• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21 
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47 
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50 
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54 
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58 
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98 
99 static int jbd2_journal_create_slab(size_t slab_size);
100 
101 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)102 void __jbd2_debug(int level, const char *file, const char *func,
103 		  unsigned int line, const char *fmt, ...)
104 {
105 	struct va_format vaf;
106 	va_list args;
107 
108 	if (level > jbd2_journal_enable_debug)
109 		return;
110 	va_start(args, fmt);
111 	vaf.fmt = fmt;
112 	vaf.va = &args;
113 	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
114 	va_end(args);
115 }
116 EXPORT_SYMBOL(__jbd2_debug);
117 #endif
118 
119 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)120 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
121 {
122 	if (!jbd2_journal_has_csum_v2or3_feature(j))
123 		return 1;
124 
125 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
126 }
127 
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)128 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
129 {
130 	__u32 csum;
131 	__be32 old_csum;
132 
133 	old_csum = sb->s_checksum;
134 	sb->s_checksum = 0;
135 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
136 	sb->s_checksum = old_csum;
137 
138 	return cpu_to_be32(csum);
139 }
140 
141 /*
142  * Helper function used to manage commit timeouts
143  */
144 
commit_timeout(struct timer_list * t)145 static void commit_timeout(struct timer_list *t)
146 {
147 	journal_t *journal = from_timer(journal, t, j_commit_timer);
148 
149 	wake_up_process(journal->j_task);
150 }
151 
152 /*
153  * kjournald2: The main thread function used to manage a logging device
154  * journal.
155  *
156  * This kernel thread is responsible for two things:
157  *
158  * 1) COMMIT:  Every so often we need to commit the current state of the
159  *    filesystem to disk.  The journal thread is responsible for writing
160  *    all of the metadata buffers to disk.
161  *
162  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
163  *    of the data in that part of the log has been rewritten elsewhere on
164  *    the disk.  Flushing these old buffers to reclaim space in the log is
165  *    known as checkpointing, and this thread is responsible for that job.
166  */
167 
kjournald2(void * arg)168 static int kjournald2(void *arg)
169 {
170 	journal_t *journal = arg;
171 	transaction_t *transaction;
172 
173 	/*
174 	 * Set up an interval timer which can be used to trigger a commit wakeup
175 	 * after the commit interval expires
176 	 */
177 	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
178 
179 	set_freezable();
180 
181 	/* Record that the journal thread is running */
182 	journal->j_task = current;
183 	wake_up(&journal->j_wait_done_commit);
184 
185 	/*
186 	 * Make sure that no allocations from this kernel thread will ever
187 	 * recurse to the fs layer because we are responsible for the
188 	 * transaction commit and any fs involvement might get stuck waiting for
189 	 * the trasn. commit.
190 	 */
191 	memalloc_nofs_save();
192 
193 	/*
194 	 * And now, wait forever for commit wakeup events.
195 	 */
196 	write_lock(&journal->j_state_lock);
197 
198 loop:
199 	if (journal->j_flags & JBD2_UNMOUNT)
200 		goto end_loop;
201 
202 	jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
203 		journal->j_commit_sequence, journal->j_commit_request);
204 
205 	if (journal->j_commit_sequence != journal->j_commit_request) {
206 		jbd_debug(1, "OK, requests differ\n");
207 		write_unlock(&journal->j_state_lock);
208 		del_timer_sync(&journal->j_commit_timer);
209 		jbd2_journal_commit_transaction(journal);
210 		write_lock(&journal->j_state_lock);
211 		goto loop;
212 	}
213 
214 	wake_up(&journal->j_wait_done_commit);
215 	if (freezing(current)) {
216 		/*
217 		 * The simpler the better. Flushing journal isn't a
218 		 * good idea, because that depends on threads that may
219 		 * be already stopped.
220 		 */
221 		jbd_debug(1, "Now suspending kjournald2\n");
222 		write_unlock(&journal->j_state_lock);
223 		try_to_freeze();
224 		write_lock(&journal->j_state_lock);
225 	} else {
226 		/*
227 		 * We assume on resume that commits are already there,
228 		 * so we don't sleep
229 		 */
230 		DEFINE_WAIT(wait);
231 		int should_sleep = 1;
232 
233 		prepare_to_wait(&journal->j_wait_commit, &wait,
234 				TASK_INTERRUPTIBLE);
235 		if (journal->j_commit_sequence != journal->j_commit_request)
236 			should_sleep = 0;
237 		transaction = journal->j_running_transaction;
238 		if (transaction && time_after_eq(jiffies,
239 						transaction->t_expires))
240 			should_sleep = 0;
241 		if (journal->j_flags & JBD2_UNMOUNT)
242 			should_sleep = 0;
243 		if (should_sleep) {
244 			write_unlock(&journal->j_state_lock);
245 			schedule();
246 			write_lock(&journal->j_state_lock);
247 		}
248 		finish_wait(&journal->j_wait_commit, &wait);
249 	}
250 
251 	jbd_debug(1, "kjournald2 wakes\n");
252 
253 	/*
254 	 * Were we woken up by a commit wakeup event?
255 	 */
256 	transaction = journal->j_running_transaction;
257 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
258 		journal->j_commit_request = transaction->t_tid;
259 		jbd_debug(1, "woke because of timeout\n");
260 	}
261 	goto loop;
262 
263 end_loop:
264 	del_timer_sync(&journal->j_commit_timer);
265 	journal->j_task = NULL;
266 	wake_up(&journal->j_wait_done_commit);
267 	jbd_debug(1, "Journal thread exiting.\n");
268 	write_unlock(&journal->j_state_lock);
269 	return 0;
270 }
271 
jbd2_journal_start_thread(journal_t * journal)272 static int jbd2_journal_start_thread(journal_t *journal)
273 {
274 	struct task_struct *t;
275 
276 	t = kthread_run(kjournald2, journal, "jbd2/%s",
277 			journal->j_devname);
278 	if (IS_ERR(t))
279 		return PTR_ERR(t);
280 
281 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
282 	return 0;
283 }
284 
journal_kill_thread(journal_t * journal)285 static void journal_kill_thread(journal_t *journal)
286 {
287 	write_lock(&journal->j_state_lock);
288 	journal->j_flags |= JBD2_UNMOUNT;
289 
290 	while (journal->j_task) {
291 		write_unlock(&journal->j_state_lock);
292 		wake_up(&journal->j_wait_commit);
293 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
294 		write_lock(&journal->j_state_lock);
295 	}
296 	write_unlock(&journal->j_state_lock);
297 }
298 
299 /*
300  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
301  *
302  * Writes a metadata buffer to a given disk block.  The actual IO is not
303  * performed but a new buffer_head is constructed which labels the data
304  * to be written with the correct destination disk block.
305  *
306  * Any magic-number escaping which needs to be done will cause a
307  * copy-out here.  If the buffer happens to start with the
308  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
309  * magic number is only written to the log for descripter blocks.  In
310  * this case, we copy the data and replace the first word with 0, and we
311  * return a result code which indicates that this buffer needs to be
312  * marked as an escaped buffer in the corresponding log descriptor
313  * block.  The missing word can then be restored when the block is read
314  * during recovery.
315  *
316  * If the source buffer has already been modified by a new transaction
317  * since we took the last commit snapshot, we use the frozen copy of
318  * that data for IO. If we end up using the existing buffer_head's data
319  * for the write, then we have to make sure nobody modifies it while the
320  * IO is in progress. do_get_write_access() handles this.
321  *
322  * The function returns a pointer to the buffer_head to be used for IO.
323  *
324  *
325  * Return value:
326  *  <0: Error
327  * >=0: Finished OK
328  *
329  * On success:
330  * Bit 0 set == escape performed on the data
331  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
332  */
333 
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)334 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
335 				  struct journal_head  *jh_in,
336 				  struct buffer_head **bh_out,
337 				  sector_t blocknr)
338 {
339 	int need_copy_out = 0;
340 	int done_copy_out = 0;
341 	int do_escape = 0;
342 	char *mapped_data;
343 	struct buffer_head *new_bh;
344 	struct page *new_page;
345 	unsigned int new_offset;
346 	struct buffer_head *bh_in = jh2bh(jh_in);
347 	journal_t *journal = transaction->t_journal;
348 
349 	/*
350 	 * The buffer really shouldn't be locked: only the current committing
351 	 * transaction is allowed to write it, so nobody else is allowed
352 	 * to do any IO.
353 	 *
354 	 * akpm: except if we're journalling data, and write() output is
355 	 * also part of a shared mapping, and another thread has
356 	 * decided to launch a writepage() against this buffer.
357 	 */
358 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
359 
360 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
361 
362 	/* keep subsequent assertions sane */
363 	atomic_set(&new_bh->b_count, 1);
364 
365 	jbd_lock_bh_state(bh_in);
366 repeat:
367 	/*
368 	 * If a new transaction has already done a buffer copy-out, then
369 	 * we use that version of the data for the commit.
370 	 */
371 	if (jh_in->b_frozen_data) {
372 		done_copy_out = 1;
373 		new_page = virt_to_page(jh_in->b_frozen_data);
374 		new_offset = offset_in_page(jh_in->b_frozen_data);
375 	} else {
376 		new_page = jh2bh(jh_in)->b_page;
377 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
378 	}
379 
380 	mapped_data = kmap_atomic(new_page);
381 	/*
382 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
383 	 * before checking for escaping, as the trigger may modify the magic
384 	 * offset.  If a copy-out happens afterwards, it will have the correct
385 	 * data in the buffer.
386 	 */
387 	if (!done_copy_out)
388 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
389 					   jh_in->b_triggers);
390 
391 	/*
392 	 * Check for escaping
393 	 */
394 	if (*((__be32 *)(mapped_data + new_offset)) ==
395 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
396 		need_copy_out = 1;
397 		do_escape = 1;
398 	}
399 	kunmap_atomic(mapped_data);
400 
401 	/*
402 	 * Do we need to do a data copy?
403 	 */
404 	if (need_copy_out && !done_copy_out) {
405 		char *tmp;
406 
407 		jbd_unlock_bh_state(bh_in);
408 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
409 		if (!tmp) {
410 			brelse(new_bh);
411 			return -ENOMEM;
412 		}
413 		jbd_lock_bh_state(bh_in);
414 		if (jh_in->b_frozen_data) {
415 			jbd2_free(tmp, bh_in->b_size);
416 			goto repeat;
417 		}
418 
419 		jh_in->b_frozen_data = tmp;
420 		mapped_data = kmap_atomic(new_page);
421 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
422 		kunmap_atomic(mapped_data);
423 
424 		new_page = virt_to_page(tmp);
425 		new_offset = offset_in_page(tmp);
426 		done_copy_out = 1;
427 
428 		/*
429 		 * This isn't strictly necessary, as we're using frozen
430 		 * data for the escaping, but it keeps consistency with
431 		 * b_frozen_data usage.
432 		 */
433 		jh_in->b_frozen_triggers = jh_in->b_triggers;
434 	}
435 
436 	/*
437 	 * Did we need to do an escaping?  Now we've done all the
438 	 * copying, we can finally do so.
439 	 */
440 	if (do_escape) {
441 		mapped_data = kmap_atomic(new_page);
442 		*((unsigned int *)(mapped_data + new_offset)) = 0;
443 		kunmap_atomic(mapped_data);
444 	}
445 
446 	set_bh_page(new_bh, new_page, new_offset);
447 	new_bh->b_size = bh_in->b_size;
448 	new_bh->b_bdev = journal->j_dev;
449 	new_bh->b_blocknr = blocknr;
450 	new_bh->b_private = bh_in;
451 	set_buffer_mapped(new_bh);
452 	set_buffer_dirty(new_bh);
453 
454 	*bh_out = new_bh;
455 
456 	/*
457 	 * The to-be-written buffer needs to get moved to the io queue,
458 	 * and the original buffer whose contents we are shadowing or
459 	 * copying is moved to the transaction's shadow queue.
460 	 */
461 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
462 	spin_lock(&journal->j_list_lock);
463 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
464 	spin_unlock(&journal->j_list_lock);
465 	set_buffer_shadow(bh_in);
466 	jbd_unlock_bh_state(bh_in);
467 
468 	return do_escape | (done_copy_out << 1);
469 }
470 
471 /*
472  * Allocation code for the journal file.  Manage the space left in the
473  * journal, so that we can begin checkpointing when appropriate.
474  */
475 
476 /*
477  * Called with j_state_lock locked for writing.
478  * Returns true if a transaction commit was started.
479  */
__jbd2_log_start_commit(journal_t * journal,tid_t target)480 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
481 {
482 	/* Return if the txn has already requested to be committed */
483 	if (journal->j_commit_request == target)
484 		return 0;
485 
486 	/*
487 	 * The only transaction we can possibly wait upon is the
488 	 * currently running transaction (if it exists).  Otherwise,
489 	 * the target tid must be an old one.
490 	 */
491 	if (journal->j_running_transaction &&
492 	    journal->j_running_transaction->t_tid == target) {
493 		/*
494 		 * We want a new commit: OK, mark the request and wakeup the
495 		 * commit thread.  We do _not_ do the commit ourselves.
496 		 */
497 
498 		journal->j_commit_request = target;
499 		jbd_debug(1, "JBD2: requesting commit %u/%u\n",
500 			  journal->j_commit_request,
501 			  journal->j_commit_sequence);
502 		journal->j_running_transaction->t_requested = jiffies;
503 		wake_up(&journal->j_wait_commit);
504 		return 1;
505 	} else if (!tid_geq(journal->j_commit_request, target))
506 		/* This should never happen, but if it does, preserve
507 		   the evidence before kjournald goes into a loop and
508 		   increments j_commit_sequence beyond all recognition. */
509 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
510 			  journal->j_commit_request,
511 			  journal->j_commit_sequence,
512 			  target, journal->j_running_transaction ?
513 			  journal->j_running_transaction->t_tid : 0);
514 	return 0;
515 }
516 
jbd2_log_start_commit(journal_t * journal,tid_t tid)517 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
518 {
519 	int ret;
520 
521 	write_lock(&journal->j_state_lock);
522 	ret = __jbd2_log_start_commit(journal, tid);
523 	write_unlock(&journal->j_state_lock);
524 	return ret;
525 }
526 
527 /*
528  * Force and wait any uncommitted transactions.  We can only force the running
529  * transaction if we don't have an active handle, otherwise, we will deadlock.
530  * Returns: <0 in case of error,
531  *           0 if nothing to commit,
532  *           1 if transaction was successfully committed.
533  */
__jbd2_journal_force_commit(journal_t * journal)534 static int __jbd2_journal_force_commit(journal_t *journal)
535 {
536 	transaction_t *transaction = NULL;
537 	tid_t tid;
538 	int need_to_start = 0, ret = 0;
539 
540 	read_lock(&journal->j_state_lock);
541 	if (journal->j_running_transaction && !current->journal_info) {
542 		transaction = journal->j_running_transaction;
543 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
544 			need_to_start = 1;
545 	} else if (journal->j_committing_transaction)
546 		transaction = journal->j_committing_transaction;
547 
548 	if (!transaction) {
549 		/* Nothing to commit */
550 		read_unlock(&journal->j_state_lock);
551 		return 0;
552 	}
553 	tid = transaction->t_tid;
554 	read_unlock(&journal->j_state_lock);
555 	if (need_to_start)
556 		jbd2_log_start_commit(journal, tid);
557 	ret = jbd2_log_wait_commit(journal, tid);
558 	if (!ret)
559 		ret = 1;
560 
561 	return ret;
562 }
563 
564 /**
565  * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
566  * calling process is not within transaction.
567  *
568  * @journal: journal to force
569  * Returns true if progress was made.
570  *
571  * This is used for forcing out undo-protected data which contains
572  * bitmaps, when the fs is running out of space.
573  */
jbd2_journal_force_commit_nested(journal_t * journal)574 int jbd2_journal_force_commit_nested(journal_t *journal)
575 {
576 	int ret;
577 
578 	ret = __jbd2_journal_force_commit(journal);
579 	return ret > 0;
580 }
581 
582 /**
583  * jbd2_journal_force_commit() - force any uncommitted transactions
584  * @journal: journal to force
585  *
586  * Caller want unconditional commit. We can only force the running transaction
587  * if we don't have an active handle, otherwise, we will deadlock.
588  */
jbd2_journal_force_commit(journal_t * journal)589 int jbd2_journal_force_commit(journal_t *journal)
590 {
591 	int ret;
592 
593 	J_ASSERT(!current->journal_info);
594 	ret = __jbd2_journal_force_commit(journal);
595 	if (ret > 0)
596 		ret = 0;
597 	return ret;
598 }
599 
600 /*
601  * Start a commit of the current running transaction (if any).  Returns true
602  * if a transaction is going to be committed (or is currently already
603  * committing), and fills its tid in at *ptid
604  */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)605 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
606 {
607 	int ret = 0;
608 
609 	write_lock(&journal->j_state_lock);
610 	if (journal->j_running_transaction) {
611 		tid_t tid = journal->j_running_transaction->t_tid;
612 
613 		__jbd2_log_start_commit(journal, tid);
614 		/* There's a running transaction and we've just made sure
615 		 * it's commit has been scheduled. */
616 		if (ptid)
617 			*ptid = tid;
618 		ret = 1;
619 	} else if (journal->j_committing_transaction) {
620 		/*
621 		 * If commit has been started, then we have to wait for
622 		 * completion of that transaction.
623 		 */
624 		if (ptid)
625 			*ptid = journal->j_committing_transaction->t_tid;
626 		ret = 1;
627 	}
628 	write_unlock(&journal->j_state_lock);
629 	return ret;
630 }
631 
632 /*
633  * Return 1 if a given transaction has not yet sent barrier request
634  * connected with a transaction commit. If 0 is returned, transaction
635  * may or may not have sent the barrier. Used to avoid sending barrier
636  * twice in common cases.
637  */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)638 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
639 {
640 	int ret = 0;
641 	transaction_t *commit_trans;
642 
643 	if (!(journal->j_flags & JBD2_BARRIER))
644 		return 0;
645 	read_lock(&journal->j_state_lock);
646 	/* Transaction already committed? */
647 	if (tid_geq(journal->j_commit_sequence, tid))
648 		goto out;
649 	commit_trans = journal->j_committing_transaction;
650 	if (!commit_trans || commit_trans->t_tid != tid) {
651 		ret = 1;
652 		goto out;
653 	}
654 	/*
655 	 * Transaction is being committed and we already proceeded to
656 	 * submitting a flush to fs partition?
657 	 */
658 	if (journal->j_fs_dev != journal->j_dev) {
659 		if (!commit_trans->t_need_data_flush ||
660 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
661 			goto out;
662 	} else {
663 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
664 			goto out;
665 	}
666 	ret = 1;
667 out:
668 	read_unlock(&journal->j_state_lock);
669 	return ret;
670 }
671 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
672 
673 /*
674  * Wait for a specified commit to complete.
675  * The caller may not hold the journal lock.
676  */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)677 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
678 {
679 	int err = 0;
680 
681 	read_lock(&journal->j_state_lock);
682 #ifdef CONFIG_PROVE_LOCKING
683 	/*
684 	 * Some callers make sure transaction is already committing and in that
685 	 * case we cannot block on open handles anymore. So don't warn in that
686 	 * case.
687 	 */
688 	if (tid_gt(tid, journal->j_commit_sequence) &&
689 	    (!journal->j_committing_transaction ||
690 	     journal->j_committing_transaction->t_tid != tid)) {
691 		read_unlock(&journal->j_state_lock);
692 		jbd2_might_wait_for_commit(journal);
693 		read_lock(&journal->j_state_lock);
694 	}
695 #endif
696 #ifdef CONFIG_JBD2_DEBUG
697 	if (!tid_geq(journal->j_commit_request, tid)) {
698 		printk(KERN_ERR
699 		       "%s: error: j_commit_request=%u, tid=%u\n",
700 		       __func__, journal->j_commit_request, tid);
701 	}
702 #endif
703 	while (tid_gt(tid, journal->j_commit_sequence)) {
704 		jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
705 				  tid, journal->j_commit_sequence);
706 		read_unlock(&journal->j_state_lock);
707 		wake_up(&journal->j_wait_commit);
708 		wait_event(journal->j_wait_done_commit,
709 				!tid_gt(tid, journal->j_commit_sequence));
710 		read_lock(&journal->j_state_lock);
711 	}
712 	read_unlock(&journal->j_state_lock);
713 
714 	if (unlikely(is_journal_aborted(journal)))
715 		err = -EIO;
716 	return err;
717 }
718 
719 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)720 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
721 {
722 	int ret = 1;
723 
724 	read_lock(&journal->j_state_lock);
725 	if (journal->j_running_transaction &&
726 	    journal->j_running_transaction->t_tid == tid)
727 		ret = 0;
728 	if (journal->j_committing_transaction &&
729 	    journal->j_committing_transaction->t_tid == tid)
730 		ret = 0;
731 	read_unlock(&journal->j_state_lock);
732 	return ret;
733 }
734 EXPORT_SYMBOL(jbd2_transaction_committed);
735 
736 /*
737  * When this function returns the transaction corresponding to tid
738  * will be completed.  If the transaction has currently running, start
739  * committing that transaction before waiting for it to complete.  If
740  * the transaction id is stale, it is by definition already completed,
741  * so just return SUCCESS.
742  */
jbd2_complete_transaction(journal_t * journal,tid_t tid)743 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
744 {
745 	int	need_to_wait = 1;
746 
747 	read_lock(&journal->j_state_lock);
748 	if (journal->j_running_transaction &&
749 	    journal->j_running_transaction->t_tid == tid) {
750 		if (journal->j_commit_request != tid) {
751 			/* transaction not yet started, so request it */
752 			read_unlock(&journal->j_state_lock);
753 			jbd2_log_start_commit(journal, tid);
754 			goto wait_commit;
755 		}
756 	} else if (!(journal->j_committing_transaction &&
757 		     journal->j_committing_transaction->t_tid == tid))
758 		need_to_wait = 0;
759 	read_unlock(&journal->j_state_lock);
760 	if (!need_to_wait)
761 		return 0;
762 wait_commit:
763 	return jbd2_log_wait_commit(journal, tid);
764 }
765 EXPORT_SYMBOL(jbd2_complete_transaction);
766 
767 /*
768  * Log buffer allocation routines:
769  */
770 
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)771 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
772 {
773 	unsigned long blocknr;
774 
775 	write_lock(&journal->j_state_lock);
776 	J_ASSERT(journal->j_free > 1);
777 
778 	blocknr = journal->j_head;
779 	journal->j_head++;
780 	journal->j_free--;
781 	if (journal->j_head == journal->j_last)
782 		journal->j_head = journal->j_first;
783 	write_unlock(&journal->j_state_lock);
784 	return jbd2_journal_bmap(journal, blocknr, retp);
785 }
786 
787 /*
788  * Conversion of logical to physical block numbers for the journal
789  *
790  * On external journals the journal blocks are identity-mapped, so
791  * this is a no-op.  If needed, we can use j_blk_offset - everything is
792  * ready.
793  */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)794 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
795 		 unsigned long long *retp)
796 {
797 	int err = 0;
798 	unsigned long long ret;
799 
800 	if (journal->j_inode) {
801 		ret = bmap(journal->j_inode, blocknr);
802 		if (ret)
803 			*retp = ret;
804 		else {
805 			printk(KERN_ALERT "%s: journal block not found "
806 					"at offset %lu on %s\n",
807 			       __func__, blocknr, journal->j_devname);
808 			err = -EIO;
809 			jbd2_journal_abort(journal, err);
810 		}
811 	} else {
812 		*retp = blocknr; /* +journal->j_blk_offset */
813 	}
814 	return err;
815 }
816 
817 /*
818  * We play buffer_head aliasing tricks to write data/metadata blocks to
819  * the journal without copying their contents, but for journal
820  * descriptor blocks we do need to generate bona fide buffers.
821  *
822  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
823  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
824  * But we don't bother doing that, so there will be coherency problems with
825  * mmaps of blockdevs which hold live JBD-controlled filesystems.
826  */
827 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)828 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
829 {
830 	journal_t *journal = transaction->t_journal;
831 	struct buffer_head *bh;
832 	unsigned long long blocknr;
833 	journal_header_t *header;
834 	int err;
835 
836 	err = jbd2_journal_next_log_block(journal, &blocknr);
837 
838 	if (err)
839 		return NULL;
840 
841 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
842 	if (!bh)
843 		return NULL;
844 	lock_buffer(bh);
845 	memset(bh->b_data, 0, journal->j_blocksize);
846 	header = (journal_header_t *)bh->b_data;
847 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
848 	header->h_blocktype = cpu_to_be32(type);
849 	header->h_sequence = cpu_to_be32(transaction->t_tid);
850 	set_buffer_uptodate(bh);
851 	unlock_buffer(bh);
852 	BUFFER_TRACE(bh, "return this buffer");
853 	return bh;
854 }
855 
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)856 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
857 {
858 	struct jbd2_journal_block_tail *tail;
859 	__u32 csum;
860 
861 	if (!jbd2_journal_has_csum_v2or3(j))
862 		return;
863 
864 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
865 			sizeof(struct jbd2_journal_block_tail));
866 	tail->t_checksum = 0;
867 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
868 	tail->t_checksum = cpu_to_be32(csum);
869 }
870 
871 /*
872  * Return tid of the oldest transaction in the journal and block in the journal
873  * where the transaction starts.
874  *
875  * If the journal is now empty, return which will be the next transaction ID
876  * we will write and where will that transaction start.
877  *
878  * The return value is 0 if journal tail cannot be pushed any further, 1 if
879  * it can.
880  */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)881 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
882 			      unsigned long *block)
883 {
884 	transaction_t *transaction;
885 	int ret;
886 
887 	read_lock(&journal->j_state_lock);
888 	spin_lock(&journal->j_list_lock);
889 	transaction = journal->j_checkpoint_transactions;
890 	if (transaction) {
891 		*tid = transaction->t_tid;
892 		*block = transaction->t_log_start;
893 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
894 		*tid = transaction->t_tid;
895 		*block = transaction->t_log_start;
896 	} else if ((transaction = journal->j_running_transaction) != NULL) {
897 		*tid = transaction->t_tid;
898 		*block = journal->j_head;
899 	} else {
900 		*tid = journal->j_transaction_sequence;
901 		*block = journal->j_head;
902 	}
903 	ret = tid_gt(*tid, journal->j_tail_sequence);
904 	spin_unlock(&journal->j_list_lock);
905 	read_unlock(&journal->j_state_lock);
906 
907 	return ret;
908 }
909 
910 /*
911  * Update information in journal structure and in on disk journal superblock
912  * about log tail. This function does not check whether information passed in
913  * really pushes log tail further. It's responsibility of the caller to make
914  * sure provided log tail information is valid (e.g. by holding
915  * j_checkpoint_mutex all the time between computing log tail and calling this
916  * function as is the case with jbd2_cleanup_journal_tail()).
917  *
918  * Requires j_checkpoint_mutex
919  */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)920 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
921 {
922 	unsigned long freed;
923 	int ret;
924 
925 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
926 
927 	/*
928 	 * We cannot afford for write to remain in drive's caches since as
929 	 * soon as we update j_tail, next transaction can start reusing journal
930 	 * space and if we lose sb update during power failure we'd replay
931 	 * old transaction with possibly newly overwritten data.
932 	 */
933 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
934 					      REQ_SYNC | REQ_FUA);
935 	if (ret)
936 		goto out;
937 
938 	write_lock(&journal->j_state_lock);
939 	freed = block - journal->j_tail;
940 	if (block < journal->j_tail)
941 		freed += journal->j_last - journal->j_first;
942 
943 	trace_jbd2_update_log_tail(journal, tid, block, freed);
944 	jbd_debug(1,
945 		  "Cleaning journal tail from %u to %u (offset %lu), "
946 		  "freeing %lu\n",
947 		  journal->j_tail_sequence, tid, block, freed);
948 
949 	journal->j_free += freed;
950 	journal->j_tail_sequence = tid;
951 	journal->j_tail = block;
952 	write_unlock(&journal->j_state_lock);
953 
954 out:
955 	return ret;
956 }
957 
958 /*
959  * This is a variation of __jbd2_update_log_tail which checks for validity of
960  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
961  * with other threads updating log tail.
962  */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)963 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
964 {
965 	mutex_lock_io(&journal->j_checkpoint_mutex);
966 	if (tid_gt(tid, journal->j_tail_sequence))
967 		__jbd2_update_log_tail(journal, tid, block);
968 	mutex_unlock(&journal->j_checkpoint_mutex);
969 }
970 
971 struct jbd2_stats_proc_session {
972 	journal_t *journal;
973 	struct transaction_stats_s *stats;
974 	int start;
975 	int max;
976 };
977 
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)978 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
979 {
980 	return *pos ? NULL : SEQ_START_TOKEN;
981 }
982 
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)983 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
984 {
985 	(*pos)++;
986 	return NULL;
987 }
988 
jbd2_seq_info_show(struct seq_file * seq,void * v)989 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
990 {
991 	struct jbd2_stats_proc_session *s = seq->private;
992 
993 	if (v != SEQ_START_TOKEN)
994 		return 0;
995 	seq_printf(seq, "%lu transactions (%lu requested), "
996 		   "each up to %u blocks\n",
997 		   s->stats->ts_tid, s->stats->ts_requested,
998 		   s->journal->j_max_transaction_buffers);
999 	if (s->stats->ts_tid == 0)
1000 		return 0;
1001 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1002 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1003 	seq_printf(seq, "  %ums request delay\n",
1004 	    (s->stats->ts_requested == 0) ? 0 :
1005 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1006 			     s->stats->ts_requested));
1007 	seq_printf(seq, "  %ums running transaction\n",
1008 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1009 	seq_printf(seq, "  %ums transaction was being locked\n",
1010 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1011 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1012 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1013 	seq_printf(seq, "  %ums logging transaction\n",
1014 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1015 	seq_printf(seq, "  %lluus average transaction commit time\n",
1016 		   div_u64(s->journal->j_average_commit_time, 1000));
1017 	seq_printf(seq, "  %lu handles per transaction\n",
1018 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1019 	seq_printf(seq, "  %lu blocks per transaction\n",
1020 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1021 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1022 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1023 	return 0;
1024 }
1025 
jbd2_seq_info_stop(struct seq_file * seq,void * v)1026 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1027 {
1028 }
1029 
1030 static const struct seq_operations jbd2_seq_info_ops = {
1031 	.start  = jbd2_seq_info_start,
1032 	.next   = jbd2_seq_info_next,
1033 	.stop   = jbd2_seq_info_stop,
1034 	.show   = jbd2_seq_info_show,
1035 };
1036 
jbd2_seq_info_open(struct inode * inode,struct file * file)1037 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1038 {
1039 	journal_t *journal = PDE_DATA(inode);
1040 	struct jbd2_stats_proc_session *s;
1041 	int rc, size;
1042 
1043 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1044 	if (s == NULL)
1045 		return -ENOMEM;
1046 	size = sizeof(struct transaction_stats_s);
1047 	s->stats = kmalloc(size, GFP_KERNEL);
1048 	if (s->stats == NULL) {
1049 		kfree(s);
1050 		return -ENOMEM;
1051 	}
1052 	spin_lock(&journal->j_history_lock);
1053 	memcpy(s->stats, &journal->j_stats, size);
1054 	s->journal = journal;
1055 	spin_unlock(&journal->j_history_lock);
1056 
1057 	rc = seq_open(file, &jbd2_seq_info_ops);
1058 	if (rc == 0) {
1059 		struct seq_file *m = file->private_data;
1060 		m->private = s;
1061 	} else {
1062 		kfree(s->stats);
1063 		kfree(s);
1064 	}
1065 	return rc;
1066 
1067 }
1068 
jbd2_seq_info_release(struct inode * inode,struct file * file)1069 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1070 {
1071 	struct seq_file *seq = file->private_data;
1072 	struct jbd2_stats_proc_session *s = seq->private;
1073 	kfree(s->stats);
1074 	kfree(s);
1075 	return seq_release(inode, file);
1076 }
1077 
1078 static const struct file_operations jbd2_seq_info_fops = {
1079 	.owner		= THIS_MODULE,
1080 	.open           = jbd2_seq_info_open,
1081 	.read           = seq_read,
1082 	.llseek         = seq_lseek,
1083 	.release        = jbd2_seq_info_release,
1084 };
1085 
1086 static struct proc_dir_entry *proc_jbd2_stats;
1087 
jbd2_stats_proc_init(journal_t * journal)1088 static void jbd2_stats_proc_init(journal_t *journal)
1089 {
1090 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1091 	if (journal->j_proc_entry) {
1092 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1093 				 &jbd2_seq_info_fops, journal);
1094 	}
1095 }
1096 
jbd2_stats_proc_exit(journal_t * journal)1097 static void jbd2_stats_proc_exit(journal_t *journal)
1098 {
1099 	remove_proc_entry("info", journal->j_proc_entry);
1100 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1101 }
1102 
1103 /*
1104  * Management for journal control blocks: functions to create and
1105  * destroy journal_t structures, and to initialise and read existing
1106  * journal blocks from disk.  */
1107 
1108 /* First: create and setup a journal_t object in memory.  We initialise
1109  * very few fields yet: that has to wait until we have created the
1110  * journal structures from from scratch, or loaded them from disk. */
1111 
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1112 static journal_t *journal_init_common(struct block_device *bdev,
1113 			struct block_device *fs_dev,
1114 			unsigned long long start, int len, int blocksize)
1115 {
1116 	static struct lock_class_key jbd2_trans_commit_key;
1117 	journal_t *journal;
1118 	int err;
1119 	struct buffer_head *bh;
1120 	int n;
1121 
1122 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1123 	if (!journal)
1124 		return NULL;
1125 
1126 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1127 	init_waitqueue_head(&journal->j_wait_done_commit);
1128 	init_waitqueue_head(&journal->j_wait_commit);
1129 	init_waitqueue_head(&journal->j_wait_updates);
1130 	init_waitqueue_head(&journal->j_wait_reserved);
1131 	mutex_init(&journal->j_barrier);
1132 	mutex_init(&journal->j_checkpoint_mutex);
1133 	spin_lock_init(&journal->j_revoke_lock);
1134 	spin_lock_init(&journal->j_list_lock);
1135 	rwlock_init(&journal->j_state_lock);
1136 
1137 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1138 	journal->j_min_batch_time = 0;
1139 	journal->j_max_batch_time = 15000; /* 15ms */
1140 	atomic_set(&journal->j_reserved_credits, 0);
1141 
1142 	/* The journal is marked for error until we succeed with recovery! */
1143 	journal->j_flags = JBD2_ABORT;
1144 
1145 	/* Set up a default-sized revoke table for the new mount. */
1146 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1147 	if (err)
1148 		goto err_cleanup;
1149 
1150 	spin_lock_init(&journal->j_history_lock);
1151 
1152 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1153 			 &jbd2_trans_commit_key, 0);
1154 
1155 	/* journal descriptor can store up to n blocks -bzzz */
1156 	journal->j_blocksize = blocksize;
1157 	journal->j_dev = bdev;
1158 	journal->j_fs_dev = fs_dev;
1159 	journal->j_blk_offset = start;
1160 	journal->j_maxlen = len;
1161 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1162 	journal->j_wbufsize = n;
1163 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1164 					GFP_KERNEL);
1165 	if (!journal->j_wbuf)
1166 		goto err_cleanup;
1167 
1168 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1169 	if (!bh) {
1170 		pr_err("%s: Cannot get buffer for journal superblock\n",
1171 			__func__);
1172 		goto err_cleanup;
1173 	}
1174 	journal->j_sb_buffer = bh;
1175 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1176 
1177 	return journal;
1178 
1179 err_cleanup:
1180 	kfree(journal->j_wbuf);
1181 	jbd2_journal_destroy_revoke(journal);
1182 	kfree(journal);
1183 	return NULL;
1184 }
1185 
1186 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1187  *
1188  * Create a journal structure assigned some fixed set of disk blocks to
1189  * the journal.  We don't actually touch those disk blocks yet, but we
1190  * need to set up all of the mapping information to tell the journaling
1191  * system where the journal blocks are.
1192  *
1193  */
1194 
1195 /**
1196  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1197  *  @bdev: Block device on which to create the journal
1198  *  @fs_dev: Device which hold journalled filesystem for this journal.
1199  *  @start: Block nr Start of journal.
1200  *  @len:  Length of the journal in blocks.
1201  *  @blocksize: blocksize of journalling device
1202  *
1203  *  Returns: a newly created journal_t *
1204  *
1205  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1206  *  range of blocks on an arbitrary block device.
1207  *
1208  */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1209 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1210 			struct block_device *fs_dev,
1211 			unsigned long long start, int len, int blocksize)
1212 {
1213 	journal_t *journal;
1214 
1215 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1216 	if (!journal)
1217 		return NULL;
1218 
1219 	bdevname(journal->j_dev, journal->j_devname);
1220 	strreplace(journal->j_devname, '/', '!');
1221 	jbd2_stats_proc_init(journal);
1222 
1223 	return journal;
1224 }
1225 
1226 /**
1227  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1228  *  @inode: An inode to create the journal in
1229  *
1230  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1231  * the journal.  The inode must exist already, must support bmap() and
1232  * must have all data blocks preallocated.
1233  */
jbd2_journal_init_inode(struct inode * inode)1234 journal_t *jbd2_journal_init_inode(struct inode *inode)
1235 {
1236 	journal_t *journal;
1237 	char *p;
1238 	unsigned long long blocknr;
1239 
1240 	blocknr = bmap(inode, 0);
1241 	if (!blocknr) {
1242 		pr_err("%s: Cannot locate journal superblock\n",
1243 			__func__);
1244 		return NULL;
1245 	}
1246 
1247 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1248 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1249 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1250 
1251 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1252 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1253 			inode->i_sb->s_blocksize);
1254 	if (!journal)
1255 		return NULL;
1256 
1257 	journal->j_inode = inode;
1258 	bdevname(journal->j_dev, journal->j_devname);
1259 	p = strreplace(journal->j_devname, '/', '!');
1260 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1261 	jbd2_stats_proc_init(journal);
1262 
1263 	return journal;
1264 }
1265 
1266 /*
1267  * If the journal init or create aborts, we need to mark the journal
1268  * superblock as being NULL to prevent the journal destroy from writing
1269  * back a bogus superblock.
1270  */
journal_fail_superblock(journal_t * journal)1271 static void journal_fail_superblock(journal_t *journal)
1272 {
1273 	struct buffer_head *bh = journal->j_sb_buffer;
1274 	brelse(bh);
1275 	journal->j_sb_buffer = NULL;
1276 }
1277 
1278 /*
1279  * Given a journal_t structure, initialise the various fields for
1280  * startup of a new journaling session.  We use this both when creating
1281  * a journal, and after recovering an old journal to reset it for
1282  * subsequent use.
1283  */
1284 
journal_reset(journal_t * journal)1285 static int journal_reset(journal_t *journal)
1286 {
1287 	journal_superblock_t *sb = journal->j_superblock;
1288 	unsigned long long first, last;
1289 
1290 	first = be32_to_cpu(sb->s_first);
1291 	last = be32_to_cpu(sb->s_maxlen);
1292 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1293 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1294 		       first, last);
1295 		journal_fail_superblock(journal);
1296 		return -EINVAL;
1297 	}
1298 
1299 	journal->j_first = first;
1300 	journal->j_last = last;
1301 
1302 	journal->j_head = first;
1303 	journal->j_tail = first;
1304 	journal->j_free = last - first;
1305 
1306 	journal->j_tail_sequence = journal->j_transaction_sequence;
1307 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1308 	journal->j_commit_request = journal->j_commit_sequence;
1309 
1310 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1311 
1312 	/*
1313 	 * As a special case, if the on-disk copy is already marked as needing
1314 	 * no recovery (s_start == 0), then we can safely defer the superblock
1315 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1316 	 * attempting a write to a potential-readonly device.
1317 	 */
1318 	if (sb->s_start == 0) {
1319 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1320 			"(start %ld, seq %u, errno %d)\n",
1321 			journal->j_tail, journal->j_tail_sequence,
1322 			journal->j_errno);
1323 		journal->j_flags |= JBD2_FLUSHED;
1324 	} else {
1325 		/* Lock here to make assertions happy... */
1326 		mutex_lock_io(&journal->j_checkpoint_mutex);
1327 		/*
1328 		 * Update log tail information. We use REQ_FUA since new
1329 		 * transaction will start reusing journal space and so we
1330 		 * must make sure information about current log tail is on
1331 		 * disk before that.
1332 		 */
1333 		jbd2_journal_update_sb_log_tail(journal,
1334 						journal->j_tail_sequence,
1335 						journal->j_tail,
1336 						REQ_SYNC | REQ_FUA);
1337 		mutex_unlock(&journal->j_checkpoint_mutex);
1338 	}
1339 	return jbd2_journal_start_thread(journal);
1340 }
1341 
1342 /*
1343  * This function expects that the caller will have locked the journal
1344  * buffer head, and will return with it unlocked
1345  */
jbd2_write_superblock(journal_t * journal,int write_flags)1346 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1347 {
1348 	struct buffer_head *bh = journal->j_sb_buffer;
1349 	journal_superblock_t *sb = journal->j_superblock;
1350 	int ret;
1351 
1352 	/* Buffer got discarded which means block device got invalidated */
1353 	if (!buffer_mapped(bh)) {
1354 		unlock_buffer(bh);
1355 		return -EIO;
1356 	}
1357 
1358 	if (!(journal->j_flags & JBD2_BARRIER))
1359 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1360 
1361 	trace_jbd2_write_superblock(journal, write_flags);
1362 
1363 	if (buffer_write_io_error(bh)) {
1364 		/*
1365 		 * Oh, dear.  A previous attempt to write the journal
1366 		 * superblock failed.  This could happen because the
1367 		 * USB device was yanked out.  Or it could happen to
1368 		 * be a transient write error and maybe the block will
1369 		 * be remapped.  Nothing we can do but to retry the
1370 		 * write and hope for the best.
1371 		 */
1372 		printk(KERN_ERR "JBD2: previous I/O error detected "
1373 		       "for journal superblock update for %s.\n",
1374 		       journal->j_devname);
1375 		clear_buffer_write_io_error(bh);
1376 		set_buffer_uptodate(bh);
1377 	}
1378 	if (jbd2_journal_has_csum_v2or3(journal))
1379 		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1380 	get_bh(bh);
1381 	bh->b_end_io = end_buffer_write_sync;
1382 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1383 	wait_on_buffer(bh);
1384 	if (buffer_write_io_error(bh)) {
1385 		clear_buffer_write_io_error(bh);
1386 		set_buffer_uptodate(bh);
1387 		ret = -EIO;
1388 	}
1389 	if (ret) {
1390 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1391 		       "journal superblock for %s.\n", ret,
1392 		       journal->j_devname);
1393 		jbd2_journal_abort(journal, ret);
1394 	}
1395 
1396 	return ret;
1397 }
1398 
1399 /**
1400  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1401  * @journal: The journal to update.
1402  * @tail_tid: TID of the new transaction at the tail of the log
1403  * @tail_block: The first block of the transaction at the tail of the log
1404  * @write_op: With which operation should we write the journal sb
1405  *
1406  * Update a journal's superblock information about log tail and write it to
1407  * disk, waiting for the IO to complete.
1408  */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1409 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1410 				     unsigned long tail_block, int write_op)
1411 {
1412 	journal_superblock_t *sb = journal->j_superblock;
1413 	int ret;
1414 
1415 	if (is_journal_aborted(journal))
1416 		return -EIO;
1417 
1418 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1419 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1420 		  tail_block, tail_tid);
1421 
1422 	lock_buffer(journal->j_sb_buffer);
1423 	sb->s_sequence = cpu_to_be32(tail_tid);
1424 	sb->s_start    = cpu_to_be32(tail_block);
1425 
1426 	ret = jbd2_write_superblock(journal, write_op);
1427 	if (ret)
1428 		goto out;
1429 
1430 	/* Log is no longer empty */
1431 	write_lock(&journal->j_state_lock);
1432 	WARN_ON(!sb->s_sequence);
1433 	journal->j_flags &= ~JBD2_FLUSHED;
1434 	write_unlock(&journal->j_state_lock);
1435 
1436 out:
1437 	return ret;
1438 }
1439 
1440 /**
1441  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1442  * @journal: The journal to update.
1443  * @write_op: With which operation should we write the journal sb
1444  *
1445  * Update a journal's dynamic superblock fields to show that journal is empty.
1446  * Write updated superblock to disk waiting for IO to complete.
1447  */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1448 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1449 {
1450 	journal_superblock_t *sb = journal->j_superblock;
1451 
1452 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1453 	lock_buffer(journal->j_sb_buffer);
1454 	if (sb->s_start == 0) {		/* Is it already empty? */
1455 		unlock_buffer(journal->j_sb_buffer);
1456 		return;
1457 	}
1458 
1459 	jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1460 		  journal->j_tail_sequence);
1461 
1462 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1463 	sb->s_start    = cpu_to_be32(0);
1464 
1465 	jbd2_write_superblock(journal, write_op);
1466 
1467 	/* Log is no longer empty */
1468 	write_lock(&journal->j_state_lock);
1469 	journal->j_flags |= JBD2_FLUSHED;
1470 	write_unlock(&journal->j_state_lock);
1471 }
1472 
1473 
1474 /**
1475  * jbd2_journal_update_sb_errno() - Update error in the journal.
1476  * @journal: The journal to update.
1477  *
1478  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1479  * to complete.
1480  */
jbd2_journal_update_sb_errno(journal_t * journal)1481 void jbd2_journal_update_sb_errno(journal_t *journal)
1482 {
1483 	journal_superblock_t *sb = journal->j_superblock;
1484 	int errcode;
1485 
1486 	lock_buffer(journal->j_sb_buffer);
1487 	errcode = journal->j_errno;
1488 	if (errcode == -ESHUTDOWN)
1489 		errcode = 0;
1490 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1491 	sb->s_errno    = cpu_to_be32(errcode);
1492 
1493 	jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1494 }
1495 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1496 
1497 /*
1498  * Read the superblock for a given journal, performing initial
1499  * validation of the format.
1500  */
journal_get_superblock(journal_t * journal)1501 static int journal_get_superblock(journal_t *journal)
1502 {
1503 	struct buffer_head *bh;
1504 	journal_superblock_t *sb;
1505 	int err = -EIO;
1506 
1507 	bh = journal->j_sb_buffer;
1508 
1509 	J_ASSERT(bh != NULL);
1510 	if (!buffer_uptodate(bh)) {
1511 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1512 		wait_on_buffer(bh);
1513 		if (!buffer_uptodate(bh)) {
1514 			printk(KERN_ERR
1515 				"JBD2: IO error reading journal superblock\n");
1516 			goto out;
1517 		}
1518 	}
1519 
1520 	if (buffer_verified(bh))
1521 		return 0;
1522 
1523 	sb = journal->j_superblock;
1524 
1525 	err = -EINVAL;
1526 
1527 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1528 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1529 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1530 		goto out;
1531 	}
1532 
1533 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1534 	case JBD2_SUPERBLOCK_V1:
1535 		journal->j_format_version = 1;
1536 		break;
1537 	case JBD2_SUPERBLOCK_V2:
1538 		journal->j_format_version = 2;
1539 		break;
1540 	default:
1541 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1542 		goto out;
1543 	}
1544 
1545 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1546 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1547 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1548 		printk(KERN_WARNING "JBD2: journal file too short\n");
1549 		goto out;
1550 	}
1551 
1552 	if (be32_to_cpu(sb->s_first) == 0 ||
1553 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1554 		printk(KERN_WARNING
1555 			"JBD2: Invalid start block of journal: %u\n",
1556 			be32_to_cpu(sb->s_first));
1557 		goto out;
1558 	}
1559 
1560 	if (jbd2_has_feature_csum2(journal) &&
1561 	    jbd2_has_feature_csum3(journal)) {
1562 		/* Can't have checksum v2 and v3 at the same time! */
1563 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1564 		       "at the same time!\n");
1565 		goto out;
1566 	}
1567 
1568 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1569 	    jbd2_has_feature_checksum(journal)) {
1570 		/* Can't have checksum v1 and v2 on at the same time! */
1571 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1572 		       "at the same time!\n");
1573 		goto out;
1574 	}
1575 
1576 	if (!jbd2_verify_csum_type(journal, sb)) {
1577 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1578 		goto out;
1579 	}
1580 
1581 	/* Load the checksum driver */
1582 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1583 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1584 		if (IS_ERR(journal->j_chksum_driver)) {
1585 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1586 			err = PTR_ERR(journal->j_chksum_driver);
1587 			journal->j_chksum_driver = NULL;
1588 			goto out;
1589 		}
1590 	}
1591 
1592 	if (jbd2_journal_has_csum_v2or3(journal)) {
1593 		/* Check superblock checksum */
1594 		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1595 			printk(KERN_ERR "JBD2: journal checksum error\n");
1596 			err = -EFSBADCRC;
1597 			goto out;
1598 		}
1599 
1600 		/* Precompute checksum seed for all metadata */
1601 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1602 						   sizeof(sb->s_uuid));
1603 	}
1604 
1605 	set_buffer_verified(bh);
1606 
1607 	return 0;
1608 
1609 out:
1610 	journal_fail_superblock(journal);
1611 	return err;
1612 }
1613 
1614 /*
1615  * Load the on-disk journal superblock and read the key fields into the
1616  * journal_t.
1617  */
1618 
load_superblock(journal_t * journal)1619 static int load_superblock(journal_t *journal)
1620 {
1621 	int err;
1622 	journal_superblock_t *sb;
1623 
1624 	err = journal_get_superblock(journal);
1625 	if (err)
1626 		return err;
1627 
1628 	sb = journal->j_superblock;
1629 
1630 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1631 	journal->j_tail = be32_to_cpu(sb->s_start);
1632 	journal->j_first = be32_to_cpu(sb->s_first);
1633 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1634 	journal->j_errno = be32_to_cpu(sb->s_errno);
1635 
1636 	return 0;
1637 }
1638 
1639 
1640 /**
1641  * jbd2_journal_load() - Read journal from disk.
1642  * @journal: Journal to act on.
1643  *
1644  * Given a journal_t structure which tells us which disk blocks contain
1645  * a journal, read the journal from disk to initialise the in-memory
1646  * structures.
1647  */
jbd2_journal_load(journal_t * journal)1648 int jbd2_journal_load(journal_t *journal)
1649 {
1650 	int err;
1651 	journal_superblock_t *sb;
1652 
1653 	err = load_superblock(journal);
1654 	if (err)
1655 		return err;
1656 
1657 	sb = journal->j_superblock;
1658 	/* If this is a V2 superblock, then we have to check the
1659 	 * features flags on it. */
1660 
1661 	if (journal->j_format_version >= 2) {
1662 		if ((sb->s_feature_ro_compat &
1663 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1664 		    (sb->s_feature_incompat &
1665 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1666 			printk(KERN_WARNING
1667 				"JBD2: Unrecognised features on journal\n");
1668 			return -EINVAL;
1669 		}
1670 	}
1671 
1672 	/*
1673 	 * Create a slab for this blocksize
1674 	 */
1675 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1676 	if (err)
1677 		return err;
1678 
1679 	/* Let the recovery code check whether it needs to recover any
1680 	 * data from the journal. */
1681 	if (jbd2_journal_recover(journal))
1682 		goto recovery_error;
1683 
1684 	if (journal->j_failed_commit) {
1685 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1686 		       "is corrupt.\n", journal->j_failed_commit,
1687 		       journal->j_devname);
1688 		return -EFSCORRUPTED;
1689 	}
1690 	/*
1691 	 * clear JBD2_ABORT flag initialized in journal_init_common
1692 	 * here to update log tail information with the newest seq.
1693 	 */
1694 	journal->j_flags &= ~JBD2_ABORT;
1695 
1696 	/* OK, we've finished with the dynamic journal bits:
1697 	 * reinitialise the dynamic contents of the superblock in memory
1698 	 * and reset them on disk. */
1699 	if (journal_reset(journal))
1700 		goto recovery_error;
1701 
1702 	journal->j_flags |= JBD2_LOADED;
1703 	return 0;
1704 
1705 recovery_error:
1706 	printk(KERN_WARNING "JBD2: recovery failed\n");
1707 	return -EIO;
1708 }
1709 
1710 /**
1711  * jbd2_journal_destroy() - Release a journal_t structure.
1712  * @journal: Journal to act on.
1713  *
1714  * Release a journal_t structure once it is no longer in use by the
1715  * journaled object.
1716  * Return <0 if we couldn't clean up the journal.
1717  */
jbd2_journal_destroy(journal_t * journal)1718 int jbd2_journal_destroy(journal_t *journal)
1719 {
1720 	int err = 0;
1721 
1722 	/* Wait for the commit thread to wake up and die. */
1723 	journal_kill_thread(journal);
1724 
1725 	/* Force a final log commit */
1726 	if (journal->j_running_transaction)
1727 		jbd2_journal_commit_transaction(journal);
1728 
1729 	/* Force any old transactions to disk */
1730 
1731 	/* Totally anal locking here... */
1732 	spin_lock(&journal->j_list_lock);
1733 	while (journal->j_checkpoint_transactions != NULL) {
1734 		spin_unlock(&journal->j_list_lock);
1735 		mutex_lock_io(&journal->j_checkpoint_mutex);
1736 		err = jbd2_log_do_checkpoint(journal);
1737 		mutex_unlock(&journal->j_checkpoint_mutex);
1738 		/*
1739 		 * If checkpointing failed, just free the buffers to avoid
1740 		 * looping forever
1741 		 */
1742 		if (err) {
1743 			jbd2_journal_destroy_checkpoint(journal);
1744 			spin_lock(&journal->j_list_lock);
1745 			break;
1746 		}
1747 		spin_lock(&journal->j_list_lock);
1748 	}
1749 
1750 	J_ASSERT(journal->j_running_transaction == NULL);
1751 	J_ASSERT(journal->j_committing_transaction == NULL);
1752 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1753 	spin_unlock(&journal->j_list_lock);
1754 
1755 	if (journal->j_sb_buffer) {
1756 		if (!is_journal_aborted(journal)) {
1757 			mutex_lock_io(&journal->j_checkpoint_mutex);
1758 
1759 			write_lock(&journal->j_state_lock);
1760 			journal->j_tail_sequence =
1761 				++journal->j_transaction_sequence;
1762 			write_unlock(&journal->j_state_lock);
1763 
1764 			jbd2_mark_journal_empty(journal,
1765 					REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1766 			mutex_unlock(&journal->j_checkpoint_mutex);
1767 		} else
1768 			err = -EIO;
1769 		brelse(journal->j_sb_buffer);
1770 	}
1771 
1772 	if (journal->j_proc_entry)
1773 		jbd2_stats_proc_exit(journal);
1774 	iput(journal->j_inode);
1775 	if (journal->j_revoke)
1776 		jbd2_journal_destroy_revoke(journal);
1777 	if (journal->j_chksum_driver)
1778 		crypto_free_shash(journal->j_chksum_driver);
1779 	kfree(journal->j_wbuf);
1780 	kfree(journal);
1781 
1782 	return err;
1783 }
1784 
1785 
1786 /**
1787  * jbd2_journal_check_used_features() - Check if features specified are used.
1788  * @journal: Journal to check.
1789  * @compat: bitmask of compatible features
1790  * @ro: bitmask of features that force read-only mount
1791  * @incompat: bitmask of incompatible features
1792  *
1793  * Check whether the journal uses all of a given set of
1794  * features.  Return true (non-zero) if it does.
1795  **/
1796 
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1797 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
1798 				 unsigned long ro, unsigned long incompat)
1799 {
1800 	journal_superblock_t *sb;
1801 
1802 	if (!compat && !ro && !incompat)
1803 		return 1;
1804 	/* Load journal superblock if it is not loaded yet. */
1805 	if (journal->j_format_version == 0 &&
1806 	    journal_get_superblock(journal) != 0)
1807 		return 0;
1808 	if (journal->j_format_version == 1)
1809 		return 0;
1810 
1811 	sb = journal->j_superblock;
1812 
1813 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1814 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1815 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1816 		return 1;
1817 
1818 	return 0;
1819 }
1820 
1821 /**
1822  * jbd2_journal_check_available_features() - Check feature set in journalling layer
1823  * @journal: Journal to check.
1824  * @compat: bitmask of compatible features
1825  * @ro: bitmask of features that force read-only mount
1826  * @incompat: bitmask of incompatible features
1827  *
1828  * Check whether the journaling code supports the use of
1829  * all of a given set of features on this journal.  Return true
1830  * (non-zero) if it can. */
1831 
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1832 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
1833 				      unsigned long ro, unsigned long incompat)
1834 {
1835 	if (!compat && !ro && !incompat)
1836 		return 1;
1837 
1838 	/* We can support any known requested features iff the
1839 	 * superblock is in version 2.  Otherwise we fail to support any
1840 	 * extended sb features. */
1841 
1842 	if (journal->j_format_version != 2)
1843 		return 0;
1844 
1845 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1846 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1847 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1848 		return 1;
1849 
1850 	return 0;
1851 }
1852 
1853 /**
1854  * jbd2_journal_set_features() - Mark a given journal feature in the superblock
1855  * @journal: Journal to act on.
1856  * @compat: bitmask of compatible features
1857  * @ro: bitmask of features that force read-only mount
1858  * @incompat: bitmask of incompatible features
1859  *
1860  * Mark a given journal feature as present on the
1861  * superblock.  Returns true if the requested features could be set.
1862  *
1863  */
1864 
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1865 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
1866 			  unsigned long ro, unsigned long incompat)
1867 {
1868 #define INCOMPAT_FEATURE_ON(f) \
1869 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1870 #define COMPAT_FEATURE_ON(f) \
1871 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1872 	journal_superblock_t *sb;
1873 
1874 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1875 		return 1;
1876 
1877 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1878 		return 0;
1879 
1880 	/* If enabling v2 checksums, turn on v3 instead */
1881 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1882 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1883 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1884 	}
1885 
1886 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1887 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1888 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1889 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1890 
1891 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1892 		  compat, ro, incompat);
1893 
1894 	sb = journal->j_superblock;
1895 
1896 	/* Load the checksum driver if necessary */
1897 	if ((journal->j_chksum_driver == NULL) &&
1898 	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1899 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1900 		if (IS_ERR(journal->j_chksum_driver)) {
1901 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1902 			journal->j_chksum_driver = NULL;
1903 			return 0;
1904 		}
1905 		/* Precompute checksum seed for all metadata */
1906 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1907 						   sizeof(sb->s_uuid));
1908 	}
1909 
1910 	lock_buffer(journal->j_sb_buffer);
1911 
1912 	/* If enabling v3 checksums, update superblock */
1913 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1914 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1915 		sb->s_feature_compat &=
1916 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1917 	}
1918 
1919 	/* If enabling v1 checksums, downgrade superblock */
1920 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1921 		sb->s_feature_incompat &=
1922 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1923 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1924 
1925 	sb->s_feature_compat    |= cpu_to_be32(compat);
1926 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1927 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1928 	unlock_buffer(journal->j_sb_buffer);
1929 
1930 	return 1;
1931 #undef COMPAT_FEATURE_ON
1932 #undef INCOMPAT_FEATURE_ON
1933 }
1934 
1935 /*
1936  * jbd2_journal_clear_features() - Clear a given journal feature in the
1937  * 				    superblock
1938  * @journal: Journal to act on.
1939  * @compat: bitmask of compatible features
1940  * @ro: bitmask of features that force read-only mount
1941  * @incompat: bitmask of incompatible features
1942  *
1943  * Clear a given journal feature as present on the
1944  * superblock.
1945  */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1946 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1947 				unsigned long ro, unsigned long incompat)
1948 {
1949 	journal_superblock_t *sb;
1950 
1951 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1952 		  compat, ro, incompat);
1953 
1954 	sb = journal->j_superblock;
1955 
1956 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1957 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1958 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1959 }
1960 EXPORT_SYMBOL(jbd2_journal_clear_features);
1961 
1962 /**
1963  * jbd2_journal_flush() - Flush journal
1964  * @journal: Journal to act on.
1965  *
1966  * Flush all data for a given journal to disk and empty the journal.
1967  * Filesystems can use this when remounting readonly to ensure that
1968  * recovery does not need to happen on remount.
1969  */
1970 
jbd2_journal_flush(journal_t * journal)1971 int jbd2_journal_flush(journal_t *journal)
1972 {
1973 	int err = 0;
1974 	transaction_t *transaction = NULL;
1975 
1976 	write_lock(&journal->j_state_lock);
1977 
1978 	/* Force everything buffered to the log... */
1979 	if (journal->j_running_transaction) {
1980 		transaction = journal->j_running_transaction;
1981 		__jbd2_log_start_commit(journal, transaction->t_tid);
1982 	} else if (journal->j_committing_transaction)
1983 		transaction = journal->j_committing_transaction;
1984 
1985 	/* Wait for the log commit to complete... */
1986 	if (transaction) {
1987 		tid_t tid = transaction->t_tid;
1988 
1989 		write_unlock(&journal->j_state_lock);
1990 		jbd2_log_wait_commit(journal, tid);
1991 	} else {
1992 		write_unlock(&journal->j_state_lock);
1993 	}
1994 
1995 	/* ...and flush everything in the log out to disk. */
1996 	spin_lock(&journal->j_list_lock);
1997 	while (!err && journal->j_checkpoint_transactions != NULL) {
1998 		spin_unlock(&journal->j_list_lock);
1999 		mutex_lock_io(&journal->j_checkpoint_mutex);
2000 		err = jbd2_log_do_checkpoint(journal);
2001 		mutex_unlock(&journal->j_checkpoint_mutex);
2002 		spin_lock(&journal->j_list_lock);
2003 	}
2004 	spin_unlock(&journal->j_list_lock);
2005 
2006 	if (is_journal_aborted(journal))
2007 		return -EIO;
2008 
2009 	mutex_lock_io(&journal->j_checkpoint_mutex);
2010 	if (!err) {
2011 		err = jbd2_cleanup_journal_tail(journal);
2012 		if (err < 0) {
2013 			mutex_unlock(&journal->j_checkpoint_mutex);
2014 			goto out;
2015 		}
2016 		err = 0;
2017 	}
2018 
2019 	/* Finally, mark the journal as really needing no recovery.
2020 	 * This sets s_start==0 in the underlying superblock, which is
2021 	 * the magic code for a fully-recovered superblock.  Any future
2022 	 * commits of data to the journal will restore the current
2023 	 * s_start value. */
2024 	jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2025 	mutex_unlock(&journal->j_checkpoint_mutex);
2026 	write_lock(&journal->j_state_lock);
2027 	J_ASSERT(!journal->j_running_transaction);
2028 	J_ASSERT(!journal->j_committing_transaction);
2029 	J_ASSERT(!journal->j_checkpoint_transactions);
2030 	J_ASSERT(journal->j_head == journal->j_tail);
2031 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2032 	write_unlock(&journal->j_state_lock);
2033 out:
2034 	return err;
2035 }
2036 
2037 /**
2038  * jbd2_journal_wipe() - Wipe journal contents
2039  * @journal: Journal to act on.
2040  * @write: flag (see below)
2041  *
2042  * Wipe out all of the contents of a journal, safely.  This will produce
2043  * a warning if the journal contains any valid recovery information.
2044  * Must be called between journal_init_*() and jbd2_journal_load().
2045  *
2046  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2047  * we merely suppress recovery.
2048  */
2049 
jbd2_journal_wipe(journal_t * journal,int write)2050 int jbd2_journal_wipe(journal_t *journal, int write)
2051 {
2052 	int err = 0;
2053 
2054 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2055 
2056 	err = load_superblock(journal);
2057 	if (err)
2058 		return err;
2059 
2060 	if (!journal->j_tail)
2061 		goto no_recovery;
2062 
2063 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2064 		write ? "Clearing" : "Ignoring");
2065 
2066 	err = jbd2_journal_skip_recovery(journal);
2067 	if (write) {
2068 		/* Lock to make assertions happy... */
2069 		mutex_lock_io(&journal->j_checkpoint_mutex);
2070 		jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2071 		mutex_unlock(&journal->j_checkpoint_mutex);
2072 	}
2073 
2074  no_recovery:
2075 	return err;
2076 }
2077 
2078 /**
2079  * jbd2_journal_abort () - Shutdown the journal immediately.
2080  * @journal: the journal to shutdown.
2081  * @errno:   an error number to record in the journal indicating
2082  *           the reason for the shutdown.
2083  *
2084  * Perform a complete, immediate shutdown of the ENTIRE
2085  * journal (not of a single transaction).  This operation cannot be
2086  * undone without closing and reopening the journal.
2087  *
2088  * The jbd2_journal_abort function is intended to support higher level error
2089  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2090  * mode.
2091  *
2092  * Journal abort has very specific semantics.  Any existing dirty,
2093  * unjournaled buffers in the main filesystem will still be written to
2094  * disk by bdflush, but the journaling mechanism will be suspended
2095  * immediately and no further transaction commits will be honoured.
2096  *
2097  * Any dirty, journaled buffers will be written back to disk without
2098  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2099  * filesystem, but we _do_ attempt to leave as much data as possible
2100  * behind for fsck to use for cleanup.
2101  *
2102  * Any attempt to get a new transaction handle on a journal which is in
2103  * ABORT state will just result in an -EROFS error return.  A
2104  * jbd2_journal_stop on an existing handle will return -EIO if we have
2105  * entered abort state during the update.
2106  *
2107  * Recursive transactions are not disturbed by journal abort until the
2108  * final jbd2_journal_stop, which will receive the -EIO error.
2109  *
2110  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2111  * which will be recorded (if possible) in the journal superblock.  This
2112  * allows a client to record failure conditions in the middle of a
2113  * transaction without having to complete the transaction to record the
2114  * failure to disk.  ext3_error, for example, now uses this
2115  * functionality.
2116  *
2117  */
2118 
jbd2_journal_abort(journal_t * journal,int errno)2119 void jbd2_journal_abort(journal_t *journal, int errno)
2120 {
2121 	transaction_t *transaction;
2122 
2123 	/*
2124 	 * ESHUTDOWN always takes precedence because a file system check
2125 	 * caused by any other journal abort error is not required after
2126 	 * a shutdown triggered.
2127 	 */
2128 	write_lock(&journal->j_state_lock);
2129 	if (journal->j_flags & JBD2_ABORT) {
2130 		int old_errno = journal->j_errno;
2131 
2132 		write_unlock(&journal->j_state_lock);
2133 		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2134 			journal->j_errno = errno;
2135 			jbd2_journal_update_sb_errno(journal);
2136 		}
2137 		return;
2138 	}
2139 
2140 	/*
2141 	 * Mark the abort as occurred and start current running transaction
2142 	 * to release all journaled buffer.
2143 	 */
2144 	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2145 
2146 	journal->j_flags |= JBD2_ABORT;
2147 	journal->j_errno = errno;
2148 	transaction = journal->j_running_transaction;
2149 	if (transaction)
2150 		__jbd2_log_start_commit(journal, transaction->t_tid);
2151 	write_unlock(&journal->j_state_lock);
2152 
2153 	/*
2154 	 * Record errno to the journal super block, so that fsck and jbd2
2155 	 * layer could realise that a filesystem check is needed.
2156 	 */
2157 	jbd2_journal_update_sb_errno(journal);
2158 
2159 	write_lock(&journal->j_state_lock);
2160 	journal->j_flags |= JBD2_REC_ERR;
2161 	write_unlock(&journal->j_state_lock);
2162 }
2163 
2164 /**
2165  * jbd2_journal_errno() - returns the journal's error state.
2166  * @journal: journal to examine.
2167  *
2168  * This is the errno number set with jbd2_journal_abort(), the last
2169  * time the journal was mounted - if the journal was stopped
2170  * without calling abort this will be 0.
2171  *
2172  * If the journal has been aborted on this mount time -EROFS will
2173  * be returned.
2174  */
jbd2_journal_errno(journal_t * journal)2175 int jbd2_journal_errno(journal_t *journal)
2176 {
2177 	int err;
2178 
2179 	read_lock(&journal->j_state_lock);
2180 	if (journal->j_flags & JBD2_ABORT)
2181 		err = -EROFS;
2182 	else
2183 		err = journal->j_errno;
2184 	read_unlock(&journal->j_state_lock);
2185 	return err;
2186 }
2187 
2188 /**
2189  * jbd2_journal_clear_err() - clears the journal's error state
2190  * @journal: journal to act on.
2191  *
2192  * An error must be cleared or acked to take a FS out of readonly
2193  * mode.
2194  */
jbd2_journal_clear_err(journal_t * journal)2195 int jbd2_journal_clear_err(journal_t *journal)
2196 {
2197 	int err = 0;
2198 
2199 	write_lock(&journal->j_state_lock);
2200 	if (journal->j_flags & JBD2_ABORT)
2201 		err = -EROFS;
2202 	else
2203 		journal->j_errno = 0;
2204 	write_unlock(&journal->j_state_lock);
2205 	return err;
2206 }
2207 
2208 /**
2209  * jbd2_journal_ack_err() - Ack journal err.
2210  * @journal: journal to act on.
2211  *
2212  * An error must be cleared or acked to take a FS out of readonly
2213  * mode.
2214  */
jbd2_journal_ack_err(journal_t * journal)2215 void jbd2_journal_ack_err(journal_t *journal)
2216 {
2217 	write_lock(&journal->j_state_lock);
2218 	if (journal->j_errno)
2219 		journal->j_flags |= JBD2_ACK_ERR;
2220 	write_unlock(&journal->j_state_lock);
2221 }
2222 
jbd2_journal_blocks_per_page(struct inode * inode)2223 int jbd2_journal_blocks_per_page(struct inode *inode)
2224 {
2225 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2226 }
2227 
2228 /*
2229  * helper functions to deal with 32 or 64bit block numbers.
2230  */
journal_tag_bytes(journal_t * journal)2231 size_t journal_tag_bytes(journal_t *journal)
2232 {
2233 	size_t sz;
2234 
2235 	if (jbd2_has_feature_csum3(journal))
2236 		return sizeof(journal_block_tag3_t);
2237 
2238 	sz = sizeof(journal_block_tag_t);
2239 
2240 	if (jbd2_has_feature_csum2(journal))
2241 		sz += sizeof(__u16);
2242 
2243 	if (jbd2_has_feature_64bit(journal))
2244 		return sz;
2245 	else
2246 		return sz - sizeof(__u32);
2247 }
2248 
2249 /*
2250  * JBD memory management
2251  *
2252  * These functions are used to allocate block-sized chunks of memory
2253  * used for making copies of buffer_head data.  Very often it will be
2254  * page-sized chunks of data, but sometimes it will be in
2255  * sub-page-size chunks.  (For example, 16k pages on Power systems
2256  * with a 4k block file system.)  For blocks smaller than a page, we
2257  * use a SLAB allocator.  There are slab caches for each block size,
2258  * which are allocated at mount time, if necessary, and we only free
2259  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2260  * this reason we don't need to a mutex to protect access to
2261  * jbd2_slab[] allocating or releasing memory; only in
2262  * jbd2_journal_create_slab().
2263  */
2264 #define JBD2_MAX_SLABS 8
2265 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2266 
2267 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2268 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2269 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2270 };
2271 
2272 
jbd2_journal_destroy_slabs(void)2273 static void jbd2_journal_destroy_slabs(void)
2274 {
2275 	int i;
2276 
2277 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2278 		kmem_cache_destroy(jbd2_slab[i]);
2279 		jbd2_slab[i] = NULL;
2280 	}
2281 }
2282 
jbd2_journal_create_slab(size_t size)2283 static int jbd2_journal_create_slab(size_t size)
2284 {
2285 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2286 	int i = order_base_2(size) - 10;
2287 	size_t slab_size;
2288 
2289 	if (size == PAGE_SIZE)
2290 		return 0;
2291 
2292 	if (i >= JBD2_MAX_SLABS)
2293 		return -EINVAL;
2294 
2295 	if (unlikely(i < 0))
2296 		i = 0;
2297 	mutex_lock(&jbd2_slab_create_mutex);
2298 	if (jbd2_slab[i]) {
2299 		mutex_unlock(&jbd2_slab_create_mutex);
2300 		return 0;	/* Already created */
2301 	}
2302 
2303 	slab_size = 1 << (i+10);
2304 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2305 					 slab_size, 0, NULL);
2306 	mutex_unlock(&jbd2_slab_create_mutex);
2307 	if (!jbd2_slab[i]) {
2308 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2309 		return -ENOMEM;
2310 	}
2311 	return 0;
2312 }
2313 
get_slab(size_t size)2314 static struct kmem_cache *get_slab(size_t size)
2315 {
2316 	int i = order_base_2(size) - 10;
2317 
2318 	BUG_ON(i >= JBD2_MAX_SLABS);
2319 	if (unlikely(i < 0))
2320 		i = 0;
2321 	BUG_ON(jbd2_slab[i] == NULL);
2322 	return jbd2_slab[i];
2323 }
2324 
jbd2_alloc(size_t size,gfp_t flags)2325 void *jbd2_alloc(size_t size, gfp_t flags)
2326 {
2327 	void *ptr;
2328 
2329 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2330 
2331 	if (size < PAGE_SIZE)
2332 		ptr = kmem_cache_alloc(get_slab(size), flags);
2333 	else
2334 		ptr = (void *)__get_free_pages(flags, get_order(size));
2335 
2336 	/* Check alignment; SLUB has gotten this wrong in the past,
2337 	 * and this can lead to user data corruption! */
2338 	BUG_ON(((unsigned long) ptr) & (size-1));
2339 
2340 	return ptr;
2341 }
2342 
jbd2_free(void * ptr,size_t size)2343 void jbd2_free(void *ptr, size_t size)
2344 {
2345 	if (size < PAGE_SIZE)
2346 		kmem_cache_free(get_slab(size), ptr);
2347 	else
2348 		free_pages((unsigned long)ptr, get_order(size));
2349 };
2350 
2351 /*
2352  * Journal_head storage management
2353  */
2354 static struct kmem_cache *jbd2_journal_head_cache;
2355 #ifdef CONFIG_JBD2_DEBUG
2356 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2357 #endif
2358 
jbd2_journal_init_journal_head_cache(void)2359 static int __init jbd2_journal_init_journal_head_cache(void)
2360 {
2361 	J_ASSERT(!jbd2_journal_head_cache);
2362 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2363 				sizeof(struct journal_head),
2364 				0,		/* offset */
2365 				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2366 				NULL);		/* ctor */
2367 	if (!jbd2_journal_head_cache) {
2368 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2369 		return -ENOMEM;
2370 	}
2371 	return 0;
2372 }
2373 
jbd2_journal_destroy_journal_head_cache(void)2374 static void jbd2_journal_destroy_journal_head_cache(void)
2375 {
2376 	kmem_cache_destroy(jbd2_journal_head_cache);
2377 	jbd2_journal_head_cache = NULL;
2378 }
2379 
2380 /*
2381  * journal_head splicing and dicing
2382  */
journal_alloc_journal_head(void)2383 static struct journal_head *journal_alloc_journal_head(void)
2384 {
2385 	struct journal_head *ret;
2386 
2387 #ifdef CONFIG_JBD2_DEBUG
2388 	atomic_inc(&nr_journal_heads);
2389 #endif
2390 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2391 	if (!ret) {
2392 		jbd_debug(1, "out of memory for journal_head\n");
2393 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2394 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2395 				GFP_NOFS | __GFP_NOFAIL);
2396 	}
2397 	return ret;
2398 }
2399 
journal_free_journal_head(struct journal_head * jh)2400 static void journal_free_journal_head(struct journal_head *jh)
2401 {
2402 #ifdef CONFIG_JBD2_DEBUG
2403 	atomic_dec(&nr_journal_heads);
2404 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2405 #endif
2406 	kmem_cache_free(jbd2_journal_head_cache, jh);
2407 }
2408 
2409 /*
2410  * A journal_head is attached to a buffer_head whenever JBD has an
2411  * interest in the buffer.
2412  *
2413  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2414  * is set.  This bit is tested in core kernel code where we need to take
2415  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2416  * there.
2417  *
2418  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2419  *
2420  * When a buffer has its BH_JBD bit set it is immune from being released by
2421  * core kernel code, mainly via ->b_count.
2422  *
2423  * A journal_head is detached from its buffer_head when the journal_head's
2424  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2425  * transaction (b_cp_transaction) hold their references to b_jcount.
2426  *
2427  * Various places in the kernel want to attach a journal_head to a buffer_head
2428  * _before_ attaching the journal_head to a transaction.  To protect the
2429  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2430  * journal_head's b_jcount refcount by one.  The caller must call
2431  * jbd2_journal_put_journal_head() to undo this.
2432  *
2433  * So the typical usage would be:
2434  *
2435  *	(Attach a journal_head if needed.  Increments b_jcount)
2436  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2437  *	...
2438  *      (Get another reference for transaction)
2439  *	jbd2_journal_grab_journal_head(bh);
2440  *	jh->b_transaction = xxx;
2441  *	(Put original reference)
2442  *	jbd2_journal_put_journal_head(jh);
2443  */
2444 
2445 /*
2446  * Give a buffer_head a journal_head.
2447  *
2448  * May sleep.
2449  */
jbd2_journal_add_journal_head(struct buffer_head * bh)2450 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2451 {
2452 	struct journal_head *jh;
2453 	struct journal_head *new_jh = NULL;
2454 
2455 repeat:
2456 	if (!buffer_jbd(bh))
2457 		new_jh = journal_alloc_journal_head();
2458 
2459 	jbd_lock_bh_journal_head(bh);
2460 	if (buffer_jbd(bh)) {
2461 		jh = bh2jh(bh);
2462 	} else {
2463 		J_ASSERT_BH(bh,
2464 			(atomic_read(&bh->b_count) > 0) ||
2465 			(bh->b_page && bh->b_page->mapping));
2466 
2467 		if (!new_jh) {
2468 			jbd_unlock_bh_journal_head(bh);
2469 			goto repeat;
2470 		}
2471 
2472 		jh = new_jh;
2473 		new_jh = NULL;		/* We consumed it */
2474 		set_buffer_jbd(bh);
2475 		bh->b_private = jh;
2476 		jh->b_bh = bh;
2477 		get_bh(bh);
2478 		BUFFER_TRACE(bh, "added journal_head");
2479 	}
2480 	jh->b_jcount++;
2481 	jbd_unlock_bh_journal_head(bh);
2482 	if (new_jh)
2483 		journal_free_journal_head(new_jh);
2484 	return bh->b_private;
2485 }
2486 
2487 /*
2488  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2489  * having a journal_head, return NULL
2490  */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2491 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2492 {
2493 	struct journal_head *jh = NULL;
2494 
2495 	jbd_lock_bh_journal_head(bh);
2496 	if (buffer_jbd(bh)) {
2497 		jh = bh2jh(bh);
2498 		jh->b_jcount++;
2499 	}
2500 	jbd_unlock_bh_journal_head(bh);
2501 	return jh;
2502 }
2503 
__journal_remove_journal_head(struct buffer_head * bh)2504 static void __journal_remove_journal_head(struct buffer_head *bh)
2505 {
2506 	struct journal_head *jh = bh2jh(bh);
2507 
2508 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2509 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2510 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2511 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2512 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2513 	J_ASSERT_BH(bh, buffer_jbd(bh));
2514 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2515 	BUFFER_TRACE(bh, "remove journal_head");
2516 	if (jh->b_frozen_data) {
2517 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2518 		jbd2_free(jh->b_frozen_data, bh->b_size);
2519 	}
2520 	if (jh->b_committed_data) {
2521 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2522 		jbd2_free(jh->b_committed_data, bh->b_size);
2523 	}
2524 	bh->b_private = NULL;
2525 	jh->b_bh = NULL;	/* debug, really */
2526 	clear_buffer_jbd(bh);
2527 	journal_free_journal_head(jh);
2528 }
2529 
2530 /*
2531  * Drop a reference on the passed journal_head.  If it fell to zero then
2532  * release the journal_head from the buffer_head.
2533  */
jbd2_journal_put_journal_head(struct journal_head * jh)2534 void jbd2_journal_put_journal_head(struct journal_head *jh)
2535 {
2536 	struct buffer_head *bh = jh2bh(jh);
2537 
2538 	jbd_lock_bh_journal_head(bh);
2539 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2540 	--jh->b_jcount;
2541 	if (!jh->b_jcount) {
2542 		__journal_remove_journal_head(bh);
2543 		jbd_unlock_bh_journal_head(bh);
2544 		__brelse(bh);
2545 	} else
2546 		jbd_unlock_bh_journal_head(bh);
2547 }
2548 
2549 /*
2550  * Initialize jbd inode head
2551  */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2552 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2553 {
2554 	jinode->i_transaction = NULL;
2555 	jinode->i_next_transaction = NULL;
2556 	jinode->i_vfs_inode = inode;
2557 	jinode->i_flags = 0;
2558 	jinode->i_dirty_start = 0;
2559 	jinode->i_dirty_end = 0;
2560 	INIT_LIST_HEAD(&jinode->i_list);
2561 }
2562 
2563 /*
2564  * Function to be called before we start removing inode from memory (i.e.,
2565  * clear_inode() is a fine place to be called from). It removes inode from
2566  * transaction's lists.
2567  */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2568 void jbd2_journal_release_jbd_inode(journal_t *journal,
2569 				    struct jbd2_inode *jinode)
2570 {
2571 	if (!journal)
2572 		return;
2573 restart:
2574 	spin_lock(&journal->j_list_lock);
2575 	/* Is commit writing out inode - we have to wait */
2576 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2577 		wait_queue_head_t *wq;
2578 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2579 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2580 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2581 		spin_unlock(&journal->j_list_lock);
2582 		schedule();
2583 		finish_wait(wq, &wait.wq_entry);
2584 		goto restart;
2585 	}
2586 
2587 	if (jinode->i_transaction) {
2588 		list_del(&jinode->i_list);
2589 		jinode->i_transaction = NULL;
2590 	}
2591 	spin_unlock(&journal->j_list_lock);
2592 }
2593 
2594 
2595 #ifdef CONFIG_PROC_FS
2596 
2597 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2598 
jbd2_create_jbd_stats_proc_entry(void)2599 static void __init jbd2_create_jbd_stats_proc_entry(void)
2600 {
2601 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2602 }
2603 
jbd2_remove_jbd_stats_proc_entry(void)2604 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2605 {
2606 	if (proc_jbd2_stats)
2607 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2608 }
2609 
2610 #else
2611 
2612 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2613 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2614 
2615 #endif
2616 
2617 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2618 
jbd2_journal_init_inode_cache(void)2619 static int __init jbd2_journal_init_inode_cache(void)
2620 {
2621 	J_ASSERT(!jbd2_inode_cache);
2622 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2623 	if (!jbd2_inode_cache) {
2624 		pr_emerg("JBD2: failed to create inode cache\n");
2625 		return -ENOMEM;
2626 	}
2627 	return 0;
2628 }
2629 
jbd2_journal_init_handle_cache(void)2630 static int __init jbd2_journal_init_handle_cache(void)
2631 {
2632 	J_ASSERT(!jbd2_handle_cache);
2633 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2634 	if (!jbd2_handle_cache) {
2635 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2636 		return -ENOMEM;
2637 	}
2638 	return 0;
2639 }
2640 
jbd2_journal_destroy_inode_cache(void)2641 static void jbd2_journal_destroy_inode_cache(void)
2642 {
2643 	kmem_cache_destroy(jbd2_inode_cache);
2644 	jbd2_inode_cache = NULL;
2645 }
2646 
jbd2_journal_destroy_handle_cache(void)2647 static void jbd2_journal_destroy_handle_cache(void)
2648 {
2649 	kmem_cache_destroy(jbd2_handle_cache);
2650 	jbd2_handle_cache = NULL;
2651 }
2652 
2653 /*
2654  * Module startup and shutdown
2655  */
2656 
journal_init_caches(void)2657 static int __init journal_init_caches(void)
2658 {
2659 	int ret;
2660 
2661 	ret = jbd2_journal_init_revoke_record_cache();
2662 	if (ret == 0)
2663 		ret = jbd2_journal_init_revoke_table_cache();
2664 	if (ret == 0)
2665 		ret = jbd2_journal_init_journal_head_cache();
2666 	if (ret == 0)
2667 		ret = jbd2_journal_init_handle_cache();
2668 	if (ret == 0)
2669 		ret = jbd2_journal_init_inode_cache();
2670 	if (ret == 0)
2671 		ret = jbd2_journal_init_transaction_cache();
2672 	return ret;
2673 }
2674 
jbd2_journal_destroy_caches(void)2675 static void jbd2_journal_destroy_caches(void)
2676 {
2677 	jbd2_journal_destroy_revoke_record_cache();
2678 	jbd2_journal_destroy_revoke_table_cache();
2679 	jbd2_journal_destroy_journal_head_cache();
2680 	jbd2_journal_destroy_handle_cache();
2681 	jbd2_journal_destroy_inode_cache();
2682 	jbd2_journal_destroy_transaction_cache();
2683 	jbd2_journal_destroy_slabs();
2684 }
2685 
journal_init(void)2686 static int __init journal_init(void)
2687 {
2688 	int ret;
2689 
2690 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2691 
2692 	ret = journal_init_caches();
2693 	if (ret == 0) {
2694 		jbd2_create_jbd_stats_proc_entry();
2695 	} else {
2696 		jbd2_journal_destroy_caches();
2697 	}
2698 	return ret;
2699 }
2700 
journal_exit(void)2701 static void __exit journal_exit(void)
2702 {
2703 #ifdef CONFIG_JBD2_DEBUG
2704 	int n = atomic_read(&nr_journal_heads);
2705 	if (n)
2706 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2707 #endif
2708 	jbd2_remove_jbd_stats_proc_entry();
2709 	jbd2_journal_destroy_caches();
2710 }
2711 
2712 MODULE_LICENSE("GPL");
2713 module_init(journal_init);
2714 module_exit(journal_exit);
2715 
2716