
893 	for (;;) {
894 		set_current_state(TASK_INTERRUPTIBLE);
895 
896 		if (kthread_should_stop()) {
897 			/* may need to run one last time */
898 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
899 					       &action->thread_flags)) {
900 				__set_current_state(TASK_RUNNING);
901 				return 0;
902 			}
903 			__set_current_state(TASK_RUNNING);
904 			return -1;
905 		}
906 
907 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
908 				       &action->thread_flags)) {
909 			__set_current_state(TASK_RUNNING);
910 			return 0;
911 		}
912 		schedule();
913 	}
914 }
915 
916 /*
917  * Oneshot interrupts keep the irq line masked until the threaded
918  * handler finished. unmask if the interrupt has not been disabled and
919  * is marked MASKED.
920  */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)921 static void irq_finalize_oneshot(struct irq_desc *desc,
922 				 struct irqaction *action)
923 {
924 	if (!(desc->istate & IRQS_ONESHOT) ||
925 	    action->handler == irq_forced_secondary_handler)
926 		return;
927 again:
928 	chip_bus_lock(desc);
929 	raw_spin_lock_irq(&desc->lock);
930 
931 	/*
932 	 * Implausible though it may be we need to protect us against
933 	 * the following scenario:
934 	 *
935 	 * The thread is faster done than the hard interrupt handler
936 	 * on the other CPU. If we unmask the irq line then the
937 	 * interrupt can come in again and masks the line, leaves due
938 	 * to IRQS_INPROGRESS and the irq line is masked forever.
939 	 *
940 	 * This also serializes the state of shared oneshot handlers
941 	 * versus "desc->threads_onehsot |= action->thread_mask;" in
942 	 * irq_wake_thread(). See the comment there which explains the
943 	 * serialization.
944 	 */
945 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
946 		raw_spin_unlock_irq(&desc->lock);
947 		chip_bus_sync_unlock(desc);
948 		cpu_relax();
949 		goto again;
950 	}
951 
952 	/*
953 	 * Now check again, whether the thread should run. Otherwise
954 	 * we would clear the threads_oneshot bit of this thread which
955 	 * was just set.
956 	 */
957 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
958 		goto out_unlock;
959 
960 	desc->threads_oneshot &= ~action->thread_mask;
961 
962 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
963 	    irqd_irq_masked(&desc->irq_data))
964 		unmask_threaded_irq(desc);
965 
966 out_unlock:
967 	raw_spin_unlock_irq(&desc->lock);
968 	chip_bus_sync_unlock(desc);
969 }
970 
971 #ifdef CONFIG_SMP
972 /*
973  * Check whether we need to change the affinity of the interrupt thread.
974  */
975 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)976 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
977 {
978 	cpumask_var_t mask;
979 	bool valid = true;
980 
981 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
982 		return;
983 
984 	/*
985 	 * In case we are out of memory we set IRQTF_AFFINITY again and
986 	 * try again next time
987 	 */
988 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
989 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
990 		return;
991 	}
992 
993 	raw_spin_lock_irq(&desc->lock);
994 	/*
995 	 * This code is triggered unconditionally. Check the affinity
996 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
997 	 */
998 	if (cpumask_available(desc->irq_common_data.affinity)) {
999 		const struct cpumask *m;
1000 
1001 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1002 		cpumask_copy(mask, m);
1003 	} else {
1004 		valid = false;
1005 	}
1006 	raw_spin_unlock_irq(&desc->lock);
1007 
1008 	if (valid)
1009 		set_cpus_allowed_ptr(current, mask);
1010 	free_cpumask_var(mask);
1011 }
1012 #else
1013 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1014 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1015 #endif
1016 
1017 /*
1018  * Interrupts which are not explicitly requested as threaded
1019  * interrupts rely on the implicit bh/preempt disable of the hard irq
1020  * context. So we need to disable bh here to avoid deadlocks and other
1021  * side effects.
1022  */
1023 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1024 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1025 {
1026 	irqreturn_t ret;
1027 
1028 	local_bh_disable();
1029 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1030 		local_irq_disable();
1031 	ret = action->thread_fn(action->irq, action->dev_id);
1032 	if (ret == IRQ_HANDLED)
1033 		atomic_inc(&desc->threads_handled);
1034 
1035 	irq_finalize_oneshot(desc, action);
1036 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1037 		local_irq_enable();
1038 	local_bh_enable();
1039 	return ret;
1040 }
1041 
1042 /*
1043  * Interrupts explicitly requested as threaded interrupts want to be
1044  * preemtible - many of them need to sleep and wait for slow busses to
1045  * complete.
1046  */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1047 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1048 		struct irqaction *action)
1049 {
1050 	irqreturn_t ret;
1051 
1052 	ret = action->thread_fn(action->irq, action->dev_id);
1053 	if (ret == IRQ_HANDLED)
1054 		atomic_inc(&desc->threads_handled);
1055 
1056 	irq_finalize_oneshot(desc, action);
1057 	return ret;
1058 }
1059 
wake_threads_waitq(struct irq_desc * desc)1060 static void wake_threads_waitq(struct irq_desc *desc)
1061 {
1062 	if (atomic_dec_and_test(&desc->threads_active))
1063 		wake_up(&desc->wait_for_threads);
1064 }
1065 
irq_thread_dtor(struct callback_head * unused)1066 static void irq_thread_dtor(struct callback_head *unused)
1067 {
1068 	struct task_struct *tsk = current;
1069 	struct irq_desc *desc;
1070 	struct irqaction *action;
1071 
1072 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1073 		return;
1074 
1075 	action = kthread_data(tsk);
1076 
1077 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1078 	       tsk->comm, tsk->pid, action->irq);
1079 
1080 
1081 	desc = irq_to_desc(action->irq);
1082 	/*
1083 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1084 	 * desc->threads_active and wake possible waiters.
1085 	 */
1086 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1087 		wake_threads_waitq(desc);
1088 
1089 	/* Prevent a stale desc->threads_oneshot */
1090 	irq_finalize_oneshot(desc, action);
1091 }
1092 
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1093 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1094 {
1095 	struct irqaction *secondary = action->secondary;
1096 
1097 	if (WARN_ON_ONCE(!secondary))
1098 		return;
1099 
1100 	raw_spin_lock_irq(&desc->lock);
1101 	__irq_wake_thread(desc, secondary);
1102 	raw_spin_unlock_irq(&desc->lock);
1103 }
1104 
1105 /*
1106  * Internal function to notify that a interrupt thread is ready.
1107  */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1108 static void irq_thread_set_ready(struct irq_desc *desc,
1109 				 struct irqaction *action)
1110 {
1111 	set_bit(IRQTF_READY, &action->thread_flags);
1112 	wake_up(&desc->wait_for_threads);
1113 }
1114 
1115 /*
1116  * Internal function to wake up a interrupt thread and wait until it is
1117  * ready.
1118  */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1119 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1120 						  struct irqaction *action)
1121 {
1122 	if (!action || !action->thread)
1123 		return;
1124 
1125 	wake_up_process(action->thread);
1126 	wait_event(desc->wait_for_threads,
1127 		   test_bit(IRQTF_READY, &action->thread_flags));
1128 }
1129 
1130 /*
1131  * Interrupt handler thread
1132  */
irq_thread(void * data)1133 static int irq_thread(void *data)
1134 {
1135 	struct callback_head on_exit_work;
1136 	struct irqaction *action = data;
1137 	struct irq_desc *desc = irq_to_desc(action->irq);
1138 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1139 			struct irqaction *action);
1140 
1141 	irq_thread_set_ready(desc, action);
1142 
1143 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1144 					&action->thread_flags))
1145 		handler_fn = irq_forced_thread_fn;
1146 	else
1147 		handler_fn = irq_thread_fn;
1148 
1149 	init_task_work(&on_exit_work, irq_thread_dtor);
1150 	task_work_add(current, &on_exit_work, false);
1151 
1152 	irq_thread_check_affinity(desc, action);
1153 
1154 	while (!irq_wait_for_interrupt(action)) {
1155 		irqreturn_t action_ret;
1156 
1157 		irq_thread_check_affinity(desc, action);
1158 
1159 		action_ret = handler_fn(desc, action);
1160 		if (action_ret == IRQ_WAKE_THREAD)
1161 			irq_wake_secondary(desc, action);
1162 
1163 		wake_threads_waitq(desc);
1164 	}
1165 
1166 	/*
1167 	 * This is the regular exit path. __free_irq() is stopping the
1168 	 * thread via kthread_stop() after calling
1169 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1170 	 * oneshot mask bit can be set.
1171 	 */
1172 	task_work_cancel(current, irq_thread_dtor);
1173 	return 0;
1174 }
1175 
1176 /**
1177  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1178  *	@irq:		Interrupt line
1179  *	@dev_id:	Device identity for which the thread should be woken
1180  *
1181  */
irq_wake_thread(unsigned int irq,void * dev_id)1182 void irq_wake_thread(unsigned int irq, void *dev_id)
1183 {
1184 	struct irq_desc *desc = irq_to_desc(irq);
1185 	struct irqaction *action;
1186 	unsigned long flags;
1187 
1188 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1189 		return;
1190 
1191 	raw_spin_lock_irqsave(&desc->lock, flags);
1192 	for_each_action_of_desc(desc, action) {
1193 		if (action->dev_id == dev_id) {
1194 			if (action->thread)
1195 				__irq_wake_thread(desc, action);
1196 			break;
1197 		}
1198 	}
1199 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1200 }
1201 EXPORT_SYMBOL_GPL(irq_wake_thread);
1202 
irq_setup_forced_threading(struct irqaction * new)1203 static int irq_setup_forced_threading(struct irqaction *new)
1204 {
1205 	if (!force_irqthreads)
1206 		return 0;
1207 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1208 		return 0;
1209 
1210 	/*
1211 	 * No further action required for interrupts which are requested as
1212 	 * threaded interrupts already
1213 	 */
1214 	if (new->handler == irq_default_primary_handler)
1215 		return 0;
1216 
1217 	new->flags |= IRQF_ONESHOT;
1218 
1219 	/*
1220 	 * Handle the case where we have a real primary handler and a
1221 	 * thread handler. We force thread them as well by creating a
1222 	 * secondary action.
1223 	 */
1224 	if (new->handler && new->thread_fn) {
1225 		/* Allocate the secondary action */
1226 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1227 		if (!new->secondary)
1228 			return -ENOMEM;
1229 		new->secondary->handler = irq_forced_secondary_handler;
1230 		new->secondary->thread_fn = new->thread_fn;
1231 		new->secondary->dev_id = new->dev_id;
1232 		new->secondary->irq = new->irq;
1233 		new->secondary->name = new->name;
1234 	}
1235 	/* Deal with the primary handler */
1236 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1237 	new->thread_fn = new->handler;
1238 	new->handler = irq_default_primary_handler;
1239 	return 0;
1240 }
1241 
irq_request_resources(struct irq_desc * desc)1242 static int irq_request_resources(struct irq_desc *desc)
1243 {
1244 	struct irq_data *d = &desc->irq_data;
1245 	struct irq_chip *c = d->chip;
1246 
1247 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1248 }
1249 
irq_release_resources(struct irq_desc * desc)1250 static void irq_release_resources(struct irq_desc *desc)
1251 {
1252 	struct irq_data *d = &desc->irq_data;
1253 	struct irq_chip *c = d->chip;
1254 
1255 	if (c->irq_release_resources)
1256 		c->irq_release_resources(d);
1257 }
1258 
irq_supports_nmi(struct irq_desc * desc)1259 static bool irq_supports_nmi(struct irq_desc *desc)
1260 {
1261 	struct irq_data *d = irq_desc_get_irq_data(desc);
1262 
1263 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1264 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1265 	if (d->parent_data)
1266 		return false;
1267 #endif
1268 	/* Don't support NMIs for chips behind a slow bus */
1269 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1270 		return false;
1271 
1272 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1273 }
1274 
irq_nmi_setup(struct irq_desc * desc)1275 static int irq_nmi_setup(struct irq_desc *desc)
1276 {
1277 	struct irq_data *d = irq_desc_get_irq_data(desc);
1278 	struct irq_chip *c = d->chip;
1279 
1280 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1281 }
1282 
irq_nmi_teardown(struct irq_desc * desc)1283 static void irq_nmi_teardown(struct irq_desc *desc)
1284 {
1285 	struct irq_data *d = irq_desc_get_irq_data(desc);
1286 	struct irq_chip *c = d->chip;
1287 
1288 	if (c->irq_nmi_teardown)
1289 		c->irq_nmi_teardown(d);
1290 }
1291 
1292 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1293 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1294 {
1295 	struct task_struct *t;
1296 	struct sched_param param = {
1297 		.sched_priority = MAX_USER_RT_PRIO/2,
1298 	};
1299 
1300 	if (!secondary) {
1301 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1302 				   new->name);
1303 	} else {
1304 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1305 				   new->name);
1306 		param.sched_priority -= 1;
1307 	}
1308 
1309 	if (IS_ERR(t))
1310 		return PTR_ERR(t);
1311 
1312 	sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1313 
1314 	/*
1315 	 * We keep the reference to the task struct even if
1316 	 * the thread dies to avoid that the interrupt code
1317 	 * references an already freed task_struct.
1318 	 */
1319 	new->thread = get_task_struct(t);
1320 	/*
1321 	 * Tell the thread to set its affinity. This is
1322 	 * important for shared interrupt handlers as we do
1323 	 * not invoke setup_affinity() for the secondary
1324 	 * handlers as everything is already set up. Even for
1325 	 * interrupts marked with IRQF_NO_BALANCE this is
1326 	 * correct as we want the thread to move to the cpu(s)
1327 	 * on which the requesting code placed the interrupt.
1328 	 */
1329 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1330 	return 0;
1331 }
1332 
1333 /*
1334  * Internal function to register an irqaction - typically used to
1335  * allocate special interrupts that are part of the architecture.
1336  *
1337  * Locking rules:
1338  *
1339  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1340  *   chip_bus_lock	Provides serialization for slow bus operations
1341  *     desc->lock	Provides serialization against hard interrupts
1342  *
1343  * chip_bus_lock and desc->lock are sufficient for all other management and
1344  * interrupt related functions. desc->request_mutex solely serializes
1345  * request/free_irq().
1346  */
1347 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1348 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1349 {
1350 	struct irqaction *old, **old_ptr;
1351 	unsigned long flags, thread_mask = 0;
1352 	int ret, nested, shared = 0;
1353 
1354 	if (!desc)
1355 		return -EINVAL;
1356 
1357 	if (desc->irq_data.chip == &no_irq_chip)
1358 		return -ENOSYS;
1359 	if (!try_module_get(desc->owner))
1360 		return -ENODEV;
1361 
1362 	new->irq = irq;
1363 
1364 	/*
1365 	 * If the trigger type is not specified by the caller,
1366 	 * then use the default for this interrupt.
1367 	 */
1368 	if (!(new->flags & IRQF_TRIGGER_MASK))
1369 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1370 
1371 	/*
1372 	 * Check whether the interrupt nests into another interrupt
1373 	 * thread.
1374 	 */
1375 	nested = irq_settings_is_nested_thread(desc);
1376 	if (nested) {
1377 		if (!new->thread_fn) {
1378 			ret = -EINVAL;
1379 			goto out_mput;
1380 		}
1381 		/*
1382 		 * Replace the primary handler which was provided from
1383 		 * the driver for non nested interrupt handling by the
1384 		 * dummy function which warns when called.
1385 		 */
1386 		new->handler = irq_nested_primary_handler;
1387 	} else {
1388 		if (irq_settings_can_thread(desc)) {
1389 			ret = irq_setup_forced_threading(new);
1390 			if (ret)
1391 				goto out_mput;
1392 		}
1393 	}
1394 
1395 	/*
1396 	 * Create a handler thread when a thread function is supplied
1397 	 * and the interrupt does not nest into another interrupt
1398 	 * thread.
1399 	 */
1400 	if (new->thread_fn && !nested) {
1401 		ret = setup_irq_thread(new, irq, false);
1402 		if (ret)
1403 			goto out_mput;
1404 		if (new->secondary) {
1405 			ret = setup_irq_thread(new->secondary, irq, true);
1406 			if (ret)
1407 				goto out_thread;
1408 		}
1409 	}
1410 
1411 	/*
1412 	 * Drivers are often written to work w/o knowledge about the
1413 	 * underlying irq chip implementation, so a request for a
1414 	 * threaded irq without a primary hard irq context handler
1415 	 * requires the ONESHOT flag to be set. Some irq chips like
1416 	 * MSI based interrupts are per se one shot safe. Check the
1417 	 * chip flags, so we can avoid the unmask dance at the end of
1418 	 * the threaded handler for those.
1419 	 */
1420 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1421 		new->flags &= ~IRQF_ONESHOT;
1422 
1423 	/*
1424 	 * Protects against a concurrent __free_irq() call which might wait
1425 	 * for synchronize_hardirq() to complete without holding the optional
1426 	 * chip bus lock and desc->lock. Also protects against handing out
1427 	 * a recycled oneshot thread_mask bit while it's still in use by
1428 	 * its previous owner.
1429 	 */
1430 	mutex_lock(&desc->request_mutex);
1431 
1432 	/*
1433 	 * Acquire bus lock as the irq_request_resources() callback below
1434 	 * might rely on the serialization or the magic power management
1435 	 * functions which are abusing the irq_bus_lock() callback,
1436 	 */
1437 	chip_bus_lock(desc);
1438 
1439 	/* First installed action requests resources. */
1440 	if (!desc->action) {
1441 		ret = irq_request_resources(desc);
1442 		if (ret) {
1443 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1444 			       new->name, irq, desc->irq_data.chip->name);
1445 			goto out_bus_unlock;
1446 		}
1447 	}
1448 
1449 	/*
1450 	 * The following block of code has to be executed atomically
1451 	 * protected against a concurrent interrupt and any of the other
1452 	 * management calls which are not serialized via
1453 	 * desc->request_mutex or the optional bus lock.
1454 	 */
1455 	raw_spin_lock_irqsave(&desc->lock, flags);
1456 	old_ptr = &desc->action;
1457 	old = *old_ptr;
1458 	if (old) {
1459 		/*
1460 		 * Can't share interrupts unless both agree to and are
1461 		 * the same type (level, edge, polarity). So both flag
1462 		 * fields must have IRQF_SHARED set and the bits which
1463 		 * set the trigger type must match. Also all must
1464 		 * agree on ONESHOT.
1465 		 * Interrupt lines used for NMIs cannot be shared.
1466 		 */
1467 		unsigned int oldtype;
1468 
1469 		if (desc->istate & IRQS_NMI) {
1470 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1471 				new->name, irq, desc->irq_data.chip->name);
1472 			ret = -EINVAL;
1473 			goto out_unlock;
1474 		}
1475 
1476 		/*
1477 		 * If nobody did set the configuration before, inherit
1478 		 * the one provided by the requester.
1479 		 */
1480 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1481 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1482 		} else {
1483 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1484 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1485 		}
1486 
1487 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1488 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1489 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1490 			goto mismatch;
1491 
1492 		/* All handlers must agree on per-cpuness */
1493 		if ((old->flags & IRQF_PERCPU) !=
1494 		    (new->flags & IRQF_PERCPU))
1495 			goto mismatch;
1496 
1497 		/* add new interrupt at end of irq queue */
1498 		do {
1499 			/*
1500 			 * Or all existing action->thread_mask bits,
1501 			 * so we can find the next zero bit for this
1502 			 * new action.
1503 			 */
1504 			thread_mask |= old->thread_mask;
1505 			old_ptr = &old->next;
1506 			old = *old_ptr;
1507 		} while (old);
1508 		shared = 1;
1509 	}
1510 
1511 	/*
1512 	 * Setup the thread mask for this irqaction for ONESHOT. For
1513 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1514 	 * conditional in irq_wake_thread().
1515 	 */
1516 	if (new->flags & IRQF_ONESHOT) {
1517 		/*
1518 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1519 		 * but who knows.
1520 		 */
1521 		if (thread_mask == ~0UL) {
1522 			ret = -EBUSY;
1523 			goto out_unlock;
1524 		}
1525 		/*
1526 		 * The thread_mask for the action is or'ed to
1527 		 * desc->thread_active to indicate that the
1528 		 * IRQF_ONESHOT thread handler has been woken, but not
1529 		 * yet finished. The bit is cleared when a thread
1530 		 * completes. When all threads of a shared interrupt
1531 		 * line have completed desc->threads_active becomes
1532 		 * zero and the interrupt line is unmasked. See
1533 		 * handle.c:irq_wake_thread() for further information.
1534 		 *
1535 		 * If no thread is woken by primary (hard irq context)
1536 		 * interrupt handlers, then desc->threads_active is
1537 		 * also checked for zero to unmask the irq line in the
1538 		 * affected hard irq flow handlers
1539 		 * (handle_[fasteoi|level]_irq).
1540 		 *
1541 		 * The new action gets the first zero bit of
1542 		 * thread_mask assigned. See the loop above which or's
1543 		 * all existing action->thread_mask bits.
1544 		 */
1545 		new->thread_mask = 1UL << ffz(thread_mask);
1546 
1547 	} else if (new->handler == irq_default_primary_handler &&
1548 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1549 		/*
1550 		 * The interrupt was requested with handler = NULL, so
1551 		 * we use the default primary handler for it. But it
1552 		 * does not have the oneshot flag set. In combination
1553 		 * with level interrupts this is deadly, because the
1554 		 * default primary handler just wakes the thread, then
1555 		 * the irq lines is reenabled, but the device still
1556 		 * has the level irq asserted. Rinse and repeat....
1557 		 *
1558 		 * While this works for edge type interrupts, we play
1559 		 * it safe and reject unconditionally because we can't
1560 		 * say for sure which type this interrupt really
1561 		 * has. The type flags are unreliable as the
1562 		 * underlying chip implementation can override them.
1563 		 */
1564 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1565 		       irq);
1566 		ret = -EINVAL;
1567 		goto out_unlock;
1568 	}
1569 
1570 	if (!shared) {
1571 		/* Setup the type (level, edge polarity) if configured: */
1572 		if (new->flags & IRQF_TRIGGER_MASK) {
1573 			ret = __irq_set_trigger(desc,
1574 						new->flags & IRQF_TRIGGER_MASK);
1575 
1576 			if (ret)
1577 				goto out_unlock;
1578 		}
1579 
1580 		/*
1581 		 * Activate the interrupt. That activation must happen
1582 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1583 		 * and the callers are supposed to handle
1584 		 * that. enable_irq() of an interrupt requested with
1585 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1586 		 * keeps it in shutdown mode, it merily associates
1587 		 * resources if necessary and if that's not possible it
1588 		 * fails. Interrupts which are in managed shutdown mode
1589 		 * will simply ignore that activation request.
1590 		 */
1591 		ret = irq_activate(desc);
1592 		if (ret)
1593 			goto out_unlock;
1594 
1595 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1596 				  IRQS_ONESHOT | IRQS_WAITING);
1597 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1598 
1599 		if (new->flags & IRQF_PERCPU) {
1600 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1601 			irq_settings_set_per_cpu(desc);
1602 		}
1603 
1604 		if (new->flags & IRQF_ONESHOT)
1605 			desc->istate |= IRQS_ONESHOT;
1606 
1607 		/* Exclude IRQ from balancing if requested */
1608 		if (new->flags & IRQF_NOBALANCING) {
1609 			irq_settings_set_no_balancing(desc);
1610 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1611 		}
1612 
1613 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1614 		    irq_settings_can_autoenable(desc)) {
1615 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1616 		} else {
1617 			/*
1618 			 * Shared interrupts do not go well with disabling
1619 			 * auto enable. The sharing interrupt might request
1620 			 * it while it's still disabled and then wait for
1621 			 * interrupts forever.
1622 			 */
1623 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1624 			/* Undo nested disables: */
1625 			desc->depth = 1;
1626 		}
1627 
1628 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1629 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1630 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1631 
1632 		if (nmsk != omsk)
1633 			/* hope the handler works with current  trigger mode */
1634 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1635 				irq, omsk, nmsk);
1636 	}
1637 
1638 	*old_ptr = new;
1639 
1640 	irq_pm_install_action(desc, new);
1641 
1642 	/* Reset broken irq detection when installing new handler */
1643 	desc->irq_count = 0;
1644 	desc->irqs_unhandled = 0;
1645 
1646 	/*
1647 	 * Check whether we disabled the irq via the spurious handler
1648 	 * before. Reenable it and give it another chance.
1649 	 */
1650 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1651 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1652 		__enable_irq(desc);
1653 	}
1654 
1655 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1656 	chip_bus_sync_unlock(desc);
1657 	mutex_unlock(&desc->request_mutex);
1658 
1659 	irq_setup_timings(desc, new);
1660 
1661 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1662 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1663 
1664 	register_irq_proc(irq, desc);
1665 	new->dir = NULL;
1666 	register_handler_proc(irq, new);
1667 	return 0;
1668 
1669 mismatch:
1670 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1671 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1672 		       irq, new->flags, new->name, old->flags, old->name);
1673 #ifdef CONFIG_DEBUG_SHIRQ
1674 		dump_stack();
1675 #endif
1676 	}
1677 	ret = -EBUSY;
1678 
1679 out_unlock:
1680 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1681 
1682 	if (!desc->action)
1683 		irq_release_resources(desc);
1684 out_bus_unlock:
1685 	chip_bus_sync_unlock(desc);
1686 	mutex_unlock(&desc->request_mutex);
1687 
1688 out_thread:
1689 	if (new->thread) {
1690 		struct task_struct *t = new->thread;
1691 
1692 		new->thread = NULL;
1693 		kthread_stop(t);
1694 		put_task_struct(t);
1695 	}
1696 	if (new->secondary && new->secondary->thread) {
1697 		struct task_struct *t = new->secondary->thread;
1698 
1699 		new->secondary->thread = NULL;
1700 		kthread_stop(t);
1701 		put_task_struct(t);
1702 	}
1703 out_mput:
1704 	module_put(desc->owner);
1705 	return ret;
1706 }
1707 
1708 /**
1709  *	setup_irq - setup an interrupt
1710  *	@irq: Interrupt line to setup
1711  *	@act: irqaction for the interrupt
1712  *
1713  * Used to statically setup interrupts in the early boot process.
1714  */
setup_irq(unsigned int irq,struct irqaction * act)1715 int setup_irq(unsigned int irq, struct irqaction *act)
1716 {
1717 	int retval;
1718 	struct irq_desc *desc = irq_to_desc(irq);
1719 
1720 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1721 		return -EINVAL;
1722 
1723 	retval = irq_chip_pm_get(&desc->irq_data);
1724 	if (retval < 0)
1725 		return retval;
1726 
1727 	retval = __setup_irq(irq, desc, act);
1728 
1729 	if (retval)
1730 		irq_chip_pm_put(&desc->irq_data);
1731 
1732 	return retval;
1733 }
1734 EXPORT_SYMBOL_GPL(setup_irq);
1735 
1736 /*
1737  * Internal function to unregister an irqaction - used to free
1738  * regular and special interrupts that are part of the architecture.
1739  */
__free_irq(struct irq_desc * desc,void * dev_id)1740 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1741 {
1742 	unsigned irq = desc->irq_data.irq;
1743 	struct irqaction *action, **action_ptr;
1744 	unsigned long flags;
1745 
1746 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1747 
1748 	mutex_lock(&desc->request_mutex);
1749 	chip_bus_lock(desc);
1750 	raw_spin_lock_irqsave(&desc->lock, flags);
1751 
1752 	/*
1753 	 * There can be multiple actions per IRQ descriptor, find the right
1754 	 * one based on the dev_id:
1755 	 */
1756 	action_ptr = &desc->action;
1757 	for (;;) {
1758 		action = *action_ptr;
1759 
1760 		if (!action) {
1761 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1762 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1763 			chip_bus_sync_unlock(desc);
1764 			mutex_unlock(&desc->request_mutex);
1765 			return NULL;
1766 		}
1767 
1768 		if (action->dev_id == dev_id)
1769 			break;
1770 		action_ptr = &action->next;
1771 	}
1772 
1773 	/* Found it - now remove it from the list of entries: */
1774 	*action_ptr = action->next;
1775 
1776 	irq_pm_remove_action(desc, action);
1777 
1778 	/* If this was the last handler, shut down the IRQ line: */
1779 	if (!desc->action) {
1780 		irq_settings_clr_disable_unlazy(desc);
1781 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1782 		irq_shutdown(desc);
1783 	}
1784 
1785 #ifdef CONFIG_SMP
1786 	/* make sure affinity_hint is cleaned up */
1787 	if (WARN_ON_ONCE(desc->affinity_hint))
1788 		desc->affinity_hint = NULL;
1789 #endif
1790 
1791 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1792 	/*
1793 	 * Drop bus_lock here so the changes which were done in the chip
1794 	 * callbacks above are synced out to the irq chips which hang
1795 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1796 	 *
1797 	 * Aside of that the bus_lock can also be taken from the threaded
1798 	 * handler in irq_finalize_oneshot() which results in a deadlock
1799 	 * because kthread_stop() would wait forever for the thread to
1800 	 * complete, which is blocked on the bus lock.
1801 	 *
1802 	 * The still held desc->request_mutex() protects against a
1803 	 * concurrent request_irq() of this irq so the release of resources
1804 	 * and timing data is properly serialized.
1805 	 */
1806 	chip_bus_sync_unlock(desc);
1807 
1808 	unregister_handler_proc(irq, action);
1809 
1810 	/*
1811 	 * Make sure it's not being used on another CPU and if the chip
1812 	 * supports it also make sure that there is no (not yet serviced)
1813 	 * interrupt in flight at the hardware level.
1814 	 */
1815 	__synchronize_hardirq(desc, true);
1816 
1817 #ifdef CONFIG_DEBUG_SHIRQ
1818 	/*
1819 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1820 	 * event to happen even now it's being freed, so let's make sure that
1821 	 * is so by doing an extra call to the handler ....
1822 	 *
1823 	 * ( We do this after actually deregistering it, to make sure that a
1824 	 *   'real' IRQ doesn't run in parallel with our fake. )
1825 	 */
1826 	if (action->flags & IRQF_SHARED) {
1827 		local_irq_save(flags);
1828 		action->handler(irq, dev_id);
1829 		local_irq_restore(flags);
1830 	}
1831 #endif
1832 
1833 	/*
1834 	 * The action has already been removed above, but the thread writes
1835 	 * its oneshot mask bit when it completes. Though request_mutex is
1836 	 * held across this which prevents __setup_irq() from handing out
1837 	 * the same bit to a newly requested action.
1838 	 */
1839 	if (action->thread) {
1840 		kthread_stop(action->thread);
1841 		put_task_struct(action->thread);
1842 		if (action->secondary && action->secondary->thread) {
1843 			kthread_stop(action->secondary->thread);
1844 			put_task_struct(action->secondary->thread);
1845 		}
1846 	}
1847 
1848 	/* Last action releases resources */
1849 	if (!desc->action) {
1850 		/*
1851 		 * Reaquire bus lock as irq_release_resources() might
1852 		 * require it to deallocate resources over the slow bus.
1853 		 */
1854 		chip_bus_lock(desc);
1855 		/*
1856 		 * There is no interrupt on the fly anymore. Deactivate it
1857 		 * completely.
1858 		 */
1859 		raw_spin_lock_irqsave(&desc->lock, flags);
1860 		irq_domain_deactivate_irq(&desc->irq_data);
1861 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1862 
1863 		irq_release_resources(desc);
1864 		chip_bus_sync_unlock(desc);
1865 		irq_remove_timings(desc);
1866 	}
1867 
1868 	mutex_unlock(&desc->request_mutex);
1869 
1870 	irq_chip_pm_put(&desc->irq_data);
1871 	module_put(desc->owner);
1872 	kfree(action->secondary);
1873 	return action;
1874 }
1875 
1876 /**
1877  *	remove_irq - free an interrupt
1878  *	@irq: Interrupt line to free
1879  *	@act: irqaction for the interrupt
1880  *
1881  * Used to remove interrupts statically setup by the early boot process.
1882  */
remove_irq(unsigned int irq,struct irqaction * act)1883 void remove_irq(unsigned int irq, struct irqaction *act)
1884 {
1885 	struct irq_desc *desc = irq_to_desc(irq);
1886 
1887 	if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1888 		__free_irq(desc, act->dev_id);
1889 }
1890 EXPORT_SYMBOL_GPL(remove_irq);
1891 
1892 /**
1893  *	free_irq - free an interrupt allocated with request_irq
1894  *	@irq: Interrupt line to free
1895  *	@dev_id: Device identity to free
1896  *
1897  *	Remove an interrupt handler. The handler is removed and if the
1898  *	interrupt line is no longer in use by any driver it is disabled.
1899  *	On a shared IRQ the caller must ensure the interrupt is disabled
1900  *	on the card it drives before calling this function. The function
1901  *	does not return until any executing interrupts for this IRQ
1902  *	have completed.
1903  *
1904  *	This function must not be called from interrupt context.
1905  *
1906  *	Returns the devname argument passed to request_irq.
1907  */
free_irq(unsigned int irq,void * dev_id)1908 const void *free_irq(unsigned int irq, void *dev_id)
1909 {
1910 	struct irq_desc *desc = irq_to_desc(irq);
1911 	struct irqaction *action;
1912 	const char *devname;
1913 
1914 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1915 		return NULL;
1916 
1917 #ifdef CONFIG_SMP
1918 	if (WARN_ON(desc->affinity_notify))
1919 		desc->affinity_notify = NULL;
1920 #endif
1921 
1922 	action = __free_irq(desc, dev_id);
1923 
1924 	if (!action)
1925 		return NULL;
1926 
1927 	devname = action->name;
1928 	kfree(action);
1929 	return devname;
1930 }
1931 EXPORT_SYMBOL(free_irq);
1932 
1933 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)1934 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1935 {
1936 	const char *devname = NULL;
1937 
1938 	desc->istate &= ~IRQS_NMI;
1939 
1940 	if (!WARN_ON(desc->action == NULL)) {
1941 		irq_pm_remove_action(desc, desc->action);
1942 		devname = desc->action->name;
1943 		unregister_handler_proc(irq, desc->action);
1944 
1945 		kfree(desc->action);
1946 		desc->action = NULL;
1947 	}
1948 
1949 	irq_settings_clr_disable_unlazy(desc);
1950 	irq_shutdown_and_deactivate(desc);
1951 
1952 	irq_release_resources(desc);
1953 
1954 	irq_chip_pm_put(&desc->irq_data);
1955 	module_put(desc->owner);
1956 
1957 	return devname;
1958 }
1959 
free_nmi(unsigned int irq,void * dev_id)1960 const void *free_nmi(unsigned int irq, void *dev_id)
1961 {
1962 	struct irq_desc *desc = irq_to_desc(irq);
1963 	unsigned long flags;
1964 	const void *devname;
1965 
1966 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1967 		return NULL;
1968 
1969 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1970 		return NULL;
1971 
1972 	/* NMI still enabled */
1973 	if (WARN_ON(desc->depth == 0))
1974 		disable_nmi_nosync(irq);
1975 
1976 	raw_spin_lock_irqsave(&desc->lock, flags);
1977 
1978 	irq_nmi_teardown(desc);
1979 	devname = __cleanup_nmi(irq, desc);
1980 
1981 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1982 
1983 	return devname;
1984 }
1985 
1986 /**
1987  *	request_threaded_irq - allocate an interrupt line
1988  *	@irq: Interrupt line to allocate
1989  *	@handler: Function to be called when the IRQ occurs.
1990  *		  Primary handler for threaded interrupts
1991  *		  If NULL and thread_fn != NULL the default
1992  *		  primary handler is installed
1993  *	@thread_fn: Function called from the irq handler thread
1994  *		    If NULL, no irq thread is created
1995  *	@irqflags: Interrupt type flags
1996  *	@devname: An ascii name for the claiming device
1997  *	@dev_id: A cookie passed back to the handler function
1998  *
1999  *	This call allocates interrupt resources and enables the
2000  *	interrupt line and IRQ handling. From the point this
2001  *	call is made your handler function may be invoked. Since
2002  *	your handler function must clear any interrupt the board
2003  *	raises, you must take care both to initialise your hardware
2004  *	and to set up the interrupt handler in the right order.
2005  *
2006  *	If you want to set up a threaded irq handler for your device
2007  *	then you need to supply @handler and @thread_fn. @handler is
2008  *	still called in hard interrupt context and has to check
2009  *	whether the interrupt originates from the device. If yes it
2010  *	needs to disable the interrupt on the device and return
2011  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2012  *	@thread_fn. This split handler design is necessary to support
2013  *	shared interrupts.
2014  *
2015  *	Dev_id must be globally unique. Normally the address of the
2016  *	device data structure is used as the cookie. Since the handler
2017  *	receives this value it makes sense to use it.
2018  *
2019  *	If your interrupt is shared you must pass a non NULL dev_id
2020  *	as this is required when freeing the interrupt.
2021  *
2022  *	Flags:
2023  *
2024  *	IRQF_SHARED		Interrupt is shared
2025  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2026  *
2027  */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2028 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2029 			 irq_handler_t thread_fn, unsigned long irqflags,
2030 			 const char *devname, void *dev_id)
2031 {
2032 	struct irqaction *action;
2033 	struct irq_desc *desc;
2034 	int retval;
2035 
2036 	if (irq == IRQ_NOTCONNECTED)
2037 		return -ENOTCONN;
2038 
2039 	/*
2040 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2041 	 * otherwise we'll have trouble later trying to figure out
2042 	 * which interrupt is which (messes up the interrupt freeing
2043 	 * logic etc).
2044 	 *
2045 	 * Also shared interrupts do not go well with disabling auto enable.
2046 	 * The sharing interrupt might request it while it's still disabled
2047 	 * and then wait for interrupts forever.
2048 	 *
2049 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2050 	 * it cannot be set along with IRQF_NO_SUSPEND.
2051 	 */
2052 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2053 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2054 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2055 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2056 		return -EINVAL;
2057 
2058 	desc = irq_to_desc(irq);
2059 	if (!desc)
2060 		return -EINVAL;
2061 
2062 	if (!irq_settings_can_request(desc) ||
2063 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2064 		return -EINVAL;
2065 
2066 	if (!handler) {
2067 		if (!thread_fn)
2068 			return -EINVAL;
2069 		handler = irq_default_primary_handler;
2070 	}
2071 
2072 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2073 	if (!action)
2074 		return -ENOMEM;
2075 
2076 	action->handler = handler;
2077 	action->thread_fn = thread_fn;
2078 	action->flags = irqflags;
2079 	action->name = devname;
2080 	action->dev_id = dev_id;
2081 
2082 	retval = irq_chip_pm_get(&desc->irq_data);
2083 	if (retval < 0) {
2084 		kfree(action);
2085 		return retval;
2086 	}
2087 
2088 	retval = __setup_irq(irq, desc, action);
2089 
2090 	if (retval) {
2091 		irq_chip_pm_put(&desc->irq_data);
2092 		kfree(action->secondary);
2093 		kfree(action);
2094 	}
2095 
2096 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2097 	if (!retval && (irqflags & IRQF_SHARED)) {
2098 		/*
2099 		 * It's a shared IRQ -- the driver ought to be prepared for it
2100 		 * to happen immediately, so let's make sure....
2101 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2102 		 * run in parallel with our fake.
2103 		 */
2104 		unsigned long flags;
2105 
2106 		disable_irq(irq);
2107 		local_irq_save(flags);
2108 
2109 		handler(irq, dev_id);
2110 
2111 		local_irq_restore(flags);
2112 		enable_irq(irq);
2113 	}
2114 #endif
2115 	return retval;
2116 }
2117 EXPORT_SYMBOL(request_threaded_irq);
2118 
2119 /**
2120  *	request_any_context_irq - allocate an interrupt line
2121  *	@irq: Interrupt line to allocate
2122  *	@handler: Function to be called when the IRQ occurs.
2123  *		  Threaded handler for threaded interrupts.
2124  *	@flags: Interrupt type flags
2125  *	@name: An ascii name for the claiming device
2126  *	@dev_id: A cookie passed back to the handler function
2127  *
2128  *	This call allocates interrupt resources and enables the
2129  *	interrupt line and IRQ handling. It selects either a
2130  *	hardirq or threaded handling method depending on the
2131  *	context.
2132  *
2133  *	On failure, it returns a negative value. On success,
2134  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2135  */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2136 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2137 			    unsigned long flags, const char *name, void *dev_id)
2138 {
2139 	struct irq_desc *desc;
2140 	int ret;
2141 
2142 	if (irq == IRQ_NOTCONNECTED)
2143 		return -ENOTCONN;
2144 
2145 	desc = irq_to_desc(irq);
2146 	if (!desc)
2147 		return -EINVAL;
2148 
2149 	if (irq_settings_is_nested_thread(desc)) {
2150 		ret = request_threaded_irq(irq, NULL, handler,
2151 					   flags, name, dev_id);
2152 		return !ret ? IRQC_IS_NESTED : ret;
2153 	}
2154 
2155 	ret = request_irq(irq, handler, flags, name, dev_id);
2156 	return !ret ? IRQC_IS_HARDIRQ : ret;
2157 }
2158 EXPORT_SYMBOL_GPL(request_any_context_irq);
2159 
2160 /**
2161  *	request_nmi - allocate an interrupt line for NMI delivery
2162  *	@irq: Interrupt line to allocate
2163  *	@handler: Function to be called when the IRQ occurs.
2164  *		  Threaded handler for threaded interrupts.
2165  *	@irqflags: Interrupt type flags
2166  *	@name: An ascii name for the claiming device
2167  *	@dev_id: A cookie passed back to the handler function
2168  *
2169  *	This call allocates interrupt resources and enables the
2170  *	interrupt line and IRQ handling. It sets up the IRQ line
2171  *	to be handled as an NMI.
2172  *
2173  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2174  *	cannot be threaded.
2175  *
2176  *	Interrupt lines requested for NMI delivering must produce per cpu
2177  *	interrupts and have auto enabling setting disabled.
2178  *
2179  *	Dev_id must be globally unique. Normally the address of the
2180  *	device data structure is used as the cookie. Since the handler
2181  *	receives this value it makes sense to use it.
2182  *
2183  *	If the interrupt line cannot be used to deliver NMIs, function
2184  *	will fail and return a negative value.
2185  */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2186 int request_nmi(unsigned int irq, irq_handler_t handler,
2187 		unsigned long irqflags, const char *name, void *dev_id)
2188 {
2189 	struct irqaction *action;
2190 	struct irq_desc *desc;
2191 	unsigned long flags;
2192 	int retval;
2193 
2194 	if (irq == IRQ_NOTCONNECTED)
2195 		return -ENOTCONN;
2196 
2197 	/* NMI cannot be shared, used for Polling */
2198 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2199 		return -EINVAL;
2200 
2201 	if (!(irqflags & IRQF_PERCPU))
2202 		return -EINVAL;
2203 
2204 	if (!handler)
2205 		return -EINVAL;
2206 
2207 	desc = irq_to_desc(irq);
2208 
2209 	if (!desc || (irq_settings_can_autoenable(desc) &&
2210 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2211 	    !irq_settings_can_request(desc) ||
2212 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2213 	    !irq_supports_nmi(desc))
2214 		return -EINVAL;
2215 
2216 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2217 	if (!action)
2218 		return -ENOMEM;
2219 
2220 	action->handler = handler;
2221 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2222 	action->name = name;
2223 	action->dev_id = dev_id;
2224 
2225 	retval = irq_chip_pm_get(&desc->irq_data);
2226 	if (retval < 0)
2227 		goto err_out;
2228 
2229 	retval = __setup_irq(irq, desc, action);
2230 	if (retval)
2231 		goto err_irq_setup;
2232 
2233 	raw_spin_lock_irqsave(&desc->lock, flags);
2234 
2235 	/* Setup NMI state */
2236 	desc->istate |= IRQS_NMI;
2237 	retval = irq_nmi_setup(desc);
2238 	if (retval) {
2239 		__cleanup_nmi(irq, desc);
2240 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2241 		return -EINVAL;
2242 	}
2243 
2244 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2245 
2246 	return 0;
2247 
2248 err_irq_setup:
2249 	irq_chip_pm_put(&desc->irq_data);
2250 err_out:
2251 	kfree(action);
2252 
2253 	return retval;
2254 }
2255 
enable_percpu_irq(unsigned int irq,unsigned int type)2256 void enable_percpu_irq(unsigned int irq, unsigned int type)
2257 {
2258 	unsigned int cpu = smp_processor_id();
2259 	unsigned long flags;
2260 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2261 
2262 	if (!desc)
2263 		return;
2264 
2265 	/*
2266 	 * If the trigger type is not specified by the caller, then
2267 	 * use the default for this interrupt.
2268 	 */
2269 	type &= IRQ_TYPE_SENSE_MASK;
2270 	if (type == IRQ_TYPE_NONE)
2271 		type = irqd_get_trigger_type(&desc->irq_data);
2272 
2273 	if (type != IRQ_TYPE_NONE) {
2274 		int ret;
2275 
2276 		ret = __irq_set_trigger(desc, type);
2277 
2278 		if (ret) {
2279 			WARN(1, "failed to set type for IRQ%d\n", irq);
2280 			goto out;
2281 		}
2282 	}
2283 
2284 	irq_percpu_enable(desc, cpu);
2285 out:
2286 	irq_put_desc_unlock(desc, flags);
2287 }
2288 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2289 
enable_percpu_nmi(unsigned int irq,unsigned int type)2290 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2291 {
2292 	enable_percpu_irq(irq, type);
2293 }
2294 
2295 /**
2296  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2297  * @irq:	Linux irq number to check for
2298  *
2299  * Must be called from a non migratable context. Returns the enable
2300  * state of a per cpu interrupt on the current cpu.
2301  */
irq_percpu_is_enabled(unsigned int irq)2302 bool irq_percpu_is_enabled(unsigned int irq)
2303 {
2304 	unsigned int cpu = smp_processor_id();
2305 	struct irq_desc *desc;
2306 	unsigned long flags;
2307 	bool is_enabled;
2308 
2309 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2310 	if (!desc)
2311 		return false;
2312 
2313 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2314 	irq_put_desc_unlock(desc, flags);
2315 
2316 	return is_enabled;
2317 }
2318 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2319 
disable_percpu_irq(unsigned int irq)2320 void disable_percpu_irq(unsigned int irq)
2321 {
2322 	unsigned int cpu = smp_processor_id();
2323 	unsigned long flags;
2324 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2325 
2326 	if (!desc)
2327 		return;
2328 
2329 	irq_percpu_disable(desc, cpu);
2330 	irq_put_desc_unlock(desc, flags);
2331 }
2332 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2333 
disable_percpu_nmi(unsigned int irq)2334 void disable_percpu_nmi(unsigned int irq)
2335 {
2336 	disable_percpu_irq(irq);
2337 }
2338 
2339 /*
2340  * Internal function to unregister a percpu irqaction.
2341  */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2342 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2343 {
2344 	struct irq_desc *desc = irq_to_desc(irq);
2345 	struct irqaction *action;
2346 	unsigned long flags;
2347 
2348 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2349 
2350 	if (!desc)
2351 		return NULL;
2352 
2353 	raw_spin_lock_irqsave(&desc->lock, flags);
2354 
2355 	action = desc->action;
2356 	if (!action || action->percpu_dev_id != dev_id) {
2357 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2358 		goto bad;
2359 	}
2360 
2361 	if (!cpumask_empty(desc->percpu_enabled)) {
2362 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2363 		     irq, cpumask_first(desc->percpu_enabled));
2364 		goto bad;
2365 	}
2366 
2367 	/* Found it - now remove it from the list of entries: */
2368 	desc->action = NULL;
2369 
2370 	desc->istate &= ~IRQS_NMI;
2371 
2372 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2373 
2374 	unregister_handler_proc(irq, action);
2375 
2376 	irq_chip_pm_put(&desc->irq_data);
2377 	module_put(desc->owner);
2378 	return action;
2379 
2380 bad:
2381 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2382 	return NULL;
2383 }
2384 
2385 /**
2386  *	remove_percpu_irq - free a per-cpu interrupt
2387  *	@irq: Interrupt line to free
2388  *	@act: irqaction for the interrupt
2389  *
2390  * Used to remove interrupts statically setup by the early boot process.
2391  */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2392 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2393 {
2394 	struct irq_desc *desc = irq_to_desc(irq);
2395 
2396 	if (desc && irq_settings_is_per_cpu_devid(desc))
2397 	    __free_percpu_irq(irq, act->percpu_dev_id);
2398 }
2399 
2400 /**
2401  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2402  *	@irq: Interrupt line to free
2403  *	@dev_id: Device identity to free
2404  *
2405  *	Remove a percpu interrupt handler. The handler is removed, but
2406  *	the interrupt line is not disabled. This must be done on each
2407  *	CPU before calling this function. The function does not return
2408  *	until any executing interrupts for this IRQ have completed.
2409  *
2410  *	This function must not be called from interrupt context.
2411  */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2412 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2413 {
2414 	struct irq_desc *desc = irq_to_desc(irq);
2415 
2416 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2417 		return;
2418 
2419 	chip_bus_lock(desc);
2420 	kfree(__free_percpu_irq(irq, dev_id));
2421 	chip_bus_sync_unlock(desc);
2422 }
2423 EXPORT_SYMBOL_GPL(free_percpu_irq);
2424 
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2425 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2426 {
2427 	struct irq_desc *desc = irq_to_desc(irq);
2428 
2429 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2430 		return;
2431 
2432 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2433 		return;
2434 
2435 	kfree(__free_percpu_irq(irq, dev_id));
2436 }
2437 
2438 /**
2439  *	setup_percpu_irq - setup a per-cpu interrupt
2440  *	@irq: Interrupt line to setup
2441  *	@act: irqaction for the interrupt
2442  *
2443  * Used to statically setup per-cpu interrupts in the early boot process.
2444  */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2445 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2446 {
2447 	struct irq_desc *desc = irq_to_desc(irq);
2448 	int retval;
2449 
2450 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2451 		return -EINVAL;
2452 
2453 	retval = irq_chip_pm_get(&desc->irq_data);
2454 	if (retval < 0)
2455 		return retval;
2456 
2457 	retval = __setup_irq(irq, desc, act);
2458 
2459 	if (retval)
2460 		irq_chip_pm_put(&desc->irq_data);
2461 
2462 	return retval;
2463 }
2464 
2465 /**
2466  *	__request_percpu_irq - allocate a percpu interrupt line
2467  *	@irq: Interrupt line to allocate
2468  *	@handler: Function to be called when the IRQ occurs.
2469  *	@flags: Interrupt type flags (IRQF_TIMER only)
2470  *	@devname: An ascii name for the claiming device
2471  *	@dev_id: A percpu cookie passed back to the handler function
2472  *
2473  *	This call allocates interrupt resources and enables the
2474  *	interrupt on the local CPU. If the interrupt is supposed to be
2475  *	enabled on other CPUs, it has to be done on each CPU using
2476  *	enable_percpu_irq().
2477  *
2478  *	Dev_id must be globally unique. It is a per-cpu variable, and
2479  *	the handler gets called with the interrupted CPU's instance of
2480  *	that variable.
2481  */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2482 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2483 			 unsigned long flags, const char *devname,
2484 			 void __percpu *dev_id)
2485 {
2486 	struct irqaction *action;
2487 	struct irq_desc *desc;
2488 	int retval;
2489 
2490 	if (!dev_id)
2491 		return -EINVAL;
2492 
2493 	desc = irq_to_desc(irq);
2494 	if (!desc || !irq_settings_can_request(desc) ||
2495 	    !irq_settings_is_per_cpu_devid(desc))
2496 		return -EINVAL;
2497 
2498 	if (flags && flags != IRQF_TIMER)
2499 		return -EINVAL;
2500 
2501 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2502 	if (!action)
2503 		return -ENOMEM;
2504 
2505 	action->handler = handler;
2506 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2507 	action->name = devname;
2508 	action->percpu_dev_id = dev_id;
2509 
2510 	retval = irq_chip_pm_get(&desc->irq_data);
2511 	if (retval < 0) {
2512 		kfree(action);
2513 		return retval;
2514 	}
2515 
2516 	retval = __setup_irq(irq, desc, action);
2517 
2518 	if (retval) {
2519 		irq_chip_pm_put(&desc->irq_data);
2520 		kfree(action);
2521 	}
2522 
2523 	return retval;
2524 }
2525 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2526 
2527 /**
2528  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2529  *	@irq: Interrupt line to allocate
2530  *	@handler: Function to be called when the IRQ occurs.
2531  *	@name: An ascii name for the claiming device
2532  *	@dev_id: A percpu cookie passed back to the handler function
2533  *
2534  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2535  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2536  *	being enabled on the same CPU by using enable_percpu_nmi().
2537  *
2538  *	Dev_id must be globally unique. It is a per-cpu variable, and
2539  *	the handler gets called with the interrupted CPU's instance of
2540  *	that variable.
2541  *
2542  *	Interrupt lines requested for NMI delivering should have auto enabling
2543  *	setting disabled.
2544  *
2545  *	If the interrupt line cannot be used to deliver NMIs, function
2546  *	will fail returning a negative value.
2547  */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2548 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2549 		       const char *name, void __percpu *dev_id)
2550 {
2551 	struct irqaction *action;
2552 	struct irq_desc *desc;
2553 	unsigned long flags;
2554 	int retval;
2555 
2556 	if (!handler)
2557 		return -EINVAL;
2558 
2559 	desc = irq_to_desc(irq);
2560 
2561 	if (!desc || !irq_settings_can_request(desc) ||
2562 	    !irq_settings_is_per_cpu_devid(desc) ||
2563 	    irq_settings_can_autoenable(desc) ||
2564 	    !irq_supports_nmi(desc))
2565 		return -EINVAL;
2566 
2567 	/* The line cannot already be NMI */
2568 	if (desc->istate & IRQS_NMI)
2569 		return -EINVAL;
2570 
2571 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2572 	if (!action)
2573 		return -ENOMEM;
2574 
2575 	action->handler = handler;
2576 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2577 		| IRQF_NOBALANCING;
2578 	action->name = name;
2579 	action->percpu_dev_id = dev_id;
2580 
2581 	retval = irq_chip_pm_get(&desc->irq_data);
2582 	if (retval < 0)
2583 		goto err_out;
2584 
2585 	retval = __setup_irq(irq, desc, action);
2586 	if (retval)
2587 		goto err_irq_setup;
2588 
2589 	raw_spin_lock_irqsave(&desc->lock, flags);
2590 	desc->istate |= IRQS_NMI;
2591 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2592 
2593 	return 0;
2594 
2595 err_irq_setup:
2596 	irq_chip_pm_put(&desc->irq_data);
2597 err_out:
2598 	kfree(action);
2599 
2600 	return retval;
2601 }
2602 
2603 /**
2604  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2605  *	@irq: Interrupt line to prepare for NMI delivery
2606  *
2607  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2608  *	before that interrupt line gets enabled with enable_percpu_nmi().
2609  *
2610  *	As a CPU local operation, this should be called from non-preemptible
2611  *	context.
2612  *
2613  *	If the interrupt line cannot be used to deliver NMIs, function
2614  *	will fail returning a negative value.
2615  */
prepare_percpu_nmi(unsigned int irq)2616 int prepare_percpu_nmi(unsigned int irq)
2617 {
2618 	unsigned long flags;
2619 	struct irq_desc *desc;
2620 	int ret = 0;
2621 
2622 	WARN_ON(preemptible());
2623 
2624 	desc = irq_get_desc_lock(irq, &flags,
2625 				 IRQ_GET_DESC_CHECK_PERCPU);
2626 	if (!desc)
2627 		return -EINVAL;
2628 
2629 	if (WARN(!(desc->istate & IRQS_NMI),
2630 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2631 		 irq)) {
2632 		ret = -EINVAL;
2633 		goto out;
2634 	}
2635 
2636 	ret = irq_nmi_setup(desc);
2637 	if (ret) {
2638 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2639 		goto out;
2640 	}
2641 
2642 out:
2643 	irq_put_desc_unlock(desc, flags);
2644 	return ret;
2645 }
2646 
2647 /**
2648  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2649  *	@irq: Interrupt line from which CPU local NMI configuration should be
2650  *	      removed
2651  *
2652  *	This call undoes the setup done by prepare_percpu_nmi().
2653  *
2654  *	IRQ line should not be enabled for the current CPU.
2655  *
2656  *	As a CPU local operation, this should be called from non-preemptible
2657  *	context.
2658  */
teardown_percpu_nmi(unsigned int irq)2659 void teardown_percpu_nmi(unsigned int irq)
2660 {
2661 	unsigned long flags;
2662 	struct irq_desc *desc;
2663 
2664 	WARN_ON(preemptible());
2665 
2666 	desc = irq_get_desc_lock(irq, &flags,
2667 				 IRQ_GET_DESC_CHECK_PERCPU);
2668 	if (!desc)
2669 		return;
2670 
2671 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2672 		goto out;
2673 
2674 	irq_nmi_teardown(desc);
2675 out:
2676 	irq_put_desc_unlock(desc, flags);
2677 }
2678 
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2679 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2680 			    bool *state)
2681 {
2682 	struct irq_chip *chip;
2683 	int err = -EINVAL;
2684 
2685 	do {
2686 		chip = irq_data_get_irq_chip(data);
2687 		if (chip->irq_get_irqchip_state)
2688 			break;
2689 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2690 		data = data->parent_data;
2691 #else
2692 		data = NULL;
2693 #endif
2694 	} while (data);
2695 
2696 	if (data)
2697 		err = chip->irq_get_irqchip_state(data, which, state);
2698 	return err;
2699 }
2700 
2701 /**
2702  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2703  *	@irq: Interrupt line that is forwarded to a VM
2704  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2705  *	@state: a pointer to a boolean where the state is to be storeed
2706  *
2707  *	This call snapshots the internal irqchip state of an
2708  *	interrupt, returning into @state the bit corresponding to
2709  *	stage @which
2710  *
2711  *	This function should be called with preemption disabled if the
2712  *	interrupt controller has per-cpu registers.
2713  */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2714 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2715 			  bool *state)
2716 {
2717 	struct irq_desc *desc;
2718 	struct irq_data *data;
2719 	unsigned long flags;
2720 	int err = -EINVAL;
2721 
2722 	desc = irq_get_desc_buslock(irq, &flags, 0);
2723 	if (!desc)
2724 		return err;
2725 
2726 	data = irq_desc_get_irq_data(desc);
2727 
2728 	err = __irq_get_irqchip_state(data, which, state);
2729 
2730 	irq_put_desc_busunlock(desc, flags);
2731 	return err;
2732 }
2733 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2734 
2735 /**
2736  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2737  *	@irq: Interrupt line that is forwarded to a VM
2738  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2739  *	@val: Value corresponding to @which
2740  *
2741  *	This call sets the internal irqchip state of an interrupt,
2742  *	depending on the value of @which.
2743  *
2744  *	This function should be called with preemption disabled if the
2745  *	interrupt controller has per-cpu registers.
2746  */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2747 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2748 			  bool val)
2749 {
2750 	struct irq_desc *desc;
2751 	struct irq_data *data;
2752 	struct irq_chip *chip;
2753 	unsigned long flags;
2754 	int err = -EINVAL;
2755 
2756 	desc = irq_get_desc_buslock(irq, &flags, 0);
2757 	if (!desc)
2758 		return err;
2759 
2760 	data = irq_desc_get_irq_data(desc);
2761 
2762 	do {
2763 		chip = irq_data_get_irq_chip(data);
2764 		if (chip->irq_set_irqchip_state)
2765 			break;
2766 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2767 		data = data->parent_data;
2768 #else
2769 		data = NULL;
2770 #endif
2771 	} while (data);
2772 
2773 	if (data)
2774 		err = chip->irq_set_irqchip_state(data, which, val);
2775 
2776 	irq_put_desc_busunlock(desc, flags);
2777 	return err;
2778 }
2779 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2780