• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/irqdomain.h>
10 #include <linux/kvm_host.h>
11 #include <linux/irqchip/arm-gic-v3.h>
12 
13 #include "vgic.h"
14 
15 /*
16  * How KVM uses GICv4 (insert rude comments here):
17  *
18  * The vgic-v4 layer acts as a bridge between several entities:
19  * - The GICv4 ITS representation offered by the ITS driver
20  * - VFIO, which is in charge of the PCI endpoint
21  * - The virtual ITS, which is the only thing the guest sees
22  *
23  * The configuration of VLPIs is triggered by a callback from VFIO,
24  * instructing KVM that a PCI device has been configured to deliver
25  * MSIs to a vITS.
26  *
27  * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
28  * and this is used to find the corresponding vITS data structures
29  * (ITS instance, device, event and irq) using a process that is
30  * extremely similar to the injection of an MSI.
31  *
32  * At this stage, we can link the guest's view of an LPI (uniquely
33  * identified by the routing entry) and the host irq, using the GICv4
34  * driver mapping operation. Should the mapping succeed, we've then
35  * successfully upgraded the guest's LPI to a VLPI. We can then start
36  * with updating GICv4's view of the property table and generating an
37  * INValidation in order to kickstart the delivery of this VLPI to the
38  * guest directly, without software intervention. Well, almost.
39  *
40  * When the PCI endpoint is deconfigured, this operation is reversed
41  * with VFIO calling kvm_vgic_v4_unset_forwarding().
42  *
43  * Once the VLPI has been mapped, it needs to follow any change the
44  * guest performs on its LPI through the vITS. For that, a number of
45  * command handlers have hooks to communicate these changes to the HW:
46  * - Any invalidation triggers a call to its_prop_update_vlpi()
47  * - The INT command results in a irq_set_irqchip_state(), which
48  *   generates an INT on the corresponding VLPI.
49  * - The CLEAR command results in a irq_set_irqchip_state(), which
50  *   generates an CLEAR on the corresponding VLPI.
51  * - DISCARD translates into an unmap, similar to a call to
52  *   kvm_vgic_v4_unset_forwarding().
53  * - MOVI is translated by an update of the existing mapping, changing
54  *   the target vcpu, resulting in a VMOVI being generated.
55  * - MOVALL is translated by a string of mapping updates (similar to
56  *   the handling of MOVI). MOVALL is horrible.
57  *
58  * Note that a DISCARD/MAPTI sequence emitted from the guest without
59  * reprogramming the PCI endpoint after MAPTI does not result in a
60  * VLPI being mapped, as there is no callback from VFIO (the guest
61  * will get the interrupt via the normal SW injection). Fixing this is
62  * not trivial, and requires some horrible messing with the VFIO
63  * internals. Not fun. Don't do that.
64  *
65  * Then there is the scheduling. Each time a vcpu is about to run on a
66  * physical CPU, KVM must tell the corresponding redistributor about
67  * it. And if we've migrated our vcpu from one CPU to another, we must
68  * tell the ITS (so that the messages reach the right redistributor).
69  * This is done in two steps: first issue a irq_set_affinity() on the
70  * irq corresponding to the vcpu, then call its_schedule_vpe(). You
71  * must be in a non-preemptible context. On exit, another call to
72  * its_schedule_vpe() tells the redistributor that we're done with the
73  * vcpu.
74  *
75  * Finally, the doorbell handling: Each vcpu is allocated an interrupt
76  * which will fire each time a VLPI is made pending whilst the vcpu is
77  * not running. Each time the vcpu gets blocked, the doorbell
78  * interrupt gets enabled. When the vcpu is unblocked (for whatever
79  * reason), the doorbell interrupt is disabled.
80  */
81 
82 #define DB_IRQ_FLAGS	(IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
83 
vgic_v4_doorbell_handler(int irq,void * info)84 static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
85 {
86 	struct kvm_vcpu *vcpu = info;
87 
88 	vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
89 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
90 	kvm_vcpu_kick(vcpu);
91 
92 	return IRQ_HANDLED;
93 }
94 
95 /**
96  * vgic_v4_init - Initialize the GICv4 data structures
97  * @kvm:	Pointer to the VM being initialized
98  *
99  * We may be called each time a vITS is created, or when the
100  * vgic is initialized. This relies on kvm->lock to be
101  * held. In both cases, the number of vcpus should now be
102  * fixed.
103  */
vgic_v4_init(struct kvm * kvm)104 int vgic_v4_init(struct kvm *kvm)
105 {
106 	struct vgic_dist *dist = &kvm->arch.vgic;
107 	struct kvm_vcpu *vcpu;
108 	int i, nr_vcpus, ret;
109 
110 	if (!kvm_vgic_global_state.has_gicv4)
111 		return 0; /* Nothing to see here... move along. */
112 
113 	if (dist->its_vm.vpes)
114 		return 0;
115 
116 	nr_vcpus = atomic_read(&kvm->online_vcpus);
117 
118 	dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
119 				    GFP_KERNEL);
120 	if (!dist->its_vm.vpes)
121 		return -ENOMEM;
122 
123 	dist->its_vm.nr_vpes = nr_vcpus;
124 
125 	kvm_for_each_vcpu(i, vcpu, kvm)
126 		dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
127 
128 	ret = its_alloc_vcpu_irqs(&dist->its_vm);
129 	if (ret < 0) {
130 		kvm_err("VPE IRQ allocation failure\n");
131 		kfree(dist->its_vm.vpes);
132 		dist->its_vm.nr_vpes = 0;
133 		dist->its_vm.vpes = NULL;
134 		return ret;
135 	}
136 
137 	kvm_for_each_vcpu(i, vcpu, kvm) {
138 		int irq = dist->its_vm.vpes[i]->irq;
139 
140 		/*
141 		 * Don't automatically enable the doorbell, as we're
142 		 * flipping it back and forth when the vcpu gets
143 		 * blocked. Also disable the lazy disabling, as the
144 		 * doorbell could kick us out of the guest too
145 		 * early...
146 		 */
147 		irq_set_status_flags(irq, DB_IRQ_FLAGS);
148 		ret = request_irq(irq, vgic_v4_doorbell_handler,
149 				  0, "vcpu", vcpu);
150 		if (ret) {
151 			kvm_err("failed to allocate vcpu IRQ%d\n", irq);
152 			/*
153 			 * Trick: adjust the number of vpes so we know
154 			 * how many to nuke on teardown...
155 			 */
156 			dist->its_vm.nr_vpes = i;
157 			break;
158 		}
159 	}
160 
161 	if (ret)
162 		vgic_v4_teardown(kvm);
163 
164 	return ret;
165 }
166 
167 /**
168  * vgic_v4_teardown - Free the GICv4 data structures
169  * @kvm:	Pointer to the VM being destroyed
170  *
171  * Relies on kvm->lock to be held.
172  */
vgic_v4_teardown(struct kvm * kvm)173 void vgic_v4_teardown(struct kvm *kvm)
174 {
175 	struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
176 	int i;
177 
178 	if (!its_vm->vpes)
179 		return;
180 
181 	for (i = 0; i < its_vm->nr_vpes; i++) {
182 		struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
183 		int irq = its_vm->vpes[i]->irq;
184 
185 		irq_clear_status_flags(irq, DB_IRQ_FLAGS);
186 		free_irq(irq, vcpu);
187 	}
188 
189 	its_free_vcpu_irqs(its_vm);
190 	kfree(its_vm->vpes);
191 	its_vm->nr_vpes = 0;
192 	its_vm->vpes = NULL;
193 }
194 
vgic_v4_sync_hwstate(struct kvm_vcpu * vcpu)195 int vgic_v4_sync_hwstate(struct kvm_vcpu *vcpu)
196 {
197 	if (!vgic_supports_direct_msis(vcpu->kvm))
198 		return 0;
199 
200 	return its_schedule_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe, false);
201 }
202 
vgic_v4_flush_hwstate(struct kvm_vcpu * vcpu)203 int vgic_v4_flush_hwstate(struct kvm_vcpu *vcpu)
204 {
205 	int irq = vcpu->arch.vgic_cpu.vgic_v3.its_vpe.irq;
206 	int err;
207 
208 	if (!vgic_supports_direct_msis(vcpu->kvm))
209 		return 0;
210 
211 	/*
212 	 * Before making the VPE resident, make sure the redistributor
213 	 * corresponding to our current CPU expects us here. See the
214 	 * doc in drivers/irqchip/irq-gic-v4.c to understand how this
215 	 * turns into a VMOVP command at the ITS level.
216 	 */
217 	err = irq_set_affinity(irq, cpumask_of(smp_processor_id()));
218 	if (err)
219 		return err;
220 
221 	err = its_schedule_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe, true);
222 	if (err)
223 		return err;
224 
225 	/*
226 	 * Now that the VPE is resident, let's get rid of a potential
227 	 * doorbell interrupt that would still be pending.
228 	 */
229 	err = irq_set_irqchip_state(irq, IRQCHIP_STATE_PENDING, false);
230 
231 	return err;
232 }
233 
vgic_get_its(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * irq_entry)234 static struct vgic_its *vgic_get_its(struct kvm *kvm,
235 				     struct kvm_kernel_irq_routing_entry *irq_entry)
236 {
237 	struct kvm_msi msi  = (struct kvm_msi) {
238 		.address_lo	= irq_entry->msi.address_lo,
239 		.address_hi	= irq_entry->msi.address_hi,
240 		.data		= irq_entry->msi.data,
241 		.flags		= irq_entry->msi.flags,
242 		.devid		= irq_entry->msi.devid,
243 	};
244 
245 	return vgic_msi_to_its(kvm, &msi);
246 }
247 
kvm_vgic_v4_set_forwarding(struct kvm * kvm,int virq,struct kvm_kernel_irq_routing_entry * irq_entry)248 int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
249 			       struct kvm_kernel_irq_routing_entry *irq_entry)
250 {
251 	struct vgic_its *its;
252 	struct vgic_irq *irq;
253 	struct its_vlpi_map map;
254 	int ret;
255 
256 	if (!vgic_supports_direct_msis(kvm))
257 		return 0;
258 
259 	/*
260 	 * Get the ITS, and escape early on error (not a valid
261 	 * doorbell for any of our vITSs).
262 	 */
263 	its = vgic_get_its(kvm, irq_entry);
264 	if (IS_ERR(its))
265 		return 0;
266 
267 	mutex_lock(&its->its_lock);
268 
269 	/* Perform then actual DevID/EventID -> LPI translation. */
270 	ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
271 				   irq_entry->msi.data, &irq);
272 	if (ret)
273 		goto out;
274 
275 	/*
276 	 * Emit the mapping request. If it fails, the ITS probably
277 	 * isn't v4 compatible, so let's silently bail out. Holding
278 	 * the ITS lock should ensure that nothing can modify the
279 	 * target vcpu.
280 	 */
281 	map = (struct its_vlpi_map) {
282 		.vm		= &kvm->arch.vgic.its_vm,
283 		.vpe		= &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
284 		.vintid		= irq->intid,
285 		.properties	= ((irq->priority & 0xfc) |
286 				   (irq->enabled ? LPI_PROP_ENABLED : 0) |
287 				   LPI_PROP_GROUP1),
288 		.db_enabled	= true,
289 	};
290 
291 	ret = its_map_vlpi(virq, &map);
292 	if (ret)
293 		goto out;
294 
295 	irq->hw		= true;
296 	irq->host_irq	= virq;
297 
298 out:
299 	mutex_unlock(&its->its_lock);
300 	return ret;
301 }
302 
kvm_vgic_v4_unset_forwarding(struct kvm * kvm,int virq,struct kvm_kernel_irq_routing_entry * irq_entry)303 int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
304 				 struct kvm_kernel_irq_routing_entry *irq_entry)
305 {
306 	struct vgic_its *its;
307 	struct vgic_irq *irq;
308 	int ret;
309 
310 	if (!vgic_supports_direct_msis(kvm))
311 		return 0;
312 
313 	/*
314 	 * Get the ITS, and escape early on error (not a valid
315 	 * doorbell for any of our vITSs).
316 	 */
317 	its = vgic_get_its(kvm, irq_entry);
318 	if (IS_ERR(its))
319 		return 0;
320 
321 	mutex_lock(&its->its_lock);
322 
323 	ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
324 				   irq_entry->msi.data, &irq);
325 	if (ret)
326 		goto out;
327 
328 	WARN_ON(!(irq->hw && irq->host_irq == virq));
329 	if (irq->hw) {
330 		irq->hw = false;
331 		ret = its_unmap_vlpi(virq);
332 	}
333 
334 out:
335 	mutex_unlock(&its->its_lock);
336 	return ret;
337 }
338 
kvm_vgic_v4_enable_doorbell(struct kvm_vcpu * vcpu)339 void kvm_vgic_v4_enable_doorbell(struct kvm_vcpu *vcpu)
340 {
341 	if (vgic_supports_direct_msis(vcpu->kvm)) {
342 		int irq = vcpu->arch.vgic_cpu.vgic_v3.its_vpe.irq;
343 		if (irq)
344 			enable_irq(irq);
345 	}
346 }
347 
kvm_vgic_v4_disable_doorbell(struct kvm_vcpu * vcpu)348 void kvm_vgic_v4_disable_doorbell(struct kvm_vcpu *vcpu)
349 {
350 	if (vgic_supports_direct_msis(vcpu->kvm)) {
351 		int irq = vcpu->arch.vgic_cpu.vgic_v3.its_vpe.irq;
352 		if (irq)
353 			disable_irq(irq);
354 	}
355 }
356