1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "x86.h"
21 #include "kvm_cache_regs.h"
22 #include "cpuid.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/types.h>
26 #include <linux/string.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/moduleparam.h>
30 #include <linux/export.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/signal.h>
37 #include <linux/uaccess.h>
38 #include <linux/hash.h>
39 #include <linux/kern_levels.h>
40 #include <linux/kthread.h>
41
42 #include <asm/page.h>
43 #include <asm/pat.h>
44 #include <asm/cmpxchg.h>
45 #include <asm/e820/api.h>
46 #include <asm/io.h>
47 #include <asm/vmx.h>
48 #include <asm/kvm_page_track.h>
49 #include "trace.h"
50
51 extern bool itlb_multihit_kvm_mitigation;
52
53 static int __read_mostly nx_huge_pages = -1;
54 #ifdef CONFIG_PREEMPT_RT
55 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
56 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
57 #else
58 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
59 #endif
60
61 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
62 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
63
64 static struct kernel_param_ops nx_huge_pages_ops = {
65 .set = set_nx_huge_pages,
66 .get = param_get_bool,
67 };
68
69 static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
70 .set = set_nx_huge_pages_recovery_ratio,
71 .get = param_get_uint,
72 };
73
74 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
75 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
76 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
77 &nx_huge_pages_recovery_ratio, 0644);
78 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
79
80 /*
81 * When setting this variable to true it enables Two-Dimensional-Paging
82 * where the hardware walks 2 page tables:
83 * 1. the guest-virtual to guest-physical
84 * 2. while doing 1. it walks guest-physical to host-physical
85 * If the hardware supports that we don't need to do shadow paging.
86 */
87 bool tdp_enabled = false;
88
89 enum {
90 AUDIT_PRE_PAGE_FAULT,
91 AUDIT_POST_PAGE_FAULT,
92 AUDIT_PRE_PTE_WRITE,
93 AUDIT_POST_PTE_WRITE,
94 AUDIT_PRE_SYNC,
95 AUDIT_POST_SYNC
96 };
97
98 #undef MMU_DEBUG
99
100 #ifdef MMU_DEBUG
101 static bool dbg = 0;
102 module_param(dbg, bool, 0644);
103
104 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
105 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
106 #define MMU_WARN_ON(x) WARN_ON(x)
107 #else
108 #define pgprintk(x...) do { } while (0)
109 #define rmap_printk(x...) do { } while (0)
110 #define MMU_WARN_ON(x) do { } while (0)
111 #endif
112
113 #define PTE_PREFETCH_NUM 8
114
115 #define PT_FIRST_AVAIL_BITS_SHIFT 10
116 #define PT64_SECOND_AVAIL_BITS_SHIFT 54
117
118 /*
119 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
120 * Access Tracking SPTEs.
121 */
122 #define SPTE_SPECIAL_MASK (3ULL << 52)
123 #define SPTE_AD_ENABLED_MASK (0ULL << 52)
124 #define SPTE_AD_DISABLED_MASK (1ULL << 52)
125 #define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
126 #define SPTE_MMIO_MASK (3ULL << 52)
127
128 #define PT64_LEVEL_BITS 9
129
130 #define PT64_LEVEL_SHIFT(level) \
131 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
132
133 #define PT64_INDEX(address, level)\
134 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
135
136
137 #define PT32_LEVEL_BITS 10
138
139 #define PT32_LEVEL_SHIFT(level) \
140 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
141
142 #define PT32_LVL_OFFSET_MASK(level) \
143 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144 * PT32_LEVEL_BITS))) - 1))
145
146 #define PT32_INDEX(address, level)\
147 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
148
149
150 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
151 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
152 #else
153 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
154 #endif
155 #define PT64_LVL_ADDR_MASK(level) \
156 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
157 * PT64_LEVEL_BITS))) - 1))
158 #define PT64_LVL_OFFSET_MASK(level) \
159 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
160 * PT64_LEVEL_BITS))) - 1))
161
162 #define PT32_BASE_ADDR_MASK PAGE_MASK
163 #define PT32_DIR_BASE_ADDR_MASK \
164 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
165 #define PT32_LVL_ADDR_MASK(level) \
166 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
167 * PT32_LEVEL_BITS))) - 1))
168
169 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
170 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
171
172 #define ACC_EXEC_MASK 1
173 #define ACC_WRITE_MASK PT_WRITABLE_MASK
174 #define ACC_USER_MASK PT_USER_MASK
175 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
176
177 /* The mask for the R/X bits in EPT PTEs */
178 #define PT64_EPT_READABLE_MASK 0x1ull
179 #define PT64_EPT_EXECUTABLE_MASK 0x4ull
180
181 #include <trace/events/kvm.h>
182
183 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
184 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
185
186 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
187
188 /* make pte_list_desc fit well in cache line */
189 #define PTE_LIST_EXT 3
190
191 /*
192 * Return values of handle_mmio_page_fault and mmu.page_fault:
193 * RET_PF_RETRY: let CPU fault again on the address.
194 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
195 *
196 * For handle_mmio_page_fault only:
197 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
198 */
199 enum {
200 RET_PF_RETRY = 0,
201 RET_PF_EMULATE = 1,
202 RET_PF_INVALID = 2,
203 };
204
205 struct pte_list_desc {
206 u64 *sptes[PTE_LIST_EXT];
207 struct pte_list_desc *more;
208 };
209
210 struct kvm_shadow_walk_iterator {
211 u64 addr;
212 hpa_t shadow_addr;
213 u64 *sptep;
214 int level;
215 unsigned index;
216 };
217
218 static const union kvm_mmu_page_role mmu_base_role_mask = {
219 .cr0_wp = 1,
220 .gpte_is_8_bytes = 1,
221 .nxe = 1,
222 .smep_andnot_wp = 1,
223 .smap_andnot_wp = 1,
224 .smm = 1,
225 .guest_mode = 1,
226 .ad_disabled = 1,
227 };
228
229 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
230 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
231 (_root), (_addr)); \
232 shadow_walk_okay(&(_walker)); \
233 shadow_walk_next(&(_walker)))
234
235 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
236 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
237 shadow_walk_okay(&(_walker)); \
238 shadow_walk_next(&(_walker)))
239
240 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
241 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
242 shadow_walk_okay(&(_walker)) && \
243 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
244 __shadow_walk_next(&(_walker), spte))
245
246 static struct kmem_cache *pte_list_desc_cache;
247 static struct kmem_cache *mmu_page_header_cache;
248 static struct percpu_counter kvm_total_used_mmu_pages;
249
250 static u64 __read_mostly shadow_nx_mask;
251 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
252 static u64 __read_mostly shadow_user_mask;
253 static u64 __read_mostly shadow_accessed_mask;
254 static u64 __read_mostly shadow_dirty_mask;
255 static u64 __read_mostly shadow_mmio_mask;
256 static u64 __read_mostly shadow_mmio_value;
257 static u64 __read_mostly shadow_mmio_access_mask;
258 static u64 __read_mostly shadow_present_mask;
259 static u64 __read_mostly shadow_me_mask;
260
261 /*
262 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
263 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
264 * pages.
265 */
266 static u64 __read_mostly shadow_acc_track_mask;
267
268 /*
269 * The mask/shift to use for saving the original R/X bits when marking the PTE
270 * as not-present for access tracking purposes. We do not save the W bit as the
271 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
272 * restored only when a write is attempted to the page.
273 */
274 static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
275 PT64_EPT_EXECUTABLE_MASK;
276 static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
277
278 /*
279 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
280 * to guard against L1TF attacks.
281 */
282 static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
283
284 /*
285 * The number of high-order 1 bits to use in the mask above.
286 */
287 static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
288
289 /*
290 * In some cases, we need to preserve the GFN of a non-present or reserved
291 * SPTE when we usurp the upper five bits of the physical address space to
292 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
293 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
294 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
295 * high and low parts. This mask covers the lower bits of the GFN.
296 */
297 static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
298
299 /*
300 * The number of non-reserved physical address bits irrespective of features
301 * that repurpose legal bits, e.g. MKTME.
302 */
303 static u8 __read_mostly shadow_phys_bits;
304
305 static void mmu_spte_set(u64 *sptep, u64 spte);
306 static bool is_executable_pte(u64 spte);
307 static union kvm_mmu_page_role
308 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
309
310 #define CREATE_TRACE_POINTS
311 #include "mmutrace.h"
312
313
kvm_available_flush_tlb_with_range(void)314 static inline bool kvm_available_flush_tlb_with_range(void)
315 {
316 return kvm_x86_ops->tlb_remote_flush_with_range;
317 }
318
kvm_flush_remote_tlbs_with_range(struct kvm * kvm,struct kvm_tlb_range * range)319 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
320 struct kvm_tlb_range *range)
321 {
322 int ret = -ENOTSUPP;
323
324 if (range && kvm_x86_ops->tlb_remote_flush_with_range)
325 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
326
327 if (ret)
328 kvm_flush_remote_tlbs(kvm);
329 }
330
kvm_flush_remote_tlbs_with_address(struct kvm * kvm,u64 start_gfn,u64 pages)331 static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
332 u64 start_gfn, u64 pages)
333 {
334 struct kvm_tlb_range range;
335
336 range.start_gfn = start_gfn;
337 range.pages = pages;
338
339 kvm_flush_remote_tlbs_with_range(kvm, &range);
340 }
341
kvm_mmu_set_mmio_spte_mask(u64 mmio_mask,u64 mmio_value,u64 access_mask)342 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
343 {
344 BUG_ON((u64)(unsigned)access_mask != access_mask);
345 BUG_ON((mmio_mask & mmio_value) != mmio_value);
346 WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << shadow_nonpresent_or_rsvd_mask_len));
347 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
348 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
349 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
350 shadow_mmio_access_mask = access_mask;
351 }
352 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
353
is_mmio_spte(u64 spte)354 static bool is_mmio_spte(u64 spte)
355 {
356 return (spte & shadow_mmio_mask) == shadow_mmio_value;
357 }
358
sp_ad_disabled(struct kvm_mmu_page * sp)359 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
360 {
361 return sp->role.ad_disabled;
362 }
363
kvm_vcpu_ad_need_write_protect(struct kvm_vcpu * vcpu)364 static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
365 {
366 /*
367 * When using the EPT page-modification log, the GPAs in the log
368 * would come from L2 rather than L1. Therefore, we need to rely
369 * on write protection to record dirty pages. This also bypasses
370 * PML, since writes now result in a vmexit.
371 */
372 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
373 }
374
spte_ad_enabled(u64 spte)375 static inline bool spte_ad_enabled(u64 spte)
376 {
377 MMU_WARN_ON(is_mmio_spte(spte));
378 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
379 }
380
spte_ad_need_write_protect(u64 spte)381 static inline bool spte_ad_need_write_protect(u64 spte)
382 {
383 MMU_WARN_ON(is_mmio_spte(spte));
384 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
385 }
386
is_nx_huge_page_enabled(void)387 static bool is_nx_huge_page_enabled(void)
388 {
389 return READ_ONCE(nx_huge_pages);
390 }
391
spte_shadow_accessed_mask(u64 spte)392 static inline u64 spte_shadow_accessed_mask(u64 spte)
393 {
394 MMU_WARN_ON(is_mmio_spte(spte));
395 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
396 }
397
spte_shadow_dirty_mask(u64 spte)398 static inline u64 spte_shadow_dirty_mask(u64 spte)
399 {
400 MMU_WARN_ON(is_mmio_spte(spte));
401 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
402 }
403
is_access_track_spte(u64 spte)404 static inline bool is_access_track_spte(u64 spte)
405 {
406 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
407 }
408
409 /*
410 * Due to limited space in PTEs, the MMIO generation is a 18 bit subset of
411 * the memslots generation and is derived as follows:
412 *
413 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
414 * Bits 9-17 of the MMIO generation are propagated to spte bits 54-62
415 *
416 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
417 * the MMIO generation number, as doing so would require stealing a bit from
418 * the "real" generation number and thus effectively halve the maximum number
419 * of MMIO generations that can be handled before encountering a wrap (which
420 * requires a full MMU zap). The flag is instead explicitly queried when
421 * checking for MMIO spte cache hits.
422 */
423
424 #define MMIO_SPTE_GEN_LOW_START 3
425 #define MMIO_SPTE_GEN_LOW_END 11
426
427 #define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
428 #define MMIO_SPTE_GEN_HIGH_END 62
429
430 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
431 MMIO_SPTE_GEN_LOW_START)
432 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
433 MMIO_SPTE_GEN_HIGH_START)
434
435 #define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1)
436 #define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1)
437
438 /* remember to adjust the comment above as well if you change these */
439 static_assert(MMIO_SPTE_GEN_LOW_BITS == 9 && MMIO_SPTE_GEN_HIGH_BITS == 9);
440
441 #define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0)
442 #define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS)
443
444 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0)
445
generation_mmio_spte_mask(u64 gen)446 static u64 generation_mmio_spte_mask(u64 gen)
447 {
448 u64 mask;
449
450 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
451 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
452
453 mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
454 mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
455 return mask;
456 }
457
get_mmio_spte_generation(u64 spte)458 static u64 get_mmio_spte_generation(u64 spte)
459 {
460 u64 gen;
461
462 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT;
463 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT;
464 return gen;
465 }
466
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned access)467 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
468 unsigned access)
469 {
470 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
471 u64 mask = generation_mmio_spte_mask(gen);
472 u64 gpa = gfn << PAGE_SHIFT;
473
474 access &= shadow_mmio_access_mask;
475 mask |= shadow_mmio_value | access;
476 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
477 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
478 << shadow_nonpresent_or_rsvd_mask_len;
479
480 trace_mark_mmio_spte(sptep, gfn, access, gen);
481 mmu_spte_set(sptep, mask);
482 }
483
get_mmio_spte_gfn(u64 spte)484 static gfn_t get_mmio_spte_gfn(u64 spte)
485 {
486 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
487
488 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
489 & shadow_nonpresent_or_rsvd_mask;
490
491 return gpa >> PAGE_SHIFT;
492 }
493
get_mmio_spte_access(u64 spte)494 static unsigned get_mmio_spte_access(u64 spte)
495 {
496 return spte & shadow_mmio_access_mask;
497 }
498
set_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,kvm_pfn_t pfn,unsigned access)499 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
500 kvm_pfn_t pfn, unsigned access)
501 {
502 if (unlikely(is_noslot_pfn(pfn))) {
503 mark_mmio_spte(vcpu, sptep, gfn, access);
504 return true;
505 }
506
507 return false;
508 }
509
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)510 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
511 {
512 u64 kvm_gen, spte_gen, gen;
513
514 gen = kvm_vcpu_memslots(vcpu)->generation;
515 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
516 return false;
517
518 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
519 spte_gen = get_mmio_spte_generation(spte);
520
521 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
522 return likely(kvm_gen == spte_gen);
523 }
524
525 /*
526 * Sets the shadow PTE masks used by the MMU.
527 *
528 * Assumptions:
529 * - Setting either @accessed_mask or @dirty_mask requires setting both
530 * - At least one of @accessed_mask or @acc_track_mask must be set
531 */
kvm_mmu_set_mask_ptes(u64 user_mask,u64 accessed_mask,u64 dirty_mask,u64 nx_mask,u64 x_mask,u64 p_mask,u64 acc_track_mask,u64 me_mask)532 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
533 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
534 u64 acc_track_mask, u64 me_mask)
535 {
536 BUG_ON(!dirty_mask != !accessed_mask);
537 BUG_ON(!accessed_mask && !acc_track_mask);
538 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
539
540 shadow_user_mask = user_mask;
541 shadow_accessed_mask = accessed_mask;
542 shadow_dirty_mask = dirty_mask;
543 shadow_nx_mask = nx_mask;
544 shadow_x_mask = x_mask;
545 shadow_present_mask = p_mask;
546 shadow_acc_track_mask = acc_track_mask;
547 shadow_me_mask = me_mask;
548 }
549 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
550
kvm_get_shadow_phys_bits(void)551 static u8 kvm_get_shadow_phys_bits(void)
552 {
553 /*
554 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
555 * in CPU detection code, but the processor treats those reduced bits as
556 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
557 * the physical address bits reported by CPUID.
558 */
559 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
560 return cpuid_eax(0x80000008) & 0xff;
561
562 /*
563 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
564 * custom CPUID. Proceed with whatever the kernel found since these features
565 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
566 */
567 return boot_cpu_data.x86_phys_bits;
568 }
569
kvm_mmu_reset_all_pte_masks(void)570 static void kvm_mmu_reset_all_pte_masks(void)
571 {
572 u8 low_phys_bits;
573
574 shadow_user_mask = 0;
575 shadow_accessed_mask = 0;
576 shadow_dirty_mask = 0;
577 shadow_nx_mask = 0;
578 shadow_x_mask = 0;
579 shadow_mmio_mask = 0;
580 shadow_present_mask = 0;
581 shadow_acc_track_mask = 0;
582
583 shadow_phys_bits = kvm_get_shadow_phys_bits();
584
585 /*
586 * If the CPU has 46 or less physical address bits, then set an
587 * appropriate mask to guard against L1TF attacks. Otherwise, it is
588 * assumed that the CPU is not vulnerable to L1TF.
589 *
590 * Some Intel CPUs address the L1 cache using more PA bits than are
591 * reported by CPUID. Use the PA width of the L1 cache when possible
592 * to achieve more effective mitigation, e.g. if system RAM overlaps
593 * the most significant bits of legal physical address space.
594 */
595 shadow_nonpresent_or_rsvd_mask = 0;
596 low_phys_bits = boot_cpu_data.x86_phys_bits;
597 if (boot_cpu_has_bug(X86_BUG_L1TF) &&
598 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
599 52 - shadow_nonpresent_or_rsvd_mask_len)) {
600 low_phys_bits = boot_cpu_data.x86_cache_bits
601 - shadow_nonpresent_or_rsvd_mask_len;
602 shadow_nonpresent_or_rsvd_mask =
603 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
604 }
605
606 shadow_nonpresent_or_rsvd_lower_gfn_mask =
607 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
608 }
609
is_cpuid_PSE36(void)610 static int is_cpuid_PSE36(void)
611 {
612 return 1;
613 }
614
is_nx(struct kvm_vcpu * vcpu)615 static int is_nx(struct kvm_vcpu *vcpu)
616 {
617 return vcpu->arch.efer & EFER_NX;
618 }
619
is_shadow_present_pte(u64 pte)620 static int is_shadow_present_pte(u64 pte)
621 {
622 return (pte != 0) && !is_mmio_spte(pte);
623 }
624
is_large_pte(u64 pte)625 static int is_large_pte(u64 pte)
626 {
627 return pte & PT_PAGE_SIZE_MASK;
628 }
629
is_last_spte(u64 pte,int level)630 static int is_last_spte(u64 pte, int level)
631 {
632 if (level == PT_PAGE_TABLE_LEVEL)
633 return 1;
634 if (is_large_pte(pte))
635 return 1;
636 return 0;
637 }
638
is_executable_pte(u64 spte)639 static bool is_executable_pte(u64 spte)
640 {
641 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
642 }
643
spte_to_pfn(u64 pte)644 static kvm_pfn_t spte_to_pfn(u64 pte)
645 {
646 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
647 }
648
pse36_gfn_delta(u32 gpte)649 static gfn_t pse36_gfn_delta(u32 gpte)
650 {
651 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
652
653 return (gpte & PT32_DIR_PSE36_MASK) << shift;
654 }
655
656 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)657 static void __set_spte(u64 *sptep, u64 spte)
658 {
659 WRITE_ONCE(*sptep, spte);
660 }
661
__update_clear_spte_fast(u64 * sptep,u64 spte)662 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
663 {
664 WRITE_ONCE(*sptep, spte);
665 }
666
__update_clear_spte_slow(u64 * sptep,u64 spte)667 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
668 {
669 return xchg(sptep, spte);
670 }
671
__get_spte_lockless(u64 * sptep)672 static u64 __get_spte_lockless(u64 *sptep)
673 {
674 return READ_ONCE(*sptep);
675 }
676 #else
677 union split_spte {
678 struct {
679 u32 spte_low;
680 u32 spte_high;
681 };
682 u64 spte;
683 };
684
count_spte_clear(u64 * sptep,u64 spte)685 static void count_spte_clear(u64 *sptep, u64 spte)
686 {
687 struct kvm_mmu_page *sp = page_header(__pa(sptep));
688
689 if (is_shadow_present_pte(spte))
690 return;
691
692 /* Ensure the spte is completely set before we increase the count */
693 smp_wmb();
694 sp->clear_spte_count++;
695 }
696
__set_spte(u64 * sptep,u64 spte)697 static void __set_spte(u64 *sptep, u64 spte)
698 {
699 union split_spte *ssptep, sspte;
700
701 ssptep = (union split_spte *)sptep;
702 sspte = (union split_spte)spte;
703
704 ssptep->spte_high = sspte.spte_high;
705
706 /*
707 * If we map the spte from nonpresent to present, We should store
708 * the high bits firstly, then set present bit, so cpu can not
709 * fetch this spte while we are setting the spte.
710 */
711 smp_wmb();
712
713 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
714 }
715
__update_clear_spte_fast(u64 * sptep,u64 spte)716 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
717 {
718 union split_spte *ssptep, sspte;
719
720 ssptep = (union split_spte *)sptep;
721 sspte = (union split_spte)spte;
722
723 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
724
725 /*
726 * If we map the spte from present to nonpresent, we should clear
727 * present bit firstly to avoid vcpu fetch the old high bits.
728 */
729 smp_wmb();
730
731 ssptep->spte_high = sspte.spte_high;
732 count_spte_clear(sptep, spte);
733 }
734
__update_clear_spte_slow(u64 * sptep,u64 spte)735 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
736 {
737 union split_spte *ssptep, sspte, orig;
738
739 ssptep = (union split_spte *)sptep;
740 sspte = (union split_spte)spte;
741
742 /* xchg acts as a barrier before the setting of the high bits */
743 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
744 orig.spte_high = ssptep->spte_high;
745 ssptep->spte_high = sspte.spte_high;
746 count_spte_clear(sptep, spte);
747
748 return orig.spte;
749 }
750
751 /*
752 * The idea using the light way get the spte on x86_32 guest is from
753 * gup_get_pte (mm/gup.c).
754 *
755 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
756 * coalesces them and we are running out of the MMU lock. Therefore
757 * we need to protect against in-progress updates of the spte.
758 *
759 * Reading the spte while an update is in progress may get the old value
760 * for the high part of the spte. The race is fine for a present->non-present
761 * change (because the high part of the spte is ignored for non-present spte),
762 * but for a present->present change we must reread the spte.
763 *
764 * All such changes are done in two steps (present->non-present and
765 * non-present->present), hence it is enough to count the number of
766 * present->non-present updates: if it changed while reading the spte,
767 * we might have hit the race. This is done using clear_spte_count.
768 */
__get_spte_lockless(u64 * sptep)769 static u64 __get_spte_lockless(u64 *sptep)
770 {
771 struct kvm_mmu_page *sp = page_header(__pa(sptep));
772 union split_spte spte, *orig = (union split_spte *)sptep;
773 int count;
774
775 retry:
776 count = sp->clear_spte_count;
777 smp_rmb();
778
779 spte.spte_low = orig->spte_low;
780 smp_rmb();
781
782 spte.spte_high = orig->spte_high;
783 smp_rmb();
784
785 if (unlikely(spte.spte_low != orig->spte_low ||
786 count != sp->clear_spte_count))
787 goto retry;
788
789 return spte.spte;
790 }
791 #endif
792
spte_can_locklessly_be_made_writable(u64 spte)793 static bool spte_can_locklessly_be_made_writable(u64 spte)
794 {
795 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
796 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
797 }
798
spte_has_volatile_bits(u64 spte)799 static bool spte_has_volatile_bits(u64 spte)
800 {
801 if (!is_shadow_present_pte(spte))
802 return false;
803
804 /*
805 * Always atomically update spte if it can be updated
806 * out of mmu-lock, it can ensure dirty bit is not lost,
807 * also, it can help us to get a stable is_writable_pte()
808 * to ensure tlb flush is not missed.
809 */
810 if (spte_can_locklessly_be_made_writable(spte) ||
811 is_access_track_spte(spte))
812 return true;
813
814 if (spte_ad_enabled(spte)) {
815 if ((spte & shadow_accessed_mask) == 0 ||
816 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
817 return true;
818 }
819
820 return false;
821 }
822
is_accessed_spte(u64 spte)823 static bool is_accessed_spte(u64 spte)
824 {
825 u64 accessed_mask = spte_shadow_accessed_mask(spte);
826
827 return accessed_mask ? spte & accessed_mask
828 : !is_access_track_spte(spte);
829 }
830
is_dirty_spte(u64 spte)831 static bool is_dirty_spte(u64 spte)
832 {
833 u64 dirty_mask = spte_shadow_dirty_mask(spte);
834
835 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
836 }
837
838 /* Rules for using mmu_spte_set:
839 * Set the sptep from nonpresent to present.
840 * Note: the sptep being assigned *must* be either not present
841 * or in a state where the hardware will not attempt to update
842 * the spte.
843 */
mmu_spte_set(u64 * sptep,u64 new_spte)844 static void mmu_spte_set(u64 *sptep, u64 new_spte)
845 {
846 WARN_ON(is_shadow_present_pte(*sptep));
847 __set_spte(sptep, new_spte);
848 }
849
850 /*
851 * Update the SPTE (excluding the PFN), but do not track changes in its
852 * accessed/dirty status.
853 */
mmu_spte_update_no_track(u64 * sptep,u64 new_spte)854 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
855 {
856 u64 old_spte = *sptep;
857
858 WARN_ON(!is_shadow_present_pte(new_spte));
859
860 if (!is_shadow_present_pte(old_spte)) {
861 mmu_spte_set(sptep, new_spte);
862 return old_spte;
863 }
864
865 if (!spte_has_volatile_bits(old_spte))
866 __update_clear_spte_fast(sptep, new_spte);
867 else
868 old_spte = __update_clear_spte_slow(sptep, new_spte);
869
870 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
871
872 return old_spte;
873 }
874
875 /* Rules for using mmu_spte_update:
876 * Update the state bits, it means the mapped pfn is not changed.
877 *
878 * Whenever we overwrite a writable spte with a read-only one we
879 * should flush remote TLBs. Otherwise rmap_write_protect
880 * will find a read-only spte, even though the writable spte
881 * might be cached on a CPU's TLB, the return value indicates this
882 * case.
883 *
884 * Returns true if the TLB needs to be flushed
885 */
mmu_spte_update(u64 * sptep,u64 new_spte)886 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
887 {
888 bool flush = false;
889 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
890
891 if (!is_shadow_present_pte(old_spte))
892 return false;
893
894 /*
895 * For the spte updated out of mmu-lock is safe, since
896 * we always atomically update it, see the comments in
897 * spte_has_volatile_bits().
898 */
899 if (spte_can_locklessly_be_made_writable(old_spte) &&
900 !is_writable_pte(new_spte))
901 flush = true;
902
903 /*
904 * Flush TLB when accessed/dirty states are changed in the page tables,
905 * to guarantee consistency between TLB and page tables.
906 */
907
908 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
909 flush = true;
910 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
911 }
912
913 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
914 flush = true;
915 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
916 }
917
918 return flush;
919 }
920
921 /*
922 * Rules for using mmu_spte_clear_track_bits:
923 * It sets the sptep from present to nonpresent, and track the
924 * state bits, it is used to clear the last level sptep.
925 * Returns non-zero if the PTE was previously valid.
926 */
mmu_spte_clear_track_bits(u64 * sptep)927 static int mmu_spte_clear_track_bits(u64 *sptep)
928 {
929 kvm_pfn_t pfn;
930 u64 old_spte = *sptep;
931
932 if (!spte_has_volatile_bits(old_spte))
933 __update_clear_spte_fast(sptep, 0ull);
934 else
935 old_spte = __update_clear_spte_slow(sptep, 0ull);
936
937 if (!is_shadow_present_pte(old_spte))
938 return 0;
939
940 pfn = spte_to_pfn(old_spte);
941
942 /*
943 * KVM does not hold the refcount of the page used by
944 * kvm mmu, before reclaiming the page, we should
945 * unmap it from mmu first.
946 */
947 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
948
949 if (is_accessed_spte(old_spte))
950 kvm_set_pfn_accessed(pfn);
951
952 if (is_dirty_spte(old_spte))
953 kvm_set_pfn_dirty(pfn);
954
955 return 1;
956 }
957
958 /*
959 * Rules for using mmu_spte_clear_no_track:
960 * Directly clear spte without caring the state bits of sptep,
961 * it is used to set the upper level spte.
962 */
mmu_spte_clear_no_track(u64 * sptep)963 static void mmu_spte_clear_no_track(u64 *sptep)
964 {
965 __update_clear_spte_fast(sptep, 0ull);
966 }
967
mmu_spte_get_lockless(u64 * sptep)968 static u64 mmu_spte_get_lockless(u64 *sptep)
969 {
970 return __get_spte_lockless(sptep);
971 }
972
mark_spte_for_access_track(u64 spte)973 static u64 mark_spte_for_access_track(u64 spte)
974 {
975 if (spte_ad_enabled(spte))
976 return spte & ~shadow_accessed_mask;
977
978 if (is_access_track_spte(spte))
979 return spte;
980
981 /*
982 * Making an Access Tracking PTE will result in removal of write access
983 * from the PTE. So, verify that we will be able to restore the write
984 * access in the fast page fault path later on.
985 */
986 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
987 !spte_can_locklessly_be_made_writable(spte),
988 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
989
990 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
991 shadow_acc_track_saved_bits_shift),
992 "kvm: Access Tracking saved bit locations are not zero\n");
993
994 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
995 shadow_acc_track_saved_bits_shift;
996 spte &= ~shadow_acc_track_mask;
997
998 return spte;
999 }
1000
1001 /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)1002 static u64 restore_acc_track_spte(u64 spte)
1003 {
1004 u64 new_spte = spte;
1005 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
1006 & shadow_acc_track_saved_bits_mask;
1007
1008 WARN_ON_ONCE(spte_ad_enabled(spte));
1009 WARN_ON_ONCE(!is_access_track_spte(spte));
1010
1011 new_spte &= ~shadow_acc_track_mask;
1012 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1013 shadow_acc_track_saved_bits_shift);
1014 new_spte |= saved_bits;
1015
1016 return new_spte;
1017 }
1018
1019 /* Returns the Accessed status of the PTE and resets it at the same time. */
mmu_spte_age(u64 * sptep)1020 static bool mmu_spte_age(u64 *sptep)
1021 {
1022 u64 spte = mmu_spte_get_lockless(sptep);
1023
1024 if (!is_accessed_spte(spte))
1025 return false;
1026
1027 if (spte_ad_enabled(spte)) {
1028 clear_bit((ffs(shadow_accessed_mask) - 1),
1029 (unsigned long *)sptep);
1030 } else {
1031 /*
1032 * Capture the dirty status of the page, so that it doesn't get
1033 * lost when the SPTE is marked for access tracking.
1034 */
1035 if (is_writable_pte(spte))
1036 kvm_set_pfn_dirty(spte_to_pfn(spte));
1037
1038 spte = mark_spte_for_access_track(spte);
1039 mmu_spte_update_no_track(sptep, spte);
1040 }
1041
1042 return true;
1043 }
1044
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)1045 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1046 {
1047 /*
1048 * Prevent page table teardown by making any free-er wait during
1049 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1050 */
1051 local_irq_disable();
1052
1053 /*
1054 * Make sure a following spte read is not reordered ahead of the write
1055 * to vcpu->mode.
1056 */
1057 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
1058 }
1059
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)1060 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1061 {
1062 /*
1063 * Make sure the write to vcpu->mode is not reordered in front of
1064 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
1065 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1066 */
1067 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
1068 local_irq_enable();
1069 }
1070
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,struct kmem_cache * base_cache,int min)1071 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
1072 struct kmem_cache *base_cache, int min)
1073 {
1074 void *obj;
1075
1076 if (cache->nobjs >= min)
1077 return 0;
1078 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1079 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
1080 if (!obj)
1081 return cache->nobjs >= min ? 0 : -ENOMEM;
1082 cache->objects[cache->nobjs++] = obj;
1083 }
1084 return 0;
1085 }
1086
mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache * cache)1087 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1088 {
1089 return cache->nobjs;
1090 }
1091
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc,struct kmem_cache * cache)1092 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1093 struct kmem_cache *cache)
1094 {
1095 while (mc->nobjs)
1096 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
1097 }
1098
mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache * cache,int min)1099 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
1100 int min)
1101 {
1102 void *page;
1103
1104 if (cache->nobjs >= min)
1105 return 0;
1106 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
1107 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
1108 if (!page)
1109 return cache->nobjs >= min ? 0 : -ENOMEM;
1110 cache->objects[cache->nobjs++] = page;
1111 }
1112 return 0;
1113 }
1114
mmu_free_memory_cache_page(struct kvm_mmu_memory_cache * mc)1115 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1116 {
1117 while (mc->nobjs)
1118 free_page((unsigned long)mc->objects[--mc->nobjs]);
1119 }
1120
mmu_topup_memory_caches(struct kvm_vcpu * vcpu)1121 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
1122 {
1123 int r;
1124
1125 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1126 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
1127 if (r)
1128 goto out;
1129 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
1130 if (r)
1131 goto out;
1132 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
1133 mmu_page_header_cache, 4);
1134 out:
1135 return r;
1136 }
1137
mmu_free_memory_caches(struct kvm_vcpu * vcpu)1138 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1139 {
1140 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1141 pte_list_desc_cache);
1142 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
1143 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1144 mmu_page_header_cache);
1145 }
1146
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)1147 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
1148 {
1149 void *p;
1150
1151 BUG_ON(!mc->nobjs);
1152 p = mc->objects[--mc->nobjs];
1153 return p;
1154 }
1155
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)1156 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
1157 {
1158 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
1159 }
1160
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)1161 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
1162 {
1163 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
1164 }
1165
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)1166 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1167 {
1168 if (!sp->role.direct)
1169 return sp->gfns[index];
1170
1171 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1172 }
1173
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)1174 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1175 {
1176 if (!sp->role.direct) {
1177 sp->gfns[index] = gfn;
1178 return;
1179 }
1180
1181 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1182 pr_err_ratelimited("gfn mismatch under direct page %llx "
1183 "(expected %llx, got %llx)\n",
1184 sp->gfn,
1185 kvm_mmu_page_get_gfn(sp, index), gfn);
1186 }
1187
1188 /*
1189 * Return the pointer to the large page information for a given gfn,
1190 * handling slots that are not large page aligned.
1191 */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)1192 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1193 struct kvm_memory_slot *slot,
1194 int level)
1195 {
1196 unsigned long idx;
1197
1198 idx = gfn_to_index(gfn, slot->base_gfn, level);
1199 return &slot->arch.lpage_info[level - 2][idx];
1200 }
1201
update_gfn_disallow_lpage_count(struct kvm_memory_slot * slot,gfn_t gfn,int count)1202 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1203 gfn_t gfn, int count)
1204 {
1205 struct kvm_lpage_info *linfo;
1206 int i;
1207
1208 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1209 linfo = lpage_info_slot(gfn, slot, i);
1210 linfo->disallow_lpage += count;
1211 WARN_ON(linfo->disallow_lpage < 0);
1212 }
1213 }
1214
kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)1215 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1216 {
1217 update_gfn_disallow_lpage_count(slot, gfn, 1);
1218 }
1219
kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)1220 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1221 {
1222 update_gfn_disallow_lpage_count(slot, gfn, -1);
1223 }
1224
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)1225 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1226 {
1227 struct kvm_memslots *slots;
1228 struct kvm_memory_slot *slot;
1229 gfn_t gfn;
1230
1231 kvm->arch.indirect_shadow_pages++;
1232 gfn = sp->gfn;
1233 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1234 slot = __gfn_to_memslot(slots, gfn);
1235
1236 /* the non-leaf shadow pages are keeping readonly. */
1237 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1238 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1239 KVM_PAGE_TRACK_WRITE);
1240
1241 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1242 }
1243
account_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)1244 static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1245 {
1246 if (sp->lpage_disallowed)
1247 return;
1248
1249 ++kvm->stat.nx_lpage_splits;
1250 list_add_tail(&sp->lpage_disallowed_link,
1251 &kvm->arch.lpage_disallowed_mmu_pages);
1252 sp->lpage_disallowed = true;
1253 }
1254
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)1255 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1256 {
1257 struct kvm_memslots *slots;
1258 struct kvm_memory_slot *slot;
1259 gfn_t gfn;
1260
1261 kvm->arch.indirect_shadow_pages--;
1262 gfn = sp->gfn;
1263 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1264 slot = __gfn_to_memslot(slots, gfn);
1265 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1266 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1267 KVM_PAGE_TRACK_WRITE);
1268
1269 kvm_mmu_gfn_allow_lpage(slot, gfn);
1270 }
1271
unaccount_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)1272 static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1273 {
1274 --kvm->stat.nx_lpage_splits;
1275 sp->lpage_disallowed = false;
1276 list_del(&sp->lpage_disallowed_link);
1277 }
1278
__mmu_gfn_lpage_is_disallowed(gfn_t gfn,int level,struct kvm_memory_slot * slot)1279 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1280 struct kvm_memory_slot *slot)
1281 {
1282 struct kvm_lpage_info *linfo;
1283
1284 if (slot) {
1285 linfo = lpage_info_slot(gfn, slot, level);
1286 return !!linfo->disallow_lpage;
1287 }
1288
1289 return true;
1290 }
1291
mmu_gfn_lpage_is_disallowed(struct kvm_vcpu * vcpu,gfn_t gfn,int level)1292 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1293 int level)
1294 {
1295 struct kvm_memory_slot *slot;
1296
1297 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1298 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1299 }
1300
host_mapping_level(struct kvm_vcpu * vcpu,gfn_t gfn)1301 static int host_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn)
1302 {
1303 unsigned long page_size;
1304 int i, ret = 0;
1305
1306 page_size = kvm_host_page_size(vcpu, gfn);
1307
1308 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1309 if (page_size >= KVM_HPAGE_SIZE(i))
1310 ret = i;
1311 else
1312 break;
1313 }
1314
1315 return ret;
1316 }
1317
memslot_valid_for_gpte(struct kvm_memory_slot * slot,bool no_dirty_log)1318 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1319 bool no_dirty_log)
1320 {
1321 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1322 return false;
1323 if (no_dirty_log && slot->dirty_bitmap)
1324 return false;
1325
1326 return true;
1327 }
1328
1329 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)1330 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1331 bool no_dirty_log)
1332 {
1333 struct kvm_memory_slot *slot;
1334
1335 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1336 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1337 slot = NULL;
1338
1339 return slot;
1340 }
1341
mapping_level(struct kvm_vcpu * vcpu,gfn_t large_gfn,bool * force_pt_level)1342 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1343 bool *force_pt_level)
1344 {
1345 int host_level, level, max_level;
1346 struct kvm_memory_slot *slot;
1347
1348 if (unlikely(*force_pt_level))
1349 return PT_PAGE_TABLE_LEVEL;
1350
1351 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1352 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1353 if (unlikely(*force_pt_level))
1354 return PT_PAGE_TABLE_LEVEL;
1355
1356 host_level = host_mapping_level(vcpu, large_gfn);
1357
1358 if (host_level == PT_PAGE_TABLE_LEVEL)
1359 return host_level;
1360
1361 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1362
1363 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1364 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1365 break;
1366
1367 return level - 1;
1368 }
1369
1370 /*
1371 * About rmap_head encoding:
1372 *
1373 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1374 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
1375 * pte_list_desc containing more mappings.
1376 */
1377
1378 /*
1379 * Returns the number of pointers in the rmap chain, not counting the new one.
1380 */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,struct kvm_rmap_head * rmap_head)1381 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1382 struct kvm_rmap_head *rmap_head)
1383 {
1384 struct pte_list_desc *desc;
1385 int i, count = 0;
1386
1387 if (!rmap_head->val) {
1388 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1389 rmap_head->val = (unsigned long)spte;
1390 } else if (!(rmap_head->val & 1)) {
1391 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1392 desc = mmu_alloc_pte_list_desc(vcpu);
1393 desc->sptes[0] = (u64 *)rmap_head->val;
1394 desc->sptes[1] = spte;
1395 rmap_head->val = (unsigned long)desc | 1;
1396 ++count;
1397 } else {
1398 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1399 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1400 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1401 desc = desc->more;
1402 count += PTE_LIST_EXT;
1403 }
1404 if (desc->sptes[PTE_LIST_EXT-1]) {
1405 desc->more = mmu_alloc_pte_list_desc(vcpu);
1406 desc = desc->more;
1407 }
1408 for (i = 0; desc->sptes[i]; ++i)
1409 ++count;
1410 desc->sptes[i] = spte;
1411 }
1412 return count;
1413 }
1414
1415 static void
pte_list_desc_remove_entry(struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)1416 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1417 struct pte_list_desc *desc, int i,
1418 struct pte_list_desc *prev_desc)
1419 {
1420 int j;
1421
1422 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1423 ;
1424 desc->sptes[i] = desc->sptes[j];
1425 desc->sptes[j] = NULL;
1426 if (j != 0)
1427 return;
1428 if (!prev_desc && !desc->more)
1429 rmap_head->val = (unsigned long)desc->sptes[0];
1430 else
1431 if (prev_desc)
1432 prev_desc->more = desc->more;
1433 else
1434 rmap_head->val = (unsigned long)desc->more | 1;
1435 mmu_free_pte_list_desc(desc);
1436 }
1437
__pte_list_remove(u64 * spte,struct kvm_rmap_head * rmap_head)1438 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1439 {
1440 struct pte_list_desc *desc;
1441 struct pte_list_desc *prev_desc;
1442 int i;
1443
1444 if (!rmap_head->val) {
1445 pr_err("%s: %p 0->BUG\n", __func__, spte);
1446 BUG();
1447 } else if (!(rmap_head->val & 1)) {
1448 rmap_printk("%s: %p 1->0\n", __func__, spte);
1449 if ((u64 *)rmap_head->val != spte) {
1450 pr_err("%s: %p 1->BUG\n", __func__, spte);
1451 BUG();
1452 }
1453 rmap_head->val = 0;
1454 } else {
1455 rmap_printk("%s: %p many->many\n", __func__, spte);
1456 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1457 prev_desc = NULL;
1458 while (desc) {
1459 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1460 if (desc->sptes[i] == spte) {
1461 pte_list_desc_remove_entry(rmap_head,
1462 desc, i, prev_desc);
1463 return;
1464 }
1465 }
1466 prev_desc = desc;
1467 desc = desc->more;
1468 }
1469 pr_err("%s: %p many->many\n", __func__, spte);
1470 BUG();
1471 }
1472 }
1473
pte_list_remove(struct kvm_rmap_head * rmap_head,u64 * sptep)1474 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1475 {
1476 mmu_spte_clear_track_bits(sptep);
1477 __pte_list_remove(sptep, rmap_head);
1478 }
1479
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)1480 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1481 struct kvm_memory_slot *slot)
1482 {
1483 unsigned long idx;
1484
1485 idx = gfn_to_index(gfn, slot->base_gfn, level);
1486 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1487 }
1488
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,struct kvm_mmu_page * sp)1489 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1490 struct kvm_mmu_page *sp)
1491 {
1492 struct kvm_memslots *slots;
1493 struct kvm_memory_slot *slot;
1494
1495 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1496 slot = __gfn_to_memslot(slots, gfn);
1497 return __gfn_to_rmap(gfn, sp->role.level, slot);
1498 }
1499
rmap_can_add(struct kvm_vcpu * vcpu)1500 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1501 {
1502 struct kvm_mmu_memory_cache *cache;
1503
1504 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1505 return mmu_memory_cache_free_objects(cache);
1506 }
1507
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1508 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1509 {
1510 struct kvm_mmu_page *sp;
1511 struct kvm_rmap_head *rmap_head;
1512
1513 sp = page_header(__pa(spte));
1514 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1515 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1516 return pte_list_add(vcpu, spte, rmap_head);
1517 }
1518
rmap_remove(struct kvm * kvm,u64 * spte)1519 static void rmap_remove(struct kvm *kvm, u64 *spte)
1520 {
1521 struct kvm_mmu_page *sp;
1522 gfn_t gfn;
1523 struct kvm_rmap_head *rmap_head;
1524
1525 sp = page_header(__pa(spte));
1526 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1527 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1528 __pte_list_remove(spte, rmap_head);
1529 }
1530
1531 /*
1532 * Used by the following functions to iterate through the sptes linked by a
1533 * rmap. All fields are private and not assumed to be used outside.
1534 */
1535 struct rmap_iterator {
1536 /* private fields */
1537 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1538 int pos; /* index of the sptep */
1539 };
1540
1541 /*
1542 * Iteration must be started by this function. This should also be used after
1543 * removing/dropping sptes from the rmap link because in such cases the
1544 * information in the itererator may not be valid.
1545 *
1546 * Returns sptep if found, NULL otherwise.
1547 */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1548 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1549 struct rmap_iterator *iter)
1550 {
1551 u64 *sptep;
1552
1553 if (!rmap_head->val)
1554 return NULL;
1555
1556 if (!(rmap_head->val & 1)) {
1557 iter->desc = NULL;
1558 sptep = (u64 *)rmap_head->val;
1559 goto out;
1560 }
1561
1562 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1563 iter->pos = 0;
1564 sptep = iter->desc->sptes[iter->pos];
1565 out:
1566 BUG_ON(!is_shadow_present_pte(*sptep));
1567 return sptep;
1568 }
1569
1570 /*
1571 * Must be used with a valid iterator: e.g. after rmap_get_first().
1572 *
1573 * Returns sptep if found, NULL otherwise.
1574 */
rmap_get_next(struct rmap_iterator * iter)1575 static u64 *rmap_get_next(struct rmap_iterator *iter)
1576 {
1577 u64 *sptep;
1578
1579 if (iter->desc) {
1580 if (iter->pos < PTE_LIST_EXT - 1) {
1581 ++iter->pos;
1582 sptep = iter->desc->sptes[iter->pos];
1583 if (sptep)
1584 goto out;
1585 }
1586
1587 iter->desc = iter->desc->more;
1588
1589 if (iter->desc) {
1590 iter->pos = 0;
1591 /* desc->sptes[0] cannot be NULL */
1592 sptep = iter->desc->sptes[iter->pos];
1593 goto out;
1594 }
1595 }
1596
1597 return NULL;
1598 out:
1599 BUG_ON(!is_shadow_present_pte(*sptep));
1600 return sptep;
1601 }
1602
1603 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1604 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1605 _spte_; _spte_ = rmap_get_next(_iter_))
1606
drop_spte(struct kvm * kvm,u64 * sptep)1607 static void drop_spte(struct kvm *kvm, u64 *sptep)
1608 {
1609 if (mmu_spte_clear_track_bits(sptep))
1610 rmap_remove(kvm, sptep);
1611 }
1612
1613
__drop_large_spte(struct kvm * kvm,u64 * sptep)1614 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1615 {
1616 if (is_large_pte(*sptep)) {
1617 WARN_ON(page_header(__pa(sptep))->role.level ==
1618 PT_PAGE_TABLE_LEVEL);
1619 drop_spte(kvm, sptep);
1620 --kvm->stat.lpages;
1621 return true;
1622 }
1623
1624 return false;
1625 }
1626
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1627 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1628 {
1629 if (__drop_large_spte(vcpu->kvm, sptep)) {
1630 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1631
1632 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1633 KVM_PAGES_PER_HPAGE(sp->role.level));
1634 }
1635 }
1636
1637 /*
1638 * Write-protect on the specified @sptep, @pt_protect indicates whether
1639 * spte write-protection is caused by protecting shadow page table.
1640 *
1641 * Note: write protection is difference between dirty logging and spte
1642 * protection:
1643 * - for dirty logging, the spte can be set to writable at anytime if
1644 * its dirty bitmap is properly set.
1645 * - for spte protection, the spte can be writable only after unsync-ing
1646 * shadow page.
1647 *
1648 * Return true if tlb need be flushed.
1649 */
spte_write_protect(u64 * sptep,bool pt_protect)1650 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1651 {
1652 u64 spte = *sptep;
1653
1654 if (!is_writable_pte(spte) &&
1655 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1656 return false;
1657
1658 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1659
1660 if (pt_protect)
1661 spte &= ~SPTE_MMU_WRITEABLE;
1662 spte = spte & ~PT_WRITABLE_MASK;
1663
1664 return mmu_spte_update(sptep, spte);
1665 }
1666
__rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,bool pt_protect)1667 static bool __rmap_write_protect(struct kvm *kvm,
1668 struct kvm_rmap_head *rmap_head,
1669 bool pt_protect)
1670 {
1671 u64 *sptep;
1672 struct rmap_iterator iter;
1673 bool flush = false;
1674
1675 for_each_rmap_spte(rmap_head, &iter, sptep)
1676 flush |= spte_write_protect(sptep, pt_protect);
1677
1678 return flush;
1679 }
1680
spte_clear_dirty(u64 * sptep)1681 static bool spte_clear_dirty(u64 *sptep)
1682 {
1683 u64 spte = *sptep;
1684
1685 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1686
1687 MMU_WARN_ON(!spte_ad_enabled(spte));
1688 spte &= ~shadow_dirty_mask;
1689 return mmu_spte_update(sptep, spte);
1690 }
1691
spte_wrprot_for_clear_dirty(u64 * sptep)1692 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1693 {
1694 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1695 (unsigned long *)sptep);
1696 if (was_writable && !spte_ad_enabled(*sptep))
1697 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1698
1699 return was_writable;
1700 }
1701
1702 /*
1703 * Gets the GFN ready for another round of dirty logging by clearing the
1704 * - D bit on ad-enabled SPTEs, and
1705 * - W bit on ad-disabled SPTEs.
1706 * Returns true iff any D or W bits were cleared.
1707 */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1708 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1709 {
1710 u64 *sptep;
1711 struct rmap_iterator iter;
1712 bool flush = false;
1713
1714 for_each_rmap_spte(rmap_head, &iter, sptep)
1715 if (spte_ad_need_write_protect(*sptep))
1716 flush |= spte_wrprot_for_clear_dirty(sptep);
1717 else
1718 flush |= spte_clear_dirty(sptep);
1719
1720 return flush;
1721 }
1722
spte_set_dirty(u64 * sptep)1723 static bool spte_set_dirty(u64 *sptep)
1724 {
1725 u64 spte = *sptep;
1726
1727 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1728
1729 /*
1730 * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
1731 * do not bother adding back write access to pages marked
1732 * SPTE_AD_WRPROT_ONLY_MASK.
1733 */
1734 spte |= shadow_dirty_mask;
1735
1736 return mmu_spte_update(sptep, spte);
1737 }
1738
__rmap_set_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1739 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1740 {
1741 u64 *sptep;
1742 struct rmap_iterator iter;
1743 bool flush = false;
1744
1745 for_each_rmap_spte(rmap_head, &iter, sptep)
1746 if (spte_ad_enabled(*sptep))
1747 flush |= spte_set_dirty(sptep);
1748
1749 return flush;
1750 }
1751
1752 /**
1753 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1754 * @kvm: kvm instance
1755 * @slot: slot to protect
1756 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1757 * @mask: indicates which pages we should protect
1758 *
1759 * Used when we do not need to care about huge page mappings: e.g. during dirty
1760 * logging we do not have any such mappings.
1761 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1762 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1763 struct kvm_memory_slot *slot,
1764 gfn_t gfn_offset, unsigned long mask)
1765 {
1766 struct kvm_rmap_head *rmap_head;
1767
1768 while (mask) {
1769 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1770 PT_PAGE_TABLE_LEVEL, slot);
1771 __rmap_write_protect(kvm, rmap_head, false);
1772
1773 /* clear the first set bit */
1774 mask &= mask - 1;
1775 }
1776 }
1777
1778 /**
1779 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1780 * protect the page if the D-bit isn't supported.
1781 * @kvm: kvm instance
1782 * @slot: slot to clear D-bit
1783 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1784 * @mask: indicates which pages we should clear D-bit
1785 *
1786 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1787 */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1788 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1789 struct kvm_memory_slot *slot,
1790 gfn_t gfn_offset, unsigned long mask)
1791 {
1792 struct kvm_rmap_head *rmap_head;
1793
1794 while (mask) {
1795 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1796 PT_PAGE_TABLE_LEVEL, slot);
1797 __rmap_clear_dirty(kvm, rmap_head);
1798
1799 /* clear the first set bit */
1800 mask &= mask - 1;
1801 }
1802 }
1803 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1804
1805 /**
1806 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1807 * PT level pages.
1808 *
1809 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1810 * enable dirty logging for them.
1811 *
1812 * Used when we do not need to care about huge page mappings: e.g. during dirty
1813 * logging we do not have any such mappings.
1814 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1815 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1816 struct kvm_memory_slot *slot,
1817 gfn_t gfn_offset, unsigned long mask)
1818 {
1819 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1820 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1821 mask);
1822 else
1823 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1824 }
1825
1826 /**
1827 * kvm_arch_write_log_dirty - emulate dirty page logging
1828 * @vcpu: Guest mode vcpu
1829 *
1830 * Emulate arch specific page modification logging for the
1831 * nested hypervisor
1832 */
kvm_arch_write_log_dirty(struct kvm_vcpu * vcpu,gpa_t l2_gpa)1833 int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu, gpa_t l2_gpa)
1834 {
1835 if (kvm_x86_ops->write_log_dirty)
1836 return kvm_x86_ops->write_log_dirty(vcpu, l2_gpa);
1837
1838 return 0;
1839 }
1840
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn)1841 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1842 struct kvm_memory_slot *slot, u64 gfn)
1843 {
1844 struct kvm_rmap_head *rmap_head;
1845 int i;
1846 bool write_protected = false;
1847
1848 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1849 rmap_head = __gfn_to_rmap(gfn, i, slot);
1850 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1851 }
1852
1853 return write_protected;
1854 }
1855
rmap_write_protect(struct kvm_vcpu * vcpu,u64 gfn)1856 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1857 {
1858 struct kvm_memory_slot *slot;
1859
1860 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1861 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1862 }
1863
kvm_zap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1864 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1865 {
1866 u64 *sptep;
1867 struct rmap_iterator iter;
1868 bool flush = false;
1869
1870 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1871 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1872
1873 pte_list_remove(rmap_head, sptep);
1874 flush = true;
1875 }
1876
1877 return flush;
1878 }
1879
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1880 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1881 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1882 unsigned long data)
1883 {
1884 return kvm_zap_rmapp(kvm, rmap_head);
1885 }
1886
kvm_set_pte_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1887 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1888 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1889 unsigned long data)
1890 {
1891 u64 *sptep;
1892 struct rmap_iterator iter;
1893 int need_flush = 0;
1894 u64 new_spte;
1895 pte_t *ptep = (pte_t *)data;
1896 kvm_pfn_t new_pfn;
1897
1898 WARN_ON(pte_huge(*ptep));
1899 new_pfn = pte_pfn(*ptep);
1900
1901 restart:
1902 for_each_rmap_spte(rmap_head, &iter, sptep) {
1903 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1904 sptep, *sptep, gfn, level);
1905
1906 need_flush = 1;
1907
1908 if (pte_write(*ptep)) {
1909 pte_list_remove(rmap_head, sptep);
1910 goto restart;
1911 } else {
1912 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1913 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1914
1915 new_spte &= ~PT_WRITABLE_MASK;
1916 new_spte &= ~SPTE_HOST_WRITEABLE;
1917
1918 new_spte = mark_spte_for_access_track(new_spte);
1919
1920 mmu_spte_clear_track_bits(sptep);
1921 mmu_spte_set(sptep, new_spte);
1922 }
1923 }
1924
1925 if (need_flush && kvm_available_flush_tlb_with_range()) {
1926 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1927 return 0;
1928 }
1929
1930 return need_flush;
1931 }
1932
1933 struct slot_rmap_walk_iterator {
1934 /* input fields. */
1935 struct kvm_memory_slot *slot;
1936 gfn_t start_gfn;
1937 gfn_t end_gfn;
1938 int start_level;
1939 int end_level;
1940
1941 /* output fields. */
1942 gfn_t gfn;
1943 struct kvm_rmap_head *rmap;
1944 int level;
1945
1946 /* private field. */
1947 struct kvm_rmap_head *end_rmap;
1948 };
1949
1950 static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1951 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1952 {
1953 iterator->level = level;
1954 iterator->gfn = iterator->start_gfn;
1955 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1956 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1957 iterator->slot);
1958 }
1959
1960 static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1961 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1962 struct kvm_memory_slot *slot, int start_level,
1963 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1964 {
1965 iterator->slot = slot;
1966 iterator->start_level = start_level;
1967 iterator->end_level = end_level;
1968 iterator->start_gfn = start_gfn;
1969 iterator->end_gfn = end_gfn;
1970
1971 rmap_walk_init_level(iterator, iterator->start_level);
1972 }
1973
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1974 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1975 {
1976 return !!iterator->rmap;
1977 }
1978
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1979 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1980 {
1981 if (++iterator->rmap <= iterator->end_rmap) {
1982 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1983 return;
1984 }
1985
1986 if (++iterator->level > iterator->end_level) {
1987 iterator->rmap = NULL;
1988 return;
1989 }
1990
1991 rmap_walk_init_level(iterator, iterator->level);
1992 }
1993
1994 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1995 _start_gfn, _end_gfn, _iter_) \
1996 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1997 _end_level_, _start_gfn, _end_gfn); \
1998 slot_rmap_walk_okay(_iter_); \
1999 slot_rmap_walk_next(_iter_))
2000
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))2001 static int kvm_handle_hva_range(struct kvm *kvm,
2002 unsigned long start,
2003 unsigned long end,
2004 unsigned long data,
2005 int (*handler)(struct kvm *kvm,
2006 struct kvm_rmap_head *rmap_head,
2007 struct kvm_memory_slot *slot,
2008 gfn_t gfn,
2009 int level,
2010 unsigned long data))
2011 {
2012 struct kvm_memslots *slots;
2013 struct kvm_memory_slot *memslot;
2014 struct slot_rmap_walk_iterator iterator;
2015 int ret = 0;
2016 int i;
2017
2018 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
2019 slots = __kvm_memslots(kvm, i);
2020 kvm_for_each_memslot(memslot, slots) {
2021 unsigned long hva_start, hva_end;
2022 gfn_t gfn_start, gfn_end;
2023
2024 hva_start = max(start, memslot->userspace_addr);
2025 hva_end = min(end, memslot->userspace_addr +
2026 (memslot->npages << PAGE_SHIFT));
2027 if (hva_start >= hva_end)
2028 continue;
2029 /*
2030 * {gfn(page) | page intersects with [hva_start, hva_end)} =
2031 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
2032 */
2033 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
2034 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
2035
2036 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
2037 PT_MAX_HUGEPAGE_LEVEL,
2038 gfn_start, gfn_end - 1,
2039 &iterator)
2040 ret |= handler(kvm, iterator.rmap, memslot,
2041 iterator.gfn, iterator.level, data);
2042 }
2043 }
2044
2045 return ret;
2046 }
2047
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))2048 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
2049 unsigned long data,
2050 int (*handler)(struct kvm *kvm,
2051 struct kvm_rmap_head *rmap_head,
2052 struct kvm_memory_slot *slot,
2053 gfn_t gfn, int level,
2054 unsigned long data))
2055 {
2056 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
2057 }
2058
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned flags)2059 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
2060 unsigned flags)
2061 {
2062 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
2063 }
2064
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)2065 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2066 {
2067 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
2068 }
2069
kvm_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)2070 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2071 struct kvm_memory_slot *slot, gfn_t gfn, int level,
2072 unsigned long data)
2073 {
2074 u64 *sptep;
2075 struct rmap_iterator uninitialized_var(iter);
2076 int young = 0;
2077
2078 for_each_rmap_spte(rmap_head, &iter, sptep)
2079 young |= mmu_spte_age(sptep);
2080
2081 trace_kvm_age_page(gfn, level, slot, young);
2082 return young;
2083 }
2084
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)2085 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
2086 struct kvm_memory_slot *slot, gfn_t gfn,
2087 int level, unsigned long data)
2088 {
2089 u64 *sptep;
2090 struct rmap_iterator iter;
2091
2092 for_each_rmap_spte(rmap_head, &iter, sptep)
2093 if (is_accessed_spte(*sptep))
2094 return 1;
2095 return 0;
2096 }
2097
2098 #define RMAP_RECYCLE_THRESHOLD 1000
2099
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)2100 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
2101 {
2102 struct kvm_rmap_head *rmap_head;
2103 struct kvm_mmu_page *sp;
2104
2105 sp = page_header(__pa(spte));
2106
2107 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
2108
2109 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
2110 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2111 KVM_PAGES_PER_HPAGE(sp->role.level));
2112 }
2113
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)2114 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2115 {
2116 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
2117 }
2118
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)2119 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2120 {
2121 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2122 }
2123
2124 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)2125 static int is_empty_shadow_page(u64 *spt)
2126 {
2127 u64 *pos;
2128 u64 *end;
2129
2130 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
2131 if (is_shadow_present_pte(*pos)) {
2132 printk(KERN_ERR "%s: %p %llx\n", __func__,
2133 pos, *pos);
2134 return 0;
2135 }
2136 return 1;
2137 }
2138 #endif
2139
2140 /*
2141 * This value is the sum of all of the kvm instances's
2142 * kvm->arch.n_used_mmu_pages values. We need a global,
2143 * aggregate version in order to make the slab shrinker
2144 * faster
2145 */
kvm_mod_used_mmu_pages(struct kvm * kvm,long nr)2146 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
2147 {
2148 kvm->arch.n_used_mmu_pages += nr;
2149 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2150 }
2151
kvm_mmu_free_page(struct kvm_mmu_page * sp)2152 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
2153 {
2154 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
2155 hlist_del(&sp->hash_link);
2156 list_del(&sp->link);
2157 free_page((unsigned long)sp->spt);
2158 if (!sp->role.direct)
2159 free_page((unsigned long)sp->gfns);
2160 kmem_cache_free(mmu_page_header_cache, sp);
2161 }
2162
kvm_page_table_hashfn(gfn_t gfn)2163 static unsigned kvm_page_table_hashfn(gfn_t gfn)
2164 {
2165 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
2166 }
2167
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)2168 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
2169 struct kvm_mmu_page *sp, u64 *parent_pte)
2170 {
2171 if (!parent_pte)
2172 return;
2173
2174 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
2175 }
2176
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)2177 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
2178 u64 *parent_pte)
2179 {
2180 __pte_list_remove(parent_pte, &sp->parent_ptes);
2181 }
2182
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)2183 static void drop_parent_pte(struct kvm_mmu_page *sp,
2184 u64 *parent_pte)
2185 {
2186 mmu_page_remove_parent_pte(sp, parent_pte);
2187 mmu_spte_clear_no_track(parent_pte);
2188 }
2189
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,int direct)2190 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
2191 {
2192 struct kvm_mmu_page *sp;
2193
2194 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2195 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2196 if (!direct)
2197 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
2198 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
2199
2200 /*
2201 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2202 * depends on valid pages being added to the head of the list. See
2203 * comments in kvm_zap_obsolete_pages().
2204 */
2205 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2206 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
2207 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2208 return sp;
2209 }
2210
2211 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)2212 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
2213 {
2214 u64 *sptep;
2215 struct rmap_iterator iter;
2216
2217 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2218 mark_unsync(sptep);
2219 }
2220 }
2221
mark_unsync(u64 * spte)2222 static void mark_unsync(u64 *spte)
2223 {
2224 struct kvm_mmu_page *sp;
2225 unsigned int index;
2226
2227 sp = page_header(__pa(spte));
2228 index = spte - sp->spt;
2229 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
2230 return;
2231 if (sp->unsync_children++)
2232 return;
2233 kvm_mmu_mark_parents_unsync(sp);
2234 }
2235
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2236 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
2237 struct kvm_mmu_page *sp)
2238 {
2239 return 0;
2240 }
2241
nonpaging_invlpg(struct kvm_vcpu * vcpu,gva_t gva,hpa_t root)2242 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
2243 {
2244 }
2245
2246 #define KVM_PAGE_ARRAY_NR 16
2247
2248 struct kvm_mmu_pages {
2249 struct mmu_page_and_offset {
2250 struct kvm_mmu_page *sp;
2251 unsigned int idx;
2252 } page[KVM_PAGE_ARRAY_NR];
2253 unsigned int nr;
2254 };
2255
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)2256 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2257 int idx)
2258 {
2259 int i;
2260
2261 if (sp->unsync)
2262 for (i=0; i < pvec->nr; i++)
2263 if (pvec->page[i].sp == sp)
2264 return 0;
2265
2266 pvec->page[pvec->nr].sp = sp;
2267 pvec->page[pvec->nr].idx = idx;
2268 pvec->nr++;
2269 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2270 }
2271
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)2272 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2273 {
2274 --sp->unsync_children;
2275 WARN_ON((int)sp->unsync_children < 0);
2276 __clear_bit(idx, sp->unsync_child_bitmap);
2277 }
2278
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)2279 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2280 struct kvm_mmu_pages *pvec)
2281 {
2282 int i, ret, nr_unsync_leaf = 0;
2283
2284 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2285 struct kvm_mmu_page *child;
2286 u64 ent = sp->spt[i];
2287
2288 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2289 clear_unsync_child_bit(sp, i);
2290 continue;
2291 }
2292
2293 child = page_header(ent & PT64_BASE_ADDR_MASK);
2294
2295 if (child->unsync_children) {
2296 if (mmu_pages_add(pvec, child, i))
2297 return -ENOSPC;
2298
2299 ret = __mmu_unsync_walk(child, pvec);
2300 if (!ret) {
2301 clear_unsync_child_bit(sp, i);
2302 continue;
2303 } else if (ret > 0) {
2304 nr_unsync_leaf += ret;
2305 } else
2306 return ret;
2307 } else if (child->unsync) {
2308 nr_unsync_leaf++;
2309 if (mmu_pages_add(pvec, child, i))
2310 return -ENOSPC;
2311 } else
2312 clear_unsync_child_bit(sp, i);
2313 }
2314
2315 return nr_unsync_leaf;
2316 }
2317
2318 #define INVALID_INDEX (-1)
2319
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)2320 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2321 struct kvm_mmu_pages *pvec)
2322 {
2323 pvec->nr = 0;
2324 if (!sp->unsync_children)
2325 return 0;
2326
2327 mmu_pages_add(pvec, sp, INVALID_INDEX);
2328 return __mmu_unsync_walk(sp, pvec);
2329 }
2330
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)2331 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2332 {
2333 WARN_ON(!sp->unsync);
2334 trace_kvm_mmu_sync_page(sp);
2335 sp->unsync = 0;
2336 --kvm->stat.mmu_unsync;
2337 }
2338
2339 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2340 struct list_head *invalid_list);
2341 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2342 struct list_head *invalid_list);
2343
2344
2345 #define for_each_valid_sp(_kvm, _sp, _gfn) \
2346 hlist_for_each_entry(_sp, \
2347 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2348 if (is_obsolete_sp((_kvm), (_sp))) { \
2349 } else
2350
2351 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2352 for_each_valid_sp(_kvm, _sp, _gfn) \
2353 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
2354
is_ept_sp(struct kvm_mmu_page * sp)2355 static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2356 {
2357 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2358 }
2359
2360 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)2361 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2362 struct list_head *invalid_list)
2363 {
2364 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2365 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
2366 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2367 return false;
2368 }
2369
2370 return true;
2371 }
2372
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)2373 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2374 struct list_head *invalid_list,
2375 bool remote_flush)
2376 {
2377 if (!remote_flush && list_empty(invalid_list))
2378 return false;
2379
2380 if (!list_empty(invalid_list))
2381 kvm_mmu_commit_zap_page(kvm, invalid_list);
2382 else
2383 kvm_flush_remote_tlbs(kvm);
2384 return true;
2385 }
2386
kvm_mmu_flush_or_zap(struct kvm_vcpu * vcpu,struct list_head * invalid_list,bool remote_flush,bool local_flush)2387 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2388 struct list_head *invalid_list,
2389 bool remote_flush, bool local_flush)
2390 {
2391 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
2392 return;
2393
2394 if (local_flush)
2395 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2396 }
2397
2398 #ifdef CONFIG_KVM_MMU_AUDIT
2399 #include "mmu_audit.c"
2400 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)2401 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)2402 static void mmu_audit_disable(void) { }
2403 #endif
2404
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)2405 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2406 {
2407 return sp->role.invalid ||
2408 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2409 }
2410
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)2411 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2412 struct list_head *invalid_list)
2413 {
2414 kvm_unlink_unsync_page(vcpu->kvm, sp);
2415 return __kvm_sync_page(vcpu, sp, invalid_list);
2416 }
2417
2418 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn,struct list_head * invalid_list)2419 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2420 struct list_head *invalid_list)
2421 {
2422 struct kvm_mmu_page *s;
2423 bool ret = false;
2424
2425 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2426 if (!s->unsync)
2427 continue;
2428
2429 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2430 ret |= kvm_sync_page(vcpu, s, invalid_list);
2431 }
2432
2433 return ret;
2434 }
2435
2436 struct mmu_page_path {
2437 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2438 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2439 };
2440
2441 #define for_each_sp(pvec, sp, parents, i) \
2442 for (i = mmu_pages_first(&pvec, &parents); \
2443 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2444 i = mmu_pages_next(&pvec, &parents, i))
2445
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)2446 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2447 struct mmu_page_path *parents,
2448 int i)
2449 {
2450 int n;
2451
2452 for (n = i+1; n < pvec->nr; n++) {
2453 struct kvm_mmu_page *sp = pvec->page[n].sp;
2454 unsigned idx = pvec->page[n].idx;
2455 int level = sp->role.level;
2456
2457 parents->idx[level-1] = idx;
2458 if (level == PT_PAGE_TABLE_LEVEL)
2459 break;
2460
2461 parents->parent[level-2] = sp;
2462 }
2463
2464 return n;
2465 }
2466
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)2467 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2468 struct mmu_page_path *parents)
2469 {
2470 struct kvm_mmu_page *sp;
2471 int level;
2472
2473 if (pvec->nr == 0)
2474 return 0;
2475
2476 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2477
2478 sp = pvec->page[0].sp;
2479 level = sp->role.level;
2480 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2481
2482 parents->parent[level-2] = sp;
2483
2484 /* Also set up a sentinel. Further entries in pvec are all
2485 * children of sp, so this element is never overwritten.
2486 */
2487 parents->parent[level-1] = NULL;
2488 return mmu_pages_next(pvec, parents, 0);
2489 }
2490
mmu_pages_clear_parents(struct mmu_page_path * parents)2491 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2492 {
2493 struct kvm_mmu_page *sp;
2494 unsigned int level = 0;
2495
2496 do {
2497 unsigned int idx = parents->idx[level];
2498 sp = parents->parent[level];
2499 if (!sp)
2500 return;
2501
2502 WARN_ON(idx == INVALID_INDEX);
2503 clear_unsync_child_bit(sp, idx);
2504 level++;
2505 } while (!sp->unsync_children);
2506 }
2507
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)2508 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2509 struct kvm_mmu_page *parent)
2510 {
2511 int i;
2512 struct kvm_mmu_page *sp;
2513 struct mmu_page_path parents;
2514 struct kvm_mmu_pages pages;
2515 LIST_HEAD(invalid_list);
2516 bool flush = false;
2517
2518 while (mmu_unsync_walk(parent, &pages)) {
2519 bool protected = false;
2520
2521 for_each_sp(pages, sp, parents, i)
2522 protected |= rmap_write_protect(vcpu, sp->gfn);
2523
2524 if (protected) {
2525 kvm_flush_remote_tlbs(vcpu->kvm);
2526 flush = false;
2527 }
2528
2529 for_each_sp(pages, sp, parents, i) {
2530 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2531 mmu_pages_clear_parents(&parents);
2532 }
2533 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2534 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2535 cond_resched_lock(&vcpu->kvm->mmu_lock);
2536 flush = false;
2537 }
2538 }
2539
2540 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2541 }
2542
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2543 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2544 {
2545 atomic_set(&sp->write_flooding_count, 0);
2546 }
2547
clear_sp_write_flooding_count(u64 * spte)2548 static void clear_sp_write_flooding_count(u64 *spte)
2549 {
2550 struct kvm_mmu_page *sp = page_header(__pa(spte));
2551
2552 __clear_sp_write_flooding_count(sp);
2553 }
2554
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned access)2555 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2556 gfn_t gfn,
2557 gva_t gaddr,
2558 unsigned level,
2559 int direct,
2560 unsigned access)
2561 {
2562 union kvm_mmu_page_role role;
2563 unsigned quadrant;
2564 struct kvm_mmu_page *sp;
2565 bool need_sync = false;
2566 bool flush = false;
2567 int collisions = 0;
2568 LIST_HEAD(invalid_list);
2569
2570 role = vcpu->arch.mmu->mmu_role.base;
2571 role.level = level;
2572 role.direct = direct;
2573 if (role.direct)
2574 role.gpte_is_8_bytes = true;
2575 role.access = access;
2576 if (!vcpu->arch.mmu->direct_map
2577 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2578 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2579 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2580 role.quadrant = quadrant;
2581 }
2582 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2583 if (sp->gfn != gfn) {
2584 collisions++;
2585 continue;
2586 }
2587
2588 if (!need_sync && sp->unsync)
2589 need_sync = true;
2590
2591 if (sp->role.word != role.word)
2592 continue;
2593
2594 if (sp->unsync) {
2595 /* The page is good, but __kvm_sync_page might still end
2596 * up zapping it. If so, break in order to rebuild it.
2597 */
2598 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2599 break;
2600
2601 WARN_ON(!list_empty(&invalid_list));
2602 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2603 }
2604
2605 if (sp->unsync_children)
2606 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2607
2608 __clear_sp_write_flooding_count(sp);
2609 trace_kvm_mmu_get_page(sp, false);
2610 goto out;
2611 }
2612
2613 ++vcpu->kvm->stat.mmu_cache_miss;
2614
2615 sp = kvm_mmu_alloc_page(vcpu, direct);
2616
2617 sp->gfn = gfn;
2618 sp->role = role;
2619 hlist_add_head(&sp->hash_link,
2620 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2621 if (!direct) {
2622 /*
2623 * we should do write protection before syncing pages
2624 * otherwise the content of the synced shadow page may
2625 * be inconsistent with guest page table.
2626 */
2627 account_shadowed(vcpu->kvm, sp);
2628 if (level == PT_PAGE_TABLE_LEVEL &&
2629 rmap_write_protect(vcpu, gfn))
2630 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2631
2632 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2633 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2634 }
2635 clear_page(sp->spt);
2636 trace_kvm_mmu_get_page(sp, true);
2637
2638 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2639 out:
2640 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2641 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2642 return sp;
2643 }
2644
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2645 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2646 struct kvm_vcpu *vcpu, hpa_t root,
2647 u64 addr)
2648 {
2649 iterator->addr = addr;
2650 iterator->shadow_addr = root;
2651 iterator->level = vcpu->arch.mmu->shadow_root_level;
2652
2653 if (iterator->level == PT64_ROOT_4LEVEL &&
2654 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2655 !vcpu->arch.mmu->direct_map)
2656 --iterator->level;
2657
2658 if (iterator->level == PT32E_ROOT_LEVEL) {
2659 /*
2660 * prev_root is currently only used for 64-bit hosts. So only
2661 * the active root_hpa is valid here.
2662 */
2663 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2664
2665 iterator->shadow_addr
2666 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2667 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2668 --iterator->level;
2669 if (!iterator->shadow_addr)
2670 iterator->level = 0;
2671 }
2672 }
2673
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2674 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2675 struct kvm_vcpu *vcpu, u64 addr)
2676 {
2677 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2678 addr);
2679 }
2680
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2681 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2682 {
2683 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2684 return false;
2685
2686 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2687 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2688 return true;
2689 }
2690
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2691 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2692 u64 spte)
2693 {
2694 if (is_last_spte(spte, iterator->level)) {
2695 iterator->level = 0;
2696 return;
2697 }
2698
2699 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2700 --iterator->level;
2701 }
2702
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2703 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2704 {
2705 __shadow_walk_next(iterator, *iterator->sptep);
2706 }
2707
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2708 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2709 struct kvm_mmu_page *sp)
2710 {
2711 u64 spte;
2712
2713 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2714
2715 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2716 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2717
2718 if (sp_ad_disabled(sp))
2719 spte |= SPTE_AD_DISABLED_MASK;
2720 else
2721 spte |= shadow_accessed_mask;
2722
2723 mmu_spte_set(sptep, spte);
2724
2725 mmu_page_add_parent_pte(vcpu, sp, sptep);
2726
2727 if (sp->unsync_children || sp->unsync)
2728 mark_unsync(sptep);
2729 }
2730
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2731 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2732 unsigned direct_access)
2733 {
2734 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2735 struct kvm_mmu_page *child;
2736
2737 /*
2738 * For the direct sp, if the guest pte's dirty bit
2739 * changed form clean to dirty, it will corrupt the
2740 * sp's access: allow writable in the read-only sp,
2741 * so we should update the spte at this point to get
2742 * a new sp with the correct access.
2743 */
2744 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2745 if (child->role.access == direct_access)
2746 return;
2747
2748 drop_parent_pte(child, sptep);
2749 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2750 }
2751 }
2752
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte)2753 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2754 u64 *spte)
2755 {
2756 u64 pte;
2757 struct kvm_mmu_page *child;
2758
2759 pte = *spte;
2760 if (is_shadow_present_pte(pte)) {
2761 if (is_last_spte(pte, sp->role.level)) {
2762 drop_spte(kvm, spte);
2763 if (is_large_pte(pte))
2764 --kvm->stat.lpages;
2765 } else {
2766 child = page_header(pte & PT64_BASE_ADDR_MASK);
2767 drop_parent_pte(child, spte);
2768 }
2769 return true;
2770 }
2771
2772 if (is_mmio_spte(pte))
2773 mmu_spte_clear_no_track(spte);
2774
2775 return false;
2776 }
2777
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp)2778 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2779 struct kvm_mmu_page *sp)
2780 {
2781 unsigned i;
2782
2783 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2784 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2785 }
2786
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2787 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2788 {
2789 u64 *sptep;
2790 struct rmap_iterator iter;
2791
2792 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2793 drop_parent_pte(sp, sptep);
2794 }
2795
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2796 static int mmu_zap_unsync_children(struct kvm *kvm,
2797 struct kvm_mmu_page *parent,
2798 struct list_head *invalid_list)
2799 {
2800 int i, zapped = 0;
2801 struct mmu_page_path parents;
2802 struct kvm_mmu_pages pages;
2803
2804 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2805 return 0;
2806
2807 while (mmu_unsync_walk(parent, &pages)) {
2808 struct kvm_mmu_page *sp;
2809
2810 for_each_sp(pages, sp, parents, i) {
2811 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2812 mmu_pages_clear_parents(&parents);
2813 zapped++;
2814 }
2815 }
2816
2817 return zapped;
2818 }
2819
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2820 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2821 struct kvm_mmu_page *sp,
2822 struct list_head *invalid_list,
2823 int *nr_zapped)
2824 {
2825 bool list_unstable;
2826
2827 trace_kvm_mmu_prepare_zap_page(sp);
2828 ++kvm->stat.mmu_shadow_zapped;
2829 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2830 kvm_mmu_page_unlink_children(kvm, sp);
2831 kvm_mmu_unlink_parents(kvm, sp);
2832
2833 /* Zapping children means active_mmu_pages has become unstable. */
2834 list_unstable = *nr_zapped;
2835
2836 if (!sp->role.invalid && !sp->role.direct)
2837 unaccount_shadowed(kvm, sp);
2838
2839 if (sp->unsync)
2840 kvm_unlink_unsync_page(kvm, sp);
2841 if (!sp->root_count) {
2842 /* Count self */
2843 (*nr_zapped)++;
2844 list_move(&sp->link, invalid_list);
2845 kvm_mod_used_mmu_pages(kvm, -1);
2846 } else {
2847 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2848
2849 /*
2850 * Obsolete pages cannot be used on any vCPUs, see the comment
2851 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2852 * treats invalid shadow pages as being obsolete.
2853 */
2854 if (!is_obsolete_sp(kvm, sp))
2855 kvm_reload_remote_mmus(kvm);
2856 }
2857
2858 if (sp->lpage_disallowed)
2859 unaccount_huge_nx_page(kvm, sp);
2860
2861 sp->role.invalid = 1;
2862 return list_unstable;
2863 }
2864
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2865 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2866 struct list_head *invalid_list)
2867 {
2868 int nr_zapped;
2869
2870 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2871 return nr_zapped;
2872 }
2873
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2874 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2875 struct list_head *invalid_list)
2876 {
2877 struct kvm_mmu_page *sp, *nsp;
2878
2879 if (list_empty(invalid_list))
2880 return;
2881
2882 /*
2883 * We need to make sure everyone sees our modifications to
2884 * the page tables and see changes to vcpu->mode here. The barrier
2885 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2886 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2887 *
2888 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2889 * guest mode and/or lockless shadow page table walks.
2890 */
2891 kvm_flush_remote_tlbs(kvm);
2892
2893 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2894 WARN_ON(!sp->role.invalid || sp->root_count);
2895 kvm_mmu_free_page(sp);
2896 }
2897 }
2898
prepare_zap_oldest_mmu_page(struct kvm * kvm,struct list_head * invalid_list)2899 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2900 struct list_head *invalid_list)
2901 {
2902 struct kvm_mmu_page *sp;
2903
2904 if (list_empty(&kvm->arch.active_mmu_pages))
2905 return false;
2906
2907 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2908 struct kvm_mmu_page, link);
2909 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2910 }
2911
2912 /*
2913 * Changing the number of mmu pages allocated to the vm
2914 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2915 */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2916 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2917 {
2918 LIST_HEAD(invalid_list);
2919
2920 spin_lock(&kvm->mmu_lock);
2921
2922 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2923 /* Need to free some mmu pages to achieve the goal. */
2924 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2925 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2926 break;
2927
2928 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2929 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2930 }
2931
2932 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2933
2934 spin_unlock(&kvm->mmu_lock);
2935 }
2936
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2937 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2938 {
2939 struct kvm_mmu_page *sp;
2940 LIST_HEAD(invalid_list);
2941 int r;
2942
2943 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2944 r = 0;
2945 spin_lock(&kvm->mmu_lock);
2946 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2947 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2948 sp->role.word);
2949 r = 1;
2950 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2951 }
2952 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2953 spin_unlock(&kvm->mmu_lock);
2954
2955 return r;
2956 }
2957 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2958
kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2959 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2960 {
2961 trace_kvm_mmu_unsync_page(sp);
2962 ++vcpu->kvm->stat.mmu_unsync;
2963 sp->unsync = 1;
2964
2965 kvm_mmu_mark_parents_unsync(sp);
2966 }
2967
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2968 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2969 bool can_unsync)
2970 {
2971 struct kvm_mmu_page *sp;
2972
2973 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2974 return true;
2975
2976 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2977 if (!can_unsync)
2978 return true;
2979
2980 if (sp->unsync)
2981 continue;
2982
2983 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2984 kvm_unsync_page(vcpu, sp);
2985 }
2986
2987 /*
2988 * We need to ensure that the marking of unsync pages is visible
2989 * before the SPTE is updated to allow writes because
2990 * kvm_mmu_sync_roots() checks the unsync flags without holding
2991 * the MMU lock and so can race with this. If the SPTE was updated
2992 * before the page had been marked as unsync-ed, something like the
2993 * following could happen:
2994 *
2995 * CPU 1 CPU 2
2996 * ---------------------------------------------------------------------
2997 * 1.2 Host updates SPTE
2998 * to be writable
2999 * 2.1 Guest writes a GPTE for GVA X.
3000 * (GPTE being in the guest page table shadowed
3001 * by the SP from CPU 1.)
3002 * This reads SPTE during the page table walk.
3003 * Since SPTE.W is read as 1, there is no
3004 * fault.
3005 *
3006 * 2.2 Guest issues TLB flush.
3007 * That causes a VM Exit.
3008 *
3009 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
3010 * Since it is false, so it just returns.
3011 *
3012 * 2.4 Guest accesses GVA X.
3013 * Since the mapping in the SP was not updated,
3014 * so the old mapping for GVA X incorrectly
3015 * gets used.
3016 * 1.1 Host marks SP
3017 * as unsync
3018 * (sp->unsync = true)
3019 *
3020 * The write barrier below ensures that 1.1 happens before 1.2 and thus
3021 * the situation in 2.4 does not arise. The implicit barrier in 2.2
3022 * pairs with this write barrier.
3023 */
3024 smp_wmb();
3025
3026 return false;
3027 }
3028
kvm_is_mmio_pfn(kvm_pfn_t pfn)3029 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
3030 {
3031 if (pfn_valid(pfn))
3032 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
3033 /*
3034 * Some reserved pages, such as those from NVDIMM
3035 * DAX devices, are not for MMIO, and can be mapped
3036 * with cached memory type for better performance.
3037 * However, the above check misconceives those pages
3038 * as MMIO, and results in KVM mapping them with UC
3039 * memory type, which would hurt the performance.
3040 * Therefore, we check the host memory type in addition
3041 * and only treat UC/UC-/WC pages as MMIO.
3042 */
3043 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
3044
3045 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
3046 pfn_to_hpa(pfn + 1) - 1,
3047 E820_TYPE_RAM);
3048 }
3049
3050 /* Bits which may be returned by set_spte() */
3051 #define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
3052 #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
3053
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)3054 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3055 unsigned pte_access, int level,
3056 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3057 bool can_unsync, bool host_writable)
3058 {
3059 u64 spte = 0;
3060 int ret = 0;
3061 struct kvm_mmu_page *sp;
3062
3063 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
3064 return 0;
3065
3066 sp = page_header(__pa(sptep));
3067 if (sp_ad_disabled(sp))
3068 spte |= SPTE_AD_DISABLED_MASK;
3069 else if (kvm_vcpu_ad_need_write_protect(vcpu))
3070 spte |= SPTE_AD_WRPROT_ONLY_MASK;
3071
3072 /*
3073 * For the EPT case, shadow_present_mask is 0 if hardware
3074 * supports exec-only page table entries. In that case,
3075 * ACC_USER_MASK and shadow_user_mask are used to represent
3076 * read access. See FNAME(gpte_access) in paging_tmpl.h.
3077 */
3078 spte |= shadow_present_mask;
3079 if (!speculative)
3080 spte |= spte_shadow_accessed_mask(spte);
3081
3082 if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3083 is_nx_huge_page_enabled()) {
3084 pte_access &= ~ACC_EXEC_MASK;
3085 }
3086
3087 if (pte_access & ACC_EXEC_MASK)
3088 spte |= shadow_x_mask;
3089 else
3090 spte |= shadow_nx_mask;
3091
3092 if (pte_access & ACC_USER_MASK)
3093 spte |= shadow_user_mask;
3094
3095 if (level > PT_PAGE_TABLE_LEVEL)
3096 spte |= PT_PAGE_SIZE_MASK;
3097 if (tdp_enabled)
3098 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
3099 kvm_is_mmio_pfn(pfn));
3100
3101 if (host_writable)
3102 spte |= SPTE_HOST_WRITEABLE;
3103 else
3104 pte_access &= ~ACC_WRITE_MASK;
3105
3106 if (!kvm_is_mmio_pfn(pfn))
3107 spte |= shadow_me_mask;
3108
3109 spte |= (u64)pfn << PAGE_SHIFT;
3110
3111 if (pte_access & ACC_WRITE_MASK) {
3112
3113 /*
3114 * Other vcpu creates new sp in the window between
3115 * mapping_level() and acquiring mmu-lock. We can
3116 * allow guest to retry the access, the mapping can
3117 * be fixed if guest refault.
3118 */
3119 if (level > PT_PAGE_TABLE_LEVEL &&
3120 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
3121 goto done;
3122
3123 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
3124
3125 /*
3126 * Optimization: for pte sync, if spte was writable the hash
3127 * lookup is unnecessary (and expensive). Write protection
3128 * is responsibility of mmu_get_page / kvm_sync_page.
3129 * Same reasoning can be applied to dirty page accounting.
3130 */
3131 if (!can_unsync && is_writable_pte(*sptep))
3132 goto set_pte;
3133
3134 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
3135 pgprintk("%s: found shadow page for %llx, marking ro\n",
3136 __func__, gfn);
3137 ret |= SET_SPTE_WRITE_PROTECTED_PT;
3138 pte_access &= ~ACC_WRITE_MASK;
3139 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
3140 }
3141 }
3142
3143 if (pte_access & ACC_WRITE_MASK) {
3144 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3145 spte |= spte_shadow_dirty_mask(spte);
3146 }
3147
3148 if (speculative)
3149 spte = mark_spte_for_access_track(spte);
3150
3151 set_pte:
3152 if (mmu_spte_update(sptep, spte))
3153 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
3154 done:
3155 return ret;
3156 }
3157
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int write_fault,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool host_writable)3158 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
3159 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
3160 bool speculative, bool host_writable)
3161 {
3162 int was_rmapped = 0;
3163 int rmap_count;
3164 int set_spte_ret;
3165 int ret = RET_PF_RETRY;
3166 bool flush = false;
3167
3168 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3169 *sptep, write_fault, gfn);
3170
3171 if (is_shadow_present_pte(*sptep)) {
3172 /*
3173 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3174 * the parent of the now unreachable PTE.
3175 */
3176 if (level > PT_PAGE_TABLE_LEVEL &&
3177 !is_large_pte(*sptep)) {
3178 struct kvm_mmu_page *child;
3179 u64 pte = *sptep;
3180
3181 child = page_header(pte & PT64_BASE_ADDR_MASK);
3182 drop_parent_pte(child, sptep);
3183 flush = true;
3184 } else if (pfn != spte_to_pfn(*sptep)) {
3185 pgprintk("hfn old %llx new %llx\n",
3186 spte_to_pfn(*sptep), pfn);
3187 drop_spte(vcpu->kvm, sptep);
3188 flush = true;
3189 } else
3190 was_rmapped = 1;
3191 }
3192
3193 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3194 speculative, true, host_writable);
3195 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
3196 if (write_fault)
3197 ret = RET_PF_EMULATE;
3198 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3199 }
3200
3201 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
3202 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3203 KVM_PAGES_PER_HPAGE(level));
3204
3205 if (unlikely(is_mmio_spte(*sptep)))
3206 ret = RET_PF_EMULATE;
3207
3208 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
3209 trace_kvm_mmu_set_spte(level, gfn, sptep);
3210 if (!was_rmapped && is_large_pte(*sptep))
3211 ++vcpu->kvm->stat.lpages;
3212
3213 if (is_shadow_present_pte(*sptep)) {
3214 if (!was_rmapped) {
3215 rmap_count = rmap_add(vcpu, sptep, gfn);
3216 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3217 rmap_recycle(vcpu, sptep, gfn);
3218 }
3219 }
3220
3221 return ret;
3222 }
3223
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)3224 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
3225 bool no_dirty_log)
3226 {
3227 struct kvm_memory_slot *slot;
3228
3229 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
3230 if (!slot)
3231 return KVM_PFN_ERR_FAULT;
3232
3233 return gfn_to_pfn_memslot_atomic(slot, gfn);
3234 }
3235
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)3236 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3237 struct kvm_mmu_page *sp,
3238 u64 *start, u64 *end)
3239 {
3240 struct page *pages[PTE_PREFETCH_NUM];
3241 struct kvm_memory_slot *slot;
3242 unsigned access = sp->role.access;
3243 int i, ret;
3244 gfn_t gfn;
3245
3246 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
3247 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3248 if (!slot)
3249 return -1;
3250
3251 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
3252 if (ret <= 0)
3253 return -1;
3254
3255 for (i = 0; i < ret; i++, gfn++, start++) {
3256 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3257 page_to_pfn(pages[i]), true, true);
3258 put_page(pages[i]);
3259 }
3260
3261 return 0;
3262 }
3263
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)3264 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3265 struct kvm_mmu_page *sp, u64 *sptep)
3266 {
3267 u64 *spte, *start = NULL;
3268 int i;
3269
3270 WARN_ON(!sp->role.direct);
3271
3272 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3273 spte = sp->spt + i;
3274
3275 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3276 if (is_shadow_present_pte(*spte) || spte == sptep) {
3277 if (!start)
3278 continue;
3279 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3280 break;
3281 start = NULL;
3282 } else if (!start)
3283 start = spte;
3284 }
3285 }
3286
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)3287 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3288 {
3289 struct kvm_mmu_page *sp;
3290
3291 sp = page_header(__pa(sptep));
3292
3293 /*
3294 * Without accessed bits, there's no way to distinguish between
3295 * actually accessed translations and prefetched, so disable pte
3296 * prefetch if accessed bits aren't available.
3297 */
3298 if (sp_ad_disabled(sp))
3299 return;
3300
3301 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3302 return;
3303
3304 __direct_pte_prefetch(vcpu, sp, sptep);
3305 }
3306
disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,gfn_t gfn,kvm_pfn_t * pfnp,int * levelp)3307 static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3308 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3309 {
3310 int level = *levelp;
3311 u64 spte = *it.sptep;
3312
3313 if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3314 is_nx_huge_page_enabled() &&
3315 is_shadow_present_pte(spte) &&
3316 !is_large_pte(spte)) {
3317 /*
3318 * A small SPTE exists for this pfn, but FNAME(fetch)
3319 * and __direct_map would like to create a large PTE
3320 * instead: just force them to go down another level,
3321 * patching back for them into pfn the next 9 bits of
3322 * the address.
3323 */
3324 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3325 *pfnp |= gfn & page_mask;
3326 (*levelp)--;
3327 }
3328 }
3329
__direct_map(struct kvm_vcpu * vcpu,gpa_t gpa,int write,int map_writable,int level,kvm_pfn_t pfn,bool prefault,bool lpage_disallowed)3330 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
3331 int map_writable, int level, kvm_pfn_t pfn,
3332 bool prefault, bool lpage_disallowed)
3333 {
3334 struct kvm_shadow_walk_iterator it;
3335 struct kvm_mmu_page *sp;
3336 int ret;
3337 gfn_t gfn = gpa >> PAGE_SHIFT;
3338 gfn_t base_gfn = gfn;
3339
3340 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3341 return RET_PF_RETRY;
3342
3343 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3344 for_each_shadow_entry(vcpu, gpa, it) {
3345 /*
3346 * We cannot overwrite existing page tables with an NX
3347 * large page, as the leaf could be executable.
3348 */
3349 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3350
3351 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3352 if (it.level == level)
3353 break;
3354
3355 drop_large_spte(vcpu, it.sptep);
3356 if (!is_shadow_present_pte(*it.sptep)) {
3357 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3358 it.level - 1, true, ACC_ALL);
3359
3360 link_shadow_page(vcpu, it.sptep, sp);
3361 if (lpage_disallowed)
3362 account_huge_nx_page(vcpu->kvm, sp);
3363 }
3364 }
3365
3366 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3367 write, level, base_gfn, pfn, prefault,
3368 map_writable);
3369 direct_pte_prefetch(vcpu, it.sptep);
3370 ++vcpu->stat.pf_fixed;
3371 return ret;
3372 }
3373
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)3374 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3375 {
3376 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3377 }
3378
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn)3379 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3380 {
3381 /*
3382 * Do not cache the mmio info caused by writing the readonly gfn
3383 * into the spte otherwise read access on readonly gfn also can
3384 * caused mmio page fault and treat it as mmio access.
3385 */
3386 if (pfn == KVM_PFN_ERR_RO_FAULT)
3387 return RET_PF_EMULATE;
3388
3389 if (pfn == KVM_PFN_ERR_HWPOISON) {
3390 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3391 return RET_PF_RETRY;
3392 }
3393
3394 return -EFAULT;
3395 }
3396
transparent_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t * pfnp,int * levelp)3397 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3398 gfn_t gfn, kvm_pfn_t *pfnp,
3399 int *levelp)
3400 {
3401 kvm_pfn_t pfn = *pfnp;
3402 int level = *levelp;
3403
3404 /*
3405 * Check if it's a transparent hugepage. If this would be an
3406 * hugetlbfs page, level wouldn't be set to
3407 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3408 * here.
3409 */
3410 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3411 !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
3412 PageTransCompoundMap(pfn_to_page(pfn)) &&
3413 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3414 unsigned long mask;
3415 /*
3416 * mmu_notifier_retry was successful and we hold the
3417 * mmu_lock here, so the pmd can't become splitting
3418 * from under us, and in turn
3419 * __split_huge_page_refcount() can't run from under
3420 * us and we can safely transfer the refcount from
3421 * PG_tail to PG_head as we switch the pfn to tail to
3422 * head.
3423 */
3424 *levelp = level = PT_DIRECTORY_LEVEL;
3425 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3426 VM_BUG_ON((gfn & mask) != (pfn & mask));
3427 if (pfn & mask) {
3428 kvm_release_pfn_clean(pfn);
3429 pfn &= ~mask;
3430 kvm_get_pfn(pfn);
3431 *pfnp = pfn;
3432 }
3433 }
3434 }
3435
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,kvm_pfn_t pfn,unsigned access,int * ret_val)3436 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3437 kvm_pfn_t pfn, unsigned access, int *ret_val)
3438 {
3439 /* The pfn is invalid, report the error! */
3440 if (unlikely(is_error_pfn(pfn))) {
3441 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3442 return true;
3443 }
3444
3445 if (unlikely(is_noslot_pfn(pfn)))
3446 vcpu_cache_mmio_info(vcpu, gva, gfn,
3447 access & shadow_mmio_access_mask);
3448
3449 return false;
3450 }
3451
page_fault_can_be_fast(u32 error_code)3452 static bool page_fault_can_be_fast(u32 error_code)
3453 {
3454 /*
3455 * Do not fix the mmio spte with invalid generation number which
3456 * need to be updated by slow page fault path.
3457 */
3458 if (unlikely(error_code & PFERR_RSVD_MASK))
3459 return false;
3460
3461 /* See if the page fault is due to an NX violation */
3462 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3463 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3464 return false;
3465
3466 /*
3467 * #PF can be fast if:
3468 * 1. The shadow page table entry is not present, which could mean that
3469 * the fault is potentially caused by access tracking (if enabled).
3470 * 2. The shadow page table entry is present and the fault
3471 * is caused by write-protect, that means we just need change the W
3472 * bit of the spte which can be done out of mmu-lock.
3473 *
3474 * However, if access tracking is disabled we know that a non-present
3475 * page must be a genuine page fault where we have to create a new SPTE.
3476 * So, if access tracking is disabled, we return true only for write
3477 * accesses to a present page.
3478 */
3479
3480 return shadow_acc_track_mask != 0 ||
3481 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3482 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3483 }
3484
3485 /*
3486 * Returns true if the SPTE was fixed successfully. Otherwise,
3487 * someone else modified the SPTE from its original value.
3488 */
3489 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 old_spte,u64 new_spte)3490 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3491 u64 *sptep, u64 old_spte, u64 new_spte)
3492 {
3493 gfn_t gfn;
3494
3495 WARN_ON(!sp->role.direct);
3496
3497 /*
3498 * Theoretically we could also set dirty bit (and flush TLB) here in
3499 * order to eliminate unnecessary PML logging. See comments in
3500 * set_spte. But fast_page_fault is very unlikely to happen with PML
3501 * enabled, so we do not do this. This might result in the same GPA
3502 * to be logged in PML buffer again when the write really happens, and
3503 * eventually to be called by mark_page_dirty twice. But it's also no
3504 * harm. This also avoids the TLB flush needed after setting dirty bit
3505 * so non-PML cases won't be impacted.
3506 *
3507 * Compare with set_spte where instead shadow_dirty_mask is set.
3508 */
3509 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3510 return false;
3511
3512 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3513 /*
3514 * The gfn of direct spte is stable since it is
3515 * calculated by sp->gfn.
3516 */
3517 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3518 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3519 }
3520
3521 return true;
3522 }
3523
is_access_allowed(u32 fault_err_code,u64 spte)3524 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3525 {
3526 if (fault_err_code & PFERR_FETCH_MASK)
3527 return is_executable_pte(spte);
3528
3529 if (fault_err_code & PFERR_WRITE_MASK)
3530 return is_writable_pte(spte);
3531
3532 /* Fault was on Read access */
3533 return spte & PT_PRESENT_MASK;
3534 }
3535
3536 /*
3537 * Return value:
3538 * - true: let the vcpu to access on the same address again.
3539 * - false: let the real page fault path to fix it.
3540 */
fast_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int level,u32 error_code)3541 static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, int level,
3542 u32 error_code)
3543 {
3544 struct kvm_shadow_walk_iterator iterator;
3545 struct kvm_mmu_page *sp;
3546 bool fault_handled = false;
3547 u64 spte = 0ull;
3548 uint retry_count = 0;
3549
3550 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3551 return false;
3552
3553 if (!page_fault_can_be_fast(error_code))
3554 return false;
3555
3556 walk_shadow_page_lockless_begin(vcpu);
3557
3558 do {
3559 u64 new_spte;
3560
3561 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3562 if (!is_shadow_present_pte(spte) ||
3563 iterator.level < level)
3564 break;
3565
3566 sp = page_header(__pa(iterator.sptep));
3567 if (!is_last_spte(spte, sp->role.level))
3568 break;
3569
3570 /*
3571 * Check whether the memory access that caused the fault would
3572 * still cause it if it were to be performed right now. If not,
3573 * then this is a spurious fault caused by TLB lazily flushed,
3574 * or some other CPU has already fixed the PTE after the
3575 * current CPU took the fault.
3576 *
3577 * Need not check the access of upper level table entries since
3578 * they are always ACC_ALL.
3579 */
3580 if (is_access_allowed(error_code, spte)) {
3581 fault_handled = true;
3582 break;
3583 }
3584
3585 new_spte = spte;
3586
3587 if (is_access_track_spte(spte))
3588 new_spte = restore_acc_track_spte(new_spte);
3589
3590 /*
3591 * Currently, to simplify the code, write-protection can
3592 * be removed in the fast path only if the SPTE was
3593 * write-protected for dirty-logging or access tracking.
3594 */
3595 if ((error_code & PFERR_WRITE_MASK) &&
3596 spte_can_locklessly_be_made_writable(spte))
3597 {
3598 new_spte |= PT_WRITABLE_MASK;
3599
3600 /*
3601 * Do not fix write-permission on the large spte. Since
3602 * we only dirty the first page into the dirty-bitmap in
3603 * fast_pf_fix_direct_spte(), other pages are missed
3604 * if its slot has dirty logging enabled.
3605 *
3606 * Instead, we let the slow page fault path create a
3607 * normal spte to fix the access.
3608 *
3609 * See the comments in kvm_arch_commit_memory_region().
3610 */
3611 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3612 break;
3613 }
3614
3615 /* Verify that the fault can be handled in the fast path */
3616 if (new_spte == spte ||
3617 !is_access_allowed(error_code, new_spte))
3618 break;
3619
3620 /*
3621 * Currently, fast page fault only works for direct mapping
3622 * since the gfn is not stable for indirect shadow page. See
3623 * Documentation/virt/kvm/locking.txt to get more detail.
3624 */
3625 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3626 iterator.sptep, spte,
3627 new_spte);
3628 if (fault_handled)
3629 break;
3630
3631 if (++retry_count > 4) {
3632 printk_once(KERN_WARNING
3633 "kvm: Fast #PF retrying more than 4 times.\n");
3634 break;
3635 }
3636
3637 } while (true);
3638
3639 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3640 spte, fault_handled);
3641 walk_shadow_page_lockless_end(vcpu);
3642
3643 return fault_handled;
3644 }
3645
3646 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3647 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3648 bool *writable);
3649 static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
3650
nonpaging_map(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,gfn_t gfn,bool prefault)3651 static int nonpaging_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3652 gfn_t gfn, bool prefault)
3653 {
3654 int r;
3655 int level;
3656 bool force_pt_level;
3657 kvm_pfn_t pfn;
3658 unsigned long mmu_seq;
3659 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3660 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
3661 is_nx_huge_page_enabled();
3662
3663 force_pt_level = lpage_disallowed;
3664 level = mapping_level(vcpu, gfn, &force_pt_level);
3665 if (likely(!force_pt_level)) {
3666 /*
3667 * This path builds a PAE pagetable - so we can map
3668 * 2mb pages at maximum. Therefore check if the level
3669 * is larger than that.
3670 */
3671 if (level > PT_DIRECTORY_LEVEL)
3672 level = PT_DIRECTORY_LEVEL;
3673
3674 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3675 }
3676
3677 if (fast_page_fault(vcpu, gpa, level, error_code))
3678 return RET_PF_RETRY;
3679
3680 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3681 smp_rmb();
3682
3683 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3684 return RET_PF_RETRY;
3685
3686 if (handle_abnormal_pfn(vcpu, gpa, gfn, pfn, ACC_ALL, &r))
3687 return r;
3688
3689 r = RET_PF_RETRY;
3690 spin_lock(&vcpu->kvm->mmu_lock);
3691 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3692 goto out_unlock;
3693 if (make_mmu_pages_available(vcpu) < 0)
3694 goto out_unlock;
3695 if (likely(!force_pt_level))
3696 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
3697 r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
3698 prefault, false);
3699 out_unlock:
3700 spin_unlock(&vcpu->kvm->mmu_lock);
3701 kvm_release_pfn_clean(pfn);
3702 return r;
3703 }
3704
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3705 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3706 struct list_head *invalid_list)
3707 {
3708 struct kvm_mmu_page *sp;
3709
3710 if (!VALID_PAGE(*root_hpa))
3711 return;
3712
3713 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3714 --sp->root_count;
3715 if (!sp->root_count && sp->role.invalid)
3716 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3717
3718 *root_hpa = INVALID_PAGE;
3719 }
3720
3721 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,ulong roots_to_free)3722 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3723 ulong roots_to_free)
3724 {
3725 int i;
3726 LIST_HEAD(invalid_list);
3727 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3728
3729 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3730
3731 /* Before acquiring the MMU lock, see if we need to do any real work. */
3732 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3733 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3734 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3735 VALID_PAGE(mmu->prev_roots[i].hpa))
3736 break;
3737
3738 if (i == KVM_MMU_NUM_PREV_ROOTS)
3739 return;
3740 }
3741
3742 spin_lock(&vcpu->kvm->mmu_lock);
3743
3744 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3745 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3746 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3747 &invalid_list);
3748
3749 if (free_active_root) {
3750 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3751 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3752 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3753 &invalid_list);
3754 } else {
3755 for (i = 0; i < 4; ++i)
3756 if (mmu->pae_root[i] != 0)
3757 mmu_free_root_page(vcpu->kvm,
3758 &mmu->pae_root[i],
3759 &invalid_list);
3760 mmu->root_hpa = INVALID_PAGE;
3761 }
3762 mmu->root_cr3 = 0;
3763 }
3764
3765 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3766 spin_unlock(&vcpu->kvm->mmu_lock);
3767 }
3768 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3769
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3770 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3771 {
3772 int ret = 0;
3773
3774 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3775 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3776 ret = 1;
3777 }
3778
3779 return ret;
3780 }
3781
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3782 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3783 {
3784 struct kvm_mmu_page *sp;
3785 unsigned i;
3786
3787 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3788 spin_lock(&vcpu->kvm->mmu_lock);
3789 if(make_mmu_pages_available(vcpu) < 0) {
3790 spin_unlock(&vcpu->kvm->mmu_lock);
3791 return -ENOSPC;
3792 }
3793 sp = kvm_mmu_get_page(vcpu, 0, 0,
3794 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
3795 ++sp->root_count;
3796 spin_unlock(&vcpu->kvm->mmu_lock);
3797 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3798 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
3799 for (i = 0; i < 4; ++i) {
3800 hpa_t root = vcpu->arch.mmu->pae_root[i];
3801
3802 MMU_WARN_ON(VALID_PAGE(root));
3803 spin_lock(&vcpu->kvm->mmu_lock);
3804 if (make_mmu_pages_available(vcpu) < 0) {
3805 spin_unlock(&vcpu->kvm->mmu_lock);
3806 return -ENOSPC;
3807 }
3808 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3809 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3810 root = __pa(sp->spt);
3811 ++sp->root_count;
3812 spin_unlock(&vcpu->kvm->mmu_lock);
3813 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3814 }
3815 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3816 } else
3817 BUG();
3818 vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3819
3820 return 0;
3821 }
3822
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3823 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3824 {
3825 struct kvm_mmu_page *sp;
3826 u64 pdptr, pm_mask;
3827 gfn_t root_gfn, root_cr3;
3828 int i;
3829
3830 root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3831 root_gfn = root_cr3 >> PAGE_SHIFT;
3832
3833 if (mmu_check_root(vcpu, root_gfn))
3834 return 1;
3835
3836 /*
3837 * Do we shadow a long mode page table? If so we need to
3838 * write-protect the guests page table root.
3839 */
3840 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3841 hpa_t root = vcpu->arch.mmu->root_hpa;
3842
3843 MMU_WARN_ON(VALID_PAGE(root));
3844
3845 spin_lock(&vcpu->kvm->mmu_lock);
3846 if (make_mmu_pages_available(vcpu) < 0) {
3847 spin_unlock(&vcpu->kvm->mmu_lock);
3848 return -ENOSPC;
3849 }
3850 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
3851 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
3852 root = __pa(sp->spt);
3853 ++sp->root_count;
3854 spin_unlock(&vcpu->kvm->mmu_lock);
3855 vcpu->arch.mmu->root_hpa = root;
3856 goto set_root_cr3;
3857 }
3858
3859 /*
3860 * We shadow a 32 bit page table. This may be a legacy 2-level
3861 * or a PAE 3-level page table. In either case we need to be aware that
3862 * the shadow page table may be a PAE or a long mode page table.
3863 */
3864 pm_mask = PT_PRESENT_MASK;
3865 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3866 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3867
3868 for (i = 0; i < 4; ++i) {
3869 hpa_t root = vcpu->arch.mmu->pae_root[i];
3870
3871 MMU_WARN_ON(VALID_PAGE(root));
3872 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3873 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3874 if (!(pdptr & PT_PRESENT_MASK)) {
3875 vcpu->arch.mmu->pae_root[i] = 0;
3876 continue;
3877 }
3878 root_gfn = pdptr >> PAGE_SHIFT;
3879 if (mmu_check_root(vcpu, root_gfn))
3880 return 1;
3881 }
3882 spin_lock(&vcpu->kvm->mmu_lock);
3883 if (make_mmu_pages_available(vcpu) < 0) {
3884 spin_unlock(&vcpu->kvm->mmu_lock);
3885 return -ENOSPC;
3886 }
3887 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3888 0, ACC_ALL);
3889 root = __pa(sp->spt);
3890 ++sp->root_count;
3891 spin_unlock(&vcpu->kvm->mmu_lock);
3892
3893 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3894 }
3895 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3896
3897 /*
3898 * If we shadow a 32 bit page table with a long mode page
3899 * table we enter this path.
3900 */
3901 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3902 if (vcpu->arch.mmu->lm_root == NULL) {
3903 /*
3904 * The additional page necessary for this is only
3905 * allocated on demand.
3906 */
3907
3908 u64 *lm_root;
3909
3910 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3911 if (lm_root == NULL)
3912 return 1;
3913
3914 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3915
3916 vcpu->arch.mmu->lm_root = lm_root;
3917 }
3918
3919 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3920 }
3921
3922 set_root_cr3:
3923 vcpu->arch.mmu->root_cr3 = root_cr3;
3924
3925 return 0;
3926 }
3927
mmu_alloc_roots(struct kvm_vcpu * vcpu)3928 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3929 {
3930 if (vcpu->arch.mmu->direct_map)
3931 return mmu_alloc_direct_roots(vcpu);
3932 else
3933 return mmu_alloc_shadow_roots(vcpu);
3934 }
3935
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3936 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3937 {
3938 int i;
3939 struct kvm_mmu_page *sp;
3940
3941 if (vcpu->arch.mmu->direct_map)
3942 return;
3943
3944 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3945 return;
3946
3947 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3948
3949 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3950 hpa_t root = vcpu->arch.mmu->root_hpa;
3951 sp = page_header(root);
3952
3953 /*
3954 * Even if another CPU was marking the SP as unsync-ed
3955 * simultaneously, any guest page table changes are not
3956 * guaranteed to be visible anyway until this VCPU issues a TLB
3957 * flush strictly after those changes are made. We only need to
3958 * ensure that the other CPU sets these flags before any actual
3959 * changes to the page tables are made. The comments in
3960 * mmu_need_write_protect() describe what could go wrong if this
3961 * requirement isn't satisfied.
3962 */
3963 if (!smp_load_acquire(&sp->unsync) &&
3964 !smp_load_acquire(&sp->unsync_children))
3965 return;
3966
3967 spin_lock(&vcpu->kvm->mmu_lock);
3968 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3969
3970 mmu_sync_children(vcpu, sp);
3971
3972 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3973 spin_unlock(&vcpu->kvm->mmu_lock);
3974 return;
3975 }
3976
3977 spin_lock(&vcpu->kvm->mmu_lock);
3978 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3979
3980 for (i = 0; i < 4; ++i) {
3981 hpa_t root = vcpu->arch.mmu->pae_root[i];
3982
3983 if (root && VALID_PAGE(root)) {
3984 root &= PT64_BASE_ADDR_MASK;
3985 sp = page_header(root);
3986 mmu_sync_children(vcpu, sp);
3987 }
3988 }
3989
3990 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3991 spin_unlock(&vcpu->kvm->mmu_lock);
3992 }
3993 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3994
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3995 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3996 u32 access, struct x86_exception *exception)
3997 {
3998 if (exception)
3999 exception->error_code = 0;
4000 return vaddr;
4001 }
4002
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)4003 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
4004 u32 access,
4005 struct x86_exception *exception)
4006 {
4007 if (exception)
4008 exception->error_code = 0;
4009 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
4010 }
4011
4012 static bool
__is_rsvd_bits_set(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)4013 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
4014 {
4015 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
4016
4017 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
4018 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
4019 }
4020
is_rsvd_bits_set(struct kvm_mmu * mmu,u64 gpte,int level)4021 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
4022 {
4023 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
4024 }
4025
is_shadow_zero_bits_set(struct kvm_mmu * mmu,u64 spte,int level)4026 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
4027 {
4028 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
4029 }
4030
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)4031 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4032 {
4033 /*
4034 * A nested guest cannot use the MMIO cache if it is using nested
4035 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4036 */
4037 if (mmu_is_nested(vcpu))
4038 return false;
4039
4040 if (direct)
4041 return vcpu_match_mmio_gpa(vcpu, addr);
4042
4043 return vcpu_match_mmio_gva(vcpu, addr);
4044 }
4045
4046 /* return true if reserved bit is detected on spte. */
4047 static bool
walk_shadow_page_get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)4048 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4049 {
4050 struct kvm_shadow_walk_iterator iterator;
4051 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
4052 int root, leaf;
4053 bool reserved = false;
4054
4055 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4056 goto exit;
4057
4058 walk_shadow_page_lockless_begin(vcpu);
4059
4060 for (shadow_walk_init(&iterator, vcpu, addr),
4061 leaf = root = iterator.level;
4062 shadow_walk_okay(&iterator);
4063 __shadow_walk_next(&iterator, spte)) {
4064 spte = mmu_spte_get_lockless(iterator.sptep);
4065
4066 sptes[leaf - 1] = spte;
4067 leaf--;
4068
4069 if (!is_shadow_present_pte(spte))
4070 break;
4071
4072 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
4073 iterator.level);
4074 }
4075
4076 walk_shadow_page_lockless_end(vcpu);
4077
4078 if (reserved) {
4079 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
4080 __func__, addr);
4081 while (root > leaf) {
4082 pr_err("------ spte 0x%llx level %d.\n",
4083 sptes[root - 1], root);
4084 root--;
4085 }
4086 }
4087 exit:
4088 *sptep = spte;
4089 return reserved;
4090 }
4091
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)4092 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4093 {
4094 u64 spte;
4095 bool reserved;
4096
4097 if (mmio_info_in_cache(vcpu, addr, direct))
4098 return RET_PF_EMULATE;
4099
4100 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
4101 if (WARN_ON(reserved))
4102 return -EINVAL;
4103
4104 if (is_mmio_spte(spte)) {
4105 gfn_t gfn = get_mmio_spte_gfn(spte);
4106 unsigned access = get_mmio_spte_access(spte);
4107
4108 if (!check_mmio_spte(vcpu, spte))
4109 return RET_PF_INVALID;
4110
4111 if (direct)
4112 addr = 0;
4113
4114 trace_handle_mmio_page_fault(addr, gfn, access);
4115 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4116 return RET_PF_EMULATE;
4117 }
4118
4119 /*
4120 * If the page table is zapped by other cpus, let CPU fault again on
4121 * the address.
4122 */
4123 return RET_PF_RETRY;
4124 }
4125
page_fault_handle_page_track(struct kvm_vcpu * vcpu,u32 error_code,gfn_t gfn)4126 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4127 u32 error_code, gfn_t gfn)
4128 {
4129 if (unlikely(error_code & PFERR_RSVD_MASK))
4130 return false;
4131
4132 if (!(error_code & PFERR_PRESENT_MASK) ||
4133 !(error_code & PFERR_WRITE_MASK))
4134 return false;
4135
4136 /*
4137 * guest is writing the page which is write tracked which can
4138 * not be fixed by page fault handler.
4139 */
4140 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4141 return true;
4142
4143 return false;
4144 }
4145
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)4146 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4147 {
4148 struct kvm_shadow_walk_iterator iterator;
4149 u64 spte;
4150
4151 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
4152 return;
4153
4154 walk_shadow_page_lockless_begin(vcpu);
4155 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4156 clear_sp_write_flooding_count(iterator.sptep);
4157 if (!is_shadow_present_pte(spte))
4158 break;
4159 }
4160 walk_shadow_page_lockless_end(vcpu);
4161 }
4162
nonpaging_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)4163 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4164 u32 error_code, bool prefault)
4165 {
4166 gfn_t gfn = gpa >> PAGE_SHIFT;
4167 int r;
4168
4169 /* Note, paging is disabled, ergo gva == gpa. */
4170 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4171
4172 if (page_fault_handle_page_track(vcpu, error_code, gfn))
4173 return RET_PF_EMULATE;
4174
4175 r = mmu_topup_memory_caches(vcpu);
4176 if (r)
4177 return r;
4178
4179 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4180
4181
4182 return nonpaging_map(vcpu, gpa & PAGE_MASK,
4183 error_code, gfn, prefault);
4184 }
4185
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,gfn_t gfn)4186 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4187 gfn_t gfn)
4188 {
4189 struct kvm_arch_async_pf arch;
4190
4191 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4192 arch.gfn = gfn;
4193 arch.direct_map = vcpu->arch.mmu->direct_map;
4194 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
4195
4196 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4197 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
4198 }
4199
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gpa_t cr2_or_gpa,kvm_pfn_t * pfn,bool write,bool * writable)4200 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
4201 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4202 bool *writable)
4203 {
4204 struct kvm_memory_slot *slot;
4205 bool async;
4206
4207 /*
4208 * Don't expose private memslots to L2.
4209 */
4210 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4211 *pfn = KVM_PFN_NOSLOT;
4212 return false;
4213 }
4214
4215 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
4216 async = false;
4217 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
4218 if (!async)
4219 return false; /* *pfn has correct page already */
4220
4221 if (!prefault && kvm_can_do_async_pf(vcpu)) {
4222 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
4223 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4224 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
4225 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4226 return true;
4227 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
4228 return true;
4229 }
4230
4231 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
4232 return false;
4233 }
4234
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)4235 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4236 u64 fault_address, char *insn, int insn_len)
4237 {
4238 int r = 1;
4239
4240 #ifndef CONFIG_X86_64
4241 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4242 if (WARN_ON_ONCE(fault_address >> 32))
4243 return -EFAULT;
4244 #endif
4245
4246 vcpu->arch.l1tf_flush_l1d = true;
4247 switch (vcpu->arch.apf.host_apf_reason) {
4248 default:
4249 trace_kvm_page_fault(fault_address, error_code);
4250
4251 if (kvm_event_needs_reinjection(vcpu))
4252 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4253 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4254 insn_len);
4255 break;
4256 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4257 vcpu->arch.apf.host_apf_reason = 0;
4258 local_irq_disable();
4259 kvm_async_pf_task_wait(fault_address, 0);
4260 local_irq_enable();
4261 break;
4262 case KVM_PV_REASON_PAGE_READY:
4263 vcpu->arch.apf.host_apf_reason = 0;
4264 local_irq_disable();
4265 kvm_async_pf_task_wake(fault_address);
4266 local_irq_enable();
4267 break;
4268 }
4269 return r;
4270 }
4271 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4272
4273 static bool
check_hugepage_cache_consistency(struct kvm_vcpu * vcpu,gfn_t gfn,int level)4274 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4275 {
4276 int page_num = KVM_PAGES_PER_HPAGE(level);
4277
4278 gfn &= ~(page_num - 1);
4279
4280 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4281 }
4282
tdp_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)4283 static int tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4284 bool prefault)
4285 {
4286 kvm_pfn_t pfn;
4287 int r;
4288 int level;
4289 bool force_pt_level;
4290 gfn_t gfn = gpa >> PAGE_SHIFT;
4291 unsigned long mmu_seq;
4292 int write = error_code & PFERR_WRITE_MASK;
4293 bool map_writable;
4294 bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
4295 is_nx_huge_page_enabled();
4296
4297 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
4298
4299 if (page_fault_handle_page_track(vcpu, error_code, gfn))
4300 return RET_PF_EMULATE;
4301
4302 r = mmu_topup_memory_caches(vcpu);
4303 if (r)
4304 return r;
4305
4306 force_pt_level =
4307 lpage_disallowed ||
4308 !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
4309 level = mapping_level(vcpu, gfn, &force_pt_level);
4310 if (likely(!force_pt_level)) {
4311 if (level > PT_DIRECTORY_LEVEL &&
4312 !check_hugepage_cache_consistency(vcpu, gfn, level))
4313 level = PT_DIRECTORY_LEVEL;
4314 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
4315 }
4316
4317 if (fast_page_fault(vcpu, gpa, level, error_code))
4318 return RET_PF_RETRY;
4319
4320 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4321 smp_rmb();
4322
4323 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4324 return RET_PF_RETRY;
4325
4326 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4327 return r;
4328
4329 r = RET_PF_RETRY;
4330 spin_lock(&vcpu->kvm->mmu_lock);
4331 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4332 goto out_unlock;
4333 if (make_mmu_pages_available(vcpu) < 0)
4334 goto out_unlock;
4335 if (likely(!force_pt_level))
4336 transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
4337 r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
4338 prefault, lpage_disallowed);
4339 out_unlock:
4340 spin_unlock(&vcpu->kvm->mmu_lock);
4341 kvm_release_pfn_clean(pfn);
4342 return r;
4343 }
4344
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4345 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4346 struct kvm_mmu *context)
4347 {
4348 context->page_fault = nonpaging_page_fault;
4349 context->gva_to_gpa = nonpaging_gva_to_gpa;
4350 context->sync_page = nonpaging_sync_page;
4351 context->invlpg = nonpaging_invlpg;
4352 context->root_level = 0;
4353 context->shadow_root_level = PT32E_ROOT_LEVEL;
4354 context->direct_map = true;
4355 context->nx = false;
4356 }
4357
4358 /*
4359 * Find out if a previously cached root matching the new CR3/role is available.
4360 * The current root is also inserted into the cache.
4361 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4362 * returned.
4363 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4364 * false is returned. This root should now be freed by the caller.
4365 */
cached_root_available(struct kvm_vcpu * vcpu,gpa_t new_cr3,union kvm_mmu_page_role new_role)4366 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4367 union kvm_mmu_page_role new_role)
4368 {
4369 uint i;
4370 struct kvm_mmu_root_info root;
4371 struct kvm_mmu *mmu = vcpu->arch.mmu;
4372
4373 root.cr3 = mmu->root_cr3;
4374 root.hpa = mmu->root_hpa;
4375
4376 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4377 swap(root, mmu->prev_roots[i]);
4378
4379 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4380 page_header(root.hpa) != NULL &&
4381 new_role.word == page_header(root.hpa)->role.word)
4382 break;
4383 }
4384
4385 mmu->root_hpa = root.hpa;
4386 mmu->root_cr3 = root.cr3;
4387
4388 return i < KVM_MMU_NUM_PREV_ROOTS;
4389 }
4390
fast_cr3_switch(struct kvm_vcpu * vcpu,gpa_t new_cr3,union kvm_mmu_page_role new_role,bool skip_tlb_flush)4391 static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4392 union kvm_mmu_page_role new_role,
4393 bool skip_tlb_flush)
4394 {
4395 struct kvm_mmu *mmu = vcpu->arch.mmu;
4396
4397 /*
4398 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4399 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4400 * later if necessary.
4401 */
4402 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4403 mmu->root_level >= PT64_ROOT_4LEVEL) {
4404 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4405 return false;
4406
4407 if (cached_root_available(vcpu, new_cr3, new_role)) {
4408 /*
4409 * It is possible that the cached previous root page is
4410 * obsolete because of a change in the MMU generation
4411 * number. However, changing the generation number is
4412 * accompanied by KVM_REQ_MMU_RELOAD, which will free
4413 * the root set here and allocate a new one.
4414 */
4415 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
4416 if (!skip_tlb_flush) {
4417 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4418 kvm_x86_ops->tlb_flush(vcpu, true);
4419 }
4420
4421 /*
4422 * The last MMIO access's GVA and GPA are cached in the
4423 * VCPU. When switching to a new CR3, that GVA->GPA
4424 * mapping may no longer be valid. So clear any cached
4425 * MMIO info even when we don't need to sync the shadow
4426 * page tables.
4427 */
4428 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4429
4430 __clear_sp_write_flooding_count(
4431 page_header(mmu->root_hpa));
4432
4433 return true;
4434 }
4435 }
4436
4437 return false;
4438 }
4439
__kvm_mmu_new_cr3(struct kvm_vcpu * vcpu,gpa_t new_cr3,union kvm_mmu_page_role new_role,bool skip_tlb_flush)4440 static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4441 union kvm_mmu_page_role new_role,
4442 bool skip_tlb_flush)
4443 {
4444 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
4445 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4446 KVM_MMU_ROOT_CURRENT);
4447 }
4448
kvm_mmu_new_cr3(struct kvm_vcpu * vcpu,gpa_t new_cr3,bool skip_tlb_flush)4449 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
4450 {
4451 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4452 skip_tlb_flush);
4453 }
4454 EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
4455
get_cr3(struct kvm_vcpu * vcpu)4456 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4457 {
4458 return kvm_read_cr3(vcpu);
4459 }
4460
inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)4461 static void inject_page_fault(struct kvm_vcpu *vcpu,
4462 struct x86_exception *fault)
4463 {
4464 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
4465 }
4466
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned access,int * nr_present)4467 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4468 unsigned access, int *nr_present)
4469 {
4470 if (unlikely(is_mmio_spte(*sptep))) {
4471 if (gfn != get_mmio_spte_gfn(*sptep)) {
4472 mmu_spte_clear_no_track(sptep);
4473 return true;
4474 }
4475
4476 (*nr_present)++;
4477 mark_mmio_spte(vcpu, sptep, gfn, access);
4478 return true;
4479 }
4480
4481 return false;
4482 }
4483
is_last_gpte(struct kvm_mmu * mmu,unsigned level,unsigned gpte)4484 static inline bool is_last_gpte(struct kvm_mmu *mmu,
4485 unsigned level, unsigned gpte)
4486 {
4487 /*
4488 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4489 * If it is clear, there are no large pages at this level, so clear
4490 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4491 */
4492 gpte &= level - mmu->last_nonleaf_level;
4493
4494 /*
4495 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4496 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4497 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4498 */
4499 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4500
4501 return gpte & PT_PAGE_SIZE_MASK;
4502 }
4503
4504 #define PTTYPE_EPT 18 /* arbitrary */
4505 #define PTTYPE PTTYPE_EPT
4506 #include "paging_tmpl.h"
4507 #undef PTTYPE
4508
4509 #define PTTYPE 64
4510 #include "paging_tmpl.h"
4511 #undef PTTYPE
4512
4513 #define PTTYPE 32
4514 #include "paging_tmpl.h"
4515 #undef PTTYPE
4516
4517 static void
__reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct rsvd_bits_validate * rsvd_check,int maxphyaddr,int level,bool nx,bool gbpages,bool pse,bool amd)4518 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4519 struct rsvd_bits_validate *rsvd_check,
4520 int maxphyaddr, int level, bool nx, bool gbpages,
4521 bool pse, bool amd)
4522 {
4523 u64 exb_bit_rsvd = 0;
4524 u64 gbpages_bit_rsvd = 0;
4525 u64 nonleaf_bit8_rsvd = 0;
4526
4527 rsvd_check->bad_mt_xwr = 0;
4528
4529 if (!nx)
4530 exb_bit_rsvd = rsvd_bits(63, 63);
4531 if (!gbpages)
4532 gbpages_bit_rsvd = rsvd_bits(7, 7);
4533
4534 /*
4535 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4536 * leaf entries) on AMD CPUs only.
4537 */
4538 if (amd)
4539 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4540
4541 switch (level) {
4542 case PT32_ROOT_LEVEL:
4543 /* no rsvd bits for 2 level 4K page table entries */
4544 rsvd_check->rsvd_bits_mask[0][1] = 0;
4545 rsvd_check->rsvd_bits_mask[0][0] = 0;
4546 rsvd_check->rsvd_bits_mask[1][0] =
4547 rsvd_check->rsvd_bits_mask[0][0];
4548
4549 if (!pse) {
4550 rsvd_check->rsvd_bits_mask[1][1] = 0;
4551 break;
4552 }
4553
4554 if (is_cpuid_PSE36())
4555 /* 36bits PSE 4MB page */
4556 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4557 else
4558 /* 32 bits PSE 4MB page */
4559 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4560 break;
4561 case PT32E_ROOT_LEVEL:
4562 rsvd_check->rsvd_bits_mask[0][2] =
4563 rsvd_bits(maxphyaddr, 63) |
4564 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
4565 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4566 rsvd_bits(maxphyaddr, 62); /* PDE */
4567 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4568 rsvd_bits(maxphyaddr, 62); /* PTE */
4569 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4570 rsvd_bits(maxphyaddr, 62) |
4571 rsvd_bits(13, 20); /* large page */
4572 rsvd_check->rsvd_bits_mask[1][0] =
4573 rsvd_check->rsvd_bits_mask[0][0];
4574 break;
4575 case PT64_ROOT_5LEVEL:
4576 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4577 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4578 rsvd_bits(maxphyaddr, 51);
4579 rsvd_check->rsvd_bits_mask[1][4] =
4580 rsvd_check->rsvd_bits_mask[0][4];
4581 /* fall through */
4582 case PT64_ROOT_4LEVEL:
4583 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4584 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4585 rsvd_bits(maxphyaddr, 51);
4586 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4587 gbpages_bit_rsvd |
4588 rsvd_bits(maxphyaddr, 51);
4589 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4590 rsvd_bits(maxphyaddr, 51);
4591 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4592 rsvd_bits(maxphyaddr, 51);
4593 rsvd_check->rsvd_bits_mask[1][3] =
4594 rsvd_check->rsvd_bits_mask[0][3];
4595 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4596 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4597 rsvd_bits(13, 29);
4598 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4599 rsvd_bits(maxphyaddr, 51) |
4600 rsvd_bits(13, 20); /* large page */
4601 rsvd_check->rsvd_bits_mask[1][0] =
4602 rsvd_check->rsvd_bits_mask[0][0];
4603 break;
4604 }
4605 }
4606
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4607 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4608 struct kvm_mmu *context)
4609 {
4610 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4611 cpuid_maxphyaddr(vcpu), context->root_level,
4612 context->nx,
4613 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4614 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4615 }
4616
4617 static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,int maxphyaddr,bool execonly)4618 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4619 int maxphyaddr, bool execonly)
4620 {
4621 u64 bad_mt_xwr;
4622
4623 rsvd_check->rsvd_bits_mask[0][4] =
4624 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4625 rsvd_check->rsvd_bits_mask[0][3] =
4626 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4627 rsvd_check->rsvd_bits_mask[0][2] =
4628 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4629 rsvd_check->rsvd_bits_mask[0][1] =
4630 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4631 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4632
4633 /* large page */
4634 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4635 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4636 rsvd_check->rsvd_bits_mask[1][2] =
4637 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4638 rsvd_check->rsvd_bits_mask[1][1] =
4639 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4640 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4641
4642 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4643 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4644 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4645 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4646 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4647 if (!execonly) {
4648 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4649 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4650 }
4651 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4652 }
4653
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4654 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4655 struct kvm_mmu *context, bool execonly)
4656 {
4657 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4658 cpuid_maxphyaddr(vcpu), execonly);
4659 }
4660
4661 /*
4662 * the page table on host is the shadow page table for the page
4663 * table in guest or amd nested guest, its mmu features completely
4664 * follow the features in guest.
4665 */
4666 void
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4667 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4668 {
4669 /*
4670 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4671 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4672 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4673 * The iTLB multi-hit workaround can be toggled at any time, so assume
4674 * NX can be used by any non-nested shadow MMU to avoid having to reset
4675 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled.
4676 */
4677 bool uses_nx = context->nx || !tdp_enabled ||
4678 context->mmu_role.base.smep_andnot_wp;
4679 struct rsvd_bits_validate *shadow_zero_check;
4680 int i;
4681
4682 /*
4683 * Passing "true" to the last argument is okay; it adds a check
4684 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4685 */
4686 shadow_zero_check = &context->shadow_zero_check;
4687 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4688 shadow_phys_bits,
4689 context->shadow_root_level, uses_nx,
4690 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4691 is_pse(vcpu), true);
4692
4693 if (!shadow_me_mask)
4694 return;
4695
4696 for (i = context->shadow_root_level; --i >= 0;) {
4697 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4698 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4699 }
4700
4701 }
4702 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4703
boot_cpu_is_amd(void)4704 static inline bool boot_cpu_is_amd(void)
4705 {
4706 WARN_ON_ONCE(!tdp_enabled);
4707 return shadow_x_mask == 0;
4708 }
4709
4710 /*
4711 * the direct page table on host, use as much mmu features as
4712 * possible, however, kvm currently does not do execution-protection.
4713 */
4714 static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4715 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4716 struct kvm_mmu *context)
4717 {
4718 struct rsvd_bits_validate *shadow_zero_check;
4719 int i;
4720
4721 shadow_zero_check = &context->shadow_zero_check;
4722
4723 if (boot_cpu_is_amd())
4724 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4725 shadow_phys_bits,
4726 context->shadow_root_level, false,
4727 boot_cpu_has(X86_FEATURE_GBPAGES),
4728 true, true);
4729 else
4730 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4731 shadow_phys_bits,
4732 false);
4733
4734 if (!shadow_me_mask)
4735 return;
4736
4737 for (i = context->shadow_root_level; --i >= 0;) {
4738 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4739 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4740 }
4741 }
4742
4743 /*
4744 * as the comments in reset_shadow_zero_bits_mask() except it
4745 * is the shadow page table for intel nested guest.
4746 */
4747 static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4748 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4749 struct kvm_mmu *context, bool execonly)
4750 {
4751 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4752 shadow_phys_bits, execonly);
4753 }
4754
4755 #define BYTE_MASK(access) \
4756 ((1 & (access) ? 2 : 0) | \
4757 (2 & (access) ? 4 : 0) | \
4758 (3 & (access) ? 8 : 0) | \
4759 (4 & (access) ? 16 : 0) | \
4760 (5 & (access) ? 32 : 0) | \
4761 (6 & (access) ? 64 : 0) | \
4762 (7 & (access) ? 128 : 0))
4763
4764
update_permission_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)4765 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4766 struct kvm_mmu *mmu, bool ept)
4767 {
4768 unsigned byte;
4769
4770 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4771 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4772 const u8 u = BYTE_MASK(ACC_USER_MASK);
4773
4774 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4775 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4776 bool cr0_wp = is_write_protection(vcpu);
4777
4778 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4779 unsigned pfec = byte << 1;
4780
4781 /*
4782 * Each "*f" variable has a 1 bit for each UWX value
4783 * that causes a fault with the given PFEC.
4784 */
4785
4786 /* Faults from writes to non-writable pages */
4787 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4788 /* Faults from user mode accesses to supervisor pages */
4789 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4790 /* Faults from fetches of non-executable pages*/
4791 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4792 /* Faults from kernel mode fetches of user pages */
4793 u8 smepf = 0;
4794 /* Faults from kernel mode accesses of user pages */
4795 u8 smapf = 0;
4796
4797 if (!ept) {
4798 /* Faults from kernel mode accesses to user pages */
4799 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4800
4801 /* Not really needed: !nx will cause pte.nx to fault */
4802 if (!mmu->nx)
4803 ff = 0;
4804
4805 /* Allow supervisor writes if !cr0.wp */
4806 if (!cr0_wp)
4807 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4808
4809 /* Disallow supervisor fetches of user code if cr4.smep */
4810 if (cr4_smep)
4811 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4812
4813 /*
4814 * SMAP:kernel-mode data accesses from user-mode
4815 * mappings should fault. A fault is considered
4816 * as a SMAP violation if all of the following
4817 * conditions are true:
4818 * - X86_CR4_SMAP is set in CR4
4819 * - A user page is accessed
4820 * - The access is not a fetch
4821 * - Page fault in kernel mode
4822 * - if CPL = 3 or X86_EFLAGS_AC is clear
4823 *
4824 * Here, we cover the first three conditions.
4825 * The fourth is computed dynamically in permission_fault();
4826 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4827 * *not* subject to SMAP restrictions.
4828 */
4829 if (cr4_smap)
4830 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4831 }
4832
4833 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4834 }
4835 }
4836
4837 /*
4838 * PKU is an additional mechanism by which the paging controls access to
4839 * user-mode addresses based on the value in the PKRU register. Protection
4840 * key violations are reported through a bit in the page fault error code.
4841 * Unlike other bits of the error code, the PK bit is not known at the
4842 * call site of e.g. gva_to_gpa; it must be computed directly in
4843 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4844 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4845 *
4846 * In particular the following conditions come from the error code, the
4847 * page tables and the machine state:
4848 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4849 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4850 * - PK is always zero if U=0 in the page tables
4851 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4852 *
4853 * The PKRU bitmask caches the result of these four conditions. The error
4854 * code (minus the P bit) and the page table's U bit form an index into the
4855 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4856 * with the two bits of the PKRU register corresponding to the protection key.
4857 * For the first three conditions above the bits will be 00, thus masking
4858 * away both AD and WD. For all reads or if the last condition holds, WD
4859 * only will be masked away.
4860 */
update_pkru_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)4861 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4862 bool ept)
4863 {
4864 unsigned bit;
4865 bool wp;
4866
4867 if (ept) {
4868 mmu->pkru_mask = 0;
4869 return;
4870 }
4871
4872 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4873 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4874 mmu->pkru_mask = 0;
4875 return;
4876 }
4877
4878 wp = is_write_protection(vcpu);
4879
4880 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4881 unsigned pfec, pkey_bits;
4882 bool check_pkey, check_write, ff, uf, wf, pte_user;
4883
4884 pfec = bit << 1;
4885 ff = pfec & PFERR_FETCH_MASK;
4886 uf = pfec & PFERR_USER_MASK;
4887 wf = pfec & PFERR_WRITE_MASK;
4888
4889 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4890 pte_user = pfec & PFERR_RSVD_MASK;
4891
4892 /*
4893 * Only need to check the access which is not an
4894 * instruction fetch and is to a user page.
4895 */
4896 check_pkey = (!ff && pte_user);
4897 /*
4898 * write access is controlled by PKRU if it is a
4899 * user access or CR0.WP = 1.
4900 */
4901 check_write = check_pkey && wf && (uf || wp);
4902
4903 /* PKRU.AD stops both read and write access. */
4904 pkey_bits = !!check_pkey;
4905 /* PKRU.WD stops write access. */
4906 pkey_bits |= (!!check_write) << 1;
4907
4908 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4909 }
4910 }
4911
update_last_nonleaf_level(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)4912 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4913 {
4914 unsigned root_level = mmu->root_level;
4915
4916 mmu->last_nonleaf_level = root_level;
4917 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4918 mmu->last_nonleaf_level++;
4919 }
4920
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)4921 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4922 struct kvm_mmu *context,
4923 int level)
4924 {
4925 context->nx = is_nx(vcpu);
4926 context->root_level = level;
4927
4928 reset_rsvds_bits_mask(vcpu, context);
4929 update_permission_bitmask(vcpu, context, false);
4930 update_pkru_bitmask(vcpu, context, false);
4931 update_last_nonleaf_level(vcpu, context);
4932
4933 MMU_WARN_ON(!is_pae(vcpu));
4934 context->page_fault = paging64_page_fault;
4935 context->gva_to_gpa = paging64_gva_to_gpa;
4936 context->sync_page = paging64_sync_page;
4937 context->invlpg = paging64_invlpg;
4938 context->shadow_root_level = level;
4939 context->direct_map = false;
4940 }
4941
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4942 static void paging64_init_context(struct kvm_vcpu *vcpu,
4943 struct kvm_mmu *context)
4944 {
4945 int root_level = is_la57_mode(vcpu) ?
4946 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4947
4948 paging64_init_context_common(vcpu, context, root_level);
4949 }
4950
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4951 static void paging32_init_context(struct kvm_vcpu *vcpu,
4952 struct kvm_mmu *context)
4953 {
4954 context->nx = false;
4955 context->root_level = PT32_ROOT_LEVEL;
4956
4957 reset_rsvds_bits_mask(vcpu, context);
4958 update_permission_bitmask(vcpu, context, false);
4959 update_pkru_bitmask(vcpu, context, false);
4960 update_last_nonleaf_level(vcpu, context);
4961
4962 context->page_fault = paging32_page_fault;
4963 context->gva_to_gpa = paging32_gva_to_gpa;
4964 context->sync_page = paging32_sync_page;
4965 context->invlpg = paging32_invlpg;
4966 context->shadow_root_level = PT32E_ROOT_LEVEL;
4967 context->direct_map = false;
4968 }
4969
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4970 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4971 struct kvm_mmu *context)
4972 {
4973 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4974 }
4975
kvm_calc_mmu_role_ext(struct kvm_vcpu * vcpu)4976 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4977 {
4978 union kvm_mmu_extended_role ext = {0};
4979
4980 ext.cr0_pg = !!is_paging(vcpu);
4981 ext.cr4_pae = !!is_pae(vcpu);
4982 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4983 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4984 ext.cr4_pse = !!is_pse(vcpu);
4985 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4986 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
4987 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4988
4989 ext.valid = 1;
4990
4991 return ext;
4992 }
4993
kvm_calc_mmu_role_common(struct kvm_vcpu * vcpu,bool base_only)4994 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4995 bool base_only)
4996 {
4997 union kvm_mmu_role role = {0};
4998
4999 role.base.access = ACC_ALL;
5000 role.base.nxe = !!is_nx(vcpu);
5001 role.base.cr0_wp = is_write_protection(vcpu);
5002 role.base.smm = is_smm(vcpu);
5003 role.base.guest_mode = is_guest_mode(vcpu);
5004
5005 if (base_only)
5006 return role;
5007
5008 role.ext = kvm_calc_mmu_role_ext(vcpu);
5009
5010 return role;
5011 }
5012
5013 static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,bool base_only)5014 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5015 {
5016 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5017
5018 role.base.ad_disabled = (shadow_accessed_mask == 0);
5019 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
5020 role.base.direct = true;
5021 role.base.gpte_is_8_bytes = true;
5022
5023 return role;
5024 }
5025
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)5026 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
5027 {
5028 struct kvm_mmu *context = vcpu->arch.mmu;
5029 union kvm_mmu_role new_role =
5030 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
5031
5032 new_role.base.word &= mmu_base_role_mask.word;
5033 if (new_role.as_u64 == context->mmu_role.as_u64)
5034 return;
5035
5036 context->mmu_role.as_u64 = new_role.as_u64;
5037 context->page_fault = tdp_page_fault;
5038 context->sync_page = nonpaging_sync_page;
5039 context->invlpg = nonpaging_invlpg;
5040 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
5041 context->direct_map = true;
5042 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5043 context->get_cr3 = get_cr3;
5044 context->get_pdptr = kvm_pdptr_read;
5045 context->inject_page_fault = kvm_inject_page_fault;
5046
5047 if (!is_paging(vcpu)) {
5048 context->nx = false;
5049 context->gva_to_gpa = nonpaging_gva_to_gpa;
5050 context->root_level = 0;
5051 } else if (is_long_mode(vcpu)) {
5052 context->nx = is_nx(vcpu);
5053 context->root_level = is_la57_mode(vcpu) ?
5054 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5055 reset_rsvds_bits_mask(vcpu, context);
5056 context->gva_to_gpa = paging64_gva_to_gpa;
5057 } else if (is_pae(vcpu)) {
5058 context->nx = is_nx(vcpu);
5059 context->root_level = PT32E_ROOT_LEVEL;
5060 reset_rsvds_bits_mask(vcpu, context);
5061 context->gva_to_gpa = paging64_gva_to_gpa;
5062 } else {
5063 context->nx = false;
5064 context->root_level = PT32_ROOT_LEVEL;
5065 reset_rsvds_bits_mask(vcpu, context);
5066 context->gva_to_gpa = paging32_gva_to_gpa;
5067 }
5068
5069 update_permission_bitmask(vcpu, context, false);
5070 update_pkru_bitmask(vcpu, context, false);
5071 update_last_nonleaf_level(vcpu, context);
5072 reset_tdp_shadow_zero_bits_mask(vcpu, context);
5073 }
5074
5075 static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu * vcpu,bool base_only)5076 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
5077 {
5078 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
5079
5080 role.base.smep_andnot_wp = role.ext.cr4_smep &&
5081 !is_write_protection(vcpu);
5082 role.base.smap_andnot_wp = role.ext.cr4_smap &&
5083 !is_write_protection(vcpu);
5084 role.base.direct = !is_paging(vcpu);
5085 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
5086
5087 if (!is_long_mode(vcpu))
5088 role.base.level = PT32E_ROOT_LEVEL;
5089 else if (is_la57_mode(vcpu))
5090 role.base.level = PT64_ROOT_5LEVEL;
5091 else
5092 role.base.level = PT64_ROOT_4LEVEL;
5093
5094 return role;
5095 }
5096
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu)5097 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
5098 {
5099 struct kvm_mmu *context = vcpu->arch.mmu;
5100 union kvm_mmu_role new_role =
5101 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
5102
5103 new_role.base.word &= mmu_base_role_mask.word;
5104 if (new_role.as_u64 == context->mmu_role.as_u64)
5105 return;
5106
5107 if (!is_paging(vcpu))
5108 nonpaging_init_context(vcpu, context);
5109 else if (is_long_mode(vcpu))
5110 paging64_init_context(vcpu, context);
5111 else if (is_pae(vcpu))
5112 paging32E_init_context(vcpu, context);
5113 else
5114 paging32_init_context(vcpu, context);
5115
5116 context->mmu_role.as_u64 = new_role.as_u64;
5117 reset_shadow_zero_bits_mask(vcpu, context);
5118 }
5119 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5120
5121 static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly)5122 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5123 bool execonly)
5124 {
5125 union kvm_mmu_role role = {0};
5126
5127 /* SMM flag is inherited from root_mmu */
5128 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
5129
5130 role.base.level = PT64_ROOT_4LEVEL;
5131 role.base.gpte_is_8_bytes = true;
5132 role.base.direct = false;
5133 role.base.ad_disabled = !accessed_dirty;
5134 role.base.guest_mode = true;
5135 role.base.access = ACC_ALL;
5136
5137 /*
5138 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5139 * SMAP variation to denote shadow EPT entries.
5140 */
5141 role.base.cr0_wp = true;
5142 role.base.smap_andnot_wp = true;
5143
5144 role.ext = kvm_calc_mmu_role_ext(vcpu);
5145 role.ext.execonly = execonly;
5146
5147 return role;
5148 }
5149
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,bool accessed_dirty,gpa_t new_eptp)5150 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5151 bool accessed_dirty, gpa_t new_eptp)
5152 {
5153 struct kvm_mmu *context = vcpu->arch.mmu;
5154 union kvm_mmu_role new_role =
5155 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5156 execonly);
5157
5158 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5159
5160 new_role.base.word &= mmu_base_role_mask.word;
5161 if (new_role.as_u64 == context->mmu_role.as_u64)
5162 return;
5163
5164 context->shadow_root_level = PT64_ROOT_4LEVEL;
5165
5166 context->nx = true;
5167 context->ept_ad = accessed_dirty;
5168 context->page_fault = ept_page_fault;
5169 context->gva_to_gpa = ept_gva_to_gpa;
5170 context->sync_page = ept_sync_page;
5171 context->invlpg = ept_invlpg;
5172 context->root_level = PT64_ROOT_4LEVEL;
5173 context->direct_map = false;
5174 context->mmu_role.as_u64 = new_role.as_u64;
5175
5176 update_permission_bitmask(vcpu, context, true);
5177 update_pkru_bitmask(vcpu, context, true);
5178 update_last_nonleaf_level(vcpu, context);
5179 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
5180 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
5181 }
5182 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5183
init_kvm_softmmu(struct kvm_vcpu * vcpu)5184 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
5185 {
5186 struct kvm_mmu *context = vcpu->arch.mmu;
5187
5188 kvm_init_shadow_mmu(vcpu);
5189 context->set_cr3 = kvm_x86_ops->set_cr3;
5190 context->get_cr3 = get_cr3;
5191 context->get_pdptr = kvm_pdptr_read;
5192 context->inject_page_fault = kvm_inject_page_fault;
5193 }
5194
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)5195 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
5196 {
5197 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
5198 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5199
5200 new_role.base.word &= mmu_base_role_mask.word;
5201 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5202 return;
5203
5204 g_context->mmu_role.as_u64 = new_role.as_u64;
5205 g_context->get_cr3 = get_cr3;
5206 g_context->get_pdptr = kvm_pdptr_read;
5207 g_context->inject_page_fault = kvm_inject_page_fault;
5208
5209 /*
5210 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5211 * L1's nested page tables (e.g. EPT12). The nested translation
5212 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5213 * L2's page tables as the first level of translation and L1's
5214 * nested page tables as the second level of translation. Basically
5215 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5216 */
5217 if (!is_paging(vcpu)) {
5218 g_context->nx = false;
5219 g_context->root_level = 0;
5220 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5221 } else if (is_long_mode(vcpu)) {
5222 g_context->nx = is_nx(vcpu);
5223 g_context->root_level = is_la57_mode(vcpu) ?
5224 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
5225 reset_rsvds_bits_mask(vcpu, g_context);
5226 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5227 } else if (is_pae(vcpu)) {
5228 g_context->nx = is_nx(vcpu);
5229 g_context->root_level = PT32E_ROOT_LEVEL;
5230 reset_rsvds_bits_mask(vcpu, g_context);
5231 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5232 } else {
5233 g_context->nx = false;
5234 g_context->root_level = PT32_ROOT_LEVEL;
5235 reset_rsvds_bits_mask(vcpu, g_context);
5236 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5237 }
5238
5239 update_permission_bitmask(vcpu, g_context, false);
5240 update_pkru_bitmask(vcpu, g_context, false);
5241 update_last_nonleaf_level(vcpu, g_context);
5242 }
5243
kvm_init_mmu(struct kvm_vcpu * vcpu,bool reset_roots)5244 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
5245 {
5246 if (reset_roots) {
5247 uint i;
5248
5249 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
5250
5251 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5252 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5253 }
5254
5255 if (mmu_is_nested(vcpu))
5256 init_kvm_nested_mmu(vcpu);
5257 else if (tdp_enabled)
5258 init_kvm_tdp_mmu(vcpu);
5259 else
5260 init_kvm_softmmu(vcpu);
5261 }
5262 EXPORT_SYMBOL_GPL(kvm_init_mmu);
5263
5264 static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu * vcpu)5265 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5266 {
5267 union kvm_mmu_role role;
5268
5269 if (tdp_enabled)
5270 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
5271 else
5272 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5273
5274 return role.base;
5275 }
5276
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)5277 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5278 {
5279 kvm_mmu_unload(vcpu);
5280 kvm_init_mmu(vcpu, true);
5281 }
5282 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5283
kvm_mmu_load(struct kvm_vcpu * vcpu)5284 int kvm_mmu_load(struct kvm_vcpu *vcpu)
5285 {
5286 int r;
5287
5288 r = mmu_topup_memory_caches(vcpu);
5289 if (r)
5290 goto out;
5291 r = mmu_alloc_roots(vcpu);
5292 kvm_mmu_sync_roots(vcpu);
5293 if (r)
5294 goto out;
5295 kvm_mmu_load_cr3(vcpu);
5296 kvm_x86_ops->tlb_flush(vcpu, true);
5297 out:
5298 return r;
5299 }
5300 EXPORT_SYMBOL_GPL(kvm_mmu_load);
5301
kvm_mmu_unload(struct kvm_vcpu * vcpu)5302 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5303 {
5304 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5305 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5306 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5307 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
5308 }
5309 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
5310
need_remote_flush(u64 old,u64 new)5311 static bool need_remote_flush(u64 old, u64 new)
5312 {
5313 if (!is_shadow_present_pte(old))
5314 return false;
5315 if (!is_shadow_present_pte(new))
5316 return true;
5317 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5318 return true;
5319 old ^= shadow_nx_mask;
5320 new ^= shadow_nx_mask;
5321 return (old & ~new & PT64_PERM_MASK) != 0;
5322 }
5323
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)5324 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5325 int *bytes)
5326 {
5327 u64 gentry = 0;
5328 int r;
5329
5330 /*
5331 * Assume that the pte write on a page table of the same type
5332 * as the current vcpu paging mode since we update the sptes only
5333 * when they have the same mode.
5334 */
5335 if (is_pae(vcpu) && *bytes == 4) {
5336 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5337 *gpa &= ~(gpa_t)7;
5338 *bytes = 8;
5339 }
5340
5341 if (*bytes == 4 || *bytes == 8) {
5342 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5343 if (r)
5344 gentry = 0;
5345 }
5346
5347 return gentry;
5348 }
5349
5350 /*
5351 * If we're seeing too many writes to a page, it may no longer be a page table,
5352 * or we may be forking, in which case it is better to unmap the page.
5353 */
detect_write_flooding(struct kvm_mmu_page * sp)5354 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5355 {
5356 /*
5357 * Skip write-flooding detected for the sp whose level is 1, because
5358 * it can become unsync, then the guest page is not write-protected.
5359 */
5360 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
5361 return false;
5362
5363 atomic_inc(&sp->write_flooding_count);
5364 return atomic_read(&sp->write_flooding_count) >= 3;
5365 }
5366
5367 /*
5368 * Misaligned accesses are too much trouble to fix up; also, they usually
5369 * indicate a page is not used as a page table.
5370 */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)5371 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5372 int bytes)
5373 {
5374 unsigned offset, pte_size, misaligned;
5375
5376 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5377 gpa, bytes, sp->role.word);
5378
5379 offset = offset_in_page(gpa);
5380 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5381
5382 /*
5383 * Sometimes, the OS only writes the last one bytes to update status
5384 * bits, for example, in linux, andb instruction is used in clear_bit().
5385 */
5386 if (!(offset & (pte_size - 1)) && bytes == 1)
5387 return false;
5388
5389 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5390 misaligned |= bytes < 4;
5391
5392 return misaligned;
5393 }
5394
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)5395 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5396 {
5397 unsigned page_offset, quadrant;
5398 u64 *spte;
5399 int level;
5400
5401 page_offset = offset_in_page(gpa);
5402 level = sp->role.level;
5403 *nspte = 1;
5404 if (!sp->role.gpte_is_8_bytes) {
5405 page_offset <<= 1; /* 32->64 */
5406 /*
5407 * A 32-bit pde maps 4MB while the shadow pdes map
5408 * only 2MB. So we need to double the offset again
5409 * and zap two pdes instead of one.
5410 */
5411 if (level == PT32_ROOT_LEVEL) {
5412 page_offset &= ~7; /* kill rounding error */
5413 page_offset <<= 1;
5414 *nspte = 2;
5415 }
5416 quadrant = page_offset >> PAGE_SHIFT;
5417 page_offset &= ~PAGE_MASK;
5418 if (quadrant != sp->role.quadrant)
5419 return NULL;
5420 }
5421
5422 spte = &sp->spt[page_offset / sizeof(*spte)];
5423 return spte;
5424 }
5425
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes,struct kvm_page_track_notifier_node * node)5426 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5427 const u8 *new, int bytes,
5428 struct kvm_page_track_notifier_node *node)
5429 {
5430 gfn_t gfn = gpa >> PAGE_SHIFT;
5431 struct kvm_mmu_page *sp;
5432 LIST_HEAD(invalid_list);
5433 u64 entry, gentry, *spte;
5434 int npte;
5435 bool remote_flush, local_flush;
5436
5437 /*
5438 * If we don't have indirect shadow pages, it means no page is
5439 * write-protected, so we can exit simply.
5440 */
5441 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5442 return;
5443
5444 remote_flush = local_flush = false;
5445
5446 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5447
5448 /*
5449 * No need to care whether allocation memory is successful
5450 * or not since pte prefetch is skiped if it does not have
5451 * enough objects in the cache.
5452 */
5453 mmu_topup_memory_caches(vcpu);
5454
5455 spin_lock(&vcpu->kvm->mmu_lock);
5456
5457 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5458
5459 ++vcpu->kvm->stat.mmu_pte_write;
5460 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5461
5462 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5463 if (detect_write_misaligned(sp, gpa, bytes) ||
5464 detect_write_flooding(sp)) {
5465 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5466 ++vcpu->kvm->stat.mmu_flooded;
5467 continue;
5468 }
5469
5470 spte = get_written_sptes(sp, gpa, &npte);
5471 if (!spte)
5472 continue;
5473
5474 local_flush = true;
5475 while (npte--) {
5476 entry = *spte;
5477 mmu_page_zap_pte(vcpu->kvm, sp, spte);
5478 if (gentry && sp->role.level != PG_LEVEL_4K)
5479 ++vcpu->kvm->stat.mmu_pde_zapped;
5480 if (need_remote_flush(entry, *spte))
5481 remote_flush = true;
5482 ++spte;
5483 }
5484 }
5485 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5486 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5487 spin_unlock(&vcpu->kvm->mmu_lock);
5488 }
5489
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)5490 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5491 {
5492 gpa_t gpa;
5493 int r;
5494
5495 if (vcpu->arch.mmu->direct_map)
5496 return 0;
5497
5498 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5499
5500 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5501
5502 return r;
5503 }
5504 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5505
make_mmu_pages_available(struct kvm_vcpu * vcpu)5506 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
5507 {
5508 LIST_HEAD(invalid_list);
5509
5510 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
5511 return 0;
5512
5513 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5514 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5515 break;
5516
5517 ++vcpu->kvm->stat.mmu_recycled;
5518 }
5519 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
5520
5521 if (!kvm_mmu_available_pages(vcpu->kvm))
5522 return -ENOSPC;
5523 return 0;
5524 }
5525
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)5526 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5527 void *insn, int insn_len)
5528 {
5529 int r, emulation_type = 0;
5530 bool direct = vcpu->arch.mmu->direct_map;
5531
5532 /* With shadow page tables, fault_address contains a GVA or nGPA. */
5533 if (vcpu->arch.mmu->direct_map) {
5534 vcpu->arch.gpa_available = true;
5535 vcpu->arch.gpa_val = cr2_or_gpa;
5536 }
5537
5538 r = RET_PF_INVALID;
5539 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5540 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5541 if (r == RET_PF_EMULATE)
5542 goto emulate;
5543 }
5544
5545 if (r == RET_PF_INVALID) {
5546 r = vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa,
5547 lower_32_bits(error_code),
5548 false);
5549 WARN_ON(r == RET_PF_INVALID);
5550 }
5551
5552 if (r == RET_PF_RETRY)
5553 return 1;
5554 if (r < 0)
5555 return r;
5556
5557 /*
5558 * Before emulating the instruction, check if the error code
5559 * was due to a RO violation while translating the guest page.
5560 * This can occur when using nested virtualization with nested
5561 * paging in both guests. If true, we simply unprotect the page
5562 * and resume the guest.
5563 */
5564 if (vcpu->arch.mmu->direct_map &&
5565 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5566 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5567 return 1;
5568 }
5569
5570 /*
5571 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5572 * optimistically try to just unprotect the page and let the processor
5573 * re-execute the instruction that caused the page fault. Do not allow
5574 * retrying MMIO emulation, as it's not only pointless but could also
5575 * cause us to enter an infinite loop because the processor will keep
5576 * faulting on the non-existent MMIO address. Retrying an instruction
5577 * from a nested guest is also pointless and dangerous as we are only
5578 * explicitly shadowing L1's page tables, i.e. unprotecting something
5579 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5580 */
5581 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5582 emulation_type = EMULTYPE_ALLOW_RETRY;
5583 emulate:
5584 /*
5585 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5586 * This can happen if a guest gets a page-fault on data access but the HW
5587 * table walker is not able to read the instruction page (e.g instruction
5588 * page is not present in memory). In those cases we simply restart the
5589 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
5590 */
5591 if (unlikely(insn && !insn_len)) {
5592 if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
5593 return 1;
5594 }
5595
5596 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5597 insn_len);
5598 }
5599 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5600
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)5601 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5602 {
5603 struct kvm_mmu *mmu = vcpu->arch.mmu;
5604 int i;
5605
5606 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5607 if (is_noncanonical_address(gva, vcpu))
5608 return;
5609
5610 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5611
5612 /*
5613 * INVLPG is required to invalidate any global mappings for the VA,
5614 * irrespective of PCID. Since it would take us roughly similar amount
5615 * of work to determine whether any of the prev_root mappings of the VA
5616 * is marked global, or to just sync it blindly, so we might as well
5617 * just always sync it.
5618 *
5619 * Mappings not reachable via the current cr3 or the prev_roots will be
5620 * synced when switching to that cr3, so nothing needs to be done here
5621 * for them.
5622 */
5623 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5624 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5625 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5626
5627 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5628 ++vcpu->stat.invlpg;
5629 }
5630 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5631
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)5632 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5633 {
5634 struct kvm_mmu *mmu = vcpu->arch.mmu;
5635 bool tlb_flush = false;
5636 uint i;
5637
5638 if (pcid == kvm_get_active_pcid(vcpu)) {
5639 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5640 tlb_flush = true;
5641 }
5642
5643 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5644 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5645 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5646 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5647 tlb_flush = true;
5648 }
5649 }
5650
5651 if (tlb_flush)
5652 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5653
5654 ++vcpu->stat.invlpg;
5655
5656 /*
5657 * Mappings not reachable via the current cr3 or the prev_roots will be
5658 * synced when switching to that cr3, so nothing needs to be done here
5659 * for them.
5660 */
5661 }
5662 EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5663
kvm_enable_tdp(void)5664 void kvm_enable_tdp(void)
5665 {
5666 tdp_enabled = true;
5667 }
5668 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5669
kvm_disable_tdp(void)5670 void kvm_disable_tdp(void)
5671 {
5672 tdp_enabled = false;
5673 }
5674 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5675
5676
5677 /* The return value indicates if tlb flush on all vcpus is needed. */
5678 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5679
5680 /* The caller should hold mmu-lock before calling this function. */
5681 static __always_inline bool
slot_handle_level_range(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool lock_flush_tlb)5682 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5683 slot_level_handler fn, int start_level, int end_level,
5684 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5685 {
5686 struct slot_rmap_walk_iterator iterator;
5687 bool flush = false;
5688
5689 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5690 end_gfn, &iterator) {
5691 if (iterator.rmap)
5692 flush |= fn(kvm, iterator.rmap);
5693
5694 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5695 if (flush && lock_flush_tlb) {
5696 kvm_flush_remote_tlbs_with_address(kvm,
5697 start_gfn,
5698 iterator.gfn - start_gfn + 1);
5699 flush = false;
5700 }
5701 cond_resched_lock(&kvm->mmu_lock);
5702 }
5703 }
5704
5705 if (flush && lock_flush_tlb) {
5706 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5707 end_gfn - start_gfn + 1);
5708 flush = false;
5709 }
5710
5711 return flush;
5712 }
5713
5714 static __always_inline bool
slot_handle_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool lock_flush_tlb)5715 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5716 slot_level_handler fn, int start_level, int end_level,
5717 bool lock_flush_tlb)
5718 {
5719 return slot_handle_level_range(kvm, memslot, fn, start_level,
5720 end_level, memslot->base_gfn,
5721 memslot->base_gfn + memslot->npages - 1,
5722 lock_flush_tlb);
5723 }
5724
5725 static __always_inline bool
slot_handle_all_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5726 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5727 slot_level_handler fn, bool lock_flush_tlb)
5728 {
5729 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5730 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5731 }
5732
5733 static __always_inline bool
slot_handle_large_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5734 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5735 slot_level_handler fn, bool lock_flush_tlb)
5736 {
5737 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5738 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5739 }
5740
5741 static __always_inline bool
slot_handle_leaf(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5742 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5743 slot_level_handler fn, bool lock_flush_tlb)
5744 {
5745 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5746 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5747 }
5748
free_mmu_pages(struct kvm_mmu * mmu)5749 static void free_mmu_pages(struct kvm_mmu *mmu)
5750 {
5751 free_page((unsigned long)mmu->pae_root);
5752 free_page((unsigned long)mmu->lm_root);
5753 }
5754
alloc_mmu_pages(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5755 static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5756 {
5757 struct page *page;
5758 int i;
5759
5760 /*
5761 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5762 * while the PDP table is a per-vCPU construct that's allocated at MMU
5763 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5764 * x86_64. Therefore we need to allocate the PDP table in the first
5765 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5766 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5767 * skip allocating the PDP table.
5768 */
5769 if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5770 return 0;
5771
5772 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5773 if (!page)
5774 return -ENOMEM;
5775
5776 mmu->pae_root = page_address(page);
5777 for (i = 0; i < 4; ++i)
5778 mmu->pae_root[i] = INVALID_PAGE;
5779
5780 return 0;
5781 }
5782
kvm_mmu_create(struct kvm_vcpu * vcpu)5783 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5784 {
5785 uint i;
5786 int ret;
5787
5788 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5789 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5790
5791 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
5792 vcpu->arch.root_mmu.root_cr3 = 0;
5793 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
5794 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5795 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5796
5797 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
5798 vcpu->arch.guest_mmu.root_cr3 = 0;
5799 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5800 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5801 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5802
5803 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5804
5805 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5806 if (ret)
5807 return ret;
5808
5809 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5810 if (ret)
5811 goto fail_allocate_root;
5812
5813 return ret;
5814 fail_allocate_root:
5815 free_mmu_pages(&vcpu->arch.guest_mmu);
5816 return ret;
5817 }
5818
5819 #define BATCH_ZAP_PAGES 10
kvm_zap_obsolete_pages(struct kvm * kvm)5820 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5821 {
5822 struct kvm_mmu_page *sp, *node;
5823 int nr_zapped, batch = 0;
5824 bool unstable;
5825
5826 restart:
5827 list_for_each_entry_safe_reverse(sp, node,
5828 &kvm->arch.active_mmu_pages, link) {
5829 /*
5830 * No obsolete valid page exists before a newly created page
5831 * since active_mmu_pages is a FIFO list.
5832 */
5833 if (!is_obsolete_sp(kvm, sp))
5834 break;
5835
5836 /*
5837 * Skip invalid pages with a non-zero root count, zapping pages
5838 * with a non-zero root count will never succeed, i.e. the page
5839 * will get thrown back on active_mmu_pages and we'll get stuck
5840 * in an infinite loop.
5841 */
5842 if (sp->role.invalid && sp->root_count)
5843 continue;
5844
5845 /*
5846 * No need to flush the TLB since we're only zapping shadow
5847 * pages with an obsolete generation number and all vCPUS have
5848 * loaded a new root, i.e. the shadow pages being zapped cannot
5849 * be in active use by the guest.
5850 */
5851 if (batch >= BATCH_ZAP_PAGES &&
5852 cond_resched_lock(&kvm->mmu_lock)) {
5853 batch = 0;
5854 goto restart;
5855 }
5856
5857 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
5858 &kvm->arch.zapped_obsolete_pages, &nr_zapped);
5859 batch += nr_zapped;
5860
5861 if (unstable)
5862 goto restart;
5863 }
5864
5865 /*
5866 * Trigger a remote TLB flush before freeing the page tables to ensure
5867 * KVM is not in the middle of a lockless shadow page table walk, which
5868 * may reference the pages.
5869 */
5870 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5871 }
5872
5873 /*
5874 * Fast invalidate all shadow pages and use lock-break technique
5875 * to zap obsolete pages.
5876 *
5877 * It's required when memslot is being deleted or VM is being
5878 * destroyed, in these cases, we should ensure that KVM MMU does
5879 * not use any resource of the being-deleted slot or all slots
5880 * after calling the function.
5881 */
kvm_mmu_zap_all_fast(struct kvm * kvm)5882 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5883 {
5884 lockdep_assert_held(&kvm->slots_lock);
5885
5886 spin_lock(&kvm->mmu_lock);
5887 trace_kvm_mmu_zap_all_fast(kvm);
5888
5889 /*
5890 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5891 * held for the entire duration of zapping obsolete pages, it's
5892 * impossible for there to be multiple invalid generations associated
5893 * with *valid* shadow pages at any given time, i.e. there is exactly
5894 * one valid generation and (at most) one invalid generation.
5895 */
5896 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5897
5898 /*
5899 * Notify all vcpus to reload its shadow page table and flush TLB.
5900 * Then all vcpus will switch to new shadow page table with the new
5901 * mmu_valid_gen.
5902 *
5903 * Note: we need to do this under the protection of mmu_lock,
5904 * otherwise, vcpu would purge shadow page but miss tlb flush.
5905 */
5906 kvm_reload_remote_mmus(kvm);
5907
5908 kvm_zap_obsolete_pages(kvm);
5909 spin_unlock(&kvm->mmu_lock);
5910 }
5911
kvm_has_zapped_obsolete_pages(struct kvm * kvm)5912 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5913 {
5914 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5915 }
5916
kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_page_track_notifier_node * node)5917 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5918 struct kvm_memory_slot *slot,
5919 struct kvm_page_track_notifier_node *node)
5920 {
5921 kvm_mmu_zap_all_fast(kvm);
5922 }
5923
kvm_mmu_init_vm(struct kvm * kvm)5924 void kvm_mmu_init_vm(struct kvm *kvm)
5925 {
5926 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5927
5928 node->track_write = kvm_mmu_pte_write;
5929 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5930 kvm_page_track_register_notifier(kvm, node);
5931 }
5932
kvm_mmu_uninit_vm(struct kvm * kvm)5933 void kvm_mmu_uninit_vm(struct kvm *kvm)
5934 {
5935 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5936
5937 kvm_page_track_unregister_notifier(kvm, node);
5938 }
5939
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)5940 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5941 {
5942 struct kvm_memslots *slots;
5943 struct kvm_memory_slot *memslot;
5944 int i;
5945
5946 spin_lock(&kvm->mmu_lock);
5947 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5948 slots = __kvm_memslots(kvm, i);
5949 kvm_for_each_memslot(memslot, slots) {
5950 gfn_t start, end;
5951
5952 start = max(gfn_start, memslot->base_gfn);
5953 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5954 if (start >= end)
5955 continue;
5956
5957 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5958 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5959 start, end - 1, true);
5960 }
5961 }
5962
5963 spin_unlock(&kvm->mmu_lock);
5964 }
5965
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head)5966 static bool slot_rmap_write_protect(struct kvm *kvm,
5967 struct kvm_rmap_head *rmap_head)
5968 {
5969 return __rmap_write_protect(kvm, rmap_head, false);
5970 }
5971
kvm_mmu_slot_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)5972 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5973 struct kvm_memory_slot *memslot)
5974 {
5975 bool flush;
5976
5977 spin_lock(&kvm->mmu_lock);
5978 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5979 false);
5980 spin_unlock(&kvm->mmu_lock);
5981
5982 /*
5983 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5984 * which do tlb flush out of mmu-lock should be serialized by
5985 * kvm->slots_lock otherwise tlb flush would be missed.
5986 */
5987 lockdep_assert_held(&kvm->slots_lock);
5988
5989 /*
5990 * We can flush all the TLBs out of the mmu lock without TLB
5991 * corruption since we just change the spte from writable to
5992 * readonly so that we only need to care the case of changing
5993 * spte from present to present (changing the spte from present
5994 * to nonpresent will flush all the TLBs immediately), in other
5995 * words, the only case we care is mmu_spte_update() where we
5996 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5997 * instead of PT_WRITABLE_MASK, that means it does not depend
5998 * on PT_WRITABLE_MASK anymore.
5999 */
6000 if (flush)
6001 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6002 memslot->npages);
6003 }
6004
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head)6005 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6006 struct kvm_rmap_head *rmap_head)
6007 {
6008 u64 *sptep;
6009 struct rmap_iterator iter;
6010 int need_tlb_flush = 0;
6011 kvm_pfn_t pfn;
6012 struct kvm_mmu_page *sp;
6013
6014 restart:
6015 for_each_rmap_spte(rmap_head, &iter, sptep) {
6016 sp = page_header(__pa(sptep));
6017 pfn = spte_to_pfn(*sptep);
6018
6019 /*
6020 * We cannot do huge page mapping for indirect shadow pages,
6021 * which are found on the last rmap (level = 1) when not using
6022 * tdp; such shadow pages are synced with the page table in
6023 * the guest, and the guest page table is using 4K page size
6024 * mapping if the indirect sp has level = 1.
6025 */
6026 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
6027 !kvm_is_zone_device_pfn(pfn) &&
6028 PageTransCompoundMap(pfn_to_page(pfn))) {
6029 pte_list_remove(rmap_head, sptep);
6030
6031 if (kvm_available_flush_tlb_with_range())
6032 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
6033 KVM_PAGES_PER_HPAGE(sp->role.level));
6034 else
6035 need_tlb_flush = 1;
6036
6037 goto restart;
6038 }
6039 }
6040
6041 return need_tlb_flush;
6042 }
6043
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * memslot)6044 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6045 const struct kvm_memory_slot *memslot)
6046 {
6047 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
6048 spin_lock(&kvm->mmu_lock);
6049 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
6050 kvm_mmu_zap_collapsible_spte, true);
6051 spin_unlock(&kvm->mmu_lock);
6052 }
6053
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)6054 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6055 struct kvm_memory_slot *memslot)
6056 {
6057 bool flush;
6058
6059 spin_lock(&kvm->mmu_lock);
6060 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
6061 spin_unlock(&kvm->mmu_lock);
6062
6063 lockdep_assert_held(&kvm->slots_lock);
6064
6065 /*
6066 * It's also safe to flush TLBs out of mmu lock here as currently this
6067 * function is only used for dirty logging, in which case flushing TLB
6068 * out of mmu lock also guarantees no dirty pages will be lost in
6069 * dirty_bitmap.
6070 */
6071 if (flush)
6072 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6073 memslot->npages);
6074 }
6075 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
6076
kvm_mmu_slot_largepage_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)6077 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6078 struct kvm_memory_slot *memslot)
6079 {
6080 bool flush;
6081
6082 spin_lock(&kvm->mmu_lock);
6083 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6084 false);
6085 spin_unlock(&kvm->mmu_lock);
6086
6087 /* see kvm_mmu_slot_remove_write_access */
6088 lockdep_assert_held(&kvm->slots_lock);
6089
6090 if (flush)
6091 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6092 memslot->npages);
6093 }
6094 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6095
kvm_mmu_slot_set_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)6096 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6097 struct kvm_memory_slot *memslot)
6098 {
6099 bool flush;
6100
6101 spin_lock(&kvm->mmu_lock);
6102 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
6103 spin_unlock(&kvm->mmu_lock);
6104
6105 lockdep_assert_held(&kvm->slots_lock);
6106
6107 /* see kvm_mmu_slot_leaf_clear_dirty */
6108 if (flush)
6109 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
6110 memslot->npages);
6111 }
6112 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6113
kvm_mmu_zap_all(struct kvm * kvm)6114 void kvm_mmu_zap_all(struct kvm *kvm)
6115 {
6116 struct kvm_mmu_page *sp, *node;
6117 LIST_HEAD(invalid_list);
6118 int ign;
6119
6120 spin_lock(&kvm->mmu_lock);
6121 restart:
6122 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6123 if (sp->role.invalid && sp->root_count)
6124 continue;
6125 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
6126 goto restart;
6127 if (cond_resched_lock(&kvm->mmu_lock))
6128 goto restart;
6129 }
6130
6131 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6132 spin_unlock(&kvm->mmu_lock);
6133 }
6134
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)6135 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6136 {
6137 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6138
6139 gen &= MMIO_SPTE_GEN_MASK;
6140
6141 /*
6142 * Generation numbers are incremented in multiples of the number of
6143 * address spaces in order to provide unique generations across all
6144 * address spaces. Strip what is effectively the address space
6145 * modifier prior to checking for a wrap of the MMIO generation so
6146 * that a wrap in any address space is detected.
6147 */
6148 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6149
6150 /*
6151 * The very rare case: if the MMIO generation number has wrapped,
6152 * zap all shadow pages.
6153 */
6154 if (unlikely(gen == 0)) {
6155 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
6156 kvm_mmu_zap_all_fast(kvm);
6157 }
6158 }
6159
6160 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)6161 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
6162 {
6163 struct kvm *kvm;
6164 int nr_to_scan = sc->nr_to_scan;
6165 unsigned long freed = 0;
6166
6167 mutex_lock(&kvm_lock);
6168
6169 list_for_each_entry(kvm, &vm_list, vm_list) {
6170 int idx;
6171 LIST_HEAD(invalid_list);
6172
6173 /*
6174 * Never scan more than sc->nr_to_scan VM instances.
6175 * Will not hit this condition practically since we do not try
6176 * to shrink more than one VM and it is very unlikely to see
6177 * !n_used_mmu_pages so many times.
6178 */
6179 if (!nr_to_scan--)
6180 break;
6181 /*
6182 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6183 * here. We may skip a VM instance errorneosly, but we do not
6184 * want to shrink a VM that only started to populate its MMU
6185 * anyway.
6186 */
6187 if (!kvm->arch.n_used_mmu_pages &&
6188 !kvm_has_zapped_obsolete_pages(kvm))
6189 continue;
6190
6191 idx = srcu_read_lock(&kvm->srcu);
6192 spin_lock(&kvm->mmu_lock);
6193
6194 if (kvm_has_zapped_obsolete_pages(kvm)) {
6195 kvm_mmu_commit_zap_page(kvm,
6196 &kvm->arch.zapped_obsolete_pages);
6197 goto unlock;
6198 }
6199
6200 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6201 freed++;
6202 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6203
6204 unlock:
6205 spin_unlock(&kvm->mmu_lock);
6206 srcu_read_unlock(&kvm->srcu, idx);
6207
6208 /*
6209 * unfair on small ones
6210 * per-vm shrinkers cry out
6211 * sadness comes quickly
6212 */
6213 list_move_tail(&kvm->vm_list, &vm_list);
6214 break;
6215 }
6216
6217 mutex_unlock(&kvm_lock);
6218 return freed;
6219 }
6220
6221 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)6222 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6223 {
6224 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
6225 }
6226
6227 static struct shrinker mmu_shrinker = {
6228 .count_objects = mmu_shrink_count,
6229 .scan_objects = mmu_shrink_scan,
6230 .seeks = DEFAULT_SEEKS * 10,
6231 };
6232
mmu_destroy_caches(void)6233 static void mmu_destroy_caches(void)
6234 {
6235 kmem_cache_destroy(pte_list_desc_cache);
6236 kmem_cache_destroy(mmu_page_header_cache);
6237 }
6238
kvm_set_mmio_spte_mask(void)6239 static void kvm_set_mmio_spte_mask(void)
6240 {
6241 u64 mask;
6242
6243 /*
6244 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
6245 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
6246 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
6247 * 52-bit physical addresses then there are no reserved PA bits in the
6248 * PTEs and so the reserved PA approach must be disabled.
6249 */
6250 if (shadow_phys_bits < 52)
6251 mask = BIT_ULL(51) | PT_PRESENT_MASK;
6252 else
6253 mask = 0;
6254
6255 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
6256 }
6257
get_nx_auto_mode(void)6258 static bool get_nx_auto_mode(void)
6259 {
6260 /* Return true when CPU has the bug, and mitigations are ON */
6261 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6262 }
6263
__set_nx_huge_pages(bool val)6264 static void __set_nx_huge_pages(bool val)
6265 {
6266 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6267 }
6268
set_nx_huge_pages(const char * val,const struct kernel_param * kp)6269 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6270 {
6271 bool old_val = nx_huge_pages;
6272 bool new_val;
6273
6274 /* In "auto" mode deploy workaround only if CPU has the bug. */
6275 if (sysfs_streq(val, "off"))
6276 new_val = 0;
6277 else if (sysfs_streq(val, "force"))
6278 new_val = 1;
6279 else if (sysfs_streq(val, "auto"))
6280 new_val = get_nx_auto_mode();
6281 else if (strtobool(val, &new_val) < 0)
6282 return -EINVAL;
6283
6284 __set_nx_huge_pages(new_val);
6285
6286 if (new_val != old_val) {
6287 struct kvm *kvm;
6288
6289 mutex_lock(&kvm_lock);
6290
6291 list_for_each_entry(kvm, &vm_list, vm_list) {
6292 mutex_lock(&kvm->slots_lock);
6293 kvm_mmu_zap_all_fast(kvm);
6294 mutex_unlock(&kvm->slots_lock);
6295
6296 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6297 }
6298 mutex_unlock(&kvm_lock);
6299 }
6300
6301 return 0;
6302 }
6303
kvm_mmu_module_init(void)6304 int kvm_mmu_module_init(void)
6305 {
6306 int ret = -ENOMEM;
6307
6308 if (nx_huge_pages == -1)
6309 __set_nx_huge_pages(get_nx_auto_mode());
6310
6311 /*
6312 * MMU roles use union aliasing which is, generally speaking, an
6313 * undefined behavior. However, we supposedly know how compilers behave
6314 * and the current status quo is unlikely to change. Guardians below are
6315 * supposed to let us know if the assumption becomes false.
6316 */
6317 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6318 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6319 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6320
6321 kvm_mmu_reset_all_pte_masks();
6322
6323 kvm_set_mmio_spte_mask();
6324
6325 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6326 sizeof(struct pte_list_desc),
6327 0, SLAB_ACCOUNT, NULL);
6328 if (!pte_list_desc_cache)
6329 goto out;
6330
6331 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6332 sizeof(struct kvm_mmu_page),
6333 0, SLAB_ACCOUNT, NULL);
6334 if (!mmu_page_header_cache)
6335 goto out;
6336
6337 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6338 goto out;
6339
6340 ret = register_shrinker(&mmu_shrinker);
6341 if (ret)
6342 goto out;
6343
6344 return 0;
6345
6346 out:
6347 mmu_destroy_caches();
6348 return ret;
6349 }
6350
6351 /*
6352 * Calculate mmu pages needed for kvm.
6353 */
kvm_mmu_calculate_default_mmu_pages(struct kvm * kvm)6354 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6355 {
6356 unsigned long nr_mmu_pages;
6357 unsigned long nr_pages = 0;
6358 struct kvm_memslots *slots;
6359 struct kvm_memory_slot *memslot;
6360 int i;
6361
6362 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6363 slots = __kvm_memslots(kvm, i);
6364
6365 kvm_for_each_memslot(memslot, slots)
6366 nr_pages += memslot->npages;
6367 }
6368
6369 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6370 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6371
6372 return nr_mmu_pages;
6373 }
6374
kvm_mmu_destroy(struct kvm_vcpu * vcpu)6375 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6376 {
6377 kvm_mmu_unload(vcpu);
6378 free_mmu_pages(&vcpu->arch.root_mmu);
6379 free_mmu_pages(&vcpu->arch.guest_mmu);
6380 mmu_free_memory_caches(vcpu);
6381 }
6382
kvm_mmu_module_exit(void)6383 void kvm_mmu_module_exit(void)
6384 {
6385 mmu_destroy_caches();
6386 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6387 unregister_shrinker(&mmu_shrinker);
6388 mmu_audit_disable();
6389 }
6390
set_nx_huge_pages_recovery_ratio(const char * val,const struct kernel_param * kp)6391 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6392 {
6393 unsigned int old_val;
6394 int err;
6395
6396 old_val = nx_huge_pages_recovery_ratio;
6397 err = param_set_uint(val, kp);
6398 if (err)
6399 return err;
6400
6401 if (READ_ONCE(nx_huge_pages) &&
6402 !old_val && nx_huge_pages_recovery_ratio) {
6403 struct kvm *kvm;
6404
6405 mutex_lock(&kvm_lock);
6406
6407 list_for_each_entry(kvm, &vm_list, vm_list)
6408 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6409
6410 mutex_unlock(&kvm_lock);
6411 }
6412
6413 return err;
6414 }
6415
kvm_recover_nx_lpages(struct kvm * kvm)6416 static void kvm_recover_nx_lpages(struct kvm *kvm)
6417 {
6418 int rcu_idx;
6419 struct kvm_mmu_page *sp;
6420 unsigned int ratio;
6421 LIST_HEAD(invalid_list);
6422 ulong to_zap;
6423
6424 rcu_idx = srcu_read_lock(&kvm->srcu);
6425 spin_lock(&kvm->mmu_lock);
6426
6427 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6428 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6429 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6430 /*
6431 * We use a separate list instead of just using active_mmu_pages
6432 * because the number of lpage_disallowed pages is expected to
6433 * be relatively small compared to the total.
6434 */
6435 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6436 struct kvm_mmu_page,
6437 lpage_disallowed_link);
6438 WARN_ON_ONCE(!sp->lpage_disallowed);
6439 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6440 WARN_ON_ONCE(sp->lpage_disallowed);
6441
6442 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6443 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6444 if (to_zap)
6445 cond_resched_lock(&kvm->mmu_lock);
6446 }
6447 }
6448 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6449
6450 spin_unlock(&kvm->mmu_lock);
6451 srcu_read_unlock(&kvm->srcu, rcu_idx);
6452 }
6453
get_nx_lpage_recovery_timeout(u64 start_time)6454 static long get_nx_lpage_recovery_timeout(u64 start_time)
6455 {
6456 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6457 ? start_time + 60 * HZ - get_jiffies_64()
6458 : MAX_SCHEDULE_TIMEOUT;
6459 }
6460
kvm_nx_lpage_recovery_worker(struct kvm * kvm,uintptr_t data)6461 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6462 {
6463 u64 start_time;
6464 long remaining_time;
6465
6466 while (true) {
6467 start_time = get_jiffies_64();
6468 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6469
6470 set_current_state(TASK_INTERRUPTIBLE);
6471 while (!kthread_should_stop() && remaining_time > 0) {
6472 schedule_timeout(remaining_time);
6473 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6474 set_current_state(TASK_INTERRUPTIBLE);
6475 }
6476
6477 set_current_state(TASK_RUNNING);
6478
6479 if (kthread_should_stop())
6480 return 0;
6481
6482 kvm_recover_nx_lpages(kvm);
6483 }
6484 }
6485
kvm_mmu_post_init_vm(struct kvm * kvm)6486 int kvm_mmu_post_init_vm(struct kvm *kvm)
6487 {
6488 int err;
6489
6490 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6491 "kvm-nx-lpage-recovery",
6492 &kvm->arch.nx_lpage_recovery_thread);
6493 if (!err)
6494 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6495
6496 return err;
6497 }
6498
kvm_mmu_pre_destroy_vm(struct kvm * kvm)6499 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6500 {
6501 if (kvm->arch.nx_lpage_recovery_thread)
6502 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6503 }
6504