1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Authors: Rusty Russell <rusty@rustcorp.com.au>
5 * Christoffer Dall <c.dall@virtualopensystems.com>
6 */
7
8 #include <linux/bsearch.h>
9 #include <linux/mm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/uaccess.h>
12 #include <asm/kvm_arm.h>
13 #include <asm/kvm_host.h>
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_coproc.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cputype.h>
19 #include <trace/events/kvm.h>
20 #include <asm/vfp.h>
21 #include "../vfp/vfpinstr.h"
22
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25 #include "coproc.h"
26
27
28 /******************************************************************************
29 * Co-processor emulation
30 *****************************************************************************/
31
write_to_read_only(struct kvm_vcpu * vcpu,const struct coproc_params * params)32 static bool write_to_read_only(struct kvm_vcpu *vcpu,
33 const struct coproc_params *params)
34 {
35 WARN_ONCE(1, "CP15 write to read-only register\n");
36 print_cp_instr(params);
37 kvm_inject_undefined(vcpu);
38 return false;
39 }
40
read_from_write_only(struct kvm_vcpu * vcpu,const struct coproc_params * params)41 static bool read_from_write_only(struct kvm_vcpu *vcpu,
42 const struct coproc_params *params)
43 {
44 WARN_ONCE(1, "CP15 read to write-only register\n");
45 print_cp_instr(params);
46 kvm_inject_undefined(vcpu);
47 return false;
48 }
49
50 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
51 static u32 cache_levels;
52
53 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
54 #define CSSELR_MAX 12
55
56 /*
57 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
58 * of cp15 registers can be viewed either as couple of two u32 registers
59 * or one u64 register. Current u64 register encoding is that least
60 * significant u32 word is followed by most significant u32 word.
61 */
vcpu_cp15_reg64_set(struct kvm_vcpu * vcpu,const struct coproc_reg * r,u64 val)62 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
63 const struct coproc_reg *r,
64 u64 val)
65 {
66 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
67 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
68 }
69
vcpu_cp15_reg64_get(struct kvm_vcpu * vcpu,const struct coproc_reg * r)70 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
71 const struct coproc_reg *r)
72 {
73 u64 val;
74
75 val = vcpu_cp15(vcpu, r->reg + 1);
76 val = val << 32;
77 val = val | vcpu_cp15(vcpu, r->reg);
78 return val;
79 }
80
kvm_handle_cp10_id(struct kvm_vcpu * vcpu,struct kvm_run * run)81 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
82 {
83 kvm_inject_undefined(vcpu);
84 return 1;
85 }
86
kvm_handle_cp_0_13_access(struct kvm_vcpu * vcpu,struct kvm_run * run)87 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
88 {
89 /*
90 * We can get here, if the host has been built without VFPv3 support,
91 * but the guest attempted a floating point operation.
92 */
93 kvm_inject_undefined(vcpu);
94 return 1;
95 }
96
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu,struct kvm_run * run)97 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
98 {
99 kvm_inject_undefined(vcpu);
100 return 1;
101 }
102
reset_mpidr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)103 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
104 {
105 /*
106 * Compute guest MPIDR. We build a virtual cluster out of the
107 * vcpu_id, but we read the 'U' bit from the underlying
108 * hardware directly.
109 */
110 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
111 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
112 (vcpu->vcpu_id & 3));
113 }
114
115 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
access_actlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)116 static bool access_actlr(struct kvm_vcpu *vcpu,
117 const struct coproc_params *p,
118 const struct coproc_reg *r)
119 {
120 if (p->is_write)
121 return ignore_write(vcpu, p);
122
123 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
124 return true;
125 }
126
127 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
access_cbar(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)128 static bool access_cbar(struct kvm_vcpu *vcpu,
129 const struct coproc_params *p,
130 const struct coproc_reg *r)
131 {
132 if (p->is_write)
133 return write_to_read_only(vcpu, p);
134 return read_zero(vcpu, p);
135 }
136
137 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
access_l2ctlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)138 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
139 const struct coproc_params *p,
140 const struct coproc_reg *r)
141 {
142 if (p->is_write)
143 return ignore_write(vcpu, p);
144
145 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
146 return true;
147 }
148
reset_l2ctlr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)149 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
150 {
151 u32 l2ctlr, ncores;
152
153 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
154 l2ctlr &= ~(3 << 24);
155 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
156 /* How many cores in the current cluster and the next ones */
157 ncores -= (vcpu->vcpu_id & ~3);
158 /* Cap it to the maximum number of cores in a single cluster */
159 ncores = min(ncores, 3U);
160 l2ctlr |= (ncores & 3) << 24;
161
162 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
163 }
164
reset_actlr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)165 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
166 {
167 u32 actlr;
168
169 /* ACTLR contains SMP bit: make sure you create all cpus first! */
170 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
171 /* Make the SMP bit consistent with the guest configuration */
172 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
173 actlr |= 1U << 6;
174 else
175 actlr &= ~(1U << 6);
176
177 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
178 }
179
180 /*
181 * TRM entries: A7:4.3.50, A15:4.3.49
182 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
183 */
access_l2ectlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)184 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
185 const struct coproc_params *p,
186 const struct coproc_reg *r)
187 {
188 if (p->is_write)
189 return ignore_write(vcpu, p);
190
191 *vcpu_reg(vcpu, p->Rt1) = 0;
192 return true;
193 }
194
195 /*
196 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
197 */
access_dcsw(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)198 static bool access_dcsw(struct kvm_vcpu *vcpu,
199 const struct coproc_params *p,
200 const struct coproc_reg *r)
201 {
202 if (!p->is_write)
203 return read_from_write_only(vcpu, p);
204
205 kvm_set_way_flush(vcpu);
206 return true;
207 }
208
209 /*
210 * Generic accessor for VM registers. Only called as long as HCR_TVM
211 * is set. If the guest enables the MMU, we stop trapping the VM
212 * sys_regs and leave it in complete control of the caches.
213 *
214 * Used by the cpu-specific code.
215 */
access_vm_reg(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)216 bool access_vm_reg(struct kvm_vcpu *vcpu,
217 const struct coproc_params *p,
218 const struct coproc_reg *r)
219 {
220 bool was_enabled = vcpu_has_cache_enabled(vcpu);
221
222 BUG_ON(!p->is_write);
223
224 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
225 if (p->is_64bit)
226 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
227
228 kvm_toggle_cache(vcpu, was_enabled);
229 return true;
230 }
231
access_gic_sgi(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)232 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
233 const struct coproc_params *p,
234 const struct coproc_reg *r)
235 {
236 u64 reg;
237 bool g1;
238
239 if (!p->is_write)
240 return read_from_write_only(vcpu, p);
241
242 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
243 reg |= *vcpu_reg(vcpu, p->Rt1) ;
244
245 /*
246 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
247 * Group0 SGIs only, while ICC_SGI1R can generate either group,
248 * depending on the SGI configuration. ICC_ASGI1R is effectively
249 * equivalent to ICC_SGI0R, as there is no "alternative" secure
250 * group.
251 */
252 switch (p->Op1) {
253 default: /* Keep GCC quiet */
254 case 0: /* ICC_SGI1R */
255 g1 = true;
256 break;
257 case 1: /* ICC_ASGI1R */
258 case 2: /* ICC_SGI0R */
259 g1 = false;
260 break;
261 }
262
263 vgic_v3_dispatch_sgi(vcpu, reg, g1);
264
265 return true;
266 }
267
access_gic_sre(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)268 static bool access_gic_sre(struct kvm_vcpu *vcpu,
269 const struct coproc_params *p,
270 const struct coproc_reg *r)
271 {
272 if (p->is_write)
273 return ignore_write(vcpu, p);
274
275 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
276
277 return true;
278 }
279
access_cntp_tval(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)280 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
281 const struct coproc_params *p,
282 const struct coproc_reg *r)
283 {
284 u32 val;
285
286 if (p->is_write) {
287 val = *vcpu_reg(vcpu, p->Rt1);
288 kvm_arm_timer_write_sysreg(vcpu,
289 TIMER_PTIMER, TIMER_REG_TVAL, val);
290 } else {
291 val = kvm_arm_timer_read_sysreg(vcpu,
292 TIMER_PTIMER, TIMER_REG_TVAL);
293 *vcpu_reg(vcpu, p->Rt1) = val;
294 }
295
296 return true;
297 }
298
access_cntp_ctl(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)299 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
300 const struct coproc_params *p,
301 const struct coproc_reg *r)
302 {
303 u32 val;
304
305 if (p->is_write) {
306 val = *vcpu_reg(vcpu, p->Rt1);
307 kvm_arm_timer_write_sysreg(vcpu,
308 TIMER_PTIMER, TIMER_REG_CTL, val);
309 } else {
310 val = kvm_arm_timer_read_sysreg(vcpu,
311 TIMER_PTIMER, TIMER_REG_CTL);
312 *vcpu_reg(vcpu, p->Rt1) = val;
313 }
314
315 return true;
316 }
317
access_cntp_cval(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)318 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
319 const struct coproc_params *p,
320 const struct coproc_reg *r)
321 {
322 u64 val;
323
324 if (p->is_write) {
325 val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
326 val |= *vcpu_reg(vcpu, p->Rt1);
327 kvm_arm_timer_write_sysreg(vcpu,
328 TIMER_PTIMER, TIMER_REG_CVAL, val);
329 } else {
330 val = kvm_arm_timer_read_sysreg(vcpu,
331 TIMER_PTIMER, TIMER_REG_CVAL);
332 *vcpu_reg(vcpu, p->Rt1) = val;
333 *vcpu_reg(vcpu, p->Rt2) = val >> 32;
334 }
335
336 return true;
337 }
338
339 /*
340 * We could trap ID_DFR0 and tell the guest we don't support performance
341 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
342 * NAKed, so it will read the PMCR anyway.
343 *
344 * Therefore we tell the guest we have 0 counters. Unfortunately, we
345 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
346 * all PM registers, which doesn't crash the guest kernel at least.
347 */
trap_raz_wi(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)348 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
349 const struct coproc_params *p,
350 const struct coproc_reg *r)
351 {
352 if (p->is_write)
353 return ignore_write(vcpu, p);
354 else
355 return read_zero(vcpu, p);
356 }
357
358 #define access_pmcr trap_raz_wi
359 #define access_pmcntenset trap_raz_wi
360 #define access_pmcntenclr trap_raz_wi
361 #define access_pmovsr trap_raz_wi
362 #define access_pmselr trap_raz_wi
363 #define access_pmceid0 trap_raz_wi
364 #define access_pmceid1 trap_raz_wi
365 #define access_pmccntr trap_raz_wi
366 #define access_pmxevtyper trap_raz_wi
367 #define access_pmxevcntr trap_raz_wi
368 #define access_pmuserenr trap_raz_wi
369 #define access_pmintenset trap_raz_wi
370 #define access_pmintenclr trap_raz_wi
371
372 /* Architected CP15 registers.
373 * CRn denotes the primary register number, but is copied to the CRm in the
374 * user space API for 64-bit register access in line with the terminology used
375 * in the ARM ARM.
376 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
377 * registers preceding 32-bit ones.
378 */
379 static const struct coproc_reg cp15_regs[] = {
380 /* MPIDR: we use VMPIDR for guest access. */
381 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
382 NULL, reset_mpidr, c0_MPIDR },
383
384 /* CSSELR: swapped by interrupt.S. */
385 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
386 NULL, reset_unknown, c0_CSSELR },
387
388 /* ACTLR: trapped by HCR.TAC bit. */
389 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
390 access_actlr, reset_actlr, c1_ACTLR },
391
392 /* CPACR: swapped by interrupt.S. */
393 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
394 NULL, reset_val, c1_CPACR, 0x00000000 },
395
396 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
397 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
398 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
399 access_vm_reg, reset_unknown, c2_TTBR0 },
400 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
401 access_vm_reg, reset_unknown, c2_TTBR1 },
402 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
403 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
404 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
405
406
407 /* DACR: swapped by interrupt.S. */
408 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
409 access_vm_reg, reset_unknown, c3_DACR },
410
411 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
412 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
413 access_vm_reg, reset_unknown, c5_DFSR },
414 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
415 access_vm_reg, reset_unknown, c5_IFSR },
416 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
417 access_vm_reg, reset_unknown, c5_ADFSR },
418 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
419 access_vm_reg, reset_unknown, c5_AIFSR },
420
421 /* DFAR/IFAR: swapped by interrupt.S. */
422 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
423 access_vm_reg, reset_unknown, c6_DFAR },
424 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
425 access_vm_reg, reset_unknown, c6_IFAR },
426
427 /* PAR swapped by interrupt.S */
428 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
429
430 /*
431 * DC{C,I,CI}SW operations:
432 */
433 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
434 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
435 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
436 /*
437 * L2CTLR access (guest wants to know #CPUs).
438 */
439 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
440 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
441 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
442
443 /*
444 * Dummy performance monitor implementation.
445 */
446 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
447 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
448 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
449 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
450 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
451 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
452 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
453 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
454 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
455 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
456 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
457 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
458 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
459
460 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
461 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
462 access_vm_reg, reset_unknown, c10_PRRR},
463 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
464 access_vm_reg, reset_unknown, c10_NMRR},
465
466 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
467 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
468 access_vm_reg, reset_unknown, c10_AMAIR0},
469 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
470 access_vm_reg, reset_unknown, c10_AMAIR1},
471
472 /* ICC_SGI1R */
473 { CRm64(12), Op1( 0), is64, access_gic_sgi},
474
475 /* VBAR: swapped by interrupt.S. */
476 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
477 NULL, reset_val, c12_VBAR, 0x00000000 },
478
479 /* ICC_ASGI1R */
480 { CRm64(12), Op1( 1), is64, access_gic_sgi},
481 /* ICC_SGI0R */
482 { CRm64(12), Op1( 2), is64, access_gic_sgi},
483 /* ICC_SRE */
484 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
485
486 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
487 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
488 access_vm_reg, reset_val, c13_CID, 0x00000000 },
489 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
490 NULL, reset_unknown, c13_TID_URW },
491 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
492 NULL, reset_unknown, c13_TID_URO },
493 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
494 NULL, reset_unknown, c13_TID_PRIV },
495
496 /* CNTP */
497 { CRm64(14), Op1( 2), is64, access_cntp_cval},
498
499 /* CNTKCTL: swapped by interrupt.S. */
500 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
501 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
502
503 /* CNTP */
504 { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
505 { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
506
507 /* The Configuration Base Address Register. */
508 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
509 };
510
check_reg_table(const struct coproc_reg * table,unsigned int n)511 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
512 {
513 unsigned int i;
514
515 for (i = 1; i < n; i++) {
516 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
517 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
518 return 1;
519 }
520 }
521
522 return 0;
523 }
524
525 /* Target specific emulation tables */
526 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
527
kvm_register_target_coproc_table(struct kvm_coproc_target_table * table)528 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
529 {
530 BUG_ON(check_reg_table(table->table, table->num));
531 target_tables[table->target] = table;
532 }
533
534 /* Get specific register table for this target. */
get_target_table(unsigned target,size_t * num)535 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
536 {
537 struct kvm_coproc_target_table *table;
538
539 table = target_tables[target];
540 *num = table->num;
541 return table->table;
542 }
543
544 #define reg_to_match_value(x) \
545 ({ \
546 unsigned long val; \
547 val = (x)->CRn << 11; \
548 val |= (x)->CRm << 7; \
549 val |= (x)->Op1 << 4; \
550 val |= (x)->Op2 << 1; \
551 val |= !(x)->is_64bit; \
552 val; \
553 })
554
match_reg(const void * key,const void * elt)555 static int match_reg(const void *key, const void *elt)
556 {
557 const unsigned long pval = (unsigned long)key;
558 const struct coproc_reg *r = elt;
559
560 return pval - reg_to_match_value(r);
561 }
562
find_reg(const struct coproc_params * params,const struct coproc_reg table[],unsigned int num)563 static const struct coproc_reg *find_reg(const struct coproc_params *params,
564 const struct coproc_reg table[],
565 unsigned int num)
566 {
567 unsigned long pval = reg_to_match_value(params);
568
569 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
570 }
571
emulate_cp15(struct kvm_vcpu * vcpu,const struct coproc_params * params)572 static int emulate_cp15(struct kvm_vcpu *vcpu,
573 const struct coproc_params *params)
574 {
575 size_t num;
576 const struct coproc_reg *table, *r;
577
578 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
579 params->CRm, params->Op2, params->is_write);
580
581 table = get_target_table(vcpu->arch.target, &num);
582
583 /* Search target-specific then generic table. */
584 r = find_reg(params, table, num);
585 if (!r)
586 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
587
588 if (likely(r)) {
589 /* If we don't have an accessor, we should never get here! */
590 BUG_ON(!r->access);
591
592 if (likely(r->access(vcpu, params, r))) {
593 /* Skip instruction, since it was emulated */
594 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
595 }
596 } else {
597 /* If access function fails, it should complain. */
598 kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n",
599 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
600 print_cp_instr(params);
601 kvm_inject_undefined(vcpu);
602 }
603
604 return 1;
605 }
606
decode_64bit_hsr(struct kvm_vcpu * vcpu)607 static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
608 {
609 struct coproc_params params;
610
611 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
612 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
613 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
614 params.is_64bit = true;
615
616 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
617 params.Op2 = 0;
618 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
619 params.CRm = 0;
620
621 return params;
622 }
623
624 /**
625 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
626 * @vcpu: The VCPU pointer
627 * @run: The kvm_run struct
628 */
kvm_handle_cp15_64(struct kvm_vcpu * vcpu,struct kvm_run * run)629 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
630 {
631 struct coproc_params params = decode_64bit_hsr(vcpu);
632
633 return emulate_cp15(vcpu, ¶ms);
634 }
635
636 /**
637 * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
638 * @vcpu: The VCPU pointer
639 * @run: The kvm_run struct
640 */
kvm_handle_cp14_64(struct kvm_vcpu * vcpu,struct kvm_run * run)641 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
642 {
643 struct coproc_params params = decode_64bit_hsr(vcpu);
644
645 /* raz_wi cp14 */
646 trap_raz_wi(vcpu, ¶ms, NULL);
647
648 /* handled */
649 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
650 return 1;
651 }
652
reset_coproc_regs(struct kvm_vcpu * vcpu,const struct coproc_reg * table,size_t num,unsigned long * bmap)653 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
654 const struct coproc_reg *table, size_t num,
655 unsigned long *bmap)
656 {
657 unsigned long i;
658
659 for (i = 0; i < num; i++)
660 if (table[i].reset) {
661 int reg = table[i].reg;
662
663 table[i].reset(vcpu, &table[i]);
664 if (reg > 0 && reg < NR_CP15_REGS) {
665 set_bit(reg, bmap);
666 if (table[i].is_64bit)
667 set_bit(reg + 1, bmap);
668 }
669 }
670 }
671
decode_32bit_hsr(struct kvm_vcpu * vcpu)672 static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
673 {
674 struct coproc_params params;
675
676 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
677 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
678 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
679 params.is_64bit = false;
680
681 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
682 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
683 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
684 params.Rt2 = 0;
685
686 return params;
687 }
688
689 /**
690 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
691 * @vcpu: The VCPU pointer
692 * @run: The kvm_run struct
693 */
kvm_handle_cp15_32(struct kvm_vcpu * vcpu,struct kvm_run * run)694 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
695 {
696 struct coproc_params params = decode_32bit_hsr(vcpu);
697 return emulate_cp15(vcpu, ¶ms);
698 }
699
700 /**
701 * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
702 * @vcpu: The VCPU pointer
703 * @run: The kvm_run struct
704 */
kvm_handle_cp14_32(struct kvm_vcpu * vcpu,struct kvm_run * run)705 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
706 {
707 struct coproc_params params = decode_32bit_hsr(vcpu);
708
709 /* raz_wi cp14 */
710 trap_raz_wi(vcpu, ¶ms, NULL);
711
712 /* handled */
713 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
714 return 1;
715 }
716
717 /******************************************************************************
718 * Userspace API
719 *****************************************************************************/
720
index_to_params(u64 id,struct coproc_params * params)721 static bool index_to_params(u64 id, struct coproc_params *params)
722 {
723 switch (id & KVM_REG_SIZE_MASK) {
724 case KVM_REG_SIZE_U32:
725 /* Any unused index bits means it's not valid. */
726 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
727 | KVM_REG_ARM_COPROC_MASK
728 | KVM_REG_ARM_32_CRN_MASK
729 | KVM_REG_ARM_CRM_MASK
730 | KVM_REG_ARM_OPC1_MASK
731 | KVM_REG_ARM_32_OPC2_MASK))
732 return false;
733
734 params->is_64bit = false;
735 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
736 >> KVM_REG_ARM_32_CRN_SHIFT);
737 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
738 >> KVM_REG_ARM_CRM_SHIFT);
739 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
740 >> KVM_REG_ARM_OPC1_SHIFT);
741 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
742 >> KVM_REG_ARM_32_OPC2_SHIFT);
743 return true;
744 case KVM_REG_SIZE_U64:
745 /* Any unused index bits means it's not valid. */
746 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
747 | KVM_REG_ARM_COPROC_MASK
748 | KVM_REG_ARM_CRM_MASK
749 | KVM_REG_ARM_OPC1_MASK))
750 return false;
751 params->is_64bit = true;
752 /* CRm to CRn: see cp15_to_index for details */
753 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
754 >> KVM_REG_ARM_CRM_SHIFT);
755 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
756 >> KVM_REG_ARM_OPC1_SHIFT);
757 params->Op2 = 0;
758 params->CRm = 0;
759 return true;
760 default:
761 return false;
762 }
763 }
764
765 /* Decode an index value, and find the cp15 coproc_reg entry. */
index_to_coproc_reg(struct kvm_vcpu * vcpu,u64 id)766 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
767 u64 id)
768 {
769 size_t num;
770 const struct coproc_reg *table, *r;
771 struct coproc_params params;
772
773 /* We only do cp15 for now. */
774 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
775 return NULL;
776
777 if (!index_to_params(id, ¶ms))
778 return NULL;
779
780 table = get_target_table(vcpu->arch.target, &num);
781 r = find_reg(¶ms, table, num);
782 if (!r)
783 r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
784
785 /* Not saved in the cp15 array? */
786 if (r && !r->reg)
787 r = NULL;
788
789 return r;
790 }
791
792 /*
793 * These are the invariant cp15 registers: we let the guest see the host
794 * versions of these, so they're part of the guest state.
795 *
796 * A future CPU may provide a mechanism to present different values to
797 * the guest, or a future kvm may trap them.
798 */
799 /* Unfortunately, there's no register-argument for mrc, so generate. */
800 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
801 static void get_##name(struct kvm_vcpu *v, \
802 const struct coproc_reg *r) \
803 { \
804 u32 val; \
805 \
806 asm volatile("mrc p15, " __stringify(op1) \
807 ", %0, c" __stringify(crn) \
808 ", c" __stringify(crm) \
809 ", " __stringify(op2) "\n" : "=r" (val)); \
810 ((struct coproc_reg *)r)->val = val; \
811 }
812
813 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
814 FUNCTION_FOR32(0, 0, 0, 1, CTR)
815 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
816 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
817 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
818 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
819 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
820 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
821 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
822 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
823 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
824 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
825 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
826 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
827 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
828 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
829 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
830 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
831 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
832 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
833 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
834
835 /* ->val is filled in by kvm_invariant_coproc_table_init() */
836 static struct coproc_reg invariant_cp15[] = {
837 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
838 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
839 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
840 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
841 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
842
843 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
844 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
845
846 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
847 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
848 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
849 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
850 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
851 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
852 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
853 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
854
855 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
856 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
857 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
858 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
859 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
860 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
861 };
862
863 /*
864 * Reads a register value from a userspace address to a kernel
865 * variable. Make sure that register size matches sizeof(*__val).
866 */
reg_from_user(void * val,const void __user * uaddr,u64 id)867 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
868 {
869 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
870 return -EFAULT;
871 return 0;
872 }
873
874 /*
875 * Writes a register value to a userspace address from a kernel variable.
876 * Make sure that register size matches sizeof(*__val).
877 */
reg_to_user(void __user * uaddr,const void * val,u64 id)878 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
879 {
880 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
881 return -EFAULT;
882 return 0;
883 }
884
get_invariant_cp15(u64 id,void __user * uaddr)885 static int get_invariant_cp15(u64 id, void __user *uaddr)
886 {
887 struct coproc_params params;
888 const struct coproc_reg *r;
889 int ret;
890
891 if (!index_to_params(id, ¶ms))
892 return -ENOENT;
893
894 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
895 if (!r)
896 return -ENOENT;
897
898 ret = -ENOENT;
899 if (KVM_REG_SIZE(id) == 4) {
900 u32 val = r->val;
901
902 ret = reg_to_user(uaddr, &val, id);
903 } else if (KVM_REG_SIZE(id) == 8) {
904 ret = reg_to_user(uaddr, &r->val, id);
905 }
906 return ret;
907 }
908
set_invariant_cp15(u64 id,void __user * uaddr)909 static int set_invariant_cp15(u64 id, void __user *uaddr)
910 {
911 struct coproc_params params;
912 const struct coproc_reg *r;
913 int err;
914 u64 val;
915
916 if (!index_to_params(id, ¶ms))
917 return -ENOENT;
918 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
919 if (!r)
920 return -ENOENT;
921
922 err = -ENOENT;
923 if (KVM_REG_SIZE(id) == 4) {
924 u32 val32;
925
926 err = reg_from_user(&val32, uaddr, id);
927 if (!err)
928 val = val32;
929 } else if (KVM_REG_SIZE(id) == 8) {
930 err = reg_from_user(&val, uaddr, id);
931 }
932 if (err)
933 return err;
934
935 /* This is what we mean by invariant: you can't change it. */
936 if (r->val != val)
937 return -EINVAL;
938
939 return 0;
940 }
941
is_valid_cache(u32 val)942 static bool is_valid_cache(u32 val)
943 {
944 u32 level, ctype;
945
946 if (val >= CSSELR_MAX)
947 return false;
948
949 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
950 level = (val >> 1);
951 ctype = (cache_levels >> (level * 3)) & 7;
952
953 switch (ctype) {
954 case 0: /* No cache */
955 return false;
956 case 1: /* Instruction cache only */
957 return (val & 1);
958 case 2: /* Data cache only */
959 case 4: /* Unified cache */
960 return !(val & 1);
961 case 3: /* Separate instruction and data caches */
962 return true;
963 default: /* Reserved: we can't know instruction or data. */
964 return false;
965 }
966 }
967
968 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(u32 csselr)969 static u32 get_ccsidr(u32 csselr)
970 {
971 u32 ccsidr;
972
973 /* Make sure noone else changes CSSELR during this! */
974 local_irq_disable();
975 /* Put value into CSSELR */
976 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
977 isb();
978 /* Read result out of CCSIDR */
979 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
980 local_irq_enable();
981
982 return ccsidr;
983 }
984
demux_c15_get(u64 id,void __user * uaddr)985 static int demux_c15_get(u64 id, void __user *uaddr)
986 {
987 u32 val;
988 u32 __user *uval = uaddr;
989
990 /* Fail if we have unknown bits set. */
991 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
992 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
993 return -ENOENT;
994
995 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
996 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
997 if (KVM_REG_SIZE(id) != 4)
998 return -ENOENT;
999 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1000 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1001 if (!is_valid_cache(val))
1002 return -ENOENT;
1003
1004 return put_user(get_ccsidr(val), uval);
1005 default:
1006 return -ENOENT;
1007 }
1008 }
1009
demux_c15_set(u64 id,void __user * uaddr)1010 static int demux_c15_set(u64 id, void __user *uaddr)
1011 {
1012 u32 val, newval;
1013 u32 __user *uval = uaddr;
1014
1015 /* Fail if we have unknown bits set. */
1016 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1017 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1018 return -ENOENT;
1019
1020 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1021 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1022 if (KVM_REG_SIZE(id) != 4)
1023 return -ENOENT;
1024 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1025 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1026 if (!is_valid_cache(val))
1027 return -ENOENT;
1028
1029 if (get_user(newval, uval))
1030 return -EFAULT;
1031
1032 /* This is also invariant: you can't change it. */
1033 if (newval != get_ccsidr(val))
1034 return -EINVAL;
1035 return 0;
1036 default:
1037 return -ENOENT;
1038 }
1039 }
1040
1041 #ifdef CONFIG_VFPv3
1042 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
1043 KVM_REG_ARM_VFP_FPSCR,
1044 KVM_REG_ARM_VFP_FPINST,
1045 KVM_REG_ARM_VFP_FPINST2,
1046 KVM_REG_ARM_VFP_MVFR0,
1047 KVM_REG_ARM_VFP_MVFR1,
1048 KVM_REG_ARM_VFP_FPSID };
1049
num_fp_regs(void)1050 static unsigned int num_fp_regs(void)
1051 {
1052 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
1053 return 32;
1054 else
1055 return 16;
1056 }
1057
num_vfp_regs(void)1058 static unsigned int num_vfp_regs(void)
1059 {
1060 /* Normal FP regs + control regs. */
1061 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
1062 }
1063
copy_vfp_regids(u64 __user * uindices)1064 static int copy_vfp_regids(u64 __user *uindices)
1065 {
1066 unsigned int i;
1067 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
1068 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
1069
1070 for (i = 0; i < num_fp_regs(); i++) {
1071 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
1072 uindices))
1073 return -EFAULT;
1074 uindices++;
1075 }
1076
1077 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
1078 if (put_user(u32reg | vfp_sysregs[i], uindices))
1079 return -EFAULT;
1080 uindices++;
1081 }
1082
1083 return num_vfp_regs();
1084 }
1085
vfp_get_reg(const struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)1086 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1087 {
1088 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1089 u32 val;
1090
1091 /* Fail if we have unknown bits set. */
1092 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1093 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1094 return -ENOENT;
1095
1096 if (vfpid < num_fp_regs()) {
1097 if (KVM_REG_SIZE(id) != 8)
1098 return -ENOENT;
1099 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1100 id);
1101 }
1102
1103 /* FP control registers are all 32 bit. */
1104 if (KVM_REG_SIZE(id) != 4)
1105 return -ENOENT;
1106
1107 switch (vfpid) {
1108 case KVM_REG_ARM_VFP_FPEXC:
1109 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1110 case KVM_REG_ARM_VFP_FPSCR:
1111 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1112 case KVM_REG_ARM_VFP_FPINST:
1113 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1114 case KVM_REG_ARM_VFP_FPINST2:
1115 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1116 case KVM_REG_ARM_VFP_MVFR0:
1117 val = fmrx(MVFR0);
1118 return reg_to_user(uaddr, &val, id);
1119 case KVM_REG_ARM_VFP_MVFR1:
1120 val = fmrx(MVFR1);
1121 return reg_to_user(uaddr, &val, id);
1122 case KVM_REG_ARM_VFP_FPSID:
1123 val = fmrx(FPSID);
1124 return reg_to_user(uaddr, &val, id);
1125 default:
1126 return -ENOENT;
1127 }
1128 }
1129
vfp_set_reg(struct kvm_vcpu * vcpu,u64 id,const void __user * uaddr)1130 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1131 {
1132 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1133 u32 val;
1134
1135 /* Fail if we have unknown bits set. */
1136 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1137 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1138 return -ENOENT;
1139
1140 if (vfpid < num_fp_regs()) {
1141 if (KVM_REG_SIZE(id) != 8)
1142 return -ENOENT;
1143 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1144 uaddr, id);
1145 }
1146
1147 /* FP control registers are all 32 bit. */
1148 if (KVM_REG_SIZE(id) != 4)
1149 return -ENOENT;
1150
1151 switch (vfpid) {
1152 case KVM_REG_ARM_VFP_FPEXC:
1153 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1154 case KVM_REG_ARM_VFP_FPSCR:
1155 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1156 case KVM_REG_ARM_VFP_FPINST:
1157 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1158 case KVM_REG_ARM_VFP_FPINST2:
1159 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1160 /* These are invariant. */
1161 case KVM_REG_ARM_VFP_MVFR0:
1162 if (reg_from_user(&val, uaddr, id))
1163 return -EFAULT;
1164 if (val != fmrx(MVFR0))
1165 return -EINVAL;
1166 return 0;
1167 case KVM_REG_ARM_VFP_MVFR1:
1168 if (reg_from_user(&val, uaddr, id))
1169 return -EFAULT;
1170 if (val != fmrx(MVFR1))
1171 return -EINVAL;
1172 return 0;
1173 case KVM_REG_ARM_VFP_FPSID:
1174 if (reg_from_user(&val, uaddr, id))
1175 return -EFAULT;
1176 if (val != fmrx(FPSID))
1177 return -EINVAL;
1178 return 0;
1179 default:
1180 return -ENOENT;
1181 }
1182 }
1183 #else /* !CONFIG_VFPv3 */
num_vfp_regs(void)1184 static unsigned int num_vfp_regs(void)
1185 {
1186 return 0;
1187 }
1188
copy_vfp_regids(u64 __user * uindices)1189 static int copy_vfp_regids(u64 __user *uindices)
1190 {
1191 return 0;
1192 }
1193
vfp_get_reg(const struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)1194 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1195 {
1196 return -ENOENT;
1197 }
1198
vfp_set_reg(struct kvm_vcpu * vcpu,u64 id,const void __user * uaddr)1199 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1200 {
1201 return -ENOENT;
1202 }
1203 #endif /* !CONFIG_VFPv3 */
1204
kvm_arm_coproc_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)1205 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1206 {
1207 const struct coproc_reg *r;
1208 void __user *uaddr = (void __user *)(long)reg->addr;
1209 int ret;
1210
1211 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1212 return demux_c15_get(reg->id, uaddr);
1213
1214 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1215 return vfp_get_reg(vcpu, reg->id, uaddr);
1216
1217 r = index_to_coproc_reg(vcpu, reg->id);
1218 if (!r)
1219 return get_invariant_cp15(reg->id, uaddr);
1220
1221 ret = -ENOENT;
1222 if (KVM_REG_SIZE(reg->id) == 8) {
1223 u64 val;
1224
1225 val = vcpu_cp15_reg64_get(vcpu, r);
1226 ret = reg_to_user(uaddr, &val, reg->id);
1227 } else if (KVM_REG_SIZE(reg->id) == 4) {
1228 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1229 }
1230
1231 return ret;
1232 }
1233
kvm_arm_coproc_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)1234 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1235 {
1236 const struct coproc_reg *r;
1237 void __user *uaddr = (void __user *)(long)reg->addr;
1238 int ret;
1239
1240 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1241 return demux_c15_set(reg->id, uaddr);
1242
1243 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1244 return vfp_set_reg(vcpu, reg->id, uaddr);
1245
1246 r = index_to_coproc_reg(vcpu, reg->id);
1247 if (!r)
1248 return set_invariant_cp15(reg->id, uaddr);
1249
1250 ret = -ENOENT;
1251 if (KVM_REG_SIZE(reg->id) == 8) {
1252 u64 val;
1253
1254 ret = reg_from_user(&val, uaddr, reg->id);
1255 if (!ret)
1256 vcpu_cp15_reg64_set(vcpu, r, val);
1257 } else if (KVM_REG_SIZE(reg->id) == 4) {
1258 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1259 }
1260
1261 return ret;
1262 }
1263
num_demux_regs(void)1264 static unsigned int num_demux_regs(void)
1265 {
1266 unsigned int i, count = 0;
1267
1268 for (i = 0; i < CSSELR_MAX; i++)
1269 if (is_valid_cache(i))
1270 count++;
1271
1272 return count;
1273 }
1274
write_demux_regids(u64 __user * uindices)1275 static int write_demux_regids(u64 __user *uindices)
1276 {
1277 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1278 unsigned int i;
1279
1280 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1281 for (i = 0; i < CSSELR_MAX; i++) {
1282 if (!is_valid_cache(i))
1283 continue;
1284 if (put_user(val | i, uindices))
1285 return -EFAULT;
1286 uindices++;
1287 }
1288 return 0;
1289 }
1290
cp15_to_index(const struct coproc_reg * reg)1291 static u64 cp15_to_index(const struct coproc_reg *reg)
1292 {
1293 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1294 if (reg->is_64bit) {
1295 val |= KVM_REG_SIZE_U64;
1296 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1297 /*
1298 * CRn always denotes the primary coproc. reg. nr. for the
1299 * in-kernel representation, but the user space API uses the
1300 * CRm for the encoding, because it is modelled after the
1301 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1302 * B3-1445
1303 */
1304 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1305 } else {
1306 val |= KVM_REG_SIZE_U32;
1307 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1308 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1309 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1310 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1311 }
1312 return val;
1313 }
1314
copy_reg_to_user(const struct coproc_reg * reg,u64 __user ** uind)1315 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1316 {
1317 if (!*uind)
1318 return true;
1319
1320 if (put_user(cp15_to_index(reg), *uind))
1321 return false;
1322
1323 (*uind)++;
1324 return true;
1325 }
1326
1327 /* Assumed ordered tables, see kvm_coproc_table_init. */
walk_cp15(struct kvm_vcpu * vcpu,u64 __user * uind)1328 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1329 {
1330 const struct coproc_reg *i1, *i2, *end1, *end2;
1331 unsigned int total = 0;
1332 size_t num;
1333
1334 /* We check for duplicates here, to allow arch-specific overrides. */
1335 i1 = get_target_table(vcpu->arch.target, &num);
1336 end1 = i1 + num;
1337 i2 = cp15_regs;
1338 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1339
1340 BUG_ON(i1 == end1 || i2 == end2);
1341
1342 /* Walk carefully, as both tables may refer to the same register. */
1343 while (i1 || i2) {
1344 int cmp = cmp_reg(i1, i2);
1345 /* target-specific overrides generic entry. */
1346 if (cmp <= 0) {
1347 /* Ignore registers we trap but don't save. */
1348 if (i1->reg) {
1349 if (!copy_reg_to_user(i1, &uind))
1350 return -EFAULT;
1351 total++;
1352 }
1353 } else {
1354 /* Ignore registers we trap but don't save. */
1355 if (i2->reg) {
1356 if (!copy_reg_to_user(i2, &uind))
1357 return -EFAULT;
1358 total++;
1359 }
1360 }
1361
1362 if (cmp <= 0 && ++i1 == end1)
1363 i1 = NULL;
1364 if (cmp >= 0 && ++i2 == end2)
1365 i2 = NULL;
1366 }
1367 return total;
1368 }
1369
kvm_arm_num_coproc_regs(struct kvm_vcpu * vcpu)1370 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1371 {
1372 return ARRAY_SIZE(invariant_cp15)
1373 + num_demux_regs()
1374 + num_vfp_regs()
1375 + walk_cp15(vcpu, (u64 __user *)NULL);
1376 }
1377
kvm_arm_copy_coproc_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)1378 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1379 {
1380 unsigned int i;
1381 int err;
1382
1383 /* Then give them all the invariant registers' indices. */
1384 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1385 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1386 return -EFAULT;
1387 uindices++;
1388 }
1389
1390 err = walk_cp15(vcpu, uindices);
1391 if (err < 0)
1392 return err;
1393 uindices += err;
1394
1395 err = copy_vfp_regids(uindices);
1396 if (err < 0)
1397 return err;
1398 uindices += err;
1399
1400 return write_demux_regids(uindices);
1401 }
1402
kvm_coproc_table_init(void)1403 void kvm_coproc_table_init(void)
1404 {
1405 unsigned int i;
1406
1407 /* Make sure tables are unique and in order. */
1408 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1409 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1410
1411 /* We abuse the reset function to overwrite the table itself. */
1412 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1413 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1414
1415 /*
1416 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1417 *
1418 * If software reads the Cache Type fields from Ctype1
1419 * upwards, once it has seen a value of 0b000, no caches
1420 * exist at further-out levels of the hierarchy. So, for
1421 * example, if Ctype3 is the first Cache Type field with a
1422 * value of 0b000, the values of Ctype4 to Ctype7 must be
1423 * ignored.
1424 */
1425 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1426 for (i = 0; i < 7; i++)
1427 if (((cache_levels >> (i*3)) & 7) == 0)
1428 break;
1429 /* Clear all higher bits. */
1430 cache_levels &= (1 << (i*3))-1;
1431 }
1432
1433 /**
1434 * kvm_reset_coprocs - sets cp15 registers to reset value
1435 * @vcpu: The VCPU pointer
1436 *
1437 * This function finds the right table above and sets the registers on the
1438 * virtual CPU struct to their architecturally defined reset values.
1439 */
kvm_reset_coprocs(struct kvm_vcpu * vcpu)1440 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1441 {
1442 size_t num;
1443 const struct coproc_reg *table;
1444 DECLARE_BITMAP(bmap, NR_CP15_REGS) = { 0, };
1445
1446 /* Generic chip reset first (so target could override). */
1447 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), bmap);
1448
1449 table = get_target_table(vcpu->arch.target, &num);
1450 reset_coproc_regs(vcpu, table, num, bmap);
1451
1452 for (num = 1; num < NR_CP15_REGS; num++)
1453 WARN(!test_bit(num, bmap),
1454 "Didn't reset vcpu_cp15(vcpu, %zi)", num);
1455 }
1456