• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 /**
32  * kfree_const - conditionally free memory
33  * @x: pointer to the memory
34  *
35  * Function calls kfree only if @x is not in .rodata section.
36  */
kfree_const(const void * x)37 void kfree_const(const void *x)
38 {
39 	if (!is_kernel_rodata((unsigned long)x))
40 		kfree(x);
41 }
42 EXPORT_SYMBOL(kfree_const);
43 
44 /**
45  * kstrdup - allocate space for and copy an existing string
46  * @s: the string to duplicate
47  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48  *
49  * Return: newly allocated copy of @s or %NULL in case of error
50  */
kstrdup(const char * s,gfp_t gfp)51 char *kstrdup(const char *s, gfp_t gfp)
52 {
53 	size_t len;
54 	char *buf;
55 
56 	if (!s)
57 		return NULL;
58 
59 	len = strlen(s) + 1;
60 	buf = kmalloc_track_caller(len, gfp);
61 	if (buf)
62 		memcpy(buf, s, len);
63 	return buf;
64 }
65 EXPORT_SYMBOL(kstrdup);
66 
67 /**
68  * kstrdup_const - conditionally duplicate an existing const string
69  * @s: the string to duplicate
70  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
71  *
72  * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
73  *
74  * Return: source string if it is in .rodata section otherwise
75  * fallback to kstrdup.
76  */
kstrdup_const(const char * s,gfp_t gfp)77 const char *kstrdup_const(const char *s, gfp_t gfp)
78 {
79 	if (is_kernel_rodata((unsigned long)s))
80 		return s;
81 
82 	return kstrdup(s, gfp);
83 }
84 EXPORT_SYMBOL(kstrdup_const);
85 
86 /**
87  * kstrndup - allocate space for and copy an existing string
88  * @s: the string to duplicate
89  * @max: read at most @max chars from @s
90  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
91  *
92  * Note: Use kmemdup_nul() instead if the size is known exactly.
93  *
94  * Return: newly allocated copy of @s or %NULL in case of error
95  */
kstrndup(const char * s,size_t max,gfp_t gfp)96 char *kstrndup(const char *s, size_t max, gfp_t gfp)
97 {
98 	size_t len;
99 	char *buf;
100 
101 	if (!s)
102 		return NULL;
103 
104 	len = strnlen(s, max);
105 	buf = kmalloc_track_caller(len+1, gfp);
106 	if (buf) {
107 		memcpy(buf, s, len);
108 		buf[len] = '\0';
109 	}
110 	return buf;
111 }
112 EXPORT_SYMBOL(kstrndup);
113 
114 /**
115  * kmemdup - duplicate region of memory
116  *
117  * @src: memory region to duplicate
118  * @len: memory region length
119  * @gfp: GFP mask to use
120  *
121  * Return: newly allocated copy of @src or %NULL in case of error
122  */
kmemdup(const void * src,size_t len,gfp_t gfp)123 void *kmemdup(const void *src, size_t len, gfp_t gfp)
124 {
125 	void *p;
126 
127 	p = kmalloc_track_caller(len, gfp);
128 	if (p)
129 		memcpy(p, src, len);
130 	return p;
131 }
132 EXPORT_SYMBOL(kmemdup);
133 
134 /**
135  * kmemdup_nul - Create a NUL-terminated string from unterminated data
136  * @s: The data to stringify
137  * @len: The size of the data
138  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
139  *
140  * Return: newly allocated copy of @s with NUL-termination or %NULL in
141  * case of error
142  */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)143 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
144 {
145 	char *buf;
146 
147 	if (!s)
148 		return NULL;
149 
150 	buf = kmalloc_track_caller(len + 1, gfp);
151 	if (buf) {
152 		memcpy(buf, s, len);
153 		buf[len] = '\0';
154 	}
155 	return buf;
156 }
157 EXPORT_SYMBOL(kmemdup_nul);
158 
159 /**
160  * memdup_user - duplicate memory region from user space
161  *
162  * @src: source address in user space
163  * @len: number of bytes to copy
164  *
165  * Return: an ERR_PTR() on failure.  Result is physically
166  * contiguous, to be freed by kfree().
167  */
memdup_user(const void __user * src,size_t len)168 void *memdup_user(const void __user *src, size_t len)
169 {
170 	void *p;
171 
172 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
173 	if (!p)
174 		return ERR_PTR(-ENOMEM);
175 
176 	if (copy_from_user(p, src, len)) {
177 		kfree(p);
178 		return ERR_PTR(-EFAULT);
179 	}
180 
181 	return p;
182 }
183 EXPORT_SYMBOL(memdup_user);
184 
185 /**
186  * vmemdup_user - duplicate memory region from user space
187  *
188  * @src: source address in user space
189  * @len: number of bytes to copy
190  *
191  * Return: an ERR_PTR() on failure.  Result may be not
192  * physically contiguous.  Use kvfree() to free.
193  */
vmemdup_user(const void __user * src,size_t len)194 void *vmemdup_user(const void __user *src, size_t len)
195 {
196 	void *p;
197 
198 	p = kvmalloc(len, GFP_USER);
199 	if (!p)
200 		return ERR_PTR(-ENOMEM);
201 
202 	if (copy_from_user(p, src, len)) {
203 		kvfree(p);
204 		return ERR_PTR(-EFAULT);
205 	}
206 
207 	return p;
208 }
209 EXPORT_SYMBOL(vmemdup_user);
210 
211 /**
212  * strndup_user - duplicate an existing string from user space
213  * @s: The string to duplicate
214  * @n: Maximum number of bytes to copy, including the trailing NUL.
215  *
216  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
217  */
strndup_user(const char __user * s,long n)218 char *strndup_user(const char __user *s, long n)
219 {
220 	char *p;
221 	long length;
222 
223 	length = strnlen_user(s, n);
224 
225 	if (!length)
226 		return ERR_PTR(-EFAULT);
227 
228 	if (length > n)
229 		return ERR_PTR(-EINVAL);
230 
231 	p = memdup_user(s, length);
232 
233 	if (IS_ERR(p))
234 		return p;
235 
236 	p[length - 1] = '\0';
237 
238 	return p;
239 }
240 EXPORT_SYMBOL(strndup_user);
241 
242 /**
243  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
244  *
245  * @src: source address in user space
246  * @len: number of bytes to copy
247  *
248  * Return: an ERR_PTR() on failure.
249  */
memdup_user_nul(const void __user * src,size_t len)250 void *memdup_user_nul(const void __user *src, size_t len)
251 {
252 	char *p;
253 
254 	/*
255 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
256 	 * cause pagefault, which makes it pointless to use GFP_NOFS
257 	 * or GFP_ATOMIC.
258 	 */
259 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
260 	if (!p)
261 		return ERR_PTR(-ENOMEM);
262 
263 	if (copy_from_user(p, src, len)) {
264 		kfree(p);
265 		return ERR_PTR(-EFAULT);
266 	}
267 	p[len] = '\0';
268 
269 	return p;
270 }
271 EXPORT_SYMBOL(memdup_user_nul);
272 
__vma_link_list(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node * rb_parent)273 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
274 		struct vm_area_struct *prev, struct rb_node *rb_parent)
275 {
276 	struct vm_area_struct *next;
277 
278 	vma->vm_prev = prev;
279 	if (prev) {
280 		next = prev->vm_next;
281 		prev->vm_next = vma;
282 	} else {
283 		mm->mmap = vma;
284 		if (rb_parent)
285 			next = rb_entry(rb_parent,
286 					struct vm_area_struct, vm_rb);
287 		else
288 			next = NULL;
289 	}
290 	vma->vm_next = next;
291 	if (next)
292 		next->vm_prev = vma;
293 }
294 
295 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)296 int vma_is_stack_for_current(struct vm_area_struct *vma)
297 {
298 	struct task_struct * __maybe_unused t = current;
299 
300 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
301 }
302 
303 #ifndef STACK_RND_MASK
304 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
305 #endif
306 
randomize_stack_top(unsigned long stack_top)307 unsigned long randomize_stack_top(unsigned long stack_top)
308 {
309 	unsigned long random_variable = 0;
310 
311 	if (current->flags & PF_RANDOMIZE) {
312 		random_variable = get_random_long();
313 		random_variable &= STACK_RND_MASK;
314 		random_variable <<= PAGE_SHIFT;
315 	}
316 #ifdef CONFIG_STACK_GROWSUP
317 	return PAGE_ALIGN(stack_top) + random_variable;
318 #else
319 	return PAGE_ALIGN(stack_top) - random_variable;
320 #endif
321 }
322 
323 /**
324  * randomize_page - Generate a random, page aligned address
325  * @start:	The smallest acceptable address the caller will take.
326  * @range:	The size of the area, starting at @start, within which the
327  *		random address must fall.
328  *
329  * If @start + @range would overflow, @range is capped.
330  *
331  * NOTE: Historical use of randomize_range, which this replaces, presumed that
332  * @start was already page aligned.  We now align it regardless.
333  *
334  * Return: A page aligned address within [start, start + range).  On error,
335  * @start is returned.
336  */
randomize_page(unsigned long start,unsigned long range)337 unsigned long randomize_page(unsigned long start, unsigned long range)
338 {
339 	if (!PAGE_ALIGNED(start)) {
340 		range -= PAGE_ALIGN(start) - start;
341 		start = PAGE_ALIGN(start);
342 	}
343 
344 	if (start > ULONG_MAX - range)
345 		range = ULONG_MAX - start;
346 
347 	range >>= PAGE_SHIFT;
348 
349 	if (range == 0)
350 		return start;
351 
352 	return start + (get_random_long() % range << PAGE_SHIFT);
353 }
354 
355 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
arch_randomize_brk(struct mm_struct * mm)356 unsigned long arch_randomize_brk(struct mm_struct *mm)
357 {
358 	/* Is the current task 32bit ? */
359 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
360 		return randomize_page(mm->brk, SZ_32M);
361 
362 	return randomize_page(mm->brk, SZ_1G);
363 }
364 
arch_mmap_rnd(void)365 unsigned long arch_mmap_rnd(void)
366 {
367 	unsigned long rnd;
368 
369 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
370 	if (is_compat_task())
371 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
372 	else
373 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
374 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
375 
376 	return rnd << PAGE_SHIFT;
377 }
378 
mmap_is_legacy(struct rlimit * rlim_stack)379 static int mmap_is_legacy(struct rlimit *rlim_stack)
380 {
381 	if (current->personality & ADDR_COMPAT_LAYOUT)
382 		return 1;
383 
384 	if (rlim_stack->rlim_cur == RLIM_INFINITY)
385 		return 1;
386 
387 	return sysctl_legacy_va_layout;
388 }
389 
390 /*
391  * Leave enough space between the mmap area and the stack to honour ulimit in
392  * the face of randomisation.
393  */
394 #define MIN_GAP		(SZ_128M)
395 #define MAX_GAP		(STACK_TOP / 6 * 5)
396 
mmap_base(unsigned long rnd,struct rlimit * rlim_stack)397 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
398 {
399 	unsigned long gap = rlim_stack->rlim_cur;
400 	unsigned long pad = stack_guard_gap;
401 
402 	/* Account for stack randomization if necessary */
403 	if (current->flags & PF_RANDOMIZE)
404 		pad += (STACK_RND_MASK << PAGE_SHIFT);
405 
406 	/* Values close to RLIM_INFINITY can overflow. */
407 	if (gap + pad > gap)
408 		gap += pad;
409 
410 	if (gap < MIN_GAP)
411 		gap = MIN_GAP;
412 	else if (gap > MAX_GAP)
413 		gap = MAX_GAP;
414 
415 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
416 }
417 
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)418 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
419 {
420 	unsigned long random_factor = 0UL;
421 
422 	if (current->flags & PF_RANDOMIZE)
423 		random_factor = arch_mmap_rnd();
424 
425 	if (mmap_is_legacy(rlim_stack)) {
426 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
427 		mm->get_unmapped_area = arch_get_unmapped_area;
428 	} else {
429 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
430 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
431 	}
432 }
433 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)434 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
435 {
436 	mm->mmap_base = TASK_UNMAPPED_BASE;
437 	mm->get_unmapped_area = arch_get_unmapped_area;
438 }
439 #endif
440 
441 /**
442  * __account_locked_vm - account locked pages to an mm's locked_vm
443  * @mm:          mm to account against
444  * @pages:       number of pages to account
445  * @inc:         %true if @pages should be considered positive, %false if not
446  * @task:        task used to check RLIMIT_MEMLOCK
447  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
448  *
449  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
450  * that mmap_sem is held as writer.
451  *
452  * Return:
453  * * 0       on success
454  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
455  */
__account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc,struct task_struct * task,bool bypass_rlim)456 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
457 			struct task_struct *task, bool bypass_rlim)
458 {
459 	unsigned long locked_vm, limit;
460 	int ret = 0;
461 
462 	lockdep_assert_held_write(&mm->mmap_sem);
463 
464 	locked_vm = mm->locked_vm;
465 	if (inc) {
466 		if (!bypass_rlim) {
467 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
468 			if (locked_vm + pages > limit)
469 				ret = -ENOMEM;
470 		}
471 		if (!ret)
472 			mm->locked_vm = locked_vm + pages;
473 	} else {
474 		WARN_ON_ONCE(pages > locked_vm);
475 		mm->locked_vm = locked_vm - pages;
476 	}
477 
478 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
479 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
480 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
481 		 ret ? " - exceeded" : "");
482 
483 	return ret;
484 }
485 EXPORT_SYMBOL_GPL(__account_locked_vm);
486 
487 /**
488  * account_locked_vm - account locked pages to an mm's locked_vm
489  * @mm:          mm to account against, may be NULL
490  * @pages:       number of pages to account
491  * @inc:         %true if @pages should be considered positive, %false if not
492  *
493  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
494  *
495  * Return:
496  * * 0       on success, or if mm is NULL
497  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
498  */
account_locked_vm(struct mm_struct * mm,unsigned long pages,bool inc)499 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
500 {
501 	int ret;
502 
503 	if (pages == 0 || !mm)
504 		return 0;
505 
506 	down_write(&mm->mmap_sem);
507 	ret = __account_locked_vm(mm, pages, inc, current,
508 				  capable(CAP_IPC_LOCK));
509 	up_write(&mm->mmap_sem);
510 
511 	return ret;
512 }
513 EXPORT_SYMBOL_GPL(account_locked_vm);
514 
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)515 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
516 	unsigned long len, unsigned long prot,
517 	unsigned long flag, unsigned long pgoff)
518 {
519 	unsigned long ret;
520 	struct mm_struct *mm = current->mm;
521 	unsigned long populate;
522 	LIST_HEAD(uf);
523 
524 	ret = security_mmap_file(file, prot, flag);
525 	if (!ret) {
526 		if (down_write_killable(&mm->mmap_sem))
527 			return -EINTR;
528 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
529 				    &populate, &uf);
530 		up_write(&mm->mmap_sem);
531 		userfaultfd_unmap_complete(mm, &uf);
532 		if (populate)
533 			mm_populate(ret, populate);
534 	}
535 	return ret;
536 }
537 
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)538 unsigned long vm_mmap(struct file *file, unsigned long addr,
539 	unsigned long len, unsigned long prot,
540 	unsigned long flag, unsigned long offset)
541 {
542 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
543 		return -EINVAL;
544 	if (unlikely(offset_in_page(offset)))
545 		return -EINVAL;
546 
547 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
548 }
549 EXPORT_SYMBOL(vm_mmap);
550 
551 /**
552  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
553  * failure, fall back to non-contiguous (vmalloc) allocation.
554  * @size: size of the request.
555  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
556  * @node: numa node to allocate from
557  *
558  * Uses kmalloc to get the memory but if the allocation fails then falls back
559  * to the vmalloc allocator. Use kvfree for freeing the memory.
560  *
561  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
562  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
563  * preferable to the vmalloc fallback, due to visible performance drawbacks.
564  *
565  * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
566  * fall back to vmalloc.
567  *
568  * Return: pointer to the allocated memory of %NULL in case of failure
569  */
kvmalloc_node(size_t size,gfp_t flags,int node)570 void *kvmalloc_node(size_t size, gfp_t flags, int node)
571 {
572 	gfp_t kmalloc_flags = flags;
573 	void *ret;
574 
575 	/*
576 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
577 	 * so the given set of flags has to be compatible.
578 	 */
579 	if ((flags & GFP_KERNEL) != GFP_KERNEL)
580 		return kmalloc_node(size, flags, node);
581 
582 	/*
583 	 * We want to attempt a large physically contiguous block first because
584 	 * it is less likely to fragment multiple larger blocks and therefore
585 	 * contribute to a long term fragmentation less than vmalloc fallback.
586 	 * However make sure that larger requests are not too disruptive - no
587 	 * OOM killer and no allocation failure warnings as we have a fallback.
588 	 */
589 	if (size > PAGE_SIZE) {
590 		kmalloc_flags |= __GFP_NOWARN;
591 
592 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
593 			kmalloc_flags |= __GFP_NORETRY;
594 	}
595 
596 	ret = kmalloc_node(size, kmalloc_flags, node);
597 
598 	/*
599 	 * It doesn't really make sense to fallback to vmalloc for sub page
600 	 * requests
601 	 */
602 	if (ret || size <= PAGE_SIZE)
603 		return ret;
604 
605 	return __vmalloc_node_flags_caller(size, node, flags,
606 			__builtin_return_address(0));
607 }
608 EXPORT_SYMBOL(kvmalloc_node);
609 
610 /**
611  * kvfree() - Free memory.
612  * @addr: Pointer to allocated memory.
613  *
614  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
615  * It is slightly more efficient to use kfree() or vfree() if you are certain
616  * that you know which one to use.
617  *
618  * Context: Either preemptible task context or not-NMI interrupt.
619  */
kvfree(const void * addr)620 void kvfree(const void *addr)
621 {
622 	if (is_vmalloc_addr(addr))
623 		vfree(addr);
624 	else
625 		kfree(addr);
626 }
627 EXPORT_SYMBOL(kvfree);
628 
629 /**
630  * kvfree_sensitive - Free a data object containing sensitive information.
631  * @addr: address of the data object to be freed.
632  * @len: length of the data object.
633  *
634  * Use the special memzero_explicit() function to clear the content of a
635  * kvmalloc'ed object containing sensitive data to make sure that the
636  * compiler won't optimize out the data clearing.
637  */
kvfree_sensitive(const void * addr,size_t len)638 void kvfree_sensitive(const void *addr, size_t len)
639 {
640 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
641 		memzero_explicit((void *)addr, len);
642 		kvfree(addr);
643 	}
644 }
645 EXPORT_SYMBOL(kvfree_sensitive);
646 
__page_rmapping(struct page * page)647 static inline void *__page_rmapping(struct page *page)
648 {
649 	unsigned long mapping;
650 
651 	mapping = (unsigned long)page->mapping;
652 	mapping &= ~PAGE_MAPPING_FLAGS;
653 
654 	return (void *)mapping;
655 }
656 
657 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)658 void *page_rmapping(struct page *page)
659 {
660 	page = compound_head(page);
661 	return __page_rmapping(page);
662 }
663 
664 /*
665  * Return true if this page is mapped into pagetables.
666  * For compound page it returns true if any subpage of compound page is mapped.
667  */
page_mapped(struct page * page)668 bool page_mapped(struct page *page)
669 {
670 	int i;
671 
672 	if (likely(!PageCompound(page)))
673 		return atomic_read(&page->_mapcount) >= 0;
674 	page = compound_head(page);
675 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
676 		return true;
677 	if (PageHuge(page))
678 		return false;
679 	for (i = 0; i < compound_nr(page); i++) {
680 		if (atomic_read(&page[i]._mapcount) >= 0)
681 			return true;
682 	}
683 	return false;
684 }
685 EXPORT_SYMBOL(page_mapped);
686 
page_anon_vma(struct page * page)687 struct anon_vma *page_anon_vma(struct page *page)
688 {
689 	unsigned long mapping;
690 
691 	page = compound_head(page);
692 	mapping = (unsigned long)page->mapping;
693 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
694 		return NULL;
695 	return __page_rmapping(page);
696 }
697 
page_mapping(struct page * page)698 struct address_space *page_mapping(struct page *page)
699 {
700 	struct address_space *mapping;
701 
702 	page = compound_head(page);
703 
704 	/* This happens if someone calls flush_dcache_page on slab page */
705 	if (unlikely(PageSlab(page)))
706 		return NULL;
707 
708 	if (unlikely(PageSwapCache(page))) {
709 		swp_entry_t entry;
710 
711 		entry.val = page_private(page);
712 		return swap_address_space(entry);
713 	}
714 
715 	mapping = page->mapping;
716 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
717 		return NULL;
718 
719 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
720 }
721 EXPORT_SYMBOL(page_mapping);
722 
723 /*
724  * For file cache pages, return the address_space, otherwise return NULL
725  */
page_mapping_file(struct page * page)726 struct address_space *page_mapping_file(struct page *page)
727 {
728 	if (unlikely(PageSwapCache(page)))
729 		return NULL;
730 	return page_mapping(page);
731 }
732 
733 /* Slow path of page_mapcount() for compound pages */
__page_mapcount(struct page * page)734 int __page_mapcount(struct page *page)
735 {
736 	int ret;
737 
738 	ret = atomic_read(&page->_mapcount) + 1;
739 	/*
740 	 * For file THP page->_mapcount contains total number of mapping
741 	 * of the page: no need to look into compound_mapcount.
742 	 */
743 	if (!PageAnon(page) && !PageHuge(page))
744 		return ret;
745 	page = compound_head(page);
746 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
747 	if (PageDoubleMap(page))
748 		ret--;
749 	return ret;
750 }
751 EXPORT_SYMBOL_GPL(__page_mapcount);
752 
753 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
754 int sysctl_overcommit_ratio __read_mostly = 50;
755 unsigned long sysctl_overcommit_kbytes __read_mostly;
756 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
757 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
758 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
759 
overcommit_ratio_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)760 int overcommit_ratio_handler(struct ctl_table *table, int write,
761 			     void __user *buffer, size_t *lenp,
762 			     loff_t *ppos)
763 {
764 	int ret;
765 
766 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
767 	if (ret == 0 && write)
768 		sysctl_overcommit_kbytes = 0;
769 	return ret;
770 }
771 
overcommit_kbytes_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)772 int overcommit_kbytes_handler(struct ctl_table *table, int write,
773 			     void __user *buffer, size_t *lenp,
774 			     loff_t *ppos)
775 {
776 	int ret;
777 
778 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
779 	if (ret == 0 && write)
780 		sysctl_overcommit_ratio = 0;
781 	return ret;
782 }
783 
784 /*
785  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
786  */
vm_commit_limit(void)787 unsigned long vm_commit_limit(void)
788 {
789 	unsigned long allowed;
790 
791 	if (sysctl_overcommit_kbytes)
792 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
793 	else
794 		allowed = ((totalram_pages() - hugetlb_total_pages())
795 			   * sysctl_overcommit_ratio / 100);
796 	allowed += total_swap_pages;
797 
798 	return allowed;
799 }
800 
801 /*
802  * Make sure vm_committed_as in one cacheline and not cacheline shared with
803  * other variables. It can be updated by several CPUs frequently.
804  */
805 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
806 
807 /*
808  * The global memory commitment made in the system can be a metric
809  * that can be used to drive ballooning decisions when Linux is hosted
810  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
811  * balancing memory across competing virtual machines that are hosted.
812  * Several metrics drive this policy engine including the guest reported
813  * memory commitment.
814  */
vm_memory_committed(void)815 unsigned long vm_memory_committed(void)
816 {
817 	return percpu_counter_read_positive(&vm_committed_as);
818 }
819 EXPORT_SYMBOL_GPL(vm_memory_committed);
820 
821 /*
822  * Check that a process has enough memory to allocate a new virtual
823  * mapping. 0 means there is enough memory for the allocation to
824  * succeed and -ENOMEM implies there is not.
825  *
826  * We currently support three overcommit policies, which are set via the
827  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
828  *
829  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
830  * Additional code 2002 Jul 20 by Robert Love.
831  *
832  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
833  *
834  * Note this is a helper function intended to be used by LSMs which
835  * wish to use this logic.
836  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)837 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
838 {
839 	long allowed;
840 
841 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
842 			-(s64)vm_committed_as_batch * num_online_cpus(),
843 			"memory commitment underflow");
844 
845 	vm_acct_memory(pages);
846 
847 	/*
848 	 * Sometimes we want to use more memory than we have
849 	 */
850 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
851 		return 0;
852 
853 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
854 		if (pages > totalram_pages() + total_swap_pages)
855 			goto error;
856 		return 0;
857 	}
858 
859 	allowed = vm_commit_limit();
860 	/*
861 	 * Reserve some for root
862 	 */
863 	if (!cap_sys_admin)
864 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
865 
866 	/*
867 	 * Don't let a single process grow so big a user can't recover
868 	 */
869 	if (mm) {
870 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
871 
872 		allowed -= min_t(long, mm->total_vm / 32, reserve);
873 	}
874 
875 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
876 		return 0;
877 error:
878 	vm_unacct_memory(pages);
879 
880 	return -ENOMEM;
881 }
882 
883 /**
884  * get_cmdline() - copy the cmdline value to a buffer.
885  * @task:     the task whose cmdline value to copy.
886  * @buffer:   the buffer to copy to.
887  * @buflen:   the length of the buffer. Larger cmdline values are truncated
888  *            to this length.
889  *
890  * Return: the size of the cmdline field copied. Note that the copy does
891  * not guarantee an ending NULL byte.
892  */
get_cmdline(struct task_struct * task,char * buffer,int buflen)893 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
894 {
895 	int res = 0;
896 	unsigned int len;
897 	struct mm_struct *mm = get_task_mm(task);
898 	unsigned long arg_start, arg_end, env_start, env_end;
899 	if (!mm)
900 		goto out;
901 	if (!mm->arg_end)
902 		goto out_mm;	/* Shh! No looking before we're done */
903 
904 	spin_lock(&mm->arg_lock);
905 	arg_start = mm->arg_start;
906 	arg_end = mm->arg_end;
907 	env_start = mm->env_start;
908 	env_end = mm->env_end;
909 	spin_unlock(&mm->arg_lock);
910 
911 	len = arg_end - arg_start;
912 
913 	if (len > buflen)
914 		len = buflen;
915 
916 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
917 
918 	/*
919 	 * If the nul at the end of args has been overwritten, then
920 	 * assume application is using setproctitle(3).
921 	 */
922 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
923 		len = strnlen(buffer, res);
924 		if (len < res) {
925 			res = len;
926 		} else {
927 			len = env_end - env_start;
928 			if (len > buflen - res)
929 				len = buflen - res;
930 			res += access_process_vm(task, env_start,
931 						 buffer+res, len,
932 						 FOLL_FORCE);
933 			res = strnlen(buffer, res);
934 		}
935 	}
936 out_mm:
937 	mmput(mm);
938 out:
939 	return res;
940 }
941 
memcmp_pages(struct page * page1,struct page * page2)942 int memcmp_pages(struct page *page1, struct page *page2)
943 {
944 	char *addr1, *addr2;
945 	int ret;
946 
947 	addr1 = kmap_atomic(page1);
948 	addr2 = kmap_atomic(page2);
949 	ret = memcmp(addr1, addr2, PAGE_SIZE);
950 	kunmap_atomic(addr2);
951 	kunmap_atomic(addr1);
952 	return ret;
953 }
954