• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16 
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30 
31 #include <trace/events/jbd2.h>
32 
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35 
36 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 	J_ASSERT(!transaction_cache);
40 	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 					sizeof(transaction_t),
42 					0,
43 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 					NULL);
45 	if (!transaction_cache) {
46 		pr_emerg("JBD2: failed to create transaction cache\n");
47 		return -ENOMEM;
48 	}
49 	return 0;
50 }
51 
jbd2_journal_destroy_transaction_cache(void)52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 	kmem_cache_destroy(transaction_cache);
55 	transaction_cache = NULL;
56 }
57 
jbd2_journal_free_transaction(transaction_t * transaction)58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 		return;
62 	kmem_cache_free(transaction_cache, transaction);
63 }
64 
65 /*
66  * jbd2_get_transaction: obtain a new transaction_t object.
67  *
68  * Simply initialise a new transaction. Initialize it in
69  * RUNNING state and add it to the current journal (which should not
70  * have an existing running transaction: we only make a new transaction
71  * once we have started to commit the old one).
72  *
73  * Preconditions:
74  *	The journal MUST be locked.  We don't perform atomic mallocs on the
75  *	new transaction	and we can't block without protecting against other
76  *	processes trying to touch the journal while it is in transition.
77  *
78  */
79 
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)80 static void jbd2_get_transaction(journal_t *journal,
81 				transaction_t *transaction)
82 {
83 	transaction->t_journal = journal;
84 	transaction->t_state = T_RUNNING;
85 	transaction->t_start_time = ktime_get();
86 	transaction->t_tid = journal->j_transaction_sequence++;
87 	transaction->t_expires = jiffies + journal->j_commit_interval;
88 	spin_lock_init(&transaction->t_handle_lock);
89 	atomic_set(&transaction->t_updates, 0);
90 	atomic_set(&transaction->t_outstanding_credits,
91 		   atomic_read(&journal->j_reserved_credits));
92 	atomic_set(&transaction->t_handle_count, 0);
93 	INIT_LIST_HEAD(&transaction->t_inode_list);
94 	INIT_LIST_HEAD(&transaction->t_private_list);
95 
96 	/* Set up the commit timer for the new transaction. */
97 	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
98 	add_timer(&journal->j_commit_timer);
99 
100 	J_ASSERT(journal->j_running_transaction == NULL);
101 	journal->j_running_transaction = transaction;
102 	transaction->t_max_wait = 0;
103 	transaction->t_start = jiffies;
104 	transaction->t_requested = 0;
105 }
106 
107 /*
108  * Handle management.
109  *
110  * A handle_t is an object which represents a single atomic update to a
111  * filesystem, and which tracks all of the modifications which form part
112  * of that one update.
113  */
114 
115 /*
116  * Update transaction's maximum wait time, if debugging is enabled.
117  *
118  * In order for t_max_wait to be reliable, it must be protected by a
119  * lock.  But doing so will mean that start_this_handle() can not be
120  * run in parallel on SMP systems, which limits our scalability.  So
121  * unless debugging is enabled, we no longer update t_max_wait, which
122  * means that maximum wait time reported by the jbd2_run_stats
123  * tracepoint will always be zero.
124  */
update_t_max_wait(transaction_t * transaction,unsigned long ts)125 static inline void update_t_max_wait(transaction_t *transaction,
126 				     unsigned long ts)
127 {
128 #ifdef CONFIG_JBD2_DEBUG
129 	if (jbd2_journal_enable_debug &&
130 	    time_after(transaction->t_start, ts)) {
131 		ts = jbd2_time_diff(ts, transaction->t_start);
132 		spin_lock(&transaction->t_handle_lock);
133 		if (ts > transaction->t_max_wait)
134 			transaction->t_max_wait = ts;
135 		spin_unlock(&transaction->t_handle_lock);
136 	}
137 #endif
138 }
139 
140 /*
141  * Wait until running transaction passes to T_FLUSH state and new transaction
142  * can thus be started. Also starts the commit if needed. The function expects
143  * running transaction to exist and releases j_state_lock.
144  */
wait_transaction_locked(journal_t * journal)145 static void wait_transaction_locked(journal_t *journal)
146 	__releases(journal->j_state_lock)
147 {
148 	DEFINE_WAIT(wait);
149 	int need_to_start;
150 	tid_t tid = journal->j_running_transaction->t_tid;
151 
152 	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
153 			TASK_UNINTERRUPTIBLE);
154 	need_to_start = !tid_geq(journal->j_commit_request, tid);
155 	read_unlock(&journal->j_state_lock);
156 	if (need_to_start)
157 		jbd2_log_start_commit(journal, tid);
158 	jbd2_might_wait_for_commit(journal);
159 	schedule();
160 	finish_wait(&journal->j_wait_transaction_locked, &wait);
161 }
162 
163 /*
164  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
165  * state and new transaction can thus be started. The function releases
166  * j_state_lock.
167  */
wait_transaction_switching(journal_t * journal)168 static void wait_transaction_switching(journal_t *journal)
169 	__releases(journal->j_state_lock)
170 {
171 	DEFINE_WAIT(wait);
172 
173 	if (WARN_ON(!journal->j_running_transaction ||
174 		    journal->j_running_transaction->t_state != T_SWITCH)) {
175 		read_unlock(&journal->j_state_lock);
176 		return;
177 	}
178 	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
179 			TASK_UNINTERRUPTIBLE);
180 	read_unlock(&journal->j_state_lock);
181 	/*
182 	 * We don't call jbd2_might_wait_for_commit() here as there's no
183 	 * waiting for outstanding handles happening anymore in T_SWITCH state
184 	 * and handling of reserved handles actually relies on that for
185 	 * correctness.
186 	 */
187 	schedule();
188 	finish_wait(&journal->j_wait_transaction_locked, &wait);
189 }
190 
sub_reserved_credits(journal_t * journal,int blocks)191 static void sub_reserved_credits(journal_t *journal, int blocks)
192 {
193 	atomic_sub(blocks, &journal->j_reserved_credits);
194 	wake_up(&journal->j_wait_reserved);
195 }
196 
197 /*
198  * Wait until we can add credits for handle to the running transaction.  Called
199  * with j_state_lock held for reading. Returns 0 if handle joined the running
200  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
201  * caller must retry.
202  */
add_transaction_credits(journal_t * journal,int blocks,int rsv_blocks)203 static int add_transaction_credits(journal_t *journal, int blocks,
204 				   int rsv_blocks)
205 {
206 	transaction_t *t = journal->j_running_transaction;
207 	int needed;
208 	int total = blocks + rsv_blocks;
209 
210 	/*
211 	 * If the current transaction is locked down for commit, wait
212 	 * for the lock to be released.
213 	 */
214 	if (t->t_state != T_RUNNING) {
215 		WARN_ON_ONCE(t->t_state >= T_FLUSH);
216 		wait_transaction_locked(journal);
217 		return 1;
218 	}
219 
220 	/*
221 	 * If there is not enough space left in the log to write all
222 	 * potential buffers requested by this operation, we need to
223 	 * stall pending a log checkpoint to free some more log space.
224 	 */
225 	needed = atomic_add_return(total, &t->t_outstanding_credits);
226 	if (needed > journal->j_max_transaction_buffers) {
227 		/*
228 		 * If the current transaction is already too large,
229 		 * then start to commit it: we can then go back and
230 		 * attach this handle to a new transaction.
231 		 */
232 		atomic_sub(total, &t->t_outstanding_credits);
233 
234 		/*
235 		 * Is the number of reserved credits in the current transaction too
236 		 * big to fit this handle? Wait until reserved credits are freed.
237 		 */
238 		if (atomic_read(&journal->j_reserved_credits) + total >
239 		    journal->j_max_transaction_buffers) {
240 			read_unlock(&journal->j_state_lock);
241 			jbd2_might_wait_for_commit(journal);
242 			wait_event(journal->j_wait_reserved,
243 				   atomic_read(&journal->j_reserved_credits) + total <=
244 				   journal->j_max_transaction_buffers);
245 			return 1;
246 		}
247 
248 		wait_transaction_locked(journal);
249 		return 1;
250 	}
251 
252 	/*
253 	 * The commit code assumes that it can get enough log space
254 	 * without forcing a checkpoint.  This is *critical* for
255 	 * correctness: a checkpoint of a buffer which is also
256 	 * associated with a committing transaction creates a deadlock,
257 	 * so commit simply cannot force through checkpoints.
258 	 *
259 	 * We must therefore ensure the necessary space in the journal
260 	 * *before* starting to dirty potentially checkpointed buffers
261 	 * in the new transaction.
262 	 */
263 	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
264 		atomic_sub(total, &t->t_outstanding_credits);
265 		read_unlock(&journal->j_state_lock);
266 		jbd2_might_wait_for_commit(journal);
267 		write_lock(&journal->j_state_lock);
268 		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
269 			__jbd2_log_wait_for_space(journal);
270 		write_unlock(&journal->j_state_lock);
271 		return 1;
272 	}
273 
274 	/* No reservation? We are done... */
275 	if (!rsv_blocks)
276 		return 0;
277 
278 	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
279 	/* We allow at most half of a transaction to be reserved */
280 	if (needed > journal->j_max_transaction_buffers / 2) {
281 		sub_reserved_credits(journal, rsv_blocks);
282 		atomic_sub(total, &t->t_outstanding_credits);
283 		read_unlock(&journal->j_state_lock);
284 		jbd2_might_wait_for_commit(journal);
285 		wait_event(journal->j_wait_reserved,
286 			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
287 			 <= journal->j_max_transaction_buffers / 2);
288 		return 1;
289 	}
290 	return 0;
291 }
292 
293 /*
294  * start_this_handle: Given a handle, deal with any locking or stalling
295  * needed to make sure that there is enough journal space for the handle
296  * to begin.  Attach the handle to a transaction and set up the
297  * transaction's buffer credits.
298  */
299 
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)300 static int start_this_handle(journal_t *journal, handle_t *handle,
301 			     gfp_t gfp_mask)
302 {
303 	transaction_t	*transaction, *new_transaction = NULL;
304 	int		blocks = handle->h_buffer_credits;
305 	int		rsv_blocks = 0;
306 	unsigned long ts = jiffies;
307 
308 	if (handle->h_rsv_handle)
309 		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
310 
311 	/*
312 	 * Limit the number of reserved credits to 1/2 of maximum transaction
313 	 * size and limit the number of total credits to not exceed maximum
314 	 * transaction size per operation.
315 	 */
316 	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
317 	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
318 		printk(KERN_ERR "JBD2: %s wants too many credits "
319 		       "credits:%d rsv_credits:%d max:%d\n",
320 		       current->comm, blocks, rsv_blocks,
321 		       journal->j_max_transaction_buffers);
322 		WARN_ON(1);
323 		return -ENOSPC;
324 	}
325 
326 alloc_transaction:
327 	if (!journal->j_running_transaction) {
328 		/*
329 		 * If __GFP_FS is not present, then we may be being called from
330 		 * inside the fs writeback layer, so we MUST NOT fail.
331 		 */
332 		if ((gfp_mask & __GFP_FS) == 0)
333 			gfp_mask |= __GFP_NOFAIL;
334 		new_transaction = kmem_cache_zalloc(transaction_cache,
335 						    gfp_mask);
336 		if (!new_transaction)
337 			return -ENOMEM;
338 	}
339 
340 	jbd_debug(3, "New handle %p going live.\n", handle);
341 
342 	/*
343 	 * We need to hold j_state_lock until t_updates has been incremented,
344 	 * for proper journal barrier handling
345 	 */
346 repeat:
347 	read_lock(&journal->j_state_lock);
348 	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
349 	if (is_journal_aborted(journal) ||
350 	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
351 		read_unlock(&journal->j_state_lock);
352 		jbd2_journal_free_transaction(new_transaction);
353 		return -EROFS;
354 	}
355 
356 	/*
357 	 * Wait on the journal's transaction barrier if necessary. Specifically
358 	 * we allow reserved handles to proceed because otherwise commit could
359 	 * deadlock on page writeback not being able to complete.
360 	 */
361 	if (!handle->h_reserved && journal->j_barrier_count) {
362 		read_unlock(&journal->j_state_lock);
363 		wait_event(journal->j_wait_transaction_locked,
364 				journal->j_barrier_count == 0);
365 		goto repeat;
366 	}
367 
368 	if (!journal->j_running_transaction) {
369 		read_unlock(&journal->j_state_lock);
370 		if (!new_transaction)
371 			goto alloc_transaction;
372 		write_lock(&journal->j_state_lock);
373 		if (!journal->j_running_transaction &&
374 		    (handle->h_reserved || !journal->j_barrier_count)) {
375 			jbd2_get_transaction(journal, new_transaction);
376 			new_transaction = NULL;
377 		}
378 		write_unlock(&journal->j_state_lock);
379 		goto repeat;
380 	}
381 
382 	transaction = journal->j_running_transaction;
383 
384 	if (!handle->h_reserved) {
385 		/* We may have dropped j_state_lock - restart in that case */
386 		if (add_transaction_credits(journal, blocks, rsv_blocks))
387 			goto repeat;
388 	} else {
389 		/*
390 		 * We have handle reserved so we are allowed to join T_LOCKED
391 		 * transaction and we don't have to check for transaction size
392 		 * and journal space. But we still have to wait while running
393 		 * transaction is being switched to a committing one as it
394 		 * won't wait for any handles anymore.
395 		 */
396 		if (transaction->t_state == T_SWITCH) {
397 			wait_transaction_switching(journal);
398 			goto repeat;
399 		}
400 		sub_reserved_credits(journal, blocks);
401 		handle->h_reserved = 0;
402 	}
403 
404 	/* OK, account for the buffers that this operation expects to
405 	 * use and add the handle to the running transaction.
406 	 */
407 	update_t_max_wait(transaction, ts);
408 	handle->h_transaction = transaction;
409 	handle->h_requested_credits = blocks;
410 	handle->h_start_jiffies = jiffies;
411 	atomic_inc(&transaction->t_updates);
412 	atomic_inc(&transaction->t_handle_count);
413 	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
414 		  handle, blocks,
415 		  atomic_read(&transaction->t_outstanding_credits),
416 		  jbd2_log_space_left(journal));
417 	read_unlock(&journal->j_state_lock);
418 	current->journal_info = handle;
419 
420 	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
421 	jbd2_journal_free_transaction(new_transaction);
422 	/*
423 	 * Ensure that no allocations done while the transaction is open are
424 	 * going to recurse back to the fs layer.
425 	 */
426 	handle->saved_alloc_context = memalloc_nofs_save();
427 	return 0;
428 }
429 
430 /* Allocate a new handle.  This should probably be in a slab... */
new_handle(int nblocks)431 static handle_t *new_handle(int nblocks)
432 {
433 	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
434 	if (!handle)
435 		return NULL;
436 	handle->h_buffer_credits = nblocks;
437 	handle->h_ref = 1;
438 
439 	return handle;
440 }
441 
jbd2__journal_start(journal_t * journal,int nblocks,int rsv_blocks,gfp_t gfp_mask,unsigned int type,unsigned int line_no)442 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
443 			      gfp_t gfp_mask, unsigned int type,
444 			      unsigned int line_no)
445 {
446 	handle_t *handle = journal_current_handle();
447 	int err;
448 
449 	if (!journal)
450 		return ERR_PTR(-EROFS);
451 
452 	if (handle) {
453 		J_ASSERT(handle->h_transaction->t_journal == journal);
454 		handle->h_ref++;
455 		return handle;
456 	}
457 
458 	handle = new_handle(nblocks);
459 	if (!handle)
460 		return ERR_PTR(-ENOMEM);
461 	if (rsv_blocks) {
462 		handle_t *rsv_handle;
463 
464 		rsv_handle = new_handle(rsv_blocks);
465 		if (!rsv_handle) {
466 			jbd2_free_handle(handle);
467 			return ERR_PTR(-ENOMEM);
468 		}
469 		rsv_handle->h_reserved = 1;
470 		rsv_handle->h_journal = journal;
471 		handle->h_rsv_handle = rsv_handle;
472 	}
473 
474 	err = start_this_handle(journal, handle, gfp_mask);
475 	if (err < 0) {
476 		if (handle->h_rsv_handle)
477 			jbd2_free_handle(handle->h_rsv_handle);
478 		jbd2_free_handle(handle);
479 		return ERR_PTR(err);
480 	}
481 	handle->h_type = type;
482 	handle->h_line_no = line_no;
483 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
484 				handle->h_transaction->t_tid, type,
485 				line_no, nblocks);
486 
487 	return handle;
488 }
489 EXPORT_SYMBOL(jbd2__journal_start);
490 
491 
492 /**
493  * jbd2_journal_start() - Obtain a new handle.
494  * @journal: Journal to start transaction on.
495  * @nblocks: number of block buffer we might modify
496  *
497  * We make sure that the transaction can guarantee at least nblocks of
498  * modified buffers in the log.  We block until the log can guarantee
499  * that much space. Additionally, if rsv_blocks > 0, we also create another
500  * handle with rsv_blocks reserved blocks in the journal. This handle is
501  * is stored in h_rsv_handle. It is not attached to any particular transaction
502  * and thus doesn't block transaction commit. If the caller uses this reserved
503  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
504  * on the parent handle will dispose the reserved one. Reserved handle has to
505  * be converted to a normal handle using jbd2_journal_start_reserved() before
506  * it can be used.
507  *
508  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
509  * on failure.
510  */
jbd2_journal_start(journal_t * journal,int nblocks)511 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
512 {
513 	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
514 }
515 EXPORT_SYMBOL(jbd2_journal_start);
516 
jbd2_journal_free_reserved(handle_t * handle)517 void jbd2_journal_free_reserved(handle_t *handle)
518 {
519 	journal_t *journal = handle->h_journal;
520 
521 	WARN_ON(!handle->h_reserved);
522 	sub_reserved_credits(journal, handle->h_buffer_credits);
523 	jbd2_free_handle(handle);
524 }
525 EXPORT_SYMBOL(jbd2_journal_free_reserved);
526 
527 /**
528  * jbd2_journal_start_reserved() - start reserved handle
529  * @handle: handle to start
530  * @type: for handle statistics
531  * @line_no: for handle statistics
532  *
533  * Start handle that has been previously reserved with jbd2_journal_reserve().
534  * This attaches @handle to the running transaction (or creates one if there's
535  * not transaction running). Unlike jbd2_journal_start() this function cannot
536  * block on journal commit, checkpointing, or similar stuff. It can block on
537  * memory allocation or frozen journal though.
538  *
539  * Return 0 on success, non-zero on error - handle is freed in that case.
540  */
jbd2_journal_start_reserved(handle_t * handle,unsigned int type,unsigned int line_no)541 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
542 				unsigned int line_no)
543 {
544 	journal_t *journal = handle->h_journal;
545 	int ret = -EIO;
546 
547 	if (WARN_ON(!handle->h_reserved)) {
548 		/* Someone passed in normal handle? Just stop it. */
549 		jbd2_journal_stop(handle);
550 		return ret;
551 	}
552 	/*
553 	 * Usefulness of mixing of reserved and unreserved handles is
554 	 * questionable. So far nobody seems to need it so just error out.
555 	 */
556 	if (WARN_ON(current->journal_info)) {
557 		jbd2_journal_free_reserved(handle);
558 		return ret;
559 	}
560 
561 	handle->h_journal = NULL;
562 	/*
563 	 * GFP_NOFS is here because callers are likely from writeback or
564 	 * similarly constrained call sites
565 	 */
566 	ret = start_this_handle(journal, handle, GFP_NOFS);
567 	if (ret < 0) {
568 		handle->h_journal = journal;
569 		jbd2_journal_free_reserved(handle);
570 		return ret;
571 	}
572 	handle->h_type = type;
573 	handle->h_line_no = line_no;
574 	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
575 				handle->h_transaction->t_tid, type,
576 				line_no, handle->h_buffer_credits);
577 	return 0;
578 }
579 EXPORT_SYMBOL(jbd2_journal_start_reserved);
580 
581 /**
582  * jbd2_journal_extend() - extend buffer credits.
583  * @handle:  handle to 'extend'
584  * @nblocks: nr blocks to try to extend by.
585  *
586  * Some transactions, such as large extends and truncates, can be done
587  * atomically all at once or in several stages.  The operation requests
588  * a credit for a number of buffer modifications in advance, but can
589  * extend its credit if it needs more.
590  *
591  * jbd2_journal_extend tries to give the running handle more buffer credits.
592  * It does not guarantee that allocation - this is a best-effort only.
593  * The calling process MUST be able to deal cleanly with a failure to
594  * extend here.
595  *
596  * Return 0 on success, non-zero on failure.
597  *
598  * return code < 0 implies an error
599  * return code > 0 implies normal transaction-full status.
600  */
jbd2_journal_extend(handle_t * handle,int nblocks)601 int jbd2_journal_extend(handle_t *handle, int nblocks)
602 {
603 	transaction_t *transaction = handle->h_transaction;
604 	journal_t *journal;
605 	int result;
606 	int wanted;
607 
608 	if (is_handle_aborted(handle))
609 		return -EROFS;
610 	journal = transaction->t_journal;
611 
612 	result = 1;
613 
614 	read_lock(&journal->j_state_lock);
615 
616 	/* Don't extend a locked-down transaction! */
617 	if (transaction->t_state != T_RUNNING) {
618 		jbd_debug(3, "denied handle %p %d blocks: "
619 			  "transaction not running\n", handle, nblocks);
620 		goto error_out;
621 	}
622 
623 	spin_lock(&transaction->t_handle_lock);
624 	wanted = atomic_add_return(nblocks,
625 				   &transaction->t_outstanding_credits);
626 
627 	if (wanted > journal->j_max_transaction_buffers) {
628 		jbd_debug(3, "denied handle %p %d blocks: "
629 			  "transaction too large\n", handle, nblocks);
630 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
631 		goto unlock;
632 	}
633 
634 	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
635 	    jbd2_log_space_left(journal)) {
636 		jbd_debug(3, "denied handle %p %d blocks: "
637 			  "insufficient log space\n", handle, nblocks);
638 		atomic_sub(nblocks, &transaction->t_outstanding_credits);
639 		goto unlock;
640 	}
641 
642 	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
643 				 transaction->t_tid,
644 				 handle->h_type, handle->h_line_no,
645 				 handle->h_buffer_credits,
646 				 nblocks);
647 
648 	handle->h_buffer_credits += nblocks;
649 	handle->h_requested_credits += nblocks;
650 	result = 0;
651 
652 	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
653 unlock:
654 	spin_unlock(&transaction->t_handle_lock);
655 error_out:
656 	read_unlock(&journal->j_state_lock);
657 	return result;
658 }
659 
660 
661 /**
662  * jbd2__journal_restart() - restart a handle .
663  * @handle:  handle to restart
664  * @nblocks: nr credits requested
665  * @gfp_mask: memory allocation flags (for start_this_handle)
666  *
667  * Restart a handle for a multi-transaction filesystem
668  * operation.
669  *
670  * If the jbd2_journal_extend() call above fails to grant new buffer credits
671  * to a running handle, a call to jbd2_journal_restart will commit the
672  * handle's transaction so far and reattach the handle to a new
673  * transaction capable of guaranteeing the requested number of
674  * credits. We preserve reserved handle if there's any attached to the
675  * passed in handle.
676  */
jbd2__journal_restart(handle_t * handle,int nblocks,gfp_t gfp_mask)677 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
678 {
679 	transaction_t *transaction = handle->h_transaction;
680 	journal_t *journal;
681 	tid_t		tid;
682 	int		need_to_start, ret;
683 
684 	/* If we've had an abort of any type, don't even think about
685 	 * actually doing the restart! */
686 	if (is_handle_aborted(handle))
687 		return 0;
688 	journal = transaction->t_journal;
689 
690 	/*
691 	 * First unlink the handle from its current transaction, and start the
692 	 * commit on that.
693 	 */
694 	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
695 	J_ASSERT(journal_current_handle() == handle);
696 
697 	read_lock(&journal->j_state_lock);
698 	spin_lock(&transaction->t_handle_lock);
699 	atomic_sub(handle->h_buffer_credits,
700 		   &transaction->t_outstanding_credits);
701 	if (handle->h_rsv_handle) {
702 		sub_reserved_credits(journal,
703 				     handle->h_rsv_handle->h_buffer_credits);
704 	}
705 	if (atomic_dec_and_test(&transaction->t_updates))
706 		wake_up(&journal->j_wait_updates);
707 	tid = transaction->t_tid;
708 	spin_unlock(&transaction->t_handle_lock);
709 	handle->h_transaction = NULL;
710 	current->journal_info = NULL;
711 
712 	jbd_debug(2, "restarting handle %p\n", handle);
713 	need_to_start = !tid_geq(journal->j_commit_request, tid);
714 	read_unlock(&journal->j_state_lock);
715 	if (need_to_start)
716 		jbd2_log_start_commit(journal, tid);
717 
718 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
719 	handle->h_buffer_credits = nblocks;
720 	/*
721 	 * Restore the original nofs context because the journal restart
722 	 * is basically the same thing as journal stop and start.
723 	 * start_this_handle will start a new nofs context.
724 	 */
725 	memalloc_nofs_restore(handle->saved_alloc_context);
726 	ret = start_this_handle(journal, handle, gfp_mask);
727 	return ret;
728 }
729 EXPORT_SYMBOL(jbd2__journal_restart);
730 
731 
jbd2_journal_restart(handle_t * handle,int nblocks)732 int jbd2_journal_restart(handle_t *handle, int nblocks)
733 {
734 	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
735 }
736 EXPORT_SYMBOL(jbd2_journal_restart);
737 
738 /**
739  * jbd2_journal_lock_updates () - establish a transaction barrier.
740  * @journal:  Journal to establish a barrier on.
741  *
742  * This locks out any further updates from being started, and blocks
743  * until all existing updates have completed, returning only once the
744  * journal is in a quiescent state with no updates running.
745  *
746  * The journal lock should not be held on entry.
747  */
jbd2_journal_lock_updates(journal_t * journal)748 void jbd2_journal_lock_updates(journal_t *journal)
749 {
750 	DEFINE_WAIT(wait);
751 
752 	jbd2_might_wait_for_commit(journal);
753 
754 	write_lock(&journal->j_state_lock);
755 	++journal->j_barrier_count;
756 
757 	/* Wait until there are no reserved handles */
758 	if (atomic_read(&journal->j_reserved_credits)) {
759 		write_unlock(&journal->j_state_lock);
760 		wait_event(journal->j_wait_reserved,
761 			   atomic_read(&journal->j_reserved_credits) == 0);
762 		write_lock(&journal->j_state_lock);
763 	}
764 
765 	/* Wait until there are no running updates */
766 	while (1) {
767 		transaction_t *transaction = journal->j_running_transaction;
768 
769 		if (!transaction)
770 			break;
771 
772 		spin_lock(&transaction->t_handle_lock);
773 		prepare_to_wait(&journal->j_wait_updates, &wait,
774 				TASK_UNINTERRUPTIBLE);
775 		if (!atomic_read(&transaction->t_updates)) {
776 			spin_unlock(&transaction->t_handle_lock);
777 			finish_wait(&journal->j_wait_updates, &wait);
778 			break;
779 		}
780 		spin_unlock(&transaction->t_handle_lock);
781 		write_unlock(&journal->j_state_lock);
782 		schedule();
783 		finish_wait(&journal->j_wait_updates, &wait);
784 		write_lock(&journal->j_state_lock);
785 	}
786 	write_unlock(&journal->j_state_lock);
787 
788 	/*
789 	 * We have now established a barrier against other normal updates, but
790 	 * we also need to barrier against other jbd2_journal_lock_updates() calls
791 	 * to make sure that we serialise special journal-locked operations
792 	 * too.
793 	 */
794 	mutex_lock(&journal->j_barrier);
795 }
796 
797 /**
798  * jbd2_journal_unlock_updates () - release barrier
799  * @journal:  Journal to release the barrier on.
800  *
801  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
802  *
803  * Should be called without the journal lock held.
804  */
jbd2_journal_unlock_updates(journal_t * journal)805 void jbd2_journal_unlock_updates (journal_t *journal)
806 {
807 	J_ASSERT(journal->j_barrier_count != 0);
808 
809 	mutex_unlock(&journal->j_barrier);
810 	write_lock(&journal->j_state_lock);
811 	--journal->j_barrier_count;
812 	write_unlock(&journal->j_state_lock);
813 	wake_up_all(&journal->j_wait_transaction_locked);
814 }
815 
warn_dirty_buffer(struct buffer_head * bh)816 static void warn_dirty_buffer(struct buffer_head *bh)
817 {
818 	printk(KERN_WARNING
819 	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
820 	       "There's a risk of filesystem corruption in case of system "
821 	       "crash.\n",
822 	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
823 }
824 
825 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
jbd2_freeze_jh_data(struct journal_head * jh)826 static void jbd2_freeze_jh_data(struct journal_head *jh)
827 {
828 	struct page *page;
829 	int offset;
830 	char *source;
831 	struct buffer_head *bh = jh2bh(jh);
832 
833 	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
834 	page = bh->b_page;
835 	offset = offset_in_page(bh->b_data);
836 	source = kmap_atomic(page);
837 	/* Fire data frozen trigger just before we copy the data */
838 	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
839 	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
840 	kunmap_atomic(source);
841 
842 	/*
843 	 * Now that the frozen data is saved off, we need to store any matching
844 	 * triggers.
845 	 */
846 	jh->b_frozen_triggers = jh->b_triggers;
847 }
848 
849 /*
850  * If the buffer is already part of the current transaction, then there
851  * is nothing we need to do.  If it is already part of a prior
852  * transaction which we are still committing to disk, then we need to
853  * make sure that we do not overwrite the old copy: we do copy-out to
854  * preserve the copy going to disk.  We also account the buffer against
855  * the handle's metadata buffer credits (unless the buffer is already
856  * part of the transaction, that is).
857  *
858  */
859 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)860 do_get_write_access(handle_t *handle, struct journal_head *jh,
861 			int force_copy)
862 {
863 	struct buffer_head *bh;
864 	transaction_t *transaction = handle->h_transaction;
865 	journal_t *journal;
866 	int error;
867 	char *frozen_buffer = NULL;
868 	unsigned long start_lock, time_lock;
869 
870 	journal = transaction->t_journal;
871 
872 	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
873 
874 	JBUFFER_TRACE(jh, "entry");
875 repeat:
876 	bh = jh2bh(jh);
877 
878 	/* @@@ Need to check for errors here at some point. */
879 
880  	start_lock = jiffies;
881 	lock_buffer(bh);
882 	jbd_lock_bh_state(bh);
883 
884 	/* If it takes too long to lock the buffer, trace it */
885 	time_lock = jbd2_time_diff(start_lock, jiffies);
886 	if (time_lock > HZ/10)
887 		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
888 			jiffies_to_msecs(time_lock));
889 
890 	/* We now hold the buffer lock so it is safe to query the buffer
891 	 * state.  Is the buffer dirty?
892 	 *
893 	 * If so, there are two possibilities.  The buffer may be
894 	 * non-journaled, and undergoing a quite legitimate writeback.
895 	 * Otherwise, it is journaled, and we don't expect dirty buffers
896 	 * in that state (the buffers should be marked JBD_Dirty
897 	 * instead.)  So either the IO is being done under our own
898 	 * control and this is a bug, or it's a third party IO such as
899 	 * dump(8) (which may leave the buffer scheduled for read ---
900 	 * ie. locked but not dirty) or tune2fs (which may actually have
901 	 * the buffer dirtied, ugh.)  */
902 
903 	if (buffer_dirty(bh)) {
904 		/*
905 		 * First question: is this buffer already part of the current
906 		 * transaction or the existing committing transaction?
907 		 */
908 		if (jh->b_transaction) {
909 			J_ASSERT_JH(jh,
910 				jh->b_transaction == transaction ||
911 				jh->b_transaction ==
912 					journal->j_committing_transaction);
913 			if (jh->b_next_transaction)
914 				J_ASSERT_JH(jh, jh->b_next_transaction ==
915 							transaction);
916 			warn_dirty_buffer(bh);
917 		}
918 		/*
919 		 * In any case we need to clean the dirty flag and we must
920 		 * do it under the buffer lock to be sure we don't race
921 		 * with running write-out.
922 		 */
923 		JBUFFER_TRACE(jh, "Journalling dirty buffer");
924 		clear_buffer_dirty(bh);
925 		set_buffer_jbddirty(bh);
926 	}
927 
928 	unlock_buffer(bh);
929 
930 	error = -EROFS;
931 	if (is_handle_aborted(handle)) {
932 		jbd_unlock_bh_state(bh);
933 		goto out;
934 	}
935 	error = 0;
936 
937 	/*
938 	 * The buffer is already part of this transaction if b_transaction or
939 	 * b_next_transaction points to it
940 	 */
941 	if (jh->b_transaction == transaction ||
942 	    jh->b_next_transaction == transaction)
943 		goto done;
944 
945 	/*
946 	 * this is the first time this transaction is touching this buffer,
947 	 * reset the modified flag
948 	 */
949 	jh->b_modified = 0;
950 
951 	/*
952 	 * If the buffer is not journaled right now, we need to make sure it
953 	 * doesn't get written to disk before the caller actually commits the
954 	 * new data
955 	 */
956 	if (!jh->b_transaction) {
957 		JBUFFER_TRACE(jh, "no transaction");
958 		J_ASSERT_JH(jh, !jh->b_next_transaction);
959 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
960 		/*
961 		 * Make sure all stores to jh (b_modified, b_frozen_data) are
962 		 * visible before attaching it to the running transaction.
963 		 * Paired with barrier in jbd2_write_access_granted()
964 		 */
965 		smp_wmb();
966 		spin_lock(&journal->j_list_lock);
967 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
968 		spin_unlock(&journal->j_list_lock);
969 		goto done;
970 	}
971 	/*
972 	 * If there is already a copy-out version of this buffer, then we don't
973 	 * need to make another one
974 	 */
975 	if (jh->b_frozen_data) {
976 		JBUFFER_TRACE(jh, "has frozen data");
977 		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
978 		goto attach_next;
979 	}
980 
981 	JBUFFER_TRACE(jh, "owned by older transaction");
982 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
983 	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
984 
985 	/*
986 	 * There is one case we have to be very careful about.  If the
987 	 * committing transaction is currently writing this buffer out to disk
988 	 * and has NOT made a copy-out, then we cannot modify the buffer
989 	 * contents at all right now.  The essence of copy-out is that it is
990 	 * the extra copy, not the primary copy, which gets journaled.  If the
991 	 * primary copy is already going to disk then we cannot do copy-out
992 	 * here.
993 	 */
994 	if (buffer_shadow(bh)) {
995 		JBUFFER_TRACE(jh, "on shadow: sleep");
996 		jbd_unlock_bh_state(bh);
997 		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
998 		goto repeat;
999 	}
1000 
1001 	/*
1002 	 * Only do the copy if the currently-owning transaction still needs it.
1003 	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1004 	 * past that stage (here we use the fact that BH_Shadow is set under
1005 	 * bh_state lock together with refiling to BJ_Shadow list and at this
1006 	 * point we know the buffer doesn't have BH_Shadow set).
1007 	 *
1008 	 * Subtle point, though: if this is a get_undo_access, then we will be
1009 	 * relying on the frozen_data to contain the new value of the
1010 	 * committed_data record after the transaction, so we HAVE to force the
1011 	 * frozen_data copy in that case.
1012 	 */
1013 	if (jh->b_jlist == BJ_Metadata || force_copy) {
1014 		JBUFFER_TRACE(jh, "generate frozen data");
1015 		if (!frozen_buffer) {
1016 			JBUFFER_TRACE(jh, "allocate memory for buffer");
1017 			jbd_unlock_bh_state(bh);
1018 			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1019 						   GFP_NOFS | __GFP_NOFAIL);
1020 			goto repeat;
1021 		}
1022 		jh->b_frozen_data = frozen_buffer;
1023 		frozen_buffer = NULL;
1024 		jbd2_freeze_jh_data(jh);
1025 	}
1026 attach_next:
1027 	/*
1028 	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1029 	 * before attaching it to the running transaction. Paired with barrier
1030 	 * in jbd2_write_access_granted()
1031 	 */
1032 	smp_wmb();
1033 	jh->b_next_transaction = transaction;
1034 
1035 done:
1036 	jbd_unlock_bh_state(bh);
1037 
1038 	/*
1039 	 * If we are about to journal a buffer, then any revoke pending on it is
1040 	 * no longer valid
1041 	 */
1042 	jbd2_journal_cancel_revoke(handle, jh);
1043 
1044 out:
1045 	if (unlikely(frozen_buffer))	/* It's usually NULL */
1046 		jbd2_free(frozen_buffer, bh->b_size);
1047 
1048 	JBUFFER_TRACE(jh, "exit");
1049 	return error;
1050 }
1051 
1052 /* Fast check whether buffer is already attached to the required transaction */
jbd2_write_access_granted(handle_t * handle,struct buffer_head * bh,bool undo)1053 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1054 							bool undo)
1055 {
1056 	struct journal_head *jh;
1057 	bool ret = false;
1058 
1059 	/* Dirty buffers require special handling... */
1060 	if (buffer_dirty(bh))
1061 		return false;
1062 
1063 	/*
1064 	 * RCU protects us from dereferencing freed pages. So the checks we do
1065 	 * are guaranteed not to oops. However the jh slab object can get freed
1066 	 * & reallocated while we work with it. So we have to be careful. When
1067 	 * we see jh attached to the running transaction, we know it must stay
1068 	 * so until the transaction is committed. Thus jh won't be freed and
1069 	 * will be attached to the same bh while we run.  However it can
1070 	 * happen jh gets freed, reallocated, and attached to the transaction
1071 	 * just after we get pointer to it from bh. So we have to be careful
1072 	 * and recheck jh still belongs to our bh before we return success.
1073 	 */
1074 	rcu_read_lock();
1075 	if (!buffer_jbd(bh))
1076 		goto out;
1077 	/* This should be bh2jh() but that doesn't work with inline functions */
1078 	jh = READ_ONCE(bh->b_private);
1079 	if (!jh)
1080 		goto out;
1081 	/* For undo access buffer must have data copied */
1082 	if (undo && !jh->b_committed_data)
1083 		goto out;
1084 	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1085 	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1086 		goto out;
1087 	/*
1088 	 * There are two reasons for the barrier here:
1089 	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1090 	 * detect when jh went through free, realloc, attach to transaction
1091 	 * while we were checking. Paired with implicit barrier in that path.
1092 	 * 2) So that access to bh done after jbd2_write_access_granted()
1093 	 * doesn't get reordered and see inconsistent state of concurrent
1094 	 * do_get_write_access().
1095 	 */
1096 	smp_mb();
1097 	if (unlikely(jh->b_bh != bh))
1098 		goto out;
1099 	ret = true;
1100 out:
1101 	rcu_read_unlock();
1102 	return ret;
1103 }
1104 
1105 /**
1106  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1107  *				     for metadata (not data) update.
1108  * @handle: transaction to add buffer modifications to
1109  * @bh:     bh to be used for metadata writes
1110  *
1111  * Returns: error code or 0 on success.
1112  *
1113  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1114  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1115  */
1116 
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1117 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1118 {
1119 	struct journal_head *jh;
1120 	int rc;
1121 
1122 	if (is_handle_aborted(handle))
1123 		return -EROFS;
1124 
1125 	if (jbd2_write_access_granted(handle, bh, false))
1126 		return 0;
1127 
1128 	jh = jbd2_journal_add_journal_head(bh);
1129 	/* We do not want to get caught playing with fields which the
1130 	 * log thread also manipulates.  Make sure that the buffer
1131 	 * completes any outstanding IO before proceeding. */
1132 	rc = do_get_write_access(handle, jh, 0);
1133 	jbd2_journal_put_journal_head(jh);
1134 	return rc;
1135 }
1136 
1137 
1138 /*
1139  * When the user wants to journal a newly created buffer_head
1140  * (ie. getblk() returned a new buffer and we are going to populate it
1141  * manually rather than reading off disk), then we need to keep the
1142  * buffer_head locked until it has been completely filled with new
1143  * data.  In this case, we should be able to make the assertion that
1144  * the bh is not already part of an existing transaction.
1145  *
1146  * The buffer should already be locked by the caller by this point.
1147  * There is no lock ranking violation: it was a newly created,
1148  * unlocked buffer beforehand. */
1149 
1150 /**
1151  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1152  * @handle: transaction to new buffer to
1153  * @bh: new buffer.
1154  *
1155  * Call this if you create a new bh.
1156  */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)1157 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1158 {
1159 	transaction_t *transaction = handle->h_transaction;
1160 	journal_t *journal;
1161 	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1162 	int err;
1163 
1164 	jbd_debug(5, "journal_head %p\n", jh);
1165 	err = -EROFS;
1166 	if (is_handle_aborted(handle))
1167 		goto out;
1168 	journal = transaction->t_journal;
1169 	err = 0;
1170 
1171 	JBUFFER_TRACE(jh, "entry");
1172 	/*
1173 	 * The buffer may already belong to this transaction due to pre-zeroing
1174 	 * in the filesystem's new_block code.  It may also be on the previous,
1175 	 * committing transaction's lists, but it HAS to be in Forget state in
1176 	 * that case: the transaction must have deleted the buffer for it to be
1177 	 * reused here.
1178 	 */
1179 	jbd_lock_bh_state(bh);
1180 	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1181 		jh->b_transaction == NULL ||
1182 		(jh->b_transaction == journal->j_committing_transaction &&
1183 			  jh->b_jlist == BJ_Forget)));
1184 
1185 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1186 	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1187 
1188 	if (jh->b_transaction == NULL) {
1189 		/*
1190 		 * Previous jbd2_journal_forget() could have left the buffer
1191 		 * with jbddirty bit set because it was being committed. When
1192 		 * the commit finished, we've filed the buffer for
1193 		 * checkpointing and marked it dirty. Now we are reallocating
1194 		 * the buffer so the transaction freeing it must have
1195 		 * committed and so it's safe to clear the dirty bit.
1196 		 */
1197 		clear_buffer_dirty(jh2bh(jh));
1198 		/* first access by this transaction */
1199 		jh->b_modified = 0;
1200 
1201 		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1202 		spin_lock(&journal->j_list_lock);
1203 		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1204 		spin_unlock(&journal->j_list_lock);
1205 	} else if (jh->b_transaction == journal->j_committing_transaction) {
1206 		/* first access by this transaction */
1207 		jh->b_modified = 0;
1208 
1209 		JBUFFER_TRACE(jh, "set next transaction");
1210 		spin_lock(&journal->j_list_lock);
1211 		jh->b_next_transaction = transaction;
1212 		spin_unlock(&journal->j_list_lock);
1213 	}
1214 	jbd_unlock_bh_state(bh);
1215 
1216 	/*
1217 	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1218 	 * blocks which contain freed but then revoked metadata.  We need
1219 	 * to cancel the revoke in case we end up freeing it yet again
1220 	 * and the reallocating as data - this would cause a second revoke,
1221 	 * which hits an assertion error.
1222 	 */
1223 	JBUFFER_TRACE(jh, "cancelling revoke");
1224 	jbd2_journal_cancel_revoke(handle, jh);
1225 out:
1226 	jbd2_journal_put_journal_head(jh);
1227 	return err;
1228 }
1229 
1230 /**
1231  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1232  *     non-rewindable consequences
1233  * @handle: transaction
1234  * @bh: buffer to undo
1235  *
1236  * Sometimes there is a need to distinguish between metadata which has
1237  * been committed to disk and that which has not.  The ext3fs code uses
1238  * this for freeing and allocating space, we have to make sure that we
1239  * do not reuse freed space until the deallocation has been committed,
1240  * since if we overwrote that space we would make the delete
1241  * un-rewindable in case of a crash.
1242  *
1243  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1244  * buffer for parts of non-rewindable operations such as delete
1245  * operations on the bitmaps.  The journaling code must keep a copy of
1246  * the buffer's contents prior to the undo_access call until such time
1247  * as we know that the buffer has definitely been committed to disk.
1248  *
1249  * We never need to know which transaction the committed data is part
1250  * of, buffers touched here are guaranteed to be dirtied later and so
1251  * will be committed to a new transaction in due course, at which point
1252  * we can discard the old committed data pointer.
1253  *
1254  * Returns error number or 0 on success.
1255  */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)1256 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1257 {
1258 	int err;
1259 	struct journal_head *jh;
1260 	char *committed_data = NULL;
1261 
1262 	if (is_handle_aborted(handle))
1263 		return -EROFS;
1264 
1265 	if (jbd2_write_access_granted(handle, bh, true))
1266 		return 0;
1267 
1268 	jh = jbd2_journal_add_journal_head(bh);
1269 	JBUFFER_TRACE(jh, "entry");
1270 
1271 	/*
1272 	 * Do this first --- it can drop the journal lock, so we want to
1273 	 * make sure that obtaining the committed_data is done
1274 	 * atomically wrt. completion of any outstanding commits.
1275 	 */
1276 	err = do_get_write_access(handle, jh, 1);
1277 	if (err)
1278 		goto out;
1279 
1280 repeat:
1281 	if (!jh->b_committed_data)
1282 		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1283 					    GFP_NOFS|__GFP_NOFAIL);
1284 
1285 	jbd_lock_bh_state(bh);
1286 	if (!jh->b_committed_data) {
1287 		/* Copy out the current buffer contents into the
1288 		 * preserved, committed copy. */
1289 		JBUFFER_TRACE(jh, "generate b_committed data");
1290 		if (!committed_data) {
1291 			jbd_unlock_bh_state(bh);
1292 			goto repeat;
1293 		}
1294 
1295 		jh->b_committed_data = committed_data;
1296 		committed_data = NULL;
1297 		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1298 	}
1299 	jbd_unlock_bh_state(bh);
1300 out:
1301 	jbd2_journal_put_journal_head(jh);
1302 	if (unlikely(committed_data))
1303 		jbd2_free(committed_data, bh->b_size);
1304 	return err;
1305 }
1306 
1307 /**
1308  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1309  * @bh: buffer to trigger on
1310  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1311  *
1312  * Set any triggers on this journal_head.  This is always safe, because
1313  * triggers for a committing buffer will be saved off, and triggers for
1314  * a running transaction will match the buffer in that transaction.
1315  *
1316  * Call with NULL to clear the triggers.
1317  */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1318 void jbd2_journal_set_triggers(struct buffer_head *bh,
1319 			       struct jbd2_buffer_trigger_type *type)
1320 {
1321 	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1322 
1323 	if (WARN_ON(!jh))
1324 		return;
1325 	jh->b_triggers = type;
1326 	jbd2_journal_put_journal_head(jh);
1327 }
1328 
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1329 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1330 				struct jbd2_buffer_trigger_type *triggers)
1331 {
1332 	struct buffer_head *bh = jh2bh(jh);
1333 
1334 	if (!triggers || !triggers->t_frozen)
1335 		return;
1336 
1337 	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1338 }
1339 
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1340 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1341 			       struct jbd2_buffer_trigger_type *triggers)
1342 {
1343 	if (!triggers || !triggers->t_abort)
1344 		return;
1345 
1346 	triggers->t_abort(triggers, jh2bh(jh));
1347 }
1348 
1349 /**
1350  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1351  * @handle: transaction to add buffer to.
1352  * @bh: buffer to mark
1353  *
1354  * mark dirty metadata which needs to be journaled as part of the current
1355  * transaction.
1356  *
1357  * The buffer must have previously had jbd2_journal_get_write_access()
1358  * called so that it has a valid journal_head attached to the buffer
1359  * head.
1360  *
1361  * The buffer is placed on the transaction's metadata list and is marked
1362  * as belonging to the transaction.
1363  *
1364  * Returns error number or 0 on success.
1365  *
1366  * Special care needs to be taken if the buffer already belongs to the
1367  * current committing transaction (in which case we should have frozen
1368  * data present for that commit).  In that case, we don't relink the
1369  * buffer: that only gets done when the old transaction finally
1370  * completes its commit.
1371  */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1372 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1373 {
1374 	transaction_t *transaction = handle->h_transaction;
1375 	journal_t *journal;
1376 	struct journal_head *jh;
1377 	int ret = 0;
1378 
1379 	if (!buffer_jbd(bh))
1380 		return -EUCLEAN;
1381 
1382 	/*
1383 	 * We don't grab jh reference here since the buffer must be part
1384 	 * of the running transaction.
1385 	 */
1386 	jh = bh2jh(bh);
1387 	jbd_debug(5, "journal_head %p\n", jh);
1388 	JBUFFER_TRACE(jh, "entry");
1389 
1390 	/*
1391 	 * This and the following assertions are unreliable since we may see jh
1392 	 * in inconsistent state unless we grab bh_state lock. But this is
1393 	 * crucial to catch bugs so let's do a reliable check until the
1394 	 * lockless handling is fully proven.
1395 	 */
1396 	if (jh->b_transaction != transaction &&
1397 	    jh->b_next_transaction != transaction) {
1398 		jbd_lock_bh_state(bh);
1399 		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1400 				jh->b_next_transaction == transaction);
1401 		jbd_unlock_bh_state(bh);
1402 	}
1403 	if (jh->b_modified == 1) {
1404 		/* If it's in our transaction it must be in BJ_Metadata list. */
1405 		if (jh->b_transaction == transaction &&
1406 		    jh->b_jlist != BJ_Metadata) {
1407 			jbd_lock_bh_state(bh);
1408 			if (jh->b_transaction == transaction &&
1409 			    jh->b_jlist != BJ_Metadata)
1410 				pr_err("JBD2: assertion failure: h_type=%u "
1411 				       "h_line_no=%u block_no=%llu jlist=%u\n",
1412 				       handle->h_type, handle->h_line_no,
1413 				       (unsigned long long) bh->b_blocknr,
1414 				       jh->b_jlist);
1415 			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1416 					jh->b_jlist == BJ_Metadata);
1417 			jbd_unlock_bh_state(bh);
1418 		}
1419 		goto out;
1420 	}
1421 
1422 	journal = transaction->t_journal;
1423 	jbd_lock_bh_state(bh);
1424 
1425 	if (is_handle_aborted(handle)) {
1426 		/*
1427 		 * Check journal aborting with @jh->b_state_lock locked,
1428 		 * since 'jh->b_transaction' could be replaced with
1429 		 * 'jh->b_next_transaction' during old transaction
1430 		 * committing if journal aborted, which may fail
1431 		 * assertion on 'jh->b_frozen_data == NULL'.
1432 		 */
1433 		ret = -EROFS;
1434 		goto out_unlock_bh;
1435 	}
1436 
1437 	if (jh->b_modified == 0) {
1438 		/*
1439 		 * This buffer's got modified and becoming part
1440 		 * of the transaction. This needs to be done
1441 		 * once a transaction -bzzz
1442 		 */
1443 		if (handle->h_buffer_credits <= 0) {
1444 			ret = -ENOSPC;
1445 			goto out_unlock_bh;
1446 		}
1447 		jh->b_modified = 1;
1448 		handle->h_buffer_credits--;
1449 	}
1450 
1451 	/*
1452 	 * fastpath, to avoid expensive locking.  If this buffer is already
1453 	 * on the running transaction's metadata list there is nothing to do.
1454 	 * Nobody can take it off again because there is a handle open.
1455 	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1456 	 * result in this test being false, so we go in and take the locks.
1457 	 */
1458 	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1459 		JBUFFER_TRACE(jh, "fastpath");
1460 		if (unlikely(jh->b_transaction !=
1461 			     journal->j_running_transaction)) {
1462 			printk(KERN_ERR "JBD2: %s: "
1463 			       "jh->b_transaction (%llu, %p, %u) != "
1464 			       "journal->j_running_transaction (%p, %u)\n",
1465 			       journal->j_devname,
1466 			       (unsigned long long) bh->b_blocknr,
1467 			       jh->b_transaction,
1468 			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1469 			       journal->j_running_transaction,
1470 			       journal->j_running_transaction ?
1471 			       journal->j_running_transaction->t_tid : 0);
1472 			ret = -EINVAL;
1473 		}
1474 		goto out_unlock_bh;
1475 	}
1476 
1477 	set_buffer_jbddirty(bh);
1478 
1479 	/*
1480 	 * Metadata already on the current transaction list doesn't
1481 	 * need to be filed.  Metadata on another transaction's list must
1482 	 * be committing, and will be refiled once the commit completes:
1483 	 * leave it alone for now.
1484 	 */
1485 	if (jh->b_transaction != transaction) {
1486 		JBUFFER_TRACE(jh, "already on other transaction");
1487 		if (unlikely(((jh->b_transaction !=
1488 			       journal->j_committing_transaction)) ||
1489 			     (jh->b_next_transaction != transaction))) {
1490 			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1491 			       "bad jh for block %llu: "
1492 			       "transaction (%p, %u), "
1493 			       "jh->b_transaction (%p, %u), "
1494 			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1495 			       journal->j_devname,
1496 			       (unsigned long long) bh->b_blocknr,
1497 			       transaction, transaction->t_tid,
1498 			       jh->b_transaction,
1499 			       jh->b_transaction ?
1500 			       jh->b_transaction->t_tid : 0,
1501 			       jh->b_next_transaction,
1502 			       jh->b_next_transaction ?
1503 			       jh->b_next_transaction->t_tid : 0,
1504 			       jh->b_jlist);
1505 			WARN_ON(1);
1506 			ret = -EINVAL;
1507 		}
1508 		/* And this case is illegal: we can't reuse another
1509 		 * transaction's data buffer, ever. */
1510 		goto out_unlock_bh;
1511 	}
1512 
1513 	/* That test should have eliminated the following case: */
1514 	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1515 
1516 	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1517 	spin_lock(&journal->j_list_lock);
1518 	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1519 	spin_unlock(&journal->j_list_lock);
1520 out_unlock_bh:
1521 	jbd_unlock_bh_state(bh);
1522 out:
1523 	JBUFFER_TRACE(jh, "exit");
1524 	return ret;
1525 }
1526 
1527 /**
1528  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1529  * @handle: transaction handle
1530  * @bh:     bh to 'forget'
1531  *
1532  * We can only do the bforget if there are no commits pending against the
1533  * buffer.  If the buffer is dirty in the current running transaction we
1534  * can safely unlink it.
1535  *
1536  * bh may not be a journalled buffer at all - it may be a non-JBD
1537  * buffer which came off the hashtable.  Check for this.
1538  *
1539  * Decrements bh->b_count by one.
1540  *
1541  * Allow this call even if the handle has aborted --- it may be part of
1542  * the caller's cleanup after an abort.
1543  */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1544 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1545 {
1546 	transaction_t *transaction = handle->h_transaction;
1547 	journal_t *journal;
1548 	struct journal_head *jh;
1549 	int drop_reserve = 0;
1550 	int err = 0;
1551 	int was_modified = 0;
1552 
1553 	if (is_handle_aborted(handle))
1554 		return -EROFS;
1555 	journal = transaction->t_journal;
1556 
1557 	BUFFER_TRACE(bh, "entry");
1558 
1559 	jbd_lock_bh_state(bh);
1560 
1561 	if (!buffer_jbd(bh))
1562 		goto not_jbd;
1563 	jh = bh2jh(bh);
1564 
1565 	/* Critical error: attempting to delete a bitmap buffer, maybe?
1566 	 * Don't do any jbd operations, and return an error. */
1567 	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1568 			 "inconsistent data on disk")) {
1569 		err = -EIO;
1570 		goto not_jbd;
1571 	}
1572 
1573 	/* keep track of whether or not this transaction modified us */
1574 	was_modified = jh->b_modified;
1575 
1576 	/*
1577 	 * The buffer's going from the transaction, we must drop
1578 	 * all references -bzzz
1579 	 */
1580 	jh->b_modified = 0;
1581 
1582 	if (jh->b_transaction == transaction) {
1583 		J_ASSERT_JH(jh, !jh->b_frozen_data);
1584 
1585 		/* If we are forgetting a buffer which is already part
1586 		 * of this transaction, then we can just drop it from
1587 		 * the transaction immediately. */
1588 		clear_buffer_dirty(bh);
1589 		clear_buffer_jbddirty(bh);
1590 
1591 		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1592 
1593 		/*
1594 		 * we only want to drop a reference if this transaction
1595 		 * modified the buffer
1596 		 */
1597 		if (was_modified)
1598 			drop_reserve = 1;
1599 
1600 		/*
1601 		 * We are no longer going to journal this buffer.
1602 		 * However, the commit of this transaction is still
1603 		 * important to the buffer: the delete that we are now
1604 		 * processing might obsolete an old log entry, so by
1605 		 * committing, we can satisfy the buffer's checkpoint.
1606 		 *
1607 		 * So, if we have a checkpoint on the buffer, we should
1608 		 * now refile the buffer on our BJ_Forget list so that
1609 		 * we know to remove the checkpoint after we commit.
1610 		 */
1611 
1612 		spin_lock(&journal->j_list_lock);
1613 		if (jh->b_cp_transaction) {
1614 			__jbd2_journal_temp_unlink_buffer(jh);
1615 			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1616 		} else {
1617 			__jbd2_journal_unfile_buffer(jh);
1618 			if (!buffer_jbd(bh)) {
1619 				spin_unlock(&journal->j_list_lock);
1620 				goto not_jbd;
1621 			}
1622 		}
1623 		spin_unlock(&journal->j_list_lock);
1624 	} else if (jh->b_transaction) {
1625 		J_ASSERT_JH(jh, (jh->b_transaction ==
1626 				 journal->j_committing_transaction));
1627 		/* However, if the buffer is still owned by a prior
1628 		 * (committing) transaction, we can't drop it yet... */
1629 		JBUFFER_TRACE(jh, "belongs to older transaction");
1630 		/* ... but we CAN drop it from the new transaction through
1631 		 * marking the buffer as freed and set j_next_transaction to
1632 		 * the new transaction, so that not only the commit code
1633 		 * knows it should clear dirty bits when it is done with the
1634 		 * buffer, but also the buffer can be checkpointed only
1635 		 * after the new transaction commits. */
1636 
1637 		set_buffer_freed(bh);
1638 
1639 		if (!jh->b_next_transaction) {
1640 			spin_lock(&journal->j_list_lock);
1641 			jh->b_next_transaction = transaction;
1642 			spin_unlock(&journal->j_list_lock);
1643 		} else {
1644 			J_ASSERT(jh->b_next_transaction == transaction);
1645 
1646 			/*
1647 			 * only drop a reference if this transaction modified
1648 			 * the buffer
1649 			 */
1650 			if (was_modified)
1651 				drop_reserve = 1;
1652 		}
1653 	} else {
1654 		/*
1655 		 * Finally, if the buffer is not belongs to any
1656 		 * transaction, we can just drop it now if it has no
1657 		 * checkpoint.
1658 		 */
1659 		spin_lock(&journal->j_list_lock);
1660 		if (!jh->b_cp_transaction) {
1661 			JBUFFER_TRACE(jh, "belongs to none transaction");
1662 			spin_unlock(&journal->j_list_lock);
1663 			goto not_jbd;
1664 		}
1665 
1666 		/*
1667 		 * Otherwise, if the buffer has been written to disk,
1668 		 * it is safe to remove the checkpoint and drop it.
1669 		 */
1670 		if (!buffer_dirty(bh)) {
1671 			__jbd2_journal_remove_checkpoint(jh);
1672 			spin_unlock(&journal->j_list_lock);
1673 			goto not_jbd;
1674 		}
1675 
1676 		/*
1677 		 * The buffer is still not written to disk, we should
1678 		 * attach this buffer to current transaction so that the
1679 		 * buffer can be checkpointed only after the current
1680 		 * transaction commits.
1681 		 */
1682 		clear_buffer_dirty(bh);
1683 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1684 		spin_unlock(&journal->j_list_lock);
1685 	}
1686 
1687 	jbd_unlock_bh_state(bh);
1688 	__brelse(bh);
1689 drop:
1690 	if (drop_reserve) {
1691 		/* no need to reserve log space for this block -bzzz */
1692 		handle->h_buffer_credits++;
1693 	}
1694 	return err;
1695 
1696 not_jbd:
1697 	jbd_unlock_bh_state(bh);
1698 	__bforget(bh);
1699 	goto drop;
1700 }
1701 
1702 /**
1703  * jbd2_journal_stop() - complete a transaction
1704  * @handle: transaction to complete.
1705  *
1706  * All done for a particular handle.
1707  *
1708  * There is not much action needed here.  We just return any remaining
1709  * buffer credits to the transaction and remove the handle.  The only
1710  * complication is that we need to start a commit operation if the
1711  * filesystem is marked for synchronous update.
1712  *
1713  * jbd2_journal_stop itself will not usually return an error, but it may
1714  * do so in unusual circumstances.  In particular, expect it to
1715  * return -EIO if a jbd2_journal_abort has been executed since the
1716  * transaction began.
1717  */
jbd2_journal_stop(handle_t * handle)1718 int jbd2_journal_stop(handle_t *handle)
1719 {
1720 	transaction_t *transaction = handle->h_transaction;
1721 	journal_t *journal;
1722 	int err = 0, wait_for_commit = 0;
1723 	tid_t tid;
1724 	pid_t pid;
1725 
1726 	if (!transaction) {
1727 		/*
1728 		 * Handle is already detached from the transaction so
1729 		 * there is nothing to do other than decrease a refcount,
1730 		 * or free the handle if refcount drops to zero
1731 		 */
1732 		if (--handle->h_ref > 0) {
1733 			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1734 							 handle->h_ref);
1735 			return err;
1736 		} else {
1737 			if (handle->h_rsv_handle)
1738 				jbd2_free_handle(handle->h_rsv_handle);
1739 			goto free_and_exit;
1740 		}
1741 	}
1742 	journal = transaction->t_journal;
1743 
1744 	J_ASSERT(journal_current_handle() == handle);
1745 
1746 	if (is_handle_aborted(handle))
1747 		err = -EIO;
1748 	else
1749 		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1750 
1751 	if (--handle->h_ref > 0) {
1752 		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1753 			  handle->h_ref);
1754 		return err;
1755 	}
1756 
1757 	jbd_debug(4, "Handle %p going down\n", handle);
1758 	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1759 				transaction->t_tid,
1760 				handle->h_type, handle->h_line_no,
1761 				jiffies - handle->h_start_jiffies,
1762 				handle->h_sync, handle->h_requested_credits,
1763 				(handle->h_requested_credits -
1764 				 handle->h_buffer_credits));
1765 
1766 	/*
1767 	 * Implement synchronous transaction batching.  If the handle
1768 	 * was synchronous, don't force a commit immediately.  Let's
1769 	 * yield and let another thread piggyback onto this
1770 	 * transaction.  Keep doing that while new threads continue to
1771 	 * arrive.  It doesn't cost much - we're about to run a commit
1772 	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1773 	 * operations by 30x or more...
1774 	 *
1775 	 * We try and optimize the sleep time against what the
1776 	 * underlying disk can do, instead of having a static sleep
1777 	 * time.  This is useful for the case where our storage is so
1778 	 * fast that it is more optimal to go ahead and force a flush
1779 	 * and wait for the transaction to be committed than it is to
1780 	 * wait for an arbitrary amount of time for new writers to
1781 	 * join the transaction.  We achieve this by measuring how
1782 	 * long it takes to commit a transaction, and compare it with
1783 	 * how long this transaction has been running, and if run time
1784 	 * < commit time then we sleep for the delta and commit.  This
1785 	 * greatly helps super fast disks that would see slowdowns as
1786 	 * more threads started doing fsyncs.
1787 	 *
1788 	 * But don't do this if this process was the most recent one
1789 	 * to perform a synchronous write.  We do this to detect the
1790 	 * case where a single process is doing a stream of sync
1791 	 * writes.  No point in waiting for joiners in that case.
1792 	 *
1793 	 * Setting max_batch_time to 0 disables this completely.
1794 	 */
1795 	pid = current->pid;
1796 	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1797 	    journal->j_max_batch_time) {
1798 		u64 commit_time, trans_time;
1799 
1800 		journal->j_last_sync_writer = pid;
1801 
1802 		read_lock(&journal->j_state_lock);
1803 		commit_time = journal->j_average_commit_time;
1804 		read_unlock(&journal->j_state_lock);
1805 
1806 		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1807 						   transaction->t_start_time));
1808 
1809 		commit_time = max_t(u64, commit_time,
1810 				    1000*journal->j_min_batch_time);
1811 		commit_time = min_t(u64, commit_time,
1812 				    1000*journal->j_max_batch_time);
1813 
1814 		if (trans_time < commit_time) {
1815 			ktime_t expires = ktime_add_ns(ktime_get(),
1816 						       commit_time);
1817 			set_current_state(TASK_UNINTERRUPTIBLE);
1818 			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1819 		}
1820 	}
1821 
1822 	if (handle->h_sync)
1823 		transaction->t_synchronous_commit = 1;
1824 	current->journal_info = NULL;
1825 	atomic_sub(handle->h_buffer_credits,
1826 		   &transaction->t_outstanding_credits);
1827 
1828 	/*
1829 	 * If the handle is marked SYNC, we need to set another commit
1830 	 * going!  We also want to force a commit if the current
1831 	 * transaction is occupying too much of the log, or if the
1832 	 * transaction is too old now.
1833 	 */
1834 	if (handle->h_sync ||
1835 	    (atomic_read(&transaction->t_outstanding_credits) >
1836 	     journal->j_max_transaction_buffers) ||
1837 	    time_after_eq(jiffies, transaction->t_expires)) {
1838 		/* Do this even for aborted journals: an abort still
1839 		 * completes the commit thread, it just doesn't write
1840 		 * anything to disk. */
1841 
1842 		jbd_debug(2, "transaction too old, requesting commit for "
1843 					"handle %p\n", handle);
1844 		/* This is non-blocking */
1845 		jbd2_log_start_commit(journal, transaction->t_tid);
1846 
1847 		/*
1848 		 * Special case: JBD2_SYNC synchronous updates require us
1849 		 * to wait for the commit to complete.
1850 		 */
1851 		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1852 			wait_for_commit = 1;
1853 	}
1854 
1855 	/*
1856 	 * Once we drop t_updates, if it goes to zero the transaction
1857 	 * could start committing on us and eventually disappear.  So
1858 	 * once we do this, we must not dereference transaction
1859 	 * pointer again.
1860 	 */
1861 	tid = transaction->t_tid;
1862 	if (atomic_dec_and_test(&transaction->t_updates)) {
1863 		wake_up(&journal->j_wait_updates);
1864 		if (journal->j_barrier_count)
1865 			wake_up(&journal->j_wait_transaction_locked);
1866 	}
1867 
1868 	rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1869 
1870 	if (wait_for_commit)
1871 		err = jbd2_log_wait_commit(journal, tid);
1872 
1873 	if (handle->h_rsv_handle)
1874 		jbd2_journal_free_reserved(handle->h_rsv_handle);
1875 free_and_exit:
1876 	/*
1877 	 * Scope of the GFP_NOFS context is over here and so we can restore the
1878 	 * original alloc context.
1879 	 */
1880 	memalloc_nofs_restore(handle->saved_alloc_context);
1881 	jbd2_free_handle(handle);
1882 	return err;
1883 }
1884 
1885 /*
1886  *
1887  * List management code snippets: various functions for manipulating the
1888  * transaction buffer lists.
1889  *
1890  */
1891 
1892 /*
1893  * Append a buffer to a transaction list, given the transaction's list head
1894  * pointer.
1895  *
1896  * j_list_lock is held.
1897  *
1898  * jbd_lock_bh_state(jh2bh(jh)) is held.
1899  */
1900 
1901 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1902 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1903 {
1904 	if (!*list) {
1905 		jh->b_tnext = jh->b_tprev = jh;
1906 		*list = jh;
1907 	} else {
1908 		/* Insert at the tail of the list to preserve order */
1909 		struct journal_head *first = *list, *last = first->b_tprev;
1910 		jh->b_tprev = last;
1911 		jh->b_tnext = first;
1912 		last->b_tnext = first->b_tprev = jh;
1913 	}
1914 }
1915 
1916 /*
1917  * Remove a buffer from a transaction list, given the transaction's list
1918  * head pointer.
1919  *
1920  * Called with j_list_lock held, and the journal may not be locked.
1921  *
1922  * jbd_lock_bh_state(jh2bh(jh)) is held.
1923  */
1924 
1925 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1926 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1927 {
1928 	if (*list == jh) {
1929 		*list = jh->b_tnext;
1930 		if (*list == jh)
1931 			*list = NULL;
1932 	}
1933 	jh->b_tprev->b_tnext = jh->b_tnext;
1934 	jh->b_tnext->b_tprev = jh->b_tprev;
1935 }
1936 
1937 /*
1938  * Remove a buffer from the appropriate transaction list.
1939  *
1940  * Note that this function can *change* the value of
1941  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1942  * t_reserved_list.  If the caller is holding onto a copy of one of these
1943  * pointers, it could go bad.  Generally the caller needs to re-read the
1944  * pointer from the transaction_t.
1945  *
1946  * Called under j_list_lock.
1947  */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)1948 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1949 {
1950 	struct journal_head **list = NULL;
1951 	transaction_t *transaction;
1952 	struct buffer_head *bh = jh2bh(jh);
1953 
1954 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1955 	transaction = jh->b_transaction;
1956 	if (transaction)
1957 		assert_spin_locked(&transaction->t_journal->j_list_lock);
1958 
1959 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1960 	if (jh->b_jlist != BJ_None)
1961 		J_ASSERT_JH(jh, transaction != NULL);
1962 
1963 	switch (jh->b_jlist) {
1964 	case BJ_None:
1965 		return;
1966 	case BJ_Metadata:
1967 		transaction->t_nr_buffers--;
1968 		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1969 		list = &transaction->t_buffers;
1970 		break;
1971 	case BJ_Forget:
1972 		list = &transaction->t_forget;
1973 		break;
1974 	case BJ_Shadow:
1975 		list = &transaction->t_shadow_list;
1976 		break;
1977 	case BJ_Reserved:
1978 		list = &transaction->t_reserved_list;
1979 		break;
1980 	}
1981 
1982 	__blist_del_buffer(list, jh);
1983 	jh->b_jlist = BJ_None;
1984 	if (transaction && is_journal_aborted(transaction->t_journal))
1985 		clear_buffer_jbddirty(bh);
1986 	else if (test_clear_buffer_jbddirty(bh))
1987 		mark_buffer_dirty(bh);	/* Expose it to the VM */
1988 }
1989 
1990 /*
1991  * Remove buffer from all transactions.
1992  *
1993  * Called with bh_state lock and j_list_lock
1994  *
1995  * jh and bh may be already freed when this function returns.
1996  */
__jbd2_journal_unfile_buffer(struct journal_head * jh)1997 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1998 {
1999 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2000 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2001 
2002 	__jbd2_journal_temp_unlink_buffer(jh);
2003 	jh->b_transaction = NULL;
2004 	jbd2_journal_put_journal_head(jh);
2005 }
2006 
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)2007 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2008 {
2009 	struct buffer_head *bh = jh2bh(jh);
2010 
2011 	/* Get reference so that buffer cannot be freed before we unlock it */
2012 	get_bh(bh);
2013 	jbd_lock_bh_state(bh);
2014 	spin_lock(&journal->j_list_lock);
2015 	__jbd2_journal_unfile_buffer(jh);
2016 	spin_unlock(&journal->j_list_lock);
2017 	jbd_unlock_bh_state(bh);
2018 	__brelse(bh);
2019 }
2020 
2021 /*
2022  * Called from jbd2_journal_try_to_free_buffers().
2023  *
2024  * Called under jbd_lock_bh_state(bh)
2025  */
2026 static void
__journal_try_to_free_buffer(journal_t * journal,struct buffer_head * bh)2027 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2028 {
2029 	struct journal_head *jh;
2030 
2031 	jh = bh2jh(bh);
2032 
2033 	if (buffer_locked(bh) || buffer_dirty(bh))
2034 		goto out;
2035 
2036 	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2037 		goto out;
2038 
2039 	spin_lock(&journal->j_list_lock);
2040 	if (jh->b_cp_transaction != NULL) {
2041 		/* written-back checkpointed metadata buffer */
2042 		JBUFFER_TRACE(jh, "remove from checkpoint list");
2043 		__jbd2_journal_remove_checkpoint(jh);
2044 	}
2045 	spin_unlock(&journal->j_list_lock);
2046 out:
2047 	return;
2048 }
2049 
2050 /**
2051  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2052  * @journal: journal for operation
2053  * @page: to try and free
2054  * @gfp_mask: we use the mask to detect how hard should we try to release
2055  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
2056  * code to release the buffers.
2057  *
2058  *
2059  * For all the buffers on this page,
2060  * if they are fully written out ordered data, move them onto BUF_CLEAN
2061  * so try_to_free_buffers() can reap them.
2062  *
2063  * This function returns non-zero if we wish try_to_free_buffers()
2064  * to be called. We do this if the page is releasable by try_to_free_buffers().
2065  * We also do it if the page has locked or dirty buffers and the caller wants
2066  * us to perform sync or async writeout.
2067  *
2068  * This complicates JBD locking somewhat.  We aren't protected by the
2069  * BKL here.  We wish to remove the buffer from its committing or
2070  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2071  *
2072  * This may *change* the value of transaction_t->t_datalist, so anyone
2073  * who looks at t_datalist needs to lock against this function.
2074  *
2075  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2076  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2077  * will come out of the lock with the buffer dirty, which makes it
2078  * ineligible for release here.
2079  *
2080  * Who else is affected by this?  hmm...  Really the only contender
2081  * is do_get_write_access() - it could be looking at the buffer while
2082  * journal_try_to_free_buffer() is changing its state.  But that
2083  * cannot happen because we never reallocate freed data as metadata
2084  * while the data is part of a transaction.  Yes?
2085  *
2086  * Return 0 on failure, 1 on success
2087  */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct page * page,gfp_t gfp_mask)2088 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2089 				struct page *page, gfp_t gfp_mask)
2090 {
2091 	struct buffer_head *head;
2092 	struct buffer_head *bh;
2093 	bool has_write_io_error = false;
2094 	int ret = 0;
2095 
2096 	J_ASSERT(PageLocked(page));
2097 
2098 	head = page_buffers(page);
2099 	bh = head;
2100 	do {
2101 		struct journal_head *jh;
2102 
2103 		/*
2104 		 * We take our own ref against the journal_head here to avoid
2105 		 * having to add tons of locking around each instance of
2106 		 * jbd2_journal_put_journal_head().
2107 		 */
2108 		jh = jbd2_journal_grab_journal_head(bh);
2109 		if (!jh)
2110 			continue;
2111 
2112 		jbd_lock_bh_state(bh);
2113 		__journal_try_to_free_buffer(journal, bh);
2114 		jbd2_journal_put_journal_head(jh);
2115 		jbd_unlock_bh_state(bh);
2116 		if (buffer_jbd(bh))
2117 			goto busy;
2118 
2119 		/*
2120 		 * If we free a metadata buffer which has been failed to
2121 		 * write out, the jbd2 checkpoint procedure will not detect
2122 		 * this failure and may lead to filesystem inconsistency
2123 		 * after cleanup journal tail.
2124 		 */
2125 		if (buffer_write_io_error(bh)) {
2126 			pr_err("JBD2: Error while async write back metadata bh %llu.",
2127 			       (unsigned long long)bh->b_blocknr);
2128 			has_write_io_error = true;
2129 		}
2130 	} while ((bh = bh->b_this_page) != head);
2131 
2132 	ret = try_to_free_buffers(page);
2133 
2134 busy:
2135 	if (has_write_io_error)
2136 		jbd2_journal_abort(journal, -EIO);
2137 
2138 	return ret;
2139 }
2140 
2141 /*
2142  * This buffer is no longer needed.  If it is on an older transaction's
2143  * checkpoint list we need to record it on this transaction's forget list
2144  * to pin this buffer (and hence its checkpointing transaction) down until
2145  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2146  * release it.
2147  * Returns non-zero if JBD no longer has an interest in the buffer.
2148  *
2149  * Called under j_list_lock.
2150  *
2151  * Called under jbd_lock_bh_state(bh).
2152  */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)2153 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2154 {
2155 	int may_free = 1;
2156 	struct buffer_head *bh = jh2bh(jh);
2157 
2158 	if (jh->b_cp_transaction) {
2159 		JBUFFER_TRACE(jh, "on running+cp transaction");
2160 		__jbd2_journal_temp_unlink_buffer(jh);
2161 		/*
2162 		 * We don't want to write the buffer anymore, clear the
2163 		 * bit so that we don't confuse checks in
2164 		 * __journal_file_buffer
2165 		 */
2166 		clear_buffer_dirty(bh);
2167 		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2168 		may_free = 0;
2169 	} else {
2170 		JBUFFER_TRACE(jh, "on running transaction");
2171 		__jbd2_journal_unfile_buffer(jh);
2172 	}
2173 	return may_free;
2174 }
2175 
2176 /*
2177  * jbd2_journal_invalidatepage
2178  *
2179  * This code is tricky.  It has a number of cases to deal with.
2180  *
2181  * There are two invariants which this code relies on:
2182  *
2183  * i_size must be updated on disk before we start calling invalidatepage on the
2184  * data.
2185  *
2186  *  This is done in ext3 by defining an ext3_setattr method which
2187  *  updates i_size before truncate gets going.  By maintaining this
2188  *  invariant, we can be sure that it is safe to throw away any buffers
2189  *  attached to the current transaction: once the transaction commits,
2190  *  we know that the data will not be needed.
2191  *
2192  *  Note however that we can *not* throw away data belonging to the
2193  *  previous, committing transaction!
2194  *
2195  * Any disk blocks which *are* part of the previous, committing
2196  * transaction (and which therefore cannot be discarded immediately) are
2197  * not going to be reused in the new running transaction
2198  *
2199  *  The bitmap committed_data images guarantee this: any block which is
2200  *  allocated in one transaction and removed in the next will be marked
2201  *  as in-use in the committed_data bitmap, so cannot be reused until
2202  *  the next transaction to delete the block commits.  This means that
2203  *  leaving committing buffers dirty is quite safe: the disk blocks
2204  *  cannot be reallocated to a different file and so buffer aliasing is
2205  *  not possible.
2206  *
2207  *
2208  * The above applies mainly to ordered data mode.  In writeback mode we
2209  * don't make guarantees about the order in which data hits disk --- in
2210  * particular we don't guarantee that new dirty data is flushed before
2211  * transaction commit --- so it is always safe just to discard data
2212  * immediately in that mode.  --sct
2213  */
2214 
2215 /*
2216  * The journal_unmap_buffer helper function returns zero if the buffer
2217  * concerned remains pinned as an anonymous buffer belonging to an older
2218  * transaction.
2219  *
2220  * We're outside-transaction here.  Either or both of j_running_transaction
2221  * and j_committing_transaction may be NULL.
2222  */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)2223 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2224 				int partial_page)
2225 {
2226 	transaction_t *transaction;
2227 	struct journal_head *jh;
2228 	int may_free = 1;
2229 
2230 	BUFFER_TRACE(bh, "entry");
2231 
2232 	/*
2233 	 * It is safe to proceed here without the j_list_lock because the
2234 	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2235 	 * holding the page lock. --sct
2236 	 */
2237 
2238 	if (!buffer_jbd(bh))
2239 		goto zap_buffer_unlocked;
2240 
2241 	/* OK, we have data buffer in journaled mode */
2242 	write_lock(&journal->j_state_lock);
2243 	jbd_lock_bh_state(bh);
2244 	spin_lock(&journal->j_list_lock);
2245 
2246 	jh = jbd2_journal_grab_journal_head(bh);
2247 	if (!jh)
2248 		goto zap_buffer_no_jh;
2249 
2250 	/*
2251 	 * We cannot remove the buffer from checkpoint lists until the
2252 	 * transaction adding inode to orphan list (let's call it T)
2253 	 * is committed.  Otherwise if the transaction changing the
2254 	 * buffer would be cleaned from the journal before T is
2255 	 * committed, a crash will cause that the correct contents of
2256 	 * the buffer will be lost.  On the other hand we have to
2257 	 * clear the buffer dirty bit at latest at the moment when the
2258 	 * transaction marking the buffer as freed in the filesystem
2259 	 * structures is committed because from that moment on the
2260 	 * block can be reallocated and used by a different page.
2261 	 * Since the block hasn't been freed yet but the inode has
2262 	 * already been added to orphan list, it is safe for us to add
2263 	 * the buffer to BJ_Forget list of the newest transaction.
2264 	 *
2265 	 * Also we have to clear buffer_mapped flag of a truncated buffer
2266 	 * because the buffer_head may be attached to the page straddling
2267 	 * i_size (can happen only when blocksize < pagesize) and thus the
2268 	 * buffer_head can be reused when the file is extended again. So we end
2269 	 * up keeping around invalidated buffers attached to transactions'
2270 	 * BJ_Forget list just to stop checkpointing code from cleaning up
2271 	 * the transaction this buffer was modified in.
2272 	 */
2273 	transaction = jh->b_transaction;
2274 	if (transaction == NULL) {
2275 		/* First case: not on any transaction.  If it
2276 		 * has no checkpoint link, then we can zap it:
2277 		 * it's a writeback-mode buffer so we don't care
2278 		 * if it hits disk safely. */
2279 		if (!jh->b_cp_transaction) {
2280 			JBUFFER_TRACE(jh, "not on any transaction: zap");
2281 			goto zap_buffer;
2282 		}
2283 
2284 		if (!buffer_dirty(bh)) {
2285 			/* bdflush has written it.  We can drop it now */
2286 			__jbd2_journal_remove_checkpoint(jh);
2287 			goto zap_buffer;
2288 		}
2289 
2290 		/* OK, it must be in the journal but still not
2291 		 * written fully to disk: it's metadata or
2292 		 * journaled data... */
2293 
2294 		if (journal->j_running_transaction) {
2295 			/* ... and once the current transaction has
2296 			 * committed, the buffer won't be needed any
2297 			 * longer. */
2298 			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2299 			may_free = __dispose_buffer(jh,
2300 					journal->j_running_transaction);
2301 			goto zap_buffer;
2302 		} else {
2303 			/* There is no currently-running transaction. So the
2304 			 * orphan record which we wrote for this file must have
2305 			 * passed into commit.  We must attach this buffer to
2306 			 * the committing transaction, if it exists. */
2307 			if (journal->j_committing_transaction) {
2308 				JBUFFER_TRACE(jh, "give to committing trans");
2309 				may_free = __dispose_buffer(jh,
2310 					journal->j_committing_transaction);
2311 				goto zap_buffer;
2312 			} else {
2313 				/* The orphan record's transaction has
2314 				 * committed.  We can cleanse this buffer */
2315 				clear_buffer_jbddirty(bh);
2316 				__jbd2_journal_remove_checkpoint(jh);
2317 				goto zap_buffer;
2318 			}
2319 		}
2320 	} else if (transaction == journal->j_committing_transaction) {
2321 		JBUFFER_TRACE(jh, "on committing transaction");
2322 		/*
2323 		 * The buffer is committing, we simply cannot touch
2324 		 * it. If the page is straddling i_size we have to wait
2325 		 * for commit and try again.
2326 		 */
2327 		if (partial_page) {
2328 			jbd2_journal_put_journal_head(jh);
2329 			spin_unlock(&journal->j_list_lock);
2330 			jbd_unlock_bh_state(bh);
2331 			write_unlock(&journal->j_state_lock);
2332 			return -EBUSY;
2333 		}
2334 		/*
2335 		 * OK, buffer won't be reachable after truncate. We just clear
2336 		 * b_modified to not confuse transaction credit accounting, and
2337 		 * set j_next_transaction to the running transaction (if there
2338 		 * is one) and mark buffer as freed so that commit code knows
2339 		 * it should clear dirty bits when it is done with the buffer.
2340 		 */
2341 		set_buffer_freed(bh);
2342 		if (journal->j_running_transaction && buffer_jbddirty(bh))
2343 			jh->b_next_transaction = journal->j_running_transaction;
2344 		jh->b_modified = 0;
2345 		jbd2_journal_put_journal_head(jh);
2346 		spin_unlock(&journal->j_list_lock);
2347 		jbd_unlock_bh_state(bh);
2348 		write_unlock(&journal->j_state_lock);
2349 		return 0;
2350 	} else {
2351 		/* Good, the buffer belongs to the running transaction.
2352 		 * We are writing our own transaction's data, not any
2353 		 * previous one's, so it is safe to throw it away
2354 		 * (remember that we expect the filesystem to have set
2355 		 * i_size already for this truncate so recovery will not
2356 		 * expose the disk blocks we are discarding here.) */
2357 		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2358 		JBUFFER_TRACE(jh, "on running transaction");
2359 		may_free = __dispose_buffer(jh, transaction);
2360 	}
2361 
2362 zap_buffer:
2363 	/*
2364 	 * This is tricky. Although the buffer is truncated, it may be reused
2365 	 * if blocksize < pagesize and it is attached to the page straddling
2366 	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2367 	 * running transaction, journal_get_write_access() won't clear
2368 	 * b_modified and credit accounting gets confused. So clear b_modified
2369 	 * here.
2370 	 */
2371 	jh->b_modified = 0;
2372 	jbd2_journal_put_journal_head(jh);
2373 zap_buffer_no_jh:
2374 	spin_unlock(&journal->j_list_lock);
2375 	jbd_unlock_bh_state(bh);
2376 	write_unlock(&journal->j_state_lock);
2377 zap_buffer_unlocked:
2378 	clear_buffer_dirty(bh);
2379 	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2380 	clear_buffer_mapped(bh);
2381 	clear_buffer_req(bh);
2382 	clear_buffer_new(bh);
2383 	clear_buffer_delay(bh);
2384 	clear_buffer_unwritten(bh);
2385 	bh->b_bdev = NULL;
2386 	return may_free;
2387 }
2388 
2389 /**
2390  * jbd2_journal_invalidatepage()
2391  * @journal: journal to use for flush...
2392  * @page:    page to flush
2393  * @offset:  start of the range to invalidate
2394  * @length:  length of the range to invalidate
2395  *
2396  * Reap page buffers containing data after in the specified range in page.
2397  * Can return -EBUSY if buffers are part of the committing transaction and
2398  * the page is straddling i_size. Caller then has to wait for current commit
2399  * and try again.
2400  */
jbd2_journal_invalidatepage(journal_t * journal,struct page * page,unsigned int offset,unsigned int length)2401 int jbd2_journal_invalidatepage(journal_t *journal,
2402 				struct page *page,
2403 				unsigned int offset,
2404 				unsigned int length)
2405 {
2406 	struct buffer_head *head, *bh, *next;
2407 	unsigned int stop = offset + length;
2408 	unsigned int curr_off = 0;
2409 	int partial_page = (offset || length < PAGE_SIZE);
2410 	int may_free = 1;
2411 	int ret = 0;
2412 
2413 	if (!PageLocked(page))
2414 		BUG();
2415 	if (!page_has_buffers(page))
2416 		return 0;
2417 
2418 	BUG_ON(stop > PAGE_SIZE || stop < length);
2419 
2420 	/* We will potentially be playing with lists other than just the
2421 	 * data lists (especially for journaled data mode), so be
2422 	 * cautious in our locking. */
2423 
2424 	head = bh = page_buffers(page);
2425 	do {
2426 		unsigned int next_off = curr_off + bh->b_size;
2427 		next = bh->b_this_page;
2428 
2429 		if (next_off > stop)
2430 			return 0;
2431 
2432 		if (offset <= curr_off) {
2433 			/* This block is wholly outside the truncation point */
2434 			lock_buffer(bh);
2435 			ret = journal_unmap_buffer(journal, bh, partial_page);
2436 			unlock_buffer(bh);
2437 			if (ret < 0)
2438 				return ret;
2439 			may_free &= ret;
2440 		}
2441 		curr_off = next_off;
2442 		bh = next;
2443 
2444 	} while (bh != head);
2445 
2446 	if (!partial_page) {
2447 		if (may_free && try_to_free_buffers(page))
2448 			J_ASSERT(!page_has_buffers(page));
2449 	}
2450 	return 0;
2451 }
2452 
2453 /*
2454  * File a buffer on the given transaction list.
2455  */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2456 void __jbd2_journal_file_buffer(struct journal_head *jh,
2457 			transaction_t *transaction, int jlist)
2458 {
2459 	struct journal_head **list = NULL;
2460 	int was_dirty = 0;
2461 	struct buffer_head *bh = jh2bh(jh);
2462 
2463 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2464 	assert_spin_locked(&transaction->t_journal->j_list_lock);
2465 
2466 	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2467 	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2468 				jh->b_transaction == NULL);
2469 
2470 	if (jh->b_transaction && jh->b_jlist == jlist)
2471 		return;
2472 
2473 	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2474 	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2475 		/*
2476 		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2477 		 * instead of buffer_dirty. We should not see a dirty bit set
2478 		 * here because we clear it in do_get_write_access but e.g.
2479 		 * tune2fs can modify the sb and set the dirty bit at any time
2480 		 * so we try to gracefully handle that.
2481 		 */
2482 		if (buffer_dirty(bh))
2483 			warn_dirty_buffer(bh);
2484 		if (test_clear_buffer_dirty(bh) ||
2485 		    test_clear_buffer_jbddirty(bh))
2486 			was_dirty = 1;
2487 	}
2488 
2489 	if (jh->b_transaction)
2490 		__jbd2_journal_temp_unlink_buffer(jh);
2491 	else
2492 		jbd2_journal_grab_journal_head(bh);
2493 	jh->b_transaction = transaction;
2494 
2495 	switch (jlist) {
2496 	case BJ_None:
2497 		J_ASSERT_JH(jh, !jh->b_committed_data);
2498 		J_ASSERT_JH(jh, !jh->b_frozen_data);
2499 		return;
2500 	case BJ_Metadata:
2501 		transaction->t_nr_buffers++;
2502 		list = &transaction->t_buffers;
2503 		break;
2504 	case BJ_Forget:
2505 		list = &transaction->t_forget;
2506 		break;
2507 	case BJ_Shadow:
2508 		list = &transaction->t_shadow_list;
2509 		break;
2510 	case BJ_Reserved:
2511 		list = &transaction->t_reserved_list;
2512 		break;
2513 	}
2514 
2515 	__blist_add_buffer(list, jh);
2516 	jh->b_jlist = jlist;
2517 
2518 	if (was_dirty)
2519 		set_buffer_jbddirty(bh);
2520 }
2521 
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2522 void jbd2_journal_file_buffer(struct journal_head *jh,
2523 				transaction_t *transaction, int jlist)
2524 {
2525 	jbd_lock_bh_state(jh2bh(jh));
2526 	spin_lock(&transaction->t_journal->j_list_lock);
2527 	__jbd2_journal_file_buffer(jh, transaction, jlist);
2528 	spin_unlock(&transaction->t_journal->j_list_lock);
2529 	jbd_unlock_bh_state(jh2bh(jh));
2530 }
2531 
2532 /*
2533  * Remove a buffer from its current buffer list in preparation for
2534  * dropping it from its current transaction entirely.  If the buffer has
2535  * already started to be used by a subsequent transaction, refile the
2536  * buffer on that transaction's metadata list.
2537  *
2538  * Called under j_list_lock
2539  * Called under jbd_lock_bh_state(jh2bh(jh))
2540  *
2541  * jh and bh may be already free when this function returns
2542  */
__jbd2_journal_refile_buffer(struct journal_head * jh)2543 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2544 {
2545 	int was_dirty, jlist;
2546 	struct buffer_head *bh = jh2bh(jh);
2547 
2548 	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2549 	if (jh->b_transaction)
2550 		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2551 
2552 	/* If the buffer is now unused, just drop it. */
2553 	if (jh->b_next_transaction == NULL) {
2554 		__jbd2_journal_unfile_buffer(jh);
2555 		return;
2556 	}
2557 
2558 	/*
2559 	 * It has been modified by a later transaction: add it to the new
2560 	 * transaction's metadata list.
2561 	 */
2562 
2563 	was_dirty = test_clear_buffer_jbddirty(bh);
2564 	__jbd2_journal_temp_unlink_buffer(jh);
2565 
2566 	/*
2567 	 * b_transaction must be set, otherwise the new b_transaction won't
2568 	 * be holding jh reference
2569 	 */
2570 	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2571 
2572 	/*
2573 	 * We set b_transaction here because b_next_transaction will inherit
2574 	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2575 	 * take a new one.
2576 	 */
2577 	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2578 	WRITE_ONCE(jh->b_next_transaction, NULL);
2579 	if (buffer_freed(bh))
2580 		jlist = BJ_Forget;
2581 	else if (jh->b_modified)
2582 		jlist = BJ_Metadata;
2583 	else
2584 		jlist = BJ_Reserved;
2585 	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2586 	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2587 
2588 	if (was_dirty)
2589 		set_buffer_jbddirty(bh);
2590 }
2591 
2592 /*
2593  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2594  * bh reference so that we can safely unlock bh.
2595  *
2596  * The jh and bh may be freed by this call.
2597  */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2598 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2599 {
2600 	struct buffer_head *bh = jh2bh(jh);
2601 
2602 	/* Get reference so that buffer cannot be freed before we unlock it */
2603 	get_bh(bh);
2604 	jbd_lock_bh_state(bh);
2605 	spin_lock(&journal->j_list_lock);
2606 	__jbd2_journal_refile_buffer(jh);
2607 	jbd_unlock_bh_state(bh);
2608 	spin_unlock(&journal->j_list_lock);
2609 	__brelse(bh);
2610 }
2611 
2612 /*
2613  * File inode in the inode list of the handle's transaction
2614  */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode,unsigned long flags,loff_t start_byte,loff_t end_byte)2615 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2616 		unsigned long flags, loff_t start_byte, loff_t end_byte)
2617 {
2618 	transaction_t *transaction = handle->h_transaction;
2619 	journal_t *journal;
2620 
2621 	if (is_handle_aborted(handle))
2622 		return -EROFS;
2623 	journal = transaction->t_journal;
2624 
2625 	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2626 			transaction->t_tid);
2627 
2628 	spin_lock(&journal->j_list_lock);
2629 	jinode->i_flags |= flags;
2630 
2631 	if (jinode->i_dirty_end) {
2632 		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2633 		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2634 	} else {
2635 		jinode->i_dirty_start = start_byte;
2636 		jinode->i_dirty_end = end_byte;
2637 	}
2638 
2639 	/* Is inode already attached where we need it? */
2640 	if (jinode->i_transaction == transaction ||
2641 	    jinode->i_next_transaction == transaction)
2642 		goto done;
2643 
2644 	/*
2645 	 * We only ever set this variable to 1 so the test is safe. Since
2646 	 * t_need_data_flush is likely to be set, we do the test to save some
2647 	 * cacheline bouncing
2648 	 */
2649 	if (!transaction->t_need_data_flush)
2650 		transaction->t_need_data_flush = 1;
2651 	/* On some different transaction's list - should be
2652 	 * the committing one */
2653 	if (jinode->i_transaction) {
2654 		J_ASSERT(jinode->i_next_transaction == NULL);
2655 		J_ASSERT(jinode->i_transaction ==
2656 					journal->j_committing_transaction);
2657 		jinode->i_next_transaction = transaction;
2658 		goto done;
2659 	}
2660 	/* Not on any transaction list... */
2661 	J_ASSERT(!jinode->i_next_transaction);
2662 	jinode->i_transaction = transaction;
2663 	list_add(&jinode->i_list, &transaction->t_inode_list);
2664 done:
2665 	spin_unlock(&journal->j_list_lock);
2666 
2667 	return 0;
2668 }
2669 
jbd2_journal_inode_ranged_write(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2670 int jbd2_journal_inode_ranged_write(handle_t *handle,
2671 		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2672 {
2673 	return jbd2_journal_file_inode(handle, jinode,
2674 			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2675 			start_byte + length - 1);
2676 }
2677 
jbd2_journal_inode_ranged_wait(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2678 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2679 		loff_t start_byte, loff_t length)
2680 {
2681 	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2682 			start_byte, start_byte + length - 1);
2683 }
2684 
2685 /*
2686  * File truncate and transaction commit interact with each other in a
2687  * non-trivial way.  If a transaction writing data block A is
2688  * committing, we cannot discard the data by truncate until we have
2689  * written them.  Otherwise if we crashed after the transaction with
2690  * write has committed but before the transaction with truncate has
2691  * committed, we could see stale data in block A.  This function is a
2692  * helper to solve this problem.  It starts writeout of the truncated
2693  * part in case it is in the committing transaction.
2694  *
2695  * Filesystem code must call this function when inode is journaled in
2696  * ordered mode before truncation happens and after the inode has been
2697  * placed on orphan list with the new inode size. The second condition
2698  * avoids the race that someone writes new data and we start
2699  * committing the transaction after this function has been called but
2700  * before a transaction for truncate is started (and furthermore it
2701  * allows us to optimize the case where the addition to orphan list
2702  * happens in the same transaction as write --- we don't have to write
2703  * any data in such case).
2704  */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2705 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2706 					struct jbd2_inode *jinode,
2707 					loff_t new_size)
2708 {
2709 	transaction_t *inode_trans, *commit_trans;
2710 	int ret = 0;
2711 
2712 	/* This is a quick check to avoid locking if not necessary */
2713 	if (!jinode->i_transaction)
2714 		goto out;
2715 	/* Locks are here just to force reading of recent values, it is
2716 	 * enough that the transaction was not committing before we started
2717 	 * a transaction adding the inode to orphan list */
2718 	read_lock(&journal->j_state_lock);
2719 	commit_trans = journal->j_committing_transaction;
2720 	read_unlock(&journal->j_state_lock);
2721 	spin_lock(&journal->j_list_lock);
2722 	inode_trans = jinode->i_transaction;
2723 	spin_unlock(&journal->j_list_lock);
2724 	if (inode_trans == commit_trans) {
2725 		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2726 			new_size, LLONG_MAX);
2727 		if (ret)
2728 			jbd2_journal_abort(journal, ret);
2729 	}
2730 out:
2731 	return ret;
2732 }
2733