1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (rwlock): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
19 * blocks. The object_tree_root is a red black tree used to look-up
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
26 * the metadata (e.g. count) are protected by this lock. Note that some
27 * members of this structure may be protected by other means (atomic or
28 * kmemleak_lock). This lock is also held when scanning the corresponding
29 * memory block to avoid the kernel freeing it via the kmemleak_free()
30 * callback. This is less heavyweight than holding a global lock like
31 * kmemleak_lock during scanning
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
41 * pointer
42 *
43 * Locks and mutexes are acquired/nested in the following order:
44 *
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46 *
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48 * regions.
49 *
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
55 * structure.
56 */
57
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98
99 #include <linux/kasan.h>
100 #include <linux/kmemleak.h>
101 #include <linux/memory_hotplug.h>
102
103 /*
104 * Kmemleak configuration and common defines.
105 */
106 #define MAX_TRACE 16 /* stack trace length */
107 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
108 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
109 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
110 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
111
112 #define BYTES_PER_POINTER sizeof(void *)
113
114 /* GFP bitmask for kmemleak internal allocations */
115 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 __GFP_NORETRY | __GFP_NOMEMALLOC | \
117 __GFP_NOWARN)
118
119 /* scanning area inside a memory block */
120 struct kmemleak_scan_area {
121 struct hlist_node node;
122 unsigned long start;
123 size_t size;
124 };
125
126 #define KMEMLEAK_GREY 0
127 #define KMEMLEAK_BLACK -1
128
129 /*
130 * Structure holding the metadata for each allocated memory block.
131 * Modifications to such objects should be made while holding the
132 * object->lock. Insertions or deletions from object_list, gray_list or
133 * rb_node are already protected by the corresponding locks or mutex (see
134 * the notes on locking above). These objects are reference-counted
135 * (use_count) and freed using the RCU mechanism.
136 */
137 struct kmemleak_object {
138 spinlock_t lock;
139 unsigned int flags; /* object status flags */
140 struct list_head object_list;
141 struct list_head gray_list;
142 struct rb_node rb_node;
143 struct rcu_head rcu; /* object_list lockless traversal */
144 /* object usage count; object freed when use_count == 0 */
145 atomic_t use_count;
146 unsigned long pointer;
147 size_t size;
148 /* pass surplus references to this pointer */
149 unsigned long excess_ref;
150 /* minimum number of a pointers found before it is considered leak */
151 int min_count;
152 /* the total number of pointers found pointing to this object */
153 int count;
154 /* checksum for detecting modified objects */
155 u32 checksum;
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list;
158 unsigned long trace[MAX_TRACE];
159 unsigned int trace_len;
160 unsigned long jiffies; /* creation timestamp */
161 pid_t pid; /* pid of the current task */
162 char comm[TASK_COMM_LEN]; /* executable name */
163 };
164
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED (1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED (1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN (1 << 2)
171 /* flag set to fully scan the object when scan_area allocation failed */
172 #define OBJECT_FULL_SCAN (1 << 3)
173
174 #define HEX_PREFIX " "
175 /* number of bytes to print per line; must be 16 or 32 */
176 #define HEX_ROW_SIZE 16
177 /* number of bytes to print at a time (1, 2, 4, 8) */
178 #define HEX_GROUP_SIZE 1
179 /* include ASCII after the hex output */
180 #define HEX_ASCII 1
181 /* max number of lines to be printed */
182 #define HEX_MAX_LINES 2
183
184 /* the list of all allocated objects */
185 static LIST_HEAD(object_list);
186 /* the list of gray-colored objects (see color_gray comment below) */
187 static LIST_HEAD(gray_list);
188 /* memory pool allocation */
189 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
190 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
191 static LIST_HEAD(mem_pool_free_list);
192 /* search tree for object boundaries */
193 static struct rb_root object_tree_root = RB_ROOT;
194 /* rw_lock protecting the access to object_list and object_tree_root */
195 static DEFINE_RWLOCK(kmemleak_lock);
196
197 /* allocation caches for kmemleak internal data */
198 static struct kmem_cache *object_cache;
199 static struct kmem_cache *scan_area_cache;
200
201 /* set if tracing memory operations is enabled */
202 static int kmemleak_enabled = 1;
203 /* same as above but only for the kmemleak_free() callback */
204 static int kmemleak_free_enabled = 1;
205 /* set in the late_initcall if there were no errors */
206 static int kmemleak_initialized;
207 /* set if a kmemleak warning was issued */
208 static int kmemleak_warning;
209 /* set if a fatal kmemleak error has occurred */
210 static int kmemleak_error;
211
212 /* minimum and maximum address that may be valid pointers */
213 static unsigned long min_addr = ULONG_MAX;
214 static unsigned long max_addr;
215
216 static struct task_struct *scan_thread;
217 /* used to avoid reporting of recently allocated objects */
218 static unsigned long jiffies_min_age;
219 static unsigned long jiffies_last_scan;
220 /* delay between automatic memory scannings */
221 static signed long jiffies_scan_wait;
222 /* enables or disables the task stacks scanning */
223 static int kmemleak_stack_scan = 1;
224 /* protects the memory scanning, parameters and debug/kmemleak file access */
225 static DEFINE_MUTEX(scan_mutex);
226 /* setting kmemleak=on, will set this var, skipping the disable */
227 static int kmemleak_skip_disable;
228 /* If there are leaks that can be reported */
229 static bool kmemleak_found_leaks;
230
231 static bool kmemleak_verbose;
232 module_param_named(verbose, kmemleak_verbose, bool, 0600);
233
234 static void kmemleak_disable(void);
235
236 /*
237 * Print a warning and dump the stack trace.
238 */
239 #define kmemleak_warn(x...) do { \
240 pr_warn(x); \
241 dump_stack(); \
242 kmemleak_warning = 1; \
243 } while (0)
244
245 /*
246 * Macro invoked when a serious kmemleak condition occurred and cannot be
247 * recovered from. Kmemleak will be disabled and further allocation/freeing
248 * tracing no longer available.
249 */
250 #define kmemleak_stop(x...) do { \
251 kmemleak_warn(x); \
252 kmemleak_disable(); \
253 } while (0)
254
255 #define warn_or_seq_printf(seq, fmt, ...) do { \
256 if (seq) \
257 seq_printf(seq, fmt, ##__VA_ARGS__); \
258 else \
259 pr_warn(fmt, ##__VA_ARGS__); \
260 } while (0)
261
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)262 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
263 int rowsize, int groupsize, const void *buf,
264 size_t len, bool ascii)
265 {
266 if (seq)
267 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
268 buf, len, ascii);
269 else
270 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
271 rowsize, groupsize, buf, len, ascii);
272 }
273
274 /*
275 * Printing of the objects hex dump to the seq file. The number of lines to be
276 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
277 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
278 * with the object->lock held.
279 */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)280 static void hex_dump_object(struct seq_file *seq,
281 struct kmemleak_object *object)
282 {
283 const u8 *ptr = (const u8 *)object->pointer;
284 size_t len;
285
286 /* limit the number of lines to HEX_MAX_LINES */
287 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
288
289 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
290 kasan_disable_current();
291 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
292 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
293 kasan_enable_current();
294 }
295
296 /*
297 * Object colors, encoded with count and min_count:
298 * - white - orphan object, not enough references to it (count < min_count)
299 * - gray - not orphan, not marked as false positive (min_count == 0) or
300 * sufficient references to it (count >= min_count)
301 * - black - ignore, it doesn't contain references (e.g. text section)
302 * (min_count == -1). No function defined for this color.
303 * Newly created objects don't have any color assigned (object->count == -1)
304 * before the next memory scan when they become white.
305 */
color_white(const struct kmemleak_object * object)306 static bool color_white(const struct kmemleak_object *object)
307 {
308 return object->count != KMEMLEAK_BLACK &&
309 object->count < object->min_count;
310 }
311
color_gray(const struct kmemleak_object * object)312 static bool color_gray(const struct kmemleak_object *object)
313 {
314 return object->min_count != KMEMLEAK_BLACK &&
315 object->count >= object->min_count;
316 }
317
318 /*
319 * Objects are considered unreferenced only if their color is white, they have
320 * not be deleted and have a minimum age to avoid false positives caused by
321 * pointers temporarily stored in CPU registers.
322 */
unreferenced_object(struct kmemleak_object * object)323 static bool unreferenced_object(struct kmemleak_object *object)
324 {
325 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
326 time_before_eq(object->jiffies + jiffies_min_age,
327 jiffies_last_scan);
328 }
329
330 /*
331 * Printing of the unreferenced objects information to the seq file. The
332 * print_unreferenced function must be called with the object->lock held.
333 */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)334 static void print_unreferenced(struct seq_file *seq,
335 struct kmemleak_object *object)
336 {
337 int i;
338 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
339
340 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
341 object->pointer, object->size);
342 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
343 object->comm, object->pid, object->jiffies,
344 msecs_age / 1000, msecs_age % 1000);
345 hex_dump_object(seq, object);
346 warn_or_seq_printf(seq, " backtrace:\n");
347
348 for (i = 0; i < object->trace_len; i++) {
349 void *ptr = (void *)object->trace[i];
350 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
351 }
352 }
353
354 /*
355 * Print the kmemleak_object information. This function is used mainly for
356 * debugging special cases when kmemleak operations. It must be called with
357 * the object->lock held.
358 */
dump_object_info(struct kmemleak_object * object)359 static void dump_object_info(struct kmemleak_object *object)
360 {
361 pr_notice("Object 0x%08lx (size %zu):\n",
362 object->pointer, object->size);
363 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
364 object->comm, object->pid, object->jiffies);
365 pr_notice(" min_count = %d\n", object->min_count);
366 pr_notice(" count = %d\n", object->count);
367 pr_notice(" flags = 0x%x\n", object->flags);
368 pr_notice(" checksum = %u\n", object->checksum);
369 pr_notice(" backtrace:\n");
370 stack_trace_print(object->trace, object->trace_len, 4);
371 }
372
373 /*
374 * Look-up a memory block metadata (kmemleak_object) in the object search
375 * tree based on a pointer value. If alias is 0, only values pointing to the
376 * beginning of the memory block are allowed. The kmemleak_lock must be held
377 * when calling this function.
378 */
lookup_object(unsigned long ptr,int alias)379 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
380 {
381 struct rb_node *rb = object_tree_root.rb_node;
382
383 while (rb) {
384 struct kmemleak_object *object =
385 rb_entry(rb, struct kmemleak_object, rb_node);
386 if (ptr < object->pointer)
387 rb = object->rb_node.rb_left;
388 else if (object->pointer + object->size <= ptr)
389 rb = object->rb_node.rb_right;
390 else if (object->pointer == ptr || alias)
391 return object;
392 else {
393 kmemleak_warn("Found object by alias at 0x%08lx\n",
394 ptr);
395 dump_object_info(object);
396 break;
397 }
398 }
399 return NULL;
400 }
401
402 /*
403 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
404 * that once an object's use_count reached 0, the RCU freeing was already
405 * registered and the object should no longer be used. This function must be
406 * called under the protection of rcu_read_lock().
407 */
get_object(struct kmemleak_object * object)408 static int get_object(struct kmemleak_object *object)
409 {
410 return atomic_inc_not_zero(&object->use_count);
411 }
412
413 /*
414 * Memory pool allocation and freeing. kmemleak_lock must not be held.
415 */
mem_pool_alloc(gfp_t gfp)416 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
417 {
418 unsigned long flags;
419 struct kmemleak_object *object;
420
421 /* try the slab allocator first */
422 if (object_cache) {
423 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
424 if (object)
425 return object;
426 }
427
428 /* slab allocation failed, try the memory pool */
429 write_lock_irqsave(&kmemleak_lock, flags);
430 object = list_first_entry_or_null(&mem_pool_free_list,
431 typeof(*object), object_list);
432 if (object)
433 list_del(&object->object_list);
434 else if (mem_pool_free_count)
435 object = &mem_pool[--mem_pool_free_count];
436 else
437 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
438 write_unlock_irqrestore(&kmemleak_lock, flags);
439
440 return object;
441 }
442
443 /*
444 * Return the object to either the slab allocator or the memory pool.
445 */
mem_pool_free(struct kmemleak_object * object)446 static void mem_pool_free(struct kmemleak_object *object)
447 {
448 unsigned long flags;
449
450 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
451 kmem_cache_free(object_cache, object);
452 return;
453 }
454
455 /* add the object to the memory pool free list */
456 write_lock_irqsave(&kmemleak_lock, flags);
457 list_add(&object->object_list, &mem_pool_free_list);
458 write_unlock_irqrestore(&kmemleak_lock, flags);
459 }
460
461 /*
462 * RCU callback to free a kmemleak_object.
463 */
free_object_rcu(struct rcu_head * rcu)464 static void free_object_rcu(struct rcu_head *rcu)
465 {
466 struct hlist_node *tmp;
467 struct kmemleak_scan_area *area;
468 struct kmemleak_object *object =
469 container_of(rcu, struct kmemleak_object, rcu);
470
471 /*
472 * Once use_count is 0 (guaranteed by put_object), there is no other
473 * code accessing this object, hence no need for locking.
474 */
475 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
476 hlist_del(&area->node);
477 kmem_cache_free(scan_area_cache, area);
478 }
479 mem_pool_free(object);
480 }
481
482 /*
483 * Decrement the object use_count. Once the count is 0, free the object using
484 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
485 * delete_object() path, the delayed RCU freeing ensures that there is no
486 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
487 * is also possible.
488 */
put_object(struct kmemleak_object * object)489 static void put_object(struct kmemleak_object *object)
490 {
491 if (!atomic_dec_and_test(&object->use_count))
492 return;
493
494 /* should only get here after delete_object was called */
495 WARN_ON(object->flags & OBJECT_ALLOCATED);
496
497 /*
498 * It may be too early for the RCU callbacks, however, there is no
499 * concurrent object_list traversal when !object_cache and all objects
500 * came from the memory pool. Free the object directly.
501 */
502 if (object_cache)
503 call_rcu(&object->rcu, free_object_rcu);
504 else
505 free_object_rcu(&object->rcu);
506 }
507
508 /*
509 * Look up an object in the object search tree and increase its use_count.
510 */
find_and_get_object(unsigned long ptr,int alias)511 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
512 {
513 unsigned long flags;
514 struct kmemleak_object *object;
515
516 rcu_read_lock();
517 read_lock_irqsave(&kmemleak_lock, flags);
518 object = lookup_object(ptr, alias);
519 read_unlock_irqrestore(&kmemleak_lock, flags);
520
521 /* check whether the object is still available */
522 if (object && !get_object(object))
523 object = NULL;
524 rcu_read_unlock();
525
526 return object;
527 }
528
529 /*
530 * Remove an object from the object_tree_root and object_list. Must be called
531 * with the kmemleak_lock held _if_ kmemleak is still enabled.
532 */
__remove_object(struct kmemleak_object * object)533 static void __remove_object(struct kmemleak_object *object)
534 {
535 rb_erase(&object->rb_node, &object_tree_root);
536 list_del_rcu(&object->object_list);
537 }
538
539 /*
540 * Look up an object in the object search tree and remove it from both
541 * object_tree_root and object_list. The returned object's use_count should be
542 * at least 1, as initially set by create_object().
543 */
find_and_remove_object(unsigned long ptr,int alias)544 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
545 {
546 unsigned long flags;
547 struct kmemleak_object *object;
548
549 write_lock_irqsave(&kmemleak_lock, flags);
550 object = lookup_object(ptr, alias);
551 if (object)
552 __remove_object(object);
553 write_unlock_irqrestore(&kmemleak_lock, flags);
554
555 return object;
556 }
557
558 /*
559 * Save stack trace to the given array of MAX_TRACE size.
560 */
__save_stack_trace(unsigned long * trace)561 static int __save_stack_trace(unsigned long *trace)
562 {
563 return stack_trace_save(trace, MAX_TRACE, 2);
564 }
565
566 /*
567 * Create the metadata (struct kmemleak_object) corresponding to an allocated
568 * memory block and add it to the object_list and object_tree_root.
569 */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)570 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
571 int min_count, gfp_t gfp)
572 {
573 unsigned long flags;
574 struct kmemleak_object *object, *parent;
575 struct rb_node **link, *rb_parent;
576 unsigned long untagged_ptr;
577
578 object = mem_pool_alloc(gfp);
579 if (!object) {
580 pr_warn("Cannot allocate a kmemleak_object structure\n");
581 kmemleak_disable();
582 return NULL;
583 }
584
585 INIT_LIST_HEAD(&object->object_list);
586 INIT_LIST_HEAD(&object->gray_list);
587 INIT_HLIST_HEAD(&object->area_list);
588 spin_lock_init(&object->lock);
589 atomic_set(&object->use_count, 1);
590 object->flags = OBJECT_ALLOCATED;
591 object->pointer = ptr;
592 object->size = size;
593 object->excess_ref = 0;
594 object->min_count = min_count;
595 object->count = 0; /* white color initially */
596 object->jiffies = jiffies;
597 object->checksum = 0;
598
599 /* task information */
600 if (in_irq()) {
601 object->pid = 0;
602 strncpy(object->comm, "hardirq", sizeof(object->comm));
603 } else if (in_serving_softirq()) {
604 object->pid = 0;
605 strncpy(object->comm, "softirq", sizeof(object->comm));
606 } else {
607 object->pid = current->pid;
608 /*
609 * There is a small chance of a race with set_task_comm(),
610 * however using get_task_comm() here may cause locking
611 * dependency issues with current->alloc_lock. In the worst
612 * case, the command line is not correct.
613 */
614 strncpy(object->comm, current->comm, sizeof(object->comm));
615 }
616
617 /* kernel backtrace */
618 object->trace_len = __save_stack_trace(object->trace);
619
620 write_lock_irqsave(&kmemleak_lock, flags);
621
622 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
623 min_addr = min(min_addr, untagged_ptr);
624 max_addr = max(max_addr, untagged_ptr + size);
625 link = &object_tree_root.rb_node;
626 rb_parent = NULL;
627 while (*link) {
628 rb_parent = *link;
629 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
630 if (ptr + size <= parent->pointer)
631 link = &parent->rb_node.rb_left;
632 else if (parent->pointer + parent->size <= ptr)
633 link = &parent->rb_node.rb_right;
634 else {
635 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
636 ptr);
637 /*
638 * No need for parent->lock here since "parent" cannot
639 * be freed while the kmemleak_lock is held.
640 */
641 dump_object_info(parent);
642 kmem_cache_free(object_cache, object);
643 object = NULL;
644 goto out;
645 }
646 }
647 rb_link_node(&object->rb_node, rb_parent, link);
648 rb_insert_color(&object->rb_node, &object_tree_root);
649
650 list_add_tail_rcu(&object->object_list, &object_list);
651 out:
652 write_unlock_irqrestore(&kmemleak_lock, flags);
653 return object;
654 }
655
656 /*
657 * Mark the object as not allocated and schedule RCU freeing via put_object().
658 */
__delete_object(struct kmemleak_object * object)659 static void __delete_object(struct kmemleak_object *object)
660 {
661 unsigned long flags;
662
663 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
664 WARN_ON(atomic_read(&object->use_count) < 1);
665
666 /*
667 * Locking here also ensures that the corresponding memory block
668 * cannot be freed when it is being scanned.
669 */
670 spin_lock_irqsave(&object->lock, flags);
671 object->flags &= ~OBJECT_ALLOCATED;
672 spin_unlock_irqrestore(&object->lock, flags);
673 put_object(object);
674 }
675
676 /*
677 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
678 * delete it.
679 */
delete_object_full(unsigned long ptr)680 static void delete_object_full(unsigned long ptr)
681 {
682 struct kmemleak_object *object;
683
684 object = find_and_remove_object(ptr, 0);
685 if (!object) {
686 #ifdef DEBUG
687 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
688 ptr);
689 #endif
690 return;
691 }
692 __delete_object(object);
693 }
694
695 /*
696 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
697 * delete it. If the memory block is partially freed, the function may create
698 * additional metadata for the remaining parts of the block.
699 */
delete_object_part(unsigned long ptr,size_t size)700 static void delete_object_part(unsigned long ptr, size_t size)
701 {
702 struct kmemleak_object *object;
703 unsigned long start, end;
704
705 object = find_and_remove_object(ptr, 1);
706 if (!object) {
707 #ifdef DEBUG
708 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
709 ptr, size);
710 #endif
711 return;
712 }
713
714 /*
715 * Create one or two objects that may result from the memory block
716 * split. Note that partial freeing is only done by free_bootmem() and
717 * this happens before kmemleak_init() is called.
718 */
719 start = object->pointer;
720 end = object->pointer + object->size;
721 if (ptr > start)
722 create_object(start, ptr - start, object->min_count,
723 GFP_KERNEL);
724 if (ptr + size < end)
725 create_object(ptr + size, end - ptr - size, object->min_count,
726 GFP_KERNEL);
727
728 __delete_object(object);
729 }
730
__paint_it(struct kmemleak_object * object,int color)731 static void __paint_it(struct kmemleak_object *object, int color)
732 {
733 object->min_count = color;
734 if (color == KMEMLEAK_BLACK)
735 object->flags |= OBJECT_NO_SCAN;
736 }
737
paint_it(struct kmemleak_object * object,int color)738 static void paint_it(struct kmemleak_object *object, int color)
739 {
740 unsigned long flags;
741
742 spin_lock_irqsave(&object->lock, flags);
743 __paint_it(object, color);
744 spin_unlock_irqrestore(&object->lock, flags);
745 }
746
paint_ptr(unsigned long ptr,int color)747 static void paint_ptr(unsigned long ptr, int color)
748 {
749 struct kmemleak_object *object;
750
751 object = find_and_get_object(ptr, 0);
752 if (!object) {
753 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
754 ptr,
755 (color == KMEMLEAK_GREY) ? "Grey" :
756 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
757 return;
758 }
759 paint_it(object, color);
760 put_object(object);
761 }
762
763 /*
764 * Mark an object permanently as gray-colored so that it can no longer be
765 * reported as a leak. This is used in general to mark a false positive.
766 */
make_gray_object(unsigned long ptr)767 static void make_gray_object(unsigned long ptr)
768 {
769 paint_ptr(ptr, KMEMLEAK_GREY);
770 }
771
772 /*
773 * Mark the object as black-colored so that it is ignored from scans and
774 * reporting.
775 */
make_black_object(unsigned long ptr)776 static void make_black_object(unsigned long ptr)
777 {
778 paint_ptr(ptr, KMEMLEAK_BLACK);
779 }
780
781 /*
782 * Add a scanning area to the object. If at least one such area is added,
783 * kmemleak will only scan these ranges rather than the whole memory block.
784 */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)785 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
786 {
787 unsigned long flags;
788 struct kmemleak_object *object;
789 struct kmemleak_scan_area *area = NULL;
790 unsigned long untagged_ptr;
791 unsigned long untagged_objp;
792
793 object = find_and_get_object(ptr, 1);
794 if (!object) {
795 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
796 ptr);
797 return;
798 }
799
800 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
801 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
802
803 if (scan_area_cache)
804 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
805
806 spin_lock_irqsave(&object->lock, flags);
807 if (!area) {
808 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
809 /* mark the object for full scan to avoid false positives */
810 object->flags |= OBJECT_FULL_SCAN;
811 goto out_unlock;
812 }
813 if (size == SIZE_MAX) {
814 size = untagged_objp + object->size - untagged_ptr;
815 } else if (untagged_ptr + size > untagged_objp + object->size) {
816 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
817 dump_object_info(object);
818 kmem_cache_free(scan_area_cache, area);
819 goto out_unlock;
820 }
821
822 INIT_HLIST_NODE(&area->node);
823 area->start = ptr;
824 area->size = size;
825
826 hlist_add_head(&area->node, &object->area_list);
827 out_unlock:
828 spin_unlock_irqrestore(&object->lock, flags);
829 put_object(object);
830 }
831
832 /*
833 * Any surplus references (object already gray) to 'ptr' are passed to
834 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
835 * vm_struct may be used as an alternative reference to the vmalloc'ed object
836 * (see free_thread_stack()).
837 */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)838 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
839 {
840 unsigned long flags;
841 struct kmemleak_object *object;
842
843 object = find_and_get_object(ptr, 0);
844 if (!object) {
845 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
846 ptr);
847 return;
848 }
849
850 spin_lock_irqsave(&object->lock, flags);
851 object->excess_ref = excess_ref;
852 spin_unlock_irqrestore(&object->lock, flags);
853 put_object(object);
854 }
855
856 /*
857 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
858 * pointer. Such object will not be scanned by kmemleak but references to it
859 * are searched.
860 */
object_no_scan(unsigned long ptr)861 static void object_no_scan(unsigned long ptr)
862 {
863 unsigned long flags;
864 struct kmemleak_object *object;
865
866 object = find_and_get_object(ptr, 0);
867 if (!object) {
868 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
869 return;
870 }
871
872 spin_lock_irqsave(&object->lock, flags);
873 object->flags |= OBJECT_NO_SCAN;
874 spin_unlock_irqrestore(&object->lock, flags);
875 put_object(object);
876 }
877
878 /**
879 * kmemleak_alloc - register a newly allocated object
880 * @ptr: pointer to beginning of the object
881 * @size: size of the object
882 * @min_count: minimum number of references to this object. If during memory
883 * scanning a number of references less than @min_count is found,
884 * the object is reported as a memory leak. If @min_count is 0,
885 * the object is never reported as a leak. If @min_count is -1,
886 * the object is ignored (not scanned and not reported as a leak)
887 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
888 *
889 * This function is called from the kernel allocators when a new object
890 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
891 */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)892 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
893 gfp_t gfp)
894 {
895 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
896
897 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
898 create_object((unsigned long)ptr, size, min_count, gfp);
899 }
900 EXPORT_SYMBOL_GPL(kmemleak_alloc);
901
902 /**
903 * kmemleak_alloc_percpu - register a newly allocated __percpu object
904 * @ptr: __percpu pointer to beginning of the object
905 * @size: size of the object
906 * @gfp: flags used for kmemleak internal memory allocations
907 *
908 * This function is called from the kernel percpu allocator when a new object
909 * (memory block) is allocated (alloc_percpu).
910 */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)911 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
912 gfp_t gfp)
913 {
914 unsigned int cpu;
915
916 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
917
918 /*
919 * Percpu allocations are only scanned and not reported as leaks
920 * (min_count is set to 0).
921 */
922 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
923 for_each_possible_cpu(cpu)
924 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
925 size, 0, gfp);
926 }
927 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
928
929 /**
930 * kmemleak_vmalloc - register a newly vmalloc'ed object
931 * @area: pointer to vm_struct
932 * @size: size of the object
933 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
934 *
935 * This function is called from the vmalloc() kernel allocator when a new
936 * object (memory block) is allocated.
937 */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)938 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
939 {
940 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
941
942 /*
943 * A min_count = 2 is needed because vm_struct contains a reference to
944 * the virtual address of the vmalloc'ed block.
945 */
946 if (kmemleak_enabled) {
947 create_object((unsigned long)area->addr, size, 2, gfp);
948 object_set_excess_ref((unsigned long)area,
949 (unsigned long)area->addr);
950 }
951 }
952 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
953
954 /**
955 * kmemleak_free - unregister a previously registered object
956 * @ptr: pointer to beginning of the object
957 *
958 * This function is called from the kernel allocators when an object (memory
959 * block) is freed (kmem_cache_free, kfree, vfree etc.).
960 */
kmemleak_free(const void * ptr)961 void __ref kmemleak_free(const void *ptr)
962 {
963 pr_debug("%s(0x%p)\n", __func__, ptr);
964
965 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
966 delete_object_full((unsigned long)ptr);
967 }
968 EXPORT_SYMBOL_GPL(kmemleak_free);
969
970 /**
971 * kmemleak_free_part - partially unregister a previously registered object
972 * @ptr: pointer to the beginning or inside the object. This also
973 * represents the start of the range to be freed
974 * @size: size to be unregistered
975 *
976 * This function is called when only a part of a memory block is freed
977 * (usually from the bootmem allocator).
978 */
kmemleak_free_part(const void * ptr,size_t size)979 void __ref kmemleak_free_part(const void *ptr, size_t size)
980 {
981 pr_debug("%s(0x%p)\n", __func__, ptr);
982
983 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
984 delete_object_part((unsigned long)ptr, size);
985 }
986 EXPORT_SYMBOL_GPL(kmemleak_free_part);
987
988 /**
989 * kmemleak_free_percpu - unregister a previously registered __percpu object
990 * @ptr: __percpu pointer to beginning of the object
991 *
992 * This function is called from the kernel percpu allocator when an object
993 * (memory block) is freed (free_percpu).
994 */
kmemleak_free_percpu(const void __percpu * ptr)995 void __ref kmemleak_free_percpu(const void __percpu *ptr)
996 {
997 unsigned int cpu;
998
999 pr_debug("%s(0x%p)\n", __func__, ptr);
1000
1001 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1002 for_each_possible_cpu(cpu)
1003 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1004 cpu));
1005 }
1006 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1007
1008 /**
1009 * kmemleak_update_trace - update object allocation stack trace
1010 * @ptr: pointer to beginning of the object
1011 *
1012 * Override the object allocation stack trace for cases where the actual
1013 * allocation place is not always useful.
1014 */
kmemleak_update_trace(const void * ptr)1015 void __ref kmemleak_update_trace(const void *ptr)
1016 {
1017 struct kmemleak_object *object;
1018 unsigned long flags;
1019
1020 pr_debug("%s(0x%p)\n", __func__, ptr);
1021
1022 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1023 return;
1024
1025 object = find_and_get_object((unsigned long)ptr, 1);
1026 if (!object) {
1027 #ifdef DEBUG
1028 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1029 ptr);
1030 #endif
1031 return;
1032 }
1033
1034 spin_lock_irqsave(&object->lock, flags);
1035 object->trace_len = __save_stack_trace(object->trace);
1036 spin_unlock_irqrestore(&object->lock, flags);
1037
1038 put_object(object);
1039 }
1040 EXPORT_SYMBOL(kmemleak_update_trace);
1041
1042 /**
1043 * kmemleak_not_leak - mark an allocated object as false positive
1044 * @ptr: pointer to beginning of the object
1045 *
1046 * Calling this function on an object will cause the memory block to no longer
1047 * be reported as leak and always be scanned.
1048 */
kmemleak_not_leak(const void * ptr)1049 void __ref kmemleak_not_leak(const void *ptr)
1050 {
1051 pr_debug("%s(0x%p)\n", __func__, ptr);
1052
1053 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1054 make_gray_object((unsigned long)ptr);
1055 }
1056 EXPORT_SYMBOL(kmemleak_not_leak);
1057
1058 /**
1059 * kmemleak_ignore - ignore an allocated object
1060 * @ptr: pointer to beginning of the object
1061 *
1062 * Calling this function on an object will cause the memory block to be
1063 * ignored (not scanned and not reported as a leak). This is usually done when
1064 * it is known that the corresponding block is not a leak and does not contain
1065 * any references to other allocated memory blocks.
1066 */
kmemleak_ignore(const void * ptr)1067 void __ref kmemleak_ignore(const void *ptr)
1068 {
1069 pr_debug("%s(0x%p)\n", __func__, ptr);
1070
1071 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1072 make_black_object((unsigned long)ptr);
1073 }
1074 EXPORT_SYMBOL(kmemleak_ignore);
1075
1076 /**
1077 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1078 * @ptr: pointer to beginning or inside the object. This also
1079 * represents the start of the scan area
1080 * @size: size of the scan area
1081 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1082 *
1083 * This function is used when it is known that only certain parts of an object
1084 * contain references to other objects. Kmemleak will only scan these areas
1085 * reducing the number false negatives.
1086 */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1087 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1088 {
1089 pr_debug("%s(0x%p)\n", __func__, ptr);
1090
1091 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1092 add_scan_area((unsigned long)ptr, size, gfp);
1093 }
1094 EXPORT_SYMBOL(kmemleak_scan_area);
1095
1096 /**
1097 * kmemleak_no_scan - do not scan an allocated object
1098 * @ptr: pointer to beginning of the object
1099 *
1100 * This function notifies kmemleak not to scan the given memory block. Useful
1101 * in situations where it is known that the given object does not contain any
1102 * references to other objects. Kmemleak will not scan such objects reducing
1103 * the number of false negatives.
1104 */
kmemleak_no_scan(const void * ptr)1105 void __ref kmemleak_no_scan(const void *ptr)
1106 {
1107 pr_debug("%s(0x%p)\n", __func__, ptr);
1108
1109 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1110 object_no_scan((unsigned long)ptr);
1111 }
1112 EXPORT_SYMBOL(kmemleak_no_scan);
1113
1114 /**
1115 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1116 * address argument
1117 * @phys: physical address of the object
1118 * @size: size of the object
1119 * @min_count: minimum number of references to this object.
1120 * See kmemleak_alloc()
1121 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1122 */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,int min_count,gfp_t gfp)1123 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1124 gfp_t gfp)
1125 {
1126 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1127 kmemleak_alloc(__va(phys), size, min_count, gfp);
1128 }
1129 EXPORT_SYMBOL(kmemleak_alloc_phys);
1130
1131 /**
1132 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1133 * physical address argument
1134 * @phys: physical address if the beginning or inside an object. This
1135 * also represents the start of the range to be freed
1136 * @size: size to be unregistered
1137 */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1138 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1139 {
1140 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1141 kmemleak_free_part(__va(phys), size);
1142 }
1143 EXPORT_SYMBOL(kmemleak_free_part_phys);
1144
1145 /**
1146 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1147 * address argument
1148 * @phys: physical address of the object
1149 */
kmemleak_not_leak_phys(phys_addr_t phys)1150 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1151 {
1152 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1153 kmemleak_not_leak(__va(phys));
1154 }
1155 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1156
1157 /**
1158 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1159 * address argument
1160 * @phys: physical address of the object
1161 */
kmemleak_ignore_phys(phys_addr_t phys)1162 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1163 {
1164 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1165 kmemleak_ignore(__va(phys));
1166 }
1167 EXPORT_SYMBOL(kmemleak_ignore_phys);
1168
1169 /*
1170 * Update an object's checksum and return true if it was modified.
1171 */
update_checksum(struct kmemleak_object * object)1172 static bool update_checksum(struct kmemleak_object *object)
1173 {
1174 u32 old_csum = object->checksum;
1175
1176 kasan_disable_current();
1177 object->checksum = crc32(0, (void *)object->pointer, object->size);
1178 kasan_enable_current();
1179
1180 return object->checksum != old_csum;
1181 }
1182
1183 /*
1184 * Update an object's references. object->lock must be held by the caller.
1185 */
update_refs(struct kmemleak_object * object)1186 static void update_refs(struct kmemleak_object *object)
1187 {
1188 if (!color_white(object)) {
1189 /* non-orphan, ignored or new */
1190 return;
1191 }
1192
1193 /*
1194 * Increase the object's reference count (number of pointers to the
1195 * memory block). If this count reaches the required minimum, the
1196 * object's color will become gray and it will be added to the
1197 * gray_list.
1198 */
1199 object->count++;
1200 if (color_gray(object)) {
1201 /* put_object() called when removing from gray_list */
1202 WARN_ON(!get_object(object));
1203 list_add_tail(&object->gray_list, &gray_list);
1204 }
1205 }
1206
1207 /*
1208 * Memory scanning is a long process and it needs to be interruptable. This
1209 * function checks whether such interrupt condition occurred.
1210 */
scan_should_stop(void)1211 static int scan_should_stop(void)
1212 {
1213 if (!kmemleak_enabled)
1214 return 1;
1215
1216 /*
1217 * This function may be called from either process or kthread context,
1218 * hence the need to check for both stop conditions.
1219 */
1220 if (current->mm)
1221 return signal_pending(current);
1222 else
1223 return kthread_should_stop();
1224
1225 return 0;
1226 }
1227
1228 /*
1229 * Scan a memory block (exclusive range) for valid pointers and add those
1230 * found to the gray list.
1231 */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1232 static void scan_block(void *_start, void *_end,
1233 struct kmemleak_object *scanned)
1234 {
1235 unsigned long *ptr;
1236 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1237 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1238 unsigned long flags;
1239 unsigned long untagged_ptr;
1240
1241 read_lock_irqsave(&kmemleak_lock, flags);
1242 for (ptr = start; ptr < end; ptr++) {
1243 struct kmemleak_object *object;
1244 unsigned long pointer;
1245 unsigned long excess_ref;
1246
1247 if (scan_should_stop())
1248 break;
1249
1250 kasan_disable_current();
1251 pointer = *ptr;
1252 kasan_enable_current();
1253
1254 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1255 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1256 continue;
1257
1258 /*
1259 * No need for get_object() here since we hold kmemleak_lock.
1260 * object->use_count cannot be dropped to 0 while the object
1261 * is still present in object_tree_root and object_list
1262 * (with updates protected by kmemleak_lock).
1263 */
1264 object = lookup_object(pointer, 1);
1265 if (!object)
1266 continue;
1267 if (object == scanned)
1268 /* self referenced, ignore */
1269 continue;
1270
1271 /*
1272 * Avoid the lockdep recursive warning on object->lock being
1273 * previously acquired in scan_object(). These locks are
1274 * enclosed by scan_mutex.
1275 */
1276 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1277 /* only pass surplus references (object already gray) */
1278 if (color_gray(object)) {
1279 excess_ref = object->excess_ref;
1280 /* no need for update_refs() if object already gray */
1281 } else {
1282 excess_ref = 0;
1283 update_refs(object);
1284 }
1285 spin_unlock(&object->lock);
1286
1287 if (excess_ref) {
1288 object = lookup_object(excess_ref, 0);
1289 if (!object)
1290 continue;
1291 if (object == scanned)
1292 /* circular reference, ignore */
1293 continue;
1294 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1295 update_refs(object);
1296 spin_unlock(&object->lock);
1297 }
1298 }
1299 read_unlock_irqrestore(&kmemleak_lock, flags);
1300 }
1301
1302 /*
1303 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1304 */
1305 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1306 static void scan_large_block(void *start, void *end)
1307 {
1308 void *next;
1309
1310 while (start < end) {
1311 next = min(start + MAX_SCAN_SIZE, end);
1312 scan_block(start, next, NULL);
1313 start = next;
1314 cond_resched();
1315 }
1316 }
1317 #endif
1318
1319 /*
1320 * Scan a memory block corresponding to a kmemleak_object. A condition is
1321 * that object->use_count >= 1.
1322 */
scan_object(struct kmemleak_object * object)1323 static void scan_object(struct kmemleak_object *object)
1324 {
1325 struct kmemleak_scan_area *area;
1326 unsigned long flags;
1327
1328 /*
1329 * Once the object->lock is acquired, the corresponding memory block
1330 * cannot be freed (the same lock is acquired in delete_object).
1331 */
1332 spin_lock_irqsave(&object->lock, flags);
1333 if (object->flags & OBJECT_NO_SCAN)
1334 goto out;
1335 if (!(object->flags & OBJECT_ALLOCATED))
1336 /* already freed object */
1337 goto out;
1338 if (hlist_empty(&object->area_list) ||
1339 object->flags & OBJECT_FULL_SCAN) {
1340 void *start = (void *)object->pointer;
1341 void *end = (void *)(object->pointer + object->size);
1342 void *next;
1343
1344 do {
1345 next = min(start + MAX_SCAN_SIZE, end);
1346 scan_block(start, next, object);
1347
1348 start = next;
1349 if (start >= end)
1350 break;
1351
1352 spin_unlock_irqrestore(&object->lock, flags);
1353 cond_resched();
1354 spin_lock_irqsave(&object->lock, flags);
1355 } while (object->flags & OBJECT_ALLOCATED);
1356 } else
1357 hlist_for_each_entry(area, &object->area_list, node)
1358 scan_block((void *)area->start,
1359 (void *)(area->start + area->size),
1360 object);
1361 out:
1362 spin_unlock_irqrestore(&object->lock, flags);
1363 }
1364
1365 /*
1366 * Scan the objects already referenced (gray objects). More objects will be
1367 * referenced and, if there are no memory leaks, all the objects are scanned.
1368 */
scan_gray_list(void)1369 static void scan_gray_list(void)
1370 {
1371 struct kmemleak_object *object, *tmp;
1372
1373 /*
1374 * The list traversal is safe for both tail additions and removals
1375 * from inside the loop. The kmemleak objects cannot be freed from
1376 * outside the loop because their use_count was incremented.
1377 */
1378 object = list_entry(gray_list.next, typeof(*object), gray_list);
1379 while (&object->gray_list != &gray_list) {
1380 cond_resched();
1381
1382 /* may add new objects to the list */
1383 if (!scan_should_stop())
1384 scan_object(object);
1385
1386 tmp = list_entry(object->gray_list.next, typeof(*object),
1387 gray_list);
1388
1389 /* remove the object from the list and release it */
1390 list_del(&object->gray_list);
1391 put_object(object);
1392
1393 object = tmp;
1394 }
1395 WARN_ON(!list_empty(&gray_list));
1396 }
1397
1398 /*
1399 * Scan data sections and all the referenced memory blocks allocated via the
1400 * kernel's standard allocators. This function must be called with the
1401 * scan_mutex held.
1402 */
kmemleak_scan(void)1403 static void kmemleak_scan(void)
1404 {
1405 unsigned long flags;
1406 struct kmemleak_object *object;
1407 struct zone *zone;
1408 int __maybe_unused i;
1409 int new_leaks = 0;
1410
1411 jiffies_last_scan = jiffies;
1412
1413 /* prepare the kmemleak_object's */
1414 rcu_read_lock();
1415 list_for_each_entry_rcu(object, &object_list, object_list) {
1416 spin_lock_irqsave(&object->lock, flags);
1417 #ifdef DEBUG
1418 /*
1419 * With a few exceptions there should be a maximum of
1420 * 1 reference to any object at this point.
1421 */
1422 if (atomic_read(&object->use_count) > 1) {
1423 pr_debug("object->use_count = %d\n",
1424 atomic_read(&object->use_count));
1425 dump_object_info(object);
1426 }
1427 #endif
1428 /* reset the reference count (whiten the object) */
1429 object->count = 0;
1430 if (color_gray(object) && get_object(object))
1431 list_add_tail(&object->gray_list, &gray_list);
1432
1433 spin_unlock_irqrestore(&object->lock, flags);
1434 }
1435 rcu_read_unlock();
1436
1437 #ifdef CONFIG_SMP
1438 /* per-cpu sections scanning */
1439 for_each_possible_cpu(i)
1440 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1441 __per_cpu_end + per_cpu_offset(i));
1442 #endif
1443
1444 /*
1445 * Struct page scanning for each node.
1446 */
1447 get_online_mems();
1448 for_each_populated_zone(zone) {
1449 unsigned long start_pfn = zone->zone_start_pfn;
1450 unsigned long end_pfn = zone_end_pfn(zone);
1451 unsigned long pfn;
1452
1453 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1454 struct page *page = pfn_to_online_page(pfn);
1455
1456 if (!page)
1457 continue;
1458
1459 /* only scan pages belonging to this zone */
1460 if (page_zone(page) != zone)
1461 continue;
1462 /* only scan if page is in use */
1463 if (page_count(page) == 0)
1464 continue;
1465 scan_block(page, page + 1, NULL);
1466 if (!(pfn & 63))
1467 cond_resched();
1468 }
1469 }
1470 put_online_mems();
1471
1472 /*
1473 * Scanning the task stacks (may introduce false negatives).
1474 */
1475 if (kmemleak_stack_scan) {
1476 struct task_struct *p, *g;
1477
1478 read_lock(&tasklist_lock);
1479 do_each_thread(g, p) {
1480 void *stack = try_get_task_stack(p);
1481 if (stack) {
1482 scan_block(stack, stack + THREAD_SIZE, NULL);
1483 put_task_stack(p);
1484 }
1485 } while_each_thread(g, p);
1486 read_unlock(&tasklist_lock);
1487 }
1488
1489 /*
1490 * Scan the objects already referenced from the sections scanned
1491 * above.
1492 */
1493 scan_gray_list();
1494
1495 /*
1496 * Check for new or unreferenced objects modified since the previous
1497 * scan and color them gray until the next scan.
1498 */
1499 rcu_read_lock();
1500 list_for_each_entry_rcu(object, &object_list, object_list) {
1501 spin_lock_irqsave(&object->lock, flags);
1502 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1503 && update_checksum(object) && get_object(object)) {
1504 /* color it gray temporarily */
1505 object->count = object->min_count;
1506 list_add_tail(&object->gray_list, &gray_list);
1507 }
1508 spin_unlock_irqrestore(&object->lock, flags);
1509 }
1510 rcu_read_unlock();
1511
1512 /*
1513 * Re-scan the gray list for modified unreferenced objects.
1514 */
1515 scan_gray_list();
1516
1517 /*
1518 * If scanning was stopped do not report any new unreferenced objects.
1519 */
1520 if (scan_should_stop())
1521 return;
1522
1523 /*
1524 * Scanning result reporting.
1525 */
1526 rcu_read_lock();
1527 list_for_each_entry_rcu(object, &object_list, object_list) {
1528 spin_lock_irqsave(&object->lock, flags);
1529 if (unreferenced_object(object) &&
1530 !(object->flags & OBJECT_REPORTED)) {
1531 object->flags |= OBJECT_REPORTED;
1532
1533 if (kmemleak_verbose)
1534 print_unreferenced(NULL, object);
1535
1536 new_leaks++;
1537 }
1538 spin_unlock_irqrestore(&object->lock, flags);
1539 }
1540 rcu_read_unlock();
1541
1542 if (new_leaks) {
1543 kmemleak_found_leaks = true;
1544
1545 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1546 new_leaks);
1547 }
1548
1549 }
1550
1551 /*
1552 * Thread function performing automatic memory scanning. Unreferenced objects
1553 * at the end of a memory scan are reported but only the first time.
1554 */
kmemleak_scan_thread(void * arg)1555 static int kmemleak_scan_thread(void *arg)
1556 {
1557 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1558
1559 pr_info("Automatic memory scanning thread started\n");
1560 set_user_nice(current, 10);
1561
1562 /*
1563 * Wait before the first scan to allow the system to fully initialize.
1564 */
1565 if (first_run) {
1566 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1567 first_run = 0;
1568 while (timeout && !kthread_should_stop())
1569 timeout = schedule_timeout_interruptible(timeout);
1570 }
1571
1572 while (!kthread_should_stop()) {
1573 signed long timeout = jiffies_scan_wait;
1574
1575 mutex_lock(&scan_mutex);
1576 kmemleak_scan();
1577 mutex_unlock(&scan_mutex);
1578
1579 /* wait before the next scan */
1580 while (timeout && !kthread_should_stop())
1581 timeout = schedule_timeout_interruptible(timeout);
1582 }
1583
1584 pr_info("Automatic memory scanning thread ended\n");
1585
1586 return 0;
1587 }
1588
1589 /*
1590 * Start the automatic memory scanning thread. This function must be called
1591 * with the scan_mutex held.
1592 */
start_scan_thread(void)1593 static void start_scan_thread(void)
1594 {
1595 if (scan_thread)
1596 return;
1597 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1598 if (IS_ERR(scan_thread)) {
1599 pr_warn("Failed to create the scan thread\n");
1600 scan_thread = NULL;
1601 }
1602 }
1603
1604 /*
1605 * Stop the automatic memory scanning thread.
1606 */
stop_scan_thread(void)1607 static void stop_scan_thread(void)
1608 {
1609 if (scan_thread) {
1610 kthread_stop(scan_thread);
1611 scan_thread = NULL;
1612 }
1613 }
1614
1615 /*
1616 * Iterate over the object_list and return the first valid object at or after
1617 * the required position with its use_count incremented. The function triggers
1618 * a memory scanning when the pos argument points to the first position.
1619 */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1620 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1621 {
1622 struct kmemleak_object *object;
1623 loff_t n = *pos;
1624 int err;
1625
1626 err = mutex_lock_interruptible(&scan_mutex);
1627 if (err < 0)
1628 return ERR_PTR(err);
1629
1630 rcu_read_lock();
1631 list_for_each_entry_rcu(object, &object_list, object_list) {
1632 if (n-- > 0)
1633 continue;
1634 if (get_object(object))
1635 goto out;
1636 }
1637 object = NULL;
1638 out:
1639 return object;
1640 }
1641
1642 /*
1643 * Return the next object in the object_list. The function decrements the
1644 * use_count of the previous object and increases that of the next one.
1645 */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1646 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1647 {
1648 struct kmemleak_object *prev_obj = v;
1649 struct kmemleak_object *next_obj = NULL;
1650 struct kmemleak_object *obj = prev_obj;
1651
1652 ++(*pos);
1653
1654 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1655 if (get_object(obj)) {
1656 next_obj = obj;
1657 break;
1658 }
1659 }
1660
1661 put_object(prev_obj);
1662 return next_obj;
1663 }
1664
1665 /*
1666 * Decrement the use_count of the last object required, if any.
1667 */
kmemleak_seq_stop(struct seq_file * seq,void * v)1668 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1669 {
1670 if (!IS_ERR(v)) {
1671 /*
1672 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1673 * waiting was interrupted, so only release it if !IS_ERR.
1674 */
1675 rcu_read_unlock();
1676 mutex_unlock(&scan_mutex);
1677 if (v)
1678 put_object(v);
1679 }
1680 }
1681
1682 /*
1683 * Print the information for an unreferenced object to the seq file.
1684 */
kmemleak_seq_show(struct seq_file * seq,void * v)1685 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1686 {
1687 struct kmemleak_object *object = v;
1688 unsigned long flags;
1689
1690 spin_lock_irqsave(&object->lock, flags);
1691 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1692 print_unreferenced(seq, object);
1693 spin_unlock_irqrestore(&object->lock, flags);
1694 return 0;
1695 }
1696
1697 static const struct seq_operations kmemleak_seq_ops = {
1698 .start = kmemleak_seq_start,
1699 .next = kmemleak_seq_next,
1700 .stop = kmemleak_seq_stop,
1701 .show = kmemleak_seq_show,
1702 };
1703
kmemleak_open(struct inode * inode,struct file * file)1704 static int kmemleak_open(struct inode *inode, struct file *file)
1705 {
1706 return seq_open(file, &kmemleak_seq_ops);
1707 }
1708
dump_str_object_info(const char * str)1709 static int dump_str_object_info(const char *str)
1710 {
1711 unsigned long flags;
1712 struct kmemleak_object *object;
1713 unsigned long addr;
1714
1715 if (kstrtoul(str, 0, &addr))
1716 return -EINVAL;
1717 object = find_and_get_object(addr, 0);
1718 if (!object) {
1719 pr_info("Unknown object at 0x%08lx\n", addr);
1720 return -EINVAL;
1721 }
1722
1723 spin_lock_irqsave(&object->lock, flags);
1724 dump_object_info(object);
1725 spin_unlock_irqrestore(&object->lock, flags);
1726
1727 put_object(object);
1728 return 0;
1729 }
1730
1731 /*
1732 * We use grey instead of black to ensure we can do future scans on the same
1733 * objects. If we did not do future scans these black objects could
1734 * potentially contain references to newly allocated objects in the future and
1735 * we'd end up with false positives.
1736 */
kmemleak_clear(void)1737 static void kmemleak_clear(void)
1738 {
1739 struct kmemleak_object *object;
1740 unsigned long flags;
1741
1742 rcu_read_lock();
1743 list_for_each_entry_rcu(object, &object_list, object_list) {
1744 spin_lock_irqsave(&object->lock, flags);
1745 if ((object->flags & OBJECT_REPORTED) &&
1746 unreferenced_object(object))
1747 __paint_it(object, KMEMLEAK_GREY);
1748 spin_unlock_irqrestore(&object->lock, flags);
1749 }
1750 rcu_read_unlock();
1751
1752 kmemleak_found_leaks = false;
1753 }
1754
1755 static void __kmemleak_do_cleanup(void);
1756
1757 /*
1758 * File write operation to configure kmemleak at run-time. The following
1759 * commands can be written to the /sys/kernel/debug/kmemleak file:
1760 * off - disable kmemleak (irreversible)
1761 * stack=on - enable the task stacks scanning
1762 * stack=off - disable the tasks stacks scanning
1763 * scan=on - start the automatic memory scanning thread
1764 * scan=off - stop the automatic memory scanning thread
1765 * scan=... - set the automatic memory scanning period in seconds (0 to
1766 * disable it)
1767 * scan - trigger a memory scan
1768 * clear - mark all current reported unreferenced kmemleak objects as
1769 * grey to ignore printing them, or free all kmemleak objects
1770 * if kmemleak has been disabled.
1771 * dump=... - dump information about the object found at the given address
1772 */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)1773 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1774 size_t size, loff_t *ppos)
1775 {
1776 char buf[64];
1777 int buf_size;
1778 int ret;
1779
1780 buf_size = min(size, (sizeof(buf) - 1));
1781 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1782 return -EFAULT;
1783 buf[buf_size] = 0;
1784
1785 ret = mutex_lock_interruptible(&scan_mutex);
1786 if (ret < 0)
1787 return ret;
1788
1789 if (strncmp(buf, "clear", 5) == 0) {
1790 if (kmemleak_enabled)
1791 kmemleak_clear();
1792 else
1793 __kmemleak_do_cleanup();
1794 goto out;
1795 }
1796
1797 if (!kmemleak_enabled) {
1798 ret = -EPERM;
1799 goto out;
1800 }
1801
1802 if (strncmp(buf, "off", 3) == 0)
1803 kmemleak_disable();
1804 else if (strncmp(buf, "stack=on", 8) == 0)
1805 kmemleak_stack_scan = 1;
1806 else if (strncmp(buf, "stack=off", 9) == 0)
1807 kmemleak_stack_scan = 0;
1808 else if (strncmp(buf, "scan=on", 7) == 0)
1809 start_scan_thread();
1810 else if (strncmp(buf, "scan=off", 8) == 0)
1811 stop_scan_thread();
1812 else if (strncmp(buf, "scan=", 5) == 0) {
1813 unsigned long secs;
1814
1815 ret = kstrtoul(buf + 5, 0, &secs);
1816 if (ret < 0)
1817 goto out;
1818 stop_scan_thread();
1819 if (secs) {
1820 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1821 start_scan_thread();
1822 }
1823 } else if (strncmp(buf, "scan", 4) == 0)
1824 kmemleak_scan();
1825 else if (strncmp(buf, "dump=", 5) == 0)
1826 ret = dump_str_object_info(buf + 5);
1827 else
1828 ret = -EINVAL;
1829
1830 out:
1831 mutex_unlock(&scan_mutex);
1832 if (ret < 0)
1833 return ret;
1834
1835 /* ignore the rest of the buffer, only one command at a time */
1836 *ppos += size;
1837 return size;
1838 }
1839
1840 static const struct file_operations kmemleak_fops = {
1841 .owner = THIS_MODULE,
1842 .open = kmemleak_open,
1843 .read = seq_read,
1844 .write = kmemleak_write,
1845 .llseek = seq_lseek,
1846 .release = seq_release,
1847 };
1848
__kmemleak_do_cleanup(void)1849 static void __kmemleak_do_cleanup(void)
1850 {
1851 struct kmemleak_object *object, *tmp;
1852
1853 /*
1854 * Kmemleak has already been disabled, no need for RCU list traversal
1855 * or kmemleak_lock held.
1856 */
1857 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1858 __remove_object(object);
1859 __delete_object(object);
1860 }
1861 }
1862
1863 /*
1864 * Stop the memory scanning thread and free the kmemleak internal objects if
1865 * no previous scan thread (otherwise, kmemleak may still have some useful
1866 * information on memory leaks).
1867 */
kmemleak_do_cleanup(struct work_struct * work)1868 static void kmemleak_do_cleanup(struct work_struct *work)
1869 {
1870 stop_scan_thread();
1871
1872 mutex_lock(&scan_mutex);
1873 /*
1874 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1875 * longer track object freeing. Ordering of the scan thread stopping and
1876 * the memory accesses below is guaranteed by the kthread_stop()
1877 * function.
1878 */
1879 kmemleak_free_enabled = 0;
1880 mutex_unlock(&scan_mutex);
1881
1882 if (!kmemleak_found_leaks)
1883 __kmemleak_do_cleanup();
1884 else
1885 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1886 }
1887
1888 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1889
1890 /*
1891 * Disable kmemleak. No memory allocation/freeing will be traced once this
1892 * function is called. Disabling kmemleak is an irreversible operation.
1893 */
kmemleak_disable(void)1894 static void kmemleak_disable(void)
1895 {
1896 /* atomically check whether it was already invoked */
1897 if (cmpxchg(&kmemleak_error, 0, 1))
1898 return;
1899
1900 /* stop any memory operation tracing */
1901 kmemleak_enabled = 0;
1902
1903 /* check whether it is too early for a kernel thread */
1904 if (kmemleak_initialized)
1905 schedule_work(&cleanup_work);
1906 else
1907 kmemleak_free_enabled = 0;
1908
1909 pr_info("Kernel memory leak detector disabled\n");
1910 }
1911
1912 /*
1913 * Allow boot-time kmemleak disabling (enabled by default).
1914 */
kmemleak_boot_config(char * str)1915 static int __init kmemleak_boot_config(char *str)
1916 {
1917 if (!str)
1918 return -EINVAL;
1919 if (strcmp(str, "off") == 0)
1920 kmemleak_disable();
1921 else if (strcmp(str, "on") == 0)
1922 kmemleak_skip_disable = 1;
1923 else
1924 return -EINVAL;
1925 return 0;
1926 }
1927 early_param("kmemleak", kmemleak_boot_config);
1928
1929 /*
1930 * Kmemleak initialization.
1931 */
kmemleak_init(void)1932 void __init kmemleak_init(void)
1933 {
1934 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1935 if (!kmemleak_skip_disable) {
1936 kmemleak_disable();
1937 return;
1938 }
1939 #endif
1940
1941 if (kmemleak_error)
1942 return;
1943
1944 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1945 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1946
1947 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1948 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1949
1950 /* register the data/bss sections */
1951 create_object((unsigned long)_sdata, _edata - _sdata,
1952 KMEMLEAK_GREY, GFP_ATOMIC);
1953 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1954 KMEMLEAK_GREY, GFP_ATOMIC);
1955 /* only register .data..ro_after_init if not within .data */
1956 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1957 create_object((unsigned long)__start_ro_after_init,
1958 __end_ro_after_init - __start_ro_after_init,
1959 KMEMLEAK_GREY, GFP_ATOMIC);
1960 }
1961
1962 /*
1963 * Late initialization function.
1964 */
kmemleak_late_init(void)1965 static int __init kmemleak_late_init(void)
1966 {
1967 kmemleak_initialized = 1;
1968
1969 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1970
1971 if (kmemleak_error) {
1972 /*
1973 * Some error occurred and kmemleak was disabled. There is a
1974 * small chance that kmemleak_disable() was called immediately
1975 * after setting kmemleak_initialized and we may end up with
1976 * two clean-up threads but serialized by scan_mutex.
1977 */
1978 schedule_work(&cleanup_work);
1979 return -ENOMEM;
1980 }
1981
1982 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1983 mutex_lock(&scan_mutex);
1984 start_scan_thread();
1985 mutex_unlock(&scan_mutex);
1986 }
1987
1988 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1989 mem_pool_free_count);
1990
1991 return 0;
1992 }
1993 late_initcall(kmemleak_late_init);
1994