• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Authors: Rusty Russell <rusty@rustcorp.com.au>
5  *          Christoffer Dall <c.dall@virtualopensystems.com>
6  */
7 
8 #include <linux/bsearch.h>
9 #include <linux/mm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/uaccess.h>
12 #include <asm/kvm_arm.h>
13 #include <asm/kvm_host.h>
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_coproc.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cputype.h>
19 #include <trace/events/kvm.h>
20 #include <asm/vfp.h>
21 #include "../vfp/vfpinstr.h"
22 
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25 #include "coproc.h"
26 
27 
28 /******************************************************************************
29  * Co-processor emulation
30  *****************************************************************************/
31 
write_to_read_only(struct kvm_vcpu * vcpu,const struct coproc_params * params)32 static bool write_to_read_only(struct kvm_vcpu *vcpu,
33 			       const struct coproc_params *params)
34 {
35 	WARN_ONCE(1, "CP15 write to read-only register\n");
36 	print_cp_instr(params);
37 	kvm_inject_undefined(vcpu);
38 	return false;
39 }
40 
read_from_write_only(struct kvm_vcpu * vcpu,const struct coproc_params * params)41 static bool read_from_write_only(struct kvm_vcpu *vcpu,
42 				 const struct coproc_params *params)
43 {
44 	WARN_ONCE(1, "CP15 read to write-only register\n");
45 	print_cp_instr(params);
46 	kvm_inject_undefined(vcpu);
47 	return false;
48 }
49 
50 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
51 static u32 cache_levels;
52 
53 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
54 #define CSSELR_MAX 12
55 
56 /*
57  * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
58  * of cp15 registers can be viewed either as couple of two u32 registers
59  * or one u64 register. Current u64 register encoding is that least
60  * significant u32 word is followed by most significant u32 word.
61  */
vcpu_cp15_reg64_set(struct kvm_vcpu * vcpu,const struct coproc_reg * r,u64 val)62 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
63 				       const struct coproc_reg *r,
64 				       u64 val)
65 {
66 	vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
67 	vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
68 }
69 
vcpu_cp15_reg64_get(struct kvm_vcpu * vcpu,const struct coproc_reg * r)70 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
71 				      const struct coproc_reg *r)
72 {
73 	u64 val;
74 
75 	val = vcpu_cp15(vcpu, r->reg + 1);
76 	val = val << 32;
77 	val = val | vcpu_cp15(vcpu, r->reg);
78 	return val;
79 }
80 
kvm_handle_cp10_id(struct kvm_vcpu * vcpu,struct kvm_run * run)81 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
82 {
83 	kvm_inject_undefined(vcpu);
84 	return 1;
85 }
86 
kvm_handle_cp_0_13_access(struct kvm_vcpu * vcpu,struct kvm_run * run)87 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
88 {
89 	/*
90 	 * We can get here, if the host has been built without VFPv3 support,
91 	 * but the guest attempted a floating point operation.
92 	 */
93 	kvm_inject_undefined(vcpu);
94 	return 1;
95 }
96 
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu,struct kvm_run * run)97 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
98 {
99 	kvm_inject_undefined(vcpu);
100 	return 1;
101 }
102 
reset_mpidr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)103 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
104 {
105 	/*
106 	 * Compute guest MPIDR. We build a virtual cluster out of the
107 	 * vcpu_id, but we read the 'U' bit from the underlying
108 	 * hardware directly.
109 	 */
110 	vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
111 				     ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
112 				     (vcpu->vcpu_id & 3));
113 }
114 
115 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
access_actlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)116 static bool access_actlr(struct kvm_vcpu *vcpu,
117 			 const struct coproc_params *p,
118 			 const struct coproc_reg *r)
119 {
120 	if (p->is_write)
121 		return ignore_write(vcpu, p);
122 
123 	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
124 	return true;
125 }
126 
127 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
access_cbar(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)128 static bool access_cbar(struct kvm_vcpu *vcpu,
129 			const struct coproc_params *p,
130 			const struct coproc_reg *r)
131 {
132 	if (p->is_write)
133 		return write_to_read_only(vcpu, p);
134 	return read_zero(vcpu, p);
135 }
136 
137 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
access_l2ctlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)138 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
139 			  const struct coproc_params *p,
140 			  const struct coproc_reg *r)
141 {
142 	if (p->is_write)
143 		return ignore_write(vcpu, p);
144 
145 	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
146 	return true;
147 }
148 
reset_l2ctlr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)149 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
150 {
151 	u32 l2ctlr, ncores;
152 
153 	asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
154 	l2ctlr &= ~(3 << 24);
155 	ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
156 	/* How many cores in the current cluster and the next ones */
157 	ncores -= (vcpu->vcpu_id & ~3);
158 	/* Cap it to the maximum number of cores in a single cluster */
159 	ncores = min(ncores, 3U);
160 	l2ctlr |= (ncores & 3) << 24;
161 
162 	vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
163 }
164 
reset_actlr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)165 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
166 {
167 	u32 actlr;
168 
169 	/* ACTLR contains SMP bit: make sure you create all cpus first! */
170 	asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
171 	/* Make the SMP bit consistent with the guest configuration */
172 	if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
173 		actlr |= 1U << 6;
174 	else
175 		actlr &= ~(1U << 6);
176 
177 	vcpu_cp15(vcpu, c1_ACTLR) = actlr;
178 }
179 
180 /*
181  * TRM entries: A7:4.3.50, A15:4.3.49
182  * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
183  */
access_l2ectlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)184 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
185 			   const struct coproc_params *p,
186 			   const struct coproc_reg *r)
187 {
188 	if (p->is_write)
189 		return ignore_write(vcpu, p);
190 
191 	*vcpu_reg(vcpu, p->Rt1) = 0;
192 	return true;
193 }
194 
195 /*
196  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
197  */
access_dcsw(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)198 static bool access_dcsw(struct kvm_vcpu *vcpu,
199 			const struct coproc_params *p,
200 			const struct coproc_reg *r)
201 {
202 	if (!p->is_write)
203 		return read_from_write_only(vcpu, p);
204 
205 	kvm_set_way_flush(vcpu);
206 	return true;
207 }
208 
209 /*
210  * Generic accessor for VM registers. Only called as long as HCR_TVM
211  * is set.  If the guest enables the MMU, we stop trapping the VM
212  * sys_regs and leave it in complete control of the caches.
213  *
214  * Used by the cpu-specific code.
215  */
access_vm_reg(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)216 bool access_vm_reg(struct kvm_vcpu *vcpu,
217 		   const struct coproc_params *p,
218 		   const struct coproc_reg *r)
219 {
220 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
221 
222 	BUG_ON(!p->is_write);
223 
224 	vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
225 	if (p->is_64bit)
226 		vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
227 
228 	kvm_toggle_cache(vcpu, was_enabled);
229 	return true;
230 }
231 
access_gic_sgi(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)232 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
233 			   const struct coproc_params *p,
234 			   const struct coproc_reg *r)
235 {
236 	u64 reg;
237 	bool g1;
238 
239 	if (!p->is_write)
240 		return read_from_write_only(vcpu, p);
241 
242 	reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
243 	reg |= *vcpu_reg(vcpu, p->Rt1) ;
244 
245 	/*
246 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
247 	 * Group0 SGIs only, while ICC_SGI1R can generate either group,
248 	 * depending on the SGI configuration. ICC_ASGI1R is effectively
249 	 * equivalent to ICC_SGI0R, as there is no "alternative" secure
250 	 * group.
251 	 */
252 	switch (p->Op1) {
253 	default:		/* Keep GCC quiet */
254 	case 0:			/* ICC_SGI1R */
255 		g1 = true;
256 		break;
257 	case 1:			/* ICC_ASGI1R */
258 	case 2:			/* ICC_SGI0R */
259 		g1 = false;
260 		break;
261 	}
262 
263 	vgic_v3_dispatch_sgi(vcpu, reg, g1);
264 
265 	return true;
266 }
267 
access_gic_sre(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)268 static bool access_gic_sre(struct kvm_vcpu *vcpu,
269 			   const struct coproc_params *p,
270 			   const struct coproc_reg *r)
271 {
272 	if (p->is_write)
273 		return ignore_write(vcpu, p);
274 
275 	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
276 
277 	return true;
278 }
279 
access_cntp_tval(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)280 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
281 			     const struct coproc_params *p,
282 			     const struct coproc_reg *r)
283 {
284 	u32 val;
285 
286 	if (p->is_write) {
287 		val = *vcpu_reg(vcpu, p->Rt1);
288 		kvm_arm_timer_write_sysreg(vcpu,
289 					   TIMER_PTIMER, TIMER_REG_TVAL, val);
290 	} else {
291 		val = kvm_arm_timer_read_sysreg(vcpu,
292 						TIMER_PTIMER, TIMER_REG_TVAL);
293 		*vcpu_reg(vcpu, p->Rt1) = val;
294 	}
295 
296 	return true;
297 }
298 
access_cntp_ctl(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)299 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
300 			    const struct coproc_params *p,
301 			    const struct coproc_reg *r)
302 {
303 	u32 val;
304 
305 	if (p->is_write) {
306 		val = *vcpu_reg(vcpu, p->Rt1);
307 		kvm_arm_timer_write_sysreg(vcpu,
308 					   TIMER_PTIMER, TIMER_REG_CTL, val);
309 	} else {
310 		val = kvm_arm_timer_read_sysreg(vcpu,
311 						TIMER_PTIMER, TIMER_REG_CTL);
312 		*vcpu_reg(vcpu, p->Rt1) = val;
313 	}
314 
315 	return true;
316 }
317 
access_cntp_cval(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)318 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
319 			     const struct coproc_params *p,
320 			     const struct coproc_reg *r)
321 {
322 	u64 val;
323 
324 	if (p->is_write) {
325 		val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
326 		val |= *vcpu_reg(vcpu, p->Rt1);
327 		kvm_arm_timer_write_sysreg(vcpu,
328 					   TIMER_PTIMER, TIMER_REG_CVAL, val);
329 	} else {
330 		val = kvm_arm_timer_read_sysreg(vcpu,
331 						TIMER_PTIMER, TIMER_REG_CVAL);
332 		*vcpu_reg(vcpu, p->Rt1) = val;
333 		*vcpu_reg(vcpu, p->Rt2) = val >> 32;
334 	}
335 
336 	return true;
337 }
338 
339 /*
340  * We could trap ID_DFR0 and tell the guest we don't support performance
341  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
342  * NAKed, so it will read the PMCR anyway.
343  *
344  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
345  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
346  * all PM registers, which doesn't crash the guest kernel at least.
347  */
trap_raz_wi(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)348 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
349 		    const struct coproc_params *p,
350 		    const struct coproc_reg *r)
351 {
352 	if (p->is_write)
353 		return ignore_write(vcpu, p);
354 	else
355 		return read_zero(vcpu, p);
356 }
357 
358 #define access_pmcr trap_raz_wi
359 #define access_pmcntenset trap_raz_wi
360 #define access_pmcntenclr trap_raz_wi
361 #define access_pmovsr trap_raz_wi
362 #define access_pmselr trap_raz_wi
363 #define access_pmceid0 trap_raz_wi
364 #define access_pmceid1 trap_raz_wi
365 #define access_pmccntr trap_raz_wi
366 #define access_pmxevtyper trap_raz_wi
367 #define access_pmxevcntr trap_raz_wi
368 #define access_pmuserenr trap_raz_wi
369 #define access_pmintenset trap_raz_wi
370 #define access_pmintenclr trap_raz_wi
371 
372 /* Architected CP15 registers.
373  * CRn denotes the primary register number, but is copied to the CRm in the
374  * user space API for 64-bit register access in line with the terminology used
375  * in the ARM ARM.
376  * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
377  *            registers preceding 32-bit ones.
378  */
379 static const struct coproc_reg cp15_regs[] = {
380 	/* MPIDR: we use VMPIDR for guest access. */
381 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
382 			NULL, reset_mpidr, c0_MPIDR },
383 
384 	/* CSSELR: swapped by interrupt.S. */
385 	{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
386 			NULL, reset_unknown, c0_CSSELR },
387 
388 	/* ACTLR: trapped by HCR.TAC bit. */
389 	{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
390 			access_actlr, reset_actlr, c1_ACTLR },
391 
392 	/* CPACR: swapped by interrupt.S. */
393 	{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
394 			NULL, reset_val, c1_CPACR, 0x00000000 },
395 
396 	/* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
397 	{ CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
398 	{ CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
399 			access_vm_reg, reset_unknown, c2_TTBR0 },
400 	{ CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
401 			access_vm_reg, reset_unknown, c2_TTBR1 },
402 	{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
403 			access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
404 	{ CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
405 
406 
407 	/* DACR: swapped by interrupt.S. */
408 	{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
409 			access_vm_reg, reset_unknown, c3_DACR },
410 
411 	/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
412 	{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
413 			access_vm_reg, reset_unknown, c5_DFSR },
414 	{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
415 			access_vm_reg, reset_unknown, c5_IFSR },
416 	{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
417 			access_vm_reg, reset_unknown, c5_ADFSR },
418 	{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
419 			access_vm_reg, reset_unknown, c5_AIFSR },
420 
421 	/* DFAR/IFAR: swapped by interrupt.S. */
422 	{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
423 			access_vm_reg, reset_unknown, c6_DFAR },
424 	{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
425 			access_vm_reg, reset_unknown, c6_IFAR },
426 
427 	/* PAR swapped by interrupt.S */
428 	{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
429 
430 	/*
431 	 * DC{C,I,CI}SW operations:
432 	 */
433 	{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
434 	{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
435 	{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
436 	/*
437 	 * L2CTLR access (guest wants to know #CPUs).
438 	 */
439 	{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
440 			access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
441 	{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
442 
443 	/*
444 	 * Dummy performance monitor implementation.
445 	 */
446 	{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
447 	{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
448 	{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
449 	{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
450 	{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
451 	{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
452 	{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
453 	{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
454 	{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
455 	{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
456 	{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
457 	{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
458 	{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
459 
460 	/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
461 	{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
462 			access_vm_reg, reset_unknown, c10_PRRR},
463 	{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
464 			access_vm_reg, reset_unknown, c10_NMRR},
465 
466 	/* AMAIR0/AMAIR1: swapped by interrupt.S. */
467 	{ CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
468 			access_vm_reg, reset_unknown, c10_AMAIR0},
469 	{ CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
470 			access_vm_reg, reset_unknown, c10_AMAIR1},
471 
472 	/* ICC_SGI1R */
473 	{ CRm64(12), Op1( 0), is64, access_gic_sgi},
474 
475 	/* VBAR: swapped by interrupt.S. */
476 	{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
477 			NULL, reset_val, c12_VBAR, 0x00000000 },
478 
479 	/* ICC_ASGI1R */
480 	{ CRm64(12), Op1( 1), is64, access_gic_sgi},
481 	/* ICC_SGI0R */
482 	{ CRm64(12), Op1( 2), is64, access_gic_sgi},
483 	/* ICC_SRE */
484 	{ CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
485 
486 	/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
487 	{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
488 			access_vm_reg, reset_val, c13_CID, 0x00000000 },
489 	{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
490 			NULL, reset_unknown, c13_TID_URW },
491 	{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
492 			NULL, reset_unknown, c13_TID_URO },
493 	{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
494 			NULL, reset_unknown, c13_TID_PRIV },
495 
496 	/* CNTP */
497 	{ CRm64(14), Op1( 2), is64, access_cntp_cval},
498 
499 	/* CNTKCTL: swapped by interrupt.S. */
500 	{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
501 			NULL, reset_val, c14_CNTKCTL, 0x00000000 },
502 
503 	/* CNTP */
504 	{ CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
505 	{ CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
506 
507 	/* The Configuration Base Address Register. */
508 	{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
509 };
510 
check_reg_table(const struct coproc_reg * table,unsigned int n)511 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
512 {
513 	unsigned int i;
514 
515 	for (i = 1; i < n; i++) {
516 		if (cmp_reg(&table[i-1], &table[i]) >= 0) {
517 			kvm_err("reg table %p out of order (%d)\n", table, i - 1);
518 			return 1;
519 		}
520 	}
521 
522 	return 0;
523 }
524 
525 /* Target specific emulation tables */
526 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
527 
kvm_register_target_coproc_table(struct kvm_coproc_target_table * table)528 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
529 {
530 	BUG_ON(check_reg_table(table->table, table->num));
531 	target_tables[table->target] = table;
532 }
533 
534 /* Get specific register table for this target. */
get_target_table(unsigned target,size_t * num)535 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
536 {
537 	struct kvm_coproc_target_table *table;
538 
539 	table = target_tables[target];
540 	*num = table->num;
541 	return table->table;
542 }
543 
544 #define reg_to_match_value(x)						\
545 	({								\
546 		unsigned long val;					\
547 		val  = (x)->CRn << 11;					\
548 		val |= (x)->CRm << 7;					\
549 		val |= (x)->Op1 << 4;					\
550 		val |= (x)->Op2 << 1;					\
551 		val |= !(x)->is_64bit;					\
552 		val;							\
553 	 })
554 
match_reg(const void * key,const void * elt)555 static int match_reg(const void *key, const void *elt)
556 {
557 	const unsigned long pval = (unsigned long)key;
558 	const struct coproc_reg *r = elt;
559 
560 	return pval - reg_to_match_value(r);
561 }
562 
find_reg(const struct coproc_params * params,const struct coproc_reg table[],unsigned int num)563 static const struct coproc_reg *find_reg(const struct coproc_params *params,
564 					 const struct coproc_reg table[],
565 					 unsigned int num)
566 {
567 	unsigned long pval = reg_to_match_value(params);
568 
569 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
570 }
571 
emulate_cp15(struct kvm_vcpu * vcpu,const struct coproc_params * params)572 static int emulate_cp15(struct kvm_vcpu *vcpu,
573 			const struct coproc_params *params)
574 {
575 	size_t num;
576 	const struct coproc_reg *table, *r;
577 
578 	trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
579 				   params->CRm, params->Op2, params->is_write);
580 
581 	table = get_target_table(vcpu->arch.target, &num);
582 
583 	/* Search target-specific then generic table. */
584 	r = find_reg(params, table, num);
585 	if (!r)
586 		r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
587 
588 	if (likely(r)) {
589 		/* If we don't have an accessor, we should never get here! */
590 		BUG_ON(!r->access);
591 
592 		if (likely(r->access(vcpu, params, r))) {
593 			/* Skip instruction, since it was emulated */
594 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
595 		}
596 	} else {
597 		/* If access function fails, it should complain. */
598 		kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n",
599 			*vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
600 		print_cp_instr(params);
601 		kvm_inject_undefined(vcpu);
602 	}
603 
604 	return 1;
605 }
606 
decode_64bit_hsr(struct kvm_vcpu * vcpu)607 static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
608 {
609 	struct coproc_params params;
610 
611 	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
612 	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
613 	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
614 	params.is_64bit = true;
615 
616 	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
617 	params.Op2 = 0;
618 	params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
619 	params.CRm = 0;
620 
621 	return params;
622 }
623 
624 /**
625  * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
626  * @vcpu: The VCPU pointer
627  * @run:  The kvm_run struct
628  */
kvm_handle_cp15_64(struct kvm_vcpu * vcpu,struct kvm_run * run)629 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
630 {
631 	struct coproc_params params = decode_64bit_hsr(vcpu);
632 
633 	return emulate_cp15(vcpu, &params);
634 }
635 
636 /**
637  * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
638  * @vcpu: The VCPU pointer
639  * @run:  The kvm_run struct
640  */
kvm_handle_cp14_64(struct kvm_vcpu * vcpu,struct kvm_run * run)641 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
642 {
643 	struct coproc_params params = decode_64bit_hsr(vcpu);
644 
645 	/* raz_wi cp14 */
646 	trap_raz_wi(vcpu, &params, NULL);
647 
648 	/* handled */
649 	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
650 	return 1;
651 }
652 
reset_coproc_regs(struct kvm_vcpu * vcpu,const struct coproc_reg * table,size_t num,unsigned long * bmap)653 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
654 			      const struct coproc_reg *table, size_t num,
655 			      unsigned long *bmap)
656 {
657 	unsigned long i;
658 
659 	for (i = 0; i < num; i++)
660 		if (table[i].reset) {
661 			int reg = table[i].reg;
662 
663 			table[i].reset(vcpu, &table[i]);
664 			if (reg > 0 && reg < NR_CP15_REGS) {
665 				set_bit(reg, bmap);
666 				if (table[i].is_64bit)
667 					set_bit(reg + 1, bmap);
668 			}
669 		}
670 }
671 
decode_32bit_hsr(struct kvm_vcpu * vcpu)672 static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
673 {
674 	struct coproc_params params;
675 
676 	params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
677 	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
678 	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
679 	params.is_64bit = false;
680 
681 	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
682 	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
683 	params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
684 	params.Rt2 = 0;
685 
686 	return params;
687 }
688 
689 /**
690  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
691  * @vcpu: The VCPU pointer
692  * @run:  The kvm_run struct
693  */
kvm_handle_cp15_32(struct kvm_vcpu * vcpu,struct kvm_run * run)694 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
695 {
696 	struct coproc_params params = decode_32bit_hsr(vcpu);
697 	return emulate_cp15(vcpu, &params);
698 }
699 
700 /**
701  * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
702  * @vcpu: The VCPU pointer
703  * @run:  The kvm_run struct
704  */
kvm_handle_cp14_32(struct kvm_vcpu * vcpu,struct kvm_run * run)705 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
706 {
707 	struct coproc_params params = decode_32bit_hsr(vcpu);
708 
709 	/* raz_wi cp14 */
710 	trap_raz_wi(vcpu, &params, NULL);
711 
712 	/* handled */
713 	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
714 	return 1;
715 }
716 
717 /******************************************************************************
718  * Userspace API
719  *****************************************************************************/
720 
index_to_params(u64 id,struct coproc_params * params)721 static bool index_to_params(u64 id, struct coproc_params *params)
722 {
723 	switch (id & KVM_REG_SIZE_MASK) {
724 	case KVM_REG_SIZE_U32:
725 		/* Any unused index bits means it's not valid. */
726 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
727 			   | KVM_REG_ARM_COPROC_MASK
728 			   | KVM_REG_ARM_32_CRN_MASK
729 			   | KVM_REG_ARM_CRM_MASK
730 			   | KVM_REG_ARM_OPC1_MASK
731 			   | KVM_REG_ARM_32_OPC2_MASK))
732 			return false;
733 
734 		params->is_64bit = false;
735 		params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
736 			       >> KVM_REG_ARM_32_CRN_SHIFT);
737 		params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
738 			       >> KVM_REG_ARM_CRM_SHIFT);
739 		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
740 			       >> KVM_REG_ARM_OPC1_SHIFT);
741 		params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
742 			       >> KVM_REG_ARM_32_OPC2_SHIFT);
743 		return true;
744 	case KVM_REG_SIZE_U64:
745 		/* Any unused index bits means it's not valid. */
746 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
747 			      | KVM_REG_ARM_COPROC_MASK
748 			      | KVM_REG_ARM_CRM_MASK
749 			      | KVM_REG_ARM_OPC1_MASK))
750 			return false;
751 		params->is_64bit = true;
752 		/* CRm to CRn: see cp15_to_index for details */
753 		params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
754 			       >> KVM_REG_ARM_CRM_SHIFT);
755 		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
756 			       >> KVM_REG_ARM_OPC1_SHIFT);
757 		params->Op2 = 0;
758 		params->CRm = 0;
759 		return true;
760 	default:
761 		return false;
762 	}
763 }
764 
765 /* Decode an index value, and find the cp15 coproc_reg entry. */
index_to_coproc_reg(struct kvm_vcpu * vcpu,u64 id)766 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
767 						    u64 id)
768 {
769 	size_t num;
770 	const struct coproc_reg *table, *r;
771 	struct coproc_params params;
772 
773 	/* We only do cp15 for now. */
774 	if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
775 		return NULL;
776 
777 	if (!index_to_params(id, &params))
778 		return NULL;
779 
780 	table = get_target_table(vcpu->arch.target, &num);
781 	r = find_reg(&params, table, num);
782 	if (!r)
783 		r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
784 
785 	/* Not saved in the cp15 array? */
786 	if (r && !r->reg)
787 		r = NULL;
788 
789 	return r;
790 }
791 
792 /*
793  * These are the invariant cp15 registers: we let the guest see the host
794  * versions of these, so they're part of the guest state.
795  *
796  * A future CPU may provide a mechanism to present different values to
797  * the guest, or a future kvm may trap them.
798  */
799 /* Unfortunately, there's no register-argument for mrc, so generate. */
800 #define FUNCTION_FOR32(crn, crm, op1, op2, name)			\
801 	static void get_##name(struct kvm_vcpu *v,			\
802 			       const struct coproc_reg *r)		\
803 	{								\
804 		u32 val;						\
805 									\
806 		asm volatile("mrc p15, " __stringify(op1)		\
807 			     ", %0, c" __stringify(crn)			\
808 			     ", c" __stringify(crm)			\
809 			     ", " __stringify(op2) "\n" : "=r" (val));	\
810 		((struct coproc_reg *)r)->val = val;			\
811 	}
812 
813 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
814 FUNCTION_FOR32(0, 0, 0, 1, CTR)
815 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
816 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
817 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
818 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
819 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
820 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
821 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
822 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
823 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
824 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
825 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
826 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
827 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
828 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
829 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
830 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
831 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
832 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
833 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
834 
835 /* ->val is filled in by kvm_invariant_coproc_table_init() */
836 static struct coproc_reg invariant_cp15[] = {
837 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
838 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
839 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
840 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
841 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
842 
843 	{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
844 	{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
845 
846 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
847 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
848 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
849 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
850 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
851 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
852 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
853 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
854 
855 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
856 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
857 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
858 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
859 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
860 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
861 };
862 
863 /*
864  * Reads a register value from a userspace address to a kernel
865  * variable. Make sure that register size matches sizeof(*__val).
866  */
reg_from_user(void * val,const void __user * uaddr,u64 id)867 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
868 {
869 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
870 		return -EFAULT;
871 	return 0;
872 }
873 
874 /*
875  * Writes a register value to a userspace address from a kernel variable.
876  * Make sure that register size matches sizeof(*__val).
877  */
reg_to_user(void __user * uaddr,const void * val,u64 id)878 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
879 {
880 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
881 		return -EFAULT;
882 	return 0;
883 }
884 
get_invariant_cp15(u64 id,void __user * uaddr)885 static int get_invariant_cp15(u64 id, void __user *uaddr)
886 {
887 	struct coproc_params params;
888 	const struct coproc_reg *r;
889 	int ret;
890 
891 	if (!index_to_params(id, &params))
892 		return -ENOENT;
893 
894 	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
895 	if (!r)
896 		return -ENOENT;
897 
898 	ret = -ENOENT;
899 	if (KVM_REG_SIZE(id) == 4) {
900 		u32 val = r->val;
901 
902 		ret = reg_to_user(uaddr, &val, id);
903 	} else if (KVM_REG_SIZE(id) == 8) {
904 		ret = reg_to_user(uaddr, &r->val, id);
905 	}
906 	return ret;
907 }
908 
set_invariant_cp15(u64 id,void __user * uaddr)909 static int set_invariant_cp15(u64 id, void __user *uaddr)
910 {
911 	struct coproc_params params;
912 	const struct coproc_reg *r;
913 	int err;
914 	u64 val;
915 
916 	if (!index_to_params(id, &params))
917 		return -ENOENT;
918 	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
919 	if (!r)
920 		return -ENOENT;
921 
922 	err = -ENOENT;
923 	if (KVM_REG_SIZE(id) == 4) {
924 		u32 val32;
925 
926 		err = reg_from_user(&val32, uaddr, id);
927 		if (!err)
928 			val = val32;
929 	} else if (KVM_REG_SIZE(id) == 8) {
930 		err = reg_from_user(&val, uaddr, id);
931 	}
932 	if (err)
933 		return err;
934 
935 	/* This is what we mean by invariant: you can't change it. */
936 	if (r->val != val)
937 		return -EINVAL;
938 
939 	return 0;
940 }
941 
is_valid_cache(u32 val)942 static bool is_valid_cache(u32 val)
943 {
944 	u32 level, ctype;
945 
946 	if (val >= CSSELR_MAX)
947 		return false;
948 
949 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
950         level = (val >> 1);
951         ctype = (cache_levels >> (level * 3)) & 7;
952 
953 	switch (ctype) {
954 	case 0: /* No cache */
955 		return false;
956 	case 1: /* Instruction cache only */
957 		return (val & 1);
958 	case 2: /* Data cache only */
959 	case 4: /* Unified cache */
960 		return !(val & 1);
961 	case 3: /* Separate instruction and data caches */
962 		return true;
963 	default: /* Reserved: we can't know instruction or data. */
964 		return false;
965 	}
966 }
967 
968 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(u32 csselr)969 static u32 get_ccsidr(u32 csselr)
970 {
971 	u32 ccsidr;
972 
973 	/* Make sure noone else changes CSSELR during this! */
974 	local_irq_disable();
975 	/* Put value into CSSELR */
976 	asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
977 	isb();
978 	/* Read result out of CCSIDR */
979 	asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
980 	local_irq_enable();
981 
982 	return ccsidr;
983 }
984 
demux_c15_get(u64 id,void __user * uaddr)985 static int demux_c15_get(u64 id, void __user *uaddr)
986 {
987 	u32 val;
988 	u32 __user *uval = uaddr;
989 
990 	/* Fail if we have unknown bits set. */
991 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
992 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
993 		return -ENOENT;
994 
995 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
996 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
997 		if (KVM_REG_SIZE(id) != 4)
998 			return -ENOENT;
999 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1000 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1001 		if (!is_valid_cache(val))
1002 			return -ENOENT;
1003 
1004 		return put_user(get_ccsidr(val), uval);
1005 	default:
1006 		return -ENOENT;
1007 	}
1008 }
1009 
demux_c15_set(u64 id,void __user * uaddr)1010 static int demux_c15_set(u64 id, void __user *uaddr)
1011 {
1012 	u32 val, newval;
1013 	u32 __user *uval = uaddr;
1014 
1015 	/* Fail if we have unknown bits set. */
1016 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1017 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1018 		return -ENOENT;
1019 
1020 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1021 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1022 		if (KVM_REG_SIZE(id) != 4)
1023 			return -ENOENT;
1024 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1025 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1026 		if (!is_valid_cache(val))
1027 			return -ENOENT;
1028 
1029 		if (get_user(newval, uval))
1030 			return -EFAULT;
1031 
1032 		/* This is also invariant: you can't change it. */
1033 		if (newval != get_ccsidr(val))
1034 			return -EINVAL;
1035 		return 0;
1036 	default:
1037 		return -ENOENT;
1038 	}
1039 }
1040 
1041 #ifdef CONFIG_VFPv3
1042 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
1043 				   KVM_REG_ARM_VFP_FPSCR,
1044 				   KVM_REG_ARM_VFP_FPINST,
1045 				   KVM_REG_ARM_VFP_FPINST2,
1046 				   KVM_REG_ARM_VFP_MVFR0,
1047 				   KVM_REG_ARM_VFP_MVFR1,
1048 				   KVM_REG_ARM_VFP_FPSID };
1049 
num_fp_regs(void)1050 static unsigned int num_fp_regs(void)
1051 {
1052 	if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
1053 		return 32;
1054 	else
1055 		return 16;
1056 }
1057 
num_vfp_regs(void)1058 static unsigned int num_vfp_regs(void)
1059 {
1060 	/* Normal FP regs + control regs. */
1061 	return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
1062 }
1063 
copy_vfp_regids(u64 __user * uindices)1064 static int copy_vfp_regids(u64 __user *uindices)
1065 {
1066 	unsigned int i;
1067 	const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
1068 	const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
1069 
1070 	for (i = 0; i < num_fp_regs(); i++) {
1071 		if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
1072 			     uindices))
1073 			return -EFAULT;
1074 		uindices++;
1075 	}
1076 
1077 	for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
1078 		if (put_user(u32reg | vfp_sysregs[i], uindices))
1079 			return -EFAULT;
1080 		uindices++;
1081 	}
1082 
1083 	return num_vfp_regs();
1084 }
1085 
vfp_get_reg(const struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)1086 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1087 {
1088 	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1089 	u32 val;
1090 
1091 	/* Fail if we have unknown bits set. */
1092 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1093 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1094 		return -ENOENT;
1095 
1096 	if (vfpid < num_fp_regs()) {
1097 		if (KVM_REG_SIZE(id) != 8)
1098 			return -ENOENT;
1099 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1100 				   id);
1101 	}
1102 
1103 	/* FP control registers are all 32 bit. */
1104 	if (KVM_REG_SIZE(id) != 4)
1105 		return -ENOENT;
1106 
1107 	switch (vfpid) {
1108 	case KVM_REG_ARM_VFP_FPEXC:
1109 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1110 	case KVM_REG_ARM_VFP_FPSCR:
1111 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1112 	case KVM_REG_ARM_VFP_FPINST:
1113 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1114 	case KVM_REG_ARM_VFP_FPINST2:
1115 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1116 	case KVM_REG_ARM_VFP_MVFR0:
1117 		val = fmrx(MVFR0);
1118 		return reg_to_user(uaddr, &val, id);
1119 	case KVM_REG_ARM_VFP_MVFR1:
1120 		val = fmrx(MVFR1);
1121 		return reg_to_user(uaddr, &val, id);
1122 	case KVM_REG_ARM_VFP_FPSID:
1123 		val = fmrx(FPSID);
1124 		return reg_to_user(uaddr, &val, id);
1125 	default:
1126 		return -ENOENT;
1127 	}
1128 }
1129 
vfp_set_reg(struct kvm_vcpu * vcpu,u64 id,const void __user * uaddr)1130 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1131 {
1132 	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1133 	u32 val;
1134 
1135 	/* Fail if we have unknown bits set. */
1136 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1137 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1138 		return -ENOENT;
1139 
1140 	if (vfpid < num_fp_regs()) {
1141 		if (KVM_REG_SIZE(id) != 8)
1142 			return -ENOENT;
1143 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1144 				     uaddr, id);
1145 	}
1146 
1147 	/* FP control registers are all 32 bit. */
1148 	if (KVM_REG_SIZE(id) != 4)
1149 		return -ENOENT;
1150 
1151 	switch (vfpid) {
1152 	case KVM_REG_ARM_VFP_FPEXC:
1153 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1154 	case KVM_REG_ARM_VFP_FPSCR:
1155 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1156 	case KVM_REG_ARM_VFP_FPINST:
1157 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1158 	case KVM_REG_ARM_VFP_FPINST2:
1159 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1160 	/* These are invariant. */
1161 	case KVM_REG_ARM_VFP_MVFR0:
1162 		if (reg_from_user(&val, uaddr, id))
1163 			return -EFAULT;
1164 		if (val != fmrx(MVFR0))
1165 			return -EINVAL;
1166 		return 0;
1167 	case KVM_REG_ARM_VFP_MVFR1:
1168 		if (reg_from_user(&val, uaddr, id))
1169 			return -EFAULT;
1170 		if (val != fmrx(MVFR1))
1171 			return -EINVAL;
1172 		return 0;
1173 	case KVM_REG_ARM_VFP_FPSID:
1174 		if (reg_from_user(&val, uaddr, id))
1175 			return -EFAULT;
1176 		if (val != fmrx(FPSID))
1177 			return -EINVAL;
1178 		return 0;
1179 	default:
1180 		return -ENOENT;
1181 	}
1182 }
1183 #else /* !CONFIG_VFPv3 */
num_vfp_regs(void)1184 static unsigned int num_vfp_regs(void)
1185 {
1186 	return 0;
1187 }
1188 
copy_vfp_regids(u64 __user * uindices)1189 static int copy_vfp_regids(u64 __user *uindices)
1190 {
1191 	return 0;
1192 }
1193 
vfp_get_reg(const struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)1194 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1195 {
1196 	return -ENOENT;
1197 }
1198 
vfp_set_reg(struct kvm_vcpu * vcpu,u64 id,const void __user * uaddr)1199 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1200 {
1201 	return -ENOENT;
1202 }
1203 #endif /* !CONFIG_VFPv3 */
1204 
kvm_arm_coproc_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)1205 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1206 {
1207 	const struct coproc_reg *r;
1208 	void __user *uaddr = (void __user *)(long)reg->addr;
1209 	int ret;
1210 
1211 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1212 		return demux_c15_get(reg->id, uaddr);
1213 
1214 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1215 		return vfp_get_reg(vcpu, reg->id, uaddr);
1216 
1217 	r = index_to_coproc_reg(vcpu, reg->id);
1218 	if (!r)
1219 		return get_invariant_cp15(reg->id, uaddr);
1220 
1221 	ret = -ENOENT;
1222 	if (KVM_REG_SIZE(reg->id) == 8) {
1223 		u64 val;
1224 
1225 		val = vcpu_cp15_reg64_get(vcpu, r);
1226 		ret = reg_to_user(uaddr, &val, reg->id);
1227 	} else if (KVM_REG_SIZE(reg->id) == 4) {
1228 		ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1229 	}
1230 
1231 	return ret;
1232 }
1233 
kvm_arm_coproc_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)1234 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1235 {
1236 	const struct coproc_reg *r;
1237 	void __user *uaddr = (void __user *)(long)reg->addr;
1238 	int ret;
1239 
1240 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1241 		return demux_c15_set(reg->id, uaddr);
1242 
1243 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1244 		return vfp_set_reg(vcpu, reg->id, uaddr);
1245 
1246 	r = index_to_coproc_reg(vcpu, reg->id);
1247 	if (!r)
1248 		return set_invariant_cp15(reg->id, uaddr);
1249 
1250 	ret = -ENOENT;
1251 	if (KVM_REG_SIZE(reg->id) == 8) {
1252 		u64 val;
1253 
1254 		ret = reg_from_user(&val, uaddr, reg->id);
1255 		if (!ret)
1256 			vcpu_cp15_reg64_set(vcpu, r, val);
1257 	} else if (KVM_REG_SIZE(reg->id) == 4) {
1258 		ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1259 	}
1260 
1261 	return ret;
1262 }
1263 
num_demux_regs(void)1264 static unsigned int num_demux_regs(void)
1265 {
1266 	unsigned int i, count = 0;
1267 
1268 	for (i = 0; i < CSSELR_MAX; i++)
1269 		if (is_valid_cache(i))
1270 			count++;
1271 
1272 	return count;
1273 }
1274 
write_demux_regids(u64 __user * uindices)1275 static int write_demux_regids(u64 __user *uindices)
1276 {
1277 	u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1278 	unsigned int i;
1279 
1280 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1281 	for (i = 0; i < CSSELR_MAX; i++) {
1282 		if (!is_valid_cache(i))
1283 			continue;
1284 		if (put_user(val | i, uindices))
1285 			return -EFAULT;
1286 		uindices++;
1287 	}
1288 	return 0;
1289 }
1290 
cp15_to_index(const struct coproc_reg * reg)1291 static u64 cp15_to_index(const struct coproc_reg *reg)
1292 {
1293 	u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1294 	if (reg->is_64bit) {
1295 		val |= KVM_REG_SIZE_U64;
1296 		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1297 		/*
1298 		 * CRn always denotes the primary coproc. reg. nr. for the
1299 		 * in-kernel representation, but the user space API uses the
1300 		 * CRm for the encoding, because it is modelled after the
1301 		 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1302 		 * B3-1445
1303 		 */
1304 		val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1305 	} else {
1306 		val |= KVM_REG_SIZE_U32;
1307 		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1308 		val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1309 		val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1310 		val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1311 	}
1312 	return val;
1313 }
1314 
copy_reg_to_user(const struct coproc_reg * reg,u64 __user ** uind)1315 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1316 {
1317 	if (!*uind)
1318 		return true;
1319 
1320 	if (put_user(cp15_to_index(reg), *uind))
1321 		return false;
1322 
1323 	(*uind)++;
1324 	return true;
1325 }
1326 
1327 /* Assumed ordered tables, see kvm_coproc_table_init. */
walk_cp15(struct kvm_vcpu * vcpu,u64 __user * uind)1328 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1329 {
1330 	const struct coproc_reg *i1, *i2, *end1, *end2;
1331 	unsigned int total = 0;
1332 	size_t num;
1333 
1334 	/* We check for duplicates here, to allow arch-specific overrides. */
1335 	i1 = get_target_table(vcpu->arch.target, &num);
1336 	end1 = i1 + num;
1337 	i2 = cp15_regs;
1338 	end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1339 
1340 	BUG_ON(i1 == end1 || i2 == end2);
1341 
1342 	/* Walk carefully, as both tables may refer to the same register. */
1343 	while (i1 || i2) {
1344 		int cmp = cmp_reg(i1, i2);
1345 		/* target-specific overrides generic entry. */
1346 		if (cmp <= 0) {
1347 			/* Ignore registers we trap but don't save. */
1348 			if (i1->reg) {
1349 				if (!copy_reg_to_user(i1, &uind))
1350 					return -EFAULT;
1351 				total++;
1352 			}
1353 		} else {
1354 			/* Ignore registers we trap but don't save. */
1355 			if (i2->reg) {
1356 				if (!copy_reg_to_user(i2, &uind))
1357 					return -EFAULT;
1358 				total++;
1359 			}
1360 		}
1361 
1362 		if (cmp <= 0 && ++i1 == end1)
1363 			i1 = NULL;
1364 		if (cmp >= 0 && ++i2 == end2)
1365 			i2 = NULL;
1366 	}
1367 	return total;
1368 }
1369 
kvm_arm_num_coproc_regs(struct kvm_vcpu * vcpu)1370 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1371 {
1372 	return ARRAY_SIZE(invariant_cp15)
1373 		+ num_demux_regs()
1374 		+ num_vfp_regs()
1375 		+ walk_cp15(vcpu, (u64 __user *)NULL);
1376 }
1377 
kvm_arm_copy_coproc_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)1378 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1379 {
1380 	unsigned int i;
1381 	int err;
1382 
1383 	/* Then give them all the invariant registers' indices. */
1384 	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1385 		if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1386 			return -EFAULT;
1387 		uindices++;
1388 	}
1389 
1390 	err = walk_cp15(vcpu, uindices);
1391 	if (err < 0)
1392 		return err;
1393 	uindices += err;
1394 
1395 	err = copy_vfp_regids(uindices);
1396 	if (err < 0)
1397 		return err;
1398 	uindices += err;
1399 
1400 	return write_demux_regids(uindices);
1401 }
1402 
kvm_coproc_table_init(void)1403 void kvm_coproc_table_init(void)
1404 {
1405 	unsigned int i;
1406 
1407 	/* Make sure tables are unique and in order. */
1408 	BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1409 	BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1410 
1411 	/* We abuse the reset function to overwrite the table itself. */
1412 	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1413 		invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1414 
1415 	/*
1416 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1417 	 *
1418 	 *   If software reads the Cache Type fields from Ctype1
1419 	 *   upwards, once it has seen a value of 0b000, no caches
1420 	 *   exist at further-out levels of the hierarchy. So, for
1421 	 *   example, if Ctype3 is the first Cache Type field with a
1422 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
1423 	 *   ignored.
1424 	 */
1425 	asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1426 	for (i = 0; i < 7; i++)
1427 		if (((cache_levels >> (i*3)) & 7) == 0)
1428 			break;
1429 	/* Clear all higher bits. */
1430 	cache_levels &= (1 << (i*3))-1;
1431 }
1432 
1433 /**
1434  * kvm_reset_coprocs - sets cp15 registers to reset value
1435  * @vcpu: The VCPU pointer
1436  *
1437  * This function finds the right table above and sets the registers on the
1438  * virtual CPU struct to their architecturally defined reset values.
1439  */
kvm_reset_coprocs(struct kvm_vcpu * vcpu)1440 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1441 {
1442 	size_t num;
1443 	const struct coproc_reg *table;
1444 	DECLARE_BITMAP(bmap, NR_CP15_REGS) = { 0, };
1445 
1446 	/* Generic chip reset first (so target could override). */
1447 	reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), bmap);
1448 
1449 	table = get_target_table(vcpu->arch.target, &num);
1450 	reset_coproc_regs(vcpu, table, num, bmap);
1451 
1452 	for (num = 1; num < NR_CP15_REGS; num++)
1453 		WARN(!test_bit(num, bmap),
1454 		     "Didn't reset vcpu_cp15(vcpu, %zi)", num);
1455 }
1456