• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17 
18 #include "kernfs-internal.h"
19 
20 DEFINE_MUTEX(kernfs_mutex);
21 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
22 /*
23  * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
24  * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
25  * will perform wakeups when releasing console_sem. Holding rename_lock
26  * will introduce deadlock if the scheduler reads the kernfs_name in the
27  * wakeup path.
28  */
29 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
30 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
31 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
32 
33 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
34 
kernfs_active(struct kernfs_node * kn)35 static bool kernfs_active(struct kernfs_node *kn)
36 {
37 	lockdep_assert_held(&kernfs_mutex);
38 	return atomic_read(&kn->active) >= 0;
39 }
40 
kernfs_lockdep(struct kernfs_node * kn)41 static bool kernfs_lockdep(struct kernfs_node *kn)
42 {
43 #ifdef CONFIG_DEBUG_LOCK_ALLOC
44 	return kn->flags & KERNFS_LOCKDEP;
45 #else
46 	return false;
47 #endif
48 }
49 
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)50 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
51 {
52 	if (!kn)
53 		return strlcpy(buf, "(null)", buflen);
54 
55 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
56 }
57 
58 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)59 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
60 {
61 	size_t depth = 0;
62 
63 	while (to->parent && to != from) {
64 		depth++;
65 		to = to->parent;
66 	}
67 	return depth;
68 }
69 
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)70 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
71 						  struct kernfs_node *b)
72 {
73 	size_t da, db;
74 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
75 
76 	if (ra != rb)
77 		return NULL;
78 
79 	da = kernfs_depth(ra->kn, a);
80 	db = kernfs_depth(rb->kn, b);
81 
82 	while (da > db) {
83 		a = a->parent;
84 		da--;
85 	}
86 	while (db > da) {
87 		b = b->parent;
88 		db--;
89 	}
90 
91 	/* worst case b and a will be the same at root */
92 	while (b != a) {
93 		b = b->parent;
94 		a = a->parent;
95 	}
96 
97 	return a;
98 }
99 
100 /**
101  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
102  * where kn_from is treated as root of the path.
103  * @kn_from: kernfs node which should be treated as root for the path
104  * @kn_to: kernfs node to which path is needed
105  * @buf: buffer to copy the path into
106  * @buflen: size of @buf
107  *
108  * We need to handle couple of scenarios here:
109  * [1] when @kn_from is an ancestor of @kn_to at some level
110  * kn_from: /n1/n2/n3
111  * kn_to:   /n1/n2/n3/n4/n5
112  * result:  /n4/n5
113  *
114  * [2] when @kn_from is on a different hierarchy and we need to find common
115  * ancestor between @kn_from and @kn_to.
116  * kn_from: /n1/n2/n3/n4
117  * kn_to:   /n1/n2/n5
118  * result:  /../../n5
119  * OR
120  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
121  * kn_to:   /n1/n2/n3         [depth=3]
122  * result:  /../..
123  *
124  * [3] when @kn_to is NULL result will be "(null)"
125  *
126  * Returns the length of the full path.  If the full length is equal to or
127  * greater than @buflen, @buf contains the truncated path with the trailing
128  * '\0'.  On error, -errno is returned.
129  */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)130 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
131 					struct kernfs_node *kn_from,
132 					char *buf, size_t buflen)
133 {
134 	struct kernfs_node *kn, *common;
135 	const char parent_str[] = "/..";
136 	size_t depth_from, depth_to, len = 0;
137 	int i, j;
138 
139 	if (!kn_to)
140 		return strlcpy(buf, "(null)", buflen);
141 
142 	if (!kn_from)
143 		kn_from = kernfs_root(kn_to)->kn;
144 
145 	if (kn_from == kn_to)
146 		return strlcpy(buf, "/", buflen);
147 
148 	if (!buf)
149 		return -EINVAL;
150 
151 	common = kernfs_common_ancestor(kn_from, kn_to);
152 	if (WARN_ON(!common))
153 		return -EINVAL;
154 
155 	depth_to = kernfs_depth(common, kn_to);
156 	depth_from = kernfs_depth(common, kn_from);
157 
158 	buf[0] = '\0';
159 
160 	for (i = 0; i < depth_from; i++)
161 		len += strlcpy(buf + len, parent_str,
162 			       len < buflen ? buflen - len : 0);
163 
164 	/* Calculate how many bytes we need for the rest */
165 	for (i = depth_to - 1; i >= 0; i--) {
166 		for (kn = kn_to, j = 0; j < i; j++)
167 			kn = kn->parent;
168 		len += strlcpy(buf + len, "/",
169 			       len < buflen ? buflen - len : 0);
170 		len += strlcpy(buf + len, kn->name,
171 			       len < buflen ? buflen - len : 0);
172 	}
173 
174 	return len;
175 }
176 
177 /**
178  * kernfs_name - obtain the name of a given node
179  * @kn: kernfs_node of interest
180  * @buf: buffer to copy @kn's name into
181  * @buflen: size of @buf
182  *
183  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
184  * similar to strlcpy().  It returns the length of @kn's name and if @buf
185  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
186  *
187  * Fills buffer with "(null)" if @kn is NULL.
188  *
189  * This function can be called from any context.
190  */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)191 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
192 {
193 	unsigned long flags;
194 	int ret;
195 
196 	spin_lock_irqsave(&kernfs_rename_lock, flags);
197 	ret = kernfs_name_locked(kn, buf, buflen);
198 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
199 	return ret;
200 }
201 
202 /**
203  * kernfs_path_from_node - build path of node @to relative to @from.
204  * @from: parent kernfs_node relative to which we need to build the path
205  * @to: kernfs_node of interest
206  * @buf: buffer to copy @to's path into
207  * @buflen: size of @buf
208  *
209  * Builds @to's path relative to @from in @buf. @from and @to must
210  * be on the same kernfs-root. If @from is not parent of @to, then a relative
211  * path (which includes '..'s) as needed to reach from @from to @to is
212  * returned.
213  *
214  * Returns the length of the full path.  If the full length is equal to or
215  * greater than @buflen, @buf contains the truncated path with the trailing
216  * '\0'.  On error, -errno is returned.
217  */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)218 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
219 			  char *buf, size_t buflen)
220 {
221 	unsigned long flags;
222 	int ret;
223 
224 	spin_lock_irqsave(&kernfs_rename_lock, flags);
225 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
226 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
227 	return ret;
228 }
229 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
230 
231 /**
232  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
233  * @kn: kernfs_node of interest
234  *
235  * This function can be called from any context.
236  */
pr_cont_kernfs_name(struct kernfs_node * kn)237 void pr_cont_kernfs_name(struct kernfs_node *kn)
238 {
239 	unsigned long flags;
240 
241 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
242 
243 	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
244 	pr_cont("%s", kernfs_pr_cont_buf);
245 
246 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
247 }
248 
249 /**
250  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
251  * @kn: kernfs_node of interest
252  *
253  * This function can be called from any context.
254  */
pr_cont_kernfs_path(struct kernfs_node * kn)255 void pr_cont_kernfs_path(struct kernfs_node *kn)
256 {
257 	unsigned long flags;
258 	int sz;
259 
260 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
261 
262 	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
263 				   sizeof(kernfs_pr_cont_buf));
264 	if (sz < 0) {
265 		pr_cont("(error)");
266 		goto out;
267 	}
268 
269 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
270 		pr_cont("(name too long)");
271 		goto out;
272 	}
273 
274 	pr_cont("%s", kernfs_pr_cont_buf);
275 
276 out:
277 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
278 }
279 
280 /**
281  * kernfs_get_parent - determine the parent node and pin it
282  * @kn: kernfs_node of interest
283  *
284  * Determines @kn's parent, pins and returns it.  This function can be
285  * called from any context.
286  */
kernfs_get_parent(struct kernfs_node * kn)287 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
288 {
289 	struct kernfs_node *parent;
290 	unsigned long flags;
291 
292 	spin_lock_irqsave(&kernfs_rename_lock, flags);
293 	parent = kn->parent;
294 	kernfs_get(parent);
295 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
296 
297 	return parent;
298 }
299 
300 /**
301  *	kernfs_name_hash
302  *	@name: Null terminated string to hash
303  *	@ns:   Namespace tag to hash
304  *
305  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
306  */
kernfs_name_hash(const char * name,const void * ns)307 static unsigned int kernfs_name_hash(const char *name, const void *ns)
308 {
309 	unsigned long hash = init_name_hash(ns);
310 	unsigned int len = strlen(name);
311 	while (len--)
312 		hash = partial_name_hash(*name++, hash);
313 	hash = end_name_hash(hash);
314 	hash &= 0x7fffffffU;
315 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
316 	if (hash < 2)
317 		hash += 2;
318 	if (hash >= INT_MAX)
319 		hash = INT_MAX - 1;
320 	return hash;
321 }
322 
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)323 static int kernfs_name_compare(unsigned int hash, const char *name,
324 			       const void *ns, const struct kernfs_node *kn)
325 {
326 	if (hash < kn->hash)
327 		return -1;
328 	if (hash > kn->hash)
329 		return 1;
330 	if (ns < kn->ns)
331 		return -1;
332 	if (ns > kn->ns)
333 		return 1;
334 	return strcmp(name, kn->name);
335 }
336 
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)337 static int kernfs_sd_compare(const struct kernfs_node *left,
338 			     const struct kernfs_node *right)
339 {
340 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
341 }
342 
343 /**
344  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
345  *	@kn: kernfs_node of interest
346  *
347  *	Link @kn into its sibling rbtree which starts from
348  *	@kn->parent->dir.children.
349  *
350  *	Locking:
351  *	mutex_lock(kernfs_mutex)
352  *
353  *	RETURNS:
354  *	0 on susccess -EEXIST on failure.
355  */
kernfs_link_sibling(struct kernfs_node * kn)356 static int kernfs_link_sibling(struct kernfs_node *kn)
357 {
358 	struct rb_node **node = &kn->parent->dir.children.rb_node;
359 	struct rb_node *parent = NULL;
360 
361 	while (*node) {
362 		struct kernfs_node *pos;
363 		int result;
364 
365 		pos = rb_to_kn(*node);
366 		parent = *node;
367 		result = kernfs_sd_compare(kn, pos);
368 		if (result < 0)
369 			node = &pos->rb.rb_left;
370 		else if (result > 0)
371 			node = &pos->rb.rb_right;
372 		else
373 			return -EEXIST;
374 	}
375 
376 	/* add new node and rebalance the tree */
377 	rb_link_node(&kn->rb, parent, node);
378 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
379 
380 	/* successfully added, account subdir number */
381 	if (kernfs_type(kn) == KERNFS_DIR)
382 		kn->parent->dir.subdirs++;
383 
384 	return 0;
385 }
386 
387 /**
388  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
389  *	@kn: kernfs_node of interest
390  *
391  *	Try to unlink @kn from its sibling rbtree which starts from
392  *	kn->parent->dir.children.  Returns %true if @kn was actually
393  *	removed, %false if @kn wasn't on the rbtree.
394  *
395  *	Locking:
396  *	mutex_lock(kernfs_mutex)
397  */
kernfs_unlink_sibling(struct kernfs_node * kn)398 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
399 {
400 	if (RB_EMPTY_NODE(&kn->rb))
401 		return false;
402 
403 	if (kernfs_type(kn) == KERNFS_DIR)
404 		kn->parent->dir.subdirs--;
405 
406 	rb_erase(&kn->rb, &kn->parent->dir.children);
407 	RB_CLEAR_NODE(&kn->rb);
408 	return true;
409 }
410 
411 /**
412  *	kernfs_get_active - get an active reference to kernfs_node
413  *	@kn: kernfs_node to get an active reference to
414  *
415  *	Get an active reference of @kn.  This function is noop if @kn
416  *	is NULL.
417  *
418  *	RETURNS:
419  *	Pointer to @kn on success, NULL on failure.
420  */
kernfs_get_active(struct kernfs_node * kn)421 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
422 {
423 	if (unlikely(!kn))
424 		return NULL;
425 
426 	if (!atomic_inc_unless_negative(&kn->active))
427 		return NULL;
428 
429 	if (kernfs_lockdep(kn))
430 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
431 	return kn;
432 }
433 
434 /**
435  *	kernfs_put_active - put an active reference to kernfs_node
436  *	@kn: kernfs_node to put an active reference to
437  *
438  *	Put an active reference to @kn.  This function is noop if @kn
439  *	is NULL.
440  */
kernfs_put_active(struct kernfs_node * kn)441 void kernfs_put_active(struct kernfs_node *kn)
442 {
443 	int v;
444 
445 	if (unlikely(!kn))
446 		return;
447 
448 	if (kernfs_lockdep(kn))
449 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
450 	v = atomic_dec_return(&kn->active);
451 	if (likely(v != KN_DEACTIVATED_BIAS))
452 		return;
453 
454 	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
455 }
456 
457 /**
458  * kernfs_drain - drain kernfs_node
459  * @kn: kernfs_node to drain
460  *
461  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
462  * removers may invoke this function concurrently on @kn and all will
463  * return after draining is complete.
464  */
kernfs_drain(struct kernfs_node * kn)465 static void kernfs_drain(struct kernfs_node *kn)
466 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
467 {
468 	struct kernfs_root *root = kernfs_root(kn);
469 
470 	lockdep_assert_held(&kernfs_mutex);
471 	WARN_ON_ONCE(kernfs_active(kn));
472 
473 	mutex_unlock(&kernfs_mutex);
474 
475 	if (kernfs_lockdep(kn)) {
476 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
477 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
478 			lock_contended(&kn->dep_map, _RET_IP_);
479 	}
480 
481 	/* but everyone should wait for draining */
482 	wait_event(root->deactivate_waitq,
483 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
484 
485 	if (kernfs_lockdep(kn)) {
486 		lock_acquired(&kn->dep_map, _RET_IP_);
487 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
488 	}
489 
490 	kernfs_drain_open_files(kn);
491 
492 	mutex_lock(&kernfs_mutex);
493 }
494 
495 /**
496  * kernfs_get - get a reference count on a kernfs_node
497  * @kn: the target kernfs_node
498  */
kernfs_get(struct kernfs_node * kn)499 void kernfs_get(struct kernfs_node *kn)
500 {
501 	if (kn) {
502 		WARN_ON(!atomic_read(&kn->count));
503 		atomic_inc(&kn->count);
504 	}
505 }
506 EXPORT_SYMBOL_GPL(kernfs_get);
507 
508 /**
509  * kernfs_put - put a reference count on a kernfs_node
510  * @kn: the target kernfs_node
511  *
512  * Put a reference count of @kn and destroy it if it reached zero.
513  */
kernfs_put(struct kernfs_node * kn)514 void kernfs_put(struct kernfs_node *kn)
515 {
516 	struct kernfs_node *parent;
517 	struct kernfs_root *root;
518 
519 	/*
520 	 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
521 	 * depends on this to filter reused stale node
522 	 */
523 	if (!kn || !atomic_dec_and_test(&kn->count))
524 		return;
525 	root = kernfs_root(kn);
526  repeat:
527 	/*
528 	 * Moving/renaming is always done while holding reference.
529 	 * kn->parent won't change beneath us.
530 	 */
531 	parent = kn->parent;
532 
533 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
534 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
535 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
536 
537 	if (kernfs_type(kn) == KERNFS_LINK)
538 		kernfs_put(kn->symlink.target_kn);
539 
540 	kfree_const(kn->name);
541 
542 	if (kn->iattr) {
543 		simple_xattrs_free(&kn->iattr->xattrs);
544 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
545 	}
546 	spin_lock(&kernfs_idr_lock);
547 	idr_remove(&root->ino_idr, kn->id.ino);
548 	spin_unlock(&kernfs_idr_lock);
549 	kmem_cache_free(kernfs_node_cache, kn);
550 
551 	kn = parent;
552 	if (kn) {
553 		if (atomic_dec_and_test(&kn->count))
554 			goto repeat;
555 	} else {
556 		/* just released the root kn, free @root too */
557 		idr_destroy(&root->ino_idr);
558 		kfree(root);
559 	}
560 }
561 EXPORT_SYMBOL_GPL(kernfs_put);
562 
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)563 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
564 {
565 	struct kernfs_node *kn;
566 
567 	if (flags & LOOKUP_RCU)
568 		return -ECHILD;
569 
570 	/* Always perform fresh lookup for negatives */
571 	if (d_really_is_negative(dentry))
572 		goto out_bad_unlocked;
573 
574 	kn = kernfs_dentry_node(dentry);
575 	mutex_lock(&kernfs_mutex);
576 
577 	/* The kernfs node has been deactivated */
578 	if (!kernfs_active(kn))
579 		goto out_bad;
580 
581 	/* The kernfs node has been moved? */
582 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
583 		goto out_bad;
584 
585 	/* The kernfs node has been renamed */
586 	if (strcmp(dentry->d_name.name, kn->name) != 0)
587 		goto out_bad;
588 
589 	/* The kernfs node has been moved to a different namespace */
590 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
591 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
592 		goto out_bad;
593 
594 	mutex_unlock(&kernfs_mutex);
595 	return 1;
596 out_bad:
597 	mutex_unlock(&kernfs_mutex);
598 out_bad_unlocked:
599 	return 0;
600 }
601 
602 const struct dentry_operations kernfs_dops = {
603 	.d_revalidate	= kernfs_dop_revalidate,
604 };
605 
606 /**
607  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
608  * @dentry: the dentry in question
609  *
610  * Return the kernfs_node associated with @dentry.  If @dentry is not a
611  * kernfs one, %NULL is returned.
612  *
613  * While the returned kernfs_node will stay accessible as long as @dentry
614  * is accessible, the returned node can be in any state and the caller is
615  * fully responsible for determining what's accessible.
616  */
kernfs_node_from_dentry(struct dentry * dentry)617 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
618 {
619 	if (dentry->d_sb->s_op == &kernfs_sops &&
620 	    !d_really_is_negative(dentry))
621 		return kernfs_dentry_node(dentry);
622 	return NULL;
623 }
624 
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)625 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
626 					     struct kernfs_node *parent,
627 					     const char *name, umode_t mode,
628 					     kuid_t uid, kgid_t gid,
629 					     unsigned flags)
630 {
631 	struct kernfs_node *kn;
632 	u32 gen;
633 	int ret;
634 
635 	name = kstrdup_const(name, GFP_KERNEL);
636 	if (!name)
637 		return NULL;
638 
639 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
640 	if (!kn)
641 		goto err_out1;
642 
643 	idr_preload(GFP_KERNEL);
644 	spin_lock(&kernfs_idr_lock);
645 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
646 	if (ret >= 0 && ret < root->last_ino)
647 		root->next_generation++;
648 	gen = root->next_generation;
649 	root->last_ino = ret;
650 	spin_unlock(&kernfs_idr_lock);
651 	idr_preload_end();
652 	if (ret < 0)
653 		goto err_out2;
654 	kn->id.ino = ret;
655 	kn->id.generation = gen;
656 
657 	/*
658 	 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
659 	 * kernfs_find_and_get_node_by_ino
660 	 */
661 	atomic_set_release(&kn->count, 1);
662 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
663 	RB_CLEAR_NODE(&kn->rb);
664 
665 	kn->name = name;
666 	kn->mode = mode;
667 	kn->flags = flags;
668 
669 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
670 		struct iattr iattr = {
671 			.ia_valid = ATTR_UID | ATTR_GID,
672 			.ia_uid = uid,
673 			.ia_gid = gid,
674 		};
675 
676 		ret = __kernfs_setattr(kn, &iattr);
677 		if (ret < 0)
678 			goto err_out3;
679 	}
680 
681 	if (parent) {
682 		ret = security_kernfs_init_security(parent, kn);
683 		if (ret)
684 			goto err_out3;
685 	}
686 
687 	return kn;
688 
689  err_out3:
690 	idr_remove(&root->ino_idr, kn->id.ino);
691  err_out2:
692 	kmem_cache_free(kernfs_node_cache, kn);
693  err_out1:
694 	kfree_const(name);
695 	return NULL;
696 }
697 
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)698 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
699 				    const char *name, umode_t mode,
700 				    kuid_t uid, kgid_t gid,
701 				    unsigned flags)
702 {
703 	struct kernfs_node *kn;
704 
705 	if (parent->mode & S_ISGID) {
706 		/* this code block imitates inode_init_owner() for
707 		 * kernfs
708 		 */
709 
710 		if (parent->iattr)
711 			gid = parent->iattr->ia_gid;
712 
713 		if (flags & KERNFS_DIR)
714 			mode |= S_ISGID;
715 	}
716 
717 	kn = __kernfs_new_node(kernfs_root(parent), parent,
718 			       name, mode, uid, gid, flags);
719 	if (kn) {
720 		kernfs_get(parent);
721 		kn->parent = parent;
722 	}
723 	return kn;
724 }
725 
726 /*
727  * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
728  * @root: the kernfs root
729  * @ino: inode number
730  *
731  * RETURNS:
732  * NULL on failure. Return a kernfs node with reference counter incremented
733  */
kernfs_find_and_get_node_by_ino(struct kernfs_root * root,unsigned int ino)734 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
735 						    unsigned int ino)
736 {
737 	struct kernfs_node *kn;
738 
739 	rcu_read_lock();
740 	kn = idr_find(&root->ino_idr, ino);
741 	if (!kn)
742 		goto out;
743 
744 	/*
745 	 * Since kernfs_node is freed in RCU, it's possible an old node for ino
746 	 * is freed, but reused before RCU grace period. But a freed node (see
747 	 * kernfs_put) or an incompletedly initialized node (see
748 	 * __kernfs_new_node) should have 'count' 0. We can use this fact to
749 	 * filter out such node.
750 	 */
751 	if (!atomic_inc_not_zero(&kn->count)) {
752 		kn = NULL;
753 		goto out;
754 	}
755 
756 	/*
757 	 * The node could be a new node or a reused node. If it's a new node,
758 	 * we are ok. If it's reused because of RCU (because of
759 	 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
760 	 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
761 	 * hence we can use 'ino' to filter stale node.
762 	 */
763 	if (kn->id.ino != ino)
764 		goto out;
765 	rcu_read_unlock();
766 
767 	return kn;
768 out:
769 	rcu_read_unlock();
770 	kernfs_put(kn);
771 	return NULL;
772 }
773 
774 /**
775  *	kernfs_add_one - add kernfs_node to parent without warning
776  *	@kn: kernfs_node to be added
777  *
778  *	The caller must already have initialized @kn->parent.  This
779  *	function increments nlink of the parent's inode if @kn is a
780  *	directory and link into the children list of the parent.
781  *
782  *	RETURNS:
783  *	0 on success, -EEXIST if entry with the given name already
784  *	exists.
785  */
kernfs_add_one(struct kernfs_node * kn)786 int kernfs_add_one(struct kernfs_node *kn)
787 {
788 	struct kernfs_node *parent = kn->parent;
789 	struct kernfs_iattrs *ps_iattr;
790 	bool has_ns;
791 	int ret;
792 
793 	mutex_lock(&kernfs_mutex);
794 
795 	ret = -EINVAL;
796 	has_ns = kernfs_ns_enabled(parent);
797 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
798 		 has_ns ? "required" : "invalid", parent->name, kn->name))
799 		goto out_unlock;
800 
801 	if (kernfs_type(parent) != KERNFS_DIR)
802 		goto out_unlock;
803 
804 	ret = -ENOENT;
805 	if (parent->flags & KERNFS_EMPTY_DIR)
806 		goto out_unlock;
807 
808 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
809 		goto out_unlock;
810 
811 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
812 
813 	ret = kernfs_link_sibling(kn);
814 	if (ret)
815 		goto out_unlock;
816 
817 	/* Update timestamps on the parent */
818 	ps_iattr = parent->iattr;
819 	if (ps_iattr) {
820 		ktime_get_real_ts64(&ps_iattr->ia_ctime);
821 		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
822 	}
823 
824 	mutex_unlock(&kernfs_mutex);
825 
826 	/*
827 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
828 	 * If not activated here, the kernfs user is responsible for
829 	 * activating the node with kernfs_activate().  A node which hasn't
830 	 * been activated is not visible to userland and its removal won't
831 	 * trigger deactivation.
832 	 */
833 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
834 		kernfs_activate(kn);
835 	return 0;
836 
837 out_unlock:
838 	mutex_unlock(&kernfs_mutex);
839 	return ret;
840 }
841 
842 /**
843  * kernfs_find_ns - find kernfs_node with the given name
844  * @parent: kernfs_node to search under
845  * @name: name to look for
846  * @ns: the namespace tag to use
847  *
848  * Look for kernfs_node with name @name under @parent.  Returns pointer to
849  * the found kernfs_node on success, %NULL on failure.
850  */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)851 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
852 					  const unsigned char *name,
853 					  const void *ns)
854 {
855 	struct rb_node *node = parent->dir.children.rb_node;
856 	bool has_ns = kernfs_ns_enabled(parent);
857 	unsigned int hash;
858 
859 	lockdep_assert_held(&kernfs_mutex);
860 
861 	if (has_ns != (bool)ns) {
862 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
863 		     has_ns ? "required" : "invalid", parent->name, name);
864 		return NULL;
865 	}
866 
867 	hash = kernfs_name_hash(name, ns);
868 	while (node) {
869 		struct kernfs_node *kn;
870 		int result;
871 
872 		kn = rb_to_kn(node);
873 		result = kernfs_name_compare(hash, name, ns, kn);
874 		if (result < 0)
875 			node = node->rb_left;
876 		else if (result > 0)
877 			node = node->rb_right;
878 		else
879 			return kn;
880 	}
881 	return NULL;
882 }
883 
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)884 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
885 					  const unsigned char *path,
886 					  const void *ns)
887 {
888 	size_t len;
889 	char *p, *name;
890 
891 	lockdep_assert_held(&kernfs_mutex);
892 
893 	spin_lock_irq(&kernfs_pr_cont_lock);
894 
895 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
896 
897 	if (len >= sizeof(kernfs_pr_cont_buf)) {
898 		spin_unlock_irq(&kernfs_pr_cont_lock);
899 		return NULL;
900 	}
901 
902 	p = kernfs_pr_cont_buf;
903 
904 	while ((name = strsep(&p, "/")) && parent) {
905 		if (*name == '\0')
906 			continue;
907 		parent = kernfs_find_ns(parent, name, ns);
908 	}
909 
910 	spin_unlock_irq(&kernfs_pr_cont_lock);
911 
912 	return parent;
913 }
914 
915 /**
916  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
917  * @parent: kernfs_node to search under
918  * @name: name to look for
919  * @ns: the namespace tag to use
920  *
921  * Look for kernfs_node with name @name under @parent and get a reference
922  * if found.  This function may sleep and returns pointer to the found
923  * kernfs_node on success, %NULL on failure.
924  */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)925 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
926 					   const char *name, const void *ns)
927 {
928 	struct kernfs_node *kn;
929 
930 	mutex_lock(&kernfs_mutex);
931 	kn = kernfs_find_ns(parent, name, ns);
932 	kernfs_get(kn);
933 	mutex_unlock(&kernfs_mutex);
934 
935 	return kn;
936 }
937 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
938 
939 /**
940  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
941  * @parent: kernfs_node to search under
942  * @path: path to look for
943  * @ns: the namespace tag to use
944  *
945  * Look for kernfs_node with path @path under @parent and get a reference
946  * if found.  This function may sleep and returns pointer to the found
947  * kernfs_node on success, %NULL on failure.
948  */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)949 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
950 					   const char *path, const void *ns)
951 {
952 	struct kernfs_node *kn;
953 
954 	mutex_lock(&kernfs_mutex);
955 	kn = kernfs_walk_ns(parent, path, ns);
956 	kernfs_get(kn);
957 	mutex_unlock(&kernfs_mutex);
958 
959 	return kn;
960 }
961 
962 /**
963  * kernfs_create_root - create a new kernfs hierarchy
964  * @scops: optional syscall operations for the hierarchy
965  * @flags: KERNFS_ROOT_* flags
966  * @priv: opaque data associated with the new directory
967  *
968  * Returns the root of the new hierarchy on success, ERR_PTR() value on
969  * failure.
970  */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)971 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
972 				       unsigned int flags, void *priv)
973 {
974 	struct kernfs_root *root;
975 	struct kernfs_node *kn;
976 
977 	root = kzalloc(sizeof(*root), GFP_KERNEL);
978 	if (!root)
979 		return ERR_PTR(-ENOMEM);
980 
981 	idr_init(&root->ino_idr);
982 	INIT_LIST_HEAD(&root->supers);
983 	root->next_generation = 1;
984 
985 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
986 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
987 			       KERNFS_DIR);
988 	if (!kn) {
989 		idr_destroy(&root->ino_idr);
990 		kfree(root);
991 		return ERR_PTR(-ENOMEM);
992 	}
993 
994 	kn->priv = priv;
995 	kn->dir.root = root;
996 
997 	root->syscall_ops = scops;
998 	root->flags = flags;
999 	root->kn = kn;
1000 	init_waitqueue_head(&root->deactivate_waitq);
1001 
1002 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
1003 		kernfs_activate(kn);
1004 
1005 	return root;
1006 }
1007 
1008 /**
1009  * kernfs_destroy_root - destroy a kernfs hierarchy
1010  * @root: root of the hierarchy to destroy
1011  *
1012  * Destroy the hierarchy anchored at @root by removing all existing
1013  * directories and destroying @root.
1014  */
kernfs_destroy_root(struct kernfs_root * root)1015 void kernfs_destroy_root(struct kernfs_root *root)
1016 {
1017 	kernfs_remove(root->kn);	/* will also free @root */
1018 }
1019 
1020 /**
1021  * kernfs_create_dir_ns - create a directory
1022  * @parent: parent in which to create a new directory
1023  * @name: name of the new directory
1024  * @mode: mode of the new directory
1025  * @uid: uid of the new directory
1026  * @gid: gid of the new directory
1027  * @priv: opaque data associated with the new directory
1028  * @ns: optional namespace tag of the directory
1029  *
1030  * Returns the created node on success, ERR_PTR() value on failure.
1031  */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1032 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1033 					 const char *name, umode_t mode,
1034 					 kuid_t uid, kgid_t gid,
1035 					 void *priv, const void *ns)
1036 {
1037 	struct kernfs_node *kn;
1038 	int rc;
1039 
1040 	/* allocate */
1041 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1042 			     uid, gid, KERNFS_DIR);
1043 	if (!kn)
1044 		return ERR_PTR(-ENOMEM);
1045 
1046 	kn->dir.root = parent->dir.root;
1047 	kn->ns = ns;
1048 	kn->priv = priv;
1049 
1050 	/* link in */
1051 	rc = kernfs_add_one(kn);
1052 	if (!rc)
1053 		return kn;
1054 
1055 	kernfs_put(kn);
1056 	return ERR_PTR(rc);
1057 }
1058 
1059 /**
1060  * kernfs_create_empty_dir - create an always empty directory
1061  * @parent: parent in which to create a new directory
1062  * @name: name of the new directory
1063  *
1064  * Returns the created node on success, ERR_PTR() value on failure.
1065  */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1066 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1067 					    const char *name)
1068 {
1069 	struct kernfs_node *kn;
1070 	int rc;
1071 
1072 	/* allocate */
1073 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1074 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1075 	if (!kn)
1076 		return ERR_PTR(-ENOMEM);
1077 
1078 	kn->flags |= KERNFS_EMPTY_DIR;
1079 	kn->dir.root = parent->dir.root;
1080 	kn->ns = NULL;
1081 	kn->priv = NULL;
1082 
1083 	/* link in */
1084 	rc = kernfs_add_one(kn);
1085 	if (!rc)
1086 		return kn;
1087 
1088 	kernfs_put(kn);
1089 	return ERR_PTR(rc);
1090 }
1091 
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1092 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1093 					struct dentry *dentry,
1094 					unsigned int flags)
1095 {
1096 	struct dentry *ret;
1097 	struct kernfs_node *parent = dir->i_private;
1098 	struct kernfs_node *kn;
1099 	struct inode *inode;
1100 	const void *ns = NULL;
1101 
1102 	mutex_lock(&kernfs_mutex);
1103 
1104 	if (kernfs_ns_enabled(parent))
1105 		ns = kernfs_info(dir->i_sb)->ns;
1106 
1107 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1108 
1109 	/* no such entry */
1110 	if (!kn || !kernfs_active(kn)) {
1111 		ret = NULL;
1112 		goto out_unlock;
1113 	}
1114 
1115 	/* attach dentry and inode */
1116 	inode = kernfs_get_inode(dir->i_sb, kn);
1117 	if (!inode) {
1118 		ret = ERR_PTR(-ENOMEM);
1119 		goto out_unlock;
1120 	}
1121 
1122 	/* instantiate and hash dentry */
1123 	ret = d_splice_alias(inode, dentry);
1124  out_unlock:
1125 	mutex_unlock(&kernfs_mutex);
1126 	return ret;
1127 }
1128 
kernfs_iop_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1129 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1130 			    umode_t mode)
1131 {
1132 	struct kernfs_node *parent = dir->i_private;
1133 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1134 	int ret;
1135 
1136 	if (!scops || !scops->mkdir)
1137 		return -EPERM;
1138 
1139 	if (!kernfs_get_active(parent))
1140 		return -ENODEV;
1141 
1142 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1143 
1144 	kernfs_put_active(parent);
1145 	return ret;
1146 }
1147 
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1148 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1149 {
1150 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1151 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1152 	int ret;
1153 
1154 	if (!scops || !scops->rmdir)
1155 		return -EPERM;
1156 
1157 	if (!kernfs_get_active(kn))
1158 		return -ENODEV;
1159 
1160 	ret = scops->rmdir(kn);
1161 
1162 	kernfs_put_active(kn);
1163 	return ret;
1164 }
1165 
kernfs_iop_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1166 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1167 			     struct inode *new_dir, struct dentry *new_dentry,
1168 			     unsigned int flags)
1169 {
1170 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1171 	struct kernfs_node *new_parent = new_dir->i_private;
1172 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1173 	int ret;
1174 
1175 	if (flags)
1176 		return -EINVAL;
1177 
1178 	if (!scops || !scops->rename)
1179 		return -EPERM;
1180 
1181 	if (!kernfs_get_active(kn))
1182 		return -ENODEV;
1183 
1184 	if (!kernfs_get_active(new_parent)) {
1185 		kernfs_put_active(kn);
1186 		return -ENODEV;
1187 	}
1188 
1189 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1190 
1191 	kernfs_put_active(new_parent);
1192 	kernfs_put_active(kn);
1193 	return ret;
1194 }
1195 
1196 const struct inode_operations kernfs_dir_iops = {
1197 	.lookup		= kernfs_iop_lookup,
1198 	.permission	= kernfs_iop_permission,
1199 	.setattr	= kernfs_iop_setattr,
1200 	.getattr	= kernfs_iop_getattr,
1201 	.listxattr	= kernfs_iop_listxattr,
1202 
1203 	.mkdir		= kernfs_iop_mkdir,
1204 	.rmdir		= kernfs_iop_rmdir,
1205 	.rename		= kernfs_iop_rename,
1206 };
1207 
kernfs_leftmost_descendant(struct kernfs_node * pos)1208 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1209 {
1210 	struct kernfs_node *last;
1211 
1212 	while (true) {
1213 		struct rb_node *rbn;
1214 
1215 		last = pos;
1216 
1217 		if (kernfs_type(pos) != KERNFS_DIR)
1218 			break;
1219 
1220 		rbn = rb_first(&pos->dir.children);
1221 		if (!rbn)
1222 			break;
1223 
1224 		pos = rb_to_kn(rbn);
1225 	}
1226 
1227 	return last;
1228 }
1229 
1230 /**
1231  * kernfs_next_descendant_post - find the next descendant for post-order walk
1232  * @pos: the current position (%NULL to initiate traversal)
1233  * @root: kernfs_node whose descendants to walk
1234  *
1235  * Find the next descendant to visit for post-order traversal of @root's
1236  * descendants.  @root is included in the iteration and the last node to be
1237  * visited.
1238  */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1239 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1240 						       struct kernfs_node *root)
1241 {
1242 	struct rb_node *rbn;
1243 
1244 	lockdep_assert_held(&kernfs_mutex);
1245 
1246 	/* if first iteration, visit leftmost descendant which may be root */
1247 	if (!pos)
1248 		return kernfs_leftmost_descendant(root);
1249 
1250 	/* if we visited @root, we're done */
1251 	if (pos == root)
1252 		return NULL;
1253 
1254 	/* if there's an unvisited sibling, visit its leftmost descendant */
1255 	rbn = rb_next(&pos->rb);
1256 	if (rbn)
1257 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1258 
1259 	/* no sibling left, visit parent */
1260 	return pos->parent;
1261 }
1262 
1263 /**
1264  * kernfs_activate - activate a node which started deactivated
1265  * @kn: kernfs_node whose subtree is to be activated
1266  *
1267  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1268  * needs to be explicitly activated.  A node which hasn't been activated
1269  * isn't visible to userland and deactivation is skipped during its
1270  * removal.  This is useful to construct atomic init sequences where
1271  * creation of multiple nodes should either succeed or fail atomically.
1272  *
1273  * The caller is responsible for ensuring that this function is not called
1274  * after kernfs_remove*() is invoked on @kn.
1275  */
kernfs_activate(struct kernfs_node * kn)1276 void kernfs_activate(struct kernfs_node *kn)
1277 {
1278 	struct kernfs_node *pos;
1279 
1280 	mutex_lock(&kernfs_mutex);
1281 
1282 	pos = NULL;
1283 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1284 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1285 			continue;
1286 
1287 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1288 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1289 
1290 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1291 		pos->flags |= KERNFS_ACTIVATED;
1292 	}
1293 
1294 	mutex_unlock(&kernfs_mutex);
1295 }
1296 
__kernfs_remove(struct kernfs_node * kn)1297 static void __kernfs_remove(struct kernfs_node *kn)
1298 {
1299 	struct kernfs_node *pos;
1300 
1301 	lockdep_assert_held(&kernfs_mutex);
1302 
1303 	/*
1304 	 * Short-circuit if non-root @kn has already finished removal.
1305 	 * This is for kernfs_remove_self() which plays with active ref
1306 	 * after removal.
1307 	 */
1308 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1309 		return;
1310 
1311 	pr_debug("kernfs %s: removing\n", kn->name);
1312 
1313 	/* prevent any new usage under @kn by deactivating all nodes */
1314 	pos = NULL;
1315 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1316 		if (kernfs_active(pos))
1317 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1318 
1319 	/* deactivate and unlink the subtree node-by-node */
1320 	do {
1321 		pos = kernfs_leftmost_descendant(kn);
1322 
1323 		/*
1324 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1325 		 * base ref could have been put by someone else by the time
1326 		 * the function returns.  Make sure it doesn't go away
1327 		 * underneath us.
1328 		 */
1329 		kernfs_get(pos);
1330 
1331 		/*
1332 		 * Drain iff @kn was activated.  This avoids draining and
1333 		 * its lockdep annotations for nodes which have never been
1334 		 * activated and allows embedding kernfs_remove() in create
1335 		 * error paths without worrying about draining.
1336 		 */
1337 		if (kn->flags & KERNFS_ACTIVATED)
1338 			kernfs_drain(pos);
1339 		else
1340 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1341 
1342 		/*
1343 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1344 		 * to decide who's responsible for cleanups.
1345 		 */
1346 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1347 			struct kernfs_iattrs *ps_iattr =
1348 				pos->parent ? pos->parent->iattr : NULL;
1349 
1350 			/* update timestamps on the parent */
1351 			if (ps_iattr) {
1352 				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1353 				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1354 			}
1355 
1356 			kernfs_put(pos);
1357 		}
1358 
1359 		kernfs_put(pos);
1360 	} while (pos != kn);
1361 }
1362 
1363 /**
1364  * kernfs_remove - remove a kernfs_node recursively
1365  * @kn: the kernfs_node to remove
1366  *
1367  * Remove @kn along with all its subdirectories and files.
1368  */
kernfs_remove(struct kernfs_node * kn)1369 void kernfs_remove(struct kernfs_node *kn)
1370 {
1371 	mutex_lock(&kernfs_mutex);
1372 	__kernfs_remove(kn);
1373 	mutex_unlock(&kernfs_mutex);
1374 }
1375 
1376 /**
1377  * kernfs_break_active_protection - break out of active protection
1378  * @kn: the self kernfs_node
1379  *
1380  * The caller must be running off of a kernfs operation which is invoked
1381  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1382  * this function must also be matched with an invocation of
1383  * kernfs_unbreak_active_protection().
1384  *
1385  * This function releases the active reference of @kn the caller is
1386  * holding.  Once this function is called, @kn may be removed at any point
1387  * and the caller is solely responsible for ensuring that the objects it
1388  * dereferences are accessible.
1389  */
kernfs_break_active_protection(struct kernfs_node * kn)1390 void kernfs_break_active_protection(struct kernfs_node *kn)
1391 {
1392 	/*
1393 	 * Take out ourself out of the active ref dependency chain.  If
1394 	 * we're called without an active ref, lockdep will complain.
1395 	 */
1396 	kernfs_put_active(kn);
1397 }
1398 
1399 /**
1400  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1401  * @kn: the self kernfs_node
1402  *
1403  * If kernfs_break_active_protection() was called, this function must be
1404  * invoked before finishing the kernfs operation.  Note that while this
1405  * function restores the active reference, it doesn't and can't actually
1406  * restore the active protection - @kn may already or be in the process of
1407  * being removed.  Once kernfs_break_active_protection() is invoked, that
1408  * protection is irreversibly gone for the kernfs operation instance.
1409  *
1410  * While this function may be called at any point after
1411  * kernfs_break_active_protection() is invoked, its most useful location
1412  * would be right before the enclosing kernfs operation returns.
1413  */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1414 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1415 {
1416 	/*
1417 	 * @kn->active could be in any state; however, the increment we do
1418 	 * here will be undone as soon as the enclosing kernfs operation
1419 	 * finishes and this temporary bump can't break anything.  If @kn
1420 	 * is alive, nothing changes.  If @kn is being deactivated, the
1421 	 * soon-to-follow put will either finish deactivation or restore
1422 	 * deactivated state.  If @kn is already removed, the temporary
1423 	 * bump is guaranteed to be gone before @kn is released.
1424 	 */
1425 	atomic_inc(&kn->active);
1426 	if (kernfs_lockdep(kn))
1427 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1428 }
1429 
1430 /**
1431  * kernfs_remove_self - remove a kernfs_node from its own method
1432  * @kn: the self kernfs_node to remove
1433  *
1434  * The caller must be running off of a kernfs operation which is invoked
1435  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1436  * implement a file operation which deletes itself.
1437  *
1438  * For example, the "delete" file for a sysfs device directory can be
1439  * implemented by invoking kernfs_remove_self() on the "delete" file
1440  * itself.  This function breaks the circular dependency of trying to
1441  * deactivate self while holding an active ref itself.  It isn't necessary
1442  * to modify the usual removal path to use kernfs_remove_self().  The
1443  * "delete" implementation can simply invoke kernfs_remove_self() on self
1444  * before proceeding with the usual removal path.  kernfs will ignore later
1445  * kernfs_remove() on self.
1446  *
1447  * kernfs_remove_self() can be called multiple times concurrently on the
1448  * same kernfs_node.  Only the first one actually performs removal and
1449  * returns %true.  All others will wait until the kernfs operation which
1450  * won self-removal finishes and return %false.  Note that the losers wait
1451  * for the completion of not only the winning kernfs_remove_self() but also
1452  * the whole kernfs_ops which won the arbitration.  This can be used to
1453  * guarantee, for example, all concurrent writes to a "delete" file to
1454  * finish only after the whole operation is complete.
1455  */
kernfs_remove_self(struct kernfs_node * kn)1456 bool kernfs_remove_self(struct kernfs_node *kn)
1457 {
1458 	bool ret;
1459 
1460 	mutex_lock(&kernfs_mutex);
1461 	kernfs_break_active_protection(kn);
1462 
1463 	/*
1464 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1465 	 * the first one will actually perform removal.  When the removal
1466 	 * is complete, SUICIDED is set and the active ref is restored
1467 	 * while holding kernfs_mutex.  The ones which lost arbitration
1468 	 * waits for SUICDED && drained which can happen only after the
1469 	 * enclosing kernfs operation which executed the winning instance
1470 	 * of kernfs_remove_self() finished.
1471 	 */
1472 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1473 		kn->flags |= KERNFS_SUICIDAL;
1474 		__kernfs_remove(kn);
1475 		kn->flags |= KERNFS_SUICIDED;
1476 		ret = true;
1477 	} else {
1478 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1479 		DEFINE_WAIT(wait);
1480 
1481 		while (true) {
1482 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1483 
1484 			if ((kn->flags & KERNFS_SUICIDED) &&
1485 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1486 				break;
1487 
1488 			mutex_unlock(&kernfs_mutex);
1489 			schedule();
1490 			mutex_lock(&kernfs_mutex);
1491 		}
1492 		finish_wait(waitq, &wait);
1493 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1494 		ret = false;
1495 	}
1496 
1497 	/*
1498 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1499 	 * for SUICIDED && deactivated could finish prematurely.
1500 	 */
1501 	kernfs_unbreak_active_protection(kn);
1502 
1503 	mutex_unlock(&kernfs_mutex);
1504 	return ret;
1505 }
1506 
1507 /**
1508  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1509  * @parent: parent of the target
1510  * @name: name of the kernfs_node to remove
1511  * @ns: namespace tag of the kernfs_node to remove
1512  *
1513  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1514  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1515  */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1516 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1517 			     const void *ns)
1518 {
1519 	struct kernfs_node *kn;
1520 
1521 	if (!parent) {
1522 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1523 			name);
1524 		return -ENOENT;
1525 	}
1526 
1527 	mutex_lock(&kernfs_mutex);
1528 
1529 	kn = kernfs_find_ns(parent, name, ns);
1530 	if (kn) {
1531 		kernfs_get(kn);
1532 		__kernfs_remove(kn);
1533 		kernfs_put(kn);
1534 	}
1535 
1536 	mutex_unlock(&kernfs_mutex);
1537 
1538 	if (kn)
1539 		return 0;
1540 	else
1541 		return -ENOENT;
1542 }
1543 
1544 /**
1545  * kernfs_rename_ns - move and rename a kernfs_node
1546  * @kn: target node
1547  * @new_parent: new parent to put @sd under
1548  * @new_name: new name
1549  * @new_ns: new namespace tag
1550  */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1551 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1552 		     const char *new_name, const void *new_ns)
1553 {
1554 	struct kernfs_node *old_parent;
1555 	const char *old_name = NULL;
1556 	int error;
1557 
1558 	/* can't move or rename root */
1559 	if (!kn->parent)
1560 		return -EINVAL;
1561 
1562 	mutex_lock(&kernfs_mutex);
1563 
1564 	error = -ENOENT;
1565 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1566 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1567 		goto out;
1568 
1569 	error = 0;
1570 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1571 	    (strcmp(kn->name, new_name) == 0))
1572 		goto out;	/* nothing to rename */
1573 
1574 	error = -EEXIST;
1575 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1576 		goto out;
1577 
1578 	/* rename kernfs_node */
1579 	if (strcmp(kn->name, new_name) != 0) {
1580 		error = -ENOMEM;
1581 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1582 		if (!new_name)
1583 			goto out;
1584 	} else {
1585 		new_name = NULL;
1586 	}
1587 
1588 	/*
1589 	 * Move to the appropriate place in the appropriate directories rbtree.
1590 	 */
1591 	kernfs_unlink_sibling(kn);
1592 	kernfs_get(new_parent);
1593 
1594 	/* rename_lock protects ->parent and ->name accessors */
1595 	spin_lock_irq(&kernfs_rename_lock);
1596 
1597 	old_parent = kn->parent;
1598 	kn->parent = new_parent;
1599 
1600 	kn->ns = new_ns;
1601 	if (new_name) {
1602 		old_name = kn->name;
1603 		kn->name = new_name;
1604 	}
1605 
1606 	spin_unlock_irq(&kernfs_rename_lock);
1607 
1608 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1609 	kernfs_link_sibling(kn);
1610 
1611 	kernfs_put(old_parent);
1612 	kfree_const(old_name);
1613 
1614 	error = 0;
1615  out:
1616 	mutex_unlock(&kernfs_mutex);
1617 	return error;
1618 }
1619 
1620 /* Relationship between s_mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1621 static inline unsigned char dt_type(struct kernfs_node *kn)
1622 {
1623 	return (kn->mode >> 12) & 15;
1624 }
1625 
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1626 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1627 {
1628 	kernfs_put(filp->private_data);
1629 	return 0;
1630 }
1631 
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1632 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1633 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1634 {
1635 	if (pos) {
1636 		int valid = kernfs_active(pos) &&
1637 			pos->parent == parent && hash == pos->hash;
1638 		kernfs_put(pos);
1639 		if (!valid)
1640 			pos = NULL;
1641 	}
1642 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1643 		struct rb_node *node = parent->dir.children.rb_node;
1644 		while (node) {
1645 			pos = rb_to_kn(node);
1646 
1647 			if (hash < pos->hash)
1648 				node = node->rb_left;
1649 			else if (hash > pos->hash)
1650 				node = node->rb_right;
1651 			else
1652 				break;
1653 		}
1654 	}
1655 	/* Skip over entries which are dying/dead or in the wrong namespace */
1656 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1657 		struct rb_node *node = rb_next(&pos->rb);
1658 		if (!node)
1659 			pos = NULL;
1660 		else
1661 			pos = rb_to_kn(node);
1662 	}
1663 	return pos;
1664 }
1665 
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1666 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1667 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1668 {
1669 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1670 	if (pos) {
1671 		do {
1672 			struct rb_node *node = rb_next(&pos->rb);
1673 			if (!node)
1674 				pos = NULL;
1675 			else
1676 				pos = rb_to_kn(node);
1677 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1678 	}
1679 	return pos;
1680 }
1681 
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1682 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1683 {
1684 	struct dentry *dentry = file->f_path.dentry;
1685 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1686 	struct kernfs_node *pos = file->private_data;
1687 	const void *ns = NULL;
1688 
1689 	if (!dir_emit_dots(file, ctx))
1690 		return 0;
1691 	mutex_lock(&kernfs_mutex);
1692 
1693 	if (kernfs_ns_enabled(parent))
1694 		ns = kernfs_info(dentry->d_sb)->ns;
1695 
1696 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1697 	     pos;
1698 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1699 		const char *name = pos->name;
1700 		unsigned int type = dt_type(pos);
1701 		int len = strlen(name);
1702 		ino_t ino = pos->id.ino;
1703 
1704 		ctx->pos = pos->hash;
1705 		file->private_data = pos;
1706 		kernfs_get(pos);
1707 
1708 		mutex_unlock(&kernfs_mutex);
1709 		if (!dir_emit(ctx, name, len, ino, type))
1710 			return 0;
1711 		mutex_lock(&kernfs_mutex);
1712 	}
1713 	mutex_unlock(&kernfs_mutex);
1714 	file->private_data = NULL;
1715 	ctx->pos = INT_MAX;
1716 	return 0;
1717 }
1718 
1719 const struct file_operations kernfs_dir_fops = {
1720 	.read		= generic_read_dir,
1721 	.iterate_shared	= kernfs_fop_readdir,
1722 	.release	= kernfs_dir_fop_release,
1723 	.llseek		= generic_file_llseek,
1724 };
1725