1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static int jbd2_journal_create_slab(size_t slab_size);
100
101 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)102 void __jbd2_debug(int level, const char *file, const char *func,
103 unsigned int line, const char *fmt, ...)
104 {
105 struct va_format vaf;
106 va_list args;
107
108 if (level > jbd2_journal_enable_debug)
109 return;
110 va_start(args, fmt);
111 vaf.fmt = fmt;
112 vaf.va = &args;
113 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
114 va_end(args);
115 }
116 EXPORT_SYMBOL(__jbd2_debug);
117 #endif
118
119 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)120 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
121 {
122 if (!jbd2_journal_has_csum_v2or3_feature(j))
123 return 1;
124
125 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
126 }
127
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)128 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
129 {
130 __u32 csum;
131 __be32 old_csum;
132
133 old_csum = sb->s_checksum;
134 sb->s_checksum = 0;
135 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
136 sb->s_checksum = old_csum;
137
138 return cpu_to_be32(csum);
139 }
140
141 /*
142 * Helper function used to manage commit timeouts
143 */
144
commit_timeout(struct timer_list * t)145 static void commit_timeout(struct timer_list *t)
146 {
147 journal_t *journal = from_timer(journal, t, j_commit_timer);
148
149 wake_up_process(journal->j_task);
150 }
151
152 /*
153 * kjournald2: The main thread function used to manage a logging device
154 * journal.
155 *
156 * This kernel thread is responsible for two things:
157 *
158 * 1) COMMIT: Every so often we need to commit the current state of the
159 * filesystem to disk. The journal thread is responsible for writing
160 * all of the metadata buffers to disk.
161 *
162 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
163 * of the data in that part of the log has been rewritten elsewhere on
164 * the disk. Flushing these old buffers to reclaim space in the log is
165 * known as checkpointing, and this thread is responsible for that job.
166 */
167
kjournald2(void * arg)168 static int kjournald2(void *arg)
169 {
170 journal_t *journal = arg;
171 transaction_t *transaction;
172
173 /*
174 * Set up an interval timer which can be used to trigger a commit wakeup
175 * after the commit interval expires
176 */
177 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
178
179 set_freezable();
180
181 /* Record that the journal thread is running */
182 journal->j_task = current;
183 wake_up(&journal->j_wait_done_commit);
184
185 /*
186 * Make sure that no allocations from this kernel thread will ever
187 * recurse to the fs layer because we are responsible for the
188 * transaction commit and any fs involvement might get stuck waiting for
189 * the trasn. commit.
190 */
191 memalloc_nofs_save();
192
193 /*
194 * And now, wait forever for commit wakeup events.
195 */
196 write_lock(&journal->j_state_lock);
197
198 loop:
199 if (journal->j_flags & JBD2_UNMOUNT)
200 goto end_loop;
201
202 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
203 journal->j_commit_sequence, journal->j_commit_request);
204
205 if (journal->j_commit_sequence != journal->j_commit_request) {
206 jbd_debug(1, "OK, requests differ\n");
207 write_unlock(&journal->j_state_lock);
208 del_timer_sync(&journal->j_commit_timer);
209 jbd2_journal_commit_transaction(journal);
210 write_lock(&journal->j_state_lock);
211 goto loop;
212 }
213
214 wake_up(&journal->j_wait_done_commit);
215 if (freezing(current)) {
216 /*
217 * The simpler the better. Flushing journal isn't a
218 * good idea, because that depends on threads that may
219 * be already stopped.
220 */
221 jbd_debug(1, "Now suspending kjournald2\n");
222 write_unlock(&journal->j_state_lock);
223 try_to_freeze();
224 write_lock(&journal->j_state_lock);
225 } else {
226 /*
227 * We assume on resume that commits are already there,
228 * so we don't sleep
229 */
230 DEFINE_WAIT(wait);
231 int should_sleep = 1;
232
233 prepare_to_wait(&journal->j_wait_commit, &wait,
234 TASK_INTERRUPTIBLE);
235 if (journal->j_commit_sequence != journal->j_commit_request)
236 should_sleep = 0;
237 transaction = journal->j_running_transaction;
238 if (transaction && time_after_eq(jiffies,
239 transaction->t_expires))
240 should_sleep = 0;
241 if (journal->j_flags & JBD2_UNMOUNT)
242 should_sleep = 0;
243 if (should_sleep) {
244 write_unlock(&journal->j_state_lock);
245 schedule();
246 write_lock(&journal->j_state_lock);
247 }
248 finish_wait(&journal->j_wait_commit, &wait);
249 }
250
251 jbd_debug(1, "kjournald2 wakes\n");
252
253 /*
254 * Were we woken up by a commit wakeup event?
255 */
256 transaction = journal->j_running_transaction;
257 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
258 journal->j_commit_request = transaction->t_tid;
259 jbd_debug(1, "woke because of timeout\n");
260 }
261 goto loop;
262
263 end_loop:
264 del_timer_sync(&journal->j_commit_timer);
265 journal->j_task = NULL;
266 wake_up(&journal->j_wait_done_commit);
267 jbd_debug(1, "Journal thread exiting.\n");
268 write_unlock(&journal->j_state_lock);
269 return 0;
270 }
271
jbd2_journal_start_thread(journal_t * journal)272 static int jbd2_journal_start_thread(journal_t *journal)
273 {
274 struct task_struct *t;
275
276 t = kthread_run(kjournald2, journal, "jbd2/%s",
277 journal->j_devname);
278 if (IS_ERR(t))
279 return PTR_ERR(t);
280
281 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
282 return 0;
283 }
284
journal_kill_thread(journal_t * journal)285 static void journal_kill_thread(journal_t *journal)
286 {
287 write_lock(&journal->j_state_lock);
288 journal->j_flags |= JBD2_UNMOUNT;
289
290 while (journal->j_task) {
291 write_unlock(&journal->j_state_lock);
292 wake_up(&journal->j_wait_commit);
293 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
294 write_lock(&journal->j_state_lock);
295 }
296 write_unlock(&journal->j_state_lock);
297 }
298
299 /*
300 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
301 *
302 * Writes a metadata buffer to a given disk block. The actual IO is not
303 * performed but a new buffer_head is constructed which labels the data
304 * to be written with the correct destination disk block.
305 *
306 * Any magic-number escaping which needs to be done will cause a
307 * copy-out here. If the buffer happens to start with the
308 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
309 * magic number is only written to the log for descripter blocks. In
310 * this case, we copy the data and replace the first word with 0, and we
311 * return a result code which indicates that this buffer needs to be
312 * marked as an escaped buffer in the corresponding log descriptor
313 * block. The missing word can then be restored when the block is read
314 * during recovery.
315 *
316 * If the source buffer has already been modified by a new transaction
317 * since we took the last commit snapshot, we use the frozen copy of
318 * that data for IO. If we end up using the existing buffer_head's data
319 * for the write, then we have to make sure nobody modifies it while the
320 * IO is in progress. do_get_write_access() handles this.
321 *
322 * The function returns a pointer to the buffer_head to be used for IO.
323 *
324 *
325 * Return value:
326 * <0: Error
327 * >=0: Finished OK
328 *
329 * On success:
330 * Bit 0 set == escape performed on the data
331 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
332 */
333
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)334 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
335 struct journal_head *jh_in,
336 struct buffer_head **bh_out,
337 sector_t blocknr)
338 {
339 int need_copy_out = 0;
340 int done_copy_out = 0;
341 int do_escape = 0;
342 char *mapped_data;
343 struct buffer_head *new_bh;
344 struct page *new_page;
345 unsigned int new_offset;
346 struct buffer_head *bh_in = jh2bh(jh_in);
347 journal_t *journal = transaction->t_journal;
348
349 /*
350 * The buffer really shouldn't be locked: only the current committing
351 * transaction is allowed to write it, so nobody else is allowed
352 * to do any IO.
353 *
354 * akpm: except if we're journalling data, and write() output is
355 * also part of a shared mapping, and another thread has
356 * decided to launch a writepage() against this buffer.
357 */
358 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
359
360 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
361
362 /* keep subsequent assertions sane */
363 atomic_set(&new_bh->b_count, 1);
364
365 jbd_lock_bh_state(bh_in);
366 repeat:
367 /*
368 * If a new transaction has already done a buffer copy-out, then
369 * we use that version of the data for the commit.
370 */
371 if (jh_in->b_frozen_data) {
372 done_copy_out = 1;
373 new_page = virt_to_page(jh_in->b_frozen_data);
374 new_offset = offset_in_page(jh_in->b_frozen_data);
375 } else {
376 new_page = jh2bh(jh_in)->b_page;
377 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
378 }
379
380 mapped_data = kmap_atomic(new_page);
381 /*
382 * Fire data frozen trigger if data already wasn't frozen. Do this
383 * before checking for escaping, as the trigger may modify the magic
384 * offset. If a copy-out happens afterwards, it will have the correct
385 * data in the buffer.
386 */
387 if (!done_copy_out)
388 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
389 jh_in->b_triggers);
390
391 /*
392 * Check for escaping
393 */
394 if (*((__be32 *)(mapped_data + new_offset)) ==
395 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
396 need_copy_out = 1;
397 do_escape = 1;
398 }
399 kunmap_atomic(mapped_data);
400
401 /*
402 * Do we need to do a data copy?
403 */
404 if (need_copy_out && !done_copy_out) {
405 char *tmp;
406
407 jbd_unlock_bh_state(bh_in);
408 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
409 if (!tmp) {
410 brelse(new_bh);
411 return -ENOMEM;
412 }
413 jbd_lock_bh_state(bh_in);
414 if (jh_in->b_frozen_data) {
415 jbd2_free(tmp, bh_in->b_size);
416 goto repeat;
417 }
418
419 jh_in->b_frozen_data = tmp;
420 mapped_data = kmap_atomic(new_page);
421 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
422 kunmap_atomic(mapped_data);
423
424 new_page = virt_to_page(tmp);
425 new_offset = offset_in_page(tmp);
426 done_copy_out = 1;
427
428 /*
429 * This isn't strictly necessary, as we're using frozen
430 * data for the escaping, but it keeps consistency with
431 * b_frozen_data usage.
432 */
433 jh_in->b_frozen_triggers = jh_in->b_triggers;
434 }
435
436 /*
437 * Did we need to do an escaping? Now we've done all the
438 * copying, we can finally do so.
439 */
440 if (do_escape) {
441 mapped_data = kmap_atomic(new_page);
442 *((unsigned int *)(mapped_data + new_offset)) = 0;
443 kunmap_atomic(mapped_data);
444 }
445
446 set_bh_page(new_bh, new_page, new_offset);
447 new_bh->b_size = bh_in->b_size;
448 new_bh->b_bdev = journal->j_dev;
449 new_bh->b_blocknr = blocknr;
450 new_bh->b_private = bh_in;
451 set_buffer_mapped(new_bh);
452 set_buffer_dirty(new_bh);
453
454 *bh_out = new_bh;
455
456 /*
457 * The to-be-written buffer needs to get moved to the io queue,
458 * and the original buffer whose contents we are shadowing or
459 * copying is moved to the transaction's shadow queue.
460 */
461 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
462 spin_lock(&journal->j_list_lock);
463 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
464 spin_unlock(&journal->j_list_lock);
465 set_buffer_shadow(bh_in);
466 jbd_unlock_bh_state(bh_in);
467
468 return do_escape | (done_copy_out << 1);
469 }
470
471 /*
472 * Allocation code for the journal file. Manage the space left in the
473 * journal, so that we can begin checkpointing when appropriate.
474 */
475
476 /*
477 * Called with j_state_lock locked for writing.
478 * Returns true if a transaction commit was started.
479 */
__jbd2_log_start_commit(journal_t * journal,tid_t target)480 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
481 {
482 /* Return if the txn has already requested to be committed */
483 if (journal->j_commit_request == target)
484 return 0;
485
486 /*
487 * The only transaction we can possibly wait upon is the
488 * currently running transaction (if it exists). Otherwise,
489 * the target tid must be an old one.
490 */
491 if (journal->j_running_transaction &&
492 journal->j_running_transaction->t_tid == target) {
493 /*
494 * We want a new commit: OK, mark the request and wakeup the
495 * commit thread. We do _not_ do the commit ourselves.
496 */
497
498 journal->j_commit_request = target;
499 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
500 journal->j_commit_request,
501 journal->j_commit_sequence);
502 journal->j_running_transaction->t_requested = jiffies;
503 wake_up(&journal->j_wait_commit);
504 return 1;
505 } else if (!tid_geq(journal->j_commit_request, target))
506 /* This should never happen, but if it does, preserve
507 the evidence before kjournald goes into a loop and
508 increments j_commit_sequence beyond all recognition. */
509 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
510 journal->j_commit_request,
511 journal->j_commit_sequence,
512 target, journal->j_running_transaction ?
513 journal->j_running_transaction->t_tid : 0);
514 return 0;
515 }
516
jbd2_log_start_commit(journal_t * journal,tid_t tid)517 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
518 {
519 int ret;
520
521 write_lock(&journal->j_state_lock);
522 ret = __jbd2_log_start_commit(journal, tid);
523 write_unlock(&journal->j_state_lock);
524 return ret;
525 }
526
527 /*
528 * Force and wait any uncommitted transactions. We can only force the running
529 * transaction if we don't have an active handle, otherwise, we will deadlock.
530 * Returns: <0 in case of error,
531 * 0 if nothing to commit,
532 * 1 if transaction was successfully committed.
533 */
__jbd2_journal_force_commit(journal_t * journal)534 static int __jbd2_journal_force_commit(journal_t *journal)
535 {
536 transaction_t *transaction = NULL;
537 tid_t tid;
538 int need_to_start = 0, ret = 0;
539
540 read_lock(&journal->j_state_lock);
541 if (journal->j_running_transaction && !current->journal_info) {
542 transaction = journal->j_running_transaction;
543 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
544 need_to_start = 1;
545 } else if (journal->j_committing_transaction)
546 transaction = journal->j_committing_transaction;
547
548 if (!transaction) {
549 /* Nothing to commit */
550 read_unlock(&journal->j_state_lock);
551 return 0;
552 }
553 tid = transaction->t_tid;
554 read_unlock(&journal->j_state_lock);
555 if (need_to_start)
556 jbd2_log_start_commit(journal, tid);
557 ret = jbd2_log_wait_commit(journal, tid);
558 if (!ret)
559 ret = 1;
560
561 return ret;
562 }
563
564 /**
565 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
566 * calling process is not within transaction.
567 *
568 * @journal: journal to force
569 * Returns true if progress was made.
570 *
571 * This is used for forcing out undo-protected data which contains
572 * bitmaps, when the fs is running out of space.
573 */
jbd2_journal_force_commit_nested(journal_t * journal)574 int jbd2_journal_force_commit_nested(journal_t *journal)
575 {
576 int ret;
577
578 ret = __jbd2_journal_force_commit(journal);
579 return ret > 0;
580 }
581
582 /**
583 * jbd2_journal_force_commit() - force any uncommitted transactions
584 * @journal: journal to force
585 *
586 * Caller want unconditional commit. We can only force the running transaction
587 * if we don't have an active handle, otherwise, we will deadlock.
588 */
jbd2_journal_force_commit(journal_t * journal)589 int jbd2_journal_force_commit(journal_t *journal)
590 {
591 int ret;
592
593 J_ASSERT(!current->journal_info);
594 ret = __jbd2_journal_force_commit(journal);
595 if (ret > 0)
596 ret = 0;
597 return ret;
598 }
599
600 /*
601 * Start a commit of the current running transaction (if any). Returns true
602 * if a transaction is going to be committed (or is currently already
603 * committing), and fills its tid in at *ptid
604 */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)605 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
606 {
607 int ret = 0;
608
609 write_lock(&journal->j_state_lock);
610 if (journal->j_running_transaction) {
611 tid_t tid = journal->j_running_transaction->t_tid;
612
613 __jbd2_log_start_commit(journal, tid);
614 /* There's a running transaction and we've just made sure
615 * it's commit has been scheduled. */
616 if (ptid)
617 *ptid = tid;
618 ret = 1;
619 } else if (journal->j_committing_transaction) {
620 /*
621 * If commit has been started, then we have to wait for
622 * completion of that transaction.
623 */
624 if (ptid)
625 *ptid = journal->j_committing_transaction->t_tid;
626 ret = 1;
627 }
628 write_unlock(&journal->j_state_lock);
629 return ret;
630 }
631
632 /*
633 * Return 1 if a given transaction has not yet sent barrier request
634 * connected with a transaction commit. If 0 is returned, transaction
635 * may or may not have sent the barrier. Used to avoid sending barrier
636 * twice in common cases.
637 */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)638 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
639 {
640 int ret = 0;
641 transaction_t *commit_trans;
642
643 if (!(journal->j_flags & JBD2_BARRIER))
644 return 0;
645 read_lock(&journal->j_state_lock);
646 /* Transaction already committed? */
647 if (tid_geq(journal->j_commit_sequence, tid))
648 goto out;
649 commit_trans = journal->j_committing_transaction;
650 if (!commit_trans || commit_trans->t_tid != tid) {
651 ret = 1;
652 goto out;
653 }
654 /*
655 * Transaction is being committed and we already proceeded to
656 * submitting a flush to fs partition?
657 */
658 if (journal->j_fs_dev != journal->j_dev) {
659 if (!commit_trans->t_need_data_flush ||
660 commit_trans->t_state >= T_COMMIT_DFLUSH)
661 goto out;
662 } else {
663 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
664 goto out;
665 }
666 ret = 1;
667 out:
668 read_unlock(&journal->j_state_lock);
669 return ret;
670 }
671 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
672
673 /*
674 * Wait for a specified commit to complete.
675 * The caller may not hold the journal lock.
676 */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)677 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
678 {
679 int err = 0;
680
681 read_lock(&journal->j_state_lock);
682 #ifdef CONFIG_PROVE_LOCKING
683 /*
684 * Some callers make sure transaction is already committing and in that
685 * case we cannot block on open handles anymore. So don't warn in that
686 * case.
687 */
688 if (tid_gt(tid, journal->j_commit_sequence) &&
689 (!journal->j_committing_transaction ||
690 journal->j_committing_transaction->t_tid != tid)) {
691 read_unlock(&journal->j_state_lock);
692 jbd2_might_wait_for_commit(journal);
693 read_lock(&journal->j_state_lock);
694 }
695 #endif
696 #ifdef CONFIG_JBD2_DEBUG
697 if (!tid_geq(journal->j_commit_request, tid)) {
698 printk(KERN_ERR
699 "%s: error: j_commit_request=%u, tid=%u\n",
700 __func__, journal->j_commit_request, tid);
701 }
702 #endif
703 while (tid_gt(tid, journal->j_commit_sequence)) {
704 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
705 tid, journal->j_commit_sequence);
706 read_unlock(&journal->j_state_lock);
707 wake_up(&journal->j_wait_commit);
708 wait_event(journal->j_wait_done_commit,
709 !tid_gt(tid, journal->j_commit_sequence));
710 read_lock(&journal->j_state_lock);
711 }
712 read_unlock(&journal->j_state_lock);
713
714 if (unlikely(is_journal_aborted(journal)))
715 err = -EIO;
716 return err;
717 }
718
719 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)720 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
721 {
722 int ret = 1;
723
724 read_lock(&journal->j_state_lock);
725 if (journal->j_running_transaction &&
726 journal->j_running_transaction->t_tid == tid)
727 ret = 0;
728 if (journal->j_committing_transaction &&
729 journal->j_committing_transaction->t_tid == tid)
730 ret = 0;
731 read_unlock(&journal->j_state_lock);
732 return ret;
733 }
734 EXPORT_SYMBOL(jbd2_transaction_committed);
735
736 /*
737 * When this function returns the transaction corresponding to tid
738 * will be completed. If the transaction has currently running, start
739 * committing that transaction before waiting for it to complete. If
740 * the transaction id is stale, it is by definition already completed,
741 * so just return SUCCESS.
742 */
jbd2_complete_transaction(journal_t * journal,tid_t tid)743 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
744 {
745 int need_to_wait = 1;
746
747 read_lock(&journal->j_state_lock);
748 if (journal->j_running_transaction &&
749 journal->j_running_transaction->t_tid == tid) {
750 if (journal->j_commit_request != tid) {
751 /* transaction not yet started, so request it */
752 read_unlock(&journal->j_state_lock);
753 jbd2_log_start_commit(journal, tid);
754 goto wait_commit;
755 }
756 } else if (!(journal->j_committing_transaction &&
757 journal->j_committing_transaction->t_tid == tid))
758 need_to_wait = 0;
759 read_unlock(&journal->j_state_lock);
760 if (!need_to_wait)
761 return 0;
762 wait_commit:
763 return jbd2_log_wait_commit(journal, tid);
764 }
765 EXPORT_SYMBOL(jbd2_complete_transaction);
766
767 /*
768 * Log buffer allocation routines:
769 */
770
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)771 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
772 {
773 unsigned long blocknr;
774
775 write_lock(&journal->j_state_lock);
776 J_ASSERT(journal->j_free > 1);
777
778 blocknr = journal->j_head;
779 journal->j_head++;
780 journal->j_free--;
781 if (journal->j_head == journal->j_last)
782 journal->j_head = journal->j_first;
783 write_unlock(&journal->j_state_lock);
784 return jbd2_journal_bmap(journal, blocknr, retp);
785 }
786
787 /*
788 * Conversion of logical to physical block numbers for the journal
789 *
790 * On external journals the journal blocks are identity-mapped, so
791 * this is a no-op. If needed, we can use j_blk_offset - everything is
792 * ready.
793 */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)794 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
795 unsigned long long *retp)
796 {
797 int err = 0;
798 unsigned long long ret;
799
800 if (journal->j_inode) {
801 ret = bmap(journal->j_inode, blocknr);
802 if (ret)
803 *retp = ret;
804 else {
805 printk(KERN_ALERT "%s: journal block not found "
806 "at offset %lu on %s\n",
807 __func__, blocknr, journal->j_devname);
808 err = -EIO;
809 jbd2_journal_abort(journal, err);
810 }
811 } else {
812 *retp = blocknr; /* +journal->j_blk_offset */
813 }
814 return err;
815 }
816
817 /*
818 * We play buffer_head aliasing tricks to write data/metadata blocks to
819 * the journal without copying their contents, but for journal
820 * descriptor blocks we do need to generate bona fide buffers.
821 *
822 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
823 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
824 * But we don't bother doing that, so there will be coherency problems with
825 * mmaps of blockdevs which hold live JBD-controlled filesystems.
826 */
827 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)828 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
829 {
830 journal_t *journal = transaction->t_journal;
831 struct buffer_head *bh;
832 unsigned long long blocknr;
833 journal_header_t *header;
834 int err;
835
836 err = jbd2_journal_next_log_block(journal, &blocknr);
837
838 if (err)
839 return NULL;
840
841 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
842 if (!bh)
843 return NULL;
844 lock_buffer(bh);
845 memset(bh->b_data, 0, journal->j_blocksize);
846 header = (journal_header_t *)bh->b_data;
847 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
848 header->h_blocktype = cpu_to_be32(type);
849 header->h_sequence = cpu_to_be32(transaction->t_tid);
850 set_buffer_uptodate(bh);
851 unlock_buffer(bh);
852 BUFFER_TRACE(bh, "return this buffer");
853 return bh;
854 }
855
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)856 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
857 {
858 struct jbd2_journal_block_tail *tail;
859 __u32 csum;
860
861 if (!jbd2_journal_has_csum_v2or3(j))
862 return;
863
864 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
865 sizeof(struct jbd2_journal_block_tail));
866 tail->t_checksum = 0;
867 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
868 tail->t_checksum = cpu_to_be32(csum);
869 }
870
871 /*
872 * Return tid of the oldest transaction in the journal and block in the journal
873 * where the transaction starts.
874 *
875 * If the journal is now empty, return which will be the next transaction ID
876 * we will write and where will that transaction start.
877 *
878 * The return value is 0 if journal tail cannot be pushed any further, 1 if
879 * it can.
880 */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)881 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
882 unsigned long *block)
883 {
884 transaction_t *transaction;
885 int ret;
886
887 read_lock(&journal->j_state_lock);
888 spin_lock(&journal->j_list_lock);
889 transaction = journal->j_checkpoint_transactions;
890 if (transaction) {
891 *tid = transaction->t_tid;
892 *block = transaction->t_log_start;
893 } else if ((transaction = journal->j_committing_transaction) != NULL) {
894 *tid = transaction->t_tid;
895 *block = transaction->t_log_start;
896 } else if ((transaction = journal->j_running_transaction) != NULL) {
897 *tid = transaction->t_tid;
898 *block = journal->j_head;
899 } else {
900 *tid = journal->j_transaction_sequence;
901 *block = journal->j_head;
902 }
903 ret = tid_gt(*tid, journal->j_tail_sequence);
904 spin_unlock(&journal->j_list_lock);
905 read_unlock(&journal->j_state_lock);
906
907 return ret;
908 }
909
910 /*
911 * Update information in journal structure and in on disk journal superblock
912 * about log tail. This function does not check whether information passed in
913 * really pushes log tail further. It's responsibility of the caller to make
914 * sure provided log tail information is valid (e.g. by holding
915 * j_checkpoint_mutex all the time between computing log tail and calling this
916 * function as is the case with jbd2_cleanup_journal_tail()).
917 *
918 * Requires j_checkpoint_mutex
919 */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)920 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
921 {
922 unsigned long freed;
923 int ret;
924
925 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
926
927 /*
928 * We cannot afford for write to remain in drive's caches since as
929 * soon as we update j_tail, next transaction can start reusing journal
930 * space and if we lose sb update during power failure we'd replay
931 * old transaction with possibly newly overwritten data.
932 */
933 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
934 REQ_SYNC | REQ_FUA);
935 if (ret)
936 goto out;
937
938 write_lock(&journal->j_state_lock);
939 freed = block - journal->j_tail;
940 if (block < journal->j_tail)
941 freed += journal->j_last - journal->j_first;
942
943 trace_jbd2_update_log_tail(journal, tid, block, freed);
944 jbd_debug(1,
945 "Cleaning journal tail from %u to %u (offset %lu), "
946 "freeing %lu\n",
947 journal->j_tail_sequence, tid, block, freed);
948
949 journal->j_free += freed;
950 journal->j_tail_sequence = tid;
951 journal->j_tail = block;
952 write_unlock(&journal->j_state_lock);
953
954 out:
955 return ret;
956 }
957
958 /*
959 * This is a variation of __jbd2_update_log_tail which checks for validity of
960 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
961 * with other threads updating log tail.
962 */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)963 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
964 {
965 mutex_lock_io(&journal->j_checkpoint_mutex);
966 if (tid_gt(tid, journal->j_tail_sequence))
967 __jbd2_update_log_tail(journal, tid, block);
968 mutex_unlock(&journal->j_checkpoint_mutex);
969 }
970
971 struct jbd2_stats_proc_session {
972 journal_t *journal;
973 struct transaction_stats_s *stats;
974 int start;
975 int max;
976 };
977
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)978 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
979 {
980 return *pos ? NULL : SEQ_START_TOKEN;
981 }
982
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)983 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
984 {
985 (*pos)++;
986 return NULL;
987 }
988
jbd2_seq_info_show(struct seq_file * seq,void * v)989 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
990 {
991 struct jbd2_stats_proc_session *s = seq->private;
992
993 if (v != SEQ_START_TOKEN)
994 return 0;
995 seq_printf(seq, "%lu transactions (%lu requested), "
996 "each up to %u blocks\n",
997 s->stats->ts_tid, s->stats->ts_requested,
998 s->journal->j_max_transaction_buffers);
999 if (s->stats->ts_tid == 0)
1000 return 0;
1001 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1002 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1003 seq_printf(seq, " %ums request delay\n",
1004 (s->stats->ts_requested == 0) ? 0 :
1005 jiffies_to_msecs(s->stats->run.rs_request_delay /
1006 s->stats->ts_requested));
1007 seq_printf(seq, " %ums running transaction\n",
1008 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1009 seq_printf(seq, " %ums transaction was being locked\n",
1010 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1011 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1012 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1013 seq_printf(seq, " %ums logging transaction\n",
1014 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1015 seq_printf(seq, " %lluus average transaction commit time\n",
1016 div_u64(s->journal->j_average_commit_time, 1000));
1017 seq_printf(seq, " %lu handles per transaction\n",
1018 s->stats->run.rs_handle_count / s->stats->ts_tid);
1019 seq_printf(seq, " %lu blocks per transaction\n",
1020 s->stats->run.rs_blocks / s->stats->ts_tid);
1021 seq_printf(seq, " %lu logged blocks per transaction\n",
1022 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1023 return 0;
1024 }
1025
jbd2_seq_info_stop(struct seq_file * seq,void * v)1026 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1027 {
1028 }
1029
1030 static const struct seq_operations jbd2_seq_info_ops = {
1031 .start = jbd2_seq_info_start,
1032 .next = jbd2_seq_info_next,
1033 .stop = jbd2_seq_info_stop,
1034 .show = jbd2_seq_info_show,
1035 };
1036
jbd2_seq_info_open(struct inode * inode,struct file * file)1037 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1038 {
1039 journal_t *journal = PDE_DATA(inode);
1040 struct jbd2_stats_proc_session *s;
1041 int rc, size;
1042
1043 s = kmalloc(sizeof(*s), GFP_KERNEL);
1044 if (s == NULL)
1045 return -ENOMEM;
1046 size = sizeof(struct transaction_stats_s);
1047 s->stats = kmalloc(size, GFP_KERNEL);
1048 if (s->stats == NULL) {
1049 kfree(s);
1050 return -ENOMEM;
1051 }
1052 spin_lock(&journal->j_history_lock);
1053 memcpy(s->stats, &journal->j_stats, size);
1054 s->journal = journal;
1055 spin_unlock(&journal->j_history_lock);
1056
1057 rc = seq_open(file, &jbd2_seq_info_ops);
1058 if (rc == 0) {
1059 struct seq_file *m = file->private_data;
1060 m->private = s;
1061 } else {
1062 kfree(s->stats);
1063 kfree(s);
1064 }
1065 return rc;
1066
1067 }
1068
jbd2_seq_info_release(struct inode * inode,struct file * file)1069 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1070 {
1071 struct seq_file *seq = file->private_data;
1072 struct jbd2_stats_proc_session *s = seq->private;
1073 kfree(s->stats);
1074 kfree(s);
1075 return seq_release(inode, file);
1076 }
1077
1078 static const struct file_operations jbd2_seq_info_fops = {
1079 .owner = THIS_MODULE,
1080 .open = jbd2_seq_info_open,
1081 .read = seq_read,
1082 .llseek = seq_lseek,
1083 .release = jbd2_seq_info_release,
1084 };
1085
1086 static struct proc_dir_entry *proc_jbd2_stats;
1087
jbd2_stats_proc_init(journal_t * journal)1088 static void jbd2_stats_proc_init(journal_t *journal)
1089 {
1090 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1091 if (journal->j_proc_entry) {
1092 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1093 &jbd2_seq_info_fops, journal);
1094 }
1095 }
1096
jbd2_stats_proc_exit(journal_t * journal)1097 static void jbd2_stats_proc_exit(journal_t *journal)
1098 {
1099 remove_proc_entry("info", journal->j_proc_entry);
1100 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1101 }
1102
1103 /*
1104 * Management for journal control blocks: functions to create and
1105 * destroy journal_t structures, and to initialise and read existing
1106 * journal blocks from disk. */
1107
1108 /* First: create and setup a journal_t object in memory. We initialise
1109 * very few fields yet: that has to wait until we have created the
1110 * journal structures from from scratch, or loaded them from disk. */
1111
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1112 static journal_t *journal_init_common(struct block_device *bdev,
1113 struct block_device *fs_dev,
1114 unsigned long long start, int len, int blocksize)
1115 {
1116 static struct lock_class_key jbd2_trans_commit_key;
1117 journal_t *journal;
1118 int err;
1119 struct buffer_head *bh;
1120 int n;
1121
1122 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1123 if (!journal)
1124 return NULL;
1125
1126 init_waitqueue_head(&journal->j_wait_transaction_locked);
1127 init_waitqueue_head(&journal->j_wait_done_commit);
1128 init_waitqueue_head(&journal->j_wait_commit);
1129 init_waitqueue_head(&journal->j_wait_updates);
1130 init_waitqueue_head(&journal->j_wait_reserved);
1131 mutex_init(&journal->j_barrier);
1132 mutex_init(&journal->j_checkpoint_mutex);
1133 spin_lock_init(&journal->j_revoke_lock);
1134 spin_lock_init(&journal->j_list_lock);
1135 rwlock_init(&journal->j_state_lock);
1136
1137 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1138 journal->j_min_batch_time = 0;
1139 journal->j_max_batch_time = 15000; /* 15ms */
1140 atomic_set(&journal->j_reserved_credits, 0);
1141
1142 /* The journal is marked for error until we succeed with recovery! */
1143 journal->j_flags = JBD2_ABORT;
1144
1145 /* Set up a default-sized revoke table for the new mount. */
1146 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1147 if (err)
1148 goto err_cleanup;
1149
1150 spin_lock_init(&journal->j_history_lock);
1151
1152 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1153 &jbd2_trans_commit_key, 0);
1154
1155 /* journal descriptor can store up to n blocks -bzzz */
1156 journal->j_blocksize = blocksize;
1157 journal->j_dev = bdev;
1158 journal->j_fs_dev = fs_dev;
1159 journal->j_blk_offset = start;
1160 journal->j_maxlen = len;
1161 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1162 journal->j_wbufsize = n;
1163 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1164 GFP_KERNEL);
1165 if (!journal->j_wbuf)
1166 goto err_cleanup;
1167
1168 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1169 if (!bh) {
1170 pr_err("%s: Cannot get buffer for journal superblock\n",
1171 __func__);
1172 goto err_cleanup;
1173 }
1174 journal->j_sb_buffer = bh;
1175 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1176
1177 return journal;
1178
1179 err_cleanup:
1180 kfree(journal->j_wbuf);
1181 jbd2_journal_destroy_revoke(journal);
1182 kfree(journal);
1183 return NULL;
1184 }
1185
1186 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1187 *
1188 * Create a journal structure assigned some fixed set of disk blocks to
1189 * the journal. We don't actually touch those disk blocks yet, but we
1190 * need to set up all of the mapping information to tell the journaling
1191 * system where the journal blocks are.
1192 *
1193 */
1194
1195 /**
1196 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1197 * @bdev: Block device on which to create the journal
1198 * @fs_dev: Device which hold journalled filesystem for this journal.
1199 * @start: Block nr Start of journal.
1200 * @len: Length of the journal in blocks.
1201 * @blocksize: blocksize of journalling device
1202 *
1203 * Returns: a newly created journal_t *
1204 *
1205 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1206 * range of blocks on an arbitrary block device.
1207 *
1208 */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1209 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1210 struct block_device *fs_dev,
1211 unsigned long long start, int len, int blocksize)
1212 {
1213 journal_t *journal;
1214
1215 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1216 if (!journal)
1217 return NULL;
1218
1219 bdevname(journal->j_dev, journal->j_devname);
1220 strreplace(journal->j_devname, '/', '!');
1221 jbd2_stats_proc_init(journal);
1222
1223 return journal;
1224 }
1225
1226 /**
1227 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1228 * @inode: An inode to create the journal in
1229 *
1230 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1231 * the journal. The inode must exist already, must support bmap() and
1232 * must have all data blocks preallocated.
1233 */
jbd2_journal_init_inode(struct inode * inode)1234 journal_t *jbd2_journal_init_inode(struct inode *inode)
1235 {
1236 journal_t *journal;
1237 char *p;
1238 unsigned long long blocknr;
1239
1240 blocknr = bmap(inode, 0);
1241 if (!blocknr) {
1242 pr_err("%s: Cannot locate journal superblock\n",
1243 __func__);
1244 return NULL;
1245 }
1246
1247 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1248 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1249 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1250
1251 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1252 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1253 inode->i_sb->s_blocksize);
1254 if (!journal)
1255 return NULL;
1256
1257 journal->j_inode = inode;
1258 bdevname(journal->j_dev, journal->j_devname);
1259 p = strreplace(journal->j_devname, '/', '!');
1260 sprintf(p, "-%lu", journal->j_inode->i_ino);
1261 jbd2_stats_proc_init(journal);
1262
1263 return journal;
1264 }
1265
1266 /*
1267 * If the journal init or create aborts, we need to mark the journal
1268 * superblock as being NULL to prevent the journal destroy from writing
1269 * back a bogus superblock.
1270 */
journal_fail_superblock(journal_t * journal)1271 static void journal_fail_superblock(journal_t *journal)
1272 {
1273 struct buffer_head *bh = journal->j_sb_buffer;
1274 brelse(bh);
1275 journal->j_sb_buffer = NULL;
1276 }
1277
1278 /*
1279 * Given a journal_t structure, initialise the various fields for
1280 * startup of a new journaling session. We use this both when creating
1281 * a journal, and after recovering an old journal to reset it for
1282 * subsequent use.
1283 */
1284
journal_reset(journal_t * journal)1285 static int journal_reset(journal_t *journal)
1286 {
1287 journal_superblock_t *sb = journal->j_superblock;
1288 unsigned long long first, last;
1289
1290 first = be32_to_cpu(sb->s_first);
1291 last = be32_to_cpu(sb->s_maxlen);
1292 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1293 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1294 first, last);
1295 journal_fail_superblock(journal);
1296 return -EINVAL;
1297 }
1298
1299 journal->j_first = first;
1300 journal->j_last = last;
1301
1302 journal->j_head = first;
1303 journal->j_tail = first;
1304 journal->j_free = last - first;
1305
1306 journal->j_tail_sequence = journal->j_transaction_sequence;
1307 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1308 journal->j_commit_request = journal->j_commit_sequence;
1309
1310 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1311
1312 /*
1313 * As a special case, if the on-disk copy is already marked as needing
1314 * no recovery (s_start == 0), then we can safely defer the superblock
1315 * update until the next commit by setting JBD2_FLUSHED. This avoids
1316 * attempting a write to a potential-readonly device.
1317 */
1318 if (sb->s_start == 0) {
1319 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1320 "(start %ld, seq %u, errno %d)\n",
1321 journal->j_tail, journal->j_tail_sequence,
1322 journal->j_errno);
1323 journal->j_flags |= JBD2_FLUSHED;
1324 } else {
1325 /* Lock here to make assertions happy... */
1326 mutex_lock_io(&journal->j_checkpoint_mutex);
1327 /*
1328 * Update log tail information. We use REQ_FUA since new
1329 * transaction will start reusing journal space and so we
1330 * must make sure information about current log tail is on
1331 * disk before that.
1332 */
1333 jbd2_journal_update_sb_log_tail(journal,
1334 journal->j_tail_sequence,
1335 journal->j_tail,
1336 REQ_SYNC | REQ_FUA);
1337 mutex_unlock(&journal->j_checkpoint_mutex);
1338 }
1339 return jbd2_journal_start_thread(journal);
1340 }
1341
1342 /*
1343 * This function expects that the caller will have locked the journal
1344 * buffer head, and will return with it unlocked
1345 */
jbd2_write_superblock(journal_t * journal,int write_flags)1346 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1347 {
1348 struct buffer_head *bh = journal->j_sb_buffer;
1349 journal_superblock_t *sb = journal->j_superblock;
1350 int ret;
1351
1352 /* Buffer got discarded which means block device got invalidated */
1353 if (!buffer_mapped(bh)) {
1354 unlock_buffer(bh);
1355 return -EIO;
1356 }
1357
1358 if (!(journal->j_flags & JBD2_BARRIER))
1359 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1360
1361 trace_jbd2_write_superblock(journal, write_flags);
1362
1363 if (buffer_write_io_error(bh)) {
1364 /*
1365 * Oh, dear. A previous attempt to write the journal
1366 * superblock failed. This could happen because the
1367 * USB device was yanked out. Or it could happen to
1368 * be a transient write error and maybe the block will
1369 * be remapped. Nothing we can do but to retry the
1370 * write and hope for the best.
1371 */
1372 printk(KERN_ERR "JBD2: previous I/O error detected "
1373 "for journal superblock update for %s.\n",
1374 journal->j_devname);
1375 clear_buffer_write_io_error(bh);
1376 set_buffer_uptodate(bh);
1377 }
1378 if (jbd2_journal_has_csum_v2or3(journal))
1379 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1380 get_bh(bh);
1381 bh->b_end_io = end_buffer_write_sync;
1382 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1383 wait_on_buffer(bh);
1384 if (buffer_write_io_error(bh)) {
1385 clear_buffer_write_io_error(bh);
1386 set_buffer_uptodate(bh);
1387 ret = -EIO;
1388 }
1389 if (ret) {
1390 printk(KERN_ERR "JBD2: Error %d detected when updating "
1391 "journal superblock for %s.\n", ret,
1392 journal->j_devname);
1393 jbd2_journal_abort(journal, ret);
1394 }
1395
1396 return ret;
1397 }
1398
1399 /**
1400 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1401 * @journal: The journal to update.
1402 * @tail_tid: TID of the new transaction at the tail of the log
1403 * @tail_block: The first block of the transaction at the tail of the log
1404 * @write_op: With which operation should we write the journal sb
1405 *
1406 * Update a journal's superblock information about log tail and write it to
1407 * disk, waiting for the IO to complete.
1408 */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1409 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1410 unsigned long tail_block, int write_op)
1411 {
1412 journal_superblock_t *sb = journal->j_superblock;
1413 int ret;
1414
1415 if (is_journal_aborted(journal))
1416 return -EIO;
1417
1418 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1419 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1420 tail_block, tail_tid);
1421
1422 lock_buffer(journal->j_sb_buffer);
1423 sb->s_sequence = cpu_to_be32(tail_tid);
1424 sb->s_start = cpu_to_be32(tail_block);
1425
1426 ret = jbd2_write_superblock(journal, write_op);
1427 if (ret)
1428 goto out;
1429
1430 /* Log is no longer empty */
1431 write_lock(&journal->j_state_lock);
1432 WARN_ON(!sb->s_sequence);
1433 journal->j_flags &= ~JBD2_FLUSHED;
1434 write_unlock(&journal->j_state_lock);
1435
1436 out:
1437 return ret;
1438 }
1439
1440 /**
1441 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1442 * @journal: The journal to update.
1443 * @write_op: With which operation should we write the journal sb
1444 *
1445 * Update a journal's dynamic superblock fields to show that journal is empty.
1446 * Write updated superblock to disk waiting for IO to complete.
1447 */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1448 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1449 {
1450 journal_superblock_t *sb = journal->j_superblock;
1451
1452 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1453 lock_buffer(journal->j_sb_buffer);
1454 if (sb->s_start == 0) { /* Is it already empty? */
1455 unlock_buffer(journal->j_sb_buffer);
1456 return;
1457 }
1458
1459 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1460 journal->j_tail_sequence);
1461
1462 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1463 sb->s_start = cpu_to_be32(0);
1464
1465 jbd2_write_superblock(journal, write_op);
1466
1467 /* Log is no longer empty */
1468 write_lock(&journal->j_state_lock);
1469 journal->j_flags |= JBD2_FLUSHED;
1470 write_unlock(&journal->j_state_lock);
1471 }
1472
1473
1474 /**
1475 * jbd2_journal_update_sb_errno() - Update error in the journal.
1476 * @journal: The journal to update.
1477 *
1478 * Update a journal's errno. Write updated superblock to disk waiting for IO
1479 * to complete.
1480 */
jbd2_journal_update_sb_errno(journal_t * journal)1481 void jbd2_journal_update_sb_errno(journal_t *journal)
1482 {
1483 journal_superblock_t *sb = journal->j_superblock;
1484 int errcode;
1485
1486 lock_buffer(journal->j_sb_buffer);
1487 errcode = journal->j_errno;
1488 if (errcode == -ESHUTDOWN)
1489 errcode = 0;
1490 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1491 sb->s_errno = cpu_to_be32(errcode);
1492
1493 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1494 }
1495 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1496
1497 /*
1498 * Read the superblock for a given journal, performing initial
1499 * validation of the format.
1500 */
journal_get_superblock(journal_t * journal)1501 static int journal_get_superblock(journal_t *journal)
1502 {
1503 struct buffer_head *bh;
1504 journal_superblock_t *sb;
1505 int err = -EIO;
1506
1507 bh = journal->j_sb_buffer;
1508
1509 J_ASSERT(bh != NULL);
1510 if (!buffer_uptodate(bh)) {
1511 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1512 wait_on_buffer(bh);
1513 if (!buffer_uptodate(bh)) {
1514 printk(KERN_ERR
1515 "JBD2: IO error reading journal superblock\n");
1516 goto out;
1517 }
1518 }
1519
1520 if (buffer_verified(bh))
1521 return 0;
1522
1523 sb = journal->j_superblock;
1524
1525 err = -EINVAL;
1526
1527 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1528 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1529 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1530 goto out;
1531 }
1532
1533 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1534 case JBD2_SUPERBLOCK_V1:
1535 journal->j_format_version = 1;
1536 break;
1537 case JBD2_SUPERBLOCK_V2:
1538 journal->j_format_version = 2;
1539 break;
1540 default:
1541 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1542 goto out;
1543 }
1544
1545 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1546 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1547 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1548 printk(KERN_WARNING "JBD2: journal file too short\n");
1549 goto out;
1550 }
1551
1552 if (be32_to_cpu(sb->s_first) == 0 ||
1553 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1554 printk(KERN_WARNING
1555 "JBD2: Invalid start block of journal: %u\n",
1556 be32_to_cpu(sb->s_first));
1557 goto out;
1558 }
1559
1560 if (jbd2_has_feature_csum2(journal) &&
1561 jbd2_has_feature_csum3(journal)) {
1562 /* Can't have checksum v2 and v3 at the same time! */
1563 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1564 "at the same time!\n");
1565 goto out;
1566 }
1567
1568 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1569 jbd2_has_feature_checksum(journal)) {
1570 /* Can't have checksum v1 and v2 on at the same time! */
1571 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1572 "at the same time!\n");
1573 goto out;
1574 }
1575
1576 if (!jbd2_verify_csum_type(journal, sb)) {
1577 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1578 goto out;
1579 }
1580
1581 /* Load the checksum driver */
1582 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1583 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1584 if (IS_ERR(journal->j_chksum_driver)) {
1585 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1586 err = PTR_ERR(journal->j_chksum_driver);
1587 journal->j_chksum_driver = NULL;
1588 goto out;
1589 }
1590 }
1591
1592 if (jbd2_journal_has_csum_v2or3(journal)) {
1593 /* Check superblock checksum */
1594 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1595 printk(KERN_ERR "JBD2: journal checksum error\n");
1596 err = -EFSBADCRC;
1597 goto out;
1598 }
1599
1600 /* Precompute checksum seed for all metadata */
1601 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1602 sizeof(sb->s_uuid));
1603 }
1604
1605 set_buffer_verified(bh);
1606
1607 return 0;
1608
1609 out:
1610 journal_fail_superblock(journal);
1611 return err;
1612 }
1613
1614 /*
1615 * Load the on-disk journal superblock and read the key fields into the
1616 * journal_t.
1617 */
1618
load_superblock(journal_t * journal)1619 static int load_superblock(journal_t *journal)
1620 {
1621 int err;
1622 journal_superblock_t *sb;
1623
1624 err = journal_get_superblock(journal);
1625 if (err)
1626 return err;
1627
1628 sb = journal->j_superblock;
1629
1630 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1631 journal->j_tail = be32_to_cpu(sb->s_start);
1632 journal->j_first = be32_to_cpu(sb->s_first);
1633 journal->j_last = be32_to_cpu(sb->s_maxlen);
1634 journal->j_errno = be32_to_cpu(sb->s_errno);
1635
1636 return 0;
1637 }
1638
1639
1640 /**
1641 * jbd2_journal_load() - Read journal from disk.
1642 * @journal: Journal to act on.
1643 *
1644 * Given a journal_t structure which tells us which disk blocks contain
1645 * a journal, read the journal from disk to initialise the in-memory
1646 * structures.
1647 */
jbd2_journal_load(journal_t * journal)1648 int jbd2_journal_load(journal_t *journal)
1649 {
1650 int err;
1651 journal_superblock_t *sb;
1652
1653 err = load_superblock(journal);
1654 if (err)
1655 return err;
1656
1657 sb = journal->j_superblock;
1658 /* If this is a V2 superblock, then we have to check the
1659 * features flags on it. */
1660
1661 if (journal->j_format_version >= 2) {
1662 if ((sb->s_feature_ro_compat &
1663 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1664 (sb->s_feature_incompat &
1665 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1666 printk(KERN_WARNING
1667 "JBD2: Unrecognised features on journal\n");
1668 return -EINVAL;
1669 }
1670 }
1671
1672 /*
1673 * Create a slab for this blocksize
1674 */
1675 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1676 if (err)
1677 return err;
1678
1679 /* Let the recovery code check whether it needs to recover any
1680 * data from the journal. */
1681 if (jbd2_journal_recover(journal))
1682 goto recovery_error;
1683
1684 if (journal->j_failed_commit) {
1685 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1686 "is corrupt.\n", journal->j_failed_commit,
1687 journal->j_devname);
1688 return -EFSCORRUPTED;
1689 }
1690 /*
1691 * clear JBD2_ABORT flag initialized in journal_init_common
1692 * here to update log tail information with the newest seq.
1693 */
1694 journal->j_flags &= ~JBD2_ABORT;
1695
1696 /* OK, we've finished with the dynamic journal bits:
1697 * reinitialise the dynamic contents of the superblock in memory
1698 * and reset them on disk. */
1699 if (journal_reset(journal))
1700 goto recovery_error;
1701
1702 journal->j_flags |= JBD2_LOADED;
1703 return 0;
1704
1705 recovery_error:
1706 printk(KERN_WARNING "JBD2: recovery failed\n");
1707 return -EIO;
1708 }
1709
1710 /**
1711 * jbd2_journal_destroy() - Release a journal_t structure.
1712 * @journal: Journal to act on.
1713 *
1714 * Release a journal_t structure once it is no longer in use by the
1715 * journaled object.
1716 * Return <0 if we couldn't clean up the journal.
1717 */
jbd2_journal_destroy(journal_t * journal)1718 int jbd2_journal_destroy(journal_t *journal)
1719 {
1720 int err = 0;
1721
1722 /* Wait for the commit thread to wake up and die. */
1723 journal_kill_thread(journal);
1724
1725 /* Force a final log commit */
1726 if (journal->j_running_transaction)
1727 jbd2_journal_commit_transaction(journal);
1728
1729 /* Force any old transactions to disk */
1730
1731 /* Totally anal locking here... */
1732 spin_lock(&journal->j_list_lock);
1733 while (journal->j_checkpoint_transactions != NULL) {
1734 spin_unlock(&journal->j_list_lock);
1735 mutex_lock_io(&journal->j_checkpoint_mutex);
1736 err = jbd2_log_do_checkpoint(journal);
1737 mutex_unlock(&journal->j_checkpoint_mutex);
1738 /*
1739 * If checkpointing failed, just free the buffers to avoid
1740 * looping forever
1741 */
1742 if (err) {
1743 jbd2_journal_destroy_checkpoint(journal);
1744 spin_lock(&journal->j_list_lock);
1745 break;
1746 }
1747 spin_lock(&journal->j_list_lock);
1748 }
1749
1750 J_ASSERT(journal->j_running_transaction == NULL);
1751 J_ASSERT(journal->j_committing_transaction == NULL);
1752 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1753 spin_unlock(&journal->j_list_lock);
1754
1755 if (journal->j_sb_buffer) {
1756 if (!is_journal_aborted(journal)) {
1757 mutex_lock_io(&journal->j_checkpoint_mutex);
1758
1759 write_lock(&journal->j_state_lock);
1760 journal->j_tail_sequence =
1761 ++journal->j_transaction_sequence;
1762 write_unlock(&journal->j_state_lock);
1763
1764 jbd2_mark_journal_empty(journal,
1765 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1766 mutex_unlock(&journal->j_checkpoint_mutex);
1767 } else
1768 err = -EIO;
1769 brelse(journal->j_sb_buffer);
1770 }
1771
1772 if (journal->j_proc_entry)
1773 jbd2_stats_proc_exit(journal);
1774 iput(journal->j_inode);
1775 if (journal->j_revoke)
1776 jbd2_journal_destroy_revoke(journal);
1777 if (journal->j_chksum_driver)
1778 crypto_free_shash(journal->j_chksum_driver);
1779 kfree(journal->j_wbuf);
1780 kfree(journal);
1781
1782 return err;
1783 }
1784
1785
1786 /**
1787 * jbd2_journal_check_used_features() - Check if features specified are used.
1788 * @journal: Journal to check.
1789 * @compat: bitmask of compatible features
1790 * @ro: bitmask of features that force read-only mount
1791 * @incompat: bitmask of incompatible features
1792 *
1793 * Check whether the journal uses all of a given set of
1794 * features. Return true (non-zero) if it does.
1795 **/
1796
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1797 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
1798 unsigned long ro, unsigned long incompat)
1799 {
1800 journal_superblock_t *sb;
1801
1802 if (!compat && !ro && !incompat)
1803 return 1;
1804 /* Load journal superblock if it is not loaded yet. */
1805 if (journal->j_format_version == 0 &&
1806 journal_get_superblock(journal) != 0)
1807 return 0;
1808 if (journal->j_format_version == 1)
1809 return 0;
1810
1811 sb = journal->j_superblock;
1812
1813 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1814 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1815 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1816 return 1;
1817
1818 return 0;
1819 }
1820
1821 /**
1822 * jbd2_journal_check_available_features() - Check feature set in journalling layer
1823 * @journal: Journal to check.
1824 * @compat: bitmask of compatible features
1825 * @ro: bitmask of features that force read-only mount
1826 * @incompat: bitmask of incompatible features
1827 *
1828 * Check whether the journaling code supports the use of
1829 * all of a given set of features on this journal. Return true
1830 * (non-zero) if it can. */
1831
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1832 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
1833 unsigned long ro, unsigned long incompat)
1834 {
1835 if (!compat && !ro && !incompat)
1836 return 1;
1837
1838 /* We can support any known requested features iff the
1839 * superblock is in version 2. Otherwise we fail to support any
1840 * extended sb features. */
1841
1842 if (journal->j_format_version != 2)
1843 return 0;
1844
1845 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1846 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1847 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1848 return 1;
1849
1850 return 0;
1851 }
1852
1853 /**
1854 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
1855 * @journal: Journal to act on.
1856 * @compat: bitmask of compatible features
1857 * @ro: bitmask of features that force read-only mount
1858 * @incompat: bitmask of incompatible features
1859 *
1860 * Mark a given journal feature as present on the
1861 * superblock. Returns true if the requested features could be set.
1862 *
1863 */
1864
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1865 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
1866 unsigned long ro, unsigned long incompat)
1867 {
1868 #define INCOMPAT_FEATURE_ON(f) \
1869 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1870 #define COMPAT_FEATURE_ON(f) \
1871 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1872 journal_superblock_t *sb;
1873
1874 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1875 return 1;
1876
1877 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1878 return 0;
1879
1880 /* If enabling v2 checksums, turn on v3 instead */
1881 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1882 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1883 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1884 }
1885
1886 /* Asking for checksumming v3 and v1? Only give them v3. */
1887 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1888 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1889 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1890
1891 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1892 compat, ro, incompat);
1893
1894 sb = journal->j_superblock;
1895
1896 /* Load the checksum driver if necessary */
1897 if ((journal->j_chksum_driver == NULL) &&
1898 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1899 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1900 if (IS_ERR(journal->j_chksum_driver)) {
1901 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1902 journal->j_chksum_driver = NULL;
1903 return 0;
1904 }
1905 /* Precompute checksum seed for all metadata */
1906 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1907 sizeof(sb->s_uuid));
1908 }
1909
1910 lock_buffer(journal->j_sb_buffer);
1911
1912 /* If enabling v3 checksums, update superblock */
1913 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1914 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1915 sb->s_feature_compat &=
1916 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1917 }
1918
1919 /* If enabling v1 checksums, downgrade superblock */
1920 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1921 sb->s_feature_incompat &=
1922 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1923 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1924
1925 sb->s_feature_compat |= cpu_to_be32(compat);
1926 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1927 sb->s_feature_incompat |= cpu_to_be32(incompat);
1928 unlock_buffer(journal->j_sb_buffer);
1929
1930 return 1;
1931 #undef COMPAT_FEATURE_ON
1932 #undef INCOMPAT_FEATURE_ON
1933 }
1934
1935 /*
1936 * jbd2_journal_clear_features() - Clear a given journal feature in the
1937 * superblock
1938 * @journal: Journal to act on.
1939 * @compat: bitmask of compatible features
1940 * @ro: bitmask of features that force read-only mount
1941 * @incompat: bitmask of incompatible features
1942 *
1943 * Clear a given journal feature as present on the
1944 * superblock.
1945 */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)1946 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1947 unsigned long ro, unsigned long incompat)
1948 {
1949 journal_superblock_t *sb;
1950
1951 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1952 compat, ro, incompat);
1953
1954 sb = journal->j_superblock;
1955
1956 sb->s_feature_compat &= ~cpu_to_be32(compat);
1957 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1958 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1959 }
1960 EXPORT_SYMBOL(jbd2_journal_clear_features);
1961
1962 /**
1963 * jbd2_journal_flush() - Flush journal
1964 * @journal: Journal to act on.
1965 *
1966 * Flush all data for a given journal to disk and empty the journal.
1967 * Filesystems can use this when remounting readonly to ensure that
1968 * recovery does not need to happen on remount.
1969 */
1970
jbd2_journal_flush(journal_t * journal)1971 int jbd2_journal_flush(journal_t *journal)
1972 {
1973 int err = 0;
1974 transaction_t *transaction = NULL;
1975
1976 write_lock(&journal->j_state_lock);
1977
1978 /* Force everything buffered to the log... */
1979 if (journal->j_running_transaction) {
1980 transaction = journal->j_running_transaction;
1981 __jbd2_log_start_commit(journal, transaction->t_tid);
1982 } else if (journal->j_committing_transaction)
1983 transaction = journal->j_committing_transaction;
1984
1985 /* Wait for the log commit to complete... */
1986 if (transaction) {
1987 tid_t tid = transaction->t_tid;
1988
1989 write_unlock(&journal->j_state_lock);
1990 jbd2_log_wait_commit(journal, tid);
1991 } else {
1992 write_unlock(&journal->j_state_lock);
1993 }
1994
1995 /* ...and flush everything in the log out to disk. */
1996 spin_lock(&journal->j_list_lock);
1997 while (!err && journal->j_checkpoint_transactions != NULL) {
1998 spin_unlock(&journal->j_list_lock);
1999 mutex_lock_io(&journal->j_checkpoint_mutex);
2000 err = jbd2_log_do_checkpoint(journal);
2001 mutex_unlock(&journal->j_checkpoint_mutex);
2002 spin_lock(&journal->j_list_lock);
2003 }
2004 spin_unlock(&journal->j_list_lock);
2005
2006 if (is_journal_aborted(journal))
2007 return -EIO;
2008
2009 mutex_lock_io(&journal->j_checkpoint_mutex);
2010 if (!err) {
2011 err = jbd2_cleanup_journal_tail(journal);
2012 if (err < 0) {
2013 mutex_unlock(&journal->j_checkpoint_mutex);
2014 goto out;
2015 }
2016 err = 0;
2017 }
2018
2019 /* Finally, mark the journal as really needing no recovery.
2020 * This sets s_start==0 in the underlying superblock, which is
2021 * the magic code for a fully-recovered superblock. Any future
2022 * commits of data to the journal will restore the current
2023 * s_start value. */
2024 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2025 mutex_unlock(&journal->j_checkpoint_mutex);
2026 write_lock(&journal->j_state_lock);
2027 J_ASSERT(!journal->j_running_transaction);
2028 J_ASSERT(!journal->j_committing_transaction);
2029 J_ASSERT(!journal->j_checkpoint_transactions);
2030 J_ASSERT(journal->j_head == journal->j_tail);
2031 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2032 write_unlock(&journal->j_state_lock);
2033 out:
2034 return err;
2035 }
2036
2037 /**
2038 * jbd2_journal_wipe() - Wipe journal contents
2039 * @journal: Journal to act on.
2040 * @write: flag (see below)
2041 *
2042 * Wipe out all of the contents of a journal, safely. This will produce
2043 * a warning if the journal contains any valid recovery information.
2044 * Must be called between journal_init_*() and jbd2_journal_load().
2045 *
2046 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2047 * we merely suppress recovery.
2048 */
2049
jbd2_journal_wipe(journal_t * journal,int write)2050 int jbd2_journal_wipe(journal_t *journal, int write)
2051 {
2052 int err = 0;
2053
2054 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2055
2056 err = load_superblock(journal);
2057 if (err)
2058 return err;
2059
2060 if (!journal->j_tail)
2061 goto no_recovery;
2062
2063 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2064 write ? "Clearing" : "Ignoring");
2065
2066 err = jbd2_journal_skip_recovery(journal);
2067 if (write) {
2068 /* Lock to make assertions happy... */
2069 mutex_lock_io(&journal->j_checkpoint_mutex);
2070 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2071 mutex_unlock(&journal->j_checkpoint_mutex);
2072 }
2073
2074 no_recovery:
2075 return err;
2076 }
2077
2078 /**
2079 * jbd2_journal_abort () - Shutdown the journal immediately.
2080 * @journal: the journal to shutdown.
2081 * @errno: an error number to record in the journal indicating
2082 * the reason for the shutdown.
2083 *
2084 * Perform a complete, immediate shutdown of the ENTIRE
2085 * journal (not of a single transaction). This operation cannot be
2086 * undone without closing and reopening the journal.
2087 *
2088 * The jbd2_journal_abort function is intended to support higher level error
2089 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2090 * mode.
2091 *
2092 * Journal abort has very specific semantics. Any existing dirty,
2093 * unjournaled buffers in the main filesystem will still be written to
2094 * disk by bdflush, but the journaling mechanism will be suspended
2095 * immediately and no further transaction commits will be honoured.
2096 *
2097 * Any dirty, journaled buffers will be written back to disk without
2098 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2099 * filesystem, but we _do_ attempt to leave as much data as possible
2100 * behind for fsck to use for cleanup.
2101 *
2102 * Any attempt to get a new transaction handle on a journal which is in
2103 * ABORT state will just result in an -EROFS error return. A
2104 * jbd2_journal_stop on an existing handle will return -EIO if we have
2105 * entered abort state during the update.
2106 *
2107 * Recursive transactions are not disturbed by journal abort until the
2108 * final jbd2_journal_stop, which will receive the -EIO error.
2109 *
2110 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2111 * which will be recorded (if possible) in the journal superblock. This
2112 * allows a client to record failure conditions in the middle of a
2113 * transaction without having to complete the transaction to record the
2114 * failure to disk. ext3_error, for example, now uses this
2115 * functionality.
2116 *
2117 */
2118
jbd2_journal_abort(journal_t * journal,int errno)2119 void jbd2_journal_abort(journal_t *journal, int errno)
2120 {
2121 transaction_t *transaction;
2122
2123 /*
2124 * ESHUTDOWN always takes precedence because a file system check
2125 * caused by any other journal abort error is not required after
2126 * a shutdown triggered.
2127 */
2128 write_lock(&journal->j_state_lock);
2129 if (journal->j_flags & JBD2_ABORT) {
2130 int old_errno = journal->j_errno;
2131
2132 write_unlock(&journal->j_state_lock);
2133 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2134 journal->j_errno = errno;
2135 jbd2_journal_update_sb_errno(journal);
2136 }
2137 return;
2138 }
2139
2140 /*
2141 * Mark the abort as occurred and start current running transaction
2142 * to release all journaled buffer.
2143 */
2144 pr_err("Aborting journal on device %s.\n", journal->j_devname);
2145
2146 journal->j_flags |= JBD2_ABORT;
2147 journal->j_errno = errno;
2148 transaction = journal->j_running_transaction;
2149 if (transaction)
2150 __jbd2_log_start_commit(journal, transaction->t_tid);
2151 write_unlock(&journal->j_state_lock);
2152
2153 /*
2154 * Record errno to the journal super block, so that fsck and jbd2
2155 * layer could realise that a filesystem check is needed.
2156 */
2157 jbd2_journal_update_sb_errno(journal);
2158
2159 write_lock(&journal->j_state_lock);
2160 journal->j_flags |= JBD2_REC_ERR;
2161 write_unlock(&journal->j_state_lock);
2162 }
2163
2164 /**
2165 * jbd2_journal_errno() - returns the journal's error state.
2166 * @journal: journal to examine.
2167 *
2168 * This is the errno number set with jbd2_journal_abort(), the last
2169 * time the journal was mounted - if the journal was stopped
2170 * without calling abort this will be 0.
2171 *
2172 * If the journal has been aborted on this mount time -EROFS will
2173 * be returned.
2174 */
jbd2_journal_errno(journal_t * journal)2175 int jbd2_journal_errno(journal_t *journal)
2176 {
2177 int err;
2178
2179 read_lock(&journal->j_state_lock);
2180 if (journal->j_flags & JBD2_ABORT)
2181 err = -EROFS;
2182 else
2183 err = journal->j_errno;
2184 read_unlock(&journal->j_state_lock);
2185 return err;
2186 }
2187
2188 /**
2189 * jbd2_journal_clear_err() - clears the journal's error state
2190 * @journal: journal to act on.
2191 *
2192 * An error must be cleared or acked to take a FS out of readonly
2193 * mode.
2194 */
jbd2_journal_clear_err(journal_t * journal)2195 int jbd2_journal_clear_err(journal_t *journal)
2196 {
2197 int err = 0;
2198
2199 write_lock(&journal->j_state_lock);
2200 if (journal->j_flags & JBD2_ABORT)
2201 err = -EROFS;
2202 else
2203 journal->j_errno = 0;
2204 write_unlock(&journal->j_state_lock);
2205 return err;
2206 }
2207
2208 /**
2209 * jbd2_journal_ack_err() - Ack journal err.
2210 * @journal: journal to act on.
2211 *
2212 * An error must be cleared or acked to take a FS out of readonly
2213 * mode.
2214 */
jbd2_journal_ack_err(journal_t * journal)2215 void jbd2_journal_ack_err(journal_t *journal)
2216 {
2217 write_lock(&journal->j_state_lock);
2218 if (journal->j_errno)
2219 journal->j_flags |= JBD2_ACK_ERR;
2220 write_unlock(&journal->j_state_lock);
2221 }
2222
jbd2_journal_blocks_per_page(struct inode * inode)2223 int jbd2_journal_blocks_per_page(struct inode *inode)
2224 {
2225 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2226 }
2227
2228 /*
2229 * helper functions to deal with 32 or 64bit block numbers.
2230 */
journal_tag_bytes(journal_t * journal)2231 size_t journal_tag_bytes(journal_t *journal)
2232 {
2233 size_t sz;
2234
2235 if (jbd2_has_feature_csum3(journal))
2236 return sizeof(journal_block_tag3_t);
2237
2238 sz = sizeof(journal_block_tag_t);
2239
2240 if (jbd2_has_feature_csum2(journal))
2241 sz += sizeof(__u16);
2242
2243 if (jbd2_has_feature_64bit(journal))
2244 return sz;
2245 else
2246 return sz - sizeof(__u32);
2247 }
2248
2249 /*
2250 * JBD memory management
2251 *
2252 * These functions are used to allocate block-sized chunks of memory
2253 * used for making copies of buffer_head data. Very often it will be
2254 * page-sized chunks of data, but sometimes it will be in
2255 * sub-page-size chunks. (For example, 16k pages on Power systems
2256 * with a 4k block file system.) For blocks smaller than a page, we
2257 * use a SLAB allocator. There are slab caches for each block size,
2258 * which are allocated at mount time, if necessary, and we only free
2259 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2260 * this reason we don't need to a mutex to protect access to
2261 * jbd2_slab[] allocating or releasing memory; only in
2262 * jbd2_journal_create_slab().
2263 */
2264 #define JBD2_MAX_SLABS 8
2265 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2266
2267 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2268 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2269 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2270 };
2271
2272
jbd2_journal_destroy_slabs(void)2273 static void jbd2_journal_destroy_slabs(void)
2274 {
2275 int i;
2276
2277 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2278 kmem_cache_destroy(jbd2_slab[i]);
2279 jbd2_slab[i] = NULL;
2280 }
2281 }
2282
jbd2_journal_create_slab(size_t size)2283 static int jbd2_journal_create_slab(size_t size)
2284 {
2285 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2286 int i = order_base_2(size) - 10;
2287 size_t slab_size;
2288
2289 if (size == PAGE_SIZE)
2290 return 0;
2291
2292 if (i >= JBD2_MAX_SLABS)
2293 return -EINVAL;
2294
2295 if (unlikely(i < 0))
2296 i = 0;
2297 mutex_lock(&jbd2_slab_create_mutex);
2298 if (jbd2_slab[i]) {
2299 mutex_unlock(&jbd2_slab_create_mutex);
2300 return 0; /* Already created */
2301 }
2302
2303 slab_size = 1 << (i+10);
2304 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2305 slab_size, 0, NULL);
2306 mutex_unlock(&jbd2_slab_create_mutex);
2307 if (!jbd2_slab[i]) {
2308 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2309 return -ENOMEM;
2310 }
2311 return 0;
2312 }
2313
get_slab(size_t size)2314 static struct kmem_cache *get_slab(size_t size)
2315 {
2316 int i = order_base_2(size) - 10;
2317
2318 BUG_ON(i >= JBD2_MAX_SLABS);
2319 if (unlikely(i < 0))
2320 i = 0;
2321 BUG_ON(jbd2_slab[i] == NULL);
2322 return jbd2_slab[i];
2323 }
2324
jbd2_alloc(size_t size,gfp_t flags)2325 void *jbd2_alloc(size_t size, gfp_t flags)
2326 {
2327 void *ptr;
2328
2329 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2330
2331 if (size < PAGE_SIZE)
2332 ptr = kmem_cache_alloc(get_slab(size), flags);
2333 else
2334 ptr = (void *)__get_free_pages(flags, get_order(size));
2335
2336 /* Check alignment; SLUB has gotten this wrong in the past,
2337 * and this can lead to user data corruption! */
2338 BUG_ON(((unsigned long) ptr) & (size-1));
2339
2340 return ptr;
2341 }
2342
jbd2_free(void * ptr,size_t size)2343 void jbd2_free(void *ptr, size_t size)
2344 {
2345 if (size < PAGE_SIZE)
2346 kmem_cache_free(get_slab(size), ptr);
2347 else
2348 free_pages((unsigned long)ptr, get_order(size));
2349 };
2350
2351 /*
2352 * Journal_head storage management
2353 */
2354 static struct kmem_cache *jbd2_journal_head_cache;
2355 #ifdef CONFIG_JBD2_DEBUG
2356 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2357 #endif
2358
jbd2_journal_init_journal_head_cache(void)2359 static int __init jbd2_journal_init_journal_head_cache(void)
2360 {
2361 J_ASSERT(!jbd2_journal_head_cache);
2362 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2363 sizeof(struct journal_head),
2364 0, /* offset */
2365 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2366 NULL); /* ctor */
2367 if (!jbd2_journal_head_cache) {
2368 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2369 return -ENOMEM;
2370 }
2371 return 0;
2372 }
2373
jbd2_journal_destroy_journal_head_cache(void)2374 static void jbd2_journal_destroy_journal_head_cache(void)
2375 {
2376 kmem_cache_destroy(jbd2_journal_head_cache);
2377 jbd2_journal_head_cache = NULL;
2378 }
2379
2380 /*
2381 * journal_head splicing and dicing
2382 */
journal_alloc_journal_head(void)2383 static struct journal_head *journal_alloc_journal_head(void)
2384 {
2385 struct journal_head *ret;
2386
2387 #ifdef CONFIG_JBD2_DEBUG
2388 atomic_inc(&nr_journal_heads);
2389 #endif
2390 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2391 if (!ret) {
2392 jbd_debug(1, "out of memory for journal_head\n");
2393 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2394 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2395 GFP_NOFS | __GFP_NOFAIL);
2396 }
2397 return ret;
2398 }
2399
journal_free_journal_head(struct journal_head * jh)2400 static void journal_free_journal_head(struct journal_head *jh)
2401 {
2402 #ifdef CONFIG_JBD2_DEBUG
2403 atomic_dec(&nr_journal_heads);
2404 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2405 #endif
2406 kmem_cache_free(jbd2_journal_head_cache, jh);
2407 }
2408
2409 /*
2410 * A journal_head is attached to a buffer_head whenever JBD has an
2411 * interest in the buffer.
2412 *
2413 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2414 * is set. This bit is tested in core kernel code where we need to take
2415 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2416 * there.
2417 *
2418 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2419 *
2420 * When a buffer has its BH_JBD bit set it is immune from being released by
2421 * core kernel code, mainly via ->b_count.
2422 *
2423 * A journal_head is detached from its buffer_head when the journal_head's
2424 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2425 * transaction (b_cp_transaction) hold their references to b_jcount.
2426 *
2427 * Various places in the kernel want to attach a journal_head to a buffer_head
2428 * _before_ attaching the journal_head to a transaction. To protect the
2429 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2430 * journal_head's b_jcount refcount by one. The caller must call
2431 * jbd2_journal_put_journal_head() to undo this.
2432 *
2433 * So the typical usage would be:
2434 *
2435 * (Attach a journal_head if needed. Increments b_jcount)
2436 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2437 * ...
2438 * (Get another reference for transaction)
2439 * jbd2_journal_grab_journal_head(bh);
2440 * jh->b_transaction = xxx;
2441 * (Put original reference)
2442 * jbd2_journal_put_journal_head(jh);
2443 */
2444
2445 /*
2446 * Give a buffer_head a journal_head.
2447 *
2448 * May sleep.
2449 */
jbd2_journal_add_journal_head(struct buffer_head * bh)2450 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2451 {
2452 struct journal_head *jh;
2453 struct journal_head *new_jh = NULL;
2454
2455 repeat:
2456 if (!buffer_jbd(bh))
2457 new_jh = journal_alloc_journal_head();
2458
2459 jbd_lock_bh_journal_head(bh);
2460 if (buffer_jbd(bh)) {
2461 jh = bh2jh(bh);
2462 } else {
2463 J_ASSERT_BH(bh,
2464 (atomic_read(&bh->b_count) > 0) ||
2465 (bh->b_page && bh->b_page->mapping));
2466
2467 if (!new_jh) {
2468 jbd_unlock_bh_journal_head(bh);
2469 goto repeat;
2470 }
2471
2472 jh = new_jh;
2473 new_jh = NULL; /* We consumed it */
2474 set_buffer_jbd(bh);
2475 bh->b_private = jh;
2476 jh->b_bh = bh;
2477 get_bh(bh);
2478 BUFFER_TRACE(bh, "added journal_head");
2479 }
2480 jh->b_jcount++;
2481 jbd_unlock_bh_journal_head(bh);
2482 if (new_jh)
2483 journal_free_journal_head(new_jh);
2484 return bh->b_private;
2485 }
2486
2487 /*
2488 * Grab a ref against this buffer_head's journal_head. If it ended up not
2489 * having a journal_head, return NULL
2490 */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2491 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2492 {
2493 struct journal_head *jh = NULL;
2494
2495 jbd_lock_bh_journal_head(bh);
2496 if (buffer_jbd(bh)) {
2497 jh = bh2jh(bh);
2498 jh->b_jcount++;
2499 }
2500 jbd_unlock_bh_journal_head(bh);
2501 return jh;
2502 }
2503
__journal_remove_journal_head(struct buffer_head * bh)2504 static void __journal_remove_journal_head(struct buffer_head *bh)
2505 {
2506 struct journal_head *jh = bh2jh(bh);
2507
2508 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2509 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2510 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2511 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2512 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2513 J_ASSERT_BH(bh, buffer_jbd(bh));
2514 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2515 BUFFER_TRACE(bh, "remove journal_head");
2516 if (jh->b_frozen_data) {
2517 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2518 jbd2_free(jh->b_frozen_data, bh->b_size);
2519 }
2520 if (jh->b_committed_data) {
2521 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2522 jbd2_free(jh->b_committed_data, bh->b_size);
2523 }
2524 bh->b_private = NULL;
2525 jh->b_bh = NULL; /* debug, really */
2526 clear_buffer_jbd(bh);
2527 journal_free_journal_head(jh);
2528 }
2529
2530 /*
2531 * Drop a reference on the passed journal_head. If it fell to zero then
2532 * release the journal_head from the buffer_head.
2533 */
jbd2_journal_put_journal_head(struct journal_head * jh)2534 void jbd2_journal_put_journal_head(struct journal_head *jh)
2535 {
2536 struct buffer_head *bh = jh2bh(jh);
2537
2538 jbd_lock_bh_journal_head(bh);
2539 J_ASSERT_JH(jh, jh->b_jcount > 0);
2540 --jh->b_jcount;
2541 if (!jh->b_jcount) {
2542 __journal_remove_journal_head(bh);
2543 jbd_unlock_bh_journal_head(bh);
2544 __brelse(bh);
2545 } else
2546 jbd_unlock_bh_journal_head(bh);
2547 }
2548
2549 /*
2550 * Initialize jbd inode head
2551 */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2552 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2553 {
2554 jinode->i_transaction = NULL;
2555 jinode->i_next_transaction = NULL;
2556 jinode->i_vfs_inode = inode;
2557 jinode->i_flags = 0;
2558 jinode->i_dirty_start = 0;
2559 jinode->i_dirty_end = 0;
2560 INIT_LIST_HEAD(&jinode->i_list);
2561 }
2562
2563 /*
2564 * Function to be called before we start removing inode from memory (i.e.,
2565 * clear_inode() is a fine place to be called from). It removes inode from
2566 * transaction's lists.
2567 */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2568 void jbd2_journal_release_jbd_inode(journal_t *journal,
2569 struct jbd2_inode *jinode)
2570 {
2571 if (!journal)
2572 return;
2573 restart:
2574 spin_lock(&journal->j_list_lock);
2575 /* Is commit writing out inode - we have to wait */
2576 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2577 wait_queue_head_t *wq;
2578 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2579 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2580 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2581 spin_unlock(&journal->j_list_lock);
2582 schedule();
2583 finish_wait(wq, &wait.wq_entry);
2584 goto restart;
2585 }
2586
2587 if (jinode->i_transaction) {
2588 list_del(&jinode->i_list);
2589 jinode->i_transaction = NULL;
2590 }
2591 spin_unlock(&journal->j_list_lock);
2592 }
2593
2594
2595 #ifdef CONFIG_PROC_FS
2596
2597 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2598
jbd2_create_jbd_stats_proc_entry(void)2599 static void __init jbd2_create_jbd_stats_proc_entry(void)
2600 {
2601 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2602 }
2603
jbd2_remove_jbd_stats_proc_entry(void)2604 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2605 {
2606 if (proc_jbd2_stats)
2607 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2608 }
2609
2610 #else
2611
2612 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2613 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2614
2615 #endif
2616
2617 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2618
jbd2_journal_init_inode_cache(void)2619 static int __init jbd2_journal_init_inode_cache(void)
2620 {
2621 J_ASSERT(!jbd2_inode_cache);
2622 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2623 if (!jbd2_inode_cache) {
2624 pr_emerg("JBD2: failed to create inode cache\n");
2625 return -ENOMEM;
2626 }
2627 return 0;
2628 }
2629
jbd2_journal_init_handle_cache(void)2630 static int __init jbd2_journal_init_handle_cache(void)
2631 {
2632 J_ASSERT(!jbd2_handle_cache);
2633 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2634 if (!jbd2_handle_cache) {
2635 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2636 return -ENOMEM;
2637 }
2638 return 0;
2639 }
2640
jbd2_journal_destroy_inode_cache(void)2641 static void jbd2_journal_destroy_inode_cache(void)
2642 {
2643 kmem_cache_destroy(jbd2_inode_cache);
2644 jbd2_inode_cache = NULL;
2645 }
2646
jbd2_journal_destroy_handle_cache(void)2647 static void jbd2_journal_destroy_handle_cache(void)
2648 {
2649 kmem_cache_destroy(jbd2_handle_cache);
2650 jbd2_handle_cache = NULL;
2651 }
2652
2653 /*
2654 * Module startup and shutdown
2655 */
2656
journal_init_caches(void)2657 static int __init journal_init_caches(void)
2658 {
2659 int ret;
2660
2661 ret = jbd2_journal_init_revoke_record_cache();
2662 if (ret == 0)
2663 ret = jbd2_journal_init_revoke_table_cache();
2664 if (ret == 0)
2665 ret = jbd2_journal_init_journal_head_cache();
2666 if (ret == 0)
2667 ret = jbd2_journal_init_handle_cache();
2668 if (ret == 0)
2669 ret = jbd2_journal_init_inode_cache();
2670 if (ret == 0)
2671 ret = jbd2_journal_init_transaction_cache();
2672 return ret;
2673 }
2674
jbd2_journal_destroy_caches(void)2675 static void jbd2_journal_destroy_caches(void)
2676 {
2677 jbd2_journal_destroy_revoke_record_cache();
2678 jbd2_journal_destroy_revoke_table_cache();
2679 jbd2_journal_destroy_journal_head_cache();
2680 jbd2_journal_destroy_handle_cache();
2681 jbd2_journal_destroy_inode_cache();
2682 jbd2_journal_destroy_transaction_cache();
2683 jbd2_journal_destroy_slabs();
2684 }
2685
journal_init(void)2686 static int __init journal_init(void)
2687 {
2688 int ret;
2689
2690 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2691
2692 ret = journal_init_caches();
2693 if (ret == 0) {
2694 jbd2_create_jbd_stats_proc_entry();
2695 } else {
2696 jbd2_journal_destroy_caches();
2697 }
2698 return ret;
2699 }
2700
journal_exit(void)2701 static void __exit journal_exit(void)
2702 {
2703 #ifdef CONFIG_JBD2_DEBUG
2704 int n = atomic_read(&nr_journal_heads);
2705 if (n)
2706 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2707 #endif
2708 jbd2_remove_jbd_stats_proc_entry();
2709 jbd2_journal_destroy_caches();
2710 }
2711
2712 MODULE_LICENSE("GPL");
2713 module_init(journal_init);
2714 module_exit(journal_exit);
2715
2716