• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (rwlock): protects the object_list modifications and
17  *   accesses to the object_tree_root. The object_list is the main list
18  *   holding the metadata (struct kmemleak_object) for the allocated memory
19  *   blocks. The object_tree_root is a red black tree used to look-up
20  *   metadata based on a pointer to the corresponding memory block.  The
21  *   kmemleak_object structures are added to the object_list and
22  *   object_tree_root in the create_object() function called from the
23  *   kmemleak_alloc() callback and removed in delete_object() called from the
24  *   kmemleak_free() callback
25  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
26  *   the metadata (e.g. count) are protected by this lock. Note that some
27  *   members of this structure may be protected by other means (atomic or
28  *   kmemleak_lock). This lock is also held when scanning the corresponding
29  *   memory block to avoid the kernel freeing it via the kmemleak_free()
30  *   callback. This is less heavyweight than holding a global lock like
31  *   kmemleak_lock during scanning
32  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33  *   unreferenced objects at a time. The gray_list contains the objects which
34  *   are already referenced or marked as false positives and need to be
35  *   scanned. This list is only modified during a scanning episode when the
36  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
37  *   Note that the kmemleak_object.use_count is incremented when an object is
38  *   added to the gray_list and therefore cannot be freed. This mutex also
39  *   prevents multiple users of the "kmemleak" debugfs file together with
40  *   modifications to the memory scanning parameters including the scan_thread
41  *   pointer
42  *
43  * Locks and mutexes are acquired/nested in the following order:
44  *
45  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46  *
47  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48  * regions.
49  *
50  * The kmemleak_object structures have a use_count incremented or decremented
51  * using the get_object()/put_object() functions. When the use_count becomes
52  * 0, this count can no longer be incremented and put_object() schedules the
53  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54  * function must be protected by rcu_read_lock() to avoid accessing a freed
55  * structure.
56  */
57 
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94 
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98 
99 #include <linux/kasan.h>
100 #include <linux/kmemleak.h>
101 #include <linux/memory_hotplug.h>
102 
103 /*
104  * Kmemleak configuration and common defines.
105  */
106 #define MAX_TRACE		16	/* stack trace length */
107 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
108 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
109 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
110 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
111 
112 #define BYTES_PER_POINTER	sizeof(void *)
113 
114 /* GFP bitmask for kmemleak internal allocations */
115 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
117 				 __GFP_NOWARN)
118 
119 /* scanning area inside a memory block */
120 struct kmemleak_scan_area {
121 	struct hlist_node node;
122 	unsigned long start;
123 	size_t size;
124 };
125 
126 #define KMEMLEAK_GREY	0
127 #define KMEMLEAK_BLACK	-1
128 
129 /*
130  * Structure holding the metadata for each allocated memory block.
131  * Modifications to such objects should be made while holding the
132  * object->lock. Insertions or deletions from object_list, gray_list or
133  * rb_node are already protected by the corresponding locks or mutex (see
134  * the notes on locking above). These objects are reference-counted
135  * (use_count) and freed using the RCU mechanism.
136  */
137 struct kmemleak_object {
138 	spinlock_t lock;
139 	unsigned int flags;		/* object status flags */
140 	struct list_head object_list;
141 	struct list_head gray_list;
142 	struct rb_node rb_node;
143 	struct rcu_head rcu;		/* object_list lockless traversal */
144 	/* object usage count; object freed when use_count == 0 */
145 	atomic_t use_count;
146 	unsigned long pointer;
147 	size_t size;
148 	/* pass surplus references to this pointer */
149 	unsigned long excess_ref;
150 	/* minimum number of a pointers found before it is considered leak */
151 	int min_count;
152 	/* the total number of pointers found pointing to this object */
153 	int count;
154 	/* checksum for detecting modified objects */
155 	u32 checksum;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long trace[MAX_TRACE];
159 	unsigned int trace_len;
160 	unsigned long jiffies;		/* creation timestamp */
161 	pid_t pid;			/* pid of the current task */
162 	char comm[TASK_COMM_LEN];	/* executable name */
163 };
164 
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED	(1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED		(1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN		(1 << 2)
171 /* flag set to fully scan the object when scan_area allocation failed */
172 #define OBJECT_FULL_SCAN	(1 << 3)
173 
174 #define HEX_PREFIX		"    "
175 /* number of bytes to print per line; must be 16 or 32 */
176 #define HEX_ROW_SIZE		16
177 /* number of bytes to print at a time (1, 2, 4, 8) */
178 #define HEX_GROUP_SIZE		1
179 /* include ASCII after the hex output */
180 #define HEX_ASCII		1
181 /* max number of lines to be printed */
182 #define HEX_MAX_LINES		2
183 
184 /* the list of all allocated objects */
185 static LIST_HEAD(object_list);
186 /* the list of gray-colored objects (see color_gray comment below) */
187 static LIST_HEAD(gray_list);
188 /* memory pool allocation */
189 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
190 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
191 static LIST_HEAD(mem_pool_free_list);
192 /* search tree for object boundaries */
193 static struct rb_root object_tree_root = RB_ROOT;
194 /* rw_lock protecting the access to object_list and object_tree_root */
195 static DEFINE_RWLOCK(kmemleak_lock);
196 
197 /* allocation caches for kmemleak internal data */
198 static struct kmem_cache *object_cache;
199 static struct kmem_cache *scan_area_cache;
200 
201 /* set if tracing memory operations is enabled */
202 static int kmemleak_enabled = 1;
203 /* same as above but only for the kmemleak_free() callback */
204 static int kmemleak_free_enabled = 1;
205 /* set in the late_initcall if there were no errors */
206 static int kmemleak_initialized;
207 /* set if a kmemleak warning was issued */
208 static int kmemleak_warning;
209 /* set if a fatal kmemleak error has occurred */
210 static int kmemleak_error;
211 
212 /* minimum and maximum address that may be valid pointers */
213 static unsigned long min_addr = ULONG_MAX;
214 static unsigned long max_addr;
215 
216 static struct task_struct *scan_thread;
217 /* used to avoid reporting of recently allocated objects */
218 static unsigned long jiffies_min_age;
219 static unsigned long jiffies_last_scan;
220 /* delay between automatic memory scannings */
221 static signed long jiffies_scan_wait;
222 /* enables or disables the task stacks scanning */
223 static int kmemleak_stack_scan = 1;
224 /* protects the memory scanning, parameters and debug/kmemleak file access */
225 static DEFINE_MUTEX(scan_mutex);
226 /* setting kmemleak=on, will set this var, skipping the disable */
227 static int kmemleak_skip_disable;
228 /* If there are leaks that can be reported */
229 static bool kmemleak_found_leaks;
230 
231 static bool kmemleak_verbose;
232 module_param_named(verbose, kmemleak_verbose, bool, 0600);
233 
234 static void kmemleak_disable(void);
235 
236 /*
237  * Print a warning and dump the stack trace.
238  */
239 #define kmemleak_warn(x...)	do {		\
240 	pr_warn(x);				\
241 	dump_stack();				\
242 	kmemleak_warning = 1;			\
243 } while (0)
244 
245 /*
246  * Macro invoked when a serious kmemleak condition occurred and cannot be
247  * recovered from. Kmemleak will be disabled and further allocation/freeing
248  * tracing no longer available.
249  */
250 #define kmemleak_stop(x...)	do {	\
251 	kmemleak_warn(x);		\
252 	kmemleak_disable();		\
253 } while (0)
254 
255 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
256 	if (seq)					\
257 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
258 	else						\
259 		pr_warn(fmt, ##__VA_ARGS__);		\
260 } while (0)
261 
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)262 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
263 				 int rowsize, int groupsize, const void *buf,
264 				 size_t len, bool ascii)
265 {
266 	if (seq)
267 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
268 			     buf, len, ascii);
269 	else
270 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
271 			       rowsize, groupsize, buf, len, ascii);
272 }
273 
274 /*
275  * Printing of the objects hex dump to the seq file. The number of lines to be
276  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
277  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
278  * with the object->lock held.
279  */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)280 static void hex_dump_object(struct seq_file *seq,
281 			    struct kmemleak_object *object)
282 {
283 	const u8 *ptr = (const u8 *)object->pointer;
284 	size_t len;
285 
286 	/* limit the number of lines to HEX_MAX_LINES */
287 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
288 
289 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
290 	kasan_disable_current();
291 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
292 			     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
293 	kasan_enable_current();
294 }
295 
296 /*
297  * Object colors, encoded with count and min_count:
298  * - white - orphan object, not enough references to it (count < min_count)
299  * - gray  - not orphan, not marked as false positive (min_count == 0) or
300  *		sufficient references to it (count >= min_count)
301  * - black - ignore, it doesn't contain references (e.g. text section)
302  *		(min_count == -1). No function defined for this color.
303  * Newly created objects don't have any color assigned (object->count == -1)
304  * before the next memory scan when they become white.
305  */
color_white(const struct kmemleak_object * object)306 static bool color_white(const struct kmemleak_object *object)
307 {
308 	return object->count != KMEMLEAK_BLACK &&
309 		object->count < object->min_count;
310 }
311 
color_gray(const struct kmemleak_object * object)312 static bool color_gray(const struct kmemleak_object *object)
313 {
314 	return object->min_count != KMEMLEAK_BLACK &&
315 		object->count >= object->min_count;
316 }
317 
318 /*
319  * Objects are considered unreferenced only if their color is white, they have
320  * not be deleted and have a minimum age to avoid false positives caused by
321  * pointers temporarily stored in CPU registers.
322  */
unreferenced_object(struct kmemleak_object * object)323 static bool unreferenced_object(struct kmemleak_object *object)
324 {
325 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
326 		time_before_eq(object->jiffies + jiffies_min_age,
327 			       jiffies_last_scan);
328 }
329 
330 /*
331  * Printing of the unreferenced objects information to the seq file. The
332  * print_unreferenced function must be called with the object->lock held.
333  */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)334 static void print_unreferenced(struct seq_file *seq,
335 			       struct kmemleak_object *object)
336 {
337 	int i;
338 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
339 
340 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
341 		   object->pointer, object->size);
342 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
343 		   object->comm, object->pid, object->jiffies,
344 		   msecs_age / 1000, msecs_age % 1000);
345 	hex_dump_object(seq, object);
346 	warn_or_seq_printf(seq, "  backtrace:\n");
347 
348 	for (i = 0; i < object->trace_len; i++) {
349 		void *ptr = (void *)object->trace[i];
350 		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
351 	}
352 }
353 
354 /*
355  * Print the kmemleak_object information. This function is used mainly for
356  * debugging special cases when kmemleak operations. It must be called with
357  * the object->lock held.
358  */
dump_object_info(struct kmemleak_object * object)359 static void dump_object_info(struct kmemleak_object *object)
360 {
361 	pr_notice("Object 0x%08lx (size %zu):\n",
362 		  object->pointer, object->size);
363 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
364 		  object->comm, object->pid, object->jiffies);
365 	pr_notice("  min_count = %d\n", object->min_count);
366 	pr_notice("  count = %d\n", object->count);
367 	pr_notice("  flags = 0x%x\n", object->flags);
368 	pr_notice("  checksum = %u\n", object->checksum);
369 	pr_notice("  backtrace:\n");
370 	stack_trace_print(object->trace, object->trace_len, 4);
371 }
372 
373 /*
374  * Look-up a memory block metadata (kmemleak_object) in the object search
375  * tree based on a pointer value. If alias is 0, only values pointing to the
376  * beginning of the memory block are allowed. The kmemleak_lock must be held
377  * when calling this function.
378  */
lookup_object(unsigned long ptr,int alias)379 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
380 {
381 	struct rb_node *rb = object_tree_root.rb_node;
382 
383 	while (rb) {
384 		struct kmemleak_object *object =
385 			rb_entry(rb, struct kmemleak_object, rb_node);
386 		if (ptr < object->pointer)
387 			rb = object->rb_node.rb_left;
388 		else if (object->pointer + object->size <= ptr)
389 			rb = object->rb_node.rb_right;
390 		else if (object->pointer == ptr || alias)
391 			return object;
392 		else {
393 			kmemleak_warn("Found object by alias at 0x%08lx\n",
394 				      ptr);
395 			dump_object_info(object);
396 			break;
397 		}
398 	}
399 	return NULL;
400 }
401 
402 /*
403  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
404  * that once an object's use_count reached 0, the RCU freeing was already
405  * registered and the object should no longer be used. This function must be
406  * called under the protection of rcu_read_lock().
407  */
get_object(struct kmemleak_object * object)408 static int get_object(struct kmemleak_object *object)
409 {
410 	return atomic_inc_not_zero(&object->use_count);
411 }
412 
413 /*
414  * Memory pool allocation and freeing. kmemleak_lock must not be held.
415  */
mem_pool_alloc(gfp_t gfp)416 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
417 {
418 	unsigned long flags;
419 	struct kmemleak_object *object;
420 
421 	/* try the slab allocator first */
422 	if (object_cache) {
423 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
424 		if (object)
425 			return object;
426 	}
427 
428 	/* slab allocation failed, try the memory pool */
429 	write_lock_irqsave(&kmemleak_lock, flags);
430 	object = list_first_entry_or_null(&mem_pool_free_list,
431 					  typeof(*object), object_list);
432 	if (object)
433 		list_del(&object->object_list);
434 	else if (mem_pool_free_count)
435 		object = &mem_pool[--mem_pool_free_count];
436 	else
437 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
438 	write_unlock_irqrestore(&kmemleak_lock, flags);
439 
440 	return object;
441 }
442 
443 /*
444  * Return the object to either the slab allocator or the memory pool.
445  */
mem_pool_free(struct kmemleak_object * object)446 static void mem_pool_free(struct kmemleak_object *object)
447 {
448 	unsigned long flags;
449 
450 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
451 		kmem_cache_free(object_cache, object);
452 		return;
453 	}
454 
455 	/* add the object to the memory pool free list */
456 	write_lock_irqsave(&kmemleak_lock, flags);
457 	list_add(&object->object_list, &mem_pool_free_list);
458 	write_unlock_irqrestore(&kmemleak_lock, flags);
459 }
460 
461 /*
462  * RCU callback to free a kmemleak_object.
463  */
free_object_rcu(struct rcu_head * rcu)464 static void free_object_rcu(struct rcu_head *rcu)
465 {
466 	struct hlist_node *tmp;
467 	struct kmemleak_scan_area *area;
468 	struct kmemleak_object *object =
469 		container_of(rcu, struct kmemleak_object, rcu);
470 
471 	/*
472 	 * Once use_count is 0 (guaranteed by put_object), there is no other
473 	 * code accessing this object, hence no need for locking.
474 	 */
475 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
476 		hlist_del(&area->node);
477 		kmem_cache_free(scan_area_cache, area);
478 	}
479 	mem_pool_free(object);
480 }
481 
482 /*
483  * Decrement the object use_count. Once the count is 0, free the object using
484  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
485  * delete_object() path, the delayed RCU freeing ensures that there is no
486  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
487  * is also possible.
488  */
put_object(struct kmemleak_object * object)489 static void put_object(struct kmemleak_object *object)
490 {
491 	if (!atomic_dec_and_test(&object->use_count))
492 		return;
493 
494 	/* should only get here after delete_object was called */
495 	WARN_ON(object->flags & OBJECT_ALLOCATED);
496 
497 	/*
498 	 * It may be too early for the RCU callbacks, however, there is no
499 	 * concurrent object_list traversal when !object_cache and all objects
500 	 * came from the memory pool. Free the object directly.
501 	 */
502 	if (object_cache)
503 		call_rcu(&object->rcu, free_object_rcu);
504 	else
505 		free_object_rcu(&object->rcu);
506 }
507 
508 /*
509  * Look up an object in the object search tree and increase its use_count.
510  */
find_and_get_object(unsigned long ptr,int alias)511 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
512 {
513 	unsigned long flags;
514 	struct kmemleak_object *object;
515 
516 	rcu_read_lock();
517 	read_lock_irqsave(&kmemleak_lock, flags);
518 	object = lookup_object(ptr, alias);
519 	read_unlock_irqrestore(&kmemleak_lock, flags);
520 
521 	/* check whether the object is still available */
522 	if (object && !get_object(object))
523 		object = NULL;
524 	rcu_read_unlock();
525 
526 	return object;
527 }
528 
529 /*
530  * Remove an object from the object_tree_root and object_list. Must be called
531  * with the kmemleak_lock held _if_ kmemleak is still enabled.
532  */
__remove_object(struct kmemleak_object * object)533 static void __remove_object(struct kmemleak_object *object)
534 {
535 	rb_erase(&object->rb_node, &object_tree_root);
536 	list_del_rcu(&object->object_list);
537 }
538 
539 /*
540  * Look up an object in the object search tree and remove it from both
541  * object_tree_root and object_list. The returned object's use_count should be
542  * at least 1, as initially set by create_object().
543  */
find_and_remove_object(unsigned long ptr,int alias)544 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
545 {
546 	unsigned long flags;
547 	struct kmemleak_object *object;
548 
549 	write_lock_irqsave(&kmemleak_lock, flags);
550 	object = lookup_object(ptr, alias);
551 	if (object)
552 		__remove_object(object);
553 	write_unlock_irqrestore(&kmemleak_lock, flags);
554 
555 	return object;
556 }
557 
558 /*
559  * Save stack trace to the given array of MAX_TRACE size.
560  */
__save_stack_trace(unsigned long * trace)561 static int __save_stack_trace(unsigned long *trace)
562 {
563 	return stack_trace_save(trace, MAX_TRACE, 2);
564 }
565 
566 /*
567  * Create the metadata (struct kmemleak_object) corresponding to an allocated
568  * memory block and add it to the object_list and object_tree_root.
569  */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)570 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
571 					     int min_count, gfp_t gfp)
572 {
573 	unsigned long flags;
574 	struct kmemleak_object *object, *parent;
575 	struct rb_node **link, *rb_parent;
576 	unsigned long untagged_ptr;
577 
578 	object = mem_pool_alloc(gfp);
579 	if (!object) {
580 		pr_warn("Cannot allocate a kmemleak_object structure\n");
581 		kmemleak_disable();
582 		return NULL;
583 	}
584 
585 	INIT_LIST_HEAD(&object->object_list);
586 	INIT_LIST_HEAD(&object->gray_list);
587 	INIT_HLIST_HEAD(&object->area_list);
588 	spin_lock_init(&object->lock);
589 	atomic_set(&object->use_count, 1);
590 	object->flags = OBJECT_ALLOCATED;
591 	object->pointer = ptr;
592 	object->size = size;
593 	object->excess_ref = 0;
594 	object->min_count = min_count;
595 	object->count = 0;			/* white color initially */
596 	object->jiffies = jiffies;
597 	object->checksum = 0;
598 
599 	/* task information */
600 	if (in_irq()) {
601 		object->pid = 0;
602 		strncpy(object->comm, "hardirq", sizeof(object->comm));
603 	} else if (in_serving_softirq()) {
604 		object->pid = 0;
605 		strncpy(object->comm, "softirq", sizeof(object->comm));
606 	} else {
607 		object->pid = current->pid;
608 		/*
609 		 * There is a small chance of a race with set_task_comm(),
610 		 * however using get_task_comm() here may cause locking
611 		 * dependency issues with current->alloc_lock. In the worst
612 		 * case, the command line is not correct.
613 		 */
614 		strncpy(object->comm, current->comm, sizeof(object->comm));
615 	}
616 
617 	/* kernel backtrace */
618 	object->trace_len = __save_stack_trace(object->trace);
619 
620 	write_lock_irqsave(&kmemleak_lock, flags);
621 
622 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
623 	min_addr = min(min_addr, untagged_ptr);
624 	max_addr = max(max_addr, untagged_ptr + size);
625 	link = &object_tree_root.rb_node;
626 	rb_parent = NULL;
627 	while (*link) {
628 		rb_parent = *link;
629 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
630 		if (ptr + size <= parent->pointer)
631 			link = &parent->rb_node.rb_left;
632 		else if (parent->pointer + parent->size <= ptr)
633 			link = &parent->rb_node.rb_right;
634 		else {
635 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
636 				      ptr);
637 			/*
638 			 * No need for parent->lock here since "parent" cannot
639 			 * be freed while the kmemleak_lock is held.
640 			 */
641 			dump_object_info(parent);
642 			kmem_cache_free(object_cache, object);
643 			object = NULL;
644 			goto out;
645 		}
646 	}
647 	rb_link_node(&object->rb_node, rb_parent, link);
648 	rb_insert_color(&object->rb_node, &object_tree_root);
649 
650 	list_add_tail_rcu(&object->object_list, &object_list);
651 out:
652 	write_unlock_irqrestore(&kmemleak_lock, flags);
653 	return object;
654 }
655 
656 /*
657  * Mark the object as not allocated and schedule RCU freeing via put_object().
658  */
__delete_object(struct kmemleak_object * object)659 static void __delete_object(struct kmemleak_object *object)
660 {
661 	unsigned long flags;
662 
663 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
664 	WARN_ON(atomic_read(&object->use_count) < 1);
665 
666 	/*
667 	 * Locking here also ensures that the corresponding memory block
668 	 * cannot be freed when it is being scanned.
669 	 */
670 	spin_lock_irqsave(&object->lock, flags);
671 	object->flags &= ~OBJECT_ALLOCATED;
672 	spin_unlock_irqrestore(&object->lock, flags);
673 	put_object(object);
674 }
675 
676 /*
677  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
678  * delete it.
679  */
delete_object_full(unsigned long ptr)680 static void delete_object_full(unsigned long ptr)
681 {
682 	struct kmemleak_object *object;
683 
684 	object = find_and_remove_object(ptr, 0);
685 	if (!object) {
686 #ifdef DEBUG
687 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
688 			      ptr);
689 #endif
690 		return;
691 	}
692 	__delete_object(object);
693 }
694 
695 /*
696  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
697  * delete it. If the memory block is partially freed, the function may create
698  * additional metadata for the remaining parts of the block.
699  */
delete_object_part(unsigned long ptr,size_t size)700 static void delete_object_part(unsigned long ptr, size_t size)
701 {
702 	struct kmemleak_object *object;
703 	unsigned long start, end;
704 
705 	object = find_and_remove_object(ptr, 1);
706 	if (!object) {
707 #ifdef DEBUG
708 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
709 			      ptr, size);
710 #endif
711 		return;
712 	}
713 
714 	/*
715 	 * Create one or two objects that may result from the memory block
716 	 * split. Note that partial freeing is only done by free_bootmem() and
717 	 * this happens before kmemleak_init() is called.
718 	 */
719 	start = object->pointer;
720 	end = object->pointer + object->size;
721 	if (ptr > start)
722 		create_object(start, ptr - start, object->min_count,
723 			      GFP_KERNEL);
724 	if (ptr + size < end)
725 		create_object(ptr + size, end - ptr - size, object->min_count,
726 			      GFP_KERNEL);
727 
728 	__delete_object(object);
729 }
730 
__paint_it(struct kmemleak_object * object,int color)731 static void __paint_it(struct kmemleak_object *object, int color)
732 {
733 	object->min_count = color;
734 	if (color == KMEMLEAK_BLACK)
735 		object->flags |= OBJECT_NO_SCAN;
736 }
737 
paint_it(struct kmemleak_object * object,int color)738 static void paint_it(struct kmemleak_object *object, int color)
739 {
740 	unsigned long flags;
741 
742 	spin_lock_irqsave(&object->lock, flags);
743 	__paint_it(object, color);
744 	spin_unlock_irqrestore(&object->lock, flags);
745 }
746 
paint_ptr(unsigned long ptr,int color)747 static void paint_ptr(unsigned long ptr, int color)
748 {
749 	struct kmemleak_object *object;
750 
751 	object = find_and_get_object(ptr, 0);
752 	if (!object) {
753 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
754 			      ptr,
755 			      (color == KMEMLEAK_GREY) ? "Grey" :
756 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
757 		return;
758 	}
759 	paint_it(object, color);
760 	put_object(object);
761 }
762 
763 /*
764  * Mark an object permanently as gray-colored so that it can no longer be
765  * reported as a leak. This is used in general to mark a false positive.
766  */
make_gray_object(unsigned long ptr)767 static void make_gray_object(unsigned long ptr)
768 {
769 	paint_ptr(ptr, KMEMLEAK_GREY);
770 }
771 
772 /*
773  * Mark the object as black-colored so that it is ignored from scans and
774  * reporting.
775  */
make_black_object(unsigned long ptr)776 static void make_black_object(unsigned long ptr)
777 {
778 	paint_ptr(ptr, KMEMLEAK_BLACK);
779 }
780 
781 /*
782  * Add a scanning area to the object. If at least one such area is added,
783  * kmemleak will only scan these ranges rather than the whole memory block.
784  */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)785 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
786 {
787 	unsigned long flags;
788 	struct kmemleak_object *object;
789 	struct kmemleak_scan_area *area = NULL;
790 	unsigned long untagged_ptr;
791 	unsigned long untagged_objp;
792 
793 	object = find_and_get_object(ptr, 1);
794 	if (!object) {
795 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
796 			      ptr);
797 		return;
798 	}
799 
800 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
801 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
802 
803 	if (scan_area_cache)
804 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
805 
806 	spin_lock_irqsave(&object->lock, flags);
807 	if (!area) {
808 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
809 		/* mark the object for full scan to avoid false positives */
810 		object->flags |= OBJECT_FULL_SCAN;
811 		goto out_unlock;
812 	}
813 	if (size == SIZE_MAX) {
814 		size = untagged_objp + object->size - untagged_ptr;
815 	} else if (untagged_ptr + size > untagged_objp + object->size) {
816 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
817 		dump_object_info(object);
818 		kmem_cache_free(scan_area_cache, area);
819 		goto out_unlock;
820 	}
821 
822 	INIT_HLIST_NODE(&area->node);
823 	area->start = ptr;
824 	area->size = size;
825 
826 	hlist_add_head(&area->node, &object->area_list);
827 out_unlock:
828 	spin_unlock_irqrestore(&object->lock, flags);
829 	put_object(object);
830 }
831 
832 /*
833  * Any surplus references (object already gray) to 'ptr' are passed to
834  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
835  * vm_struct may be used as an alternative reference to the vmalloc'ed object
836  * (see free_thread_stack()).
837  */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)838 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
839 {
840 	unsigned long flags;
841 	struct kmemleak_object *object;
842 
843 	object = find_and_get_object(ptr, 0);
844 	if (!object) {
845 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
846 			      ptr);
847 		return;
848 	}
849 
850 	spin_lock_irqsave(&object->lock, flags);
851 	object->excess_ref = excess_ref;
852 	spin_unlock_irqrestore(&object->lock, flags);
853 	put_object(object);
854 }
855 
856 /*
857  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
858  * pointer. Such object will not be scanned by kmemleak but references to it
859  * are searched.
860  */
object_no_scan(unsigned long ptr)861 static void object_no_scan(unsigned long ptr)
862 {
863 	unsigned long flags;
864 	struct kmemleak_object *object;
865 
866 	object = find_and_get_object(ptr, 0);
867 	if (!object) {
868 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
869 		return;
870 	}
871 
872 	spin_lock_irqsave(&object->lock, flags);
873 	object->flags |= OBJECT_NO_SCAN;
874 	spin_unlock_irqrestore(&object->lock, flags);
875 	put_object(object);
876 }
877 
878 /**
879  * kmemleak_alloc - register a newly allocated object
880  * @ptr:	pointer to beginning of the object
881  * @size:	size of the object
882  * @min_count:	minimum number of references to this object. If during memory
883  *		scanning a number of references less than @min_count is found,
884  *		the object is reported as a memory leak. If @min_count is 0,
885  *		the object is never reported as a leak. If @min_count is -1,
886  *		the object is ignored (not scanned and not reported as a leak)
887  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
888  *
889  * This function is called from the kernel allocators when a new object
890  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
891  */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)892 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
893 			  gfp_t gfp)
894 {
895 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
896 
897 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
898 		create_object((unsigned long)ptr, size, min_count, gfp);
899 }
900 EXPORT_SYMBOL_GPL(kmemleak_alloc);
901 
902 /**
903  * kmemleak_alloc_percpu - register a newly allocated __percpu object
904  * @ptr:	__percpu pointer to beginning of the object
905  * @size:	size of the object
906  * @gfp:	flags used for kmemleak internal memory allocations
907  *
908  * This function is called from the kernel percpu allocator when a new object
909  * (memory block) is allocated (alloc_percpu).
910  */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)911 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
912 				 gfp_t gfp)
913 {
914 	unsigned int cpu;
915 
916 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
917 
918 	/*
919 	 * Percpu allocations are only scanned and not reported as leaks
920 	 * (min_count is set to 0).
921 	 */
922 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
923 		for_each_possible_cpu(cpu)
924 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
925 				      size, 0, gfp);
926 }
927 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
928 
929 /**
930  * kmemleak_vmalloc - register a newly vmalloc'ed object
931  * @area:	pointer to vm_struct
932  * @size:	size of the object
933  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
934  *
935  * This function is called from the vmalloc() kernel allocator when a new
936  * object (memory block) is allocated.
937  */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)938 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
939 {
940 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
941 
942 	/*
943 	 * A min_count = 2 is needed because vm_struct contains a reference to
944 	 * the virtual address of the vmalloc'ed block.
945 	 */
946 	if (kmemleak_enabled) {
947 		create_object((unsigned long)area->addr, size, 2, gfp);
948 		object_set_excess_ref((unsigned long)area,
949 				      (unsigned long)area->addr);
950 	}
951 }
952 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
953 
954 /**
955  * kmemleak_free - unregister a previously registered object
956  * @ptr:	pointer to beginning of the object
957  *
958  * This function is called from the kernel allocators when an object (memory
959  * block) is freed (kmem_cache_free, kfree, vfree etc.).
960  */
kmemleak_free(const void * ptr)961 void __ref kmemleak_free(const void *ptr)
962 {
963 	pr_debug("%s(0x%p)\n", __func__, ptr);
964 
965 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
966 		delete_object_full((unsigned long)ptr);
967 }
968 EXPORT_SYMBOL_GPL(kmemleak_free);
969 
970 /**
971  * kmemleak_free_part - partially unregister a previously registered object
972  * @ptr:	pointer to the beginning or inside the object. This also
973  *		represents the start of the range to be freed
974  * @size:	size to be unregistered
975  *
976  * This function is called when only a part of a memory block is freed
977  * (usually from the bootmem allocator).
978  */
kmemleak_free_part(const void * ptr,size_t size)979 void __ref kmemleak_free_part(const void *ptr, size_t size)
980 {
981 	pr_debug("%s(0x%p)\n", __func__, ptr);
982 
983 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
984 		delete_object_part((unsigned long)ptr, size);
985 }
986 EXPORT_SYMBOL_GPL(kmemleak_free_part);
987 
988 /**
989  * kmemleak_free_percpu - unregister a previously registered __percpu object
990  * @ptr:	__percpu pointer to beginning of the object
991  *
992  * This function is called from the kernel percpu allocator when an object
993  * (memory block) is freed (free_percpu).
994  */
kmemleak_free_percpu(const void __percpu * ptr)995 void __ref kmemleak_free_percpu(const void __percpu *ptr)
996 {
997 	unsigned int cpu;
998 
999 	pr_debug("%s(0x%p)\n", __func__, ptr);
1000 
1001 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1002 		for_each_possible_cpu(cpu)
1003 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1004 								      cpu));
1005 }
1006 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1007 
1008 /**
1009  * kmemleak_update_trace - update object allocation stack trace
1010  * @ptr:	pointer to beginning of the object
1011  *
1012  * Override the object allocation stack trace for cases where the actual
1013  * allocation place is not always useful.
1014  */
kmemleak_update_trace(const void * ptr)1015 void __ref kmemleak_update_trace(const void *ptr)
1016 {
1017 	struct kmemleak_object *object;
1018 	unsigned long flags;
1019 
1020 	pr_debug("%s(0x%p)\n", __func__, ptr);
1021 
1022 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1023 		return;
1024 
1025 	object = find_and_get_object((unsigned long)ptr, 1);
1026 	if (!object) {
1027 #ifdef DEBUG
1028 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1029 			      ptr);
1030 #endif
1031 		return;
1032 	}
1033 
1034 	spin_lock_irqsave(&object->lock, flags);
1035 	object->trace_len = __save_stack_trace(object->trace);
1036 	spin_unlock_irqrestore(&object->lock, flags);
1037 
1038 	put_object(object);
1039 }
1040 EXPORT_SYMBOL(kmemleak_update_trace);
1041 
1042 /**
1043  * kmemleak_not_leak - mark an allocated object as false positive
1044  * @ptr:	pointer to beginning of the object
1045  *
1046  * Calling this function on an object will cause the memory block to no longer
1047  * be reported as leak and always be scanned.
1048  */
kmemleak_not_leak(const void * ptr)1049 void __ref kmemleak_not_leak(const void *ptr)
1050 {
1051 	pr_debug("%s(0x%p)\n", __func__, ptr);
1052 
1053 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1054 		make_gray_object((unsigned long)ptr);
1055 }
1056 EXPORT_SYMBOL(kmemleak_not_leak);
1057 
1058 /**
1059  * kmemleak_ignore - ignore an allocated object
1060  * @ptr:	pointer to beginning of the object
1061  *
1062  * Calling this function on an object will cause the memory block to be
1063  * ignored (not scanned and not reported as a leak). This is usually done when
1064  * it is known that the corresponding block is not a leak and does not contain
1065  * any references to other allocated memory blocks.
1066  */
kmemleak_ignore(const void * ptr)1067 void __ref kmemleak_ignore(const void *ptr)
1068 {
1069 	pr_debug("%s(0x%p)\n", __func__, ptr);
1070 
1071 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1072 		make_black_object((unsigned long)ptr);
1073 }
1074 EXPORT_SYMBOL(kmemleak_ignore);
1075 
1076 /**
1077  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1078  * @ptr:	pointer to beginning or inside the object. This also
1079  *		represents the start of the scan area
1080  * @size:	size of the scan area
1081  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1082  *
1083  * This function is used when it is known that only certain parts of an object
1084  * contain references to other objects. Kmemleak will only scan these areas
1085  * reducing the number false negatives.
1086  */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1087 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1088 {
1089 	pr_debug("%s(0x%p)\n", __func__, ptr);
1090 
1091 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1092 		add_scan_area((unsigned long)ptr, size, gfp);
1093 }
1094 EXPORT_SYMBOL(kmemleak_scan_area);
1095 
1096 /**
1097  * kmemleak_no_scan - do not scan an allocated object
1098  * @ptr:	pointer to beginning of the object
1099  *
1100  * This function notifies kmemleak not to scan the given memory block. Useful
1101  * in situations where it is known that the given object does not contain any
1102  * references to other objects. Kmemleak will not scan such objects reducing
1103  * the number of false negatives.
1104  */
kmemleak_no_scan(const void * ptr)1105 void __ref kmemleak_no_scan(const void *ptr)
1106 {
1107 	pr_debug("%s(0x%p)\n", __func__, ptr);
1108 
1109 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1110 		object_no_scan((unsigned long)ptr);
1111 }
1112 EXPORT_SYMBOL(kmemleak_no_scan);
1113 
1114 /**
1115  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1116  *			 address argument
1117  * @phys:	physical address of the object
1118  * @size:	size of the object
1119  * @min_count:	minimum number of references to this object.
1120  *              See kmemleak_alloc()
1121  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1122  */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,int min_count,gfp_t gfp)1123 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1124 			       gfp_t gfp)
1125 {
1126 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1127 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1128 }
1129 EXPORT_SYMBOL(kmemleak_alloc_phys);
1130 
1131 /**
1132  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1133  *			     physical address argument
1134  * @phys:	physical address if the beginning or inside an object. This
1135  *		also represents the start of the range to be freed
1136  * @size:	size to be unregistered
1137  */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1138 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1139 {
1140 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1141 		kmemleak_free_part(__va(phys), size);
1142 }
1143 EXPORT_SYMBOL(kmemleak_free_part_phys);
1144 
1145 /**
1146  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1147  *			    address argument
1148  * @phys:	physical address of the object
1149  */
kmemleak_not_leak_phys(phys_addr_t phys)1150 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1151 {
1152 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1153 		kmemleak_not_leak(__va(phys));
1154 }
1155 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1156 
1157 /**
1158  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1159  *			  address argument
1160  * @phys:	physical address of the object
1161  */
kmemleak_ignore_phys(phys_addr_t phys)1162 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1163 {
1164 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1165 		kmemleak_ignore(__va(phys));
1166 }
1167 EXPORT_SYMBOL(kmemleak_ignore_phys);
1168 
1169 /*
1170  * Update an object's checksum and return true if it was modified.
1171  */
update_checksum(struct kmemleak_object * object)1172 static bool update_checksum(struct kmemleak_object *object)
1173 {
1174 	u32 old_csum = object->checksum;
1175 
1176 	kasan_disable_current();
1177 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1178 	kasan_enable_current();
1179 
1180 	return object->checksum != old_csum;
1181 }
1182 
1183 /*
1184  * Update an object's references. object->lock must be held by the caller.
1185  */
update_refs(struct kmemleak_object * object)1186 static void update_refs(struct kmemleak_object *object)
1187 {
1188 	if (!color_white(object)) {
1189 		/* non-orphan, ignored or new */
1190 		return;
1191 	}
1192 
1193 	/*
1194 	 * Increase the object's reference count (number of pointers to the
1195 	 * memory block). If this count reaches the required minimum, the
1196 	 * object's color will become gray and it will be added to the
1197 	 * gray_list.
1198 	 */
1199 	object->count++;
1200 	if (color_gray(object)) {
1201 		/* put_object() called when removing from gray_list */
1202 		WARN_ON(!get_object(object));
1203 		list_add_tail(&object->gray_list, &gray_list);
1204 	}
1205 }
1206 
1207 /*
1208  * Memory scanning is a long process and it needs to be interruptable. This
1209  * function checks whether such interrupt condition occurred.
1210  */
scan_should_stop(void)1211 static int scan_should_stop(void)
1212 {
1213 	if (!kmemleak_enabled)
1214 		return 1;
1215 
1216 	/*
1217 	 * This function may be called from either process or kthread context,
1218 	 * hence the need to check for both stop conditions.
1219 	 */
1220 	if (current->mm)
1221 		return signal_pending(current);
1222 	else
1223 		return kthread_should_stop();
1224 
1225 	return 0;
1226 }
1227 
1228 /*
1229  * Scan a memory block (exclusive range) for valid pointers and add those
1230  * found to the gray list.
1231  */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1232 static void scan_block(void *_start, void *_end,
1233 		       struct kmemleak_object *scanned)
1234 {
1235 	unsigned long *ptr;
1236 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1237 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1238 	unsigned long flags;
1239 	unsigned long untagged_ptr;
1240 
1241 	read_lock_irqsave(&kmemleak_lock, flags);
1242 	for (ptr = start; ptr < end; ptr++) {
1243 		struct kmemleak_object *object;
1244 		unsigned long pointer;
1245 		unsigned long excess_ref;
1246 
1247 		if (scan_should_stop())
1248 			break;
1249 
1250 		kasan_disable_current();
1251 		pointer = *ptr;
1252 		kasan_enable_current();
1253 
1254 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1255 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1256 			continue;
1257 
1258 		/*
1259 		 * No need for get_object() here since we hold kmemleak_lock.
1260 		 * object->use_count cannot be dropped to 0 while the object
1261 		 * is still present in object_tree_root and object_list
1262 		 * (with updates protected by kmemleak_lock).
1263 		 */
1264 		object = lookup_object(pointer, 1);
1265 		if (!object)
1266 			continue;
1267 		if (object == scanned)
1268 			/* self referenced, ignore */
1269 			continue;
1270 
1271 		/*
1272 		 * Avoid the lockdep recursive warning on object->lock being
1273 		 * previously acquired in scan_object(). These locks are
1274 		 * enclosed by scan_mutex.
1275 		 */
1276 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1277 		/* only pass surplus references (object already gray) */
1278 		if (color_gray(object)) {
1279 			excess_ref = object->excess_ref;
1280 			/* no need for update_refs() if object already gray */
1281 		} else {
1282 			excess_ref = 0;
1283 			update_refs(object);
1284 		}
1285 		spin_unlock(&object->lock);
1286 
1287 		if (excess_ref) {
1288 			object = lookup_object(excess_ref, 0);
1289 			if (!object)
1290 				continue;
1291 			if (object == scanned)
1292 				/* circular reference, ignore */
1293 				continue;
1294 			spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1295 			update_refs(object);
1296 			spin_unlock(&object->lock);
1297 		}
1298 	}
1299 	read_unlock_irqrestore(&kmemleak_lock, flags);
1300 }
1301 
1302 /*
1303  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1304  */
1305 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1306 static void scan_large_block(void *start, void *end)
1307 {
1308 	void *next;
1309 
1310 	while (start < end) {
1311 		next = min(start + MAX_SCAN_SIZE, end);
1312 		scan_block(start, next, NULL);
1313 		start = next;
1314 		cond_resched();
1315 	}
1316 }
1317 #endif
1318 
1319 /*
1320  * Scan a memory block corresponding to a kmemleak_object. A condition is
1321  * that object->use_count >= 1.
1322  */
scan_object(struct kmemleak_object * object)1323 static void scan_object(struct kmemleak_object *object)
1324 {
1325 	struct kmemleak_scan_area *area;
1326 	unsigned long flags;
1327 
1328 	/*
1329 	 * Once the object->lock is acquired, the corresponding memory block
1330 	 * cannot be freed (the same lock is acquired in delete_object).
1331 	 */
1332 	spin_lock_irqsave(&object->lock, flags);
1333 	if (object->flags & OBJECT_NO_SCAN)
1334 		goto out;
1335 	if (!(object->flags & OBJECT_ALLOCATED))
1336 		/* already freed object */
1337 		goto out;
1338 	if (hlist_empty(&object->area_list) ||
1339 	    object->flags & OBJECT_FULL_SCAN) {
1340 		void *start = (void *)object->pointer;
1341 		void *end = (void *)(object->pointer + object->size);
1342 		void *next;
1343 
1344 		do {
1345 			next = min(start + MAX_SCAN_SIZE, end);
1346 			scan_block(start, next, object);
1347 
1348 			start = next;
1349 			if (start >= end)
1350 				break;
1351 
1352 			spin_unlock_irqrestore(&object->lock, flags);
1353 			cond_resched();
1354 			spin_lock_irqsave(&object->lock, flags);
1355 		} while (object->flags & OBJECT_ALLOCATED);
1356 	} else
1357 		hlist_for_each_entry(area, &object->area_list, node)
1358 			scan_block((void *)area->start,
1359 				   (void *)(area->start + area->size),
1360 				   object);
1361 out:
1362 	spin_unlock_irqrestore(&object->lock, flags);
1363 }
1364 
1365 /*
1366  * Scan the objects already referenced (gray objects). More objects will be
1367  * referenced and, if there are no memory leaks, all the objects are scanned.
1368  */
scan_gray_list(void)1369 static void scan_gray_list(void)
1370 {
1371 	struct kmemleak_object *object, *tmp;
1372 
1373 	/*
1374 	 * The list traversal is safe for both tail additions and removals
1375 	 * from inside the loop. The kmemleak objects cannot be freed from
1376 	 * outside the loop because their use_count was incremented.
1377 	 */
1378 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1379 	while (&object->gray_list != &gray_list) {
1380 		cond_resched();
1381 
1382 		/* may add new objects to the list */
1383 		if (!scan_should_stop())
1384 			scan_object(object);
1385 
1386 		tmp = list_entry(object->gray_list.next, typeof(*object),
1387 				 gray_list);
1388 
1389 		/* remove the object from the list and release it */
1390 		list_del(&object->gray_list);
1391 		put_object(object);
1392 
1393 		object = tmp;
1394 	}
1395 	WARN_ON(!list_empty(&gray_list));
1396 }
1397 
1398 /*
1399  * Scan data sections and all the referenced memory blocks allocated via the
1400  * kernel's standard allocators. This function must be called with the
1401  * scan_mutex held.
1402  */
kmemleak_scan(void)1403 static void kmemleak_scan(void)
1404 {
1405 	unsigned long flags;
1406 	struct kmemleak_object *object;
1407 	struct zone *zone;
1408 	int __maybe_unused i;
1409 	int new_leaks = 0;
1410 
1411 	jiffies_last_scan = jiffies;
1412 
1413 	/* prepare the kmemleak_object's */
1414 	rcu_read_lock();
1415 	list_for_each_entry_rcu(object, &object_list, object_list) {
1416 		spin_lock_irqsave(&object->lock, flags);
1417 #ifdef DEBUG
1418 		/*
1419 		 * With a few exceptions there should be a maximum of
1420 		 * 1 reference to any object at this point.
1421 		 */
1422 		if (atomic_read(&object->use_count) > 1) {
1423 			pr_debug("object->use_count = %d\n",
1424 				 atomic_read(&object->use_count));
1425 			dump_object_info(object);
1426 		}
1427 #endif
1428 		/* reset the reference count (whiten the object) */
1429 		object->count = 0;
1430 		if (color_gray(object) && get_object(object))
1431 			list_add_tail(&object->gray_list, &gray_list);
1432 
1433 		spin_unlock_irqrestore(&object->lock, flags);
1434 	}
1435 	rcu_read_unlock();
1436 
1437 #ifdef CONFIG_SMP
1438 	/* per-cpu sections scanning */
1439 	for_each_possible_cpu(i)
1440 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1441 				 __per_cpu_end + per_cpu_offset(i));
1442 #endif
1443 
1444 	/*
1445 	 * Struct page scanning for each node.
1446 	 */
1447 	get_online_mems();
1448 	for_each_populated_zone(zone) {
1449 		unsigned long start_pfn = zone->zone_start_pfn;
1450 		unsigned long end_pfn = zone_end_pfn(zone);
1451 		unsigned long pfn;
1452 
1453 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1454 			struct page *page = pfn_to_online_page(pfn);
1455 
1456 			if (!page)
1457 				continue;
1458 
1459 			/* only scan pages belonging to this zone */
1460 			if (page_zone(page) != zone)
1461 				continue;
1462 			/* only scan if page is in use */
1463 			if (page_count(page) == 0)
1464 				continue;
1465 			scan_block(page, page + 1, NULL);
1466 			if (!(pfn & 63))
1467 				cond_resched();
1468 		}
1469 	}
1470 	put_online_mems();
1471 
1472 	/*
1473 	 * Scanning the task stacks (may introduce false negatives).
1474 	 */
1475 	if (kmemleak_stack_scan) {
1476 		struct task_struct *p, *g;
1477 
1478 		read_lock(&tasklist_lock);
1479 		do_each_thread(g, p) {
1480 			void *stack = try_get_task_stack(p);
1481 			if (stack) {
1482 				scan_block(stack, stack + THREAD_SIZE, NULL);
1483 				put_task_stack(p);
1484 			}
1485 		} while_each_thread(g, p);
1486 		read_unlock(&tasklist_lock);
1487 	}
1488 
1489 	/*
1490 	 * Scan the objects already referenced from the sections scanned
1491 	 * above.
1492 	 */
1493 	scan_gray_list();
1494 
1495 	/*
1496 	 * Check for new or unreferenced objects modified since the previous
1497 	 * scan and color them gray until the next scan.
1498 	 */
1499 	rcu_read_lock();
1500 	list_for_each_entry_rcu(object, &object_list, object_list) {
1501 		spin_lock_irqsave(&object->lock, flags);
1502 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1503 		    && update_checksum(object) && get_object(object)) {
1504 			/* color it gray temporarily */
1505 			object->count = object->min_count;
1506 			list_add_tail(&object->gray_list, &gray_list);
1507 		}
1508 		spin_unlock_irqrestore(&object->lock, flags);
1509 	}
1510 	rcu_read_unlock();
1511 
1512 	/*
1513 	 * Re-scan the gray list for modified unreferenced objects.
1514 	 */
1515 	scan_gray_list();
1516 
1517 	/*
1518 	 * If scanning was stopped do not report any new unreferenced objects.
1519 	 */
1520 	if (scan_should_stop())
1521 		return;
1522 
1523 	/*
1524 	 * Scanning result reporting.
1525 	 */
1526 	rcu_read_lock();
1527 	list_for_each_entry_rcu(object, &object_list, object_list) {
1528 		spin_lock_irqsave(&object->lock, flags);
1529 		if (unreferenced_object(object) &&
1530 		    !(object->flags & OBJECT_REPORTED)) {
1531 			object->flags |= OBJECT_REPORTED;
1532 
1533 			if (kmemleak_verbose)
1534 				print_unreferenced(NULL, object);
1535 
1536 			new_leaks++;
1537 		}
1538 		spin_unlock_irqrestore(&object->lock, flags);
1539 	}
1540 	rcu_read_unlock();
1541 
1542 	if (new_leaks) {
1543 		kmemleak_found_leaks = true;
1544 
1545 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1546 			new_leaks);
1547 	}
1548 
1549 }
1550 
1551 /*
1552  * Thread function performing automatic memory scanning. Unreferenced objects
1553  * at the end of a memory scan are reported but only the first time.
1554  */
kmemleak_scan_thread(void * arg)1555 static int kmemleak_scan_thread(void *arg)
1556 {
1557 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1558 
1559 	pr_info("Automatic memory scanning thread started\n");
1560 	set_user_nice(current, 10);
1561 
1562 	/*
1563 	 * Wait before the first scan to allow the system to fully initialize.
1564 	 */
1565 	if (first_run) {
1566 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1567 		first_run = 0;
1568 		while (timeout && !kthread_should_stop())
1569 			timeout = schedule_timeout_interruptible(timeout);
1570 	}
1571 
1572 	while (!kthread_should_stop()) {
1573 		signed long timeout = jiffies_scan_wait;
1574 
1575 		mutex_lock(&scan_mutex);
1576 		kmemleak_scan();
1577 		mutex_unlock(&scan_mutex);
1578 
1579 		/* wait before the next scan */
1580 		while (timeout && !kthread_should_stop())
1581 			timeout = schedule_timeout_interruptible(timeout);
1582 	}
1583 
1584 	pr_info("Automatic memory scanning thread ended\n");
1585 
1586 	return 0;
1587 }
1588 
1589 /*
1590  * Start the automatic memory scanning thread. This function must be called
1591  * with the scan_mutex held.
1592  */
start_scan_thread(void)1593 static void start_scan_thread(void)
1594 {
1595 	if (scan_thread)
1596 		return;
1597 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1598 	if (IS_ERR(scan_thread)) {
1599 		pr_warn("Failed to create the scan thread\n");
1600 		scan_thread = NULL;
1601 	}
1602 }
1603 
1604 /*
1605  * Stop the automatic memory scanning thread.
1606  */
stop_scan_thread(void)1607 static void stop_scan_thread(void)
1608 {
1609 	if (scan_thread) {
1610 		kthread_stop(scan_thread);
1611 		scan_thread = NULL;
1612 	}
1613 }
1614 
1615 /*
1616  * Iterate over the object_list and return the first valid object at or after
1617  * the required position with its use_count incremented. The function triggers
1618  * a memory scanning when the pos argument points to the first position.
1619  */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1620 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1621 {
1622 	struct kmemleak_object *object;
1623 	loff_t n = *pos;
1624 	int err;
1625 
1626 	err = mutex_lock_interruptible(&scan_mutex);
1627 	if (err < 0)
1628 		return ERR_PTR(err);
1629 
1630 	rcu_read_lock();
1631 	list_for_each_entry_rcu(object, &object_list, object_list) {
1632 		if (n-- > 0)
1633 			continue;
1634 		if (get_object(object))
1635 			goto out;
1636 	}
1637 	object = NULL;
1638 out:
1639 	return object;
1640 }
1641 
1642 /*
1643  * Return the next object in the object_list. The function decrements the
1644  * use_count of the previous object and increases that of the next one.
1645  */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1646 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1647 {
1648 	struct kmemleak_object *prev_obj = v;
1649 	struct kmemleak_object *next_obj = NULL;
1650 	struct kmemleak_object *obj = prev_obj;
1651 
1652 	++(*pos);
1653 
1654 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1655 		if (get_object(obj)) {
1656 			next_obj = obj;
1657 			break;
1658 		}
1659 	}
1660 
1661 	put_object(prev_obj);
1662 	return next_obj;
1663 }
1664 
1665 /*
1666  * Decrement the use_count of the last object required, if any.
1667  */
kmemleak_seq_stop(struct seq_file * seq,void * v)1668 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1669 {
1670 	if (!IS_ERR(v)) {
1671 		/*
1672 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1673 		 * waiting was interrupted, so only release it if !IS_ERR.
1674 		 */
1675 		rcu_read_unlock();
1676 		mutex_unlock(&scan_mutex);
1677 		if (v)
1678 			put_object(v);
1679 	}
1680 }
1681 
1682 /*
1683  * Print the information for an unreferenced object to the seq file.
1684  */
kmemleak_seq_show(struct seq_file * seq,void * v)1685 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1686 {
1687 	struct kmemleak_object *object = v;
1688 	unsigned long flags;
1689 
1690 	spin_lock_irqsave(&object->lock, flags);
1691 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1692 		print_unreferenced(seq, object);
1693 	spin_unlock_irqrestore(&object->lock, flags);
1694 	return 0;
1695 }
1696 
1697 static const struct seq_operations kmemleak_seq_ops = {
1698 	.start = kmemleak_seq_start,
1699 	.next  = kmemleak_seq_next,
1700 	.stop  = kmemleak_seq_stop,
1701 	.show  = kmemleak_seq_show,
1702 };
1703 
kmemleak_open(struct inode * inode,struct file * file)1704 static int kmemleak_open(struct inode *inode, struct file *file)
1705 {
1706 	return seq_open(file, &kmemleak_seq_ops);
1707 }
1708 
dump_str_object_info(const char * str)1709 static int dump_str_object_info(const char *str)
1710 {
1711 	unsigned long flags;
1712 	struct kmemleak_object *object;
1713 	unsigned long addr;
1714 
1715 	if (kstrtoul(str, 0, &addr))
1716 		return -EINVAL;
1717 	object = find_and_get_object(addr, 0);
1718 	if (!object) {
1719 		pr_info("Unknown object at 0x%08lx\n", addr);
1720 		return -EINVAL;
1721 	}
1722 
1723 	spin_lock_irqsave(&object->lock, flags);
1724 	dump_object_info(object);
1725 	spin_unlock_irqrestore(&object->lock, flags);
1726 
1727 	put_object(object);
1728 	return 0;
1729 }
1730 
1731 /*
1732  * We use grey instead of black to ensure we can do future scans on the same
1733  * objects. If we did not do future scans these black objects could
1734  * potentially contain references to newly allocated objects in the future and
1735  * we'd end up with false positives.
1736  */
kmemleak_clear(void)1737 static void kmemleak_clear(void)
1738 {
1739 	struct kmemleak_object *object;
1740 	unsigned long flags;
1741 
1742 	rcu_read_lock();
1743 	list_for_each_entry_rcu(object, &object_list, object_list) {
1744 		spin_lock_irqsave(&object->lock, flags);
1745 		if ((object->flags & OBJECT_REPORTED) &&
1746 		    unreferenced_object(object))
1747 			__paint_it(object, KMEMLEAK_GREY);
1748 		spin_unlock_irqrestore(&object->lock, flags);
1749 	}
1750 	rcu_read_unlock();
1751 
1752 	kmemleak_found_leaks = false;
1753 }
1754 
1755 static void __kmemleak_do_cleanup(void);
1756 
1757 /*
1758  * File write operation to configure kmemleak at run-time. The following
1759  * commands can be written to the /sys/kernel/debug/kmemleak file:
1760  *   off	- disable kmemleak (irreversible)
1761  *   stack=on	- enable the task stacks scanning
1762  *   stack=off	- disable the tasks stacks scanning
1763  *   scan=on	- start the automatic memory scanning thread
1764  *   scan=off	- stop the automatic memory scanning thread
1765  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1766  *		  disable it)
1767  *   scan	- trigger a memory scan
1768  *   clear	- mark all current reported unreferenced kmemleak objects as
1769  *		  grey to ignore printing them, or free all kmemleak objects
1770  *		  if kmemleak has been disabled.
1771  *   dump=...	- dump information about the object found at the given address
1772  */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)1773 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1774 			      size_t size, loff_t *ppos)
1775 {
1776 	char buf[64];
1777 	int buf_size;
1778 	int ret;
1779 
1780 	buf_size = min(size, (sizeof(buf) - 1));
1781 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1782 		return -EFAULT;
1783 	buf[buf_size] = 0;
1784 
1785 	ret = mutex_lock_interruptible(&scan_mutex);
1786 	if (ret < 0)
1787 		return ret;
1788 
1789 	if (strncmp(buf, "clear", 5) == 0) {
1790 		if (kmemleak_enabled)
1791 			kmemleak_clear();
1792 		else
1793 			__kmemleak_do_cleanup();
1794 		goto out;
1795 	}
1796 
1797 	if (!kmemleak_enabled) {
1798 		ret = -EPERM;
1799 		goto out;
1800 	}
1801 
1802 	if (strncmp(buf, "off", 3) == 0)
1803 		kmemleak_disable();
1804 	else if (strncmp(buf, "stack=on", 8) == 0)
1805 		kmemleak_stack_scan = 1;
1806 	else if (strncmp(buf, "stack=off", 9) == 0)
1807 		kmemleak_stack_scan = 0;
1808 	else if (strncmp(buf, "scan=on", 7) == 0)
1809 		start_scan_thread();
1810 	else if (strncmp(buf, "scan=off", 8) == 0)
1811 		stop_scan_thread();
1812 	else if (strncmp(buf, "scan=", 5) == 0) {
1813 		unsigned long secs;
1814 
1815 		ret = kstrtoul(buf + 5, 0, &secs);
1816 		if (ret < 0)
1817 			goto out;
1818 		stop_scan_thread();
1819 		if (secs) {
1820 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1821 			start_scan_thread();
1822 		}
1823 	} else if (strncmp(buf, "scan", 4) == 0)
1824 		kmemleak_scan();
1825 	else if (strncmp(buf, "dump=", 5) == 0)
1826 		ret = dump_str_object_info(buf + 5);
1827 	else
1828 		ret = -EINVAL;
1829 
1830 out:
1831 	mutex_unlock(&scan_mutex);
1832 	if (ret < 0)
1833 		return ret;
1834 
1835 	/* ignore the rest of the buffer, only one command at a time */
1836 	*ppos += size;
1837 	return size;
1838 }
1839 
1840 static const struct file_operations kmemleak_fops = {
1841 	.owner		= THIS_MODULE,
1842 	.open		= kmemleak_open,
1843 	.read		= seq_read,
1844 	.write		= kmemleak_write,
1845 	.llseek		= seq_lseek,
1846 	.release	= seq_release,
1847 };
1848 
__kmemleak_do_cleanup(void)1849 static void __kmemleak_do_cleanup(void)
1850 {
1851 	struct kmemleak_object *object, *tmp;
1852 
1853 	/*
1854 	 * Kmemleak has already been disabled, no need for RCU list traversal
1855 	 * or kmemleak_lock held.
1856 	 */
1857 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1858 		__remove_object(object);
1859 		__delete_object(object);
1860 	}
1861 }
1862 
1863 /*
1864  * Stop the memory scanning thread and free the kmemleak internal objects if
1865  * no previous scan thread (otherwise, kmemleak may still have some useful
1866  * information on memory leaks).
1867  */
kmemleak_do_cleanup(struct work_struct * work)1868 static void kmemleak_do_cleanup(struct work_struct *work)
1869 {
1870 	stop_scan_thread();
1871 
1872 	mutex_lock(&scan_mutex);
1873 	/*
1874 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1875 	 * longer track object freeing. Ordering of the scan thread stopping and
1876 	 * the memory accesses below is guaranteed by the kthread_stop()
1877 	 * function.
1878 	 */
1879 	kmemleak_free_enabled = 0;
1880 	mutex_unlock(&scan_mutex);
1881 
1882 	if (!kmemleak_found_leaks)
1883 		__kmemleak_do_cleanup();
1884 	else
1885 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1886 }
1887 
1888 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1889 
1890 /*
1891  * Disable kmemleak. No memory allocation/freeing will be traced once this
1892  * function is called. Disabling kmemleak is an irreversible operation.
1893  */
kmemleak_disable(void)1894 static void kmemleak_disable(void)
1895 {
1896 	/* atomically check whether it was already invoked */
1897 	if (cmpxchg(&kmemleak_error, 0, 1))
1898 		return;
1899 
1900 	/* stop any memory operation tracing */
1901 	kmemleak_enabled = 0;
1902 
1903 	/* check whether it is too early for a kernel thread */
1904 	if (kmemleak_initialized)
1905 		schedule_work(&cleanup_work);
1906 	else
1907 		kmemleak_free_enabled = 0;
1908 
1909 	pr_info("Kernel memory leak detector disabled\n");
1910 }
1911 
1912 /*
1913  * Allow boot-time kmemleak disabling (enabled by default).
1914  */
kmemleak_boot_config(char * str)1915 static int __init kmemleak_boot_config(char *str)
1916 {
1917 	if (!str)
1918 		return -EINVAL;
1919 	if (strcmp(str, "off") == 0)
1920 		kmemleak_disable();
1921 	else if (strcmp(str, "on") == 0)
1922 		kmemleak_skip_disable = 1;
1923 	else
1924 		return -EINVAL;
1925 	return 0;
1926 }
1927 early_param("kmemleak", kmemleak_boot_config);
1928 
1929 /*
1930  * Kmemleak initialization.
1931  */
kmemleak_init(void)1932 void __init kmemleak_init(void)
1933 {
1934 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1935 	if (!kmemleak_skip_disable) {
1936 		kmemleak_disable();
1937 		return;
1938 	}
1939 #endif
1940 
1941 	if (kmemleak_error)
1942 		return;
1943 
1944 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1945 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1946 
1947 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1948 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1949 
1950 	/* register the data/bss sections */
1951 	create_object((unsigned long)_sdata, _edata - _sdata,
1952 		      KMEMLEAK_GREY, GFP_ATOMIC);
1953 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1954 		      KMEMLEAK_GREY, GFP_ATOMIC);
1955 	/* only register .data..ro_after_init if not within .data */
1956 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1957 		create_object((unsigned long)__start_ro_after_init,
1958 			      __end_ro_after_init - __start_ro_after_init,
1959 			      KMEMLEAK_GREY, GFP_ATOMIC);
1960 }
1961 
1962 /*
1963  * Late initialization function.
1964  */
kmemleak_late_init(void)1965 static int __init kmemleak_late_init(void)
1966 {
1967 	kmemleak_initialized = 1;
1968 
1969 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1970 
1971 	if (kmemleak_error) {
1972 		/*
1973 		 * Some error occurred and kmemleak was disabled. There is a
1974 		 * small chance that kmemleak_disable() was called immediately
1975 		 * after setting kmemleak_initialized and we may end up with
1976 		 * two clean-up threads but serialized by scan_mutex.
1977 		 */
1978 		schedule_work(&cleanup_work);
1979 		return -ENOMEM;
1980 	}
1981 
1982 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1983 		mutex_lock(&scan_mutex);
1984 		start_scan_thread();
1985 		mutex_unlock(&scan_mutex);
1986 	}
1987 
1988 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1989 		mem_pool_free_count);
1990 
1991 	return 0;
1992 }
1993 late_initcall(kmemleak_late_init);
1994