• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 
12 #include <linux/kvm_host.h>
13 #include <linux/export.h>
14 #include <linux/vmalloc.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched/stat.h>
17 
18 #include <asm/processor.h>
19 #include <asm/user.h>
20 #include <asm/fpu/xstate.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25 #include "pmu.h"
26 
xstate_required_size(u64 xstate_bv,bool compacted)27 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28 {
29 	int feature_bit = 0;
30 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31 
32 	xstate_bv &= XFEATURE_MASK_EXTEND;
33 	while (xstate_bv) {
34 		if (xstate_bv & 0x1) {
35 		        u32 eax, ebx, ecx, edx, offset;
36 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37 			offset = compacted ? ret : ebx;
38 			ret = max(ret, offset + eax);
39 		}
40 
41 		xstate_bv >>= 1;
42 		feature_bit++;
43 	}
44 
45 	return ret;
46 }
47 
kvm_mpx_supported(void)48 bool kvm_mpx_supported(void)
49 {
50 	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51 		 && kvm_x86_ops->mpx_supported());
52 }
53 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54 
kvm_supported_xcr0(void)55 u64 kvm_supported_xcr0(void)
56 {
57 	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58 
59 	if (!kvm_mpx_supported())
60 		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61 
62 	return xcr0;
63 }
64 
65 #define F(x) bit(X86_FEATURE_##x)
66 
kvm_update_cpuid(struct kvm_vcpu * vcpu)67 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68 {
69 	struct kvm_cpuid_entry2 *best;
70 	struct kvm_lapic *apic = vcpu->arch.apic;
71 
72 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
73 	if (!best)
74 		return 0;
75 
76 	/* Update OSXSAVE bit */
77 	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
78 		best->ecx &= ~F(OSXSAVE);
79 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80 			best->ecx |= F(OSXSAVE);
81 	}
82 
83 	best->edx &= ~F(APIC);
84 	if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
85 		best->edx |= F(APIC);
86 
87 	if (apic) {
88 		if (best->ecx & F(TSC_DEADLINE_TIMER))
89 			apic->lapic_timer.timer_mode_mask = 3 << 17;
90 		else
91 			apic->lapic_timer.timer_mode_mask = 1 << 17;
92 	}
93 
94 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
95 	if (best) {
96 		/* Update OSPKE bit */
97 		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
98 			best->ecx &= ~F(OSPKE);
99 			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
100 				best->ecx |= F(OSPKE);
101 		}
102 	}
103 
104 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
105 	if (!best) {
106 		vcpu->arch.guest_supported_xcr0 = 0;
107 		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
108 	} else {
109 		vcpu->arch.guest_supported_xcr0 =
110 			(best->eax | ((u64)best->edx << 32)) &
111 			kvm_supported_xcr0();
112 		vcpu->arch.guest_xstate_size = best->ebx =
113 			xstate_required_size(vcpu->arch.xcr0, false);
114 	}
115 
116 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
117 	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
118 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
119 
120 	/*
121 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
122 	 * canonical address checks; exit if it is ever changed.
123 	 */
124 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125 	if (best) {
126 		int vaddr_bits = (best->eax & 0xff00) >> 8;
127 
128 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
129 			return -EINVAL;
130 	}
131 
132 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
133 	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
134 		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
135 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
136 
137 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
138 		best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
139 		if (best) {
140 			if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
141 				best->ecx |= F(MWAIT);
142 			else
143 				best->ecx &= ~F(MWAIT);
144 		}
145 	}
146 
147 	/* Update physical-address width */
148 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
149 	kvm_mmu_reset_context(vcpu);
150 
151 	kvm_pmu_refresh(vcpu);
152 	return 0;
153 }
154 
is_efer_nx(void)155 static int is_efer_nx(void)
156 {
157 	unsigned long long efer = 0;
158 
159 	rdmsrl_safe(MSR_EFER, &efer);
160 	return efer & EFER_NX;
161 }
162 
cpuid_fix_nx_cap(struct kvm_vcpu * vcpu)163 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
164 {
165 	int i;
166 	struct kvm_cpuid_entry2 *e, *entry;
167 
168 	entry = NULL;
169 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
170 		e = &vcpu->arch.cpuid_entries[i];
171 		if (e->function == 0x80000001) {
172 			entry = e;
173 			break;
174 		}
175 	}
176 	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
177 		entry->edx &= ~F(NX);
178 		printk(KERN_INFO "kvm: guest NX capability removed\n");
179 	}
180 }
181 
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)182 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
183 {
184 	struct kvm_cpuid_entry2 *best;
185 
186 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
187 	if (!best || best->eax < 0x80000008)
188 		goto not_found;
189 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
190 	if (best)
191 		return best->eax & 0xff;
192 not_found:
193 	return 36;
194 }
195 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
196 
197 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)198 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
199 			     struct kvm_cpuid *cpuid,
200 			     struct kvm_cpuid_entry __user *entries)
201 {
202 	int r, i;
203 	struct kvm_cpuid_entry *cpuid_entries = NULL;
204 
205 	r = -E2BIG;
206 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
207 		goto out;
208 	r = -ENOMEM;
209 	if (cpuid->nent) {
210 		cpuid_entries =
211 			vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
212 					   cpuid->nent));
213 		if (!cpuid_entries)
214 			goto out;
215 		r = -EFAULT;
216 		if (copy_from_user(cpuid_entries, entries,
217 				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
218 			goto out;
219 	}
220 	for (i = 0; i < cpuid->nent; i++) {
221 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
222 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
223 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
224 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
225 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
226 		vcpu->arch.cpuid_entries[i].index = 0;
227 		vcpu->arch.cpuid_entries[i].flags = 0;
228 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
229 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
230 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
231 	}
232 	vcpu->arch.cpuid_nent = cpuid->nent;
233 	cpuid_fix_nx_cap(vcpu);
234 	kvm_apic_set_version(vcpu);
235 	kvm_x86_ops->cpuid_update(vcpu);
236 	r = kvm_update_cpuid(vcpu);
237 
238 out:
239 	vfree(cpuid_entries);
240 	return r;
241 }
242 
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)243 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
244 			      struct kvm_cpuid2 *cpuid,
245 			      struct kvm_cpuid_entry2 __user *entries)
246 {
247 	int r;
248 
249 	r = -E2BIG;
250 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
251 		goto out;
252 	r = -EFAULT;
253 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
254 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
255 		goto out;
256 	vcpu->arch.cpuid_nent = cpuid->nent;
257 	kvm_apic_set_version(vcpu);
258 	kvm_x86_ops->cpuid_update(vcpu);
259 	r = kvm_update_cpuid(vcpu);
260 out:
261 	return r;
262 }
263 
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)264 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
265 			      struct kvm_cpuid2 *cpuid,
266 			      struct kvm_cpuid_entry2 __user *entries)
267 {
268 	int r;
269 
270 	r = -E2BIG;
271 	if (cpuid->nent < vcpu->arch.cpuid_nent)
272 		goto out;
273 	r = -EFAULT;
274 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
275 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
276 		goto out;
277 	return 0;
278 
279 out:
280 	cpuid->nent = vcpu->arch.cpuid_nent;
281 	return r;
282 }
283 
cpuid_mask(u32 * word,int wordnum)284 static void cpuid_mask(u32 *word, int wordnum)
285 {
286 	*word &= boot_cpu_data.x86_capability[wordnum];
287 }
288 
do_host_cpuid(struct kvm_cpuid_entry2 * entry,u32 function,u32 index)289 static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
290 			   u32 index)
291 {
292 	entry->function = function;
293 	entry->index = index;
294 	entry->flags = 0;
295 
296 	cpuid_count(entry->function, entry->index,
297 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
298 
299 	switch (function) {
300 	case 2:
301 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
302 		break;
303 	case 4:
304 	case 7:
305 	case 0xb:
306 	case 0xd:
307 	case 0xf:
308 	case 0x10:
309 	case 0x12:
310 	case 0x14:
311 	case 0x17:
312 	case 0x18:
313 	case 0x1f:
314 	case 0x8000001d:
315 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
316 		break;
317 	}
318 }
319 
__do_cpuid_func_emulated(struct kvm_cpuid_entry2 * entry,u32 func,int * nent,int maxnent)320 static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
321 				    u32 func, int *nent, int maxnent)
322 {
323 	entry->function = func;
324 	entry->index = 0;
325 	entry->flags = 0;
326 
327 	switch (func) {
328 	case 0:
329 		entry->eax = 7;
330 		++*nent;
331 		break;
332 	case 1:
333 		entry->ecx = F(MOVBE);
334 		++*nent;
335 		break;
336 	case 7:
337 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
338 		entry->eax = 0;
339 		entry->ecx = F(RDPID);
340 		++*nent;
341 	default:
342 		break;
343 	}
344 
345 	return 0;
346 }
347 
do_cpuid_7_mask(struct kvm_cpuid_entry2 * entry,int index)348 static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
349 {
350 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
351 	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
352 	unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
353 	unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
354 	unsigned f_la57;
355 	unsigned f_pku = kvm_x86_ops->pku_supported() ? F(PKU) : 0;
356 
357 	/* cpuid 7.0.ebx */
358 	const u32 kvm_cpuid_7_0_ebx_x86_features =
359 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
360 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
361 		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
362 		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
363 		F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
364 
365 	/* cpuid 7.0.ecx*/
366 	const u32 kvm_cpuid_7_0_ecx_x86_features =
367 		F(AVX512VBMI) | F(LA57) | 0 /*PKU*/ | 0 /*OSPKE*/ | F(RDPID) |
368 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
369 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
370 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/;
371 
372 	/* cpuid 7.0.edx*/
373 	const u32 kvm_cpuid_7_0_edx_x86_features =
374 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
375 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
376 		F(MD_CLEAR);
377 
378 	/* cpuid 7.1.eax */
379 	const u32 kvm_cpuid_7_1_eax_x86_features =
380 		F(AVX512_BF16);
381 
382 	switch (index) {
383 	case 0:
384 		entry->eax = min(entry->eax, 1u);
385 		entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
386 		cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
387 		/* TSC_ADJUST is emulated */
388 		entry->ebx |= F(TSC_ADJUST);
389 
390 		entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
391 		f_la57 = entry->ecx & F(LA57);
392 		cpuid_mask(&entry->ecx, CPUID_7_ECX);
393 		/* Set LA57 based on hardware capability. */
394 		entry->ecx |= f_la57;
395 		entry->ecx |= f_umip;
396 		entry->ecx |= f_pku;
397 		/* PKU is not yet implemented for shadow paging. */
398 		if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
399 			entry->ecx &= ~F(PKU);
400 
401 		entry->edx &= kvm_cpuid_7_0_edx_x86_features;
402 		cpuid_mask(&entry->edx, CPUID_7_EDX);
403 		if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
404 			entry->edx |= F(SPEC_CTRL);
405 		if (boot_cpu_has(X86_FEATURE_STIBP))
406 			entry->edx |= F(INTEL_STIBP);
407 		if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
408 		    boot_cpu_has(X86_FEATURE_AMD_SSBD))
409 			entry->edx |= F(SPEC_CTRL_SSBD);
410 		/*
411 		 * We emulate ARCH_CAPABILITIES in software even
412 		 * if the host doesn't support it.
413 		 */
414 		entry->edx |= F(ARCH_CAPABILITIES);
415 		break;
416 	case 1:
417 		entry->eax &= kvm_cpuid_7_1_eax_x86_features;
418 		entry->ebx = 0;
419 		entry->ecx = 0;
420 		entry->edx = 0;
421 		break;
422 	default:
423 		WARN_ON_ONCE(1);
424 		entry->eax = 0;
425 		entry->ebx = 0;
426 		entry->ecx = 0;
427 		entry->edx = 0;
428 		break;
429 	}
430 }
431 
__do_cpuid_func(struct kvm_cpuid_entry2 * entry,u32 function,int * nent,int maxnent)432 static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
433 				  int *nent, int maxnent)
434 {
435 	int r;
436 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
437 #ifdef CONFIG_X86_64
438 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
439 				? F(GBPAGES) : 0;
440 	unsigned f_lm = F(LM);
441 #else
442 	unsigned f_gbpages = 0;
443 	unsigned f_lm = 0;
444 #endif
445 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
446 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
447 	unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
448 
449 	/* cpuid 1.edx */
450 	const u32 kvm_cpuid_1_edx_x86_features =
451 		F(FPU) | F(VME) | F(DE) | F(PSE) |
452 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
453 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
454 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
455 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
456 		0 /* Reserved, DS, ACPI */ | F(MMX) |
457 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
458 		0 /* HTT, TM, Reserved, PBE */;
459 	/* cpuid 0x80000001.edx */
460 	const u32 kvm_cpuid_8000_0001_edx_x86_features =
461 		F(FPU) | F(VME) | F(DE) | F(PSE) |
462 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
463 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
464 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
465 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
466 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
467 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
468 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
469 	/* cpuid 1.ecx */
470 	const u32 kvm_cpuid_1_ecx_x86_features =
471 		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
472 		 * but *not* advertised to guests via CPUID ! */
473 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
474 		0 /* DS-CPL, VMX, SMX, EST */ |
475 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
476 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
477 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
478 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
479 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
480 		F(F16C) | F(RDRAND);
481 	/* cpuid 0x80000001.ecx */
482 	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
483 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
484 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
485 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
486 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
487 		F(TOPOEXT) | F(PERFCTR_CORE);
488 
489 	/* cpuid 0x80000008.ebx */
490 	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
491 		F(CLZERO) | F(XSAVEERPTR) |
492 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
493 		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON);
494 
495 	/* cpuid 0xC0000001.edx */
496 	const u32 kvm_cpuid_C000_0001_edx_x86_features =
497 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
498 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
499 		F(PMM) | F(PMM_EN);
500 
501 	/* cpuid 0xD.1.eax */
502 	const u32 kvm_cpuid_D_1_eax_x86_features =
503 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
504 
505 	/* all calls to cpuid_count() should be made on the same cpu */
506 	get_cpu();
507 
508 	r = -E2BIG;
509 
510 	if (WARN_ON(*nent >= maxnent))
511 		goto out;
512 
513 	do_host_cpuid(entry, function, 0);
514 	++*nent;
515 
516 	switch (function) {
517 	case 0:
518 		/* Limited to the highest leaf implemented in KVM. */
519 		entry->eax = min(entry->eax, 0x1fU);
520 		break;
521 	case 1:
522 		entry->edx &= kvm_cpuid_1_edx_x86_features;
523 		cpuid_mask(&entry->edx, CPUID_1_EDX);
524 		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
525 		cpuid_mask(&entry->ecx, CPUID_1_ECX);
526 		/* we support x2apic emulation even if host does not support
527 		 * it since we emulate x2apic in software */
528 		entry->ecx |= F(X2APIC);
529 		break;
530 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
531 	 * may return different values. This forces us to get_cpu() before
532 	 * issuing the first command, and also to emulate this annoying behavior
533 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
534 	case 2: {
535 		int t, times = entry->eax & 0xff;
536 
537 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
538 		for (t = 1; t < times; ++t) {
539 			if (*nent >= maxnent)
540 				goto out;
541 
542 			do_host_cpuid(&entry[t], function, 0);
543 			++*nent;
544 		}
545 		break;
546 	}
547 	/* functions 4 and 0x8000001d have additional index. */
548 	case 4:
549 	case 0x8000001d: {
550 		int i, cache_type;
551 
552 		/* read more entries until cache_type is zero */
553 		for (i = 1; ; ++i) {
554 			if (*nent >= maxnent)
555 				goto out;
556 
557 			cache_type = entry[i - 1].eax & 0x1f;
558 			if (!cache_type)
559 				break;
560 			do_host_cpuid(&entry[i], function, i);
561 			++*nent;
562 		}
563 		break;
564 	}
565 	case 6: /* Thermal management */
566 		entry->eax = 0x4; /* allow ARAT */
567 		entry->ebx = 0;
568 		entry->ecx = 0;
569 		entry->edx = 0;
570 		break;
571 	/* function 7 has additional index. */
572 	case 7: {
573 		int i;
574 
575 		for (i = 0; ; ) {
576 			do_cpuid_7_mask(&entry[i], i);
577 			if (i == entry->eax)
578 				break;
579 			if (*nent >= maxnent)
580 				goto out;
581 
582 			++i;
583 			do_host_cpuid(&entry[i], function, i);
584 			++*nent;
585 		}
586 		break;
587 	}
588 	case 9:
589 		break;
590 	case 0xa: { /* Architectural Performance Monitoring */
591 		struct x86_pmu_capability cap;
592 		union cpuid10_eax eax;
593 		union cpuid10_edx edx;
594 
595 		if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
596 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
597 			break;
598 		}
599 
600 		perf_get_x86_pmu_capability(&cap);
601 
602 		/*
603 		 * Only support guest architectural pmu on a host
604 		 * with architectural pmu.
605 		 */
606 		if (!cap.version)
607 			memset(&cap, 0, sizeof(cap));
608 
609 		eax.split.version_id = min(cap.version, 2);
610 		eax.split.num_counters = cap.num_counters_gp;
611 		eax.split.bit_width = cap.bit_width_gp;
612 		eax.split.mask_length = cap.events_mask_len;
613 
614 		edx.split.num_counters_fixed = cap.num_counters_fixed;
615 		edx.split.bit_width_fixed = cap.bit_width_fixed;
616 		edx.split.reserved = 0;
617 
618 		entry->eax = eax.full;
619 		entry->ebx = cap.events_mask;
620 		entry->ecx = 0;
621 		entry->edx = edx.full;
622 		break;
623 	}
624 	/*
625 	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
626 	 * thus they can be handled by common code.
627 	 */
628 	case 0x1f:
629 	case 0xb: {
630 		int i;
631 
632 		/*
633 		 * We filled in entry[0] for CPUID(EAX=<function>,
634 		 * ECX=00H) above.  If its level type (ECX[15:8]) is
635 		 * zero, then the leaf is unimplemented, and we're
636 		 * done.  Otherwise, continue to populate entries
637 		 * until the level type (ECX[15:8]) of the previously
638 		 * added entry is zero.
639 		 */
640 		for (i = 1; entry[i - 1].ecx & 0xff00; ++i) {
641 			if (*nent >= maxnent)
642 				goto out;
643 
644 			do_host_cpuid(&entry[i], function, i);
645 			++*nent;
646 		}
647 		break;
648 	}
649 	case 0xd: {
650 		int idx, i;
651 		u64 supported = kvm_supported_xcr0();
652 
653 		entry->eax &= supported;
654 		entry->ebx = xstate_required_size(supported, false);
655 		entry->ecx = entry->ebx;
656 		entry->edx &= supported >> 32;
657 		if (!supported)
658 			break;
659 
660 		for (idx = 1, i = 1; idx < 64; ++idx) {
661 			u64 mask = ((u64)1 << idx);
662 			if (*nent >= maxnent)
663 				goto out;
664 
665 			do_host_cpuid(&entry[i], function, idx);
666 			if (idx == 1) {
667 				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
668 				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
669 				entry[i].ebx = 0;
670 				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
671 					entry[i].ebx =
672 						xstate_required_size(supported,
673 								     true);
674 			} else {
675 				if (entry[i].eax == 0 || !(supported & mask))
676 					continue;
677 				if (WARN_ON_ONCE(entry[i].ecx & 1))
678 					continue;
679 			}
680 			entry[i].ecx = 0;
681 			entry[i].edx = 0;
682 			++*nent;
683 			++i;
684 		}
685 		break;
686 	}
687 	/* Intel PT */
688 	case 0x14: {
689 		int t, times = entry->eax;
690 
691 		if (!f_intel_pt)
692 			break;
693 
694 		for (t = 1; t <= times; ++t) {
695 			if (*nent >= maxnent)
696 				goto out;
697 			do_host_cpuid(&entry[t], function, t);
698 			++*nent;
699 		}
700 		break;
701 	}
702 	case KVM_CPUID_SIGNATURE: {
703 		static const char signature[12] = "KVMKVMKVM\0\0";
704 		const u32 *sigptr = (const u32 *)signature;
705 		entry->eax = KVM_CPUID_FEATURES;
706 		entry->ebx = sigptr[0];
707 		entry->ecx = sigptr[1];
708 		entry->edx = sigptr[2];
709 		break;
710 	}
711 	case KVM_CPUID_FEATURES:
712 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
713 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
714 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
715 			     (1 << KVM_FEATURE_ASYNC_PF) |
716 			     (1 << KVM_FEATURE_PV_EOI) |
717 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
718 			     (1 << KVM_FEATURE_PV_UNHALT) |
719 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
720 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
721 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
722 			     (1 << KVM_FEATURE_POLL_CONTROL) |
723 			     (1 << KVM_FEATURE_PV_SCHED_YIELD);
724 
725 		if (sched_info_on())
726 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
727 
728 		entry->ebx = 0;
729 		entry->ecx = 0;
730 		entry->edx = 0;
731 		break;
732 	case 0x80000000:
733 		entry->eax = min(entry->eax, 0x8000001f);
734 		break;
735 	case 0x80000001:
736 		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
737 		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
738 		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
739 		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
740 		break;
741 	case 0x80000007: /* Advanced power management */
742 		/* invariant TSC is CPUID.80000007H:EDX[8] */
743 		entry->edx &= (1 << 8);
744 		/* mask against host */
745 		entry->edx &= boot_cpu_data.x86_power;
746 		entry->eax = entry->ebx = entry->ecx = 0;
747 		break;
748 	case 0x80000008: {
749 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
750 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
751 		unsigned phys_as = entry->eax & 0xff;
752 
753 		/*
754 		 * Use bare metal's MAXPHADDR if the CPU doesn't report guest
755 		 * MAXPHYADDR separately, or if TDP (NPT) is disabled, as the
756 		 * guest version "applies only to guests using nested paging".
757 		 */
758 		if (!g_phys_as || !tdp_enabled)
759 			g_phys_as = phys_as;
760 
761 		entry->eax = g_phys_as | (virt_as << 8);
762 		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
763 		entry->edx = 0;
764 		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
765 		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
766 		/*
767 		 * AMD has separate bits for each SPEC_CTRL bit.
768 		 * arch/x86/kernel/cpu/bugs.c is kind enough to
769 		 * record that in cpufeatures so use them.
770 		 */
771 		if (boot_cpu_has(X86_FEATURE_IBPB))
772 			entry->ebx |= F(AMD_IBPB);
773 		if (boot_cpu_has(X86_FEATURE_IBRS))
774 			entry->ebx |= F(AMD_IBRS);
775 		if (boot_cpu_has(X86_FEATURE_STIBP))
776 			entry->ebx |= F(AMD_STIBP);
777 		if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
778 		    boot_cpu_has(X86_FEATURE_AMD_SSBD))
779 			entry->ebx |= F(AMD_SSBD);
780 		if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
781 			entry->ebx |= F(AMD_SSB_NO);
782 		/*
783 		 * The preference is to use SPEC CTRL MSR instead of the
784 		 * VIRT_SPEC MSR.
785 		 */
786 		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
787 		    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
788 			entry->ebx |= F(VIRT_SSBD);
789 		break;
790 	}
791 	case 0x80000019:
792 		entry->ecx = entry->edx = 0;
793 		break;
794 	case 0x8000001a:
795 		entry->eax &= GENMASK(2, 0);
796 		entry->ebx = entry->ecx = entry->edx = 0;
797 		break;
798 	case 0x8000001e:
799 		break;
800 	/*Add support for Centaur's CPUID instruction*/
801 	case 0xC0000000:
802 		/*Just support up to 0xC0000004 now*/
803 		entry->eax = min(entry->eax, 0xC0000004);
804 		break;
805 	case 0xC0000001:
806 		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
807 		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
808 		break;
809 	case 3: /* Processor serial number */
810 	case 5: /* MONITOR/MWAIT */
811 	case 0xC0000002:
812 	case 0xC0000003:
813 	case 0xC0000004:
814 	default:
815 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
816 		break;
817 	}
818 
819 	kvm_x86_ops->set_supported_cpuid(function, entry);
820 
821 	r = 0;
822 
823 out:
824 	put_cpu();
825 
826 	return r;
827 }
828 
do_cpuid_func(struct kvm_cpuid_entry2 * entry,u32 func,int * nent,int maxnent,unsigned int type)829 static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
830 			 int *nent, int maxnent, unsigned int type)
831 {
832 	if (*nent >= maxnent)
833 		return -E2BIG;
834 
835 	if (type == KVM_GET_EMULATED_CPUID)
836 		return __do_cpuid_func_emulated(entry, func, nent, maxnent);
837 
838 	return __do_cpuid_func(entry, func, nent, maxnent);
839 }
840 
841 #undef F
842 
843 struct kvm_cpuid_param {
844 	u32 func;
845 	bool (*qualifier)(const struct kvm_cpuid_param *param);
846 };
847 
is_centaur_cpu(const struct kvm_cpuid_param * param)848 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
849 {
850 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
851 }
852 
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)853 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
854 				 __u32 num_entries, unsigned int ioctl_type)
855 {
856 	int i;
857 	__u32 pad[3];
858 
859 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
860 		return false;
861 
862 	/*
863 	 * We want to make sure that ->padding is being passed clean from
864 	 * userspace in case we want to use it for something in the future.
865 	 *
866 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
867 	 * have to give ourselves satisfied only with the emulated side. /me
868 	 * sheds a tear.
869 	 */
870 	for (i = 0; i < num_entries; i++) {
871 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
872 			return true;
873 
874 		if (pad[0] || pad[1] || pad[2])
875 			return true;
876 	}
877 	return false;
878 }
879 
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)880 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
881 			    struct kvm_cpuid_entry2 __user *entries,
882 			    unsigned int type)
883 {
884 	struct kvm_cpuid_entry2 *cpuid_entries;
885 	int limit, nent = 0, r = -E2BIG, i;
886 	u32 func;
887 	static const struct kvm_cpuid_param param[] = {
888 		{ .func = 0 },
889 		{ .func = 0x80000000 },
890 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu },
891 		{ .func = KVM_CPUID_SIGNATURE },
892 	};
893 
894 	if (cpuid->nent < 1)
895 		goto out;
896 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
897 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
898 
899 	if (sanity_check_entries(entries, cpuid->nent, type))
900 		return -EINVAL;
901 
902 	r = -ENOMEM;
903 	cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
904 					   cpuid->nent));
905 	if (!cpuid_entries)
906 		goto out;
907 
908 	r = 0;
909 	for (i = 0; i < ARRAY_SIZE(param); i++) {
910 		const struct kvm_cpuid_param *ent = &param[i];
911 
912 		if (ent->qualifier && !ent->qualifier(ent))
913 			continue;
914 
915 		r = do_cpuid_func(&cpuid_entries[nent], ent->func,
916 				  &nent, cpuid->nent, type);
917 
918 		if (r)
919 			goto out_free;
920 
921 		limit = cpuid_entries[nent - 1].eax;
922 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
923 			r = do_cpuid_func(&cpuid_entries[nent], func,
924 				          &nent, cpuid->nent, type);
925 
926 		if (r)
927 			goto out_free;
928 	}
929 
930 	r = -EFAULT;
931 	if (copy_to_user(entries, cpuid_entries,
932 			 nent * sizeof(struct kvm_cpuid_entry2)))
933 		goto out_free;
934 	cpuid->nent = nent;
935 	r = 0;
936 
937 out_free:
938 	vfree(cpuid_entries);
939 out:
940 	return r;
941 }
942 
move_to_next_stateful_cpuid_entry(struct kvm_vcpu * vcpu,int i)943 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
944 {
945 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
946 	struct kvm_cpuid_entry2 *ej;
947 	int j = i;
948 	int nent = vcpu->arch.cpuid_nent;
949 
950 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
951 	/* when no next entry is found, the current entry[i] is reselected */
952 	do {
953 		j = (j + 1) % nent;
954 		ej = &vcpu->arch.cpuid_entries[j];
955 	} while (ej->function != e->function);
956 
957 	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
958 
959 	return j;
960 }
961 
962 /* find an entry with matching function, matching index (if needed), and that
963  * should be read next (if it's stateful) */
is_matching_cpuid_entry(struct kvm_cpuid_entry2 * e,u32 function,u32 index)964 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
965 	u32 function, u32 index)
966 {
967 	if (e->function != function)
968 		return 0;
969 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
970 		return 0;
971 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
972 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
973 		return 0;
974 	return 1;
975 }
976 
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function,u32 index)977 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
978 					      u32 function, u32 index)
979 {
980 	int i;
981 	struct kvm_cpuid_entry2 *best = NULL;
982 
983 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
984 		struct kvm_cpuid_entry2 *e;
985 
986 		e = &vcpu->arch.cpuid_entries[i];
987 		if (is_matching_cpuid_entry(e, function, index)) {
988 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
989 				move_to_next_stateful_cpuid_entry(vcpu, i);
990 			best = e;
991 			break;
992 		}
993 	}
994 	return best;
995 }
996 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
997 
998 /*
999  * If the basic or extended CPUID leaf requested is higher than the
1000  * maximum supported basic or extended leaf, respectively, then it is
1001  * out of range.
1002  */
cpuid_function_in_range(struct kvm_vcpu * vcpu,u32 function)1003 static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function)
1004 {
1005 	struct kvm_cpuid_entry2 *max;
1006 
1007 	max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1008 	return max && function <= max->eax;
1009 }
1010 
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool check_limit)1011 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1012 	       u32 *ecx, u32 *edx, bool check_limit)
1013 {
1014 	u32 function = *eax, index = *ecx;
1015 	struct kvm_cpuid_entry2 *entry;
1016 	struct kvm_cpuid_entry2 *max;
1017 	bool found;
1018 
1019 	entry = kvm_find_cpuid_entry(vcpu, function, index);
1020 	found = entry;
1021 	/*
1022 	 * Intel CPUID semantics treats any query for an out-of-range
1023 	 * leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were
1024 	 * requested. AMD CPUID semantics returns all zeroes for any
1025 	 * undefined leaf, whether or not the leaf is in range.
1026 	 */
1027 	if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) &&
1028 	    !cpuid_function_in_range(vcpu, function)) {
1029 		max = kvm_find_cpuid_entry(vcpu, 0, 0);
1030 		if (max) {
1031 			function = max->eax;
1032 			entry = kvm_find_cpuid_entry(vcpu, function, index);
1033 		}
1034 	}
1035 	if (entry) {
1036 		*eax = entry->eax;
1037 		*ebx = entry->ebx;
1038 		*ecx = entry->ecx;
1039 		*edx = entry->edx;
1040 	} else {
1041 		*eax = *ebx = *ecx = *edx = 0;
1042 		/*
1043 		 * When leaf 0BH or 1FH is defined, CL is pass-through
1044 		 * and EDX is always the x2APIC ID, even for undefined
1045 		 * subleaves. Index 1 will exist iff the leaf is
1046 		 * implemented, so we pass through CL iff leaf 1
1047 		 * exists. EDX can be copied from any existing index.
1048 		 */
1049 		if (function == 0xb || function == 0x1f) {
1050 			entry = kvm_find_cpuid_entry(vcpu, function, 1);
1051 			if (entry) {
1052 				*ecx = index & 0xff;
1053 				*edx = entry->edx;
1054 			}
1055 		}
1056 	}
1057 	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found);
1058 	return found;
1059 }
1060 EXPORT_SYMBOL_GPL(kvm_cpuid);
1061 
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)1062 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1063 {
1064 	u32 eax, ebx, ecx, edx;
1065 
1066 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1067 		return 1;
1068 
1069 	eax = kvm_rax_read(vcpu);
1070 	ecx = kvm_rcx_read(vcpu);
1071 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
1072 	kvm_rax_write(vcpu, eax);
1073 	kvm_rbx_write(vcpu, ebx);
1074 	kvm_rcx_write(vcpu, ecx);
1075 	kvm_rdx_write(vcpu, edx);
1076 	return kvm_skip_emulated_instruction(vcpu);
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1079