• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29 
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56 
57 #include <trace/events/kvm.h>
58 
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <asm/emulate_prefix.h>
72 #include <clocksource/hyperv_timer.h>
73 
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76 
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81 
82 #define emul_to_vcpu(ctxt) \
83 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84 
85 /* EFER defaults:
86  * - enable syscall per default because its emulated by KVM
87  * - enable LME and LMA per default on 64 bit KVM
88  */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95 
96 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
97 
98 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
99 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
100 
101 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
102                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
103 
104 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
105 static void process_nmi(struct kvm_vcpu *vcpu);
106 static void process_smi(struct kvm_vcpu *vcpu);
107 static void enter_smm(struct kvm_vcpu *vcpu);
108 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
109 static void store_regs(struct kvm_vcpu *vcpu);
110 static int sync_regs(struct kvm_vcpu *vcpu);
111 
112 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
113 EXPORT_SYMBOL_GPL(kvm_x86_ops);
114 
115 static bool __read_mostly ignore_msrs = 0;
116 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
117 
118 static bool __read_mostly report_ignored_msrs = true;
119 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
120 
121 unsigned int min_timer_period_us = 200;
122 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
123 
124 static bool __read_mostly kvmclock_periodic_sync = true;
125 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
126 
127 bool __read_mostly kvm_has_tsc_control;
128 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
129 u32  __read_mostly kvm_max_guest_tsc_khz;
130 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
131 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
132 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
133 u64  __read_mostly kvm_max_tsc_scaling_ratio;
134 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
135 u64 __read_mostly kvm_default_tsc_scaling_ratio;
136 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
137 
138 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
139 static u32 __read_mostly tsc_tolerance_ppm = 250;
140 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
141 
142 /*
143  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
144  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
145  * advancement entirely.  Any other value is used as-is and disables adaptive
146  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
147  */
148 static int __read_mostly lapic_timer_advance_ns = -1;
149 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
150 
151 static bool __read_mostly vector_hashing = true;
152 module_param(vector_hashing, bool, S_IRUGO);
153 
154 bool __read_mostly enable_vmware_backdoor = false;
155 module_param(enable_vmware_backdoor, bool, S_IRUGO);
156 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
157 
158 static bool __read_mostly force_emulation_prefix = false;
159 module_param(force_emulation_prefix, bool, S_IRUGO);
160 
161 int __read_mostly pi_inject_timer = -1;
162 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
163 
164 #define KVM_NR_SHARED_MSRS 16
165 
166 struct kvm_shared_msrs_global {
167 	int nr;
168 	u32 msrs[KVM_NR_SHARED_MSRS];
169 };
170 
171 struct kvm_shared_msrs {
172 	struct user_return_notifier urn;
173 	bool registered;
174 	struct kvm_shared_msr_values {
175 		u64 host;
176 		u64 curr;
177 	} values[KVM_NR_SHARED_MSRS];
178 };
179 
180 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
181 static struct kvm_shared_msrs __percpu *shared_msrs;
182 
183 struct kvm_stats_debugfs_item debugfs_entries[] = {
184 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
185 	{ "pf_guest", VCPU_STAT(pf_guest) },
186 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
187 	{ "invlpg", VCPU_STAT(invlpg) },
188 	{ "exits", VCPU_STAT(exits) },
189 	{ "io_exits", VCPU_STAT(io_exits) },
190 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
191 	{ "signal_exits", VCPU_STAT(signal_exits) },
192 	{ "irq_window", VCPU_STAT(irq_window_exits) },
193 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
194 	{ "halt_exits", VCPU_STAT(halt_exits) },
195 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
196 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
197 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
198 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
199 	{ "hypercalls", VCPU_STAT(hypercalls) },
200 	{ "request_irq", VCPU_STAT(request_irq_exits) },
201 	{ "irq_exits", VCPU_STAT(irq_exits) },
202 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
203 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
204 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
205 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
206 	{ "irq_injections", VCPU_STAT(irq_injections) },
207 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
208 	{ "req_event", VCPU_STAT(req_event) },
209 	{ "l1d_flush", VCPU_STAT(l1d_flush) },
210 	{ "preemption_reported", VCPU_STAT(preemption_reported) },
211 	{ "preemption_other", VCPU_STAT(preemption_other) },
212 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
213 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
214 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
215 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
216 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
217 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
218 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
219 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
220 	{ "largepages", VM_STAT(lpages, .mode = 0444) },
221 	{ "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
222 	{ "max_mmu_page_hash_collisions",
223 		VM_STAT(max_mmu_page_hash_collisions) },
224 	{ NULL }
225 };
226 
227 u64 __read_mostly host_xcr0;
228 
229 struct kmem_cache *x86_fpu_cache;
230 EXPORT_SYMBOL_GPL(x86_fpu_cache);
231 
232 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
233 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)234 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
235 {
236 	int i;
237 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
238 		vcpu->arch.apf.gfns[i] = ~0;
239 }
240 
kvm_on_user_return(struct user_return_notifier * urn)241 static void kvm_on_user_return(struct user_return_notifier *urn)
242 {
243 	unsigned slot;
244 	struct kvm_shared_msrs *locals
245 		= container_of(urn, struct kvm_shared_msrs, urn);
246 	struct kvm_shared_msr_values *values;
247 	unsigned long flags;
248 
249 	/*
250 	 * Disabling irqs at this point since the following code could be
251 	 * interrupted and executed through kvm_arch_hardware_disable()
252 	 */
253 	local_irq_save(flags);
254 	if (locals->registered) {
255 		locals->registered = false;
256 		user_return_notifier_unregister(urn);
257 	}
258 	local_irq_restore(flags);
259 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
260 		values = &locals->values[slot];
261 		if (values->host != values->curr) {
262 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
263 			values->curr = values->host;
264 		}
265 	}
266 }
267 
shared_msr_update(unsigned slot,u32 msr)268 static void shared_msr_update(unsigned slot, u32 msr)
269 {
270 	u64 value;
271 	unsigned int cpu = smp_processor_id();
272 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
273 
274 	/* only read, and nobody should modify it at this time,
275 	 * so don't need lock */
276 	if (slot >= shared_msrs_global.nr) {
277 		printk(KERN_ERR "kvm: invalid MSR slot!");
278 		return;
279 	}
280 	rdmsrl_safe(msr, &value);
281 	smsr->values[slot].host = value;
282 	smsr->values[slot].curr = value;
283 }
284 
kvm_define_shared_msr(unsigned slot,u32 msr)285 void kvm_define_shared_msr(unsigned slot, u32 msr)
286 {
287 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
288 	shared_msrs_global.msrs[slot] = msr;
289 	if (slot >= shared_msrs_global.nr)
290 		shared_msrs_global.nr = slot + 1;
291 }
292 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
293 
kvm_shared_msr_cpu_online(void)294 static void kvm_shared_msr_cpu_online(void)
295 {
296 	unsigned i;
297 
298 	for (i = 0; i < shared_msrs_global.nr; ++i)
299 		shared_msr_update(i, shared_msrs_global.msrs[i]);
300 }
301 
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)302 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
303 {
304 	unsigned int cpu = smp_processor_id();
305 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
306 	int err;
307 
308 	value = (value & mask) | (smsr->values[slot].host & ~mask);
309 	if (value == smsr->values[slot].curr)
310 		return 0;
311 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
312 	if (err)
313 		return 1;
314 
315 	smsr->values[slot].curr = value;
316 	if (!smsr->registered) {
317 		smsr->urn.on_user_return = kvm_on_user_return;
318 		user_return_notifier_register(&smsr->urn);
319 		smsr->registered = true;
320 	}
321 	return 0;
322 }
323 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
324 
drop_user_return_notifiers(void)325 static void drop_user_return_notifiers(void)
326 {
327 	unsigned int cpu = smp_processor_id();
328 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
329 
330 	if (smsr->registered)
331 		kvm_on_user_return(&smsr->urn);
332 }
333 
kvm_get_apic_base(struct kvm_vcpu * vcpu)334 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
335 {
336 	return vcpu->arch.apic_base;
337 }
338 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
339 
kvm_get_apic_mode(struct kvm_vcpu * vcpu)340 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
341 {
342 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
343 }
344 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
345 
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)346 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
347 {
348 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
349 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
350 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
351 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
352 
353 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
354 		return 1;
355 	if (!msr_info->host_initiated) {
356 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
357 			return 1;
358 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
359 			return 1;
360 	}
361 
362 	kvm_lapic_set_base(vcpu, msr_info->data);
363 	return 0;
364 }
365 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
366 
kvm_spurious_fault(void)367 asmlinkage __visible void kvm_spurious_fault(void)
368 {
369 	/* Fault while not rebooting.  We want the trace. */
370 	BUG_ON(!kvm_rebooting);
371 }
372 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
373 
374 #define EXCPT_BENIGN		0
375 #define EXCPT_CONTRIBUTORY	1
376 #define EXCPT_PF		2
377 
exception_class(int vector)378 static int exception_class(int vector)
379 {
380 	switch (vector) {
381 	case PF_VECTOR:
382 		return EXCPT_PF;
383 	case DE_VECTOR:
384 	case TS_VECTOR:
385 	case NP_VECTOR:
386 	case SS_VECTOR:
387 	case GP_VECTOR:
388 		return EXCPT_CONTRIBUTORY;
389 	default:
390 		break;
391 	}
392 	return EXCPT_BENIGN;
393 }
394 
395 #define EXCPT_FAULT		0
396 #define EXCPT_TRAP		1
397 #define EXCPT_ABORT		2
398 #define EXCPT_INTERRUPT		3
399 
exception_type(int vector)400 static int exception_type(int vector)
401 {
402 	unsigned int mask;
403 
404 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
405 		return EXCPT_INTERRUPT;
406 
407 	mask = 1 << vector;
408 
409 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
410 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
411 		return EXCPT_TRAP;
412 
413 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
414 		return EXCPT_ABORT;
415 
416 	/* Reserved exceptions will result in fault */
417 	return EXCPT_FAULT;
418 }
419 
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu)420 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
421 {
422 	unsigned nr = vcpu->arch.exception.nr;
423 	bool has_payload = vcpu->arch.exception.has_payload;
424 	unsigned long payload = vcpu->arch.exception.payload;
425 
426 	if (!has_payload)
427 		return;
428 
429 	switch (nr) {
430 	case DB_VECTOR:
431 		/*
432 		 * "Certain debug exceptions may clear bit 0-3.  The
433 		 * remaining contents of the DR6 register are never
434 		 * cleared by the processor".
435 		 */
436 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
437 		/*
438 		 * DR6.RTM is set by all #DB exceptions that don't clear it.
439 		 */
440 		vcpu->arch.dr6 |= DR6_RTM;
441 		vcpu->arch.dr6 |= payload;
442 		/*
443 		 * Bit 16 should be set in the payload whenever the #DB
444 		 * exception should clear DR6.RTM. This makes the payload
445 		 * compatible with the pending debug exceptions under VMX.
446 		 * Though not currently documented in the SDM, this also
447 		 * makes the payload compatible with the exit qualification
448 		 * for #DB exceptions under VMX.
449 		 */
450 		vcpu->arch.dr6 ^= payload & DR6_RTM;
451 
452 		/*
453 		 * The #DB payload is defined as compatible with the 'pending
454 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
455 		 * defined in the 'pending debug exceptions' field (enabled
456 		 * breakpoint), it is reserved and must be zero in DR6.
457 		 */
458 		vcpu->arch.dr6 &= ~BIT(12);
459 		break;
460 	case PF_VECTOR:
461 		vcpu->arch.cr2 = payload;
462 		break;
463 	}
464 
465 	vcpu->arch.exception.has_payload = false;
466 	vcpu->arch.exception.payload = 0;
467 }
468 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
469 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)470 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
471 		unsigned nr, bool has_error, u32 error_code,
472 	        bool has_payload, unsigned long payload, bool reinject)
473 {
474 	u32 prev_nr;
475 	int class1, class2;
476 
477 	kvm_make_request(KVM_REQ_EVENT, vcpu);
478 
479 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
480 	queue:
481 		if (reinject) {
482 			/*
483 			 * On vmentry, vcpu->arch.exception.pending is only
484 			 * true if an event injection was blocked by
485 			 * nested_run_pending.  In that case, however,
486 			 * vcpu_enter_guest requests an immediate exit,
487 			 * and the guest shouldn't proceed far enough to
488 			 * need reinjection.
489 			 */
490 			WARN_ON_ONCE(vcpu->arch.exception.pending);
491 			vcpu->arch.exception.injected = true;
492 			if (WARN_ON_ONCE(has_payload)) {
493 				/*
494 				 * A reinjected event has already
495 				 * delivered its payload.
496 				 */
497 				has_payload = false;
498 				payload = 0;
499 			}
500 		} else {
501 			vcpu->arch.exception.pending = true;
502 			vcpu->arch.exception.injected = false;
503 		}
504 		vcpu->arch.exception.has_error_code = has_error;
505 		vcpu->arch.exception.nr = nr;
506 		vcpu->arch.exception.error_code = error_code;
507 		vcpu->arch.exception.has_payload = has_payload;
508 		vcpu->arch.exception.payload = payload;
509 		/*
510 		 * In guest mode, payload delivery should be deferred,
511 		 * so that the L1 hypervisor can intercept #PF before
512 		 * CR2 is modified (or intercept #DB before DR6 is
513 		 * modified under nVMX).  However, for ABI
514 		 * compatibility with KVM_GET_VCPU_EVENTS and
515 		 * KVM_SET_VCPU_EVENTS, we can't delay payload
516 		 * delivery unless userspace has enabled this
517 		 * functionality via the per-VM capability,
518 		 * KVM_CAP_EXCEPTION_PAYLOAD.
519 		 */
520 		if (!vcpu->kvm->arch.exception_payload_enabled ||
521 		    !is_guest_mode(vcpu))
522 			kvm_deliver_exception_payload(vcpu);
523 		return;
524 	}
525 
526 	/* to check exception */
527 	prev_nr = vcpu->arch.exception.nr;
528 	if (prev_nr == DF_VECTOR) {
529 		/* triple fault -> shutdown */
530 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
531 		return;
532 	}
533 	class1 = exception_class(prev_nr);
534 	class2 = exception_class(nr);
535 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
536 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
537 		/*
538 		 * Generate double fault per SDM Table 5-5.  Set
539 		 * exception.pending = true so that the double fault
540 		 * can trigger a nested vmexit.
541 		 */
542 		vcpu->arch.exception.pending = true;
543 		vcpu->arch.exception.injected = false;
544 		vcpu->arch.exception.has_error_code = true;
545 		vcpu->arch.exception.nr = DF_VECTOR;
546 		vcpu->arch.exception.error_code = 0;
547 		vcpu->arch.exception.has_payload = false;
548 		vcpu->arch.exception.payload = 0;
549 	} else
550 		/* replace previous exception with a new one in a hope
551 		   that instruction re-execution will regenerate lost
552 		   exception */
553 		goto queue;
554 }
555 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)556 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
557 {
558 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
559 }
560 EXPORT_SYMBOL_GPL(kvm_queue_exception);
561 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)562 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
563 {
564 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
565 }
566 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
567 
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)568 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
569 				  unsigned long payload)
570 {
571 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
572 }
573 
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)574 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
575 				    u32 error_code, unsigned long payload)
576 {
577 	kvm_multiple_exception(vcpu, nr, true, error_code,
578 			       true, payload, false);
579 }
580 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)581 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
582 {
583 	if (err)
584 		kvm_inject_gp(vcpu, 0);
585 	else
586 		return kvm_skip_emulated_instruction(vcpu);
587 
588 	return 1;
589 }
590 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
591 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)592 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
593 {
594 	++vcpu->stat.pf_guest;
595 	vcpu->arch.exception.nested_apf =
596 		is_guest_mode(vcpu) && fault->async_page_fault;
597 	if (vcpu->arch.exception.nested_apf) {
598 		vcpu->arch.apf.nested_apf_token = fault->address;
599 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
600 	} else {
601 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
602 					fault->address);
603 	}
604 }
605 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
606 
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)607 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
608 {
609 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
610 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
611 	else
612 		vcpu->arch.mmu->inject_page_fault(vcpu, fault);
613 
614 	return fault->nested_page_fault;
615 }
616 
kvm_inject_nmi(struct kvm_vcpu * vcpu)617 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
618 {
619 	atomic_inc(&vcpu->arch.nmi_queued);
620 	kvm_make_request(KVM_REQ_NMI, vcpu);
621 }
622 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
623 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)624 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
625 {
626 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
627 }
628 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
629 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)630 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
631 {
632 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
633 }
634 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
635 
636 /*
637  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
638  * a #GP and return false.
639  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)640 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
641 {
642 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
643 		return true;
644 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
645 	return false;
646 }
647 EXPORT_SYMBOL_GPL(kvm_require_cpl);
648 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)649 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
650 {
651 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
652 		return true;
653 
654 	kvm_queue_exception(vcpu, UD_VECTOR);
655 	return false;
656 }
657 EXPORT_SYMBOL_GPL(kvm_require_dr);
658 
659 /*
660  * This function will be used to read from the physical memory of the currently
661  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
662  * can read from guest physical or from the guest's guest physical memory.
663  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)664 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
665 			    gfn_t ngfn, void *data, int offset, int len,
666 			    u32 access)
667 {
668 	struct x86_exception exception;
669 	gfn_t real_gfn;
670 	gpa_t ngpa;
671 
672 	ngpa     = gfn_to_gpa(ngfn);
673 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
674 	if (real_gfn == UNMAPPED_GVA)
675 		return -EFAULT;
676 
677 	real_gfn = gpa_to_gfn(real_gfn);
678 
679 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
680 }
681 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
682 
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)683 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
684 			       void *data, int offset, int len, u32 access)
685 {
686 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
687 				       data, offset, len, access);
688 }
689 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)690 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
691 {
692 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
693 	       rsvd_bits(1, 2);
694 }
695 
696 /*
697  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
698  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)699 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
700 {
701 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
702 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
703 	int i;
704 	int ret;
705 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
706 
707 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
708 				      offset * sizeof(u64), sizeof(pdpte),
709 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
710 	if (ret < 0) {
711 		ret = 0;
712 		goto out;
713 	}
714 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
715 		if ((pdpte[i] & PT_PRESENT_MASK) &&
716 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
717 			ret = 0;
718 			goto out;
719 		}
720 	}
721 	ret = 1;
722 
723 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
724 	__set_bit(VCPU_EXREG_PDPTR,
725 		  (unsigned long *)&vcpu->arch.regs_avail);
726 	__set_bit(VCPU_EXREG_PDPTR,
727 		  (unsigned long *)&vcpu->arch.regs_dirty);
728 out:
729 
730 	return ret;
731 }
732 EXPORT_SYMBOL_GPL(load_pdptrs);
733 
pdptrs_changed(struct kvm_vcpu * vcpu)734 bool pdptrs_changed(struct kvm_vcpu *vcpu)
735 {
736 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
737 	bool changed = true;
738 	int offset;
739 	gfn_t gfn;
740 	int r;
741 
742 	if (!is_pae_paging(vcpu))
743 		return false;
744 
745 	if (!test_bit(VCPU_EXREG_PDPTR,
746 		      (unsigned long *)&vcpu->arch.regs_avail))
747 		return true;
748 
749 	gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
750 	offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
751 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
752 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
753 	if (r < 0)
754 		goto out;
755 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
756 out:
757 
758 	return changed;
759 }
760 EXPORT_SYMBOL_GPL(pdptrs_changed);
761 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)762 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
763 {
764 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
765 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
766 
767 	cr0 |= X86_CR0_ET;
768 
769 #ifdef CONFIG_X86_64
770 	if (cr0 & 0xffffffff00000000UL)
771 		return 1;
772 #endif
773 
774 	cr0 &= ~CR0_RESERVED_BITS;
775 
776 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
777 		return 1;
778 
779 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
780 		return 1;
781 
782 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
783 #ifdef CONFIG_X86_64
784 		if ((vcpu->arch.efer & EFER_LME)) {
785 			int cs_db, cs_l;
786 
787 			if (!is_pae(vcpu))
788 				return 1;
789 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
790 			if (cs_l)
791 				return 1;
792 		} else
793 #endif
794 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
795 						 kvm_read_cr3(vcpu)))
796 			return 1;
797 	}
798 
799 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
800 		return 1;
801 
802 	kvm_x86_ops->set_cr0(vcpu, cr0);
803 
804 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
805 		kvm_clear_async_pf_completion_queue(vcpu);
806 		kvm_async_pf_hash_reset(vcpu);
807 	}
808 
809 	if ((cr0 ^ old_cr0) & update_bits)
810 		kvm_mmu_reset_context(vcpu);
811 
812 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
813 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
814 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
815 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
816 
817 	return 0;
818 }
819 EXPORT_SYMBOL_GPL(kvm_set_cr0);
820 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)821 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
822 {
823 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
824 }
825 EXPORT_SYMBOL_GPL(kvm_lmsw);
826 
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)827 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
828 {
829 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
830 			!vcpu->guest_xcr0_loaded) {
831 		/* kvm_set_xcr() also depends on this */
832 		if (vcpu->arch.xcr0 != host_xcr0)
833 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
834 		vcpu->guest_xcr0_loaded = 1;
835 	}
836 
837 	if (static_cpu_has(X86_FEATURE_PKU) &&
838 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
839 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
840 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
841 		__write_pkru(vcpu->arch.pkru);
842 }
843 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
844 
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)845 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
846 {
847 	if (static_cpu_has(X86_FEATURE_PKU) &&
848 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
849 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
850 		vcpu->arch.pkru = rdpkru();
851 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
852 			__write_pkru(vcpu->arch.host_pkru);
853 	}
854 
855 	if (vcpu->guest_xcr0_loaded) {
856 		if (vcpu->arch.xcr0 != host_xcr0)
857 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
858 		vcpu->guest_xcr0_loaded = 0;
859 	}
860 }
861 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
862 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)863 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
864 {
865 	u64 xcr0 = xcr;
866 	u64 old_xcr0 = vcpu->arch.xcr0;
867 	u64 valid_bits;
868 
869 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
870 	if (index != XCR_XFEATURE_ENABLED_MASK)
871 		return 1;
872 	if (!(xcr0 & XFEATURE_MASK_FP))
873 		return 1;
874 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
875 		return 1;
876 
877 	/*
878 	 * Do not allow the guest to set bits that we do not support
879 	 * saving.  However, xcr0 bit 0 is always set, even if the
880 	 * emulated CPU does not support XSAVE (see fx_init).
881 	 */
882 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
883 	if (xcr0 & ~valid_bits)
884 		return 1;
885 
886 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
887 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
888 		return 1;
889 
890 	if (xcr0 & XFEATURE_MASK_AVX512) {
891 		if (!(xcr0 & XFEATURE_MASK_YMM))
892 			return 1;
893 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
894 			return 1;
895 	}
896 	vcpu->arch.xcr0 = xcr0;
897 
898 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
899 		kvm_update_cpuid(vcpu);
900 	return 0;
901 }
902 
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)903 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
904 {
905 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
906 	    __kvm_set_xcr(vcpu, index, xcr)) {
907 		kvm_inject_gp(vcpu, 0);
908 		return 1;
909 	}
910 	return 0;
911 }
912 EXPORT_SYMBOL_GPL(kvm_set_xcr);
913 
kvm_host_cr4_reserved_bits(struct cpuinfo_x86 * c)914 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c)
915 {
916 	u64 reserved_bits = CR4_RESERVED_BITS;
917 
918 	if (!cpu_has(c, X86_FEATURE_XSAVE))
919 		reserved_bits |= X86_CR4_OSXSAVE;
920 
921 	if (!cpu_has(c, X86_FEATURE_SMEP))
922 		reserved_bits |= X86_CR4_SMEP;
923 
924 	if (!cpu_has(c, X86_FEATURE_SMAP))
925 		reserved_bits |= X86_CR4_SMAP;
926 
927 	if (!cpu_has(c, X86_FEATURE_FSGSBASE))
928 		reserved_bits |= X86_CR4_FSGSBASE;
929 
930 	if (!cpu_has(c, X86_FEATURE_PKU))
931 		reserved_bits |= X86_CR4_PKE;
932 
933 	if (!cpu_has(c, X86_FEATURE_LA57) &&
934 	    !(cpuid_ecx(0x7) & bit(X86_FEATURE_LA57)))
935 		reserved_bits |= X86_CR4_LA57;
936 
937 	if (!cpu_has(c, X86_FEATURE_UMIP) && !kvm_x86_ops->umip_emulated())
938 		reserved_bits |= X86_CR4_UMIP;
939 
940 	return reserved_bits;
941 }
942 
kvm_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)943 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
944 {
945 	if (cr4 & cr4_reserved_bits)
946 		return -EINVAL;
947 
948 	if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
949 		return -EINVAL;
950 
951 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
952 		return -EINVAL;
953 
954 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
955 		return -EINVAL;
956 
957 	if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
958 		return -EINVAL;
959 
960 	if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
961 		return -EINVAL;
962 
963 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
964 		return -EINVAL;
965 
966 	if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
967 		return -EINVAL;
968 
969 	return 0;
970 }
971 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)972 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
973 {
974 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
975 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
976 				   X86_CR4_SMEP;
977 	unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
978 
979 	if (kvm_valid_cr4(vcpu, cr4))
980 		return 1;
981 
982 	if (is_long_mode(vcpu)) {
983 		if (!(cr4 & X86_CR4_PAE))
984 			return 1;
985 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
986 			return 1;
987 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
988 		   && ((cr4 ^ old_cr4) & pdptr_bits)
989 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
990 				   kvm_read_cr3(vcpu)))
991 		return 1;
992 
993 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
994 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
995 			return 1;
996 
997 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
998 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
999 			return 1;
1000 	}
1001 
1002 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
1003 		return 1;
1004 
1005 	if (((cr4 ^ old_cr4) & mmu_role_bits) ||
1006 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1007 		kvm_mmu_reset_context(vcpu);
1008 
1009 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1010 		kvm_update_cpuid(vcpu);
1011 
1012 	return 0;
1013 }
1014 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1015 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1016 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1017 {
1018 	bool skip_tlb_flush = false;
1019 #ifdef CONFIG_X86_64
1020 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1021 
1022 	if (pcid_enabled) {
1023 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1024 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1025 	}
1026 #endif
1027 
1028 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
1029 		if (!skip_tlb_flush) {
1030 			kvm_mmu_sync_roots(vcpu);
1031 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1032 		}
1033 		return 0;
1034 	}
1035 
1036 	if (is_long_mode(vcpu) &&
1037 	    (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
1038 		return 1;
1039 	else if (is_pae_paging(vcpu) &&
1040 		 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1041 		return 1;
1042 
1043 	kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
1044 	vcpu->arch.cr3 = cr3;
1045 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1046 
1047 	return 0;
1048 }
1049 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1050 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1051 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1052 {
1053 	if (cr8 & CR8_RESERVED_BITS)
1054 		return 1;
1055 	if (lapic_in_kernel(vcpu))
1056 		kvm_lapic_set_tpr(vcpu, cr8);
1057 	else
1058 		vcpu->arch.cr8 = cr8;
1059 	return 0;
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1062 
kvm_get_cr8(struct kvm_vcpu * vcpu)1063 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1064 {
1065 	if (lapic_in_kernel(vcpu))
1066 		return kvm_lapic_get_cr8(vcpu);
1067 	else
1068 		return vcpu->arch.cr8;
1069 }
1070 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1071 
kvm_update_dr0123(struct kvm_vcpu * vcpu)1072 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1073 {
1074 	int i;
1075 
1076 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1077 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1078 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1079 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1080 	}
1081 }
1082 
kvm_update_dr6(struct kvm_vcpu * vcpu)1083 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1084 {
1085 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1086 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1087 }
1088 
kvm_update_dr7(struct kvm_vcpu * vcpu)1089 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1090 {
1091 	unsigned long dr7;
1092 
1093 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1094 		dr7 = vcpu->arch.guest_debug_dr7;
1095 	else
1096 		dr7 = vcpu->arch.dr7;
1097 	kvm_x86_ops->set_dr7(vcpu, dr7);
1098 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1099 	if (dr7 & DR7_BP_EN_MASK)
1100 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1101 }
1102 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1103 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1104 {
1105 	u64 fixed = DR6_FIXED_1;
1106 
1107 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1108 		fixed |= DR6_RTM;
1109 	return fixed;
1110 }
1111 
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1112 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1113 {
1114 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1115 
1116 	switch (dr) {
1117 	case 0 ... 3:
1118 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1119 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1120 			vcpu->arch.eff_db[dr] = val;
1121 		break;
1122 	case 4:
1123 		/* fall through */
1124 	case 6:
1125 		if (val & 0xffffffff00000000ULL)
1126 			return -1; /* #GP */
1127 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1128 		kvm_update_dr6(vcpu);
1129 		break;
1130 	case 5:
1131 		/* fall through */
1132 	default: /* 7 */
1133 		if (val & 0xffffffff00000000ULL)
1134 			return -1; /* #GP */
1135 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1136 		kvm_update_dr7(vcpu);
1137 		break;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1143 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1144 {
1145 	if (__kvm_set_dr(vcpu, dr, val)) {
1146 		kvm_inject_gp(vcpu, 0);
1147 		return 1;
1148 	}
1149 	return 0;
1150 }
1151 EXPORT_SYMBOL_GPL(kvm_set_dr);
1152 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1153 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1154 {
1155 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1156 
1157 	switch (dr) {
1158 	case 0 ... 3:
1159 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1160 		break;
1161 	case 4:
1162 		/* fall through */
1163 	case 6:
1164 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1165 			*val = vcpu->arch.dr6;
1166 		else
1167 			*val = kvm_x86_ops->get_dr6(vcpu);
1168 		break;
1169 	case 5:
1170 		/* fall through */
1171 	default: /* 7 */
1172 		*val = vcpu->arch.dr7;
1173 		break;
1174 	}
1175 	return 0;
1176 }
1177 EXPORT_SYMBOL_GPL(kvm_get_dr);
1178 
kvm_rdpmc(struct kvm_vcpu * vcpu)1179 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1180 {
1181 	u32 ecx = kvm_rcx_read(vcpu);
1182 	u64 data;
1183 	int err;
1184 
1185 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1186 	if (err)
1187 		return err;
1188 	kvm_rax_write(vcpu, (u32)data);
1189 	kvm_rdx_write(vcpu, data >> 32);
1190 	return err;
1191 }
1192 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1193 
1194 /*
1195  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1196  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1197  *
1198  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1199  * extract the supported MSRs from the related const lists.
1200  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1201  * capabilities of the host cpu. This capabilities test skips MSRs that are
1202  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1203  * may depend on host virtualization features rather than host cpu features.
1204  */
1205 
1206 static const u32 msrs_to_save_all[] = {
1207 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1208 	MSR_STAR,
1209 #ifdef CONFIG_X86_64
1210 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1211 #endif
1212 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1213 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1214 	MSR_IA32_SPEC_CTRL,
1215 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1216 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1217 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1218 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1219 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1220 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1221 	MSR_IA32_UMWAIT_CONTROL,
1222 
1223 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1224 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1225 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1226 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1227 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1228 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1229 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1230 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1231 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1232 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1233 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1234 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1235 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1236 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1237 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1238 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1239 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1240 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1241 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1242 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1243 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1244 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1245 
1246 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1247 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1248 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1249 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1250 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1251 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1252 };
1253 
1254 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1255 static unsigned num_msrs_to_save;
1256 
1257 static const u32 emulated_msrs_all[] = {
1258 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1259 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1260 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1261 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1262 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1263 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1264 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1265 	HV_X64_MSR_RESET,
1266 	HV_X64_MSR_VP_INDEX,
1267 	HV_X64_MSR_VP_RUNTIME,
1268 	HV_X64_MSR_SCONTROL,
1269 	HV_X64_MSR_STIMER0_CONFIG,
1270 	HV_X64_MSR_VP_ASSIST_PAGE,
1271 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1272 	HV_X64_MSR_TSC_EMULATION_STATUS,
1273 
1274 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1275 	MSR_KVM_PV_EOI_EN,
1276 
1277 	MSR_IA32_TSC_ADJUST,
1278 	MSR_IA32_TSCDEADLINE,
1279 	MSR_IA32_ARCH_CAPABILITIES,
1280 	MSR_IA32_MISC_ENABLE,
1281 	MSR_IA32_MCG_STATUS,
1282 	MSR_IA32_MCG_CTL,
1283 	MSR_IA32_MCG_EXT_CTL,
1284 	MSR_IA32_SMBASE,
1285 	MSR_SMI_COUNT,
1286 	MSR_PLATFORM_INFO,
1287 	MSR_MISC_FEATURES_ENABLES,
1288 	MSR_AMD64_VIRT_SPEC_CTRL,
1289 	MSR_IA32_POWER_CTL,
1290 
1291 	/*
1292 	 * The following list leaves out MSRs whose values are determined
1293 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1294 	 * We always support the "true" VMX control MSRs, even if the host
1295 	 * processor does not, so I am putting these registers here rather
1296 	 * than in msrs_to_save_all.
1297 	 */
1298 	MSR_IA32_VMX_BASIC,
1299 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1300 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1301 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1302 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1303 	MSR_IA32_VMX_MISC,
1304 	MSR_IA32_VMX_CR0_FIXED0,
1305 	MSR_IA32_VMX_CR4_FIXED0,
1306 	MSR_IA32_VMX_VMCS_ENUM,
1307 	MSR_IA32_VMX_PROCBASED_CTLS2,
1308 	MSR_IA32_VMX_EPT_VPID_CAP,
1309 	MSR_IA32_VMX_VMFUNC,
1310 
1311 	MSR_K7_HWCR,
1312 	MSR_KVM_POLL_CONTROL,
1313 };
1314 
1315 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1316 static unsigned num_emulated_msrs;
1317 
1318 /*
1319  * List of msr numbers which are used to expose MSR-based features that
1320  * can be used by a hypervisor to validate requested CPU features.
1321  */
1322 static const u32 msr_based_features_all[] = {
1323 	MSR_IA32_VMX_BASIC,
1324 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1325 	MSR_IA32_VMX_PINBASED_CTLS,
1326 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1327 	MSR_IA32_VMX_PROCBASED_CTLS,
1328 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1329 	MSR_IA32_VMX_EXIT_CTLS,
1330 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1331 	MSR_IA32_VMX_ENTRY_CTLS,
1332 	MSR_IA32_VMX_MISC,
1333 	MSR_IA32_VMX_CR0_FIXED0,
1334 	MSR_IA32_VMX_CR0_FIXED1,
1335 	MSR_IA32_VMX_CR4_FIXED0,
1336 	MSR_IA32_VMX_CR4_FIXED1,
1337 	MSR_IA32_VMX_VMCS_ENUM,
1338 	MSR_IA32_VMX_PROCBASED_CTLS2,
1339 	MSR_IA32_VMX_EPT_VPID_CAP,
1340 	MSR_IA32_VMX_VMFUNC,
1341 
1342 	MSR_AMD64_DE_CFG,
1343 	MSR_IA32_UCODE_REV,
1344 	MSR_IA32_ARCH_CAPABILITIES,
1345 };
1346 
1347 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1348 static unsigned int num_msr_based_features;
1349 
kvm_get_arch_capabilities(void)1350 static u64 kvm_get_arch_capabilities(void)
1351 {
1352 	u64 data = 0;
1353 
1354 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1355 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1356 
1357 	/*
1358 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1359 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1360 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1361 	 * L1 guests, so it need not worry about its own (L2) guests.
1362 	 */
1363 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1364 
1365 	/*
1366 	 * If we're doing cache flushes (either "always" or "cond")
1367 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1368 	 * If an outer hypervisor is doing the cache flush for us
1369 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1370 	 * capability to the guest too, and if EPT is disabled we're not
1371 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1372 	 * require a nested hypervisor to do a flush of its own.
1373 	 */
1374 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1375 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1376 
1377 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1378 		data |= ARCH_CAP_RDCL_NO;
1379 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1380 		data |= ARCH_CAP_SSB_NO;
1381 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1382 		data |= ARCH_CAP_MDS_NO;
1383 
1384 	/*
1385 	 * On TAA affected systems, export MDS_NO=0 when:
1386 	 *	- TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
1387 	 *	- Updated microcode is present. This is detected by
1388 	 *	  the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
1389 	 *	  that VERW clears CPU buffers.
1390 	 *
1391 	 * When MDS_NO=0 is exported, guests deploy clear CPU buffer
1392 	 * mitigation and don't complain:
1393 	 *
1394 	 *	"Vulnerable: Clear CPU buffers attempted, no microcode"
1395 	 *
1396 	 * If TSX is disabled on the system, guests are also mitigated against
1397 	 * TAA and clear CPU buffer mitigation is not required for guests.
1398 	 */
1399 	if (!boot_cpu_has(X86_FEATURE_RTM))
1400 		data &= ~ARCH_CAP_TAA_NO;
1401 	else if (!boot_cpu_has_bug(X86_BUG_TAA))
1402 		data |= ARCH_CAP_TAA_NO;
1403 	else if (data & ARCH_CAP_TSX_CTRL_MSR)
1404 		data &= ~ARCH_CAP_MDS_NO;
1405 
1406 	/* KVM does not emulate MSR_IA32_TSX_CTRL.  */
1407 	data &= ~ARCH_CAP_TSX_CTRL_MSR;
1408 
1409 	/* Guests don't need to know "Fill buffer clear control" exists */
1410 	data &= ~ARCH_CAP_FB_CLEAR_CTRL;
1411 
1412 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1413 		data |= ARCH_CAP_GDS_NO;
1414 
1415 	return data;
1416 }
1417 
kvm_get_msr_feature(struct kvm_msr_entry * msr)1418 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1419 {
1420 	switch (msr->index) {
1421 	case MSR_IA32_ARCH_CAPABILITIES:
1422 		msr->data = kvm_get_arch_capabilities();
1423 		break;
1424 	case MSR_IA32_UCODE_REV:
1425 		rdmsrl_safe(msr->index, &msr->data);
1426 		break;
1427 	default:
1428 		if (kvm_x86_ops->get_msr_feature(msr))
1429 			return 1;
1430 	}
1431 	return 0;
1432 }
1433 
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1434 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1435 {
1436 	struct kvm_msr_entry msr;
1437 	int r;
1438 
1439 	msr.index = index;
1440 	r = kvm_get_msr_feature(&msr);
1441 	if (r)
1442 		return r;
1443 
1444 	*data = msr.data;
1445 
1446 	return 0;
1447 }
1448 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1449 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1450 {
1451 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1452 		return false;
1453 
1454 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1455 		return false;
1456 
1457 	if (efer & (EFER_LME | EFER_LMA) &&
1458 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1459 		return false;
1460 
1461 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1462 		return false;
1463 
1464 	return true;
1465 
1466 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1467 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1468 {
1469 	if (efer & efer_reserved_bits)
1470 		return false;
1471 
1472 	return __kvm_valid_efer(vcpu, efer);
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1475 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1476 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1477 {
1478 	u64 old_efer = vcpu->arch.efer;
1479 	u64 efer = msr_info->data;
1480 
1481 	if (efer & efer_reserved_bits)
1482 		return 1;
1483 
1484 	if (!msr_info->host_initiated) {
1485 		if (!__kvm_valid_efer(vcpu, efer))
1486 			return 1;
1487 
1488 		if (is_paging(vcpu) &&
1489 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1490 			return 1;
1491 	}
1492 
1493 	efer &= ~EFER_LMA;
1494 	efer |= vcpu->arch.efer & EFER_LMA;
1495 
1496 	kvm_x86_ops->set_efer(vcpu, efer);
1497 
1498 	/* Update reserved bits */
1499 	if ((efer ^ old_efer) & EFER_NX)
1500 		kvm_mmu_reset_context(vcpu);
1501 
1502 	return 0;
1503 }
1504 
kvm_enable_efer_bits(u64 mask)1505 void kvm_enable_efer_bits(u64 mask)
1506 {
1507        efer_reserved_bits &= ~mask;
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1510 
1511 /*
1512  * Write @data into the MSR specified by @index.  Select MSR specific fault
1513  * checks are bypassed if @host_initiated is %true.
1514  * Returns 0 on success, non-0 otherwise.
1515  * Assumes vcpu_load() was already called.
1516  */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1517 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1518 			 bool host_initiated)
1519 {
1520 	struct msr_data msr;
1521 
1522 	switch (index) {
1523 	case MSR_FS_BASE:
1524 	case MSR_GS_BASE:
1525 	case MSR_KERNEL_GS_BASE:
1526 	case MSR_CSTAR:
1527 	case MSR_LSTAR:
1528 		if (is_noncanonical_address(data, vcpu))
1529 			return 1;
1530 		break;
1531 	case MSR_IA32_SYSENTER_EIP:
1532 	case MSR_IA32_SYSENTER_ESP:
1533 		/*
1534 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1535 		 * non-canonical address is written on Intel but not on
1536 		 * AMD (which ignores the top 32-bits, because it does
1537 		 * not implement 64-bit SYSENTER).
1538 		 *
1539 		 * 64-bit code should hence be able to write a non-canonical
1540 		 * value on AMD.  Making the address canonical ensures that
1541 		 * vmentry does not fail on Intel after writing a non-canonical
1542 		 * value, and that something deterministic happens if the guest
1543 		 * invokes 64-bit SYSENTER.
1544 		 */
1545 		data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1546 	}
1547 
1548 	msr.data = data;
1549 	msr.index = index;
1550 	msr.host_initiated = host_initiated;
1551 
1552 	return kvm_x86_ops->set_msr(vcpu, &msr);
1553 }
1554 
1555 /*
1556  * Read the MSR specified by @index into @data.  Select MSR specific fault
1557  * checks are bypassed if @host_initiated is %true.
1558  * Returns 0 on success, non-0 otherwise.
1559  * Assumes vcpu_load() was already called.
1560  */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1561 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1562 			 bool host_initiated)
1563 {
1564 	struct msr_data msr;
1565 	int ret;
1566 
1567 	msr.index = index;
1568 	msr.host_initiated = host_initiated;
1569 
1570 	ret = kvm_x86_ops->get_msr(vcpu, &msr);
1571 	if (!ret)
1572 		*data = msr.data;
1573 	return ret;
1574 }
1575 
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1576 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1577 {
1578 	return __kvm_get_msr(vcpu, index, data, false);
1579 }
1580 EXPORT_SYMBOL_GPL(kvm_get_msr);
1581 
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1582 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1583 {
1584 	return __kvm_set_msr(vcpu, index, data, false);
1585 }
1586 EXPORT_SYMBOL_GPL(kvm_set_msr);
1587 
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)1588 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1589 {
1590 	u32 ecx = kvm_rcx_read(vcpu);
1591 	u64 data;
1592 
1593 	if (kvm_get_msr(vcpu, ecx, &data)) {
1594 		trace_kvm_msr_read_ex(ecx);
1595 		kvm_inject_gp(vcpu, 0);
1596 		return 1;
1597 	}
1598 
1599 	trace_kvm_msr_read(ecx, data);
1600 
1601 	kvm_rax_write(vcpu, data & -1u);
1602 	kvm_rdx_write(vcpu, (data >> 32) & -1u);
1603 	return kvm_skip_emulated_instruction(vcpu);
1604 }
1605 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1606 
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)1607 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1608 {
1609 	u32 ecx = kvm_rcx_read(vcpu);
1610 	u64 data = kvm_read_edx_eax(vcpu);
1611 
1612 	if (kvm_set_msr(vcpu, ecx, data)) {
1613 		trace_kvm_msr_write_ex(ecx, data);
1614 		kvm_inject_gp(vcpu, 0);
1615 		return 1;
1616 	}
1617 
1618 	trace_kvm_msr_write(ecx, data);
1619 	return kvm_skip_emulated_instruction(vcpu);
1620 }
1621 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1622 
1623 /*
1624  * Adapt set_msr() to msr_io()'s calling convention
1625  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1626 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1627 {
1628 	return __kvm_get_msr(vcpu, index, data, true);
1629 }
1630 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1631 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1632 {
1633 	return __kvm_set_msr(vcpu, index, *data, true);
1634 }
1635 
1636 #ifdef CONFIG_X86_64
1637 struct pvclock_gtod_data {
1638 	seqcount_t	seq;
1639 
1640 	struct { /* extract of a clocksource struct */
1641 		int vclock_mode;
1642 		u64	cycle_last;
1643 		u64	mask;
1644 		u32	mult;
1645 		u32	shift;
1646 	} clock;
1647 
1648 	u64		boot_ns;
1649 	u64		nsec_base;
1650 	u64		wall_time_sec;
1651 };
1652 
1653 static struct pvclock_gtod_data pvclock_gtod_data;
1654 
update_pvclock_gtod(struct timekeeper * tk)1655 static void update_pvclock_gtod(struct timekeeper *tk)
1656 {
1657 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1658 	u64 boot_ns;
1659 
1660 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1661 
1662 	write_seqcount_begin(&vdata->seq);
1663 
1664 	/* copy pvclock gtod data */
1665 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1666 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1667 	vdata->clock.mask		= tk->tkr_mono.mask;
1668 	vdata->clock.mult		= tk->tkr_mono.mult;
1669 	vdata->clock.shift		= tk->tkr_mono.shift;
1670 
1671 	vdata->boot_ns			= boot_ns;
1672 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1673 
1674 	vdata->wall_time_sec            = tk->xtime_sec;
1675 
1676 	write_seqcount_end(&vdata->seq);
1677 }
1678 #endif
1679 
kvm_set_pending_timer(struct kvm_vcpu * vcpu)1680 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1681 {
1682 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1683 	kvm_vcpu_kick(vcpu);
1684 }
1685 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1686 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1687 {
1688 	int version;
1689 	int r;
1690 	struct pvclock_wall_clock wc;
1691 	struct timespec64 boot;
1692 
1693 	if (!wall_clock)
1694 		return;
1695 
1696 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1697 	if (r)
1698 		return;
1699 
1700 	if (version & 1)
1701 		++version;  /* first time write, random junk */
1702 
1703 	++version;
1704 
1705 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1706 		return;
1707 
1708 	/*
1709 	 * The guest calculates current wall clock time by adding
1710 	 * system time (updated by kvm_guest_time_update below) to the
1711 	 * wall clock specified here.  guest system time equals host
1712 	 * system time for us, thus we must fill in host boot time here.
1713 	 */
1714 	getboottime64(&boot);
1715 
1716 	if (kvm->arch.kvmclock_offset) {
1717 		struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1718 		boot = timespec64_sub(boot, ts);
1719 	}
1720 	wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1721 	wc.nsec = boot.tv_nsec;
1722 	wc.version = version;
1723 
1724 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1725 
1726 	version++;
1727 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1728 }
1729 
div_frac(uint32_t dividend,uint32_t divisor)1730 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1731 {
1732 	do_shl32_div32(dividend, divisor);
1733 	return dividend;
1734 }
1735 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)1736 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1737 			       s8 *pshift, u32 *pmultiplier)
1738 {
1739 	uint64_t scaled64;
1740 	int32_t  shift = 0;
1741 	uint64_t tps64;
1742 	uint32_t tps32;
1743 
1744 	tps64 = base_hz;
1745 	scaled64 = scaled_hz;
1746 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1747 		tps64 >>= 1;
1748 		shift--;
1749 	}
1750 
1751 	tps32 = (uint32_t)tps64;
1752 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1753 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1754 			scaled64 >>= 1;
1755 		else
1756 			tps32 <<= 1;
1757 		shift++;
1758 	}
1759 
1760 	*pshift = shift;
1761 	*pmultiplier = div_frac(scaled64, tps32);
1762 }
1763 
1764 #ifdef CONFIG_X86_64
1765 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1766 #endif
1767 
1768 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1769 static unsigned long max_tsc_khz;
1770 
adjust_tsc_khz(u32 khz,s32 ppm)1771 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1772 {
1773 	u64 v = (u64)khz * (1000000 + ppm);
1774 	do_div(v, 1000000);
1775 	return v;
1776 }
1777 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)1778 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1779 {
1780 	u64 ratio;
1781 
1782 	/* Guest TSC same frequency as host TSC? */
1783 	if (!scale) {
1784 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1785 		return 0;
1786 	}
1787 
1788 	/* TSC scaling supported? */
1789 	if (!kvm_has_tsc_control) {
1790 		if (user_tsc_khz > tsc_khz) {
1791 			vcpu->arch.tsc_catchup = 1;
1792 			vcpu->arch.tsc_always_catchup = 1;
1793 			return 0;
1794 		} else {
1795 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1796 			return -1;
1797 		}
1798 	}
1799 
1800 	/* TSC scaling required  - calculate ratio */
1801 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1802 				user_tsc_khz, tsc_khz);
1803 
1804 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1805 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1806 			            user_tsc_khz);
1807 		return -1;
1808 	}
1809 
1810 	vcpu->arch.tsc_scaling_ratio = ratio;
1811 	return 0;
1812 }
1813 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)1814 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1815 {
1816 	u32 thresh_lo, thresh_hi;
1817 	int use_scaling = 0;
1818 
1819 	/* tsc_khz can be zero if TSC calibration fails */
1820 	if (user_tsc_khz == 0) {
1821 		/* set tsc_scaling_ratio to a safe value */
1822 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1823 		return -1;
1824 	}
1825 
1826 	/* Compute a scale to convert nanoseconds in TSC cycles */
1827 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1828 			   &vcpu->arch.virtual_tsc_shift,
1829 			   &vcpu->arch.virtual_tsc_mult);
1830 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1831 
1832 	/*
1833 	 * Compute the variation in TSC rate which is acceptable
1834 	 * within the range of tolerance and decide if the
1835 	 * rate being applied is within that bounds of the hardware
1836 	 * rate.  If so, no scaling or compensation need be done.
1837 	 */
1838 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1839 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1840 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1841 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1842 		use_scaling = 1;
1843 	}
1844 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1845 }
1846 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1847 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1848 {
1849 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1850 				      vcpu->arch.virtual_tsc_mult,
1851 				      vcpu->arch.virtual_tsc_shift);
1852 	tsc += vcpu->arch.this_tsc_write;
1853 	return tsc;
1854 }
1855 
gtod_is_based_on_tsc(int mode)1856 static inline int gtod_is_based_on_tsc(int mode)
1857 {
1858 	return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1859 }
1860 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)1861 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1862 {
1863 #ifdef CONFIG_X86_64
1864 	bool vcpus_matched;
1865 	struct kvm_arch *ka = &vcpu->kvm->arch;
1866 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1867 
1868 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1869 			 atomic_read(&vcpu->kvm->online_vcpus));
1870 
1871 	/*
1872 	 * Once the masterclock is enabled, always perform request in
1873 	 * order to update it.
1874 	 *
1875 	 * In order to enable masterclock, the host clocksource must be TSC
1876 	 * and the vcpus need to have matched TSCs.  When that happens,
1877 	 * perform request to enable masterclock.
1878 	 */
1879 	if (ka->use_master_clock ||
1880 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1881 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1882 
1883 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1884 			    atomic_read(&vcpu->kvm->online_vcpus),
1885 		            ka->use_master_clock, gtod->clock.vclock_mode);
1886 #endif
1887 }
1888 
update_ia32_tsc_adjust_msr(struct kvm_vcpu * vcpu,s64 offset)1889 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1890 {
1891 	u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1892 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1893 }
1894 
1895 /*
1896  * Multiply tsc by a fixed point number represented by ratio.
1897  *
1898  * The most significant 64-N bits (mult) of ratio represent the
1899  * integral part of the fixed point number; the remaining N bits
1900  * (frac) represent the fractional part, ie. ratio represents a fixed
1901  * point number (mult + frac * 2^(-N)).
1902  *
1903  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1904  */
__scale_tsc(u64 ratio,u64 tsc)1905 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1906 {
1907 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1908 }
1909 
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)1910 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1911 {
1912 	u64 _tsc = tsc;
1913 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1914 
1915 	if (ratio != kvm_default_tsc_scaling_ratio)
1916 		_tsc = __scale_tsc(ratio, tsc);
1917 
1918 	return _tsc;
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1921 
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1922 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1923 {
1924 	u64 tsc;
1925 
1926 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1927 
1928 	return target_tsc - tsc;
1929 }
1930 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)1931 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1932 {
1933 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1934 
1935 	return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1938 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1939 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1940 {
1941 	vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1942 }
1943 
kvm_check_tsc_unstable(void)1944 static inline bool kvm_check_tsc_unstable(void)
1945 {
1946 #ifdef CONFIG_X86_64
1947 	/*
1948 	 * TSC is marked unstable when we're running on Hyper-V,
1949 	 * 'TSC page' clocksource is good.
1950 	 */
1951 	if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1952 		return false;
1953 #endif
1954 	return check_tsc_unstable();
1955 }
1956 
kvm_write_tsc(struct kvm_vcpu * vcpu,struct msr_data * msr)1957 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1958 {
1959 	struct kvm *kvm = vcpu->kvm;
1960 	u64 offset, ns, elapsed;
1961 	unsigned long flags;
1962 	bool matched;
1963 	bool already_matched;
1964 	u64 data = msr->data;
1965 	bool synchronizing = false;
1966 
1967 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1968 	offset = kvm_compute_tsc_offset(vcpu, data);
1969 	ns = ktime_get_boottime_ns();
1970 	elapsed = ns - kvm->arch.last_tsc_nsec;
1971 
1972 	if (vcpu->arch.virtual_tsc_khz) {
1973 		if (data == 0 && msr->host_initiated) {
1974 			/*
1975 			 * detection of vcpu initialization -- need to sync
1976 			 * with other vCPUs. This particularly helps to keep
1977 			 * kvm_clock stable after CPU hotplug
1978 			 */
1979 			synchronizing = true;
1980 		} else {
1981 			u64 tsc_exp = kvm->arch.last_tsc_write +
1982 						nsec_to_cycles(vcpu, elapsed);
1983 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1984 			/*
1985 			 * Special case: TSC write with a small delta (1 second)
1986 			 * of virtual cycle time against real time is
1987 			 * interpreted as an attempt to synchronize the CPU.
1988 			 */
1989 			synchronizing = data < tsc_exp + tsc_hz &&
1990 					data + tsc_hz > tsc_exp;
1991 		}
1992 	}
1993 
1994 	/*
1995 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1996 	 * TSC, we add elapsed time in this computation.  We could let the
1997 	 * compensation code attempt to catch up if we fall behind, but
1998 	 * it's better to try to match offsets from the beginning.
1999          */
2000 	if (synchronizing &&
2001 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2002 		if (!kvm_check_tsc_unstable()) {
2003 			offset = kvm->arch.cur_tsc_offset;
2004 		} else {
2005 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2006 			data += delta;
2007 			offset = kvm_compute_tsc_offset(vcpu, data);
2008 		}
2009 		matched = true;
2010 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2011 	} else {
2012 		/*
2013 		 * We split periods of matched TSC writes into generations.
2014 		 * For each generation, we track the original measured
2015 		 * nanosecond time, offset, and write, so if TSCs are in
2016 		 * sync, we can match exact offset, and if not, we can match
2017 		 * exact software computation in compute_guest_tsc()
2018 		 *
2019 		 * These values are tracked in kvm->arch.cur_xxx variables.
2020 		 */
2021 		kvm->arch.cur_tsc_generation++;
2022 		kvm->arch.cur_tsc_nsec = ns;
2023 		kvm->arch.cur_tsc_write = data;
2024 		kvm->arch.cur_tsc_offset = offset;
2025 		matched = false;
2026 	}
2027 
2028 	/*
2029 	 * We also track th most recent recorded KHZ, write and time to
2030 	 * allow the matching interval to be extended at each write.
2031 	 */
2032 	kvm->arch.last_tsc_nsec = ns;
2033 	kvm->arch.last_tsc_write = data;
2034 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2035 
2036 	vcpu->arch.last_guest_tsc = data;
2037 
2038 	/* Keep track of which generation this VCPU has synchronized to */
2039 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2040 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2041 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2042 
2043 	if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2044 		update_ia32_tsc_adjust_msr(vcpu, offset);
2045 
2046 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2047 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2048 
2049 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2050 	if (!matched) {
2051 		kvm->arch.nr_vcpus_matched_tsc = 0;
2052 	} else if (!already_matched) {
2053 		kvm->arch.nr_vcpus_matched_tsc++;
2054 	}
2055 
2056 	kvm_track_tsc_matching(vcpu);
2057 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2058 }
2059 
2060 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2061 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2062 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2063 					   s64 adjustment)
2064 {
2065 	u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
2066 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2067 }
2068 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2069 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2070 {
2071 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2072 		WARN_ON(adjustment < 0);
2073 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2074 	adjust_tsc_offset_guest(vcpu, adjustment);
2075 }
2076 
2077 #ifdef CONFIG_X86_64
2078 
read_tsc(void)2079 static u64 read_tsc(void)
2080 {
2081 	u64 ret = (u64)rdtsc_ordered();
2082 	u64 last = pvclock_gtod_data.clock.cycle_last;
2083 
2084 	if (likely(ret >= last))
2085 		return ret;
2086 
2087 	/*
2088 	 * GCC likes to generate cmov here, but this branch is extremely
2089 	 * predictable (it's just a function of time and the likely is
2090 	 * very likely) and there's a data dependence, so force GCC
2091 	 * to generate a branch instead.  I don't barrier() because
2092 	 * we don't actually need a barrier, and if this function
2093 	 * ever gets inlined it will generate worse code.
2094 	 */
2095 	asm volatile ("");
2096 	return last;
2097 }
2098 
vgettsc(u64 * tsc_timestamp,int * mode)2099 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
2100 {
2101 	long v;
2102 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2103 	u64 tsc_pg_val;
2104 
2105 	switch (gtod->clock.vclock_mode) {
2106 	case VCLOCK_HVCLOCK:
2107 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2108 						  tsc_timestamp);
2109 		if (tsc_pg_val != U64_MAX) {
2110 			/* TSC page valid */
2111 			*mode = VCLOCK_HVCLOCK;
2112 			v = (tsc_pg_val - gtod->clock.cycle_last) &
2113 				gtod->clock.mask;
2114 		} else {
2115 			/* TSC page invalid */
2116 			*mode = VCLOCK_NONE;
2117 		}
2118 		break;
2119 	case VCLOCK_TSC:
2120 		*mode = VCLOCK_TSC;
2121 		*tsc_timestamp = read_tsc();
2122 		v = (*tsc_timestamp - gtod->clock.cycle_last) &
2123 			gtod->clock.mask;
2124 		break;
2125 	default:
2126 		*mode = VCLOCK_NONE;
2127 	}
2128 
2129 	if (*mode == VCLOCK_NONE)
2130 		*tsc_timestamp = v = 0;
2131 
2132 	return v * gtod->clock.mult;
2133 }
2134 
do_monotonic_boot(s64 * t,u64 * tsc_timestamp)2135 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
2136 {
2137 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2138 	unsigned long seq;
2139 	int mode;
2140 	u64 ns;
2141 
2142 	do {
2143 		seq = read_seqcount_begin(&gtod->seq);
2144 		ns = gtod->nsec_base;
2145 		ns += vgettsc(tsc_timestamp, &mode);
2146 		ns >>= gtod->clock.shift;
2147 		ns += gtod->boot_ns;
2148 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2149 	*t = ns;
2150 
2151 	return mode;
2152 }
2153 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2154 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2155 {
2156 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2157 	unsigned long seq;
2158 	int mode;
2159 	u64 ns;
2160 
2161 	do {
2162 		seq = read_seqcount_begin(&gtod->seq);
2163 		ts->tv_sec = gtod->wall_time_sec;
2164 		ns = gtod->nsec_base;
2165 		ns += vgettsc(tsc_timestamp, &mode);
2166 		ns >>= gtod->clock.shift;
2167 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2168 
2169 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2170 	ts->tv_nsec = ns;
2171 
2172 	return mode;
2173 }
2174 
2175 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2176 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2177 {
2178 	/* checked again under seqlock below */
2179 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2180 		return false;
2181 
2182 	return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
2183 						      tsc_timestamp));
2184 }
2185 
2186 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2187 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2188 					   u64 *tsc_timestamp)
2189 {
2190 	/* checked again under seqlock below */
2191 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2192 		return false;
2193 
2194 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2195 }
2196 #endif
2197 
2198 /*
2199  *
2200  * Assuming a stable TSC across physical CPUS, and a stable TSC
2201  * across virtual CPUs, the following condition is possible.
2202  * Each numbered line represents an event visible to both
2203  * CPUs at the next numbered event.
2204  *
2205  * "timespecX" represents host monotonic time. "tscX" represents
2206  * RDTSC value.
2207  *
2208  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2209  *
2210  * 1.  read timespec0,tsc0
2211  * 2.					| timespec1 = timespec0 + N
2212  * 					| tsc1 = tsc0 + M
2213  * 3. transition to guest		| transition to guest
2214  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2215  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2216  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2217  *
2218  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2219  *
2220  * 	- ret0 < ret1
2221  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2222  *		...
2223  *	- 0 < N - M => M < N
2224  *
2225  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2226  * always the case (the difference between two distinct xtime instances
2227  * might be smaller then the difference between corresponding TSC reads,
2228  * when updating guest vcpus pvclock areas).
2229  *
2230  * To avoid that problem, do not allow visibility of distinct
2231  * system_timestamp/tsc_timestamp values simultaneously: use a master
2232  * copy of host monotonic time values. Update that master copy
2233  * in lockstep.
2234  *
2235  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2236  *
2237  */
2238 
pvclock_update_vm_gtod_copy(struct kvm * kvm)2239 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2240 {
2241 #ifdef CONFIG_X86_64
2242 	struct kvm_arch *ka = &kvm->arch;
2243 	int vclock_mode;
2244 	bool host_tsc_clocksource, vcpus_matched;
2245 
2246 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2247 			atomic_read(&kvm->online_vcpus));
2248 
2249 	/*
2250 	 * If the host uses TSC clock, then passthrough TSC as stable
2251 	 * to the guest.
2252 	 */
2253 	host_tsc_clocksource = kvm_get_time_and_clockread(
2254 					&ka->master_kernel_ns,
2255 					&ka->master_cycle_now);
2256 
2257 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2258 				&& !ka->backwards_tsc_observed
2259 				&& !ka->boot_vcpu_runs_old_kvmclock;
2260 
2261 	if (ka->use_master_clock)
2262 		atomic_set(&kvm_guest_has_master_clock, 1);
2263 
2264 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2265 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2266 					vcpus_matched);
2267 #endif
2268 }
2269 
kvm_make_mclock_inprogress_request(struct kvm * kvm)2270 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2271 {
2272 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2273 }
2274 
kvm_gen_update_masterclock(struct kvm * kvm)2275 static void kvm_gen_update_masterclock(struct kvm *kvm)
2276 {
2277 #ifdef CONFIG_X86_64
2278 	int i;
2279 	struct kvm_vcpu *vcpu;
2280 	struct kvm_arch *ka = &kvm->arch;
2281 
2282 	spin_lock(&ka->pvclock_gtod_sync_lock);
2283 	kvm_make_mclock_inprogress_request(kvm);
2284 	/* no guest entries from this point */
2285 	pvclock_update_vm_gtod_copy(kvm);
2286 
2287 	kvm_for_each_vcpu(i, vcpu, kvm)
2288 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2289 
2290 	/* guest entries allowed */
2291 	kvm_for_each_vcpu(i, vcpu, kvm)
2292 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2293 
2294 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2295 #endif
2296 }
2297 
get_kvmclock_ns(struct kvm * kvm)2298 u64 get_kvmclock_ns(struct kvm *kvm)
2299 {
2300 	struct kvm_arch *ka = &kvm->arch;
2301 	struct pvclock_vcpu_time_info hv_clock;
2302 	u64 ret;
2303 
2304 	spin_lock(&ka->pvclock_gtod_sync_lock);
2305 	if (!ka->use_master_clock) {
2306 		spin_unlock(&ka->pvclock_gtod_sync_lock);
2307 		return ktime_get_boottime_ns() + ka->kvmclock_offset;
2308 	}
2309 
2310 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2311 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2312 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2313 
2314 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2315 	get_cpu();
2316 
2317 	if (__this_cpu_read(cpu_tsc_khz)) {
2318 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2319 				   &hv_clock.tsc_shift,
2320 				   &hv_clock.tsc_to_system_mul);
2321 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2322 	} else
2323 		ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2324 
2325 	put_cpu();
2326 
2327 	return ret;
2328 }
2329 
kvm_setup_pvclock_page(struct kvm_vcpu * v)2330 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2331 {
2332 	struct kvm_vcpu_arch *vcpu = &v->arch;
2333 	struct pvclock_vcpu_time_info guest_hv_clock;
2334 
2335 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2336 		&guest_hv_clock, sizeof(guest_hv_clock))))
2337 		return;
2338 
2339 	/* This VCPU is paused, but it's legal for a guest to read another
2340 	 * VCPU's kvmclock, so we really have to follow the specification where
2341 	 * it says that version is odd if data is being modified, and even after
2342 	 * it is consistent.
2343 	 *
2344 	 * Version field updates must be kept separate.  This is because
2345 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2346 	 * writes within a string instruction are weakly ordered.  So there
2347 	 * are three writes overall.
2348 	 *
2349 	 * As a small optimization, only write the version field in the first
2350 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2351 	 * version field is the first in the struct.
2352 	 */
2353 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2354 
2355 	if (guest_hv_clock.version & 1)
2356 		++guest_hv_clock.version;  /* first time write, random junk */
2357 
2358 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2359 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2360 				&vcpu->hv_clock,
2361 				sizeof(vcpu->hv_clock.version));
2362 
2363 	smp_wmb();
2364 
2365 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2366 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2367 
2368 	if (vcpu->pvclock_set_guest_stopped_request) {
2369 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2370 		vcpu->pvclock_set_guest_stopped_request = false;
2371 	}
2372 
2373 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2374 
2375 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2376 				&vcpu->hv_clock,
2377 				sizeof(vcpu->hv_clock));
2378 
2379 	smp_wmb();
2380 
2381 	vcpu->hv_clock.version++;
2382 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2383 				&vcpu->hv_clock,
2384 				sizeof(vcpu->hv_clock.version));
2385 }
2386 
kvm_guest_time_update(struct kvm_vcpu * v)2387 static int kvm_guest_time_update(struct kvm_vcpu *v)
2388 {
2389 	unsigned long flags, tgt_tsc_khz;
2390 	struct kvm_vcpu_arch *vcpu = &v->arch;
2391 	struct kvm_arch *ka = &v->kvm->arch;
2392 	s64 kernel_ns;
2393 	u64 tsc_timestamp, host_tsc;
2394 	u8 pvclock_flags;
2395 	bool use_master_clock;
2396 
2397 	kernel_ns = 0;
2398 	host_tsc = 0;
2399 
2400 	/*
2401 	 * If the host uses TSC clock, then passthrough TSC as stable
2402 	 * to the guest.
2403 	 */
2404 	spin_lock(&ka->pvclock_gtod_sync_lock);
2405 	use_master_clock = ka->use_master_clock;
2406 	if (use_master_clock) {
2407 		host_tsc = ka->master_cycle_now;
2408 		kernel_ns = ka->master_kernel_ns;
2409 	}
2410 	spin_unlock(&ka->pvclock_gtod_sync_lock);
2411 
2412 	/* Keep irq disabled to prevent changes to the clock */
2413 	local_irq_save(flags);
2414 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2415 	if (unlikely(tgt_tsc_khz == 0)) {
2416 		local_irq_restore(flags);
2417 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2418 		return 1;
2419 	}
2420 	if (!use_master_clock) {
2421 		host_tsc = rdtsc();
2422 		kernel_ns = ktime_get_boottime_ns();
2423 	}
2424 
2425 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2426 
2427 	/*
2428 	 * We may have to catch up the TSC to match elapsed wall clock
2429 	 * time for two reasons, even if kvmclock is used.
2430 	 *   1) CPU could have been running below the maximum TSC rate
2431 	 *   2) Broken TSC compensation resets the base at each VCPU
2432 	 *      entry to avoid unknown leaps of TSC even when running
2433 	 *      again on the same CPU.  This may cause apparent elapsed
2434 	 *      time to disappear, and the guest to stand still or run
2435 	 *	very slowly.
2436 	 */
2437 	if (vcpu->tsc_catchup) {
2438 		u64 tsc = compute_guest_tsc(v, kernel_ns);
2439 		if (tsc > tsc_timestamp) {
2440 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2441 			tsc_timestamp = tsc;
2442 		}
2443 	}
2444 
2445 	local_irq_restore(flags);
2446 
2447 	/* With all the info we got, fill in the values */
2448 
2449 	if (kvm_has_tsc_control)
2450 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2451 
2452 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2453 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2454 				   &vcpu->hv_clock.tsc_shift,
2455 				   &vcpu->hv_clock.tsc_to_system_mul);
2456 		vcpu->hw_tsc_khz = tgt_tsc_khz;
2457 	}
2458 
2459 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2460 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2461 	vcpu->last_guest_tsc = tsc_timestamp;
2462 
2463 	/* If the host uses TSC clocksource, then it is stable */
2464 	pvclock_flags = 0;
2465 	if (use_master_clock)
2466 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2467 
2468 	vcpu->hv_clock.flags = pvclock_flags;
2469 
2470 	if (vcpu->pv_time_enabled)
2471 		kvm_setup_pvclock_page(v);
2472 	if (v == kvm_get_vcpu(v->kvm, 0))
2473 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2474 	return 0;
2475 }
2476 
2477 /*
2478  * kvmclock updates which are isolated to a given vcpu, such as
2479  * vcpu->cpu migration, should not allow system_timestamp from
2480  * the rest of the vcpus to remain static. Otherwise ntp frequency
2481  * correction applies to one vcpu's system_timestamp but not
2482  * the others.
2483  *
2484  * So in those cases, request a kvmclock update for all vcpus.
2485  * We need to rate-limit these requests though, as they can
2486  * considerably slow guests that have a large number of vcpus.
2487  * The time for a remote vcpu to update its kvmclock is bound
2488  * by the delay we use to rate-limit the updates.
2489  */
2490 
2491 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2492 
kvmclock_update_fn(struct work_struct * work)2493 static void kvmclock_update_fn(struct work_struct *work)
2494 {
2495 	int i;
2496 	struct delayed_work *dwork = to_delayed_work(work);
2497 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2498 					   kvmclock_update_work);
2499 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2500 	struct kvm_vcpu *vcpu;
2501 
2502 	kvm_for_each_vcpu(i, vcpu, kvm) {
2503 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2504 		kvm_vcpu_kick(vcpu);
2505 	}
2506 }
2507 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)2508 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2509 {
2510 	struct kvm *kvm = v->kvm;
2511 
2512 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2513 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2514 					KVMCLOCK_UPDATE_DELAY);
2515 }
2516 
2517 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2518 
kvmclock_sync_fn(struct work_struct * work)2519 static void kvmclock_sync_fn(struct work_struct *work)
2520 {
2521 	struct delayed_work *dwork = to_delayed_work(work);
2522 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2523 					   kvmclock_sync_work);
2524 	struct kvm *kvm = container_of(ka, struct kvm, arch);
2525 
2526 	if (!kvmclock_periodic_sync)
2527 		return;
2528 
2529 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2530 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2531 					KVMCLOCK_SYNC_PERIOD);
2532 }
2533 
2534 /*
2535  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2536  */
can_set_mci_status(struct kvm_vcpu * vcpu)2537 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2538 {
2539 	/* McStatusWrEn enabled? */
2540 	if (guest_cpuid_is_amd(vcpu))
2541 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2542 
2543 	return false;
2544 }
2545 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2546 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2547 {
2548 	u64 mcg_cap = vcpu->arch.mcg_cap;
2549 	unsigned bank_num = mcg_cap & 0xff;
2550 	u32 msr = msr_info->index;
2551 	u64 data = msr_info->data;
2552 
2553 	switch (msr) {
2554 	case MSR_IA32_MCG_STATUS:
2555 		vcpu->arch.mcg_status = data;
2556 		break;
2557 	case MSR_IA32_MCG_CTL:
2558 		if (!(mcg_cap & MCG_CTL_P) &&
2559 		    (data || !msr_info->host_initiated))
2560 			return 1;
2561 		if (data != 0 && data != ~(u64)0)
2562 			return 1;
2563 		vcpu->arch.mcg_ctl = data;
2564 		break;
2565 	default:
2566 		if (msr >= MSR_IA32_MC0_CTL &&
2567 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2568 			u32 offset = array_index_nospec(
2569 				msr - MSR_IA32_MC0_CTL,
2570 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2571 
2572 			/* only 0 or all 1s can be written to IA32_MCi_CTL
2573 			 * some Linux kernels though clear bit 10 in bank 4 to
2574 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2575 			 * this to avoid an uncatched #GP in the guest
2576 			 */
2577 			if ((offset & 0x3) == 0 &&
2578 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
2579 				return -1;
2580 
2581 			/* MCi_STATUS */
2582 			if (!msr_info->host_initiated &&
2583 			    (offset & 0x3) == 1 && data != 0) {
2584 				if (!can_set_mci_status(vcpu))
2585 					return -1;
2586 			}
2587 
2588 			vcpu->arch.mce_banks[offset] = data;
2589 			break;
2590 		}
2591 		return 1;
2592 	}
2593 	return 0;
2594 }
2595 
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2596 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2597 {
2598 	struct kvm *kvm = vcpu->kvm;
2599 	int lm = is_long_mode(vcpu);
2600 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2601 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2602 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2603 		: kvm->arch.xen_hvm_config.blob_size_32;
2604 	u32 page_num = data & ~PAGE_MASK;
2605 	u64 page_addr = data & PAGE_MASK;
2606 	u8 *page;
2607 	int r;
2608 
2609 	r = -E2BIG;
2610 	if (page_num >= blob_size)
2611 		goto out;
2612 	r = -ENOMEM;
2613 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2614 	if (IS_ERR(page)) {
2615 		r = PTR_ERR(page);
2616 		goto out;
2617 	}
2618 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2619 		goto out_free;
2620 	r = 0;
2621 out_free:
2622 	kfree(page);
2623 out:
2624 	return r;
2625 }
2626 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2627 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2628 {
2629 	gpa_t gpa = data & ~0x3f;
2630 
2631 	/* Bits 3:5 are reserved, Should be zero */
2632 	if (data & 0x38)
2633 		return 1;
2634 
2635 	vcpu->arch.apf.msr_val = data;
2636 
2637 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2638 		kvm_clear_async_pf_completion_queue(vcpu);
2639 		kvm_async_pf_hash_reset(vcpu);
2640 		return 0;
2641 	}
2642 
2643 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2644 					sizeof(u32)))
2645 		return 1;
2646 
2647 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2648 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2649 	kvm_async_pf_wakeup_all(vcpu);
2650 	return 0;
2651 }
2652 
kvmclock_reset(struct kvm_vcpu * vcpu)2653 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2654 {
2655 	vcpu->arch.pv_time_enabled = false;
2656 	vcpu->arch.time = 0;
2657 }
2658 
kvm_vcpu_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)2659 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2660 {
2661 	++vcpu->stat.tlb_flush;
2662 	kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2663 }
2664 
record_steal_time(struct kvm_vcpu * vcpu)2665 static void record_steal_time(struct kvm_vcpu *vcpu)
2666 {
2667 	struct kvm_host_map map;
2668 	struct kvm_steal_time *st;
2669 
2670 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2671 		return;
2672 
2673 	/* -EAGAIN is returned in atomic context so we can just return. */
2674 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2675 			&map, &vcpu->arch.st.cache, false))
2676 		return;
2677 
2678 	st = map.hva +
2679 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2680 
2681 	/*
2682 	 * Doing a TLB flush here, on the guest's behalf, can avoid
2683 	 * expensive IPIs.
2684 	 */
2685 	trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2686 		st->preempted & KVM_VCPU_FLUSH_TLB);
2687 	if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2688 		kvm_vcpu_flush_tlb(vcpu, false);
2689 
2690 	vcpu->arch.st.preempted = 0;
2691 
2692 	if (st->version & 1)
2693 		st->version += 1;  /* first time write, random junk */
2694 
2695 	st->version += 1;
2696 
2697 	smp_wmb();
2698 
2699 	st->steal += current->sched_info.run_delay -
2700 		vcpu->arch.st.last_steal;
2701 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2702 
2703 	smp_wmb();
2704 
2705 	st->version += 1;
2706 
2707 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
2708 }
2709 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2710 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2711 {
2712 	bool pr = false;
2713 	u32 msr = msr_info->index;
2714 	u64 data = msr_info->data;
2715 
2716 	switch (msr) {
2717 	case MSR_AMD64_NB_CFG:
2718 	case MSR_IA32_UCODE_WRITE:
2719 	case MSR_VM_HSAVE_PA:
2720 	case MSR_AMD64_PATCH_LOADER:
2721 	case MSR_AMD64_BU_CFG2:
2722 	case MSR_AMD64_DC_CFG:
2723 	case MSR_AMD64_TW_CFG:
2724 	case MSR_F15H_EX_CFG:
2725 		break;
2726 
2727 	case MSR_IA32_UCODE_REV:
2728 		if (msr_info->host_initiated)
2729 			vcpu->arch.microcode_version = data;
2730 		break;
2731 	case MSR_IA32_ARCH_CAPABILITIES:
2732 		if (!msr_info->host_initiated)
2733 			return 1;
2734 		vcpu->arch.arch_capabilities = data;
2735 		break;
2736 	case MSR_EFER:
2737 		return set_efer(vcpu, msr_info);
2738 	case MSR_K7_HWCR:
2739 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2740 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2741 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2742 
2743 		/* Handle McStatusWrEn */
2744 		if (data == BIT_ULL(18)) {
2745 			vcpu->arch.msr_hwcr = data;
2746 		} else if (data != 0) {
2747 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2748 				    data);
2749 			return 1;
2750 		}
2751 		break;
2752 	case MSR_FAM10H_MMIO_CONF_BASE:
2753 		if (data != 0) {
2754 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2755 				    "0x%llx\n", data);
2756 			return 1;
2757 		}
2758 		break;
2759 	case MSR_IA32_DEBUGCTLMSR:
2760 		if (!data) {
2761 			/* We support the non-activated case already */
2762 			break;
2763 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2764 			/* Values other than LBR and BTF are vendor-specific,
2765 			   thus reserved and should throw a #GP */
2766 			return 1;
2767 		}
2768 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2769 			    __func__, data);
2770 		break;
2771 	case 0x200 ... 0x2ff:
2772 		return kvm_mtrr_set_msr(vcpu, msr, data);
2773 	case MSR_IA32_APICBASE:
2774 		return kvm_set_apic_base(vcpu, msr_info);
2775 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2776 		return kvm_x2apic_msr_write(vcpu, msr, data);
2777 	case MSR_IA32_TSCDEADLINE:
2778 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2779 		break;
2780 	case MSR_IA32_TSC_ADJUST:
2781 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2782 			if (!msr_info->host_initiated) {
2783 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2784 				adjust_tsc_offset_guest(vcpu, adj);
2785 				/* Before back to guest, tsc_timestamp must be adjusted
2786 				 * as well, otherwise guest's percpu pvclock time could jump.
2787 				 */
2788 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2789 			}
2790 			vcpu->arch.ia32_tsc_adjust_msr = data;
2791 		}
2792 		break;
2793 	case MSR_IA32_MISC_ENABLE:
2794 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2795 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2796 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2797 				return 1;
2798 			vcpu->arch.ia32_misc_enable_msr = data;
2799 			kvm_update_cpuid(vcpu);
2800 		} else {
2801 			vcpu->arch.ia32_misc_enable_msr = data;
2802 		}
2803 		break;
2804 	case MSR_IA32_SMBASE:
2805 		if (!msr_info->host_initiated)
2806 			return 1;
2807 		vcpu->arch.smbase = data;
2808 		break;
2809 	case MSR_IA32_POWER_CTL:
2810 		vcpu->arch.msr_ia32_power_ctl = data;
2811 		break;
2812 	case MSR_IA32_TSC:
2813 		kvm_write_tsc(vcpu, msr_info);
2814 		break;
2815 	case MSR_SMI_COUNT:
2816 		if (!msr_info->host_initiated)
2817 			return 1;
2818 		vcpu->arch.smi_count = data;
2819 		break;
2820 	case MSR_KVM_WALL_CLOCK_NEW:
2821 	case MSR_KVM_WALL_CLOCK:
2822 		vcpu->kvm->arch.wall_clock = data;
2823 		kvm_write_wall_clock(vcpu->kvm, data);
2824 		break;
2825 	case MSR_KVM_SYSTEM_TIME_NEW:
2826 	case MSR_KVM_SYSTEM_TIME: {
2827 		struct kvm_arch *ka = &vcpu->kvm->arch;
2828 
2829 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2830 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2831 
2832 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2833 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2834 
2835 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2836 		}
2837 
2838 		vcpu->arch.time = data;
2839 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2840 
2841 		/* we verify if the enable bit is set... */
2842 		vcpu->arch.pv_time_enabled = false;
2843 		if (!(data & 1))
2844 			break;
2845 
2846 		if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2847 		     &vcpu->arch.pv_time, data & ~1ULL,
2848 		     sizeof(struct pvclock_vcpu_time_info)))
2849 			vcpu->arch.pv_time_enabled = true;
2850 
2851 		break;
2852 	}
2853 	case MSR_KVM_ASYNC_PF_EN:
2854 		if (kvm_pv_enable_async_pf(vcpu, data))
2855 			return 1;
2856 		break;
2857 	case MSR_KVM_STEAL_TIME:
2858 
2859 		if (unlikely(!sched_info_on()))
2860 			return 1;
2861 
2862 		if (data & KVM_STEAL_RESERVED_MASK)
2863 			return 1;
2864 
2865 		vcpu->arch.st.msr_val = data;
2866 
2867 		if (!(data & KVM_MSR_ENABLED))
2868 			break;
2869 
2870 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2871 
2872 		break;
2873 	case MSR_KVM_PV_EOI_EN:
2874 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2875 			return 1;
2876 		break;
2877 
2878 	case MSR_KVM_POLL_CONTROL:
2879 		/* only enable bit supported */
2880 		if (data & (-1ULL << 1))
2881 			return 1;
2882 
2883 		vcpu->arch.msr_kvm_poll_control = data;
2884 		break;
2885 
2886 	case MSR_IA32_MCG_CTL:
2887 	case MSR_IA32_MCG_STATUS:
2888 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2889 		return set_msr_mce(vcpu, msr_info);
2890 
2891 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2892 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2893 		pr = true; /* fall through */
2894 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2895 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2896 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2897 			return kvm_pmu_set_msr(vcpu, msr_info);
2898 
2899 		if (pr || data != 0)
2900 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2901 				    "0x%x data 0x%llx\n", msr, data);
2902 		break;
2903 	case MSR_K7_CLK_CTL:
2904 		/*
2905 		 * Ignore all writes to this no longer documented MSR.
2906 		 * Writes are only relevant for old K7 processors,
2907 		 * all pre-dating SVM, but a recommended workaround from
2908 		 * AMD for these chips. It is possible to specify the
2909 		 * affected processor models on the command line, hence
2910 		 * the need to ignore the workaround.
2911 		 */
2912 		break;
2913 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2914 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2915 	case HV_X64_MSR_CRASH_CTL:
2916 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2917 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2918 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
2919 	case HV_X64_MSR_TSC_EMULATION_STATUS:
2920 		return kvm_hv_set_msr_common(vcpu, msr, data,
2921 					     msr_info->host_initiated);
2922 	case MSR_IA32_BBL_CR_CTL3:
2923 		/* Drop writes to this legacy MSR -- see rdmsr
2924 		 * counterpart for further detail.
2925 		 */
2926 		if (report_ignored_msrs)
2927 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2928 				msr, data);
2929 		break;
2930 	case MSR_AMD64_OSVW_ID_LENGTH:
2931 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2932 			return 1;
2933 		vcpu->arch.osvw.length = data;
2934 		break;
2935 	case MSR_AMD64_OSVW_STATUS:
2936 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2937 			return 1;
2938 		vcpu->arch.osvw.status = data;
2939 		break;
2940 	case MSR_PLATFORM_INFO:
2941 		if (!msr_info->host_initiated ||
2942 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2943 		     cpuid_fault_enabled(vcpu)))
2944 			return 1;
2945 		vcpu->arch.msr_platform_info = data;
2946 		break;
2947 	case MSR_MISC_FEATURES_ENABLES:
2948 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2949 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2950 		     !supports_cpuid_fault(vcpu)))
2951 			return 1;
2952 		vcpu->arch.msr_misc_features_enables = data;
2953 		break;
2954 	default:
2955 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2956 			return xen_hvm_config(vcpu, data);
2957 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2958 			return kvm_pmu_set_msr(vcpu, msr_info);
2959 		if (!ignore_msrs) {
2960 			vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2961 				    msr, data);
2962 			return 1;
2963 		} else {
2964 			if (report_ignored_msrs)
2965 				vcpu_unimpl(vcpu,
2966 					"ignored wrmsr: 0x%x data 0x%llx\n",
2967 					msr, data);
2968 			break;
2969 		}
2970 	}
2971 	return 0;
2972 }
2973 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2974 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)2975 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2976 {
2977 	u64 data;
2978 	u64 mcg_cap = vcpu->arch.mcg_cap;
2979 	unsigned bank_num = mcg_cap & 0xff;
2980 
2981 	switch (msr) {
2982 	case MSR_IA32_P5_MC_ADDR:
2983 	case MSR_IA32_P5_MC_TYPE:
2984 		data = 0;
2985 		break;
2986 	case MSR_IA32_MCG_CAP:
2987 		data = vcpu->arch.mcg_cap;
2988 		break;
2989 	case MSR_IA32_MCG_CTL:
2990 		if (!(mcg_cap & MCG_CTL_P) && !host)
2991 			return 1;
2992 		data = vcpu->arch.mcg_ctl;
2993 		break;
2994 	case MSR_IA32_MCG_STATUS:
2995 		data = vcpu->arch.mcg_status;
2996 		break;
2997 	default:
2998 		if (msr >= MSR_IA32_MC0_CTL &&
2999 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3000 			u32 offset = array_index_nospec(
3001 				msr - MSR_IA32_MC0_CTL,
3002 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3003 
3004 			data = vcpu->arch.mce_banks[offset];
3005 			break;
3006 		}
3007 		return 1;
3008 	}
3009 	*pdata = data;
3010 	return 0;
3011 }
3012 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3013 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3014 {
3015 	switch (msr_info->index) {
3016 	case MSR_IA32_PLATFORM_ID:
3017 	case MSR_IA32_EBL_CR_POWERON:
3018 	case MSR_IA32_DEBUGCTLMSR:
3019 	case MSR_IA32_LASTBRANCHFROMIP:
3020 	case MSR_IA32_LASTBRANCHTOIP:
3021 	case MSR_IA32_LASTINTFROMIP:
3022 	case MSR_IA32_LASTINTTOIP:
3023 	case MSR_K8_SYSCFG:
3024 	case MSR_K8_TSEG_ADDR:
3025 	case MSR_K8_TSEG_MASK:
3026 	case MSR_VM_HSAVE_PA:
3027 	case MSR_K8_INT_PENDING_MSG:
3028 	case MSR_AMD64_NB_CFG:
3029 	case MSR_FAM10H_MMIO_CONF_BASE:
3030 	case MSR_AMD64_BU_CFG2:
3031 	case MSR_IA32_PERF_CTL:
3032 	case MSR_AMD64_DC_CFG:
3033 	case MSR_AMD64_TW_CFG:
3034 	case MSR_F15H_EX_CFG:
3035 		msr_info->data = 0;
3036 		break;
3037 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3038 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3039 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3040 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3041 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3042 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3043 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3044 		msr_info->data = 0;
3045 		break;
3046 	case MSR_IA32_UCODE_REV:
3047 		msr_info->data = vcpu->arch.microcode_version;
3048 		break;
3049 	case MSR_IA32_ARCH_CAPABILITIES:
3050 		if (!msr_info->host_initiated &&
3051 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3052 			return 1;
3053 		msr_info->data = vcpu->arch.arch_capabilities;
3054 		break;
3055 	case MSR_IA32_POWER_CTL:
3056 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3057 		break;
3058 	case MSR_IA32_TSC:
3059 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3060 		break;
3061 	case MSR_MTRRcap:
3062 	case 0x200 ... 0x2ff:
3063 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3064 	case 0xcd: /* fsb frequency */
3065 		msr_info->data = 3;
3066 		break;
3067 		/*
3068 		 * MSR_EBC_FREQUENCY_ID
3069 		 * Conservative value valid for even the basic CPU models.
3070 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3071 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3072 		 * and 266MHz for model 3, or 4. Set Core Clock
3073 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3074 		 * 31:24) even though these are only valid for CPU
3075 		 * models > 2, however guests may end up dividing or
3076 		 * multiplying by zero otherwise.
3077 		 */
3078 	case MSR_EBC_FREQUENCY_ID:
3079 		msr_info->data = 1 << 24;
3080 		break;
3081 	case MSR_IA32_APICBASE:
3082 		msr_info->data = kvm_get_apic_base(vcpu);
3083 		break;
3084 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3085 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3086 		break;
3087 	case MSR_IA32_TSCDEADLINE:
3088 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3089 		break;
3090 	case MSR_IA32_TSC_ADJUST:
3091 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3092 		break;
3093 	case MSR_IA32_MISC_ENABLE:
3094 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3095 		break;
3096 	case MSR_IA32_SMBASE:
3097 		if (!msr_info->host_initiated)
3098 			return 1;
3099 		msr_info->data = vcpu->arch.smbase;
3100 		break;
3101 	case MSR_SMI_COUNT:
3102 		msr_info->data = vcpu->arch.smi_count;
3103 		break;
3104 	case MSR_IA32_PERF_STATUS:
3105 		/* TSC increment by tick */
3106 		msr_info->data = 1000ULL;
3107 		/* CPU multiplier */
3108 		msr_info->data |= (((uint64_t)4ULL) << 40);
3109 		break;
3110 	case MSR_EFER:
3111 		msr_info->data = vcpu->arch.efer;
3112 		break;
3113 	case MSR_KVM_WALL_CLOCK:
3114 	case MSR_KVM_WALL_CLOCK_NEW:
3115 		msr_info->data = vcpu->kvm->arch.wall_clock;
3116 		break;
3117 	case MSR_KVM_SYSTEM_TIME:
3118 	case MSR_KVM_SYSTEM_TIME_NEW:
3119 		msr_info->data = vcpu->arch.time;
3120 		break;
3121 	case MSR_KVM_ASYNC_PF_EN:
3122 		msr_info->data = vcpu->arch.apf.msr_val;
3123 		break;
3124 	case MSR_KVM_STEAL_TIME:
3125 		msr_info->data = vcpu->arch.st.msr_val;
3126 		break;
3127 	case MSR_KVM_PV_EOI_EN:
3128 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3129 		break;
3130 	case MSR_KVM_POLL_CONTROL:
3131 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3132 		break;
3133 	case MSR_IA32_P5_MC_ADDR:
3134 	case MSR_IA32_P5_MC_TYPE:
3135 	case MSR_IA32_MCG_CAP:
3136 	case MSR_IA32_MCG_CTL:
3137 	case MSR_IA32_MCG_STATUS:
3138 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3139 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3140 				   msr_info->host_initiated);
3141 	case MSR_K7_CLK_CTL:
3142 		/*
3143 		 * Provide expected ramp-up count for K7. All other
3144 		 * are set to zero, indicating minimum divisors for
3145 		 * every field.
3146 		 *
3147 		 * This prevents guest kernels on AMD host with CPU
3148 		 * type 6, model 8 and higher from exploding due to
3149 		 * the rdmsr failing.
3150 		 */
3151 		msr_info->data = 0x20000000;
3152 		break;
3153 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3154 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3155 	case HV_X64_MSR_CRASH_CTL:
3156 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3157 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3158 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3159 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3160 		return kvm_hv_get_msr_common(vcpu,
3161 					     msr_info->index, &msr_info->data,
3162 					     msr_info->host_initiated);
3163 		break;
3164 	case MSR_IA32_BBL_CR_CTL3:
3165 		/* This legacy MSR exists but isn't fully documented in current
3166 		 * silicon.  It is however accessed by winxp in very narrow
3167 		 * scenarios where it sets bit #19, itself documented as
3168 		 * a "reserved" bit.  Best effort attempt to source coherent
3169 		 * read data here should the balance of the register be
3170 		 * interpreted by the guest:
3171 		 *
3172 		 * L2 cache control register 3: 64GB range, 256KB size,
3173 		 * enabled, latency 0x1, configured
3174 		 */
3175 		msr_info->data = 0xbe702111;
3176 		break;
3177 	case MSR_AMD64_OSVW_ID_LENGTH:
3178 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3179 			return 1;
3180 		msr_info->data = vcpu->arch.osvw.length;
3181 		break;
3182 	case MSR_AMD64_OSVW_STATUS:
3183 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3184 			return 1;
3185 		msr_info->data = vcpu->arch.osvw.status;
3186 		break;
3187 	case MSR_PLATFORM_INFO:
3188 		if (!msr_info->host_initiated &&
3189 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3190 			return 1;
3191 		msr_info->data = vcpu->arch.msr_platform_info;
3192 		break;
3193 	case MSR_MISC_FEATURES_ENABLES:
3194 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3195 		break;
3196 	case MSR_K7_HWCR:
3197 		msr_info->data = vcpu->arch.msr_hwcr;
3198 		break;
3199 	default:
3200 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3201 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3202 		if (!ignore_msrs) {
3203 			vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3204 					       msr_info->index);
3205 			return 1;
3206 		} else {
3207 			if (report_ignored_msrs)
3208 				vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3209 					msr_info->index);
3210 			msr_info->data = 0;
3211 		}
3212 		break;
3213 	}
3214 	return 0;
3215 }
3216 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3217 
3218 /*
3219  * Read or write a bunch of msrs. All parameters are kernel addresses.
3220  *
3221  * @return number of msrs set successfully.
3222  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))3223 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3224 		    struct kvm_msr_entry *entries,
3225 		    int (*do_msr)(struct kvm_vcpu *vcpu,
3226 				  unsigned index, u64 *data))
3227 {
3228 	int i;
3229 
3230 	for (i = 0; i < msrs->nmsrs; ++i)
3231 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
3232 			break;
3233 
3234 	return i;
3235 }
3236 
3237 /*
3238  * Read or write a bunch of msrs. Parameters are user addresses.
3239  *
3240  * @return number of msrs set successfully.
3241  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)3242 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3243 		  int (*do_msr)(struct kvm_vcpu *vcpu,
3244 				unsigned index, u64 *data),
3245 		  int writeback)
3246 {
3247 	struct kvm_msrs msrs;
3248 	struct kvm_msr_entry *entries;
3249 	int r, n;
3250 	unsigned size;
3251 
3252 	r = -EFAULT;
3253 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3254 		goto out;
3255 
3256 	r = -E2BIG;
3257 	if (msrs.nmsrs >= MAX_IO_MSRS)
3258 		goto out;
3259 
3260 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3261 	entries = memdup_user(user_msrs->entries, size);
3262 	if (IS_ERR(entries)) {
3263 		r = PTR_ERR(entries);
3264 		goto out;
3265 	}
3266 
3267 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3268 	if (r < 0)
3269 		goto out_free;
3270 
3271 	r = -EFAULT;
3272 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
3273 		goto out_free;
3274 
3275 	r = n;
3276 
3277 out_free:
3278 	kfree(entries);
3279 out:
3280 	return r;
3281 }
3282 
kvm_can_mwait_in_guest(void)3283 static inline bool kvm_can_mwait_in_guest(void)
3284 {
3285 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
3286 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
3287 		boot_cpu_has(X86_FEATURE_ARAT);
3288 }
3289 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)3290 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3291 {
3292 	int r = 0;
3293 
3294 	switch (ext) {
3295 	case KVM_CAP_IRQCHIP:
3296 	case KVM_CAP_HLT:
3297 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3298 	case KVM_CAP_SET_TSS_ADDR:
3299 	case KVM_CAP_EXT_CPUID:
3300 	case KVM_CAP_EXT_EMUL_CPUID:
3301 	case KVM_CAP_CLOCKSOURCE:
3302 	case KVM_CAP_PIT:
3303 	case KVM_CAP_NOP_IO_DELAY:
3304 	case KVM_CAP_MP_STATE:
3305 	case KVM_CAP_SYNC_MMU:
3306 	case KVM_CAP_USER_NMI:
3307 	case KVM_CAP_REINJECT_CONTROL:
3308 	case KVM_CAP_IRQ_INJECT_STATUS:
3309 	case KVM_CAP_IOEVENTFD:
3310 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
3311 	case KVM_CAP_PIT2:
3312 	case KVM_CAP_PIT_STATE2:
3313 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3314 	case KVM_CAP_XEN_HVM:
3315 	case KVM_CAP_VCPU_EVENTS:
3316 	case KVM_CAP_HYPERV:
3317 	case KVM_CAP_HYPERV_VAPIC:
3318 	case KVM_CAP_HYPERV_SPIN:
3319 	case KVM_CAP_HYPERV_SYNIC:
3320 	case KVM_CAP_HYPERV_SYNIC2:
3321 	case KVM_CAP_HYPERV_VP_INDEX:
3322 	case KVM_CAP_HYPERV_EVENTFD:
3323 	case KVM_CAP_HYPERV_TLBFLUSH:
3324 	case KVM_CAP_HYPERV_SEND_IPI:
3325 	case KVM_CAP_HYPERV_CPUID:
3326 	case KVM_CAP_PCI_SEGMENT:
3327 	case KVM_CAP_DEBUGREGS:
3328 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
3329 	case KVM_CAP_XSAVE:
3330 	case KVM_CAP_ASYNC_PF:
3331 	case KVM_CAP_GET_TSC_KHZ:
3332 	case KVM_CAP_KVMCLOCK_CTRL:
3333 	case KVM_CAP_READONLY_MEM:
3334 	case KVM_CAP_HYPERV_TIME:
3335 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3336 	case KVM_CAP_TSC_DEADLINE_TIMER:
3337 	case KVM_CAP_DISABLE_QUIRKS:
3338 	case KVM_CAP_SET_BOOT_CPU_ID:
3339  	case KVM_CAP_SPLIT_IRQCHIP:
3340 	case KVM_CAP_IMMEDIATE_EXIT:
3341 	case KVM_CAP_PMU_EVENT_FILTER:
3342 	case KVM_CAP_GET_MSR_FEATURES:
3343 	case KVM_CAP_MSR_PLATFORM_INFO:
3344 	case KVM_CAP_EXCEPTION_PAYLOAD:
3345 		r = 1;
3346 		break;
3347 	case KVM_CAP_SYNC_REGS:
3348 		r = KVM_SYNC_X86_VALID_FIELDS;
3349 		break;
3350 	case KVM_CAP_ADJUST_CLOCK:
3351 		r = KVM_CLOCK_TSC_STABLE;
3352 		break;
3353 	case KVM_CAP_X86_DISABLE_EXITS:
3354 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3355 		      KVM_X86_DISABLE_EXITS_CSTATE;
3356 		if(kvm_can_mwait_in_guest())
3357 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
3358 		break;
3359 	case KVM_CAP_X86_SMM:
3360 		/* SMBASE is usually relocated above 1M on modern chipsets,
3361 		 * and SMM handlers might indeed rely on 4G segment limits,
3362 		 * so do not report SMM to be available if real mode is
3363 		 * emulated via vm86 mode.  Still, do not go to great lengths
3364 		 * to avoid userspace's usage of the feature, because it is a
3365 		 * fringe case that is not enabled except via specific settings
3366 		 * of the module parameters.
3367 		 */
3368 		r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3369 		break;
3370 	case KVM_CAP_VAPIC:
3371 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3372 		break;
3373 	case KVM_CAP_NR_VCPUS:
3374 		r = KVM_SOFT_MAX_VCPUS;
3375 		break;
3376 	case KVM_CAP_MAX_VCPUS:
3377 		r = KVM_MAX_VCPUS;
3378 		break;
3379 	case KVM_CAP_MAX_VCPU_ID:
3380 		r = KVM_MAX_VCPU_ID;
3381 		break;
3382 	case KVM_CAP_PV_MMU:	/* obsolete */
3383 		r = 0;
3384 		break;
3385 	case KVM_CAP_MCE:
3386 		r = KVM_MAX_MCE_BANKS;
3387 		break;
3388 	case KVM_CAP_XCRS:
3389 		r = boot_cpu_has(X86_FEATURE_XSAVE);
3390 		break;
3391 	case KVM_CAP_TSC_CONTROL:
3392 		r = kvm_has_tsc_control;
3393 		break;
3394 	case KVM_CAP_X2APIC_API:
3395 		r = KVM_X2APIC_API_VALID_FLAGS;
3396 		break;
3397 	case KVM_CAP_NESTED_STATE:
3398 		r = kvm_x86_ops->get_nested_state ?
3399 			kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3400 		break;
3401 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3402 		r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3403 		break;
3404 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3405 		r = kvm_x86_ops->nested_enable_evmcs != NULL;
3406 		break;
3407 	default:
3408 		break;
3409 	}
3410 	return r;
3411 
3412 }
3413 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3414 long kvm_arch_dev_ioctl(struct file *filp,
3415 			unsigned int ioctl, unsigned long arg)
3416 {
3417 	void __user *argp = (void __user *)arg;
3418 	long r;
3419 
3420 	switch (ioctl) {
3421 	case KVM_GET_MSR_INDEX_LIST: {
3422 		struct kvm_msr_list __user *user_msr_list = argp;
3423 		struct kvm_msr_list msr_list;
3424 		unsigned n;
3425 
3426 		r = -EFAULT;
3427 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3428 			goto out;
3429 		n = msr_list.nmsrs;
3430 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3431 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3432 			goto out;
3433 		r = -E2BIG;
3434 		if (n < msr_list.nmsrs)
3435 			goto out;
3436 		r = -EFAULT;
3437 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3438 				 num_msrs_to_save * sizeof(u32)))
3439 			goto out;
3440 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3441 				 &emulated_msrs,
3442 				 num_emulated_msrs * sizeof(u32)))
3443 			goto out;
3444 		r = 0;
3445 		break;
3446 	}
3447 	case KVM_GET_SUPPORTED_CPUID:
3448 	case KVM_GET_EMULATED_CPUID: {
3449 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3450 		struct kvm_cpuid2 cpuid;
3451 
3452 		r = -EFAULT;
3453 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3454 			goto out;
3455 
3456 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3457 					    ioctl);
3458 		if (r)
3459 			goto out;
3460 
3461 		r = -EFAULT;
3462 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3463 			goto out;
3464 		r = 0;
3465 		break;
3466 	}
3467 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3468 		r = -EFAULT;
3469 		if (copy_to_user(argp, &kvm_mce_cap_supported,
3470 				 sizeof(kvm_mce_cap_supported)))
3471 			goto out;
3472 		r = 0;
3473 		break;
3474 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3475 		struct kvm_msr_list __user *user_msr_list = argp;
3476 		struct kvm_msr_list msr_list;
3477 		unsigned int n;
3478 
3479 		r = -EFAULT;
3480 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3481 			goto out;
3482 		n = msr_list.nmsrs;
3483 		msr_list.nmsrs = num_msr_based_features;
3484 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3485 			goto out;
3486 		r = -E2BIG;
3487 		if (n < msr_list.nmsrs)
3488 			goto out;
3489 		r = -EFAULT;
3490 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
3491 				 num_msr_based_features * sizeof(u32)))
3492 			goto out;
3493 		r = 0;
3494 		break;
3495 	}
3496 	case KVM_GET_MSRS:
3497 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
3498 		break;
3499 	}
3500 	default:
3501 		r = -EINVAL;
3502 	}
3503 out:
3504 	return r;
3505 }
3506 
wbinvd_ipi(void * garbage)3507 static void wbinvd_ipi(void *garbage)
3508 {
3509 	wbinvd();
3510 }
3511 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)3512 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3513 {
3514 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3515 }
3516 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3517 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3518 {
3519 	/* Address WBINVD may be executed by guest */
3520 	if (need_emulate_wbinvd(vcpu)) {
3521 		if (kvm_x86_ops->has_wbinvd_exit())
3522 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3523 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3524 			smp_call_function_single(vcpu->cpu,
3525 					wbinvd_ipi, NULL, 1);
3526 	}
3527 
3528 	kvm_x86_ops->vcpu_load(vcpu, cpu);
3529 
3530 	/* Apply any externally detected TSC adjustments (due to suspend) */
3531 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3532 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3533 		vcpu->arch.tsc_offset_adjustment = 0;
3534 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3535 	}
3536 
3537 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3538 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3539 				rdtsc() - vcpu->arch.last_host_tsc;
3540 		if (tsc_delta < 0)
3541 			mark_tsc_unstable("KVM discovered backwards TSC");
3542 
3543 		if (kvm_check_tsc_unstable()) {
3544 			u64 offset = kvm_compute_tsc_offset(vcpu,
3545 						vcpu->arch.last_guest_tsc);
3546 			kvm_vcpu_write_tsc_offset(vcpu, offset);
3547 			vcpu->arch.tsc_catchup = 1;
3548 		}
3549 
3550 		if (kvm_lapic_hv_timer_in_use(vcpu))
3551 			kvm_lapic_restart_hv_timer(vcpu);
3552 
3553 		/*
3554 		 * On a host with synchronized TSC, there is no need to update
3555 		 * kvmclock on vcpu->cpu migration
3556 		 */
3557 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3558 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3559 		if (vcpu->cpu != cpu)
3560 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3561 		vcpu->cpu = cpu;
3562 	}
3563 
3564 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3565 }
3566 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)3567 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3568 {
3569 	struct kvm_host_map map;
3570 	struct kvm_steal_time *st;
3571 
3572 	/*
3573 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
3574 	 * an instruction boundary and will not trigger guest emulation of any
3575 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
3576 	 * when this is true, for example allowing the vCPU to be marked
3577 	 * preempted if and only if the VM-Exit was due to a host interrupt.
3578 	 */
3579 	if (!vcpu->arch.at_instruction_boundary) {
3580 		vcpu->stat.preemption_other++;
3581 		return;
3582 	}
3583 
3584 	vcpu->stat.preemption_reported++;
3585 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3586 		return;
3587 
3588 	if (vcpu->arch.st.preempted)
3589 		return;
3590 
3591 	if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3592 			&vcpu->arch.st.cache, true))
3593 		return;
3594 
3595 	st = map.hva +
3596 		offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3597 
3598 	st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
3599 
3600 	kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
3601 }
3602 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)3603 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3604 {
3605 	int idx;
3606 
3607 	if (vcpu->preempted)
3608 		vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3609 
3610 	/*
3611 	 * Disable page faults because we're in atomic context here.
3612 	 * kvm_write_guest_offset_cached() would call might_fault()
3613 	 * that relies on pagefault_disable() to tell if there's a
3614 	 * bug. NOTE: the write to guest memory may not go through if
3615 	 * during postcopy live migration or if there's heavy guest
3616 	 * paging.
3617 	 */
3618 	pagefault_disable();
3619 	/*
3620 	 * kvm_memslots() will be called by
3621 	 * kvm_write_guest_offset_cached() so take the srcu lock.
3622 	 */
3623 	idx = srcu_read_lock(&vcpu->kvm->srcu);
3624 	kvm_steal_time_set_preempted(vcpu);
3625 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3626 	pagefault_enable();
3627 	kvm_x86_ops->vcpu_put(vcpu);
3628 	vcpu->arch.last_host_tsc = rdtsc();
3629 	/*
3630 	 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3631 	 * on every vmexit, but if not, we might have a stale dr6 from the
3632 	 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3633 	 */
3634 	set_debugreg(0, 6);
3635 }
3636 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3637 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3638 				    struct kvm_lapic_state *s)
3639 {
3640 	if (vcpu->arch.apicv_active)
3641 		kvm_x86_ops->sync_pir_to_irr(vcpu);
3642 
3643 	return kvm_apic_get_state(vcpu, s);
3644 }
3645 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3646 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3647 				    struct kvm_lapic_state *s)
3648 {
3649 	int r;
3650 
3651 	r = kvm_apic_set_state(vcpu, s);
3652 	if (r)
3653 		return r;
3654 	update_cr8_intercept(vcpu);
3655 
3656 	return 0;
3657 }
3658 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)3659 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3660 {
3661 	/*
3662 	 * We can accept userspace's request for interrupt injection
3663 	 * as long as we have a place to store the interrupt number.
3664 	 * The actual injection will happen when the CPU is able to
3665 	 * deliver the interrupt.
3666 	 */
3667 	if (kvm_cpu_has_extint(vcpu))
3668 		return false;
3669 
3670 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
3671 	return (!lapic_in_kernel(vcpu) ||
3672 		kvm_apic_accept_pic_intr(vcpu));
3673 }
3674 
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)3675 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3676 {
3677 	/*
3678 	 * Do not cause an interrupt window exit if an exception
3679 	 * is pending or an event needs reinjection; userspace
3680 	 * might want to inject the interrupt manually using KVM_SET_REGS
3681 	 * or KVM_SET_SREGS.  For that to work, we must be at an
3682 	 * instruction boundary and with no events half-injected.
3683 	 */
3684 	return (kvm_arch_interrupt_allowed(vcpu) &&
3685 		kvm_cpu_accept_dm_intr(vcpu) &&
3686 		!kvm_event_needs_reinjection(vcpu) &&
3687 		!vcpu->arch.exception.pending);
3688 }
3689 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)3690 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3691 				    struct kvm_interrupt *irq)
3692 {
3693 	if (irq->irq >= KVM_NR_INTERRUPTS)
3694 		return -EINVAL;
3695 
3696 	if (!irqchip_in_kernel(vcpu->kvm)) {
3697 		kvm_queue_interrupt(vcpu, irq->irq, false);
3698 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3699 		return 0;
3700 	}
3701 
3702 	/*
3703 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3704 	 * fail for in-kernel 8259.
3705 	 */
3706 	if (pic_in_kernel(vcpu->kvm))
3707 		return -ENXIO;
3708 
3709 	if (vcpu->arch.pending_external_vector != -1)
3710 		return -EEXIST;
3711 
3712 	vcpu->arch.pending_external_vector = irq->irq;
3713 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3714 	return 0;
3715 }
3716 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)3717 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3718 {
3719 	kvm_inject_nmi(vcpu);
3720 
3721 	return 0;
3722 }
3723 
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)3724 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3725 {
3726 	kvm_make_request(KVM_REQ_SMI, vcpu);
3727 
3728 	return 0;
3729 }
3730 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)3731 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3732 					   struct kvm_tpr_access_ctl *tac)
3733 {
3734 	if (tac->flags)
3735 		return -EINVAL;
3736 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3737 	return 0;
3738 }
3739 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)3740 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3741 					u64 mcg_cap)
3742 {
3743 	int r;
3744 	unsigned bank_num = mcg_cap & 0xff, bank;
3745 
3746 	r = -EINVAL;
3747 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
3748 		goto out;
3749 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3750 		goto out;
3751 	r = 0;
3752 	vcpu->arch.mcg_cap = mcg_cap;
3753 	/* Init IA32_MCG_CTL to all 1s */
3754 	if (mcg_cap & MCG_CTL_P)
3755 		vcpu->arch.mcg_ctl = ~(u64)0;
3756 	/* Init IA32_MCi_CTL to all 1s */
3757 	for (bank = 0; bank < bank_num; bank++)
3758 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3759 
3760 	kvm_x86_ops->setup_mce(vcpu);
3761 out:
3762 	return r;
3763 }
3764 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)3765 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3766 				      struct kvm_x86_mce *mce)
3767 {
3768 	u64 mcg_cap = vcpu->arch.mcg_cap;
3769 	unsigned bank_num = mcg_cap & 0xff;
3770 	u64 *banks = vcpu->arch.mce_banks;
3771 
3772 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3773 		return -EINVAL;
3774 	/*
3775 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3776 	 * reporting is disabled
3777 	 */
3778 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3779 	    vcpu->arch.mcg_ctl != ~(u64)0)
3780 		return 0;
3781 	banks += 4 * mce->bank;
3782 	/*
3783 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3784 	 * reporting is disabled for the bank
3785 	 */
3786 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3787 		return 0;
3788 	if (mce->status & MCI_STATUS_UC) {
3789 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3790 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3791 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3792 			return 0;
3793 		}
3794 		if (banks[1] & MCI_STATUS_VAL)
3795 			mce->status |= MCI_STATUS_OVER;
3796 		banks[2] = mce->addr;
3797 		banks[3] = mce->misc;
3798 		vcpu->arch.mcg_status = mce->mcg_status;
3799 		banks[1] = mce->status;
3800 		kvm_queue_exception(vcpu, MC_VECTOR);
3801 	} else if (!(banks[1] & MCI_STATUS_VAL)
3802 		   || !(banks[1] & MCI_STATUS_UC)) {
3803 		if (banks[1] & MCI_STATUS_VAL)
3804 			mce->status |= MCI_STATUS_OVER;
3805 		banks[2] = mce->addr;
3806 		banks[3] = mce->misc;
3807 		banks[1] = mce->status;
3808 	} else
3809 		banks[1] |= MCI_STATUS_OVER;
3810 	return 0;
3811 }
3812 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3813 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3814 					       struct kvm_vcpu_events *events)
3815 {
3816 	process_nmi(vcpu);
3817 
3818 
3819 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
3820 		process_smi(vcpu);
3821 
3822 	/*
3823 	 * The API doesn't provide the instruction length for software
3824 	 * exceptions, so don't report them. As long as the guest RIP
3825 	 * isn't advanced, we should expect to encounter the exception
3826 	 * again.
3827 	 */
3828 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3829 		events->exception.injected = 0;
3830 		events->exception.pending = 0;
3831 	} else {
3832 		events->exception.injected = vcpu->arch.exception.injected;
3833 		events->exception.pending = vcpu->arch.exception.pending;
3834 		/*
3835 		 * For ABI compatibility, deliberately conflate
3836 		 * pending and injected exceptions when
3837 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3838 		 */
3839 		if (!vcpu->kvm->arch.exception_payload_enabled)
3840 			events->exception.injected |=
3841 				vcpu->arch.exception.pending;
3842 	}
3843 	events->exception.nr = vcpu->arch.exception.nr;
3844 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3845 	events->exception.error_code = vcpu->arch.exception.error_code;
3846 	events->exception_has_payload = vcpu->arch.exception.has_payload;
3847 	events->exception_payload = vcpu->arch.exception.payload;
3848 
3849 	events->interrupt.injected =
3850 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3851 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3852 	events->interrupt.soft = 0;
3853 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3854 
3855 	events->nmi.injected = vcpu->arch.nmi_injected;
3856 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3857 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3858 	events->nmi.pad = 0;
3859 
3860 	events->sipi_vector = 0; /* never valid when reporting to user space */
3861 
3862 	events->smi.smm = is_smm(vcpu);
3863 	events->smi.pending = vcpu->arch.smi_pending;
3864 	events->smi.smm_inside_nmi =
3865 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3866 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3867 
3868 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3869 			 | KVM_VCPUEVENT_VALID_SHADOW
3870 			 | KVM_VCPUEVENT_VALID_SMM);
3871 	if (vcpu->kvm->arch.exception_payload_enabled)
3872 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3873 
3874 	memset(&events->reserved, 0, sizeof(events->reserved));
3875 }
3876 
3877 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3878 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3879 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3880 					      struct kvm_vcpu_events *events)
3881 {
3882 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3883 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3884 			      | KVM_VCPUEVENT_VALID_SHADOW
3885 			      | KVM_VCPUEVENT_VALID_SMM
3886 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
3887 		return -EINVAL;
3888 
3889 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3890 		if (!vcpu->kvm->arch.exception_payload_enabled)
3891 			return -EINVAL;
3892 		if (events->exception.pending)
3893 			events->exception.injected = 0;
3894 		else
3895 			events->exception_has_payload = 0;
3896 	} else {
3897 		events->exception.pending = 0;
3898 		events->exception_has_payload = 0;
3899 	}
3900 
3901 	if ((events->exception.injected || events->exception.pending) &&
3902 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3903 		return -EINVAL;
3904 
3905 	/* INITs are latched while in SMM */
3906 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3907 	    (events->smi.smm || events->smi.pending) &&
3908 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3909 		return -EINVAL;
3910 
3911 	process_nmi(vcpu);
3912 	vcpu->arch.exception.injected = events->exception.injected;
3913 	vcpu->arch.exception.pending = events->exception.pending;
3914 	vcpu->arch.exception.nr = events->exception.nr;
3915 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3916 	vcpu->arch.exception.error_code = events->exception.error_code;
3917 	vcpu->arch.exception.has_payload = events->exception_has_payload;
3918 	vcpu->arch.exception.payload = events->exception_payload;
3919 
3920 	vcpu->arch.interrupt.injected = events->interrupt.injected;
3921 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3922 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3923 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3924 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3925 						  events->interrupt.shadow);
3926 
3927 	vcpu->arch.nmi_injected = events->nmi.injected;
3928 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3929 		vcpu->arch.nmi_pending = events->nmi.pending;
3930 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3931 
3932 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3933 	    lapic_in_kernel(vcpu))
3934 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3935 
3936 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3937 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3938 			if (events->smi.smm)
3939 				vcpu->arch.hflags |= HF_SMM_MASK;
3940 			else
3941 				vcpu->arch.hflags &= ~HF_SMM_MASK;
3942 			kvm_smm_changed(vcpu);
3943 		}
3944 
3945 		vcpu->arch.smi_pending = events->smi.pending;
3946 
3947 		if (events->smi.smm) {
3948 			if (events->smi.smm_inside_nmi)
3949 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3950 			else
3951 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3952 			if (lapic_in_kernel(vcpu)) {
3953 				if (events->smi.latched_init)
3954 					set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3955 				else
3956 					clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3957 			}
3958 		}
3959 	}
3960 
3961 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3962 
3963 	return 0;
3964 }
3965 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3966 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3967 					     struct kvm_debugregs *dbgregs)
3968 {
3969 	unsigned long val;
3970 
3971 	memset(dbgregs, 0, sizeof(*dbgregs));
3972 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3973 	kvm_get_dr(vcpu, 6, &val);
3974 	dbgregs->dr6 = val;
3975 	dbgregs->dr7 = vcpu->arch.dr7;
3976 }
3977 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3978 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3979 					    struct kvm_debugregs *dbgregs)
3980 {
3981 	if (dbgregs->flags)
3982 		return -EINVAL;
3983 
3984 	if (dbgregs->dr6 & ~0xffffffffull)
3985 		return -EINVAL;
3986 	if (dbgregs->dr7 & ~0xffffffffull)
3987 		return -EINVAL;
3988 
3989 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3990 	kvm_update_dr0123(vcpu);
3991 	vcpu->arch.dr6 = dbgregs->dr6;
3992 	kvm_update_dr6(vcpu);
3993 	vcpu->arch.dr7 = dbgregs->dr7;
3994 	kvm_update_dr7(vcpu);
3995 
3996 	return 0;
3997 }
3998 
3999 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4000 
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)4001 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4002 {
4003 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4004 	u64 xstate_bv = xsave->header.xfeatures;
4005 	u64 valid;
4006 
4007 	/*
4008 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4009 	 * leaves 0 and 1 in the loop below.
4010 	 */
4011 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4012 
4013 	/* Set XSTATE_BV */
4014 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4015 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4016 
4017 	/*
4018 	 * Copy each region from the possibly compacted offset to the
4019 	 * non-compacted offset.
4020 	 */
4021 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4022 	while (valid) {
4023 		u64 xfeature_mask = valid & -valid;
4024 		int xfeature_nr = fls64(xfeature_mask) - 1;
4025 		void *src = get_xsave_addr(xsave, xfeature_nr);
4026 
4027 		if (src) {
4028 			u32 size, offset, ecx, edx;
4029 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4030 				    &size, &offset, &ecx, &edx);
4031 			if (xfeature_nr == XFEATURE_PKRU)
4032 				memcpy(dest + offset, &vcpu->arch.pkru,
4033 				       sizeof(vcpu->arch.pkru));
4034 			else
4035 				memcpy(dest + offset, src, size);
4036 
4037 		}
4038 
4039 		valid -= xfeature_mask;
4040 	}
4041 }
4042 
load_xsave(struct kvm_vcpu * vcpu,u8 * src)4043 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4044 {
4045 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4046 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4047 	u64 valid;
4048 
4049 	/*
4050 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4051 	 * leaves 0 and 1 in the loop below.
4052 	 */
4053 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4054 
4055 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4056 	xsave->header.xfeatures = xstate_bv;
4057 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4058 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4059 
4060 	/*
4061 	 * Copy each region from the non-compacted offset to the
4062 	 * possibly compacted offset.
4063 	 */
4064 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4065 	while (valid) {
4066 		u64 xfeature_mask = valid & -valid;
4067 		int xfeature_nr = fls64(xfeature_mask) - 1;
4068 		void *dest = get_xsave_addr(xsave, xfeature_nr);
4069 
4070 		if (dest) {
4071 			u32 size, offset, ecx, edx;
4072 			cpuid_count(XSTATE_CPUID, xfeature_nr,
4073 				    &size, &offset, &ecx, &edx);
4074 			if (xfeature_nr == XFEATURE_PKRU)
4075 				memcpy(&vcpu->arch.pkru, src + offset,
4076 				       sizeof(vcpu->arch.pkru));
4077 			else
4078 				memcpy(dest, src + offset, size);
4079 		}
4080 
4081 		valid -= xfeature_mask;
4082 	}
4083 }
4084 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4085 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4086 					 struct kvm_xsave *guest_xsave)
4087 {
4088 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4089 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4090 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4091 	} else {
4092 		memcpy(guest_xsave->region,
4093 			&vcpu->arch.guest_fpu->state.fxsave,
4094 			sizeof(struct fxregs_state));
4095 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4096 			XFEATURE_MASK_FPSSE;
4097 	}
4098 }
4099 
4100 #define XSAVE_MXCSR_OFFSET 24
4101 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4102 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4103 					struct kvm_xsave *guest_xsave)
4104 {
4105 	u64 xstate_bv =
4106 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4107 	u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4108 
4109 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4110 		/*
4111 		 * Here we allow setting states that are not present in
4112 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4113 		 * with old userspace.
4114 		 */
4115 		if (xstate_bv & ~kvm_supported_xcr0() ||
4116 			mxcsr & ~mxcsr_feature_mask)
4117 			return -EINVAL;
4118 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4119 	} else {
4120 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4121 			mxcsr & ~mxcsr_feature_mask)
4122 			return -EINVAL;
4123 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4124 			guest_xsave->region, sizeof(struct fxregs_state));
4125 	}
4126 	return 0;
4127 }
4128 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4129 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4130 					struct kvm_xcrs *guest_xcrs)
4131 {
4132 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4133 		guest_xcrs->nr_xcrs = 0;
4134 		return;
4135 	}
4136 
4137 	guest_xcrs->nr_xcrs = 1;
4138 	guest_xcrs->flags = 0;
4139 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4140 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4141 }
4142 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)4143 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4144 				       struct kvm_xcrs *guest_xcrs)
4145 {
4146 	int i, r = 0;
4147 
4148 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
4149 		return -EINVAL;
4150 
4151 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4152 		return -EINVAL;
4153 
4154 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4155 		/* Only support XCR0 currently */
4156 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4157 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4158 				guest_xcrs->xcrs[i].value);
4159 			break;
4160 		}
4161 	if (r)
4162 		r = -EINVAL;
4163 	return r;
4164 }
4165 
4166 /*
4167  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4168  * stopped by the hypervisor.  This function will be called from the host only.
4169  * EINVAL is returned when the host attempts to set the flag for a guest that
4170  * does not support pv clocks.
4171  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)4172 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4173 {
4174 	if (!vcpu->arch.pv_time_enabled)
4175 		return -EINVAL;
4176 	vcpu->arch.pvclock_set_guest_stopped_request = true;
4177 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4178 	return 0;
4179 }
4180 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)4181 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4182 				     struct kvm_enable_cap *cap)
4183 {
4184 	int r;
4185 	uint16_t vmcs_version;
4186 	void __user *user_ptr;
4187 
4188 	if (cap->flags)
4189 		return -EINVAL;
4190 
4191 	switch (cap->cap) {
4192 	case KVM_CAP_HYPERV_SYNIC2:
4193 		if (cap->args[0])
4194 			return -EINVAL;
4195 		/* fall through */
4196 
4197 	case KVM_CAP_HYPERV_SYNIC:
4198 		if (!irqchip_in_kernel(vcpu->kvm))
4199 			return -EINVAL;
4200 		return kvm_hv_activate_synic(vcpu, cap->cap ==
4201 					     KVM_CAP_HYPERV_SYNIC2);
4202 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4203 		if (!kvm_x86_ops->nested_enable_evmcs)
4204 			return -ENOTTY;
4205 		r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4206 		if (!r) {
4207 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
4208 			if (copy_to_user(user_ptr, &vmcs_version,
4209 					 sizeof(vmcs_version)))
4210 				r = -EFAULT;
4211 		}
4212 		return r;
4213 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4214 		if (!kvm_x86_ops->enable_direct_tlbflush)
4215 			return -ENOTTY;
4216 
4217 		return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4218 
4219 	default:
4220 		return -EINVAL;
4221 	}
4222 }
4223 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4224 long kvm_arch_vcpu_ioctl(struct file *filp,
4225 			 unsigned int ioctl, unsigned long arg)
4226 {
4227 	struct kvm_vcpu *vcpu = filp->private_data;
4228 	void __user *argp = (void __user *)arg;
4229 	int r;
4230 	union {
4231 		struct kvm_lapic_state *lapic;
4232 		struct kvm_xsave *xsave;
4233 		struct kvm_xcrs *xcrs;
4234 		void *buffer;
4235 	} u;
4236 
4237 	vcpu_load(vcpu);
4238 
4239 	u.buffer = NULL;
4240 	switch (ioctl) {
4241 	case KVM_GET_LAPIC: {
4242 		r = -EINVAL;
4243 		if (!lapic_in_kernel(vcpu))
4244 			goto out;
4245 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4246 				GFP_KERNEL_ACCOUNT);
4247 
4248 		r = -ENOMEM;
4249 		if (!u.lapic)
4250 			goto out;
4251 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4252 		if (r)
4253 			goto out;
4254 		r = -EFAULT;
4255 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4256 			goto out;
4257 		r = 0;
4258 		break;
4259 	}
4260 	case KVM_SET_LAPIC: {
4261 		r = -EINVAL;
4262 		if (!lapic_in_kernel(vcpu))
4263 			goto out;
4264 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
4265 		if (IS_ERR(u.lapic)) {
4266 			r = PTR_ERR(u.lapic);
4267 			goto out_nofree;
4268 		}
4269 
4270 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4271 		break;
4272 	}
4273 	case KVM_INTERRUPT: {
4274 		struct kvm_interrupt irq;
4275 
4276 		r = -EFAULT;
4277 		if (copy_from_user(&irq, argp, sizeof(irq)))
4278 			goto out;
4279 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4280 		break;
4281 	}
4282 	case KVM_NMI: {
4283 		r = kvm_vcpu_ioctl_nmi(vcpu);
4284 		break;
4285 	}
4286 	case KVM_SMI: {
4287 		r = kvm_vcpu_ioctl_smi(vcpu);
4288 		break;
4289 	}
4290 	case KVM_SET_CPUID: {
4291 		struct kvm_cpuid __user *cpuid_arg = argp;
4292 		struct kvm_cpuid cpuid;
4293 
4294 		r = -EFAULT;
4295 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4296 			goto out;
4297 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4298 		break;
4299 	}
4300 	case KVM_SET_CPUID2: {
4301 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4302 		struct kvm_cpuid2 cpuid;
4303 
4304 		r = -EFAULT;
4305 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4306 			goto out;
4307 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4308 					      cpuid_arg->entries);
4309 		break;
4310 	}
4311 	case KVM_GET_CPUID2: {
4312 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4313 		struct kvm_cpuid2 cpuid;
4314 
4315 		r = -EFAULT;
4316 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4317 			goto out;
4318 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4319 					      cpuid_arg->entries);
4320 		if (r)
4321 			goto out;
4322 		r = -EFAULT;
4323 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4324 			goto out;
4325 		r = 0;
4326 		break;
4327 	}
4328 	case KVM_GET_MSRS: {
4329 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4330 		r = msr_io(vcpu, argp, do_get_msr, 1);
4331 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4332 		break;
4333 	}
4334 	case KVM_SET_MSRS: {
4335 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
4336 		r = msr_io(vcpu, argp, do_set_msr, 0);
4337 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4338 		break;
4339 	}
4340 	case KVM_TPR_ACCESS_REPORTING: {
4341 		struct kvm_tpr_access_ctl tac;
4342 
4343 		r = -EFAULT;
4344 		if (copy_from_user(&tac, argp, sizeof(tac)))
4345 			goto out;
4346 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4347 		if (r)
4348 			goto out;
4349 		r = -EFAULT;
4350 		if (copy_to_user(argp, &tac, sizeof(tac)))
4351 			goto out;
4352 		r = 0;
4353 		break;
4354 	};
4355 	case KVM_SET_VAPIC_ADDR: {
4356 		struct kvm_vapic_addr va;
4357 		int idx;
4358 
4359 		r = -EINVAL;
4360 		if (!lapic_in_kernel(vcpu))
4361 			goto out;
4362 		r = -EFAULT;
4363 		if (copy_from_user(&va, argp, sizeof(va)))
4364 			goto out;
4365 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4366 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4367 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4368 		break;
4369 	}
4370 	case KVM_X86_SETUP_MCE: {
4371 		u64 mcg_cap;
4372 
4373 		r = -EFAULT;
4374 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4375 			goto out;
4376 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4377 		break;
4378 	}
4379 	case KVM_X86_SET_MCE: {
4380 		struct kvm_x86_mce mce;
4381 
4382 		r = -EFAULT;
4383 		if (copy_from_user(&mce, argp, sizeof(mce)))
4384 			goto out;
4385 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4386 		break;
4387 	}
4388 	case KVM_GET_VCPU_EVENTS: {
4389 		struct kvm_vcpu_events events;
4390 
4391 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4392 
4393 		r = -EFAULT;
4394 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4395 			break;
4396 		r = 0;
4397 		break;
4398 	}
4399 	case KVM_SET_VCPU_EVENTS: {
4400 		struct kvm_vcpu_events events;
4401 
4402 		r = -EFAULT;
4403 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4404 			break;
4405 
4406 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4407 		break;
4408 	}
4409 	case KVM_GET_DEBUGREGS: {
4410 		struct kvm_debugregs dbgregs;
4411 
4412 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4413 
4414 		r = -EFAULT;
4415 		if (copy_to_user(argp, &dbgregs,
4416 				 sizeof(struct kvm_debugregs)))
4417 			break;
4418 		r = 0;
4419 		break;
4420 	}
4421 	case KVM_SET_DEBUGREGS: {
4422 		struct kvm_debugregs dbgregs;
4423 
4424 		r = -EFAULT;
4425 		if (copy_from_user(&dbgregs, argp,
4426 				   sizeof(struct kvm_debugregs)))
4427 			break;
4428 
4429 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4430 		break;
4431 	}
4432 	case KVM_GET_XSAVE: {
4433 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4434 		r = -ENOMEM;
4435 		if (!u.xsave)
4436 			break;
4437 
4438 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4439 
4440 		r = -EFAULT;
4441 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4442 			break;
4443 		r = 0;
4444 		break;
4445 	}
4446 	case KVM_SET_XSAVE: {
4447 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
4448 		if (IS_ERR(u.xsave)) {
4449 			r = PTR_ERR(u.xsave);
4450 			goto out_nofree;
4451 		}
4452 
4453 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4454 		break;
4455 	}
4456 	case KVM_GET_XCRS: {
4457 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4458 		r = -ENOMEM;
4459 		if (!u.xcrs)
4460 			break;
4461 
4462 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4463 
4464 		r = -EFAULT;
4465 		if (copy_to_user(argp, u.xcrs,
4466 				 sizeof(struct kvm_xcrs)))
4467 			break;
4468 		r = 0;
4469 		break;
4470 	}
4471 	case KVM_SET_XCRS: {
4472 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4473 		if (IS_ERR(u.xcrs)) {
4474 			r = PTR_ERR(u.xcrs);
4475 			goto out_nofree;
4476 		}
4477 
4478 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4479 		break;
4480 	}
4481 	case KVM_SET_TSC_KHZ: {
4482 		u32 user_tsc_khz;
4483 
4484 		r = -EINVAL;
4485 		user_tsc_khz = (u32)arg;
4486 
4487 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4488 			goto out;
4489 
4490 		if (user_tsc_khz == 0)
4491 			user_tsc_khz = tsc_khz;
4492 
4493 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4494 			r = 0;
4495 
4496 		goto out;
4497 	}
4498 	case KVM_GET_TSC_KHZ: {
4499 		r = vcpu->arch.virtual_tsc_khz;
4500 		goto out;
4501 	}
4502 	case KVM_KVMCLOCK_CTRL: {
4503 		r = kvm_set_guest_paused(vcpu);
4504 		goto out;
4505 	}
4506 	case KVM_ENABLE_CAP: {
4507 		struct kvm_enable_cap cap;
4508 
4509 		r = -EFAULT;
4510 		if (copy_from_user(&cap, argp, sizeof(cap)))
4511 			goto out;
4512 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4513 		break;
4514 	}
4515 	case KVM_GET_NESTED_STATE: {
4516 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4517 		u32 user_data_size;
4518 
4519 		r = -EINVAL;
4520 		if (!kvm_x86_ops->get_nested_state)
4521 			break;
4522 
4523 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4524 		r = -EFAULT;
4525 		if (get_user(user_data_size, &user_kvm_nested_state->size))
4526 			break;
4527 
4528 		r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4529 						  user_data_size);
4530 		if (r < 0)
4531 			break;
4532 
4533 		if (r > user_data_size) {
4534 			if (put_user(r, &user_kvm_nested_state->size))
4535 				r = -EFAULT;
4536 			else
4537 				r = -E2BIG;
4538 			break;
4539 		}
4540 
4541 		r = 0;
4542 		break;
4543 	}
4544 	case KVM_SET_NESTED_STATE: {
4545 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
4546 		struct kvm_nested_state kvm_state;
4547 		int idx;
4548 
4549 		r = -EINVAL;
4550 		if (!kvm_x86_ops->set_nested_state)
4551 			break;
4552 
4553 		r = -EFAULT;
4554 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4555 			break;
4556 
4557 		r = -EINVAL;
4558 		if (kvm_state.size < sizeof(kvm_state))
4559 			break;
4560 
4561 		if (kvm_state.flags &
4562 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4563 		      | KVM_STATE_NESTED_EVMCS))
4564 			break;
4565 
4566 		/* nested_run_pending implies guest_mode.  */
4567 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4568 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4569 			break;
4570 
4571 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4572 		r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4573 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4574 		break;
4575 	}
4576 	case KVM_GET_SUPPORTED_HV_CPUID: {
4577 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4578 		struct kvm_cpuid2 cpuid;
4579 
4580 		r = -EFAULT;
4581 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4582 			goto out;
4583 
4584 		r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4585 						cpuid_arg->entries);
4586 		if (r)
4587 			goto out;
4588 
4589 		r = -EFAULT;
4590 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4591 			goto out;
4592 		r = 0;
4593 		break;
4594 	}
4595 	default:
4596 		r = -EINVAL;
4597 	}
4598 out:
4599 	kfree(u.buffer);
4600 out_nofree:
4601 	vcpu_put(vcpu);
4602 	return r;
4603 }
4604 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)4605 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4606 {
4607 	return VM_FAULT_SIGBUS;
4608 }
4609 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)4610 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4611 {
4612 	int ret;
4613 
4614 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
4615 		return -EINVAL;
4616 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4617 	return ret;
4618 }
4619 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4620 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4621 					      u64 ident_addr)
4622 {
4623 	return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4624 }
4625 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)4626 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4627 					 unsigned long kvm_nr_mmu_pages)
4628 {
4629 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4630 		return -EINVAL;
4631 
4632 	mutex_lock(&kvm->slots_lock);
4633 
4634 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4635 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4636 
4637 	mutex_unlock(&kvm->slots_lock);
4638 	return 0;
4639 }
4640 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)4641 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4642 {
4643 	return kvm->arch.n_max_mmu_pages;
4644 }
4645 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)4646 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4647 {
4648 	struct kvm_pic *pic = kvm->arch.vpic;
4649 	int r;
4650 
4651 	r = 0;
4652 	switch (chip->chip_id) {
4653 	case KVM_IRQCHIP_PIC_MASTER:
4654 		memcpy(&chip->chip.pic, &pic->pics[0],
4655 			sizeof(struct kvm_pic_state));
4656 		break;
4657 	case KVM_IRQCHIP_PIC_SLAVE:
4658 		memcpy(&chip->chip.pic, &pic->pics[1],
4659 			sizeof(struct kvm_pic_state));
4660 		break;
4661 	case KVM_IRQCHIP_IOAPIC:
4662 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
4663 		break;
4664 	default:
4665 		r = -EINVAL;
4666 		break;
4667 	}
4668 	return r;
4669 }
4670 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)4671 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4672 {
4673 	struct kvm_pic *pic = kvm->arch.vpic;
4674 	int r;
4675 
4676 	r = 0;
4677 	switch (chip->chip_id) {
4678 	case KVM_IRQCHIP_PIC_MASTER:
4679 		spin_lock(&pic->lock);
4680 		memcpy(&pic->pics[0], &chip->chip.pic,
4681 			sizeof(struct kvm_pic_state));
4682 		spin_unlock(&pic->lock);
4683 		break;
4684 	case KVM_IRQCHIP_PIC_SLAVE:
4685 		spin_lock(&pic->lock);
4686 		memcpy(&pic->pics[1], &chip->chip.pic,
4687 			sizeof(struct kvm_pic_state));
4688 		spin_unlock(&pic->lock);
4689 		break;
4690 	case KVM_IRQCHIP_IOAPIC:
4691 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
4692 		break;
4693 	default:
4694 		r = -EINVAL;
4695 		break;
4696 	}
4697 	kvm_pic_update_irq(pic);
4698 	return r;
4699 }
4700 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)4701 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4702 {
4703 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4704 
4705 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4706 
4707 	mutex_lock(&kps->lock);
4708 	memcpy(ps, &kps->channels, sizeof(*ps));
4709 	mutex_unlock(&kps->lock);
4710 	return 0;
4711 }
4712 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)4713 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4714 {
4715 	int i;
4716 	struct kvm_pit *pit = kvm->arch.vpit;
4717 
4718 	mutex_lock(&pit->pit_state.lock);
4719 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4720 	for (i = 0; i < 3; i++)
4721 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4722 	mutex_unlock(&pit->pit_state.lock);
4723 	return 0;
4724 }
4725 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)4726 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4727 {
4728 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
4729 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4730 		sizeof(ps->channels));
4731 	ps->flags = kvm->arch.vpit->pit_state.flags;
4732 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4733 	memset(&ps->reserved, 0, sizeof(ps->reserved));
4734 	return 0;
4735 }
4736 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)4737 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4738 {
4739 	int start = 0;
4740 	int i;
4741 	u32 prev_legacy, cur_legacy;
4742 	struct kvm_pit *pit = kvm->arch.vpit;
4743 
4744 	mutex_lock(&pit->pit_state.lock);
4745 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4746 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4747 	if (!prev_legacy && cur_legacy)
4748 		start = 1;
4749 	memcpy(&pit->pit_state.channels, &ps->channels,
4750 	       sizeof(pit->pit_state.channels));
4751 	pit->pit_state.flags = ps->flags;
4752 	for (i = 0; i < 3; i++)
4753 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4754 				   start && i == 0);
4755 	mutex_unlock(&pit->pit_state.lock);
4756 	return 0;
4757 }
4758 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)4759 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4760 				 struct kvm_reinject_control *control)
4761 {
4762 	struct kvm_pit *pit = kvm->arch.vpit;
4763 
4764 	if (!pit)
4765 		return -ENXIO;
4766 
4767 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
4768 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4769 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4770 	 */
4771 	mutex_lock(&pit->pit_state.lock);
4772 	kvm_pit_set_reinject(pit, control->pit_reinject);
4773 	mutex_unlock(&pit->pit_state.lock);
4774 
4775 	return 0;
4776 }
4777 
4778 /**
4779  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4780  * @kvm: kvm instance
4781  * @log: slot id and address to which we copy the log
4782  *
4783  * Steps 1-4 below provide general overview of dirty page logging. See
4784  * kvm_get_dirty_log_protect() function description for additional details.
4785  *
4786  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4787  * always flush the TLB (step 4) even if previous step failed  and the dirty
4788  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4789  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4790  * writes will be marked dirty for next log read.
4791  *
4792  *   1. Take a snapshot of the bit and clear it if needed.
4793  *   2. Write protect the corresponding page.
4794  *   3. Copy the snapshot to the userspace.
4795  *   4. Flush TLB's if needed.
4796  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)4797 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4798 {
4799 	bool flush = false;
4800 	int r;
4801 
4802 	mutex_lock(&kvm->slots_lock);
4803 
4804 	/*
4805 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4806 	 */
4807 	if (kvm_x86_ops->flush_log_dirty)
4808 		kvm_x86_ops->flush_log_dirty(kvm);
4809 
4810 	r = kvm_get_dirty_log_protect(kvm, log, &flush);
4811 
4812 	/*
4813 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4814 	 * kvm_mmu_slot_remove_write_access().
4815 	 */
4816 	lockdep_assert_held(&kvm->slots_lock);
4817 	if (flush)
4818 		kvm_flush_remote_tlbs(kvm);
4819 
4820 	mutex_unlock(&kvm->slots_lock);
4821 	return r;
4822 }
4823 
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)4824 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4825 {
4826 	bool flush = false;
4827 	int r;
4828 
4829 	mutex_lock(&kvm->slots_lock);
4830 
4831 	/*
4832 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4833 	 */
4834 	if (kvm_x86_ops->flush_log_dirty)
4835 		kvm_x86_ops->flush_log_dirty(kvm);
4836 
4837 	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4838 
4839 	/*
4840 	 * All the TLBs can be flushed out of mmu lock, see the comments in
4841 	 * kvm_mmu_slot_remove_write_access().
4842 	 */
4843 	lockdep_assert_held(&kvm->slots_lock);
4844 	if (flush)
4845 		kvm_flush_remote_tlbs(kvm);
4846 
4847 	mutex_unlock(&kvm->slots_lock);
4848 	return r;
4849 }
4850 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)4851 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4852 			bool line_status)
4853 {
4854 	if (!irqchip_in_kernel(kvm))
4855 		return -ENXIO;
4856 
4857 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4858 					irq_event->irq, irq_event->level,
4859 					line_status);
4860 	return 0;
4861 }
4862 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4863 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4864 			    struct kvm_enable_cap *cap)
4865 {
4866 	int r;
4867 
4868 	if (cap->flags)
4869 		return -EINVAL;
4870 
4871 	switch (cap->cap) {
4872 	case KVM_CAP_DISABLE_QUIRKS:
4873 		kvm->arch.disabled_quirks = cap->args[0];
4874 		r = 0;
4875 		break;
4876 	case KVM_CAP_SPLIT_IRQCHIP: {
4877 		mutex_lock(&kvm->lock);
4878 		r = -EINVAL;
4879 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4880 			goto split_irqchip_unlock;
4881 		r = -EEXIST;
4882 		if (irqchip_in_kernel(kvm))
4883 			goto split_irqchip_unlock;
4884 		if (kvm->created_vcpus)
4885 			goto split_irqchip_unlock;
4886 		r = kvm_setup_empty_irq_routing(kvm);
4887 		if (r)
4888 			goto split_irqchip_unlock;
4889 		/* Pairs with irqchip_in_kernel. */
4890 		smp_wmb();
4891 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4892 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4893 		r = 0;
4894 split_irqchip_unlock:
4895 		mutex_unlock(&kvm->lock);
4896 		break;
4897 	}
4898 	case KVM_CAP_X2APIC_API:
4899 		r = -EINVAL;
4900 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4901 			break;
4902 
4903 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4904 			kvm->arch.x2apic_format = true;
4905 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4906 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
4907 
4908 		r = 0;
4909 		break;
4910 	case KVM_CAP_X86_DISABLE_EXITS:
4911 		r = -EINVAL;
4912 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4913 			break;
4914 
4915 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4916 			kvm_can_mwait_in_guest())
4917 			kvm->arch.mwait_in_guest = true;
4918 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4919 			kvm->arch.hlt_in_guest = true;
4920 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4921 			kvm->arch.pause_in_guest = true;
4922 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4923 			kvm->arch.cstate_in_guest = true;
4924 		r = 0;
4925 		break;
4926 	case KVM_CAP_MSR_PLATFORM_INFO:
4927 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4928 		r = 0;
4929 		break;
4930 	case KVM_CAP_EXCEPTION_PAYLOAD:
4931 		kvm->arch.exception_payload_enabled = cap->args[0];
4932 		r = 0;
4933 		break;
4934 	default:
4935 		r = -EINVAL;
4936 		break;
4937 	}
4938 	return r;
4939 }
4940 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4941 long kvm_arch_vm_ioctl(struct file *filp,
4942 		       unsigned int ioctl, unsigned long arg)
4943 {
4944 	struct kvm *kvm = filp->private_data;
4945 	void __user *argp = (void __user *)arg;
4946 	int r = -ENOTTY;
4947 	/*
4948 	 * This union makes it completely explicit to gcc-3.x
4949 	 * that these two variables' stack usage should be
4950 	 * combined, not added together.
4951 	 */
4952 	union {
4953 		struct kvm_pit_state ps;
4954 		struct kvm_pit_state2 ps2;
4955 		struct kvm_pit_config pit_config;
4956 	} u;
4957 
4958 	switch (ioctl) {
4959 	case KVM_SET_TSS_ADDR:
4960 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4961 		break;
4962 	case KVM_SET_IDENTITY_MAP_ADDR: {
4963 		u64 ident_addr;
4964 
4965 		mutex_lock(&kvm->lock);
4966 		r = -EINVAL;
4967 		if (kvm->created_vcpus)
4968 			goto set_identity_unlock;
4969 		r = -EFAULT;
4970 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4971 			goto set_identity_unlock;
4972 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4973 set_identity_unlock:
4974 		mutex_unlock(&kvm->lock);
4975 		break;
4976 	}
4977 	case KVM_SET_NR_MMU_PAGES:
4978 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4979 		break;
4980 	case KVM_GET_NR_MMU_PAGES:
4981 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4982 		break;
4983 	case KVM_CREATE_IRQCHIP: {
4984 		mutex_lock(&kvm->lock);
4985 
4986 		r = -EEXIST;
4987 		if (irqchip_in_kernel(kvm))
4988 			goto create_irqchip_unlock;
4989 
4990 		r = -EINVAL;
4991 		if (kvm->created_vcpus)
4992 			goto create_irqchip_unlock;
4993 
4994 		r = kvm_pic_init(kvm);
4995 		if (r)
4996 			goto create_irqchip_unlock;
4997 
4998 		r = kvm_ioapic_init(kvm);
4999 		if (r) {
5000 			kvm_pic_destroy(kvm);
5001 			goto create_irqchip_unlock;
5002 		}
5003 
5004 		r = kvm_setup_default_irq_routing(kvm);
5005 		if (r) {
5006 			kvm_ioapic_destroy(kvm);
5007 			kvm_pic_destroy(kvm);
5008 			goto create_irqchip_unlock;
5009 		}
5010 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5011 		smp_wmb();
5012 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5013 	create_irqchip_unlock:
5014 		mutex_unlock(&kvm->lock);
5015 		break;
5016 	}
5017 	case KVM_CREATE_PIT:
5018 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5019 		goto create_pit;
5020 	case KVM_CREATE_PIT2:
5021 		r = -EFAULT;
5022 		if (copy_from_user(&u.pit_config, argp,
5023 				   sizeof(struct kvm_pit_config)))
5024 			goto out;
5025 	create_pit:
5026 		mutex_lock(&kvm->lock);
5027 		r = -EEXIST;
5028 		if (kvm->arch.vpit)
5029 			goto create_pit_unlock;
5030 		r = -ENOMEM;
5031 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5032 		if (kvm->arch.vpit)
5033 			r = 0;
5034 	create_pit_unlock:
5035 		mutex_unlock(&kvm->lock);
5036 		break;
5037 	case KVM_GET_IRQCHIP: {
5038 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5039 		struct kvm_irqchip *chip;
5040 
5041 		chip = memdup_user(argp, sizeof(*chip));
5042 		if (IS_ERR(chip)) {
5043 			r = PTR_ERR(chip);
5044 			goto out;
5045 		}
5046 
5047 		r = -ENXIO;
5048 		if (!irqchip_kernel(kvm))
5049 			goto get_irqchip_out;
5050 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5051 		if (r)
5052 			goto get_irqchip_out;
5053 		r = -EFAULT;
5054 		if (copy_to_user(argp, chip, sizeof(*chip)))
5055 			goto get_irqchip_out;
5056 		r = 0;
5057 	get_irqchip_out:
5058 		kfree(chip);
5059 		break;
5060 	}
5061 	case KVM_SET_IRQCHIP: {
5062 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5063 		struct kvm_irqchip *chip;
5064 
5065 		chip = memdup_user(argp, sizeof(*chip));
5066 		if (IS_ERR(chip)) {
5067 			r = PTR_ERR(chip);
5068 			goto out;
5069 		}
5070 
5071 		r = -ENXIO;
5072 		if (!irqchip_kernel(kvm))
5073 			goto set_irqchip_out;
5074 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5075 		if (r)
5076 			goto set_irqchip_out;
5077 		r = 0;
5078 	set_irqchip_out:
5079 		kfree(chip);
5080 		break;
5081 	}
5082 	case KVM_GET_PIT: {
5083 		r = -EFAULT;
5084 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5085 			goto out;
5086 		r = -ENXIO;
5087 		if (!kvm->arch.vpit)
5088 			goto out;
5089 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5090 		if (r)
5091 			goto out;
5092 		r = -EFAULT;
5093 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5094 			goto out;
5095 		r = 0;
5096 		break;
5097 	}
5098 	case KVM_SET_PIT: {
5099 		r = -EFAULT;
5100 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5101 			goto out;
5102 		mutex_lock(&kvm->lock);
5103 		r = -ENXIO;
5104 		if (!kvm->arch.vpit)
5105 			goto set_pit_out;
5106 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5107 set_pit_out:
5108 		mutex_unlock(&kvm->lock);
5109 		break;
5110 	}
5111 	case KVM_GET_PIT2: {
5112 		r = -ENXIO;
5113 		if (!kvm->arch.vpit)
5114 			goto out;
5115 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5116 		if (r)
5117 			goto out;
5118 		r = -EFAULT;
5119 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5120 			goto out;
5121 		r = 0;
5122 		break;
5123 	}
5124 	case KVM_SET_PIT2: {
5125 		r = -EFAULT;
5126 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5127 			goto out;
5128 		mutex_lock(&kvm->lock);
5129 		r = -ENXIO;
5130 		if (!kvm->arch.vpit)
5131 			goto set_pit2_out;
5132 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5133 set_pit2_out:
5134 		mutex_unlock(&kvm->lock);
5135 		break;
5136 	}
5137 	case KVM_REINJECT_CONTROL: {
5138 		struct kvm_reinject_control control;
5139 		r =  -EFAULT;
5140 		if (copy_from_user(&control, argp, sizeof(control)))
5141 			goto out;
5142 		r = kvm_vm_ioctl_reinject(kvm, &control);
5143 		break;
5144 	}
5145 	case KVM_SET_BOOT_CPU_ID:
5146 		r = 0;
5147 		mutex_lock(&kvm->lock);
5148 		if (kvm->created_vcpus)
5149 			r = -EBUSY;
5150 		else
5151 			kvm->arch.bsp_vcpu_id = arg;
5152 		mutex_unlock(&kvm->lock);
5153 		break;
5154 	case KVM_XEN_HVM_CONFIG: {
5155 		struct kvm_xen_hvm_config xhc;
5156 		r = -EFAULT;
5157 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
5158 			goto out;
5159 		r = -EINVAL;
5160 		if (xhc.flags)
5161 			goto out;
5162 		memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5163 		r = 0;
5164 		break;
5165 	}
5166 	case KVM_SET_CLOCK: {
5167 		struct kvm_clock_data user_ns;
5168 		u64 now_ns;
5169 
5170 		r = -EFAULT;
5171 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5172 			goto out;
5173 
5174 		r = -EINVAL;
5175 		if (user_ns.flags)
5176 			goto out;
5177 
5178 		r = 0;
5179 		/*
5180 		 * TODO: userspace has to take care of races with VCPU_RUN, so
5181 		 * kvm_gen_update_masterclock() can be cut down to locked
5182 		 * pvclock_update_vm_gtod_copy().
5183 		 */
5184 		kvm_gen_update_masterclock(kvm);
5185 		now_ns = get_kvmclock_ns(kvm);
5186 		kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5187 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5188 		break;
5189 	}
5190 	case KVM_GET_CLOCK: {
5191 		struct kvm_clock_data user_ns;
5192 		u64 now_ns;
5193 
5194 		now_ns = get_kvmclock_ns(kvm);
5195 		user_ns.clock = now_ns;
5196 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5197 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5198 
5199 		r = -EFAULT;
5200 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5201 			goto out;
5202 		r = 0;
5203 		break;
5204 	}
5205 	case KVM_MEMORY_ENCRYPT_OP: {
5206 		r = -ENOTTY;
5207 		if (kvm_x86_ops->mem_enc_op)
5208 			r = kvm_x86_ops->mem_enc_op(kvm, argp);
5209 		break;
5210 	}
5211 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
5212 		struct kvm_enc_region region;
5213 
5214 		r = -EFAULT;
5215 		if (copy_from_user(&region, argp, sizeof(region)))
5216 			goto out;
5217 
5218 		r = -ENOTTY;
5219 		if (kvm_x86_ops->mem_enc_reg_region)
5220 			r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5221 		break;
5222 	}
5223 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5224 		struct kvm_enc_region region;
5225 
5226 		r = -EFAULT;
5227 		if (copy_from_user(&region, argp, sizeof(region)))
5228 			goto out;
5229 
5230 		r = -ENOTTY;
5231 		if (kvm_x86_ops->mem_enc_unreg_region)
5232 			r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5233 		break;
5234 	}
5235 	case KVM_HYPERV_EVENTFD: {
5236 		struct kvm_hyperv_eventfd hvevfd;
5237 
5238 		r = -EFAULT;
5239 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5240 			goto out;
5241 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5242 		break;
5243 	}
5244 	case KVM_SET_PMU_EVENT_FILTER:
5245 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5246 		break;
5247 	default:
5248 		r = -ENOTTY;
5249 	}
5250 out:
5251 	return r;
5252 }
5253 
kvm_init_msr_list(void)5254 static void kvm_init_msr_list(void)
5255 {
5256 	struct x86_pmu_capability x86_pmu;
5257 	u32 dummy[2];
5258 	unsigned i;
5259 
5260 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5261 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
5262 
5263 	perf_get_x86_pmu_capability(&x86_pmu);
5264 
5265 	num_msrs_to_save = 0;
5266 	num_emulated_msrs = 0;
5267 	num_msr_based_features = 0;
5268 
5269 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5270 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5271 			continue;
5272 
5273 		/*
5274 		 * Even MSRs that are valid in the host may not be exposed
5275 		 * to the guests in some cases.
5276 		 */
5277 		switch (msrs_to_save_all[i]) {
5278 		case MSR_IA32_BNDCFGS:
5279 			if (!kvm_mpx_supported())
5280 				continue;
5281 			break;
5282 		case MSR_TSC_AUX:
5283 			if (!kvm_x86_ops->rdtscp_supported())
5284 				continue;
5285 			break;
5286 		case MSR_IA32_UMWAIT_CONTROL:
5287 			if (!boot_cpu_has(X86_FEATURE_WAITPKG))
5288 				continue;
5289 			break;
5290 		case MSR_IA32_RTIT_CTL:
5291 		case MSR_IA32_RTIT_STATUS:
5292 			if (!kvm_x86_ops->pt_supported())
5293 				continue;
5294 			break;
5295 		case MSR_IA32_RTIT_CR3_MATCH:
5296 			if (!kvm_x86_ops->pt_supported() ||
5297 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5298 				continue;
5299 			break;
5300 		case MSR_IA32_RTIT_OUTPUT_BASE:
5301 		case MSR_IA32_RTIT_OUTPUT_MASK:
5302 			if (!kvm_x86_ops->pt_supported() ||
5303 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5304 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5305 				continue;
5306 			break;
5307 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5308 			if (!kvm_x86_ops->pt_supported() ||
5309 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5310 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5311 				continue;
5312 			break;
5313 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5314 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5315 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5316 				continue;
5317 			break;
5318 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5319 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5320 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5321 				continue;
5322 		}
5323 		default:
5324 			break;
5325 		}
5326 
5327 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5328 	}
5329 
5330 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5331 		if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
5332 			continue;
5333 
5334 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5335 	}
5336 
5337 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5338 		struct kvm_msr_entry msr;
5339 
5340 		msr.index = msr_based_features_all[i];
5341 		if (kvm_get_msr_feature(&msr))
5342 			continue;
5343 
5344 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5345 	}
5346 }
5347 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)5348 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5349 			   const void *v)
5350 {
5351 	int handled = 0;
5352 	int n;
5353 
5354 	do {
5355 		n = min(len, 8);
5356 		if (!(lapic_in_kernel(vcpu) &&
5357 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5358 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5359 			break;
5360 		handled += n;
5361 		addr += n;
5362 		len -= n;
5363 		v += n;
5364 	} while (len);
5365 
5366 	return handled;
5367 }
5368 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)5369 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5370 {
5371 	int handled = 0;
5372 	int n;
5373 
5374 	do {
5375 		n = min(len, 8);
5376 		if (!(lapic_in_kernel(vcpu) &&
5377 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5378 					 addr, n, v))
5379 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5380 			break;
5381 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5382 		handled += n;
5383 		addr += n;
5384 		len -= n;
5385 		v += n;
5386 	} while (len);
5387 
5388 	return handled;
5389 }
5390 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)5391 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5392 			struct kvm_segment *var, int seg)
5393 {
5394 	kvm_x86_ops->set_segment(vcpu, var, seg);
5395 }
5396 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)5397 void kvm_get_segment(struct kvm_vcpu *vcpu,
5398 		     struct kvm_segment *var, int seg)
5399 {
5400 	kvm_x86_ops->get_segment(vcpu, var, seg);
5401 }
5402 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)5403 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5404 			   struct x86_exception *exception)
5405 {
5406 	gpa_t t_gpa;
5407 
5408 	BUG_ON(!mmu_is_nested(vcpu));
5409 
5410 	/* NPT walks are always user-walks */
5411 	access |= PFERR_USER_MASK;
5412 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5413 
5414 	return t_gpa;
5415 }
5416 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5417 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5418 			      struct x86_exception *exception)
5419 {
5420 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5421 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5422 }
5423 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5424  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5425 				struct x86_exception *exception)
5426 {
5427 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5428 	access |= PFERR_FETCH_MASK;
5429 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5430 }
5431 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5432 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5433 			       struct x86_exception *exception)
5434 {
5435 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5436 	access |= PFERR_WRITE_MASK;
5437 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5438 }
5439 
5440 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)5441 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5442 				struct x86_exception *exception)
5443 {
5444 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5445 }
5446 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)5447 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5448 				      struct kvm_vcpu *vcpu, u32 access,
5449 				      struct x86_exception *exception)
5450 {
5451 	void *data = val;
5452 	int r = X86EMUL_CONTINUE;
5453 
5454 	while (bytes) {
5455 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5456 							    exception);
5457 		unsigned offset = addr & (PAGE_SIZE-1);
5458 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5459 		int ret;
5460 
5461 		if (gpa == UNMAPPED_GVA)
5462 			return X86EMUL_PROPAGATE_FAULT;
5463 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5464 					       offset, toread);
5465 		if (ret < 0) {
5466 			r = X86EMUL_IO_NEEDED;
5467 			goto out;
5468 		}
5469 
5470 		bytes -= toread;
5471 		data += toread;
5472 		addr += toread;
5473 	}
5474 out:
5475 	return r;
5476 }
5477 
5478 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)5479 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5480 				gva_t addr, void *val, unsigned int bytes,
5481 				struct x86_exception *exception)
5482 {
5483 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5484 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5485 	unsigned offset;
5486 	int ret;
5487 
5488 	/* Inline kvm_read_guest_virt_helper for speed.  */
5489 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5490 						    exception);
5491 	if (unlikely(gpa == UNMAPPED_GVA))
5492 		return X86EMUL_PROPAGATE_FAULT;
5493 
5494 	offset = addr & (PAGE_SIZE-1);
5495 	if (WARN_ON(offset + bytes > PAGE_SIZE))
5496 		bytes = (unsigned)PAGE_SIZE - offset;
5497 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5498 				       offset, bytes);
5499 	if (unlikely(ret < 0))
5500 		return X86EMUL_IO_NEEDED;
5501 
5502 	return X86EMUL_CONTINUE;
5503 }
5504 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)5505 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5506 			       gva_t addr, void *val, unsigned int bytes,
5507 			       struct x86_exception *exception)
5508 {
5509 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5510 
5511 	/*
5512 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5513 	 * is returned, but our callers are not ready for that and they blindly
5514 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5515 	 * uninitialized kernel stack memory into cr2 and error code.
5516 	 */
5517 	memset(exception, 0, sizeof(*exception));
5518 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5519 					  exception);
5520 }
5521 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5522 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)5523 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5524 			     gva_t addr, void *val, unsigned int bytes,
5525 			     struct x86_exception *exception, bool system)
5526 {
5527 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5528 	u32 access = 0;
5529 
5530 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5531 		access |= PFERR_USER_MASK;
5532 
5533 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5534 }
5535 
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)5536 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5537 		unsigned long addr, void *val, unsigned int bytes)
5538 {
5539 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5540 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5541 
5542 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5543 }
5544 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)5545 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5546 				      struct kvm_vcpu *vcpu, u32 access,
5547 				      struct x86_exception *exception)
5548 {
5549 	void *data = val;
5550 	int r = X86EMUL_CONTINUE;
5551 
5552 	while (bytes) {
5553 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5554 							     access,
5555 							     exception);
5556 		unsigned offset = addr & (PAGE_SIZE-1);
5557 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5558 		int ret;
5559 
5560 		if (gpa == UNMAPPED_GVA)
5561 			return X86EMUL_PROPAGATE_FAULT;
5562 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5563 		if (ret < 0) {
5564 			r = X86EMUL_IO_NEEDED;
5565 			goto out;
5566 		}
5567 
5568 		bytes -= towrite;
5569 		data += towrite;
5570 		addr += towrite;
5571 	}
5572 out:
5573 	return r;
5574 }
5575 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)5576 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5577 			      unsigned int bytes, struct x86_exception *exception,
5578 			      bool system)
5579 {
5580 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5581 	u32 access = PFERR_WRITE_MASK;
5582 
5583 	if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5584 		access |= PFERR_USER_MASK;
5585 
5586 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5587 					   access, exception);
5588 }
5589 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)5590 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5591 				unsigned int bytes, struct x86_exception *exception)
5592 {
5593 	/* kvm_write_guest_virt_system can pull in tons of pages. */
5594 	vcpu->arch.l1tf_flush_l1d = true;
5595 
5596 	/*
5597 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5598 	 * is returned, but our callers are not ready for that and they blindly
5599 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
5600 	 * uninitialized kernel stack memory into cr2 and error code.
5601 	 */
5602 	memset(exception, 0, sizeof(*exception));
5603 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5604 					   PFERR_WRITE_MASK, exception);
5605 }
5606 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5607 
handle_ud(struct kvm_vcpu * vcpu)5608 int handle_ud(struct kvm_vcpu *vcpu)
5609 {
5610 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5611 	int emul_type = EMULTYPE_TRAP_UD;
5612 	char sig[5]; /* ud2; .ascii "kvm" */
5613 	struct x86_exception e;
5614 
5615 	if (force_emulation_prefix &&
5616 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5617 				sig, sizeof(sig), &e) == 0 &&
5618 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5619 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5620 		emul_type = EMULTYPE_TRAP_UD_FORCED;
5621 	}
5622 
5623 	return kvm_emulate_instruction(vcpu, emul_type);
5624 }
5625 EXPORT_SYMBOL_GPL(handle_ud);
5626 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)5627 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5628 			    gpa_t gpa, bool write)
5629 {
5630 	/* For APIC access vmexit */
5631 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5632 		return 1;
5633 
5634 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5635 		trace_vcpu_match_mmio(gva, gpa, write, true);
5636 		return 1;
5637 	}
5638 
5639 	return 0;
5640 }
5641 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)5642 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5643 				gpa_t *gpa, struct x86_exception *exception,
5644 				bool write)
5645 {
5646 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5647 		| (write ? PFERR_WRITE_MASK : 0);
5648 
5649 	/*
5650 	 * currently PKRU is only applied to ept enabled guest so
5651 	 * there is no pkey in EPT page table for L1 guest or EPT
5652 	 * shadow page table for L2 guest.
5653 	 */
5654 	if (vcpu_match_mmio_gva(vcpu, gva)
5655 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5656 				 vcpu->arch.mmio_access, 0, access)) {
5657 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5658 					(gva & (PAGE_SIZE - 1));
5659 		trace_vcpu_match_mmio(gva, *gpa, write, false);
5660 		return 1;
5661 	}
5662 
5663 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5664 
5665 	if (*gpa == UNMAPPED_GVA)
5666 		return -1;
5667 
5668 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5669 }
5670 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)5671 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5672 			const void *val, int bytes)
5673 {
5674 	int ret;
5675 
5676 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5677 	if (ret < 0)
5678 		return 0;
5679 	kvm_page_track_write(vcpu, gpa, val, bytes);
5680 	return 1;
5681 }
5682 
5683 struct read_write_emulator_ops {
5684 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5685 				  int bytes);
5686 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5687 				  void *val, int bytes);
5688 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5689 			       int bytes, void *val);
5690 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5691 				    void *val, int bytes);
5692 	bool write;
5693 };
5694 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)5695 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5696 {
5697 	if (vcpu->mmio_read_completed) {
5698 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5699 			       vcpu->mmio_fragments[0].gpa, val);
5700 		vcpu->mmio_read_completed = 0;
5701 		return 1;
5702 	}
5703 
5704 	return 0;
5705 }
5706 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5707 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5708 			void *val, int bytes)
5709 {
5710 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5711 }
5712 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5713 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5714 			 void *val, int bytes)
5715 {
5716 	return emulator_write_phys(vcpu, gpa, val, bytes);
5717 }
5718 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)5719 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5720 {
5721 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5722 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
5723 }
5724 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5725 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5726 			  void *val, int bytes)
5727 {
5728 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5729 	return X86EMUL_IO_NEEDED;
5730 }
5731 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)5732 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5733 			   void *val, int bytes)
5734 {
5735 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5736 
5737 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5738 	return X86EMUL_CONTINUE;
5739 }
5740 
5741 static const struct read_write_emulator_ops read_emultor = {
5742 	.read_write_prepare = read_prepare,
5743 	.read_write_emulate = read_emulate,
5744 	.read_write_mmio = vcpu_mmio_read,
5745 	.read_write_exit_mmio = read_exit_mmio,
5746 };
5747 
5748 static const struct read_write_emulator_ops write_emultor = {
5749 	.read_write_emulate = write_emulate,
5750 	.read_write_mmio = write_mmio,
5751 	.read_write_exit_mmio = write_exit_mmio,
5752 	.write = true,
5753 };
5754 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)5755 static int emulator_read_write_onepage(unsigned long addr, void *val,
5756 				       unsigned int bytes,
5757 				       struct x86_exception *exception,
5758 				       struct kvm_vcpu *vcpu,
5759 				       const struct read_write_emulator_ops *ops)
5760 {
5761 	gpa_t gpa;
5762 	int handled, ret;
5763 	bool write = ops->write;
5764 	struct kvm_mmio_fragment *frag;
5765 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5766 
5767 	/*
5768 	 * If the exit was due to a NPF we may already have a GPA.
5769 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5770 	 * Note, this cannot be used on string operations since string
5771 	 * operation using rep will only have the initial GPA from the NPF
5772 	 * occurred.
5773 	 */
5774 	if (vcpu->arch.gpa_available &&
5775 	    emulator_can_use_gpa(ctxt) &&
5776 	    (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5777 		gpa = vcpu->arch.gpa_val;
5778 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5779 	} else {
5780 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5781 		if (ret < 0)
5782 			return X86EMUL_PROPAGATE_FAULT;
5783 	}
5784 
5785 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5786 		return X86EMUL_CONTINUE;
5787 
5788 	/*
5789 	 * Is this MMIO handled locally?
5790 	 */
5791 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5792 	if (handled == bytes)
5793 		return X86EMUL_CONTINUE;
5794 
5795 	gpa += handled;
5796 	bytes -= handled;
5797 	val += handled;
5798 
5799 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5800 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5801 	frag->gpa = gpa;
5802 	frag->data = val;
5803 	frag->len = bytes;
5804 	return X86EMUL_CONTINUE;
5805 }
5806 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)5807 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5808 			unsigned long addr,
5809 			void *val, unsigned int bytes,
5810 			struct x86_exception *exception,
5811 			const struct read_write_emulator_ops *ops)
5812 {
5813 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5814 	gpa_t gpa;
5815 	int rc;
5816 
5817 	if (ops->read_write_prepare &&
5818 		  ops->read_write_prepare(vcpu, val, bytes))
5819 		return X86EMUL_CONTINUE;
5820 
5821 	vcpu->mmio_nr_fragments = 0;
5822 
5823 	/* Crossing a page boundary? */
5824 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5825 		int now;
5826 
5827 		now = -addr & ~PAGE_MASK;
5828 		rc = emulator_read_write_onepage(addr, val, now, exception,
5829 						 vcpu, ops);
5830 
5831 		if (rc != X86EMUL_CONTINUE)
5832 			return rc;
5833 		addr += now;
5834 		if (ctxt->mode != X86EMUL_MODE_PROT64)
5835 			addr = (u32)addr;
5836 		val += now;
5837 		bytes -= now;
5838 	}
5839 
5840 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
5841 					 vcpu, ops);
5842 	if (rc != X86EMUL_CONTINUE)
5843 		return rc;
5844 
5845 	if (!vcpu->mmio_nr_fragments)
5846 		return rc;
5847 
5848 	gpa = vcpu->mmio_fragments[0].gpa;
5849 
5850 	vcpu->mmio_needed = 1;
5851 	vcpu->mmio_cur_fragment = 0;
5852 
5853 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5854 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5855 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
5856 	vcpu->run->mmio.phys_addr = gpa;
5857 
5858 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5859 }
5860 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)5861 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5862 				  unsigned long addr,
5863 				  void *val,
5864 				  unsigned int bytes,
5865 				  struct x86_exception *exception)
5866 {
5867 	return emulator_read_write(ctxt, addr, val, bytes,
5868 				   exception, &read_emultor);
5869 }
5870 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)5871 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5872 			    unsigned long addr,
5873 			    const void *val,
5874 			    unsigned int bytes,
5875 			    struct x86_exception *exception)
5876 {
5877 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
5878 				   exception, &write_emultor);
5879 }
5880 
5881 #define CMPXCHG_TYPE(t, ptr, old, new) \
5882 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5883 
5884 #ifdef CONFIG_X86_64
5885 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5886 #else
5887 #  define CMPXCHG64(ptr, old, new) \
5888 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5889 #endif
5890 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)5891 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5892 				     unsigned long addr,
5893 				     const void *old,
5894 				     const void *new,
5895 				     unsigned int bytes,
5896 				     struct x86_exception *exception)
5897 {
5898 	struct kvm_host_map map;
5899 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5900 	gpa_t gpa;
5901 	char *kaddr;
5902 	bool exchanged;
5903 
5904 	/* guests cmpxchg8b have to be emulated atomically */
5905 	if (bytes > 8 || (bytes & (bytes - 1)))
5906 		goto emul_write;
5907 
5908 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5909 
5910 	if (gpa == UNMAPPED_GVA ||
5911 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5912 		goto emul_write;
5913 
5914 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5915 		goto emul_write;
5916 
5917 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5918 		goto emul_write;
5919 
5920 	kaddr = map.hva + offset_in_page(gpa);
5921 
5922 	switch (bytes) {
5923 	case 1:
5924 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5925 		break;
5926 	case 2:
5927 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5928 		break;
5929 	case 4:
5930 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5931 		break;
5932 	case 8:
5933 		exchanged = CMPXCHG64(kaddr, old, new);
5934 		break;
5935 	default:
5936 		BUG();
5937 	}
5938 
5939 	kvm_vcpu_unmap(vcpu, &map, true);
5940 
5941 	if (!exchanged)
5942 		return X86EMUL_CMPXCHG_FAILED;
5943 
5944 	kvm_page_track_write(vcpu, gpa, new, bytes);
5945 
5946 	return X86EMUL_CONTINUE;
5947 
5948 emul_write:
5949 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5950 
5951 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5952 }
5953 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)5954 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5955 {
5956 	int r = 0, i;
5957 
5958 	for (i = 0; i < vcpu->arch.pio.count; i++) {
5959 		if (vcpu->arch.pio.in)
5960 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5961 					    vcpu->arch.pio.size, pd);
5962 		else
5963 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5964 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
5965 					     pd);
5966 		if (r)
5967 			break;
5968 		pd += vcpu->arch.pio.size;
5969 	}
5970 	return r;
5971 }
5972 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)5973 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5974 			       unsigned short port, void *val,
5975 			       unsigned int count, bool in)
5976 {
5977 	vcpu->arch.pio.port = port;
5978 	vcpu->arch.pio.in = in;
5979 	vcpu->arch.pio.count  = count;
5980 	vcpu->arch.pio.size = size;
5981 
5982 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5983 		vcpu->arch.pio.count = 0;
5984 		return 1;
5985 	}
5986 
5987 	vcpu->run->exit_reason = KVM_EXIT_IO;
5988 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5989 	vcpu->run->io.size = size;
5990 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5991 	vcpu->run->io.count = count;
5992 	vcpu->run->io.port = port;
5993 
5994 	return 0;
5995 }
5996 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)5997 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5998 				    int size, unsigned short port, void *val,
5999 				    unsigned int count)
6000 {
6001 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6002 	int ret;
6003 
6004 	if (vcpu->arch.pio.count)
6005 		goto data_avail;
6006 
6007 	memset(vcpu->arch.pio_data, 0, size * count);
6008 
6009 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6010 	if (ret) {
6011 data_avail:
6012 		memcpy(val, vcpu->arch.pio_data, size * count);
6013 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
6014 		vcpu->arch.pio.count = 0;
6015 		return 1;
6016 	}
6017 
6018 	return 0;
6019 }
6020 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)6021 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6022 				     int size, unsigned short port,
6023 				     const void *val, unsigned int count)
6024 {
6025 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6026 
6027 	memcpy(vcpu->arch.pio_data, val, size * count);
6028 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6029 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6030 }
6031 
get_segment_base(struct kvm_vcpu * vcpu,int seg)6032 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6033 {
6034 	return kvm_x86_ops->get_segment_base(vcpu, seg);
6035 }
6036 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)6037 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
6038 {
6039 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
6040 }
6041 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)6042 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
6043 {
6044 	if (!need_emulate_wbinvd(vcpu))
6045 		return X86EMUL_CONTINUE;
6046 
6047 	if (kvm_x86_ops->has_wbinvd_exit()) {
6048 		int cpu = get_cpu();
6049 
6050 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
6051 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6052 				wbinvd_ipi, NULL, 1);
6053 		put_cpu();
6054 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6055 	} else
6056 		wbinvd();
6057 	return X86EMUL_CONTINUE;
6058 }
6059 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)6060 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6061 {
6062 	kvm_emulate_wbinvd_noskip(vcpu);
6063 	return kvm_skip_emulated_instruction(vcpu);
6064 }
6065 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6066 
6067 
6068 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)6069 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6070 {
6071 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6072 }
6073 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)6074 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6075 			   unsigned long *dest)
6076 {
6077 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6078 }
6079 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)6080 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6081 			   unsigned long value)
6082 {
6083 
6084 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6085 }
6086 
mk_cr_64(u64 curr_cr,u32 new_val)6087 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6088 {
6089 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6090 }
6091 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)6092 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6093 {
6094 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6095 	unsigned long value;
6096 
6097 	switch (cr) {
6098 	case 0:
6099 		value = kvm_read_cr0(vcpu);
6100 		break;
6101 	case 2:
6102 		value = vcpu->arch.cr2;
6103 		break;
6104 	case 3:
6105 		value = kvm_read_cr3(vcpu);
6106 		break;
6107 	case 4:
6108 		value = kvm_read_cr4(vcpu);
6109 		break;
6110 	case 8:
6111 		value = kvm_get_cr8(vcpu);
6112 		break;
6113 	default:
6114 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6115 		return 0;
6116 	}
6117 
6118 	return value;
6119 }
6120 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)6121 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6122 {
6123 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6124 	int res = 0;
6125 
6126 	switch (cr) {
6127 	case 0:
6128 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6129 		break;
6130 	case 2:
6131 		vcpu->arch.cr2 = val;
6132 		break;
6133 	case 3:
6134 		res = kvm_set_cr3(vcpu, val);
6135 		break;
6136 	case 4:
6137 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6138 		break;
6139 	case 8:
6140 		res = kvm_set_cr8(vcpu, val);
6141 		break;
6142 	default:
6143 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
6144 		res = -1;
6145 	}
6146 
6147 	return res;
6148 }
6149 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)6150 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6151 {
6152 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
6153 }
6154 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6155 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6156 {
6157 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
6158 }
6159 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6160 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6161 {
6162 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
6163 }
6164 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6165 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6166 {
6167 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6168 }
6169 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)6170 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6171 {
6172 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6173 }
6174 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)6175 static unsigned long emulator_get_cached_segment_base(
6176 	struct x86_emulate_ctxt *ctxt, int seg)
6177 {
6178 	return get_segment_base(emul_to_vcpu(ctxt), seg);
6179 }
6180 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)6181 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6182 				 struct desc_struct *desc, u32 *base3,
6183 				 int seg)
6184 {
6185 	struct kvm_segment var;
6186 
6187 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6188 	*selector = var.selector;
6189 
6190 	if (var.unusable) {
6191 		memset(desc, 0, sizeof(*desc));
6192 		if (base3)
6193 			*base3 = 0;
6194 		return false;
6195 	}
6196 
6197 	if (var.g)
6198 		var.limit >>= 12;
6199 	set_desc_limit(desc, var.limit);
6200 	set_desc_base(desc, (unsigned long)var.base);
6201 #ifdef CONFIG_X86_64
6202 	if (base3)
6203 		*base3 = var.base >> 32;
6204 #endif
6205 	desc->type = var.type;
6206 	desc->s = var.s;
6207 	desc->dpl = var.dpl;
6208 	desc->p = var.present;
6209 	desc->avl = var.avl;
6210 	desc->l = var.l;
6211 	desc->d = var.db;
6212 	desc->g = var.g;
6213 
6214 	return true;
6215 }
6216 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)6217 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6218 				 struct desc_struct *desc, u32 base3,
6219 				 int seg)
6220 {
6221 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6222 	struct kvm_segment var;
6223 
6224 	var.selector = selector;
6225 	var.base = get_desc_base(desc);
6226 #ifdef CONFIG_X86_64
6227 	var.base |= ((u64)base3) << 32;
6228 #endif
6229 	var.limit = get_desc_limit(desc);
6230 	if (desc->g)
6231 		var.limit = (var.limit << 12) | 0xfff;
6232 	var.type = desc->type;
6233 	var.dpl = desc->dpl;
6234 	var.db = desc->d;
6235 	var.s = desc->s;
6236 	var.l = desc->l;
6237 	var.g = desc->g;
6238 	var.avl = desc->avl;
6239 	var.present = desc->p;
6240 	var.unusable = !var.present;
6241 	var.padding = 0;
6242 
6243 	kvm_set_segment(vcpu, &var, seg);
6244 	return;
6245 }
6246 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)6247 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6248 			    u32 msr_index, u64 *pdata)
6249 {
6250 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6251 }
6252 
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)6253 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6254 			    u32 msr_index, u64 data)
6255 {
6256 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6257 }
6258 
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)6259 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6260 {
6261 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6262 
6263 	return vcpu->arch.smbase;
6264 }
6265 
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)6266 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6267 {
6268 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6269 
6270 	vcpu->arch.smbase = smbase;
6271 }
6272 
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)6273 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6274 			      u32 pmc)
6275 {
6276 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6277 }
6278 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)6279 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6280 			     u32 pmc, u64 *pdata)
6281 {
6282 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6283 }
6284 
emulator_halt(struct x86_emulate_ctxt * ctxt)6285 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6286 {
6287 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
6288 }
6289 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)6290 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6291 			      struct x86_instruction_info *info,
6292 			      enum x86_intercept_stage stage)
6293 {
6294 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6295 }
6296 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool check_limit)6297 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6298 			u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6299 {
6300 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6301 }
6302 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)6303 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6304 {
6305 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
6306 }
6307 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)6308 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6309 {
6310 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6311 }
6312 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)6313 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6314 {
6315 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6316 }
6317 
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)6318 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6319 {
6320 	return emul_to_vcpu(ctxt)->arch.hflags;
6321 }
6322 
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)6323 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6324 {
6325 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6326 
6327 	vcpu->arch.hflags = emul_flags;
6328 	kvm_mmu_reset_context(vcpu);
6329 }
6330 
emulator_pre_leave_smm(struct x86_emulate_ctxt * ctxt,const char * smstate)6331 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6332 				  const char *smstate)
6333 {
6334 	return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6335 }
6336 
emulator_post_leave_smm(struct x86_emulate_ctxt * ctxt)6337 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6338 {
6339 	kvm_smm_changed(emul_to_vcpu(ctxt));
6340 }
6341 
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)6342 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6343 {
6344 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6345 }
6346 
6347 static const struct x86_emulate_ops emulate_ops = {
6348 	.read_gpr            = emulator_read_gpr,
6349 	.write_gpr           = emulator_write_gpr,
6350 	.read_std            = emulator_read_std,
6351 	.write_std           = emulator_write_std,
6352 	.read_phys           = kvm_read_guest_phys_system,
6353 	.fetch               = kvm_fetch_guest_virt,
6354 	.read_emulated       = emulator_read_emulated,
6355 	.write_emulated      = emulator_write_emulated,
6356 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
6357 	.invlpg              = emulator_invlpg,
6358 	.pio_in_emulated     = emulator_pio_in_emulated,
6359 	.pio_out_emulated    = emulator_pio_out_emulated,
6360 	.get_segment         = emulator_get_segment,
6361 	.set_segment         = emulator_set_segment,
6362 	.get_cached_segment_base = emulator_get_cached_segment_base,
6363 	.get_gdt             = emulator_get_gdt,
6364 	.get_idt	     = emulator_get_idt,
6365 	.set_gdt             = emulator_set_gdt,
6366 	.set_idt	     = emulator_set_idt,
6367 	.get_cr              = emulator_get_cr,
6368 	.set_cr              = emulator_set_cr,
6369 	.cpl                 = emulator_get_cpl,
6370 	.get_dr              = emulator_get_dr,
6371 	.set_dr              = emulator_set_dr,
6372 	.get_smbase          = emulator_get_smbase,
6373 	.set_smbase          = emulator_set_smbase,
6374 	.set_msr             = emulator_set_msr,
6375 	.get_msr             = emulator_get_msr,
6376 	.check_pmc	     = emulator_check_pmc,
6377 	.read_pmc            = emulator_read_pmc,
6378 	.halt                = emulator_halt,
6379 	.wbinvd              = emulator_wbinvd,
6380 	.fix_hypercall       = emulator_fix_hypercall,
6381 	.intercept           = emulator_intercept,
6382 	.get_cpuid           = emulator_get_cpuid,
6383 	.set_nmi_mask        = emulator_set_nmi_mask,
6384 	.get_hflags          = emulator_get_hflags,
6385 	.set_hflags          = emulator_set_hflags,
6386 	.pre_leave_smm       = emulator_pre_leave_smm,
6387 	.post_leave_smm      = emulator_post_leave_smm,
6388 	.set_xcr             = emulator_set_xcr,
6389 };
6390 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)6391 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6392 {
6393 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6394 	/*
6395 	 * an sti; sti; sequence only disable interrupts for the first
6396 	 * instruction. So, if the last instruction, be it emulated or
6397 	 * not, left the system with the INT_STI flag enabled, it
6398 	 * means that the last instruction is an sti. We should not
6399 	 * leave the flag on in this case. The same goes for mov ss
6400 	 */
6401 	if (int_shadow & mask)
6402 		mask = 0;
6403 	if (unlikely(int_shadow || mask)) {
6404 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6405 		if (!mask)
6406 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6407 	}
6408 }
6409 
inject_emulated_exception(struct kvm_vcpu * vcpu)6410 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6411 {
6412 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6413 	if (ctxt->exception.vector == PF_VECTOR)
6414 		return kvm_propagate_fault(vcpu, &ctxt->exception);
6415 
6416 	if (ctxt->exception.error_code_valid)
6417 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6418 				      ctxt->exception.error_code);
6419 	else
6420 		kvm_queue_exception(vcpu, ctxt->exception.vector);
6421 	return false;
6422 }
6423 
init_emulate_ctxt(struct kvm_vcpu * vcpu)6424 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6425 {
6426 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6427 	int cs_db, cs_l;
6428 
6429 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6430 
6431 	ctxt->eflags = kvm_get_rflags(vcpu);
6432 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6433 
6434 	ctxt->eip = kvm_rip_read(vcpu);
6435 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
6436 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
6437 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
6438 		     cs_db				? X86EMUL_MODE_PROT32 :
6439 							  X86EMUL_MODE_PROT16;
6440 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6441 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6442 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6443 
6444 	init_decode_cache(ctxt);
6445 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6446 }
6447 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)6448 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6449 {
6450 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6451 	int ret;
6452 
6453 	init_emulate_ctxt(vcpu);
6454 
6455 	ctxt->op_bytes = 2;
6456 	ctxt->ad_bytes = 2;
6457 	ctxt->_eip = ctxt->eip + inc_eip;
6458 	ret = emulate_int_real(ctxt, irq);
6459 
6460 	if (ret != X86EMUL_CONTINUE) {
6461 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6462 	} else {
6463 		ctxt->eip = ctxt->_eip;
6464 		kvm_rip_write(vcpu, ctxt->eip);
6465 		kvm_set_rflags(vcpu, ctxt->eflags);
6466 	}
6467 }
6468 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6469 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)6470 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6471 {
6472 	++vcpu->stat.insn_emulation_fail;
6473 	trace_kvm_emulate_insn_failed(vcpu);
6474 
6475 	if (emulation_type & EMULTYPE_VMWARE_GP) {
6476 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6477 		return 1;
6478 	}
6479 
6480 	if (emulation_type & EMULTYPE_SKIP) {
6481 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6482 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6483 		vcpu->run->internal.ndata = 0;
6484 		return 0;
6485 	}
6486 
6487 	kvm_queue_exception(vcpu, UD_VECTOR);
6488 
6489 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6490 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6491 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6492 		vcpu->run->internal.ndata = 0;
6493 		return 0;
6494 	}
6495 
6496 	return 1;
6497 }
6498 
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool write_fault_to_shadow_pgtable,int emulation_type)6499 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6500 				  bool write_fault_to_shadow_pgtable,
6501 				  int emulation_type)
6502 {
6503 	gpa_t gpa = cr2_or_gpa;
6504 	kvm_pfn_t pfn;
6505 
6506 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6507 		return false;
6508 
6509 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6510 		return false;
6511 
6512 	if (!vcpu->arch.mmu->direct_map) {
6513 		/*
6514 		 * Write permission should be allowed since only
6515 		 * write access need to be emulated.
6516 		 */
6517 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6518 
6519 		/*
6520 		 * If the mapping is invalid in guest, let cpu retry
6521 		 * it to generate fault.
6522 		 */
6523 		if (gpa == UNMAPPED_GVA)
6524 			return true;
6525 	}
6526 
6527 	/*
6528 	 * Do not retry the unhandleable instruction if it faults on the
6529 	 * readonly host memory, otherwise it will goto a infinite loop:
6530 	 * retry instruction -> write #PF -> emulation fail -> retry
6531 	 * instruction -> ...
6532 	 */
6533 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6534 
6535 	/*
6536 	 * If the instruction failed on the error pfn, it can not be fixed,
6537 	 * report the error to userspace.
6538 	 */
6539 	if (is_error_noslot_pfn(pfn))
6540 		return false;
6541 
6542 	kvm_release_pfn_clean(pfn);
6543 
6544 	/* The instructions are well-emulated on direct mmu. */
6545 	if (vcpu->arch.mmu->direct_map) {
6546 		unsigned int indirect_shadow_pages;
6547 
6548 		spin_lock(&vcpu->kvm->mmu_lock);
6549 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6550 		spin_unlock(&vcpu->kvm->mmu_lock);
6551 
6552 		if (indirect_shadow_pages)
6553 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6554 
6555 		return true;
6556 	}
6557 
6558 	/*
6559 	 * if emulation was due to access to shadowed page table
6560 	 * and it failed try to unshadow page and re-enter the
6561 	 * guest to let CPU execute the instruction.
6562 	 */
6563 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6564 
6565 	/*
6566 	 * If the access faults on its page table, it can not
6567 	 * be fixed by unprotecting shadow page and it should
6568 	 * be reported to userspace.
6569 	 */
6570 	return !write_fault_to_shadow_pgtable;
6571 }
6572 
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)6573 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6574 			      gpa_t cr2_or_gpa,  int emulation_type)
6575 {
6576 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6577 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6578 
6579 	last_retry_eip = vcpu->arch.last_retry_eip;
6580 	last_retry_addr = vcpu->arch.last_retry_addr;
6581 
6582 	/*
6583 	 * If the emulation is caused by #PF and it is non-page_table
6584 	 * writing instruction, it means the VM-EXIT is caused by shadow
6585 	 * page protected, we can zap the shadow page and retry this
6586 	 * instruction directly.
6587 	 *
6588 	 * Note: if the guest uses a non-page-table modifying instruction
6589 	 * on the PDE that points to the instruction, then we will unmap
6590 	 * the instruction and go to an infinite loop. So, we cache the
6591 	 * last retried eip and the last fault address, if we meet the eip
6592 	 * and the address again, we can break out of the potential infinite
6593 	 * loop.
6594 	 */
6595 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6596 
6597 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6598 		return false;
6599 
6600 	if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6601 		return false;
6602 
6603 	if (x86_page_table_writing_insn(ctxt))
6604 		return false;
6605 
6606 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6607 		return false;
6608 
6609 	vcpu->arch.last_retry_eip = ctxt->eip;
6610 	vcpu->arch.last_retry_addr = cr2_or_gpa;
6611 
6612 	if (!vcpu->arch.mmu->direct_map)
6613 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6614 
6615 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6616 
6617 	return true;
6618 }
6619 
6620 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6621 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6622 
kvm_smm_changed(struct kvm_vcpu * vcpu)6623 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6624 {
6625 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6626 		/* This is a good place to trace that we are exiting SMM.  */
6627 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6628 
6629 		/* Process a latched INIT or SMI, if any.  */
6630 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6631 	}
6632 
6633 	kvm_mmu_reset_context(vcpu);
6634 }
6635 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)6636 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6637 				unsigned long *db)
6638 {
6639 	u32 dr6 = 0;
6640 	int i;
6641 	u32 enable, rwlen;
6642 
6643 	enable = dr7;
6644 	rwlen = dr7 >> 16;
6645 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6646 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6647 			dr6 |= (1 << i);
6648 	return dr6;
6649 }
6650 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)6651 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6652 {
6653 	struct kvm_run *kvm_run = vcpu->run;
6654 
6655 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6656 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6657 		kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6658 		kvm_run->debug.arch.exception = DB_VECTOR;
6659 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
6660 		return 0;
6661 	}
6662 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6663 	return 1;
6664 }
6665 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)6666 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6667 {
6668 	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6669 	int r;
6670 
6671 	r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6672 	if (unlikely(!r))
6673 		return 0;
6674 
6675 	/*
6676 	 * rflags is the old, "raw" value of the flags.  The new value has
6677 	 * not been saved yet.
6678 	 *
6679 	 * This is correct even for TF set by the guest, because "the
6680 	 * processor will not generate this exception after the instruction
6681 	 * that sets the TF flag".
6682 	 */
6683 	if (unlikely(rflags & X86_EFLAGS_TF))
6684 		r = kvm_vcpu_do_singlestep(vcpu);
6685 	return r;
6686 }
6687 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6688 
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)6689 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6690 {
6691 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6692 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6693 		struct kvm_run *kvm_run = vcpu->run;
6694 		unsigned long eip = kvm_get_linear_rip(vcpu);
6695 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6696 					   vcpu->arch.guest_debug_dr7,
6697 					   vcpu->arch.eff_db);
6698 
6699 		if (dr6 != 0) {
6700 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6701 			kvm_run->debug.arch.pc = eip;
6702 			kvm_run->debug.arch.exception = DB_VECTOR;
6703 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
6704 			*r = 0;
6705 			return true;
6706 		}
6707 	}
6708 
6709 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6710 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6711 		unsigned long eip = kvm_get_linear_rip(vcpu);
6712 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6713 					   vcpu->arch.dr7,
6714 					   vcpu->arch.db);
6715 
6716 		if (dr6 != 0) {
6717 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6718 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
6719 			kvm_queue_exception(vcpu, DB_VECTOR);
6720 			*r = 1;
6721 			return true;
6722 		}
6723 	}
6724 
6725 	return false;
6726 }
6727 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)6728 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6729 {
6730 	switch (ctxt->opcode_len) {
6731 	case 1:
6732 		switch (ctxt->b) {
6733 		case 0xe4:	/* IN */
6734 		case 0xe5:
6735 		case 0xec:
6736 		case 0xed:
6737 		case 0xe6:	/* OUT */
6738 		case 0xe7:
6739 		case 0xee:
6740 		case 0xef:
6741 		case 0x6c:	/* INS */
6742 		case 0x6d:
6743 		case 0x6e:	/* OUTS */
6744 		case 0x6f:
6745 			return true;
6746 		}
6747 		break;
6748 	case 2:
6749 		switch (ctxt->b) {
6750 		case 0x33:	/* RDPMC */
6751 			return true;
6752 		}
6753 		break;
6754 	}
6755 
6756 	return false;
6757 }
6758 
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)6759 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6760 			    int emulation_type, void *insn, int insn_len)
6761 {
6762 	int r;
6763 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6764 	bool writeback = true;
6765 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6766 
6767 	vcpu->arch.l1tf_flush_l1d = true;
6768 
6769 	/*
6770 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
6771 	 * never reused.
6772 	 */
6773 	vcpu->arch.write_fault_to_shadow_pgtable = false;
6774 	kvm_clear_exception_queue(vcpu);
6775 
6776 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6777 		init_emulate_ctxt(vcpu);
6778 
6779 		/*
6780 		 * We will reenter on the same instruction since
6781 		 * we do not set complete_userspace_io.  This does not
6782 		 * handle watchpoints yet, those would be handled in
6783 		 * the emulate_ops.
6784 		 */
6785 		if (!(emulation_type & EMULTYPE_SKIP) &&
6786 		    kvm_vcpu_check_breakpoint(vcpu, &r))
6787 			return r;
6788 
6789 		ctxt->interruptibility = 0;
6790 		ctxt->have_exception = false;
6791 		ctxt->exception.vector = -1;
6792 		ctxt->perm_ok = false;
6793 
6794 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6795 
6796 		r = x86_decode_insn(ctxt, insn, insn_len);
6797 
6798 		trace_kvm_emulate_insn_start(vcpu);
6799 		++vcpu->stat.insn_emulation;
6800 		if (r != EMULATION_OK)  {
6801 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
6802 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6803 				kvm_queue_exception(vcpu, UD_VECTOR);
6804 				return 1;
6805 			}
6806 			if (reexecute_instruction(vcpu, cr2_or_gpa,
6807 						  write_fault_to_spt,
6808 						  emulation_type))
6809 				return 1;
6810 
6811 			if (ctxt->have_exception &&
6812 			    !(emulation_type & EMULTYPE_SKIP)) {
6813 				/*
6814 				 * #UD should result in just EMULATION_FAILED, and trap-like
6815 				 * exception should not be encountered during decode.
6816 				 */
6817 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6818 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6819 				inject_emulated_exception(vcpu);
6820 				return 1;
6821 			}
6822 			return handle_emulation_failure(vcpu, emulation_type);
6823 		}
6824 	}
6825 
6826 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6827 	    !is_vmware_backdoor_opcode(ctxt)) {
6828 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6829 		return 1;
6830 	}
6831 
6832 	/*
6833 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6834 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
6835 	 * updating interruptibility state and injecting single-step #DBs.
6836 	 */
6837 	if (emulation_type & EMULTYPE_SKIP) {
6838 		kvm_rip_write(vcpu, ctxt->_eip);
6839 		if (ctxt->eflags & X86_EFLAGS_RF)
6840 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6841 		return 1;
6842 	}
6843 
6844 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6845 		return 1;
6846 
6847 	/* this is needed for vmware backdoor interface to work since it
6848 	   changes registers values  during IO operation */
6849 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6850 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6851 		emulator_invalidate_register_cache(ctxt);
6852 	}
6853 
6854 restart:
6855 	/* Save the faulting GPA (cr2) in the address field */
6856 	ctxt->exception.address = cr2_or_gpa;
6857 
6858 	r = x86_emulate_insn(ctxt);
6859 
6860 	if (r == EMULATION_INTERCEPTED)
6861 		return 1;
6862 
6863 	if (r == EMULATION_FAILED) {
6864 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6865 					emulation_type))
6866 			return 1;
6867 
6868 		return handle_emulation_failure(vcpu, emulation_type);
6869 	}
6870 
6871 	if (ctxt->have_exception) {
6872 		r = 1;
6873 		if (inject_emulated_exception(vcpu))
6874 			return r;
6875 	} else if (vcpu->arch.pio.count) {
6876 		if (!vcpu->arch.pio.in) {
6877 			/* FIXME: return into emulator if single-stepping.  */
6878 			vcpu->arch.pio.count = 0;
6879 		} else {
6880 			writeback = false;
6881 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
6882 		}
6883 		r = 0;
6884 	} else if (vcpu->mmio_needed) {
6885 		++vcpu->stat.mmio_exits;
6886 
6887 		if (!vcpu->mmio_is_write)
6888 			writeback = false;
6889 		r = 0;
6890 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6891 	} else if (r == EMULATION_RESTART)
6892 		goto restart;
6893 	else
6894 		r = 1;
6895 
6896 	if (writeback) {
6897 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6898 		toggle_interruptibility(vcpu, ctxt->interruptibility);
6899 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6900 		if (!ctxt->have_exception ||
6901 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6902 			kvm_rip_write(vcpu, ctxt->eip);
6903 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6904 				r = kvm_vcpu_do_singlestep(vcpu);
6905 			__kvm_set_rflags(vcpu, ctxt->eflags);
6906 		}
6907 
6908 		/*
6909 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6910 		 * do nothing, and it will be requested again as soon as
6911 		 * the shadow expires.  But we still need to check here,
6912 		 * because POPF has no interrupt shadow.
6913 		 */
6914 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6915 			kvm_make_request(KVM_REQ_EVENT, vcpu);
6916 	} else
6917 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6918 
6919 	return r;
6920 }
6921 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)6922 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6923 {
6924 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6925 }
6926 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6927 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)6928 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6929 					void *insn, int insn_len)
6930 {
6931 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6932 }
6933 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6934 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)6935 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6936 {
6937 	vcpu->arch.pio.count = 0;
6938 	return 1;
6939 }
6940 
complete_fast_pio_out(struct kvm_vcpu * vcpu)6941 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6942 {
6943 	vcpu->arch.pio.count = 0;
6944 
6945 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6946 		return 1;
6947 
6948 	return kvm_skip_emulated_instruction(vcpu);
6949 }
6950 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)6951 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6952 			    unsigned short port)
6953 {
6954 	unsigned long val = kvm_rax_read(vcpu);
6955 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6956 					    size, port, &val, 1);
6957 	if (ret)
6958 		return ret;
6959 
6960 	/*
6961 	 * Workaround userspace that relies on old KVM behavior of %rip being
6962 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6963 	 */
6964 	if (port == 0x7e &&
6965 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6966 		vcpu->arch.complete_userspace_io =
6967 			complete_fast_pio_out_port_0x7e;
6968 		kvm_skip_emulated_instruction(vcpu);
6969 	} else {
6970 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6971 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6972 	}
6973 	return 0;
6974 }
6975 
complete_fast_pio_in(struct kvm_vcpu * vcpu)6976 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6977 {
6978 	unsigned long val;
6979 
6980 	/* We should only ever be called with arch.pio.count equal to 1 */
6981 	BUG_ON(vcpu->arch.pio.count != 1);
6982 
6983 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6984 		vcpu->arch.pio.count = 0;
6985 		return 1;
6986 	}
6987 
6988 	/* For size less than 4 we merge, else we zero extend */
6989 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6990 
6991 	/*
6992 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6993 	 * the copy and tracing
6994 	 */
6995 	emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6996 				 vcpu->arch.pio.port, &val, 1);
6997 	kvm_rax_write(vcpu, val);
6998 
6999 	return kvm_skip_emulated_instruction(vcpu);
7000 }
7001 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)7002 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7003 			   unsigned short port)
7004 {
7005 	unsigned long val;
7006 	int ret;
7007 
7008 	/* For size less than 4 we merge, else we zero extend */
7009 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
7010 
7011 	ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
7012 				       &val, 1);
7013 	if (ret) {
7014 		kvm_rax_write(vcpu, val);
7015 		return ret;
7016 	}
7017 
7018 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7019 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7020 
7021 	return 0;
7022 }
7023 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)7024 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7025 {
7026 	int ret;
7027 
7028 	if (in)
7029 		ret = kvm_fast_pio_in(vcpu, size, port);
7030 	else
7031 		ret = kvm_fast_pio_out(vcpu, size, port);
7032 	return ret && kvm_skip_emulated_instruction(vcpu);
7033 }
7034 EXPORT_SYMBOL_GPL(kvm_fast_pio);
7035 
kvmclock_cpu_down_prep(unsigned int cpu)7036 static int kvmclock_cpu_down_prep(unsigned int cpu)
7037 {
7038 	__this_cpu_write(cpu_tsc_khz, 0);
7039 	return 0;
7040 }
7041 
tsc_khz_changed(void * data)7042 static void tsc_khz_changed(void *data)
7043 {
7044 	struct cpufreq_freqs *freq = data;
7045 	unsigned long khz = 0;
7046 
7047 	if (data)
7048 		khz = freq->new;
7049 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7050 		khz = cpufreq_quick_get(raw_smp_processor_id());
7051 	if (!khz)
7052 		khz = tsc_khz;
7053 	__this_cpu_write(cpu_tsc_khz, khz);
7054 }
7055 
7056 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)7057 static void kvm_hyperv_tsc_notifier(void)
7058 {
7059 	struct kvm *kvm;
7060 	struct kvm_vcpu *vcpu;
7061 	int cpu;
7062 
7063 	mutex_lock(&kvm_lock);
7064 	list_for_each_entry(kvm, &vm_list, vm_list)
7065 		kvm_make_mclock_inprogress_request(kvm);
7066 
7067 	hyperv_stop_tsc_emulation();
7068 
7069 	/* TSC frequency always matches when on Hyper-V */
7070 	for_each_present_cpu(cpu)
7071 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7072 	kvm_max_guest_tsc_khz = tsc_khz;
7073 
7074 	list_for_each_entry(kvm, &vm_list, vm_list) {
7075 		struct kvm_arch *ka = &kvm->arch;
7076 
7077 		spin_lock(&ka->pvclock_gtod_sync_lock);
7078 
7079 		pvclock_update_vm_gtod_copy(kvm);
7080 
7081 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7082 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7083 
7084 		kvm_for_each_vcpu(cpu, vcpu, kvm)
7085 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7086 
7087 		spin_unlock(&ka->pvclock_gtod_sync_lock);
7088 	}
7089 	mutex_unlock(&kvm_lock);
7090 }
7091 #endif
7092 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)7093 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7094 {
7095 	struct kvm *kvm;
7096 	struct kvm_vcpu *vcpu;
7097 	int i, send_ipi = 0;
7098 
7099 	/*
7100 	 * We allow guests to temporarily run on slowing clocks,
7101 	 * provided we notify them after, or to run on accelerating
7102 	 * clocks, provided we notify them before.  Thus time never
7103 	 * goes backwards.
7104 	 *
7105 	 * However, we have a problem.  We can't atomically update
7106 	 * the frequency of a given CPU from this function; it is
7107 	 * merely a notifier, which can be called from any CPU.
7108 	 * Changing the TSC frequency at arbitrary points in time
7109 	 * requires a recomputation of local variables related to
7110 	 * the TSC for each VCPU.  We must flag these local variables
7111 	 * to be updated and be sure the update takes place with the
7112 	 * new frequency before any guests proceed.
7113 	 *
7114 	 * Unfortunately, the combination of hotplug CPU and frequency
7115 	 * change creates an intractable locking scenario; the order
7116 	 * of when these callouts happen is undefined with respect to
7117 	 * CPU hotplug, and they can race with each other.  As such,
7118 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7119 	 * undefined; you can actually have a CPU frequency change take
7120 	 * place in between the computation of X and the setting of the
7121 	 * variable.  To protect against this problem, all updates of
7122 	 * the per_cpu tsc_khz variable are done in an interrupt
7123 	 * protected IPI, and all callers wishing to update the value
7124 	 * must wait for a synchronous IPI to complete (which is trivial
7125 	 * if the caller is on the CPU already).  This establishes the
7126 	 * necessary total order on variable updates.
7127 	 *
7128 	 * Note that because a guest time update may take place
7129 	 * anytime after the setting of the VCPU's request bit, the
7130 	 * correct TSC value must be set before the request.  However,
7131 	 * to ensure the update actually makes it to any guest which
7132 	 * starts running in hardware virtualization between the set
7133 	 * and the acquisition of the spinlock, we must also ping the
7134 	 * CPU after setting the request bit.
7135 	 *
7136 	 */
7137 
7138 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7139 
7140 	mutex_lock(&kvm_lock);
7141 	list_for_each_entry(kvm, &vm_list, vm_list) {
7142 		kvm_for_each_vcpu(i, vcpu, kvm) {
7143 			if (vcpu->cpu != cpu)
7144 				continue;
7145 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7146 			if (vcpu->cpu != raw_smp_processor_id())
7147 				send_ipi = 1;
7148 		}
7149 	}
7150 	mutex_unlock(&kvm_lock);
7151 
7152 	if (freq->old < freq->new && send_ipi) {
7153 		/*
7154 		 * We upscale the frequency.  Must make the guest
7155 		 * doesn't see old kvmclock values while running with
7156 		 * the new frequency, otherwise we risk the guest sees
7157 		 * time go backwards.
7158 		 *
7159 		 * In case we update the frequency for another cpu
7160 		 * (which might be in guest context) send an interrupt
7161 		 * to kick the cpu out of guest context.  Next time
7162 		 * guest context is entered kvmclock will be updated,
7163 		 * so the guest will not see stale values.
7164 		 */
7165 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7166 	}
7167 }
7168 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)7169 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7170 				     void *data)
7171 {
7172 	struct cpufreq_freqs *freq = data;
7173 	int cpu;
7174 
7175 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7176 		return 0;
7177 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7178 		return 0;
7179 
7180 	for_each_cpu(cpu, freq->policy->cpus)
7181 		__kvmclock_cpufreq_notifier(freq, cpu);
7182 
7183 	return 0;
7184 }
7185 
7186 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7187 	.notifier_call  = kvmclock_cpufreq_notifier
7188 };
7189 
kvmclock_cpu_online(unsigned int cpu)7190 static int kvmclock_cpu_online(unsigned int cpu)
7191 {
7192 	tsc_khz_changed(NULL);
7193 	return 0;
7194 }
7195 
kvm_timer_init(void)7196 static void kvm_timer_init(void)
7197 {
7198 	max_tsc_khz = tsc_khz;
7199 
7200 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7201 #ifdef CONFIG_CPU_FREQ
7202 		struct cpufreq_policy policy;
7203 		int cpu;
7204 
7205 		memset(&policy, 0, sizeof(policy));
7206 		cpu = get_cpu();
7207 		cpufreq_get_policy(&policy, cpu);
7208 		if (policy.cpuinfo.max_freq)
7209 			max_tsc_khz = policy.cpuinfo.max_freq;
7210 		put_cpu();
7211 #endif
7212 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7213 					  CPUFREQ_TRANSITION_NOTIFIER);
7214 	}
7215 
7216 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7217 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
7218 }
7219 
7220 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7221 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7222 
kvm_is_in_guest(void)7223 int kvm_is_in_guest(void)
7224 {
7225 	return __this_cpu_read(current_vcpu) != NULL;
7226 }
7227 
kvm_is_user_mode(void)7228 static int kvm_is_user_mode(void)
7229 {
7230 	int user_mode = 3;
7231 
7232 	if (__this_cpu_read(current_vcpu))
7233 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7234 
7235 	return user_mode != 0;
7236 }
7237 
kvm_get_guest_ip(void)7238 static unsigned long kvm_get_guest_ip(void)
7239 {
7240 	unsigned long ip = 0;
7241 
7242 	if (__this_cpu_read(current_vcpu))
7243 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7244 
7245 	return ip;
7246 }
7247 
kvm_handle_intel_pt_intr(void)7248 static void kvm_handle_intel_pt_intr(void)
7249 {
7250 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7251 
7252 	kvm_make_request(KVM_REQ_PMI, vcpu);
7253 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7254 			(unsigned long *)&vcpu->arch.pmu.global_status);
7255 }
7256 
7257 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7258 	.is_in_guest		= kvm_is_in_guest,
7259 	.is_user_mode		= kvm_is_user_mode,
7260 	.get_guest_ip		= kvm_get_guest_ip,
7261 	.handle_intel_pt_intr	= kvm_handle_intel_pt_intr,
7262 };
7263 
7264 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)7265 static void pvclock_gtod_update_fn(struct work_struct *work)
7266 {
7267 	struct kvm *kvm;
7268 
7269 	struct kvm_vcpu *vcpu;
7270 	int i;
7271 
7272 	mutex_lock(&kvm_lock);
7273 	list_for_each_entry(kvm, &vm_list, vm_list)
7274 		kvm_for_each_vcpu(i, vcpu, kvm)
7275 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7276 	atomic_set(&kvm_guest_has_master_clock, 0);
7277 	mutex_unlock(&kvm_lock);
7278 }
7279 
7280 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7281 
7282 /*
7283  * Notification about pvclock gtod data update.
7284  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)7285 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7286 			       void *priv)
7287 {
7288 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7289 	struct timekeeper *tk = priv;
7290 
7291 	update_pvclock_gtod(tk);
7292 
7293 	/* disable master clock if host does not trust, or does not
7294 	 * use, TSC based clocksource.
7295 	 */
7296 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7297 	    atomic_read(&kvm_guest_has_master_clock) != 0)
7298 		queue_work(system_long_wq, &pvclock_gtod_work);
7299 
7300 	return 0;
7301 }
7302 
7303 static struct notifier_block pvclock_gtod_notifier = {
7304 	.notifier_call = pvclock_gtod_notify,
7305 };
7306 #endif
7307 
kvm_arch_init(void * opaque)7308 int kvm_arch_init(void *opaque)
7309 {
7310 	int r;
7311 	struct kvm_x86_ops *ops = opaque;
7312 
7313 	if (kvm_x86_ops) {
7314 		printk(KERN_ERR "kvm: already loaded the other module\n");
7315 		r = -EEXIST;
7316 		goto out;
7317 	}
7318 
7319 	if (!ops->cpu_has_kvm_support()) {
7320 		printk(KERN_ERR "kvm: no hardware support\n");
7321 		r = -EOPNOTSUPP;
7322 		goto out;
7323 	}
7324 	if (ops->disabled_by_bios()) {
7325 		printk(KERN_ERR "kvm: disabled by bios\n");
7326 		r = -EOPNOTSUPP;
7327 		goto out;
7328 	}
7329 
7330 	/*
7331 	 * KVM explicitly assumes that the guest has an FPU and
7332 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7333 	 * vCPU's FPU state as a fxregs_state struct.
7334 	 */
7335 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7336 		printk(KERN_ERR "kvm: inadequate fpu\n");
7337 		r = -EOPNOTSUPP;
7338 		goto out;
7339 	}
7340 
7341 	r = -ENOMEM;
7342 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7343 					  __alignof__(struct fpu), SLAB_ACCOUNT,
7344 					  NULL);
7345 	if (!x86_fpu_cache) {
7346 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7347 		goto out;
7348 	}
7349 
7350 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7351 	if (!shared_msrs) {
7352 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7353 		goto out_free_x86_fpu_cache;
7354 	}
7355 
7356 	r = kvm_mmu_module_init();
7357 	if (r)
7358 		goto out_free_percpu;
7359 
7360 	kvm_x86_ops = ops;
7361 
7362 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7363 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
7364 			PT_PRESENT_MASK, 0, sme_me_mask);
7365 	kvm_timer_init();
7366 
7367 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
7368 
7369 	if (boot_cpu_has(X86_FEATURE_XSAVE))
7370 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7371 
7372 	kvm_lapic_init();
7373 	if (pi_inject_timer == -1)
7374 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7375 #ifdef CONFIG_X86_64
7376 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7377 
7378 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7379 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7380 #endif
7381 
7382 	return 0;
7383 
7384 out_free_percpu:
7385 	free_percpu(shared_msrs);
7386 out_free_x86_fpu_cache:
7387 	kmem_cache_destroy(x86_fpu_cache);
7388 out:
7389 	return r;
7390 }
7391 
kvm_arch_exit(void)7392 void kvm_arch_exit(void)
7393 {
7394 #ifdef CONFIG_X86_64
7395 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7396 		clear_hv_tscchange_cb();
7397 #endif
7398 	kvm_lapic_exit();
7399 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7400 
7401 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7402 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7403 					    CPUFREQ_TRANSITION_NOTIFIER);
7404 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7405 #ifdef CONFIG_X86_64
7406 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7407 	cancel_work_sync(&pvclock_gtod_work);
7408 #endif
7409 	kvm_x86_ops = NULL;
7410 	kvm_mmu_module_exit();
7411 	free_percpu(shared_msrs);
7412 	kmem_cache_destroy(x86_fpu_cache);
7413 }
7414 
kvm_vcpu_halt(struct kvm_vcpu * vcpu)7415 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7416 {
7417 	++vcpu->stat.halt_exits;
7418 	if (lapic_in_kernel(vcpu)) {
7419 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7420 		return 1;
7421 	} else {
7422 		vcpu->run->exit_reason = KVM_EXIT_HLT;
7423 		return 0;
7424 	}
7425 }
7426 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7427 
kvm_emulate_halt(struct kvm_vcpu * vcpu)7428 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7429 {
7430 	int ret = kvm_skip_emulated_instruction(vcpu);
7431 	/*
7432 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7433 	 * KVM_EXIT_DEBUG here.
7434 	 */
7435 	return kvm_vcpu_halt(vcpu) && ret;
7436 }
7437 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7438 
7439 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)7440 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7441 			        unsigned long clock_type)
7442 {
7443 	struct kvm_clock_pairing clock_pairing;
7444 	struct timespec64 ts;
7445 	u64 cycle;
7446 	int ret;
7447 
7448 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7449 		return -KVM_EOPNOTSUPP;
7450 
7451 	if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7452 		return -KVM_EOPNOTSUPP;
7453 
7454 	clock_pairing.sec = ts.tv_sec;
7455 	clock_pairing.nsec = ts.tv_nsec;
7456 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7457 	clock_pairing.flags = 0;
7458 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7459 
7460 	ret = 0;
7461 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7462 			    sizeof(struct kvm_clock_pairing)))
7463 		ret = -KVM_EFAULT;
7464 
7465 	return ret;
7466 }
7467 #endif
7468 
7469 /*
7470  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7471  *
7472  * @apicid - apicid of vcpu to be kicked.
7473  */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)7474 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7475 {
7476 	struct kvm_lapic_irq lapic_irq;
7477 
7478 	lapic_irq.shorthand = 0;
7479 	lapic_irq.dest_mode = 0;
7480 	lapic_irq.level = 0;
7481 	lapic_irq.dest_id = apicid;
7482 	lapic_irq.msi_redir_hint = false;
7483 
7484 	lapic_irq.delivery_mode = APIC_DM_REMRD;
7485 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7486 }
7487 
kvm_vcpu_deactivate_apicv(struct kvm_vcpu * vcpu)7488 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7489 {
7490 	if (!lapic_in_kernel(vcpu)) {
7491 		WARN_ON_ONCE(vcpu->arch.apicv_active);
7492 		return;
7493 	}
7494 	if (!vcpu->arch.apicv_active)
7495 		return;
7496 
7497 	vcpu->arch.apicv_active = false;
7498 	kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7499 }
7500 
kvm_sched_yield(struct kvm * kvm,unsigned long dest_id)7501 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7502 {
7503 	struct kvm_vcpu *target = NULL;
7504 	struct kvm_apic_map *map;
7505 
7506 	rcu_read_lock();
7507 	map = rcu_dereference(kvm->arch.apic_map);
7508 
7509 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7510 		target = map->phys_map[dest_id]->vcpu;
7511 
7512 	rcu_read_unlock();
7513 
7514 	if (target && READ_ONCE(target->ready))
7515 		kvm_vcpu_yield_to(target);
7516 }
7517 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)7518 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7519 {
7520 	unsigned long nr, a0, a1, a2, a3, ret;
7521 	int op_64_bit;
7522 
7523 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
7524 		return kvm_hv_hypercall(vcpu);
7525 
7526 	nr = kvm_rax_read(vcpu);
7527 	a0 = kvm_rbx_read(vcpu);
7528 	a1 = kvm_rcx_read(vcpu);
7529 	a2 = kvm_rdx_read(vcpu);
7530 	a3 = kvm_rsi_read(vcpu);
7531 
7532 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
7533 
7534 	op_64_bit = is_64_bit_mode(vcpu);
7535 	if (!op_64_bit) {
7536 		nr &= 0xFFFFFFFF;
7537 		a0 &= 0xFFFFFFFF;
7538 		a1 &= 0xFFFFFFFF;
7539 		a2 &= 0xFFFFFFFF;
7540 		a3 &= 0xFFFFFFFF;
7541 	}
7542 
7543 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7544 		ret = -KVM_EPERM;
7545 		goto out;
7546 	}
7547 
7548 	switch (nr) {
7549 	case KVM_HC_VAPIC_POLL_IRQ:
7550 		ret = 0;
7551 		break;
7552 	case KVM_HC_KICK_CPU:
7553 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7554 		kvm_sched_yield(vcpu->kvm, a1);
7555 		ret = 0;
7556 		break;
7557 #ifdef CONFIG_X86_64
7558 	case KVM_HC_CLOCK_PAIRING:
7559 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7560 		break;
7561 #endif
7562 	case KVM_HC_SEND_IPI:
7563 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7564 		break;
7565 	case KVM_HC_SCHED_YIELD:
7566 		kvm_sched_yield(vcpu->kvm, a0);
7567 		ret = 0;
7568 		break;
7569 	default:
7570 		ret = -KVM_ENOSYS;
7571 		break;
7572 	}
7573 out:
7574 	if (!op_64_bit)
7575 		ret = (u32)ret;
7576 	kvm_rax_write(vcpu, ret);
7577 
7578 	++vcpu->stat.hypercalls;
7579 	return kvm_skip_emulated_instruction(vcpu);
7580 }
7581 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7582 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)7583 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7584 {
7585 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7586 	char instruction[3];
7587 	unsigned long rip = kvm_rip_read(vcpu);
7588 
7589 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
7590 
7591 	return emulator_write_emulated(ctxt, rip, instruction, 3,
7592 		&ctxt->exception);
7593 }
7594 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)7595 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7596 {
7597 	return vcpu->run->request_interrupt_window &&
7598 		likely(!pic_in_kernel(vcpu->kvm));
7599 }
7600 
post_kvm_run_save(struct kvm_vcpu * vcpu)7601 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7602 {
7603 	struct kvm_run *kvm_run = vcpu->run;
7604 
7605 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7606 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7607 	kvm_run->cr8 = kvm_get_cr8(vcpu);
7608 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
7609 	kvm_run->ready_for_interrupt_injection =
7610 		pic_in_kernel(vcpu->kvm) ||
7611 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
7612 }
7613 
update_cr8_intercept(struct kvm_vcpu * vcpu)7614 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7615 {
7616 	int max_irr, tpr;
7617 
7618 	if (!kvm_x86_ops->update_cr8_intercept)
7619 		return;
7620 
7621 	if (!lapic_in_kernel(vcpu))
7622 		return;
7623 
7624 	if (vcpu->arch.apicv_active)
7625 		return;
7626 
7627 	if (!vcpu->arch.apic->vapic_addr)
7628 		max_irr = kvm_lapic_find_highest_irr(vcpu);
7629 	else
7630 		max_irr = -1;
7631 
7632 	if (max_irr != -1)
7633 		max_irr >>= 4;
7634 
7635 	tpr = kvm_lapic_get_cr8(vcpu);
7636 
7637 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7638 }
7639 
kvm_inject_exception(struct kvm_vcpu * vcpu)7640 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
7641 {
7642        if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
7643                vcpu->arch.exception.error_code = false;
7644        kvm_x86_ops->queue_exception(vcpu);
7645 }
7646 
inject_pending_event(struct kvm_vcpu * vcpu)7647 static int inject_pending_event(struct kvm_vcpu *vcpu)
7648 {
7649 	int r;
7650 
7651 	/* try to reinject previous events if any */
7652 
7653 	if (vcpu->arch.exception.injected)
7654 		kvm_inject_exception(vcpu);
7655 	/*
7656 	 * Do not inject an NMI or interrupt if there is a pending
7657 	 * exception.  Exceptions and interrupts are recognized at
7658 	 * instruction boundaries, i.e. the start of an instruction.
7659 	 * Trap-like exceptions, e.g. #DB, have higher priority than
7660 	 * NMIs and interrupts, i.e. traps are recognized before an
7661 	 * NMI/interrupt that's pending on the same instruction.
7662 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7663 	 * priority, but are only generated (pended) during instruction
7664 	 * execution, i.e. a pending fault-like exception means the
7665 	 * fault occurred on the *previous* instruction and must be
7666 	 * serviced prior to recognizing any new events in order to
7667 	 * fully complete the previous instruction.
7668 	 */
7669 	else if (!vcpu->arch.exception.pending) {
7670 		if (vcpu->arch.nmi_injected)
7671 			kvm_x86_ops->set_nmi(vcpu);
7672 		else if (vcpu->arch.interrupt.injected)
7673 			kvm_x86_ops->set_irq(vcpu);
7674 	}
7675 
7676 	/*
7677 	 * Call check_nested_events() even if we reinjected a previous event
7678 	 * in order for caller to determine if it should require immediate-exit
7679 	 * from L2 to L1 due to pending L1 events which require exit
7680 	 * from L2 to L1.
7681 	 */
7682 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7683 		r = kvm_x86_ops->check_nested_events(vcpu);
7684 		if (r != 0)
7685 			return r;
7686 	}
7687 
7688 	/* try to inject new event if pending */
7689 	if (vcpu->arch.exception.pending) {
7690 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
7691 					vcpu->arch.exception.has_error_code,
7692 					vcpu->arch.exception.error_code);
7693 
7694 		WARN_ON_ONCE(vcpu->arch.exception.injected);
7695 		vcpu->arch.exception.pending = false;
7696 		vcpu->arch.exception.injected = true;
7697 
7698 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7699 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7700 					     X86_EFLAGS_RF);
7701 
7702 		if (vcpu->arch.exception.nr == DB_VECTOR) {
7703 			/*
7704 			 * This code assumes that nSVM doesn't use
7705 			 * check_nested_events(). If it does, the
7706 			 * DR6/DR7 changes should happen before L1
7707 			 * gets a #VMEXIT for an intercepted #DB in
7708 			 * L2.  (Under VMX, on the other hand, the
7709 			 * DR6/DR7 changes should not happen in the
7710 			 * event of a VM-exit to L1 for an intercepted
7711 			 * #DB in L2.)
7712 			 */
7713 			kvm_deliver_exception_payload(vcpu);
7714 			if (vcpu->arch.dr7 & DR7_GD) {
7715 				vcpu->arch.dr7 &= ~DR7_GD;
7716 				kvm_update_dr7(vcpu);
7717 			}
7718 		}
7719 
7720 		kvm_inject_exception(vcpu);
7721 	}
7722 
7723 	/* Don't consider new event if we re-injected an event */
7724 	if (kvm_event_needs_reinjection(vcpu))
7725 		return 0;
7726 
7727 	if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7728 	    kvm_x86_ops->smi_allowed(vcpu)) {
7729 		vcpu->arch.smi_pending = false;
7730 		++vcpu->arch.smi_count;
7731 		enter_smm(vcpu);
7732 	} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7733 		--vcpu->arch.nmi_pending;
7734 		vcpu->arch.nmi_injected = true;
7735 		kvm_x86_ops->set_nmi(vcpu);
7736 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
7737 		/*
7738 		 * Because interrupts can be injected asynchronously, we are
7739 		 * calling check_nested_events again here to avoid a race condition.
7740 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7741 		 * proposal and current concerns.  Perhaps we should be setting
7742 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
7743 		 */
7744 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7745 			r = kvm_x86_ops->check_nested_events(vcpu);
7746 			if (r != 0)
7747 				return r;
7748 		}
7749 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7750 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7751 					    false);
7752 			kvm_x86_ops->set_irq(vcpu);
7753 		}
7754 	}
7755 
7756 	return 0;
7757 }
7758 
process_nmi(struct kvm_vcpu * vcpu)7759 static void process_nmi(struct kvm_vcpu *vcpu)
7760 {
7761 	unsigned limit = 2;
7762 
7763 	/*
7764 	 * x86 is limited to one NMI running, and one NMI pending after it.
7765 	 * If an NMI is already in progress, limit further NMIs to just one.
7766 	 * Otherwise, allow two (and we'll inject the first one immediately).
7767 	 */
7768 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7769 		limit = 1;
7770 
7771 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7772 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7773 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7774 }
7775 
enter_smm_get_segment_flags(struct kvm_segment * seg)7776 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7777 {
7778 	u32 flags = 0;
7779 	flags |= seg->g       << 23;
7780 	flags |= seg->db      << 22;
7781 	flags |= seg->l       << 21;
7782 	flags |= seg->avl     << 20;
7783 	flags |= seg->present << 15;
7784 	flags |= seg->dpl     << 13;
7785 	flags |= seg->s       << 12;
7786 	flags |= seg->type    << 8;
7787 	return flags;
7788 }
7789 
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)7790 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7791 {
7792 	struct kvm_segment seg;
7793 	int offset;
7794 
7795 	kvm_get_segment(vcpu, &seg, n);
7796 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7797 
7798 	if (n < 3)
7799 		offset = 0x7f84 + n * 12;
7800 	else
7801 		offset = 0x7f2c + (n - 3) * 12;
7802 
7803 	put_smstate(u32, buf, offset + 8, seg.base);
7804 	put_smstate(u32, buf, offset + 4, seg.limit);
7805 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7806 }
7807 
7808 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)7809 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7810 {
7811 	struct kvm_segment seg;
7812 	int offset;
7813 	u16 flags;
7814 
7815 	kvm_get_segment(vcpu, &seg, n);
7816 	offset = 0x7e00 + n * 16;
7817 
7818 	flags = enter_smm_get_segment_flags(&seg) >> 8;
7819 	put_smstate(u16, buf, offset, seg.selector);
7820 	put_smstate(u16, buf, offset + 2, flags);
7821 	put_smstate(u32, buf, offset + 4, seg.limit);
7822 	put_smstate(u64, buf, offset + 8, seg.base);
7823 }
7824 #endif
7825 
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)7826 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7827 {
7828 	struct desc_ptr dt;
7829 	struct kvm_segment seg;
7830 	unsigned long val;
7831 	int i;
7832 
7833 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7834 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7835 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7836 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7837 
7838 	for (i = 0; i < 8; i++)
7839 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7840 
7841 	kvm_get_dr(vcpu, 6, &val);
7842 	put_smstate(u32, buf, 0x7fcc, (u32)val);
7843 	kvm_get_dr(vcpu, 7, &val);
7844 	put_smstate(u32, buf, 0x7fc8, (u32)val);
7845 
7846 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7847 	put_smstate(u32, buf, 0x7fc4, seg.selector);
7848 	put_smstate(u32, buf, 0x7f64, seg.base);
7849 	put_smstate(u32, buf, 0x7f60, seg.limit);
7850 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7851 
7852 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7853 	put_smstate(u32, buf, 0x7fc0, seg.selector);
7854 	put_smstate(u32, buf, 0x7f80, seg.base);
7855 	put_smstate(u32, buf, 0x7f7c, seg.limit);
7856 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7857 
7858 	kvm_x86_ops->get_gdt(vcpu, &dt);
7859 	put_smstate(u32, buf, 0x7f74, dt.address);
7860 	put_smstate(u32, buf, 0x7f70, dt.size);
7861 
7862 	kvm_x86_ops->get_idt(vcpu, &dt);
7863 	put_smstate(u32, buf, 0x7f58, dt.address);
7864 	put_smstate(u32, buf, 0x7f54, dt.size);
7865 
7866 	for (i = 0; i < 6; i++)
7867 		enter_smm_save_seg_32(vcpu, buf, i);
7868 
7869 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7870 
7871 	/* revision id */
7872 	put_smstate(u32, buf, 0x7efc, 0x00020000);
7873 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7874 }
7875 
7876 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)7877 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7878 {
7879 	struct desc_ptr dt;
7880 	struct kvm_segment seg;
7881 	unsigned long val;
7882 	int i;
7883 
7884 	for (i = 0; i < 16; i++)
7885 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7886 
7887 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7888 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7889 
7890 	kvm_get_dr(vcpu, 6, &val);
7891 	put_smstate(u64, buf, 0x7f68, val);
7892 	kvm_get_dr(vcpu, 7, &val);
7893 	put_smstate(u64, buf, 0x7f60, val);
7894 
7895 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7896 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7897 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7898 
7899 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7900 
7901 	/* revision id */
7902 	put_smstate(u32, buf, 0x7efc, 0x00020064);
7903 
7904 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7905 
7906 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7907 	put_smstate(u16, buf, 0x7e90, seg.selector);
7908 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7909 	put_smstate(u32, buf, 0x7e94, seg.limit);
7910 	put_smstate(u64, buf, 0x7e98, seg.base);
7911 
7912 	kvm_x86_ops->get_idt(vcpu, &dt);
7913 	put_smstate(u32, buf, 0x7e84, dt.size);
7914 	put_smstate(u64, buf, 0x7e88, dt.address);
7915 
7916 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7917 	put_smstate(u16, buf, 0x7e70, seg.selector);
7918 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7919 	put_smstate(u32, buf, 0x7e74, seg.limit);
7920 	put_smstate(u64, buf, 0x7e78, seg.base);
7921 
7922 	kvm_x86_ops->get_gdt(vcpu, &dt);
7923 	put_smstate(u32, buf, 0x7e64, dt.size);
7924 	put_smstate(u64, buf, 0x7e68, dt.address);
7925 
7926 	for (i = 0; i < 6; i++)
7927 		enter_smm_save_seg_64(vcpu, buf, i);
7928 }
7929 #endif
7930 
enter_smm(struct kvm_vcpu * vcpu)7931 static void enter_smm(struct kvm_vcpu *vcpu)
7932 {
7933 	struct kvm_segment cs, ds;
7934 	struct desc_ptr dt;
7935 	char buf[512];
7936 	u32 cr0;
7937 
7938 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7939 	memset(buf, 0, 512);
7940 #ifdef CONFIG_X86_64
7941 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7942 		enter_smm_save_state_64(vcpu, buf);
7943 	else
7944 #endif
7945 		enter_smm_save_state_32(vcpu, buf);
7946 
7947 	/*
7948 	 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7949 	 * vCPU state (e.g. leave guest mode) after we've saved the state into
7950 	 * the SMM state-save area.
7951 	 */
7952 	kvm_x86_ops->pre_enter_smm(vcpu, buf);
7953 
7954 	vcpu->arch.hflags |= HF_SMM_MASK;
7955 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7956 
7957 	if (kvm_x86_ops->get_nmi_mask(vcpu))
7958 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7959 	else
7960 		kvm_x86_ops->set_nmi_mask(vcpu, true);
7961 
7962 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7963 	kvm_rip_write(vcpu, 0x8000);
7964 
7965 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7966 	kvm_x86_ops->set_cr0(vcpu, cr0);
7967 	vcpu->arch.cr0 = cr0;
7968 
7969 	kvm_x86_ops->set_cr4(vcpu, 0);
7970 
7971 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
7972 	dt.address = dt.size = 0;
7973 	kvm_x86_ops->set_idt(vcpu, &dt);
7974 
7975 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7976 
7977 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7978 	cs.base = vcpu->arch.smbase;
7979 
7980 	ds.selector = 0;
7981 	ds.base = 0;
7982 
7983 	cs.limit    = ds.limit = 0xffffffff;
7984 	cs.type     = ds.type = 0x3;
7985 	cs.dpl      = ds.dpl = 0;
7986 	cs.db       = ds.db = 0;
7987 	cs.s        = ds.s = 1;
7988 	cs.l        = ds.l = 0;
7989 	cs.g        = ds.g = 1;
7990 	cs.avl      = ds.avl = 0;
7991 	cs.present  = ds.present = 1;
7992 	cs.unusable = ds.unusable = 0;
7993 	cs.padding  = ds.padding = 0;
7994 
7995 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7996 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7997 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7998 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7999 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8000 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8001 
8002 #ifdef CONFIG_X86_64
8003 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
8004 		kvm_x86_ops->set_efer(vcpu, 0);
8005 #endif
8006 
8007 	kvm_update_cpuid(vcpu);
8008 	kvm_mmu_reset_context(vcpu);
8009 }
8010 
process_smi(struct kvm_vcpu * vcpu)8011 static void process_smi(struct kvm_vcpu *vcpu)
8012 {
8013 	vcpu->arch.smi_pending = true;
8014 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8015 }
8016 
kvm_make_scan_ioapic_request(struct kvm * kvm)8017 void kvm_make_scan_ioapic_request(struct kvm *kvm)
8018 {
8019 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8020 }
8021 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)8022 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
8023 {
8024 	if (!kvm_apic_present(vcpu))
8025 		return;
8026 
8027 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
8028 
8029 	if (irqchip_split(vcpu->kvm))
8030 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
8031 	else {
8032 		if (vcpu->arch.apicv_active)
8033 			kvm_x86_ops->sync_pir_to_irr(vcpu);
8034 		if (ioapic_in_kernel(vcpu->kvm))
8035 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8036 	}
8037 
8038 	if (is_guest_mode(vcpu))
8039 		vcpu->arch.load_eoi_exitmap_pending = true;
8040 	else
8041 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8042 }
8043 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)8044 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8045 {
8046 	u64 eoi_exit_bitmap[4];
8047 
8048 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8049 		return;
8050 
8051 	bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8052 		  vcpu_to_synic(vcpu)->vec_bitmap, 256);
8053 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8054 }
8055 
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)8056 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8057 					    unsigned long start, unsigned long end)
8058 {
8059 	unsigned long apic_address;
8060 
8061 	/*
8062 	 * The physical address of apic access page is stored in the VMCS.
8063 	 * Update it when it becomes invalid.
8064 	 */
8065 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8066 	if (start <= apic_address && apic_address < end)
8067 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8068 }
8069 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)8070 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8071 {
8072 	struct page *page = NULL;
8073 
8074 	if (!lapic_in_kernel(vcpu))
8075 		return;
8076 
8077 	if (!kvm_x86_ops->set_apic_access_page_addr)
8078 		return;
8079 
8080 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8081 	if (is_error_page(page))
8082 		return;
8083 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
8084 
8085 	/*
8086 	 * Do not pin apic access page in memory, the MMU notifier
8087 	 * will call us again if it is migrated or swapped out.
8088 	 */
8089 	put_page(page);
8090 }
8091 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
8092 
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)8093 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8094 {
8095 	smp_send_reschedule(vcpu->cpu);
8096 }
8097 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8098 
8099 /*
8100  * Returns 1 to let vcpu_run() continue the guest execution loop without
8101  * exiting to the userspace.  Otherwise, the value will be returned to the
8102  * userspace.
8103  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)8104 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8105 {
8106 	int r;
8107 	bool req_int_win =
8108 		dm_request_for_irq_injection(vcpu) &&
8109 		kvm_cpu_accept_dm_intr(vcpu);
8110 
8111 	bool req_immediate_exit = false;
8112 
8113 	if (kvm_request_pending(vcpu)) {
8114 		if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8115 			if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
8116 				r = 0;
8117 				goto out;
8118 			}
8119 		}
8120 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8121 			kvm_mmu_unload(vcpu);
8122 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8123 			__kvm_migrate_timers(vcpu);
8124 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8125 			kvm_gen_update_masterclock(vcpu->kvm);
8126 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8127 			kvm_gen_kvmclock_update(vcpu);
8128 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8129 			r = kvm_guest_time_update(vcpu);
8130 			if (unlikely(r))
8131 				goto out;
8132 		}
8133 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8134 			kvm_mmu_sync_roots(vcpu);
8135 		if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
8136 			kvm_mmu_load_cr3(vcpu);
8137 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8138 			kvm_vcpu_flush_tlb(vcpu, true);
8139 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8140 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8141 			r = 0;
8142 			goto out;
8143 		}
8144 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8145 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8146 			vcpu->mmio_needed = 0;
8147 			r = 0;
8148 			goto out;
8149 		}
8150 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8151 			/* Page is swapped out. Do synthetic halt */
8152 			vcpu->arch.apf.halted = true;
8153 			r = 1;
8154 			goto out;
8155 		}
8156 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8157 			record_steal_time(vcpu);
8158 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
8159 			process_smi(vcpu);
8160 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
8161 			process_nmi(vcpu);
8162 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
8163 			kvm_pmu_handle_event(vcpu);
8164 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
8165 			kvm_pmu_deliver_pmi(vcpu);
8166 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8167 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8168 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
8169 				     vcpu->arch.ioapic_handled_vectors)) {
8170 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8171 				vcpu->run->eoi.vector =
8172 						vcpu->arch.pending_ioapic_eoi;
8173 				r = 0;
8174 				goto out;
8175 			}
8176 		}
8177 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8178 			vcpu_scan_ioapic(vcpu);
8179 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8180 			vcpu_load_eoi_exitmap(vcpu);
8181 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8182 			kvm_vcpu_reload_apic_access_page(vcpu);
8183 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8184 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8185 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8186 			r = 0;
8187 			goto out;
8188 		}
8189 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8190 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8191 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8192 			r = 0;
8193 			goto out;
8194 		}
8195 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8196 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8197 			vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8198 			r = 0;
8199 			goto out;
8200 		}
8201 
8202 		/*
8203 		 * KVM_REQ_HV_STIMER has to be processed after
8204 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8205 		 * depend on the guest clock being up-to-date
8206 		 */
8207 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8208 			kvm_hv_process_stimers(vcpu);
8209 	}
8210 
8211 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8212 		++vcpu->stat.req_event;
8213 		kvm_apic_accept_events(vcpu);
8214 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8215 			r = 1;
8216 			goto out;
8217 		}
8218 
8219 		if (inject_pending_event(vcpu) != 0)
8220 			req_immediate_exit = true;
8221 		else {
8222 			/* Enable SMI/NMI/IRQ window open exits if needed.
8223 			 *
8224 			 * SMIs have three cases:
8225 			 * 1) They can be nested, and then there is nothing to
8226 			 *    do here because RSM will cause a vmexit anyway.
8227 			 * 2) There is an ISA-specific reason why SMI cannot be
8228 			 *    injected, and the moment when this changes can be
8229 			 *    intercepted.
8230 			 * 3) Or the SMI can be pending because
8231 			 *    inject_pending_event has completed the injection
8232 			 *    of an IRQ or NMI from the previous vmexit, and
8233 			 *    then we request an immediate exit to inject the
8234 			 *    SMI.
8235 			 */
8236 			if (vcpu->arch.smi_pending && !is_smm(vcpu))
8237 				if (!kvm_x86_ops->enable_smi_window(vcpu))
8238 					req_immediate_exit = true;
8239 			if (vcpu->arch.nmi_pending)
8240 				kvm_x86_ops->enable_nmi_window(vcpu);
8241 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8242 				kvm_x86_ops->enable_irq_window(vcpu);
8243 			WARN_ON(vcpu->arch.exception.pending);
8244 		}
8245 
8246 		if (kvm_lapic_enabled(vcpu)) {
8247 			update_cr8_intercept(vcpu);
8248 			kvm_lapic_sync_to_vapic(vcpu);
8249 		}
8250 	}
8251 
8252 	r = kvm_mmu_reload(vcpu);
8253 	if (unlikely(r)) {
8254 		goto cancel_injection;
8255 	}
8256 
8257 	preempt_disable();
8258 
8259 	kvm_x86_ops->prepare_guest_switch(vcpu);
8260 
8261 	/*
8262 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8263 	 * IPI are then delayed after guest entry, which ensures that they
8264 	 * result in virtual interrupt delivery.
8265 	 */
8266 	local_irq_disable();
8267 	vcpu->mode = IN_GUEST_MODE;
8268 
8269 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8270 
8271 	/*
8272 	 * 1) We should set ->mode before checking ->requests.  Please see
8273 	 * the comment in kvm_vcpu_exiting_guest_mode().
8274 	 *
8275 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
8276 	 * pairs with the memory barrier implicit in pi_test_and_set_on
8277 	 * (see vmx_deliver_posted_interrupt).
8278 	 *
8279 	 * 3) This also orders the write to mode from any reads to the page
8280 	 * tables done while the VCPU is running.  Please see the comment
8281 	 * in kvm_flush_remote_tlbs.
8282 	 */
8283 	smp_mb__after_srcu_read_unlock();
8284 
8285 	/*
8286 	 * This handles the case where a posted interrupt was
8287 	 * notified with kvm_vcpu_kick.
8288 	 */
8289 	if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8290 		kvm_x86_ops->sync_pir_to_irr(vcpu);
8291 
8292 	if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8293 	    || need_resched() || signal_pending(current)) {
8294 		vcpu->mode = OUTSIDE_GUEST_MODE;
8295 		smp_wmb();
8296 		local_irq_enable();
8297 		preempt_enable();
8298 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8299 		r = 1;
8300 		goto cancel_injection;
8301 	}
8302 
8303 	if (req_immediate_exit) {
8304 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8305 		kvm_x86_ops->request_immediate_exit(vcpu);
8306 	}
8307 
8308 	trace_kvm_entry(vcpu->vcpu_id);
8309 	guest_enter_irqoff();
8310 
8311 	/* Save host pkru register if supported */
8312 	vcpu->arch.host_pkru = read_pkru();
8313 
8314 	fpregs_assert_state_consistent();
8315 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8316 		switch_fpu_return();
8317 
8318 	if (unlikely(vcpu->arch.switch_db_regs)) {
8319 		set_debugreg(0, 7);
8320 		set_debugreg(vcpu->arch.eff_db[0], 0);
8321 		set_debugreg(vcpu->arch.eff_db[1], 1);
8322 		set_debugreg(vcpu->arch.eff_db[2], 2);
8323 		set_debugreg(vcpu->arch.eff_db[3], 3);
8324 		set_debugreg(vcpu->arch.dr6, 6);
8325 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8326 	} else if (unlikely(hw_breakpoint_active())) {
8327 		set_debugreg(0, 7);
8328 	}
8329 
8330 	kvm_x86_ops->run(vcpu);
8331 
8332 	/*
8333 	 * Do this here before restoring debug registers on the host.  And
8334 	 * since we do this before handling the vmexit, a DR access vmexit
8335 	 * can (a) read the correct value of the debug registers, (b) set
8336 	 * KVM_DEBUGREG_WONT_EXIT again.
8337 	 */
8338 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8339 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8340 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8341 		kvm_update_dr0123(vcpu);
8342 		kvm_update_dr6(vcpu);
8343 		kvm_update_dr7(vcpu);
8344 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8345 	}
8346 
8347 	/*
8348 	 * If the guest has used debug registers, at least dr7
8349 	 * will be disabled while returning to the host.
8350 	 * If we don't have active breakpoints in the host, we don't
8351 	 * care about the messed up debug address registers. But if
8352 	 * we have some of them active, restore the old state.
8353 	 */
8354 	if (hw_breakpoint_active())
8355 		hw_breakpoint_restore();
8356 
8357 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8358 
8359 	vcpu->mode = OUTSIDE_GUEST_MODE;
8360 	smp_wmb();
8361 
8362 	kvm_x86_ops->handle_exit_irqoff(vcpu);
8363 
8364 	/*
8365 	 * Consume any pending interrupts, including the possible source of
8366 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8367 	 * An instruction is required after local_irq_enable() to fully unblock
8368 	 * interrupts on processors that implement an interrupt shadow, the
8369 	 * stat.exits increment will do nicely.
8370 	 */
8371 	kvm_before_interrupt(vcpu);
8372 	local_irq_enable();
8373 	++vcpu->stat.exits;
8374 	local_irq_disable();
8375 	kvm_after_interrupt(vcpu);
8376 
8377 	guest_exit_irqoff();
8378 	if (lapic_in_kernel(vcpu)) {
8379 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8380 		if (delta != S64_MIN) {
8381 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8382 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8383 		}
8384 	}
8385 
8386 	local_irq_enable();
8387 	preempt_enable();
8388 
8389 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8390 
8391 	/*
8392 	 * Profile KVM exit RIPs:
8393 	 */
8394 	if (unlikely(prof_on == KVM_PROFILING)) {
8395 		unsigned long rip = kvm_rip_read(vcpu);
8396 		profile_hit(KVM_PROFILING, (void *)rip);
8397 	}
8398 
8399 	if (unlikely(vcpu->arch.tsc_always_catchup))
8400 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8401 
8402 	if (vcpu->arch.apic_attention)
8403 		kvm_lapic_sync_from_vapic(vcpu);
8404 
8405 	vcpu->arch.gpa_available = false;
8406 	r = kvm_x86_ops->handle_exit(vcpu);
8407 	return r;
8408 
8409 cancel_injection:
8410 	kvm_x86_ops->cancel_injection(vcpu);
8411 	if (unlikely(vcpu->arch.apic_attention))
8412 		kvm_lapic_sync_from_vapic(vcpu);
8413 out:
8414 	return r;
8415 }
8416 
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)8417 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8418 {
8419 	if (!kvm_arch_vcpu_runnable(vcpu) &&
8420 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8421 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8422 		kvm_vcpu_block(vcpu);
8423 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8424 
8425 		if (kvm_x86_ops->post_block)
8426 			kvm_x86_ops->post_block(vcpu);
8427 
8428 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8429 			return 1;
8430 	}
8431 
8432 	kvm_apic_accept_events(vcpu);
8433 	switch(vcpu->arch.mp_state) {
8434 	case KVM_MP_STATE_HALTED:
8435 		vcpu->arch.pv.pv_unhalted = false;
8436 		vcpu->arch.mp_state =
8437 			KVM_MP_STATE_RUNNABLE;
8438 		/* fall through */
8439 	case KVM_MP_STATE_RUNNABLE:
8440 		vcpu->arch.apf.halted = false;
8441 		break;
8442 	case KVM_MP_STATE_INIT_RECEIVED:
8443 		break;
8444 	default:
8445 		return -EINTR;
8446 		break;
8447 	}
8448 	return 1;
8449 }
8450 
kvm_vcpu_running(struct kvm_vcpu * vcpu)8451 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8452 {
8453 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8454 		kvm_x86_ops->check_nested_events(vcpu);
8455 
8456 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8457 		!vcpu->arch.apf.halted);
8458 }
8459 
vcpu_run(struct kvm_vcpu * vcpu)8460 static int vcpu_run(struct kvm_vcpu *vcpu)
8461 {
8462 	int r;
8463 	struct kvm *kvm = vcpu->kvm;
8464 
8465 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8466 	vcpu->arch.l1tf_flush_l1d = true;
8467 
8468 	for (;;) {
8469 		/*
8470 		 * If another guest vCPU requests a PV TLB flush in the middle
8471 		 * of instruction emulation, the rest of the emulation could
8472 		 * use a stale page translation. Assume that any code after
8473 		 * this point can start executing an instruction.
8474 		 */
8475 		vcpu->arch.at_instruction_boundary = false;
8476 		if (kvm_vcpu_running(vcpu)) {
8477 			r = vcpu_enter_guest(vcpu);
8478 		} else {
8479 			r = vcpu_block(kvm, vcpu);
8480 		}
8481 
8482 		if (r <= 0)
8483 			break;
8484 
8485 		kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8486 		if (kvm_cpu_has_pending_timer(vcpu))
8487 			kvm_inject_pending_timer_irqs(vcpu);
8488 
8489 		if (dm_request_for_irq_injection(vcpu) &&
8490 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8491 			r = 0;
8492 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8493 			++vcpu->stat.request_irq_exits;
8494 			break;
8495 		}
8496 
8497 		kvm_check_async_pf_completion(vcpu);
8498 
8499 		if (signal_pending(current)) {
8500 			r = -EINTR;
8501 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8502 			++vcpu->stat.signal_exits;
8503 			break;
8504 		}
8505 		if (need_resched()) {
8506 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8507 			cond_resched();
8508 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8509 		}
8510 	}
8511 
8512 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8513 
8514 	return r;
8515 }
8516 
complete_emulated_io(struct kvm_vcpu * vcpu)8517 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8518 {
8519 	int r;
8520 
8521 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8522 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8523 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8524 	return r;
8525 }
8526 
complete_emulated_pio(struct kvm_vcpu * vcpu)8527 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8528 {
8529 	BUG_ON(!vcpu->arch.pio.count);
8530 
8531 	return complete_emulated_io(vcpu);
8532 }
8533 
8534 /*
8535  * Implements the following, as a state machine:
8536  *
8537  * read:
8538  *   for each fragment
8539  *     for each mmio piece in the fragment
8540  *       write gpa, len
8541  *       exit
8542  *       copy data
8543  *   execute insn
8544  *
8545  * write:
8546  *   for each fragment
8547  *     for each mmio piece in the fragment
8548  *       write gpa, len
8549  *       copy data
8550  *       exit
8551  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)8552 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8553 {
8554 	struct kvm_run *run = vcpu->run;
8555 	struct kvm_mmio_fragment *frag;
8556 	unsigned len;
8557 
8558 	BUG_ON(!vcpu->mmio_needed);
8559 
8560 	/* Complete previous fragment */
8561 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8562 	len = min(8u, frag->len);
8563 	if (!vcpu->mmio_is_write)
8564 		memcpy(frag->data, run->mmio.data, len);
8565 
8566 	if (frag->len <= 8) {
8567 		/* Switch to the next fragment. */
8568 		frag++;
8569 		vcpu->mmio_cur_fragment++;
8570 	} else {
8571 		/* Go forward to the next mmio piece. */
8572 		frag->data += len;
8573 		frag->gpa += len;
8574 		frag->len -= len;
8575 	}
8576 
8577 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8578 		vcpu->mmio_needed = 0;
8579 
8580 		/* FIXME: return into emulator if single-stepping.  */
8581 		if (vcpu->mmio_is_write)
8582 			return 1;
8583 		vcpu->mmio_read_completed = 1;
8584 		return complete_emulated_io(vcpu);
8585 	}
8586 
8587 	run->exit_reason = KVM_EXIT_MMIO;
8588 	run->mmio.phys_addr = frag->gpa;
8589 	if (vcpu->mmio_is_write)
8590 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8591 	run->mmio.len = min(8u, frag->len);
8592 	run->mmio.is_write = vcpu->mmio_is_write;
8593 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8594 	return 0;
8595 }
8596 
kvm_save_current_fpu(struct fpu * fpu)8597 static void kvm_save_current_fpu(struct fpu *fpu)
8598 {
8599 	/*
8600 	 * If the target FPU state is not resident in the CPU registers, just
8601 	 * memcpy() from current, else save CPU state directly to the target.
8602 	 */
8603 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
8604 		memcpy(&fpu->state, &current->thread.fpu.state,
8605 		       fpu_kernel_xstate_size);
8606 	else
8607 		copy_fpregs_to_fpstate(fpu);
8608 }
8609 
8610 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)8611 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8612 {
8613 	fpregs_lock();
8614 
8615 	kvm_save_current_fpu(vcpu->arch.user_fpu);
8616 
8617 	/* PKRU is separately restored in kvm_x86_ops->run.  */
8618 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8619 				~XFEATURE_MASK_PKRU);
8620 
8621 	fpregs_mark_activate();
8622 	fpregs_unlock();
8623 
8624 	trace_kvm_fpu(1);
8625 }
8626 
8627 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)8628 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8629 {
8630 	fpregs_lock();
8631 
8632 	kvm_save_current_fpu(vcpu->arch.guest_fpu);
8633 
8634 	copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8635 
8636 	fpregs_mark_activate();
8637 	fpregs_unlock();
8638 
8639 	++vcpu->stat.fpu_reload;
8640 	trace_kvm_fpu(0);
8641 }
8642 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)8643 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8644 {
8645 	int r;
8646 
8647 	vcpu_load(vcpu);
8648 	kvm_sigset_activate(vcpu);
8649 	kvm_load_guest_fpu(vcpu);
8650 
8651 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8652 		if (kvm_run->immediate_exit) {
8653 			r = -EINTR;
8654 			goto out;
8655 		}
8656 		kvm_vcpu_block(vcpu);
8657 		kvm_apic_accept_events(vcpu);
8658 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8659 		r = -EAGAIN;
8660 		if (signal_pending(current)) {
8661 			r = -EINTR;
8662 			vcpu->run->exit_reason = KVM_EXIT_INTR;
8663 			++vcpu->stat.signal_exits;
8664 		}
8665 		goto out;
8666 	}
8667 
8668 	if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8669 		r = -EINVAL;
8670 		goto out;
8671 	}
8672 
8673 	if (vcpu->run->kvm_dirty_regs) {
8674 		r = sync_regs(vcpu);
8675 		if (r != 0)
8676 			goto out;
8677 	}
8678 
8679 	/* re-sync apic's tpr */
8680 	if (!lapic_in_kernel(vcpu)) {
8681 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8682 			r = -EINVAL;
8683 			goto out;
8684 		}
8685 	}
8686 
8687 	if (unlikely(vcpu->arch.complete_userspace_io)) {
8688 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8689 		vcpu->arch.complete_userspace_io = NULL;
8690 		r = cui(vcpu);
8691 		if (r <= 0)
8692 			goto out;
8693 	} else
8694 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8695 
8696 	if (kvm_run->immediate_exit)
8697 		r = -EINTR;
8698 	else
8699 		r = vcpu_run(vcpu);
8700 
8701 out:
8702 	kvm_put_guest_fpu(vcpu);
8703 	if (vcpu->run->kvm_valid_regs)
8704 		store_regs(vcpu);
8705 	post_kvm_run_save(vcpu);
8706 	kvm_sigset_deactivate(vcpu);
8707 
8708 	vcpu_put(vcpu);
8709 	return r;
8710 }
8711 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8712 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8713 {
8714 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8715 		/*
8716 		 * We are here if userspace calls get_regs() in the middle of
8717 		 * instruction emulation. Registers state needs to be copied
8718 		 * back from emulation context to vcpu. Userspace shouldn't do
8719 		 * that usually, but some bad designed PV devices (vmware
8720 		 * backdoor interface) need this to work
8721 		 */
8722 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8723 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8724 	}
8725 	regs->rax = kvm_rax_read(vcpu);
8726 	regs->rbx = kvm_rbx_read(vcpu);
8727 	regs->rcx = kvm_rcx_read(vcpu);
8728 	regs->rdx = kvm_rdx_read(vcpu);
8729 	regs->rsi = kvm_rsi_read(vcpu);
8730 	regs->rdi = kvm_rdi_read(vcpu);
8731 	regs->rsp = kvm_rsp_read(vcpu);
8732 	regs->rbp = kvm_rbp_read(vcpu);
8733 #ifdef CONFIG_X86_64
8734 	regs->r8 = kvm_r8_read(vcpu);
8735 	regs->r9 = kvm_r9_read(vcpu);
8736 	regs->r10 = kvm_r10_read(vcpu);
8737 	regs->r11 = kvm_r11_read(vcpu);
8738 	regs->r12 = kvm_r12_read(vcpu);
8739 	regs->r13 = kvm_r13_read(vcpu);
8740 	regs->r14 = kvm_r14_read(vcpu);
8741 	regs->r15 = kvm_r15_read(vcpu);
8742 #endif
8743 
8744 	regs->rip = kvm_rip_read(vcpu);
8745 	regs->rflags = kvm_get_rflags(vcpu);
8746 }
8747 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8748 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8749 {
8750 	vcpu_load(vcpu);
8751 	__get_regs(vcpu, regs);
8752 	vcpu_put(vcpu);
8753 	return 0;
8754 }
8755 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8756 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8757 {
8758 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8759 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8760 
8761 	kvm_rax_write(vcpu, regs->rax);
8762 	kvm_rbx_write(vcpu, regs->rbx);
8763 	kvm_rcx_write(vcpu, regs->rcx);
8764 	kvm_rdx_write(vcpu, regs->rdx);
8765 	kvm_rsi_write(vcpu, regs->rsi);
8766 	kvm_rdi_write(vcpu, regs->rdi);
8767 	kvm_rsp_write(vcpu, regs->rsp);
8768 	kvm_rbp_write(vcpu, regs->rbp);
8769 #ifdef CONFIG_X86_64
8770 	kvm_r8_write(vcpu, regs->r8);
8771 	kvm_r9_write(vcpu, regs->r9);
8772 	kvm_r10_write(vcpu, regs->r10);
8773 	kvm_r11_write(vcpu, regs->r11);
8774 	kvm_r12_write(vcpu, regs->r12);
8775 	kvm_r13_write(vcpu, regs->r13);
8776 	kvm_r14_write(vcpu, regs->r14);
8777 	kvm_r15_write(vcpu, regs->r15);
8778 #endif
8779 
8780 	kvm_rip_write(vcpu, regs->rip);
8781 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8782 
8783 	vcpu->arch.exception.pending = false;
8784 
8785 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8786 }
8787 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)8788 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8789 {
8790 	vcpu_load(vcpu);
8791 	__set_regs(vcpu, regs);
8792 	vcpu_put(vcpu);
8793 	return 0;
8794 }
8795 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)8796 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8797 {
8798 	struct kvm_segment cs;
8799 
8800 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8801 	*db = cs.db;
8802 	*l = cs.l;
8803 }
8804 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8805 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8806 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8807 {
8808 	struct desc_ptr dt;
8809 
8810 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8811 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8812 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8813 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8814 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8815 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8816 
8817 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8818 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8819 
8820 	kvm_x86_ops->get_idt(vcpu, &dt);
8821 	sregs->idt.limit = dt.size;
8822 	sregs->idt.base = dt.address;
8823 	kvm_x86_ops->get_gdt(vcpu, &dt);
8824 	sregs->gdt.limit = dt.size;
8825 	sregs->gdt.base = dt.address;
8826 
8827 	sregs->cr0 = kvm_read_cr0(vcpu);
8828 	sregs->cr2 = vcpu->arch.cr2;
8829 	sregs->cr3 = kvm_read_cr3(vcpu);
8830 	sregs->cr4 = kvm_read_cr4(vcpu);
8831 	sregs->cr8 = kvm_get_cr8(vcpu);
8832 	sregs->efer = vcpu->arch.efer;
8833 	sregs->apic_base = kvm_get_apic_base(vcpu);
8834 
8835 	memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8836 
8837 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8838 		set_bit(vcpu->arch.interrupt.nr,
8839 			(unsigned long *)sregs->interrupt_bitmap);
8840 }
8841 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8842 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8843 				  struct kvm_sregs *sregs)
8844 {
8845 	vcpu_load(vcpu);
8846 	__get_sregs(vcpu, sregs);
8847 	vcpu_put(vcpu);
8848 	return 0;
8849 }
8850 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)8851 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8852 				    struct kvm_mp_state *mp_state)
8853 {
8854 	vcpu_load(vcpu);
8855 	if (kvm_mpx_supported())
8856 		kvm_load_guest_fpu(vcpu);
8857 
8858 	kvm_apic_accept_events(vcpu);
8859 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8860 					vcpu->arch.pv.pv_unhalted)
8861 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8862 	else
8863 		mp_state->mp_state = vcpu->arch.mp_state;
8864 
8865 	if (kvm_mpx_supported())
8866 		kvm_put_guest_fpu(vcpu);
8867 	vcpu_put(vcpu);
8868 	return 0;
8869 }
8870 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)8871 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8872 				    struct kvm_mp_state *mp_state)
8873 {
8874 	int ret = -EINVAL;
8875 
8876 	vcpu_load(vcpu);
8877 
8878 	if (!lapic_in_kernel(vcpu) &&
8879 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8880 		goto out;
8881 
8882 	/* INITs are latched while in SMM */
8883 	if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8884 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8885 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8886 		goto out;
8887 
8888 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8889 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8890 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8891 	} else
8892 		vcpu->arch.mp_state = mp_state->mp_state;
8893 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8894 
8895 	ret = 0;
8896 out:
8897 	vcpu_put(vcpu);
8898 	return ret;
8899 }
8900 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)8901 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8902 		    int reason, bool has_error_code, u32 error_code)
8903 {
8904 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8905 	int ret;
8906 
8907 	init_emulate_ctxt(vcpu);
8908 
8909 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8910 				   has_error_code, error_code);
8911 	if (ret) {
8912 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8913 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8914 		vcpu->run->internal.ndata = 0;
8915 		return 0;
8916 	}
8917 
8918 	kvm_rip_write(vcpu, ctxt->eip);
8919 	kvm_set_rflags(vcpu, ctxt->eflags);
8920 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8921 	return 1;
8922 }
8923 EXPORT_SYMBOL_GPL(kvm_task_switch);
8924 
kvm_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8925 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8926 {
8927 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8928 		/*
8929 		 * When EFER.LME and CR0.PG are set, the processor is in
8930 		 * 64-bit mode (though maybe in a 32-bit code segment).
8931 		 * CR4.PAE and EFER.LMA must be set.
8932 		 */
8933 		if (!(sregs->cr4 & X86_CR4_PAE)
8934 		    || !(sregs->efer & EFER_LMA))
8935 			return -EINVAL;
8936 	} else {
8937 		/*
8938 		 * Not in 64-bit mode: EFER.LMA is clear and the code
8939 		 * segment cannot be 64-bit.
8940 		 */
8941 		if (sregs->efer & EFER_LMA || sregs->cs.l)
8942 			return -EINVAL;
8943 	}
8944 
8945 	return kvm_valid_cr4(vcpu, sregs->cr4);
8946 }
8947 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)8948 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8949 {
8950 	struct msr_data apic_base_msr;
8951 	int mmu_reset_needed = 0;
8952 	int cpuid_update_needed = 0;
8953 	int pending_vec, max_bits, idx;
8954 	struct desc_ptr dt;
8955 	int ret = -EINVAL;
8956 
8957 	if (kvm_valid_sregs(vcpu, sregs))
8958 		goto out;
8959 
8960 	apic_base_msr.data = sregs->apic_base;
8961 	apic_base_msr.host_initiated = true;
8962 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
8963 		goto out;
8964 
8965 	dt.size = sregs->idt.limit;
8966 	dt.address = sregs->idt.base;
8967 	kvm_x86_ops->set_idt(vcpu, &dt);
8968 	dt.size = sregs->gdt.limit;
8969 	dt.address = sregs->gdt.base;
8970 	kvm_x86_ops->set_gdt(vcpu, &dt);
8971 
8972 	vcpu->arch.cr2 = sregs->cr2;
8973 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8974 	vcpu->arch.cr3 = sregs->cr3;
8975 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8976 
8977 	kvm_set_cr8(vcpu, sregs->cr8);
8978 
8979 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8980 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
8981 
8982 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8983 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8984 	vcpu->arch.cr0 = sregs->cr0;
8985 
8986 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8987 	cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8988 				(X86_CR4_OSXSAVE | X86_CR4_PKE));
8989 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8990 	if (cpuid_update_needed)
8991 		kvm_update_cpuid(vcpu);
8992 
8993 	idx = srcu_read_lock(&vcpu->kvm->srcu);
8994 	if (is_pae_paging(vcpu)) {
8995 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8996 		mmu_reset_needed = 1;
8997 	}
8998 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
8999 
9000 	if (mmu_reset_needed)
9001 		kvm_mmu_reset_context(vcpu);
9002 
9003 	max_bits = KVM_NR_INTERRUPTS;
9004 	pending_vec = find_first_bit(
9005 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
9006 	if (pending_vec < max_bits) {
9007 		kvm_queue_interrupt(vcpu, pending_vec, false);
9008 		pr_debug("Set back pending irq %d\n", pending_vec);
9009 	}
9010 
9011 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9012 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9013 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9014 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9015 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9016 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
9017 
9018 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9019 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
9020 
9021 	update_cr8_intercept(vcpu);
9022 
9023 	/* Older userspace won't unhalt the vcpu on reset. */
9024 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9025 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
9026 	    !is_protmode(vcpu))
9027 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9028 
9029 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9030 
9031 	ret = 0;
9032 out:
9033 	return ret;
9034 }
9035 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)9036 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9037 				  struct kvm_sregs *sregs)
9038 {
9039 	int ret;
9040 
9041 	vcpu_load(vcpu);
9042 	ret = __set_sregs(vcpu, sregs);
9043 	vcpu_put(vcpu);
9044 	return ret;
9045 }
9046 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)9047 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9048 					struct kvm_guest_debug *dbg)
9049 {
9050 	unsigned long rflags;
9051 	int i, r;
9052 
9053 	vcpu_load(vcpu);
9054 
9055 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9056 		r = -EBUSY;
9057 		if (vcpu->arch.exception.pending)
9058 			goto out;
9059 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9060 			kvm_queue_exception(vcpu, DB_VECTOR);
9061 		else
9062 			kvm_queue_exception(vcpu, BP_VECTOR);
9063 	}
9064 
9065 	/*
9066 	 * Read rflags as long as potentially injected trace flags are still
9067 	 * filtered out.
9068 	 */
9069 	rflags = kvm_get_rflags(vcpu);
9070 
9071 	vcpu->guest_debug = dbg->control;
9072 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9073 		vcpu->guest_debug = 0;
9074 
9075 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9076 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
9077 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9078 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9079 	} else {
9080 		for (i = 0; i < KVM_NR_DB_REGS; i++)
9081 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9082 	}
9083 	kvm_update_dr7(vcpu);
9084 
9085 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9086 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9087 			get_segment_base(vcpu, VCPU_SREG_CS);
9088 
9089 	/*
9090 	 * Trigger an rflags update that will inject or remove the trace
9091 	 * flags.
9092 	 */
9093 	kvm_set_rflags(vcpu, rflags);
9094 
9095 	kvm_x86_ops->update_bp_intercept(vcpu);
9096 
9097 	r = 0;
9098 
9099 out:
9100 	vcpu_put(vcpu);
9101 	return r;
9102 }
9103 
9104 /*
9105  * Translate a guest virtual address to a guest physical address.
9106  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)9107 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9108 				    struct kvm_translation *tr)
9109 {
9110 	unsigned long vaddr = tr->linear_address;
9111 	gpa_t gpa;
9112 	int idx;
9113 
9114 	vcpu_load(vcpu);
9115 
9116 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9117 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9118 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9119 	tr->physical_address = gpa;
9120 	tr->valid = gpa != UNMAPPED_GVA;
9121 	tr->writeable = 1;
9122 	tr->usermode = 0;
9123 
9124 	vcpu_put(vcpu);
9125 	return 0;
9126 }
9127 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)9128 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9129 {
9130 	struct fxregs_state *fxsave;
9131 
9132 	vcpu_load(vcpu);
9133 
9134 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9135 	memcpy(fpu->fpr, fxsave->st_space, 128);
9136 	fpu->fcw = fxsave->cwd;
9137 	fpu->fsw = fxsave->swd;
9138 	fpu->ftwx = fxsave->twd;
9139 	fpu->last_opcode = fxsave->fop;
9140 	fpu->last_ip = fxsave->rip;
9141 	fpu->last_dp = fxsave->rdp;
9142 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9143 
9144 	vcpu_put(vcpu);
9145 	return 0;
9146 }
9147 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)9148 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9149 {
9150 	struct fxregs_state *fxsave;
9151 
9152 	vcpu_load(vcpu);
9153 
9154 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9155 
9156 	memcpy(fxsave->st_space, fpu->fpr, 128);
9157 	fxsave->cwd = fpu->fcw;
9158 	fxsave->swd = fpu->fsw;
9159 	fxsave->twd = fpu->ftwx;
9160 	fxsave->fop = fpu->last_opcode;
9161 	fxsave->rip = fpu->last_ip;
9162 	fxsave->rdp = fpu->last_dp;
9163 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9164 
9165 	vcpu_put(vcpu);
9166 	return 0;
9167 }
9168 
store_regs(struct kvm_vcpu * vcpu)9169 static void store_regs(struct kvm_vcpu *vcpu)
9170 {
9171 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9172 
9173 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9174 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
9175 
9176 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9177 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9178 
9179 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9180 		kvm_vcpu_ioctl_x86_get_vcpu_events(
9181 				vcpu, &vcpu->run->s.regs.events);
9182 }
9183 
sync_regs(struct kvm_vcpu * vcpu)9184 static int sync_regs(struct kvm_vcpu *vcpu)
9185 {
9186 	if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9187 		return -EINVAL;
9188 
9189 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9190 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
9191 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9192 	}
9193 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9194 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9195 			return -EINVAL;
9196 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9197 	}
9198 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9199 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9200 				vcpu, &vcpu->run->s.regs.events))
9201 			return -EINVAL;
9202 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9203 	}
9204 
9205 	return 0;
9206 }
9207 
fx_init(struct kvm_vcpu * vcpu)9208 static void fx_init(struct kvm_vcpu *vcpu)
9209 {
9210 	fpstate_init(&vcpu->arch.guest_fpu->state);
9211 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9212 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9213 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
9214 
9215 	/*
9216 	 * Ensure guest xcr0 is valid for loading
9217 	 */
9218 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9219 
9220 	vcpu->arch.cr0 |= X86_CR0_ET;
9221 }
9222 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)9223 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
9224 {
9225 	void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
9226 	struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
9227 
9228 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
9229 
9230 	kvmclock_reset(vcpu);
9231 
9232 	kvm_x86_ops->vcpu_free(vcpu);
9233 	free_cpumask_var(wbinvd_dirty_mask);
9234 }
9235 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)9236 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
9237 						unsigned int id)
9238 {
9239 	struct kvm_vcpu *vcpu;
9240 
9241 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9242 		printk_once(KERN_WARNING
9243 		"kvm: SMP vm created on host with unstable TSC; "
9244 		"guest TSC will not be reliable\n");
9245 
9246 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
9247 
9248 	return vcpu;
9249 }
9250 
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)9251 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
9252 {
9253 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9254 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9255 	kvm_vcpu_mtrr_init(vcpu);
9256 	vcpu_load(vcpu);
9257 	kvm_vcpu_reset(vcpu, false);
9258 	kvm_init_mmu(vcpu, false);
9259 	vcpu_put(vcpu);
9260 	return 0;
9261 }
9262 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)9263 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9264 {
9265 	struct msr_data msr;
9266 	struct kvm *kvm = vcpu->kvm;
9267 
9268 	kvm_hv_vcpu_postcreate(vcpu);
9269 
9270 	if (mutex_lock_killable(&vcpu->mutex))
9271 		return;
9272 	vcpu_load(vcpu);
9273 	msr.data = 0x0;
9274 	msr.index = MSR_IA32_TSC;
9275 	msr.host_initiated = true;
9276 	kvm_write_tsc(vcpu, &msr);
9277 	vcpu_put(vcpu);
9278 
9279 	/* poll control enabled by default */
9280 	vcpu->arch.msr_kvm_poll_control = 1;
9281 
9282 	mutex_unlock(&vcpu->mutex);
9283 
9284 	if (!kvmclock_periodic_sync)
9285 		return;
9286 
9287 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9288 					KVMCLOCK_SYNC_PERIOD);
9289 }
9290 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)9291 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9292 {
9293 	kvm_arch_vcpu_free(vcpu);
9294 }
9295 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)9296 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9297 {
9298 	kvm_lapic_reset(vcpu, init_event);
9299 
9300 	vcpu->arch.hflags = 0;
9301 
9302 	vcpu->arch.smi_pending = 0;
9303 	vcpu->arch.smi_count = 0;
9304 	atomic_set(&vcpu->arch.nmi_queued, 0);
9305 	vcpu->arch.nmi_pending = 0;
9306 	vcpu->arch.nmi_injected = false;
9307 	kvm_clear_interrupt_queue(vcpu);
9308 	kvm_clear_exception_queue(vcpu);
9309 	vcpu->arch.exception.pending = false;
9310 
9311 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9312 	kvm_update_dr0123(vcpu);
9313 	vcpu->arch.dr6 = DR6_INIT;
9314 	kvm_update_dr6(vcpu);
9315 	vcpu->arch.dr7 = DR7_FIXED_1;
9316 	kvm_update_dr7(vcpu);
9317 
9318 	vcpu->arch.cr2 = 0;
9319 
9320 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9321 	vcpu->arch.apf.msr_val = 0;
9322 	vcpu->arch.st.msr_val = 0;
9323 
9324 	kvmclock_reset(vcpu);
9325 
9326 	kvm_clear_async_pf_completion_queue(vcpu);
9327 	kvm_async_pf_hash_reset(vcpu);
9328 	vcpu->arch.apf.halted = false;
9329 
9330 	if (kvm_mpx_supported()) {
9331 		void *mpx_state_buffer;
9332 
9333 		/*
9334 		 * To avoid have the INIT path from kvm_apic_has_events() that be
9335 		 * called with loaded FPU and does not let userspace fix the state.
9336 		 */
9337 		if (init_event)
9338 			kvm_put_guest_fpu(vcpu);
9339 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9340 					XFEATURE_BNDREGS);
9341 		if (mpx_state_buffer)
9342 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9343 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9344 					XFEATURE_BNDCSR);
9345 		if (mpx_state_buffer)
9346 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9347 		if (init_event)
9348 			kvm_load_guest_fpu(vcpu);
9349 	}
9350 
9351 	if (!init_event) {
9352 		kvm_pmu_reset(vcpu);
9353 		vcpu->arch.smbase = 0x30000;
9354 
9355 		vcpu->arch.msr_misc_features_enables = 0;
9356 
9357 		vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9358 	}
9359 
9360 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9361 	vcpu->arch.regs_avail = ~0;
9362 	vcpu->arch.regs_dirty = ~0;
9363 
9364 	vcpu->arch.ia32_xss = 0;
9365 
9366 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
9367 }
9368 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)9369 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9370 {
9371 	struct kvm_segment cs;
9372 
9373 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9374 	cs.selector = vector << 8;
9375 	cs.base = vector << 12;
9376 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9377 	kvm_rip_write(vcpu, 0);
9378 }
9379 
kvm_arch_hardware_enable(void)9380 int kvm_arch_hardware_enable(void)
9381 {
9382 	struct kvm *kvm;
9383 	struct kvm_vcpu *vcpu;
9384 	int i;
9385 	int ret;
9386 	u64 local_tsc;
9387 	u64 max_tsc = 0;
9388 	bool stable, backwards_tsc = false;
9389 
9390 	kvm_shared_msr_cpu_online();
9391 	ret = kvm_x86_ops->hardware_enable();
9392 	if (ret != 0)
9393 		return ret;
9394 
9395 	local_tsc = rdtsc();
9396 	stable = !kvm_check_tsc_unstable();
9397 	list_for_each_entry(kvm, &vm_list, vm_list) {
9398 		kvm_for_each_vcpu(i, vcpu, kvm) {
9399 			if (!stable && vcpu->cpu == smp_processor_id())
9400 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9401 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9402 				backwards_tsc = true;
9403 				if (vcpu->arch.last_host_tsc > max_tsc)
9404 					max_tsc = vcpu->arch.last_host_tsc;
9405 			}
9406 		}
9407 	}
9408 
9409 	/*
9410 	 * Sometimes, even reliable TSCs go backwards.  This happens on
9411 	 * platforms that reset TSC during suspend or hibernate actions, but
9412 	 * maintain synchronization.  We must compensate.  Fortunately, we can
9413 	 * detect that condition here, which happens early in CPU bringup,
9414 	 * before any KVM threads can be running.  Unfortunately, we can't
9415 	 * bring the TSCs fully up to date with real time, as we aren't yet far
9416 	 * enough into CPU bringup that we know how much real time has actually
9417 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9418 	 * variables that haven't been updated yet.
9419 	 *
9420 	 * So we simply find the maximum observed TSC above, then record the
9421 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9422 	 * the adjustment will be applied.  Note that we accumulate
9423 	 * adjustments, in case multiple suspend cycles happen before some VCPU
9424 	 * gets a chance to run again.  In the event that no KVM threads get a
9425 	 * chance to run, we will miss the entire elapsed period, as we'll have
9426 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9427 	 * loose cycle time.  This isn't too big a deal, since the loss will be
9428 	 * uniform across all VCPUs (not to mention the scenario is extremely
9429 	 * unlikely). It is possible that a second hibernate recovery happens
9430 	 * much faster than a first, causing the observed TSC here to be
9431 	 * smaller; this would require additional padding adjustment, which is
9432 	 * why we set last_host_tsc to the local tsc observed here.
9433 	 *
9434 	 * N.B. - this code below runs only on platforms with reliable TSC,
9435 	 * as that is the only way backwards_tsc is set above.  Also note
9436 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9437 	 * have the same delta_cyc adjustment applied if backwards_tsc
9438 	 * is detected.  Note further, this adjustment is only done once,
9439 	 * as we reset last_host_tsc on all VCPUs to stop this from being
9440 	 * called multiple times (one for each physical CPU bringup).
9441 	 *
9442 	 * Platforms with unreliable TSCs don't have to deal with this, they
9443 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
9444 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
9445 	 * guarantee that they stay in perfect synchronization.
9446 	 */
9447 	if (backwards_tsc) {
9448 		u64 delta_cyc = max_tsc - local_tsc;
9449 		list_for_each_entry(kvm, &vm_list, vm_list) {
9450 			kvm->arch.backwards_tsc_observed = true;
9451 			kvm_for_each_vcpu(i, vcpu, kvm) {
9452 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
9453 				vcpu->arch.last_host_tsc = local_tsc;
9454 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9455 			}
9456 
9457 			/*
9458 			 * We have to disable TSC offset matching.. if you were
9459 			 * booting a VM while issuing an S4 host suspend....
9460 			 * you may have some problem.  Solving this issue is
9461 			 * left as an exercise to the reader.
9462 			 */
9463 			kvm->arch.last_tsc_nsec = 0;
9464 			kvm->arch.last_tsc_write = 0;
9465 		}
9466 
9467 	}
9468 	return 0;
9469 }
9470 
kvm_arch_hardware_disable(void)9471 void kvm_arch_hardware_disable(void)
9472 {
9473 	kvm_x86_ops->hardware_disable();
9474 	drop_user_return_notifiers();
9475 }
9476 
kvm_arch_hardware_setup(void)9477 int kvm_arch_hardware_setup(void)
9478 {
9479 	int r;
9480 
9481 	r = kvm_x86_ops->hardware_setup();
9482 	if (r != 0)
9483 		return r;
9484 
9485 	cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data);
9486 
9487 	if (kvm_has_tsc_control) {
9488 		/*
9489 		 * Make sure the user can only configure tsc_khz values that
9490 		 * fit into a signed integer.
9491 		 * A min value is not calculated because it will always
9492 		 * be 1 on all machines.
9493 		 */
9494 		u64 max = min(0x7fffffffULL,
9495 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9496 		kvm_max_guest_tsc_khz = max;
9497 
9498 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9499 	}
9500 
9501 	kvm_init_msr_list();
9502 	return 0;
9503 }
9504 
kvm_arch_hardware_unsetup(void)9505 void kvm_arch_hardware_unsetup(void)
9506 {
9507 	kvm_x86_ops->hardware_unsetup();
9508 }
9509 
kvm_arch_check_processor_compat(void)9510 int kvm_arch_check_processor_compat(void)
9511 {
9512 	return kvm_x86_ops->check_processor_compatibility();
9513 }
9514 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)9515 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9516 {
9517 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9518 }
9519 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9520 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)9521 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9522 {
9523 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9524 }
9525 
9526 struct static_key kvm_no_apic_vcpu __read_mostly;
9527 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9528 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)9529 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9530 {
9531 	struct page *page;
9532 	int r;
9533 
9534 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9535 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9536 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9537 	else
9538 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9539 
9540 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9541 	if (!page) {
9542 		r = -ENOMEM;
9543 		goto fail;
9544 	}
9545 	vcpu->arch.pio_data = page_address(page);
9546 
9547 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
9548 
9549 	r = kvm_mmu_create(vcpu);
9550 	if (r < 0)
9551 		goto fail_free_pio_data;
9552 
9553 	if (irqchip_in_kernel(vcpu->kvm)) {
9554 		vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9555 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9556 		if (r < 0)
9557 			goto fail_mmu_destroy;
9558 	} else
9559 		static_key_slow_inc(&kvm_no_apic_vcpu);
9560 
9561 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9562 				       GFP_KERNEL_ACCOUNT);
9563 	if (!vcpu->arch.mce_banks) {
9564 		r = -ENOMEM;
9565 		goto fail_free_lapic;
9566 	}
9567 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9568 
9569 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9570 				GFP_KERNEL_ACCOUNT)) {
9571 		r = -ENOMEM;
9572 		goto fail_free_mce_banks;
9573 	}
9574 
9575 	fx_init(vcpu);
9576 
9577 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9578 
9579 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9580 
9581 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9582 
9583 	kvm_async_pf_hash_reset(vcpu);
9584 	kvm_pmu_init(vcpu);
9585 
9586 	vcpu->arch.pending_external_vector = -1;
9587 	vcpu->arch.preempted_in_kernel = false;
9588 
9589 	kvm_hv_vcpu_init(vcpu);
9590 
9591 	return 0;
9592 
9593 fail_free_mce_banks:
9594 	kfree(vcpu->arch.mce_banks);
9595 fail_free_lapic:
9596 	kvm_free_lapic(vcpu);
9597 fail_mmu_destroy:
9598 	kvm_mmu_destroy(vcpu);
9599 fail_free_pio_data:
9600 	free_page((unsigned long)vcpu->arch.pio_data);
9601 fail:
9602 	return r;
9603 }
9604 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)9605 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9606 {
9607 	int idx;
9608 
9609 	kvm_hv_vcpu_uninit(vcpu);
9610 	kvm_pmu_destroy(vcpu);
9611 	kfree(vcpu->arch.mce_banks);
9612 	kvm_free_lapic(vcpu);
9613 	idx = srcu_read_lock(&vcpu->kvm->srcu);
9614 	kvm_mmu_destroy(vcpu);
9615 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
9616 	free_page((unsigned long)vcpu->arch.pio_data);
9617 	if (!lapic_in_kernel(vcpu))
9618 		static_key_slow_dec(&kvm_no_apic_vcpu);
9619 }
9620 
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)9621 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9622 {
9623 	vcpu->arch.l1tf_flush_l1d = true;
9624 	kvm_x86_ops->sched_in(vcpu, cpu);
9625 }
9626 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)9627 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9628 {
9629 	if (type)
9630 		return -EINVAL;
9631 
9632 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9633 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9634 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9635 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9636 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9637 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9638 
9639 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9640 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9641 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9642 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9643 		&kvm->arch.irq_sources_bitmap);
9644 
9645 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9646 	mutex_init(&kvm->arch.apic_map_lock);
9647 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9648 
9649 	kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9650 	pvclock_update_vm_gtod_copy(kvm);
9651 
9652 	kvm->arch.guest_can_read_msr_platform_info = true;
9653 
9654 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9655 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9656 
9657 	kvm_hv_init_vm(kvm);
9658 	kvm_page_track_init(kvm);
9659 	kvm_mmu_init_vm(kvm);
9660 
9661 	return kvm_x86_ops->vm_init(kvm);
9662 }
9663 
kvm_arch_post_init_vm(struct kvm * kvm)9664 int kvm_arch_post_init_vm(struct kvm *kvm)
9665 {
9666 	return kvm_mmu_post_init_vm(kvm);
9667 }
9668 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)9669 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9670 {
9671 	vcpu_load(vcpu);
9672 	kvm_mmu_unload(vcpu);
9673 	vcpu_put(vcpu);
9674 }
9675 
kvm_free_vcpus(struct kvm * kvm)9676 static void kvm_free_vcpus(struct kvm *kvm)
9677 {
9678 	unsigned int i;
9679 	struct kvm_vcpu *vcpu;
9680 
9681 	/*
9682 	 * Unpin any mmu pages first.
9683 	 */
9684 	kvm_for_each_vcpu(i, vcpu, kvm) {
9685 		kvm_clear_async_pf_completion_queue(vcpu);
9686 		kvm_unload_vcpu_mmu(vcpu);
9687 	}
9688 	kvm_for_each_vcpu(i, vcpu, kvm)
9689 		kvm_arch_vcpu_free(vcpu);
9690 
9691 	mutex_lock(&kvm->lock);
9692 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9693 		kvm->vcpus[i] = NULL;
9694 
9695 	atomic_set(&kvm->online_vcpus, 0);
9696 	mutex_unlock(&kvm->lock);
9697 }
9698 
kvm_arch_sync_events(struct kvm * kvm)9699 void kvm_arch_sync_events(struct kvm *kvm)
9700 {
9701 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9702 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9703 	kvm_free_pit(kvm);
9704 }
9705 
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)9706 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9707 {
9708 	int i, r;
9709 	unsigned long hva;
9710 	struct kvm_memslots *slots = kvm_memslots(kvm);
9711 	struct kvm_memory_slot *slot, old;
9712 
9713 	/* Called with kvm->slots_lock held.  */
9714 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9715 		return -EINVAL;
9716 
9717 	slot = id_to_memslot(slots, id);
9718 	if (size) {
9719 		if (slot->npages)
9720 			return -EEXIST;
9721 
9722 		/*
9723 		 * MAP_SHARED to prevent internal slot pages from being moved
9724 		 * by fork()/COW.
9725 		 */
9726 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9727 			      MAP_SHARED | MAP_ANONYMOUS, 0);
9728 		if (IS_ERR((void *)hva))
9729 			return PTR_ERR((void *)hva);
9730 	} else {
9731 		if (!slot->npages)
9732 			return 0;
9733 
9734 		hva = 0;
9735 	}
9736 
9737 	old = *slot;
9738 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9739 		struct kvm_userspace_memory_region m;
9740 
9741 		m.slot = id | (i << 16);
9742 		m.flags = 0;
9743 		m.guest_phys_addr = gpa;
9744 		m.userspace_addr = hva;
9745 		m.memory_size = size;
9746 		r = __kvm_set_memory_region(kvm, &m);
9747 		if (r < 0)
9748 			return r;
9749 	}
9750 
9751 	if (!size)
9752 		vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9753 
9754 	return 0;
9755 }
9756 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9757 
x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)9758 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9759 {
9760 	int r;
9761 
9762 	mutex_lock(&kvm->slots_lock);
9763 	r = __x86_set_memory_region(kvm, id, gpa, size);
9764 	mutex_unlock(&kvm->slots_lock);
9765 
9766 	return r;
9767 }
9768 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9769 
kvm_arch_pre_destroy_vm(struct kvm * kvm)9770 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9771 {
9772 	kvm_mmu_pre_destroy_vm(kvm);
9773 }
9774 
kvm_arch_destroy_vm(struct kvm * kvm)9775 void kvm_arch_destroy_vm(struct kvm *kvm)
9776 {
9777 	if (current->mm == kvm->mm) {
9778 		/*
9779 		 * Free memory regions allocated on behalf of userspace,
9780 		 * unless the the memory map has changed due to process exit
9781 		 * or fd copying.
9782 		 */
9783 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9784 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9785 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9786 	}
9787 	if (kvm_x86_ops->vm_destroy)
9788 		kvm_x86_ops->vm_destroy(kvm);
9789 	kvm_pic_destroy(kvm);
9790 	kvm_ioapic_destroy(kvm);
9791 	kvm_free_vcpus(kvm);
9792 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9793 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9794 	kvm_mmu_uninit_vm(kvm);
9795 	kvm_page_track_cleanup(kvm);
9796 	kvm_hv_destroy_vm(kvm);
9797 }
9798 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)9799 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9800 			   struct kvm_memory_slot *dont)
9801 {
9802 	int i;
9803 
9804 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9805 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9806 			kvfree(free->arch.rmap[i]);
9807 			free->arch.rmap[i] = NULL;
9808 		}
9809 		if (i == 0)
9810 			continue;
9811 
9812 		if (!dont || free->arch.lpage_info[i - 1] !=
9813 			     dont->arch.lpage_info[i - 1]) {
9814 			kvfree(free->arch.lpage_info[i - 1]);
9815 			free->arch.lpage_info[i - 1] = NULL;
9816 		}
9817 	}
9818 
9819 	kvm_page_track_free_memslot(free, dont);
9820 }
9821 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)9822 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9823 			    unsigned long npages)
9824 {
9825 	int i;
9826 
9827 	/*
9828 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
9829 	 * old arrays will be freed by __kvm_set_memory_region() if installing
9830 	 * the new memslot is successful.
9831 	 */
9832 	memset(&slot->arch, 0, sizeof(slot->arch));
9833 
9834 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9835 		struct kvm_lpage_info *linfo;
9836 		unsigned long ugfn;
9837 		int lpages;
9838 		int level = i + 1;
9839 
9840 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
9841 				      slot->base_gfn, level) + 1;
9842 
9843 		slot->arch.rmap[i] =
9844 			kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9845 				 GFP_KERNEL_ACCOUNT);
9846 		if (!slot->arch.rmap[i])
9847 			goto out_free;
9848 		if (i == 0)
9849 			continue;
9850 
9851 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9852 		if (!linfo)
9853 			goto out_free;
9854 
9855 		slot->arch.lpage_info[i - 1] = linfo;
9856 
9857 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9858 			linfo[0].disallow_lpage = 1;
9859 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9860 			linfo[lpages - 1].disallow_lpage = 1;
9861 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
9862 		/*
9863 		 * If the gfn and userspace address are not aligned wrt each
9864 		 * other, or if explicitly asked to, disable large page
9865 		 * support for this slot
9866 		 */
9867 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9868 		    !kvm_largepages_enabled()) {
9869 			unsigned long j;
9870 
9871 			for (j = 0; j < lpages; ++j)
9872 				linfo[j].disallow_lpage = 1;
9873 		}
9874 	}
9875 
9876 	if (kvm_page_track_create_memslot(slot, npages))
9877 		goto out_free;
9878 
9879 	return 0;
9880 
9881 out_free:
9882 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9883 		kvfree(slot->arch.rmap[i]);
9884 		slot->arch.rmap[i] = NULL;
9885 		if (i == 0)
9886 			continue;
9887 
9888 		kvfree(slot->arch.lpage_info[i - 1]);
9889 		slot->arch.lpage_info[i - 1] = NULL;
9890 	}
9891 	return -ENOMEM;
9892 }
9893 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)9894 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9895 {
9896 	struct kvm_vcpu *vcpu;
9897 	int i;
9898 
9899 	/*
9900 	 * memslots->generation has been incremented.
9901 	 * mmio generation may have reached its maximum value.
9902 	 */
9903 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9904 
9905 	/* Force re-initialization of steal_time cache */
9906 	kvm_for_each_vcpu(i, vcpu, kvm)
9907 		kvm_vcpu_kick(vcpu);
9908 }
9909 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)9910 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9911 				struct kvm_memory_slot *memslot,
9912 				const struct kvm_userspace_memory_region *mem,
9913 				enum kvm_mr_change change)
9914 {
9915 	if (change == KVM_MR_MOVE)
9916 		return kvm_arch_create_memslot(kvm, memslot,
9917 					       mem->memory_size >> PAGE_SHIFT);
9918 
9919 	return 0;
9920 }
9921 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * new)9922 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9923 				     struct kvm_memory_slot *new)
9924 {
9925 	/* Still write protect RO slot */
9926 	if (new->flags & KVM_MEM_READONLY) {
9927 		kvm_mmu_slot_remove_write_access(kvm, new);
9928 		return;
9929 	}
9930 
9931 	/*
9932 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
9933 	 *
9934 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
9935 	 *
9936 	 *  - KVM_MR_CREATE with dirty logging is disabled
9937 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9938 	 *
9939 	 * The reason is, in case of PML, we need to set D-bit for any slots
9940 	 * with dirty logging disabled in order to eliminate unnecessary GPA
9941 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
9942 	 * guarantees leaving PML enabled during guest's lifetime won't have
9943 	 * any additional overhead from PML when guest is running with dirty
9944 	 * logging disabled for memory slots.
9945 	 *
9946 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9947 	 * to dirty logging mode.
9948 	 *
9949 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9950 	 *
9951 	 * In case of write protect:
9952 	 *
9953 	 * Write protect all pages for dirty logging.
9954 	 *
9955 	 * All the sptes including the large sptes which point to this
9956 	 * slot are set to readonly. We can not create any new large
9957 	 * spte on this slot until the end of the logging.
9958 	 *
9959 	 * See the comments in fast_page_fault().
9960 	 */
9961 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9962 		if (kvm_x86_ops->slot_enable_log_dirty)
9963 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9964 		else
9965 			kvm_mmu_slot_remove_write_access(kvm, new);
9966 	} else {
9967 		if (kvm_x86_ops->slot_disable_log_dirty)
9968 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9969 	}
9970 }
9971 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)9972 void kvm_arch_commit_memory_region(struct kvm *kvm,
9973 				const struct kvm_userspace_memory_region *mem,
9974 				const struct kvm_memory_slot *old,
9975 				const struct kvm_memory_slot *new,
9976 				enum kvm_mr_change change)
9977 {
9978 	if (!kvm->arch.n_requested_mmu_pages)
9979 		kvm_mmu_change_mmu_pages(kvm,
9980 				kvm_mmu_calculate_default_mmu_pages(kvm));
9981 
9982 	/*
9983 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
9984 	 * sptes have to be split.  If live migration is successful, the guest
9985 	 * in the source machine will be destroyed and large sptes will be
9986 	 * created in the destination. However, if the guest continues to run
9987 	 * in the source machine (for example if live migration fails), small
9988 	 * sptes will remain around and cause bad performance.
9989 	 *
9990 	 * Scan sptes if dirty logging has been stopped, dropping those
9991 	 * which can be collapsed into a single large-page spte.  Later
9992 	 * page faults will create the large-page sptes.
9993 	 *
9994 	 * There is no need to do this in any of the following cases:
9995 	 * CREATE:	No dirty mappings will already exist.
9996 	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
9997 	 *		kvm_arch_flush_shadow_memslot()
9998 	 */
9999 	if (change == KVM_MR_FLAGS_ONLY &&
10000 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10001 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10002 		kvm_mmu_zap_collapsible_sptes(kvm, new);
10003 
10004 	/*
10005 	 * Set up write protection and/or dirty logging for the new slot.
10006 	 *
10007 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
10008 	 * been zapped so no dirty logging staff is needed for old slot. For
10009 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
10010 	 * new and it's also covered when dealing with the new slot.
10011 	 *
10012 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
10013 	 */
10014 	if (change != KVM_MR_DELETE)
10015 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
10016 }
10017 
kvm_arch_flush_shadow_all(struct kvm * kvm)10018 void kvm_arch_flush_shadow_all(struct kvm *kvm)
10019 {
10020 	kvm_mmu_zap_all(kvm);
10021 }
10022 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)10023 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10024 				   struct kvm_memory_slot *slot)
10025 {
10026 	kvm_page_track_flush_slot(kvm, slot);
10027 }
10028 
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)10029 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10030 {
10031 	return (is_guest_mode(vcpu) &&
10032 			kvm_x86_ops->guest_apic_has_interrupt &&
10033 			kvm_x86_ops->guest_apic_has_interrupt(vcpu));
10034 }
10035 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)10036 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10037 {
10038 	if (!list_empty_careful(&vcpu->async_pf.done))
10039 		return true;
10040 
10041 	if (kvm_apic_has_events(vcpu))
10042 		return true;
10043 
10044 	if (vcpu->arch.pv.pv_unhalted)
10045 		return true;
10046 
10047 	if (vcpu->arch.exception.pending)
10048 		return true;
10049 
10050 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10051 	    (vcpu->arch.nmi_pending &&
10052 	     kvm_x86_ops->nmi_allowed(vcpu)))
10053 		return true;
10054 
10055 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10056 	    (vcpu->arch.smi_pending && !is_smm(vcpu)))
10057 		return true;
10058 
10059 	if (kvm_arch_interrupt_allowed(vcpu) &&
10060 	    (kvm_cpu_has_interrupt(vcpu) ||
10061 	    kvm_guest_apic_has_interrupt(vcpu)))
10062 		return true;
10063 
10064 	if (kvm_hv_has_stimer_pending(vcpu))
10065 		return true;
10066 
10067 	return false;
10068 }
10069 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)10070 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10071 {
10072 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10073 }
10074 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)10075 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10076 {
10077 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10078 		return true;
10079 
10080 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10081 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
10082 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
10083 		return true;
10084 
10085 	if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
10086 		return true;
10087 
10088 	return false;
10089 }
10090 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)10091 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10092 {
10093 	return vcpu->arch.preempted_in_kernel;
10094 }
10095 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)10096 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10097 {
10098 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10099 }
10100 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)10101 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10102 {
10103 	return kvm_x86_ops->interrupt_allowed(vcpu);
10104 }
10105 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)10106 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10107 {
10108 	if (is_64_bit_mode(vcpu))
10109 		return kvm_rip_read(vcpu);
10110 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10111 		     kvm_rip_read(vcpu));
10112 }
10113 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10114 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)10115 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10116 {
10117 	return kvm_get_linear_rip(vcpu) == linear_rip;
10118 }
10119 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10120 
kvm_get_rflags(struct kvm_vcpu * vcpu)10121 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10122 {
10123 	unsigned long rflags;
10124 
10125 	rflags = kvm_x86_ops->get_rflags(vcpu);
10126 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10127 		rflags &= ~X86_EFLAGS_TF;
10128 	return rflags;
10129 }
10130 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10131 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)10132 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10133 {
10134 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10135 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10136 		rflags |= X86_EFLAGS_TF;
10137 	kvm_x86_ops->set_rflags(vcpu, rflags);
10138 }
10139 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)10140 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10141 {
10142 	__kvm_set_rflags(vcpu, rflags);
10143 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10144 }
10145 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10146 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)10147 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10148 {
10149 	int r;
10150 
10151 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10152 	      work->wakeup_all)
10153 		return;
10154 
10155 	r = kvm_mmu_reload(vcpu);
10156 	if (unlikely(r))
10157 		return;
10158 
10159 	if (!vcpu->arch.mmu->direct_map &&
10160 	      work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
10161 		return;
10162 
10163 	vcpu->arch.mmu->page_fault(vcpu, work->cr2_or_gpa, 0, true);
10164 }
10165 
kvm_async_pf_hash_fn(gfn_t gfn)10166 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10167 {
10168 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10169 }
10170 
kvm_async_pf_next_probe(u32 key)10171 static inline u32 kvm_async_pf_next_probe(u32 key)
10172 {
10173 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10174 }
10175 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)10176 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10177 {
10178 	u32 key = kvm_async_pf_hash_fn(gfn);
10179 
10180 	while (vcpu->arch.apf.gfns[key] != ~0)
10181 		key = kvm_async_pf_next_probe(key);
10182 
10183 	vcpu->arch.apf.gfns[key] = gfn;
10184 }
10185 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)10186 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10187 {
10188 	int i;
10189 	u32 key = kvm_async_pf_hash_fn(gfn);
10190 
10191 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10192 		     (vcpu->arch.apf.gfns[key] != gfn &&
10193 		      vcpu->arch.apf.gfns[key] != ~0); i++)
10194 		key = kvm_async_pf_next_probe(key);
10195 
10196 	return key;
10197 }
10198 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)10199 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10200 {
10201 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10202 }
10203 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)10204 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10205 {
10206 	u32 i, j, k;
10207 
10208 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10209 	while (true) {
10210 		vcpu->arch.apf.gfns[i] = ~0;
10211 		do {
10212 			j = kvm_async_pf_next_probe(j);
10213 			if (vcpu->arch.apf.gfns[j] == ~0)
10214 				return;
10215 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10216 			/*
10217 			 * k lies cyclically in ]i,j]
10218 			 * |    i.k.j |
10219 			 * |....j i.k.| or  |.k..j i...|
10220 			 */
10221 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10222 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10223 		i = j;
10224 	}
10225 }
10226 
apf_put_user(struct kvm_vcpu * vcpu,u32 val)10227 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10228 {
10229 
10230 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10231 				      sizeof(val));
10232 }
10233 
apf_get_user(struct kvm_vcpu * vcpu,u32 * val)10234 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10235 {
10236 
10237 	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10238 				      sizeof(u32));
10239 }
10240 
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)10241 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10242 {
10243 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10244 		return false;
10245 
10246 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10247 	    (vcpu->arch.apf.send_user_only &&
10248 	     kvm_x86_ops->get_cpl(vcpu) == 0))
10249 		return false;
10250 
10251 	return true;
10252 }
10253 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)10254 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10255 {
10256 	if (unlikely(!lapic_in_kernel(vcpu) ||
10257 		     kvm_event_needs_reinjection(vcpu) ||
10258 		     vcpu->arch.exception.pending))
10259 		return false;
10260 
10261 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10262 		return false;
10263 
10264 	/*
10265 	 * If interrupts are off we cannot even use an artificial
10266 	 * halt state.
10267 	 */
10268 	return kvm_x86_ops->interrupt_allowed(vcpu);
10269 }
10270 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)10271 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10272 				     struct kvm_async_pf *work)
10273 {
10274 	struct x86_exception fault;
10275 
10276 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10277 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10278 
10279 	if (kvm_can_deliver_async_pf(vcpu) &&
10280 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10281 		fault.vector = PF_VECTOR;
10282 		fault.error_code_valid = true;
10283 		fault.error_code = 0;
10284 		fault.nested_page_fault = false;
10285 		fault.address = work->arch.token;
10286 		fault.async_page_fault = true;
10287 		kvm_inject_page_fault(vcpu, &fault);
10288 	} else {
10289 		/*
10290 		 * It is not possible to deliver a paravirtualized asynchronous
10291 		 * page fault, but putting the guest in an artificial halt state
10292 		 * can be beneficial nevertheless: if an interrupt arrives, we
10293 		 * can deliver it timely and perhaps the guest will schedule
10294 		 * another process.  When the instruction that triggered a page
10295 		 * fault is retried, hopefully the page will be ready in the host.
10296 		 */
10297 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10298 	}
10299 }
10300 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)10301 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10302 				 struct kvm_async_pf *work)
10303 {
10304 	struct x86_exception fault;
10305 	u32 val;
10306 
10307 	if (work->wakeup_all)
10308 		work->arch.token = ~0; /* broadcast wakeup */
10309 	else
10310 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10311 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10312 
10313 	if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10314 	    !apf_get_user(vcpu, &val)) {
10315 		if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10316 		    vcpu->arch.exception.pending &&
10317 		    vcpu->arch.exception.nr == PF_VECTOR &&
10318 		    !apf_put_user(vcpu, 0)) {
10319 			vcpu->arch.exception.injected = false;
10320 			vcpu->arch.exception.pending = false;
10321 			vcpu->arch.exception.nr = 0;
10322 			vcpu->arch.exception.has_error_code = false;
10323 			vcpu->arch.exception.error_code = 0;
10324 			vcpu->arch.exception.has_payload = false;
10325 			vcpu->arch.exception.payload = 0;
10326 		} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10327 			fault.vector = PF_VECTOR;
10328 			fault.error_code_valid = true;
10329 			fault.error_code = 0;
10330 			fault.nested_page_fault = false;
10331 			fault.address = work->arch.token;
10332 			fault.async_page_fault = true;
10333 			kvm_inject_page_fault(vcpu, &fault);
10334 		}
10335 	}
10336 	vcpu->arch.apf.halted = false;
10337 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10338 }
10339 
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)10340 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10341 {
10342 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10343 		return true;
10344 	else
10345 		return kvm_can_do_async_pf(vcpu);
10346 }
10347 
kvm_arch_start_assignment(struct kvm * kvm)10348 void kvm_arch_start_assignment(struct kvm *kvm)
10349 {
10350 	atomic_inc(&kvm->arch.assigned_device_count);
10351 }
10352 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10353 
kvm_arch_end_assignment(struct kvm * kvm)10354 void kvm_arch_end_assignment(struct kvm *kvm)
10355 {
10356 	atomic_dec(&kvm->arch.assigned_device_count);
10357 }
10358 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10359 
kvm_arch_has_assigned_device(struct kvm * kvm)10360 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
10361 {
10362 	return arch_atomic_read(&kvm->arch.assigned_device_count);
10363 }
10364 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10365 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)10366 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10367 {
10368 	atomic_inc(&kvm->arch.noncoherent_dma_count);
10369 }
10370 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10371 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)10372 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10373 {
10374 	atomic_dec(&kvm->arch.noncoherent_dma_count);
10375 }
10376 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10377 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)10378 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10379 {
10380 	return atomic_read(&kvm->arch.noncoherent_dma_count);
10381 }
10382 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10383 
kvm_arch_has_irq_bypass(void)10384 bool kvm_arch_has_irq_bypass(void)
10385 {
10386 	return true;
10387 }
10388 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)10389 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10390 				      struct irq_bypass_producer *prod)
10391 {
10392 	struct kvm_kernel_irqfd *irqfd =
10393 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10394 
10395 	irqfd->producer = prod;
10396 
10397 	return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10398 					   prod->irq, irqfd->gsi, 1);
10399 }
10400 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)10401 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10402 				      struct irq_bypass_producer *prod)
10403 {
10404 	int ret;
10405 	struct kvm_kernel_irqfd *irqfd =
10406 		container_of(cons, struct kvm_kernel_irqfd, consumer);
10407 
10408 	WARN_ON(irqfd->producer != prod);
10409 	irqfd->producer = NULL;
10410 
10411 	/*
10412 	 * When producer of consumer is unregistered, we change back to
10413 	 * remapped mode, so we can re-use the current implementation
10414 	 * when the irq is masked/disabled or the consumer side (KVM
10415 	 * int this case doesn't want to receive the interrupts.
10416 	*/
10417 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10418 	if (ret)
10419 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10420 		       " fails: %d\n", irqfd->consumer.token, ret);
10421 }
10422 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)10423 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10424 				   uint32_t guest_irq, bool set)
10425 {
10426 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10427 }
10428 
kvm_vector_hashing_enabled(void)10429 bool kvm_vector_hashing_enabled(void)
10430 {
10431 	return vector_hashing;
10432 }
10433 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10434 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)10435 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10436 {
10437 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10438 }
10439 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10440 
10441 
kvm_spec_ctrl_test_value(u64 value)10442 int kvm_spec_ctrl_test_value(u64 value)
10443 {
10444 	/*
10445 	 * test that setting IA32_SPEC_CTRL to given value
10446 	 * is allowed by the host processor
10447 	 */
10448 
10449 	u64 saved_value;
10450 	unsigned long flags;
10451 	int ret = 0;
10452 
10453 	local_irq_save(flags);
10454 
10455 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
10456 		ret = 1;
10457 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
10458 		ret = 1;
10459 	else
10460 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
10461 
10462 	local_irq_restore(flags);
10463 
10464 	return ret;
10465 }
10466 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
10467 
10468 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10469 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10470 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10471 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10472 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10473 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10474 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10475 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10476 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10477 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10478 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10479 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10480 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10481 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10482 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10483 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10484 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10485 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10486 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
10488