1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17
18 #include "kernfs-internal.h"
19
20 DEFINE_MUTEX(kernfs_mutex);
21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22 /*
23 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
24 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
25 * will perform wakeups when releasing console_sem. Holding rename_lock
26 * will introduce deadlock if the scheduler reads the kernfs_name in the
27 * wakeup path.
28 */
29 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
30 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
31 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
32
33 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
34
kernfs_active(struct kernfs_node * kn)35 static bool kernfs_active(struct kernfs_node *kn)
36 {
37 lockdep_assert_held(&kernfs_mutex);
38 return atomic_read(&kn->active) >= 0;
39 }
40
kernfs_lockdep(struct kernfs_node * kn)41 static bool kernfs_lockdep(struct kernfs_node *kn)
42 {
43 #ifdef CONFIG_DEBUG_LOCK_ALLOC
44 return kn->flags & KERNFS_LOCKDEP;
45 #else
46 return false;
47 #endif
48 }
49
kernfs_name_locked(struct kernfs_node * kn,char * buf,size_t buflen)50 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
51 {
52 if (!kn)
53 return strlcpy(buf, "(null)", buflen);
54
55 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
56 }
57
58 /* kernfs_node_depth - compute depth from @from to @to */
kernfs_depth(struct kernfs_node * from,struct kernfs_node * to)59 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
60 {
61 size_t depth = 0;
62
63 while (to->parent && to != from) {
64 depth++;
65 to = to->parent;
66 }
67 return depth;
68 }
69
kernfs_common_ancestor(struct kernfs_node * a,struct kernfs_node * b)70 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
71 struct kernfs_node *b)
72 {
73 size_t da, db;
74 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
75
76 if (ra != rb)
77 return NULL;
78
79 da = kernfs_depth(ra->kn, a);
80 db = kernfs_depth(rb->kn, b);
81
82 while (da > db) {
83 a = a->parent;
84 da--;
85 }
86 while (db > da) {
87 b = b->parent;
88 db--;
89 }
90
91 /* worst case b and a will be the same at root */
92 while (b != a) {
93 b = b->parent;
94 a = a->parent;
95 }
96
97 return a;
98 }
99
100 /**
101 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
102 * where kn_from is treated as root of the path.
103 * @kn_from: kernfs node which should be treated as root for the path
104 * @kn_to: kernfs node to which path is needed
105 * @buf: buffer to copy the path into
106 * @buflen: size of @buf
107 *
108 * We need to handle couple of scenarios here:
109 * [1] when @kn_from is an ancestor of @kn_to at some level
110 * kn_from: /n1/n2/n3
111 * kn_to: /n1/n2/n3/n4/n5
112 * result: /n4/n5
113 *
114 * [2] when @kn_from is on a different hierarchy and we need to find common
115 * ancestor between @kn_from and @kn_to.
116 * kn_from: /n1/n2/n3/n4
117 * kn_to: /n1/n2/n5
118 * result: /../../n5
119 * OR
120 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
121 * kn_to: /n1/n2/n3 [depth=3]
122 * result: /../..
123 *
124 * [3] when @kn_to is NULL result will be "(null)"
125 *
126 * Returns the length of the full path. If the full length is equal to or
127 * greater than @buflen, @buf contains the truncated path with the trailing
128 * '\0'. On error, -errno is returned.
129 */
kernfs_path_from_node_locked(struct kernfs_node * kn_to,struct kernfs_node * kn_from,char * buf,size_t buflen)130 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
131 struct kernfs_node *kn_from,
132 char *buf, size_t buflen)
133 {
134 struct kernfs_node *kn, *common;
135 const char parent_str[] = "/..";
136 size_t depth_from, depth_to, len = 0;
137 int i, j;
138
139 if (!kn_to)
140 return strlcpy(buf, "(null)", buflen);
141
142 if (!kn_from)
143 kn_from = kernfs_root(kn_to)->kn;
144
145 if (kn_from == kn_to)
146 return strlcpy(buf, "/", buflen);
147
148 if (!buf)
149 return -EINVAL;
150
151 common = kernfs_common_ancestor(kn_from, kn_to);
152 if (WARN_ON(!common))
153 return -EINVAL;
154
155 depth_to = kernfs_depth(common, kn_to);
156 depth_from = kernfs_depth(common, kn_from);
157
158 buf[0] = '\0';
159
160 for (i = 0; i < depth_from; i++)
161 len += strlcpy(buf + len, parent_str,
162 len < buflen ? buflen - len : 0);
163
164 /* Calculate how many bytes we need for the rest */
165 for (i = depth_to - 1; i >= 0; i--) {
166 for (kn = kn_to, j = 0; j < i; j++)
167 kn = kn->parent;
168 len += strlcpy(buf + len, "/",
169 len < buflen ? buflen - len : 0);
170 len += strlcpy(buf + len, kn->name,
171 len < buflen ? buflen - len : 0);
172 }
173
174 return len;
175 }
176
177 /**
178 * kernfs_name - obtain the name of a given node
179 * @kn: kernfs_node of interest
180 * @buf: buffer to copy @kn's name into
181 * @buflen: size of @buf
182 *
183 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
184 * similar to strlcpy(). It returns the length of @kn's name and if @buf
185 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
186 *
187 * Fills buffer with "(null)" if @kn is NULL.
188 *
189 * This function can be called from any context.
190 */
kernfs_name(struct kernfs_node * kn,char * buf,size_t buflen)191 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
192 {
193 unsigned long flags;
194 int ret;
195
196 spin_lock_irqsave(&kernfs_rename_lock, flags);
197 ret = kernfs_name_locked(kn, buf, buflen);
198 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
199 return ret;
200 }
201
202 /**
203 * kernfs_path_from_node - build path of node @to relative to @from.
204 * @from: parent kernfs_node relative to which we need to build the path
205 * @to: kernfs_node of interest
206 * @buf: buffer to copy @to's path into
207 * @buflen: size of @buf
208 *
209 * Builds @to's path relative to @from in @buf. @from and @to must
210 * be on the same kernfs-root. If @from is not parent of @to, then a relative
211 * path (which includes '..'s) as needed to reach from @from to @to is
212 * returned.
213 *
214 * Returns the length of the full path. If the full length is equal to or
215 * greater than @buflen, @buf contains the truncated path with the trailing
216 * '\0'. On error, -errno is returned.
217 */
kernfs_path_from_node(struct kernfs_node * to,struct kernfs_node * from,char * buf,size_t buflen)218 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
219 char *buf, size_t buflen)
220 {
221 unsigned long flags;
222 int ret;
223
224 spin_lock_irqsave(&kernfs_rename_lock, flags);
225 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
226 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
227 return ret;
228 }
229 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
230
231 /**
232 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
233 * @kn: kernfs_node of interest
234 *
235 * This function can be called from any context.
236 */
pr_cont_kernfs_name(struct kernfs_node * kn)237 void pr_cont_kernfs_name(struct kernfs_node *kn)
238 {
239 unsigned long flags;
240
241 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
242
243 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
244 pr_cont("%s", kernfs_pr_cont_buf);
245
246 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
247 }
248
249 /**
250 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
251 * @kn: kernfs_node of interest
252 *
253 * This function can be called from any context.
254 */
pr_cont_kernfs_path(struct kernfs_node * kn)255 void pr_cont_kernfs_path(struct kernfs_node *kn)
256 {
257 unsigned long flags;
258 int sz;
259
260 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
261
262 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
263 sizeof(kernfs_pr_cont_buf));
264 if (sz < 0) {
265 pr_cont("(error)");
266 goto out;
267 }
268
269 if (sz >= sizeof(kernfs_pr_cont_buf)) {
270 pr_cont("(name too long)");
271 goto out;
272 }
273
274 pr_cont("%s", kernfs_pr_cont_buf);
275
276 out:
277 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
278 }
279
280 /**
281 * kernfs_get_parent - determine the parent node and pin it
282 * @kn: kernfs_node of interest
283 *
284 * Determines @kn's parent, pins and returns it. This function can be
285 * called from any context.
286 */
kernfs_get_parent(struct kernfs_node * kn)287 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
288 {
289 struct kernfs_node *parent;
290 unsigned long flags;
291
292 spin_lock_irqsave(&kernfs_rename_lock, flags);
293 parent = kn->parent;
294 kernfs_get(parent);
295 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
296
297 return parent;
298 }
299
300 /**
301 * kernfs_name_hash
302 * @name: Null terminated string to hash
303 * @ns: Namespace tag to hash
304 *
305 * Returns 31 bit hash of ns + name (so it fits in an off_t )
306 */
kernfs_name_hash(const char * name,const void * ns)307 static unsigned int kernfs_name_hash(const char *name, const void *ns)
308 {
309 unsigned long hash = init_name_hash(ns);
310 unsigned int len = strlen(name);
311 while (len--)
312 hash = partial_name_hash(*name++, hash);
313 hash = end_name_hash(hash);
314 hash &= 0x7fffffffU;
315 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
316 if (hash < 2)
317 hash += 2;
318 if (hash >= INT_MAX)
319 hash = INT_MAX - 1;
320 return hash;
321 }
322
kernfs_name_compare(unsigned int hash,const char * name,const void * ns,const struct kernfs_node * kn)323 static int kernfs_name_compare(unsigned int hash, const char *name,
324 const void *ns, const struct kernfs_node *kn)
325 {
326 if (hash < kn->hash)
327 return -1;
328 if (hash > kn->hash)
329 return 1;
330 if (ns < kn->ns)
331 return -1;
332 if (ns > kn->ns)
333 return 1;
334 return strcmp(name, kn->name);
335 }
336
kernfs_sd_compare(const struct kernfs_node * left,const struct kernfs_node * right)337 static int kernfs_sd_compare(const struct kernfs_node *left,
338 const struct kernfs_node *right)
339 {
340 return kernfs_name_compare(left->hash, left->name, left->ns, right);
341 }
342
343 /**
344 * kernfs_link_sibling - link kernfs_node into sibling rbtree
345 * @kn: kernfs_node of interest
346 *
347 * Link @kn into its sibling rbtree which starts from
348 * @kn->parent->dir.children.
349 *
350 * Locking:
351 * mutex_lock(kernfs_mutex)
352 *
353 * RETURNS:
354 * 0 on susccess -EEXIST on failure.
355 */
kernfs_link_sibling(struct kernfs_node * kn)356 static int kernfs_link_sibling(struct kernfs_node *kn)
357 {
358 struct rb_node **node = &kn->parent->dir.children.rb_node;
359 struct rb_node *parent = NULL;
360
361 while (*node) {
362 struct kernfs_node *pos;
363 int result;
364
365 pos = rb_to_kn(*node);
366 parent = *node;
367 result = kernfs_sd_compare(kn, pos);
368 if (result < 0)
369 node = &pos->rb.rb_left;
370 else if (result > 0)
371 node = &pos->rb.rb_right;
372 else
373 return -EEXIST;
374 }
375
376 /* add new node and rebalance the tree */
377 rb_link_node(&kn->rb, parent, node);
378 rb_insert_color(&kn->rb, &kn->parent->dir.children);
379
380 /* successfully added, account subdir number */
381 if (kernfs_type(kn) == KERNFS_DIR)
382 kn->parent->dir.subdirs++;
383
384 return 0;
385 }
386
387 /**
388 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
389 * @kn: kernfs_node of interest
390 *
391 * Try to unlink @kn from its sibling rbtree which starts from
392 * kn->parent->dir.children. Returns %true if @kn was actually
393 * removed, %false if @kn wasn't on the rbtree.
394 *
395 * Locking:
396 * mutex_lock(kernfs_mutex)
397 */
kernfs_unlink_sibling(struct kernfs_node * kn)398 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
399 {
400 if (RB_EMPTY_NODE(&kn->rb))
401 return false;
402
403 if (kernfs_type(kn) == KERNFS_DIR)
404 kn->parent->dir.subdirs--;
405
406 rb_erase(&kn->rb, &kn->parent->dir.children);
407 RB_CLEAR_NODE(&kn->rb);
408 return true;
409 }
410
411 /**
412 * kernfs_get_active - get an active reference to kernfs_node
413 * @kn: kernfs_node to get an active reference to
414 *
415 * Get an active reference of @kn. This function is noop if @kn
416 * is NULL.
417 *
418 * RETURNS:
419 * Pointer to @kn on success, NULL on failure.
420 */
kernfs_get_active(struct kernfs_node * kn)421 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
422 {
423 if (unlikely(!kn))
424 return NULL;
425
426 if (!atomic_inc_unless_negative(&kn->active))
427 return NULL;
428
429 if (kernfs_lockdep(kn))
430 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
431 return kn;
432 }
433
434 /**
435 * kernfs_put_active - put an active reference to kernfs_node
436 * @kn: kernfs_node to put an active reference to
437 *
438 * Put an active reference to @kn. This function is noop if @kn
439 * is NULL.
440 */
kernfs_put_active(struct kernfs_node * kn)441 void kernfs_put_active(struct kernfs_node *kn)
442 {
443 int v;
444
445 if (unlikely(!kn))
446 return;
447
448 if (kernfs_lockdep(kn))
449 rwsem_release(&kn->dep_map, 1, _RET_IP_);
450 v = atomic_dec_return(&kn->active);
451 if (likely(v != KN_DEACTIVATED_BIAS))
452 return;
453
454 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
455 }
456
457 /**
458 * kernfs_drain - drain kernfs_node
459 * @kn: kernfs_node to drain
460 *
461 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
462 * removers may invoke this function concurrently on @kn and all will
463 * return after draining is complete.
464 */
kernfs_drain(struct kernfs_node * kn)465 static void kernfs_drain(struct kernfs_node *kn)
466 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
467 {
468 struct kernfs_root *root = kernfs_root(kn);
469
470 lockdep_assert_held(&kernfs_mutex);
471 WARN_ON_ONCE(kernfs_active(kn));
472
473 mutex_unlock(&kernfs_mutex);
474
475 if (kernfs_lockdep(kn)) {
476 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
477 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
478 lock_contended(&kn->dep_map, _RET_IP_);
479 }
480
481 /* but everyone should wait for draining */
482 wait_event(root->deactivate_waitq,
483 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
484
485 if (kernfs_lockdep(kn)) {
486 lock_acquired(&kn->dep_map, _RET_IP_);
487 rwsem_release(&kn->dep_map, 1, _RET_IP_);
488 }
489
490 kernfs_drain_open_files(kn);
491
492 mutex_lock(&kernfs_mutex);
493 }
494
495 /**
496 * kernfs_get - get a reference count on a kernfs_node
497 * @kn: the target kernfs_node
498 */
kernfs_get(struct kernfs_node * kn)499 void kernfs_get(struct kernfs_node *kn)
500 {
501 if (kn) {
502 WARN_ON(!atomic_read(&kn->count));
503 atomic_inc(&kn->count);
504 }
505 }
506 EXPORT_SYMBOL_GPL(kernfs_get);
507
508 /**
509 * kernfs_put - put a reference count on a kernfs_node
510 * @kn: the target kernfs_node
511 *
512 * Put a reference count of @kn and destroy it if it reached zero.
513 */
kernfs_put(struct kernfs_node * kn)514 void kernfs_put(struct kernfs_node *kn)
515 {
516 struct kernfs_node *parent;
517 struct kernfs_root *root;
518
519 /*
520 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
521 * depends on this to filter reused stale node
522 */
523 if (!kn || !atomic_dec_and_test(&kn->count))
524 return;
525 root = kernfs_root(kn);
526 repeat:
527 /*
528 * Moving/renaming is always done while holding reference.
529 * kn->parent won't change beneath us.
530 */
531 parent = kn->parent;
532
533 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
534 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
535 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
536
537 if (kernfs_type(kn) == KERNFS_LINK)
538 kernfs_put(kn->symlink.target_kn);
539
540 kfree_const(kn->name);
541
542 if (kn->iattr) {
543 simple_xattrs_free(&kn->iattr->xattrs);
544 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
545 }
546 spin_lock(&kernfs_idr_lock);
547 idr_remove(&root->ino_idr, kn->id.ino);
548 spin_unlock(&kernfs_idr_lock);
549 kmem_cache_free(kernfs_node_cache, kn);
550
551 kn = parent;
552 if (kn) {
553 if (atomic_dec_and_test(&kn->count))
554 goto repeat;
555 } else {
556 /* just released the root kn, free @root too */
557 idr_destroy(&root->ino_idr);
558 kfree(root);
559 }
560 }
561 EXPORT_SYMBOL_GPL(kernfs_put);
562
kernfs_dop_revalidate(struct dentry * dentry,unsigned int flags)563 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
564 {
565 struct kernfs_node *kn;
566
567 if (flags & LOOKUP_RCU)
568 return -ECHILD;
569
570 /* Always perform fresh lookup for negatives */
571 if (d_really_is_negative(dentry))
572 goto out_bad_unlocked;
573
574 kn = kernfs_dentry_node(dentry);
575 mutex_lock(&kernfs_mutex);
576
577 /* The kernfs node has been deactivated */
578 if (!kernfs_active(kn))
579 goto out_bad;
580
581 /* The kernfs node has been moved? */
582 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
583 goto out_bad;
584
585 /* The kernfs node has been renamed */
586 if (strcmp(dentry->d_name.name, kn->name) != 0)
587 goto out_bad;
588
589 /* The kernfs node has been moved to a different namespace */
590 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
591 kernfs_info(dentry->d_sb)->ns != kn->ns)
592 goto out_bad;
593
594 mutex_unlock(&kernfs_mutex);
595 return 1;
596 out_bad:
597 mutex_unlock(&kernfs_mutex);
598 out_bad_unlocked:
599 return 0;
600 }
601
602 const struct dentry_operations kernfs_dops = {
603 .d_revalidate = kernfs_dop_revalidate,
604 };
605
606 /**
607 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
608 * @dentry: the dentry in question
609 *
610 * Return the kernfs_node associated with @dentry. If @dentry is not a
611 * kernfs one, %NULL is returned.
612 *
613 * While the returned kernfs_node will stay accessible as long as @dentry
614 * is accessible, the returned node can be in any state and the caller is
615 * fully responsible for determining what's accessible.
616 */
kernfs_node_from_dentry(struct dentry * dentry)617 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
618 {
619 if (dentry->d_sb->s_op == &kernfs_sops &&
620 !d_really_is_negative(dentry))
621 return kernfs_dentry_node(dentry);
622 return NULL;
623 }
624
__kernfs_new_node(struct kernfs_root * root,struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)625 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
626 struct kernfs_node *parent,
627 const char *name, umode_t mode,
628 kuid_t uid, kgid_t gid,
629 unsigned flags)
630 {
631 struct kernfs_node *kn;
632 u32 gen;
633 int ret;
634
635 name = kstrdup_const(name, GFP_KERNEL);
636 if (!name)
637 return NULL;
638
639 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
640 if (!kn)
641 goto err_out1;
642
643 idr_preload(GFP_KERNEL);
644 spin_lock(&kernfs_idr_lock);
645 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
646 if (ret >= 0 && ret < root->last_ino)
647 root->next_generation++;
648 gen = root->next_generation;
649 root->last_ino = ret;
650 spin_unlock(&kernfs_idr_lock);
651 idr_preload_end();
652 if (ret < 0)
653 goto err_out2;
654 kn->id.ino = ret;
655 kn->id.generation = gen;
656
657 /*
658 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
659 * kernfs_find_and_get_node_by_ino
660 */
661 atomic_set_release(&kn->count, 1);
662 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
663 RB_CLEAR_NODE(&kn->rb);
664
665 kn->name = name;
666 kn->mode = mode;
667 kn->flags = flags;
668
669 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
670 struct iattr iattr = {
671 .ia_valid = ATTR_UID | ATTR_GID,
672 .ia_uid = uid,
673 .ia_gid = gid,
674 };
675
676 ret = __kernfs_setattr(kn, &iattr);
677 if (ret < 0)
678 goto err_out3;
679 }
680
681 if (parent) {
682 ret = security_kernfs_init_security(parent, kn);
683 if (ret)
684 goto err_out3;
685 }
686
687 return kn;
688
689 err_out3:
690 idr_remove(&root->ino_idr, kn->id.ino);
691 err_out2:
692 kmem_cache_free(kernfs_node_cache, kn);
693 err_out1:
694 kfree_const(name);
695 return NULL;
696 }
697
kernfs_new_node(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,unsigned flags)698 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
699 const char *name, umode_t mode,
700 kuid_t uid, kgid_t gid,
701 unsigned flags)
702 {
703 struct kernfs_node *kn;
704
705 if (parent->mode & S_ISGID) {
706 /* this code block imitates inode_init_owner() for
707 * kernfs
708 */
709
710 if (parent->iattr)
711 gid = parent->iattr->ia_gid;
712
713 if (flags & KERNFS_DIR)
714 mode |= S_ISGID;
715 }
716
717 kn = __kernfs_new_node(kernfs_root(parent), parent,
718 name, mode, uid, gid, flags);
719 if (kn) {
720 kernfs_get(parent);
721 kn->parent = parent;
722 }
723 return kn;
724 }
725
726 /*
727 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
728 * @root: the kernfs root
729 * @ino: inode number
730 *
731 * RETURNS:
732 * NULL on failure. Return a kernfs node with reference counter incremented
733 */
kernfs_find_and_get_node_by_ino(struct kernfs_root * root,unsigned int ino)734 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
735 unsigned int ino)
736 {
737 struct kernfs_node *kn;
738
739 rcu_read_lock();
740 kn = idr_find(&root->ino_idr, ino);
741 if (!kn)
742 goto out;
743
744 /*
745 * Since kernfs_node is freed in RCU, it's possible an old node for ino
746 * is freed, but reused before RCU grace period. But a freed node (see
747 * kernfs_put) or an incompletedly initialized node (see
748 * __kernfs_new_node) should have 'count' 0. We can use this fact to
749 * filter out such node.
750 */
751 if (!atomic_inc_not_zero(&kn->count)) {
752 kn = NULL;
753 goto out;
754 }
755
756 /*
757 * The node could be a new node or a reused node. If it's a new node,
758 * we are ok. If it's reused because of RCU (because of
759 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
760 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
761 * hence we can use 'ino' to filter stale node.
762 */
763 if (kn->id.ino != ino)
764 goto out;
765 rcu_read_unlock();
766
767 return kn;
768 out:
769 rcu_read_unlock();
770 kernfs_put(kn);
771 return NULL;
772 }
773
774 /**
775 * kernfs_add_one - add kernfs_node to parent without warning
776 * @kn: kernfs_node to be added
777 *
778 * The caller must already have initialized @kn->parent. This
779 * function increments nlink of the parent's inode if @kn is a
780 * directory and link into the children list of the parent.
781 *
782 * RETURNS:
783 * 0 on success, -EEXIST if entry with the given name already
784 * exists.
785 */
kernfs_add_one(struct kernfs_node * kn)786 int kernfs_add_one(struct kernfs_node *kn)
787 {
788 struct kernfs_node *parent = kn->parent;
789 struct kernfs_iattrs *ps_iattr;
790 bool has_ns;
791 int ret;
792
793 mutex_lock(&kernfs_mutex);
794
795 ret = -EINVAL;
796 has_ns = kernfs_ns_enabled(parent);
797 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
798 has_ns ? "required" : "invalid", parent->name, kn->name))
799 goto out_unlock;
800
801 if (kernfs_type(parent) != KERNFS_DIR)
802 goto out_unlock;
803
804 ret = -ENOENT;
805 if (parent->flags & KERNFS_EMPTY_DIR)
806 goto out_unlock;
807
808 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
809 goto out_unlock;
810
811 kn->hash = kernfs_name_hash(kn->name, kn->ns);
812
813 ret = kernfs_link_sibling(kn);
814 if (ret)
815 goto out_unlock;
816
817 /* Update timestamps on the parent */
818 ps_iattr = parent->iattr;
819 if (ps_iattr) {
820 ktime_get_real_ts64(&ps_iattr->ia_ctime);
821 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
822 }
823
824 mutex_unlock(&kernfs_mutex);
825
826 /*
827 * Activate the new node unless CREATE_DEACTIVATED is requested.
828 * If not activated here, the kernfs user is responsible for
829 * activating the node with kernfs_activate(). A node which hasn't
830 * been activated is not visible to userland and its removal won't
831 * trigger deactivation.
832 */
833 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
834 kernfs_activate(kn);
835 return 0;
836
837 out_unlock:
838 mutex_unlock(&kernfs_mutex);
839 return ret;
840 }
841
842 /**
843 * kernfs_find_ns - find kernfs_node with the given name
844 * @parent: kernfs_node to search under
845 * @name: name to look for
846 * @ns: the namespace tag to use
847 *
848 * Look for kernfs_node with name @name under @parent. Returns pointer to
849 * the found kernfs_node on success, %NULL on failure.
850 */
kernfs_find_ns(struct kernfs_node * parent,const unsigned char * name,const void * ns)851 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
852 const unsigned char *name,
853 const void *ns)
854 {
855 struct rb_node *node = parent->dir.children.rb_node;
856 bool has_ns = kernfs_ns_enabled(parent);
857 unsigned int hash;
858
859 lockdep_assert_held(&kernfs_mutex);
860
861 if (has_ns != (bool)ns) {
862 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
863 has_ns ? "required" : "invalid", parent->name, name);
864 return NULL;
865 }
866
867 hash = kernfs_name_hash(name, ns);
868 while (node) {
869 struct kernfs_node *kn;
870 int result;
871
872 kn = rb_to_kn(node);
873 result = kernfs_name_compare(hash, name, ns, kn);
874 if (result < 0)
875 node = node->rb_left;
876 else if (result > 0)
877 node = node->rb_right;
878 else
879 return kn;
880 }
881 return NULL;
882 }
883
kernfs_walk_ns(struct kernfs_node * parent,const unsigned char * path,const void * ns)884 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
885 const unsigned char *path,
886 const void *ns)
887 {
888 size_t len;
889 char *p, *name;
890
891 lockdep_assert_held(&kernfs_mutex);
892
893 spin_lock_irq(&kernfs_pr_cont_lock);
894
895 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
896
897 if (len >= sizeof(kernfs_pr_cont_buf)) {
898 spin_unlock_irq(&kernfs_pr_cont_lock);
899 return NULL;
900 }
901
902 p = kernfs_pr_cont_buf;
903
904 while ((name = strsep(&p, "/")) && parent) {
905 if (*name == '\0')
906 continue;
907 parent = kernfs_find_ns(parent, name, ns);
908 }
909
910 spin_unlock_irq(&kernfs_pr_cont_lock);
911
912 return parent;
913 }
914
915 /**
916 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
917 * @parent: kernfs_node to search under
918 * @name: name to look for
919 * @ns: the namespace tag to use
920 *
921 * Look for kernfs_node with name @name under @parent and get a reference
922 * if found. This function may sleep and returns pointer to the found
923 * kernfs_node on success, %NULL on failure.
924 */
kernfs_find_and_get_ns(struct kernfs_node * parent,const char * name,const void * ns)925 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
926 const char *name, const void *ns)
927 {
928 struct kernfs_node *kn;
929
930 mutex_lock(&kernfs_mutex);
931 kn = kernfs_find_ns(parent, name, ns);
932 kernfs_get(kn);
933 mutex_unlock(&kernfs_mutex);
934
935 return kn;
936 }
937 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
938
939 /**
940 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
941 * @parent: kernfs_node to search under
942 * @path: path to look for
943 * @ns: the namespace tag to use
944 *
945 * Look for kernfs_node with path @path under @parent and get a reference
946 * if found. This function may sleep and returns pointer to the found
947 * kernfs_node on success, %NULL on failure.
948 */
kernfs_walk_and_get_ns(struct kernfs_node * parent,const char * path,const void * ns)949 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
950 const char *path, const void *ns)
951 {
952 struct kernfs_node *kn;
953
954 mutex_lock(&kernfs_mutex);
955 kn = kernfs_walk_ns(parent, path, ns);
956 kernfs_get(kn);
957 mutex_unlock(&kernfs_mutex);
958
959 return kn;
960 }
961
962 /**
963 * kernfs_create_root - create a new kernfs hierarchy
964 * @scops: optional syscall operations for the hierarchy
965 * @flags: KERNFS_ROOT_* flags
966 * @priv: opaque data associated with the new directory
967 *
968 * Returns the root of the new hierarchy on success, ERR_PTR() value on
969 * failure.
970 */
kernfs_create_root(struct kernfs_syscall_ops * scops,unsigned int flags,void * priv)971 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
972 unsigned int flags, void *priv)
973 {
974 struct kernfs_root *root;
975 struct kernfs_node *kn;
976
977 root = kzalloc(sizeof(*root), GFP_KERNEL);
978 if (!root)
979 return ERR_PTR(-ENOMEM);
980
981 idr_init(&root->ino_idr);
982 INIT_LIST_HEAD(&root->supers);
983 root->next_generation = 1;
984
985 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
986 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
987 KERNFS_DIR);
988 if (!kn) {
989 idr_destroy(&root->ino_idr);
990 kfree(root);
991 return ERR_PTR(-ENOMEM);
992 }
993
994 kn->priv = priv;
995 kn->dir.root = root;
996
997 root->syscall_ops = scops;
998 root->flags = flags;
999 root->kn = kn;
1000 init_waitqueue_head(&root->deactivate_waitq);
1001
1002 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
1003 kernfs_activate(kn);
1004
1005 return root;
1006 }
1007
1008 /**
1009 * kernfs_destroy_root - destroy a kernfs hierarchy
1010 * @root: root of the hierarchy to destroy
1011 *
1012 * Destroy the hierarchy anchored at @root by removing all existing
1013 * directories and destroying @root.
1014 */
kernfs_destroy_root(struct kernfs_root * root)1015 void kernfs_destroy_root(struct kernfs_root *root)
1016 {
1017 kernfs_remove(root->kn); /* will also free @root */
1018 }
1019
1020 /**
1021 * kernfs_create_dir_ns - create a directory
1022 * @parent: parent in which to create a new directory
1023 * @name: name of the new directory
1024 * @mode: mode of the new directory
1025 * @uid: uid of the new directory
1026 * @gid: gid of the new directory
1027 * @priv: opaque data associated with the new directory
1028 * @ns: optional namespace tag of the directory
1029 *
1030 * Returns the created node on success, ERR_PTR() value on failure.
1031 */
kernfs_create_dir_ns(struct kernfs_node * parent,const char * name,umode_t mode,kuid_t uid,kgid_t gid,void * priv,const void * ns)1032 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1033 const char *name, umode_t mode,
1034 kuid_t uid, kgid_t gid,
1035 void *priv, const void *ns)
1036 {
1037 struct kernfs_node *kn;
1038 int rc;
1039
1040 /* allocate */
1041 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1042 uid, gid, KERNFS_DIR);
1043 if (!kn)
1044 return ERR_PTR(-ENOMEM);
1045
1046 kn->dir.root = parent->dir.root;
1047 kn->ns = ns;
1048 kn->priv = priv;
1049
1050 /* link in */
1051 rc = kernfs_add_one(kn);
1052 if (!rc)
1053 return kn;
1054
1055 kernfs_put(kn);
1056 return ERR_PTR(rc);
1057 }
1058
1059 /**
1060 * kernfs_create_empty_dir - create an always empty directory
1061 * @parent: parent in which to create a new directory
1062 * @name: name of the new directory
1063 *
1064 * Returns the created node on success, ERR_PTR() value on failure.
1065 */
kernfs_create_empty_dir(struct kernfs_node * parent,const char * name)1066 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1067 const char *name)
1068 {
1069 struct kernfs_node *kn;
1070 int rc;
1071
1072 /* allocate */
1073 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1074 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1075 if (!kn)
1076 return ERR_PTR(-ENOMEM);
1077
1078 kn->flags |= KERNFS_EMPTY_DIR;
1079 kn->dir.root = parent->dir.root;
1080 kn->ns = NULL;
1081 kn->priv = NULL;
1082
1083 /* link in */
1084 rc = kernfs_add_one(kn);
1085 if (!rc)
1086 return kn;
1087
1088 kernfs_put(kn);
1089 return ERR_PTR(rc);
1090 }
1091
kernfs_iop_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1092 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1093 struct dentry *dentry,
1094 unsigned int flags)
1095 {
1096 struct dentry *ret;
1097 struct kernfs_node *parent = dir->i_private;
1098 struct kernfs_node *kn;
1099 struct inode *inode;
1100 const void *ns = NULL;
1101
1102 mutex_lock(&kernfs_mutex);
1103
1104 if (kernfs_ns_enabled(parent))
1105 ns = kernfs_info(dir->i_sb)->ns;
1106
1107 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1108
1109 /* no such entry */
1110 if (!kn || !kernfs_active(kn)) {
1111 ret = NULL;
1112 goto out_unlock;
1113 }
1114
1115 /* attach dentry and inode */
1116 inode = kernfs_get_inode(dir->i_sb, kn);
1117 if (!inode) {
1118 ret = ERR_PTR(-ENOMEM);
1119 goto out_unlock;
1120 }
1121
1122 /* instantiate and hash dentry */
1123 ret = d_splice_alias(inode, dentry);
1124 out_unlock:
1125 mutex_unlock(&kernfs_mutex);
1126 return ret;
1127 }
1128
kernfs_iop_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1129 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1130 umode_t mode)
1131 {
1132 struct kernfs_node *parent = dir->i_private;
1133 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1134 int ret;
1135
1136 if (!scops || !scops->mkdir)
1137 return -EPERM;
1138
1139 if (!kernfs_get_active(parent))
1140 return -ENODEV;
1141
1142 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1143
1144 kernfs_put_active(parent);
1145 return ret;
1146 }
1147
kernfs_iop_rmdir(struct inode * dir,struct dentry * dentry)1148 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1149 {
1150 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1151 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1152 int ret;
1153
1154 if (!scops || !scops->rmdir)
1155 return -EPERM;
1156
1157 if (!kernfs_get_active(kn))
1158 return -ENODEV;
1159
1160 ret = scops->rmdir(kn);
1161
1162 kernfs_put_active(kn);
1163 return ret;
1164 }
1165
kernfs_iop_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1166 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1167 struct inode *new_dir, struct dentry *new_dentry,
1168 unsigned int flags)
1169 {
1170 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1171 struct kernfs_node *new_parent = new_dir->i_private;
1172 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1173 int ret;
1174
1175 if (flags)
1176 return -EINVAL;
1177
1178 if (!scops || !scops->rename)
1179 return -EPERM;
1180
1181 if (!kernfs_get_active(kn))
1182 return -ENODEV;
1183
1184 if (!kernfs_get_active(new_parent)) {
1185 kernfs_put_active(kn);
1186 return -ENODEV;
1187 }
1188
1189 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1190
1191 kernfs_put_active(new_parent);
1192 kernfs_put_active(kn);
1193 return ret;
1194 }
1195
1196 const struct inode_operations kernfs_dir_iops = {
1197 .lookup = kernfs_iop_lookup,
1198 .permission = kernfs_iop_permission,
1199 .setattr = kernfs_iop_setattr,
1200 .getattr = kernfs_iop_getattr,
1201 .listxattr = kernfs_iop_listxattr,
1202
1203 .mkdir = kernfs_iop_mkdir,
1204 .rmdir = kernfs_iop_rmdir,
1205 .rename = kernfs_iop_rename,
1206 };
1207
kernfs_leftmost_descendant(struct kernfs_node * pos)1208 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1209 {
1210 struct kernfs_node *last;
1211
1212 while (true) {
1213 struct rb_node *rbn;
1214
1215 last = pos;
1216
1217 if (kernfs_type(pos) != KERNFS_DIR)
1218 break;
1219
1220 rbn = rb_first(&pos->dir.children);
1221 if (!rbn)
1222 break;
1223
1224 pos = rb_to_kn(rbn);
1225 }
1226
1227 return last;
1228 }
1229
1230 /**
1231 * kernfs_next_descendant_post - find the next descendant for post-order walk
1232 * @pos: the current position (%NULL to initiate traversal)
1233 * @root: kernfs_node whose descendants to walk
1234 *
1235 * Find the next descendant to visit for post-order traversal of @root's
1236 * descendants. @root is included in the iteration and the last node to be
1237 * visited.
1238 */
kernfs_next_descendant_post(struct kernfs_node * pos,struct kernfs_node * root)1239 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1240 struct kernfs_node *root)
1241 {
1242 struct rb_node *rbn;
1243
1244 lockdep_assert_held(&kernfs_mutex);
1245
1246 /* if first iteration, visit leftmost descendant which may be root */
1247 if (!pos)
1248 return kernfs_leftmost_descendant(root);
1249
1250 /* if we visited @root, we're done */
1251 if (pos == root)
1252 return NULL;
1253
1254 /* if there's an unvisited sibling, visit its leftmost descendant */
1255 rbn = rb_next(&pos->rb);
1256 if (rbn)
1257 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1258
1259 /* no sibling left, visit parent */
1260 return pos->parent;
1261 }
1262
1263 /**
1264 * kernfs_activate - activate a node which started deactivated
1265 * @kn: kernfs_node whose subtree is to be activated
1266 *
1267 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1268 * needs to be explicitly activated. A node which hasn't been activated
1269 * isn't visible to userland and deactivation is skipped during its
1270 * removal. This is useful to construct atomic init sequences where
1271 * creation of multiple nodes should either succeed or fail atomically.
1272 *
1273 * The caller is responsible for ensuring that this function is not called
1274 * after kernfs_remove*() is invoked on @kn.
1275 */
kernfs_activate(struct kernfs_node * kn)1276 void kernfs_activate(struct kernfs_node *kn)
1277 {
1278 struct kernfs_node *pos;
1279
1280 mutex_lock(&kernfs_mutex);
1281
1282 pos = NULL;
1283 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1284 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1285 continue;
1286
1287 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1288 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1289
1290 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1291 pos->flags |= KERNFS_ACTIVATED;
1292 }
1293
1294 mutex_unlock(&kernfs_mutex);
1295 }
1296
__kernfs_remove(struct kernfs_node * kn)1297 static void __kernfs_remove(struct kernfs_node *kn)
1298 {
1299 struct kernfs_node *pos;
1300
1301 lockdep_assert_held(&kernfs_mutex);
1302
1303 /*
1304 * Short-circuit if non-root @kn has already finished removal.
1305 * This is for kernfs_remove_self() which plays with active ref
1306 * after removal.
1307 */
1308 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1309 return;
1310
1311 pr_debug("kernfs %s: removing\n", kn->name);
1312
1313 /* prevent any new usage under @kn by deactivating all nodes */
1314 pos = NULL;
1315 while ((pos = kernfs_next_descendant_post(pos, kn)))
1316 if (kernfs_active(pos))
1317 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1318
1319 /* deactivate and unlink the subtree node-by-node */
1320 do {
1321 pos = kernfs_leftmost_descendant(kn);
1322
1323 /*
1324 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1325 * base ref could have been put by someone else by the time
1326 * the function returns. Make sure it doesn't go away
1327 * underneath us.
1328 */
1329 kernfs_get(pos);
1330
1331 /*
1332 * Drain iff @kn was activated. This avoids draining and
1333 * its lockdep annotations for nodes which have never been
1334 * activated and allows embedding kernfs_remove() in create
1335 * error paths without worrying about draining.
1336 */
1337 if (kn->flags & KERNFS_ACTIVATED)
1338 kernfs_drain(pos);
1339 else
1340 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1341
1342 /*
1343 * kernfs_unlink_sibling() succeeds once per node. Use it
1344 * to decide who's responsible for cleanups.
1345 */
1346 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1347 struct kernfs_iattrs *ps_iattr =
1348 pos->parent ? pos->parent->iattr : NULL;
1349
1350 /* update timestamps on the parent */
1351 if (ps_iattr) {
1352 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1353 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1354 }
1355
1356 kernfs_put(pos);
1357 }
1358
1359 kernfs_put(pos);
1360 } while (pos != kn);
1361 }
1362
1363 /**
1364 * kernfs_remove - remove a kernfs_node recursively
1365 * @kn: the kernfs_node to remove
1366 *
1367 * Remove @kn along with all its subdirectories and files.
1368 */
kernfs_remove(struct kernfs_node * kn)1369 void kernfs_remove(struct kernfs_node *kn)
1370 {
1371 mutex_lock(&kernfs_mutex);
1372 __kernfs_remove(kn);
1373 mutex_unlock(&kernfs_mutex);
1374 }
1375
1376 /**
1377 * kernfs_break_active_protection - break out of active protection
1378 * @kn: the self kernfs_node
1379 *
1380 * The caller must be running off of a kernfs operation which is invoked
1381 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1382 * this function must also be matched with an invocation of
1383 * kernfs_unbreak_active_protection().
1384 *
1385 * This function releases the active reference of @kn the caller is
1386 * holding. Once this function is called, @kn may be removed at any point
1387 * and the caller is solely responsible for ensuring that the objects it
1388 * dereferences are accessible.
1389 */
kernfs_break_active_protection(struct kernfs_node * kn)1390 void kernfs_break_active_protection(struct kernfs_node *kn)
1391 {
1392 /*
1393 * Take out ourself out of the active ref dependency chain. If
1394 * we're called without an active ref, lockdep will complain.
1395 */
1396 kernfs_put_active(kn);
1397 }
1398
1399 /**
1400 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1401 * @kn: the self kernfs_node
1402 *
1403 * If kernfs_break_active_protection() was called, this function must be
1404 * invoked before finishing the kernfs operation. Note that while this
1405 * function restores the active reference, it doesn't and can't actually
1406 * restore the active protection - @kn may already or be in the process of
1407 * being removed. Once kernfs_break_active_protection() is invoked, that
1408 * protection is irreversibly gone for the kernfs operation instance.
1409 *
1410 * While this function may be called at any point after
1411 * kernfs_break_active_protection() is invoked, its most useful location
1412 * would be right before the enclosing kernfs operation returns.
1413 */
kernfs_unbreak_active_protection(struct kernfs_node * kn)1414 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1415 {
1416 /*
1417 * @kn->active could be in any state; however, the increment we do
1418 * here will be undone as soon as the enclosing kernfs operation
1419 * finishes and this temporary bump can't break anything. If @kn
1420 * is alive, nothing changes. If @kn is being deactivated, the
1421 * soon-to-follow put will either finish deactivation or restore
1422 * deactivated state. If @kn is already removed, the temporary
1423 * bump is guaranteed to be gone before @kn is released.
1424 */
1425 atomic_inc(&kn->active);
1426 if (kernfs_lockdep(kn))
1427 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1428 }
1429
1430 /**
1431 * kernfs_remove_self - remove a kernfs_node from its own method
1432 * @kn: the self kernfs_node to remove
1433 *
1434 * The caller must be running off of a kernfs operation which is invoked
1435 * with an active reference - e.g. one of kernfs_ops. This can be used to
1436 * implement a file operation which deletes itself.
1437 *
1438 * For example, the "delete" file for a sysfs device directory can be
1439 * implemented by invoking kernfs_remove_self() on the "delete" file
1440 * itself. This function breaks the circular dependency of trying to
1441 * deactivate self while holding an active ref itself. It isn't necessary
1442 * to modify the usual removal path to use kernfs_remove_self(). The
1443 * "delete" implementation can simply invoke kernfs_remove_self() on self
1444 * before proceeding with the usual removal path. kernfs will ignore later
1445 * kernfs_remove() on self.
1446 *
1447 * kernfs_remove_self() can be called multiple times concurrently on the
1448 * same kernfs_node. Only the first one actually performs removal and
1449 * returns %true. All others will wait until the kernfs operation which
1450 * won self-removal finishes and return %false. Note that the losers wait
1451 * for the completion of not only the winning kernfs_remove_self() but also
1452 * the whole kernfs_ops which won the arbitration. This can be used to
1453 * guarantee, for example, all concurrent writes to a "delete" file to
1454 * finish only after the whole operation is complete.
1455 */
kernfs_remove_self(struct kernfs_node * kn)1456 bool kernfs_remove_self(struct kernfs_node *kn)
1457 {
1458 bool ret;
1459
1460 mutex_lock(&kernfs_mutex);
1461 kernfs_break_active_protection(kn);
1462
1463 /*
1464 * SUICIDAL is used to arbitrate among competing invocations. Only
1465 * the first one will actually perform removal. When the removal
1466 * is complete, SUICIDED is set and the active ref is restored
1467 * while holding kernfs_mutex. The ones which lost arbitration
1468 * waits for SUICDED && drained which can happen only after the
1469 * enclosing kernfs operation which executed the winning instance
1470 * of kernfs_remove_self() finished.
1471 */
1472 if (!(kn->flags & KERNFS_SUICIDAL)) {
1473 kn->flags |= KERNFS_SUICIDAL;
1474 __kernfs_remove(kn);
1475 kn->flags |= KERNFS_SUICIDED;
1476 ret = true;
1477 } else {
1478 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1479 DEFINE_WAIT(wait);
1480
1481 while (true) {
1482 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1483
1484 if ((kn->flags & KERNFS_SUICIDED) &&
1485 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1486 break;
1487
1488 mutex_unlock(&kernfs_mutex);
1489 schedule();
1490 mutex_lock(&kernfs_mutex);
1491 }
1492 finish_wait(waitq, &wait);
1493 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1494 ret = false;
1495 }
1496
1497 /*
1498 * This must be done while holding kernfs_mutex; otherwise, waiting
1499 * for SUICIDED && deactivated could finish prematurely.
1500 */
1501 kernfs_unbreak_active_protection(kn);
1502
1503 mutex_unlock(&kernfs_mutex);
1504 return ret;
1505 }
1506
1507 /**
1508 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1509 * @parent: parent of the target
1510 * @name: name of the kernfs_node to remove
1511 * @ns: namespace tag of the kernfs_node to remove
1512 *
1513 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1514 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1515 */
kernfs_remove_by_name_ns(struct kernfs_node * parent,const char * name,const void * ns)1516 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1517 const void *ns)
1518 {
1519 struct kernfs_node *kn;
1520
1521 if (!parent) {
1522 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1523 name);
1524 return -ENOENT;
1525 }
1526
1527 mutex_lock(&kernfs_mutex);
1528
1529 kn = kernfs_find_ns(parent, name, ns);
1530 if (kn) {
1531 kernfs_get(kn);
1532 __kernfs_remove(kn);
1533 kernfs_put(kn);
1534 }
1535
1536 mutex_unlock(&kernfs_mutex);
1537
1538 if (kn)
1539 return 0;
1540 else
1541 return -ENOENT;
1542 }
1543
1544 /**
1545 * kernfs_rename_ns - move and rename a kernfs_node
1546 * @kn: target node
1547 * @new_parent: new parent to put @sd under
1548 * @new_name: new name
1549 * @new_ns: new namespace tag
1550 */
kernfs_rename_ns(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name,const void * new_ns)1551 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1552 const char *new_name, const void *new_ns)
1553 {
1554 struct kernfs_node *old_parent;
1555 const char *old_name = NULL;
1556 int error;
1557
1558 /* can't move or rename root */
1559 if (!kn->parent)
1560 return -EINVAL;
1561
1562 mutex_lock(&kernfs_mutex);
1563
1564 error = -ENOENT;
1565 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1566 (new_parent->flags & KERNFS_EMPTY_DIR))
1567 goto out;
1568
1569 error = 0;
1570 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1571 (strcmp(kn->name, new_name) == 0))
1572 goto out; /* nothing to rename */
1573
1574 error = -EEXIST;
1575 if (kernfs_find_ns(new_parent, new_name, new_ns))
1576 goto out;
1577
1578 /* rename kernfs_node */
1579 if (strcmp(kn->name, new_name) != 0) {
1580 error = -ENOMEM;
1581 new_name = kstrdup_const(new_name, GFP_KERNEL);
1582 if (!new_name)
1583 goto out;
1584 } else {
1585 new_name = NULL;
1586 }
1587
1588 /*
1589 * Move to the appropriate place in the appropriate directories rbtree.
1590 */
1591 kernfs_unlink_sibling(kn);
1592 kernfs_get(new_parent);
1593
1594 /* rename_lock protects ->parent and ->name accessors */
1595 spin_lock_irq(&kernfs_rename_lock);
1596
1597 old_parent = kn->parent;
1598 kn->parent = new_parent;
1599
1600 kn->ns = new_ns;
1601 if (new_name) {
1602 old_name = kn->name;
1603 kn->name = new_name;
1604 }
1605
1606 spin_unlock_irq(&kernfs_rename_lock);
1607
1608 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1609 kernfs_link_sibling(kn);
1610
1611 kernfs_put(old_parent);
1612 kfree_const(old_name);
1613
1614 error = 0;
1615 out:
1616 mutex_unlock(&kernfs_mutex);
1617 return error;
1618 }
1619
1620 /* Relationship between s_mode and the DT_xxx types */
dt_type(struct kernfs_node * kn)1621 static inline unsigned char dt_type(struct kernfs_node *kn)
1622 {
1623 return (kn->mode >> 12) & 15;
1624 }
1625
kernfs_dir_fop_release(struct inode * inode,struct file * filp)1626 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1627 {
1628 kernfs_put(filp->private_data);
1629 return 0;
1630 }
1631
kernfs_dir_pos(const void * ns,struct kernfs_node * parent,loff_t hash,struct kernfs_node * pos)1632 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1633 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1634 {
1635 if (pos) {
1636 int valid = kernfs_active(pos) &&
1637 pos->parent == parent && hash == pos->hash;
1638 kernfs_put(pos);
1639 if (!valid)
1640 pos = NULL;
1641 }
1642 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1643 struct rb_node *node = parent->dir.children.rb_node;
1644 while (node) {
1645 pos = rb_to_kn(node);
1646
1647 if (hash < pos->hash)
1648 node = node->rb_left;
1649 else if (hash > pos->hash)
1650 node = node->rb_right;
1651 else
1652 break;
1653 }
1654 }
1655 /* Skip over entries which are dying/dead or in the wrong namespace */
1656 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1657 struct rb_node *node = rb_next(&pos->rb);
1658 if (!node)
1659 pos = NULL;
1660 else
1661 pos = rb_to_kn(node);
1662 }
1663 return pos;
1664 }
1665
kernfs_dir_next_pos(const void * ns,struct kernfs_node * parent,ino_t ino,struct kernfs_node * pos)1666 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1667 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1668 {
1669 pos = kernfs_dir_pos(ns, parent, ino, pos);
1670 if (pos) {
1671 do {
1672 struct rb_node *node = rb_next(&pos->rb);
1673 if (!node)
1674 pos = NULL;
1675 else
1676 pos = rb_to_kn(node);
1677 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1678 }
1679 return pos;
1680 }
1681
kernfs_fop_readdir(struct file * file,struct dir_context * ctx)1682 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1683 {
1684 struct dentry *dentry = file->f_path.dentry;
1685 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1686 struct kernfs_node *pos = file->private_data;
1687 const void *ns = NULL;
1688
1689 if (!dir_emit_dots(file, ctx))
1690 return 0;
1691 mutex_lock(&kernfs_mutex);
1692
1693 if (kernfs_ns_enabled(parent))
1694 ns = kernfs_info(dentry->d_sb)->ns;
1695
1696 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1697 pos;
1698 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1699 const char *name = pos->name;
1700 unsigned int type = dt_type(pos);
1701 int len = strlen(name);
1702 ino_t ino = pos->id.ino;
1703
1704 ctx->pos = pos->hash;
1705 file->private_data = pos;
1706 kernfs_get(pos);
1707
1708 mutex_unlock(&kernfs_mutex);
1709 if (!dir_emit(ctx, name, len, ino, type))
1710 return 0;
1711 mutex_lock(&kernfs_mutex);
1712 }
1713 mutex_unlock(&kernfs_mutex);
1714 file->private_data = NULL;
1715 ctx->pos = INT_MAX;
1716 return 0;
1717 }
1718
1719 const struct file_operations kernfs_dir_fops = {
1720 .read = generic_read_dir,
1721 .iterate_shared = kernfs_fop_readdir,
1722 .release = kernfs_dir_fop_release,
1723 .llseek = generic_file_llseek,
1724 };
1725