• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3 
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 #include <asm/uv/uv.h>
18 
19 #include "mm_internal.h"
20 
21 /*
22  *	TLB flushing, formerly SMP-only
23  *		c/o Linus Torvalds.
24  *
25  *	These mean you can really definitely utterly forget about
26  *	writing to user space from interrupts. (Its not allowed anyway).
27  *
28  *	Optimizations Manfred Spraul <manfred@colorfullife.com>
29  *
30  *	More scalable flush, from Andi Kleen
31  *
32  *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
33  */
34 
35 /*
36  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
37  * stored in cpu_tlb_state.last_user_mm_ibpb.
38  */
39 #define LAST_USER_MM_IBPB	0x1UL
40 
41 /*
42  * We get here when we do something requiring a TLB invalidation
43  * but could not go invalidate all of the contexts.  We do the
44  * necessary invalidation by clearing out the 'ctx_id' which
45  * forces a TLB flush when the context is loaded.
46  */
clear_asid_other(void)47 static void clear_asid_other(void)
48 {
49 	u16 asid;
50 
51 	/*
52 	 * This is only expected to be set if we have disabled
53 	 * kernel _PAGE_GLOBAL pages.
54 	 */
55 	if (!static_cpu_has(X86_FEATURE_PTI)) {
56 		WARN_ON_ONCE(1);
57 		return;
58 	}
59 
60 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
61 		/* Do not need to flush the current asid */
62 		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
63 			continue;
64 		/*
65 		 * Make sure the next time we go to switch to
66 		 * this asid, we do a flush:
67 		 */
68 		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
69 	}
70 	this_cpu_write(cpu_tlbstate.invalidate_other, false);
71 }
72 
73 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
74 
75 
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)76 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
77 			    u16 *new_asid, bool *need_flush)
78 {
79 	u16 asid;
80 
81 	if (!static_cpu_has(X86_FEATURE_PCID)) {
82 		*new_asid = 0;
83 		*need_flush = true;
84 		return;
85 	}
86 
87 	if (this_cpu_read(cpu_tlbstate.invalidate_other))
88 		clear_asid_other();
89 
90 	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
91 		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
92 		    next->context.ctx_id)
93 			continue;
94 
95 		*new_asid = asid;
96 		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
97 			       next_tlb_gen);
98 		return;
99 	}
100 
101 	/*
102 	 * We don't currently own an ASID slot on this CPU.
103 	 * Allocate a slot.
104 	 */
105 	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
106 	if (*new_asid >= TLB_NR_DYN_ASIDS) {
107 		*new_asid = 0;
108 		this_cpu_write(cpu_tlbstate.next_asid, 1);
109 	}
110 	*need_flush = true;
111 }
112 
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,bool need_flush)113 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
114 {
115 	unsigned long new_mm_cr3;
116 
117 	if (need_flush) {
118 		invalidate_user_asid(new_asid);
119 		new_mm_cr3 = build_cr3(pgdir, new_asid);
120 	} else {
121 		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
122 	}
123 
124 	/*
125 	 * Caution: many callers of this function expect
126 	 * that load_cr3() is serializing and orders TLB
127 	 * fills with respect to the mm_cpumask writes.
128 	 */
129 	write_cr3(new_mm_cr3);
130 }
131 
leave_mm(int cpu)132 void leave_mm(int cpu)
133 {
134 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
135 
136 	/*
137 	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
138 	 * If so, our callers still expect us to flush the TLB, but there
139 	 * aren't any user TLB entries in init_mm to worry about.
140 	 *
141 	 * This needs to happen before any other sanity checks due to
142 	 * intel_idle's shenanigans.
143 	 */
144 	if (loaded_mm == &init_mm)
145 		return;
146 
147 	/* Warn if we're not lazy. */
148 	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
149 
150 	switch_mm(NULL, &init_mm, NULL);
151 }
152 EXPORT_SYMBOL_GPL(leave_mm);
153 
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)154 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
155 	       struct task_struct *tsk)
156 {
157 	unsigned long flags;
158 
159 	local_irq_save(flags);
160 	switch_mm_irqs_off(prev, next, tsk);
161 	local_irq_restore(flags);
162 }
163 
sync_current_stack_to_mm(struct mm_struct * mm)164 static void sync_current_stack_to_mm(struct mm_struct *mm)
165 {
166 	unsigned long sp = current_stack_pointer;
167 	pgd_t *pgd = pgd_offset(mm, sp);
168 
169 	if (pgtable_l5_enabled()) {
170 		if (unlikely(pgd_none(*pgd))) {
171 			pgd_t *pgd_ref = pgd_offset_k(sp);
172 
173 			set_pgd(pgd, *pgd_ref);
174 		}
175 	} else {
176 		/*
177 		 * "pgd" is faked.  The top level entries are "p4d"s, so sync
178 		 * the p4d.  This compiles to approximately the same code as
179 		 * the 5-level case.
180 		 */
181 		p4d_t *p4d = p4d_offset(pgd, sp);
182 
183 		if (unlikely(p4d_none(*p4d))) {
184 			pgd_t *pgd_ref = pgd_offset_k(sp);
185 			p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
186 
187 			set_p4d(p4d, *p4d_ref);
188 		}
189 	}
190 }
191 
mm_mangle_tif_spec_ib(struct task_struct * next)192 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
193 {
194 	unsigned long next_tif = task_thread_info(next)->flags;
195 	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
196 
197 	return (unsigned long)next->mm | ibpb;
198 }
199 
cond_ibpb(struct task_struct * next)200 static void cond_ibpb(struct task_struct *next)
201 {
202 	if (!next || !next->mm)
203 		return;
204 
205 	/*
206 	 * Both, the conditional and the always IBPB mode use the mm
207 	 * pointer to avoid the IBPB when switching between tasks of the
208 	 * same process. Using the mm pointer instead of mm->context.ctx_id
209 	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
210 	 * less impossible to control by an attacker. Aside of that it
211 	 * would only affect the first schedule so the theoretically
212 	 * exposed data is not really interesting.
213 	 */
214 	if (static_branch_likely(&switch_mm_cond_ibpb)) {
215 		unsigned long prev_mm, next_mm;
216 
217 		/*
218 		 * This is a bit more complex than the always mode because
219 		 * it has to handle two cases:
220 		 *
221 		 * 1) Switch from a user space task (potential attacker)
222 		 *    which has TIF_SPEC_IB set to a user space task
223 		 *    (potential victim) which has TIF_SPEC_IB not set.
224 		 *
225 		 * 2) Switch from a user space task (potential attacker)
226 		 *    which has TIF_SPEC_IB not set to a user space task
227 		 *    (potential victim) which has TIF_SPEC_IB set.
228 		 *
229 		 * This could be done by unconditionally issuing IBPB when
230 		 * a task which has TIF_SPEC_IB set is either scheduled in
231 		 * or out. Though that results in two flushes when:
232 		 *
233 		 * - the same user space task is scheduled out and later
234 		 *   scheduled in again and only a kernel thread ran in
235 		 *   between.
236 		 *
237 		 * - a user space task belonging to the same process is
238 		 *   scheduled in after a kernel thread ran in between
239 		 *
240 		 * - a user space task belonging to the same process is
241 		 *   scheduled in immediately.
242 		 *
243 		 * Optimize this with reasonably small overhead for the
244 		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
245 		 * pointer of the incoming task which is stored in
246 		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
247 		 */
248 		next_mm = mm_mangle_tif_spec_ib(next);
249 		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
250 
251 		/*
252 		 * Issue IBPB only if the mm's are different and one or
253 		 * both have the IBPB bit set.
254 		 */
255 		if (next_mm != prev_mm &&
256 		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
257 			indirect_branch_prediction_barrier();
258 
259 		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
260 	}
261 
262 	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
263 		/*
264 		 * Only flush when switching to a user space task with a
265 		 * different context than the user space task which ran
266 		 * last on this CPU.
267 		 */
268 		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
269 			indirect_branch_prediction_barrier();
270 			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
271 		}
272 	}
273 }
274 
switch_mm_irqs_off(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)275 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
276 			struct task_struct *tsk)
277 {
278 	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
279 	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
280 	bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
281 	unsigned cpu = smp_processor_id();
282 	u64 next_tlb_gen;
283 	bool need_flush;
284 	u16 new_asid;
285 
286 	/*
287 	 * NB: The scheduler will call us with prev == next when switching
288 	 * from lazy TLB mode to normal mode if active_mm isn't changing.
289 	 * When this happens, we don't assume that CR3 (and hence
290 	 * cpu_tlbstate.loaded_mm) matches next.
291 	 *
292 	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
293 	 */
294 
295 	/* We don't want flush_tlb_func_* to run concurrently with us. */
296 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
297 		WARN_ON_ONCE(!irqs_disabled());
298 
299 	/*
300 	 * Verify that CR3 is what we think it is.  This will catch
301 	 * hypothetical buggy code that directly switches to swapper_pg_dir
302 	 * without going through leave_mm() / switch_mm_irqs_off() or that
303 	 * does something like write_cr3(read_cr3_pa()).
304 	 *
305 	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
306 	 * isn't free.
307 	 */
308 #ifdef CONFIG_DEBUG_VM
309 	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
310 		/*
311 		 * If we were to BUG here, we'd be very likely to kill
312 		 * the system so hard that we don't see the call trace.
313 		 * Try to recover instead by ignoring the error and doing
314 		 * a global flush to minimize the chance of corruption.
315 		 *
316 		 * (This is far from being a fully correct recovery.
317 		 *  Architecturally, the CPU could prefetch something
318 		 *  back into an incorrect ASID slot and leave it there
319 		 *  to cause trouble down the road.  It's better than
320 		 *  nothing, though.)
321 		 */
322 		__flush_tlb_all();
323 	}
324 #endif
325 	this_cpu_write(cpu_tlbstate.is_lazy, false);
326 
327 	/*
328 	 * The membarrier system call requires a full memory barrier and
329 	 * core serialization before returning to user-space, after
330 	 * storing to rq->curr, when changing mm.  This is because
331 	 * membarrier() sends IPIs to all CPUs that are in the target mm
332 	 * to make them issue memory barriers.  However, if another CPU
333 	 * switches to/from the target mm concurrently with
334 	 * membarrier(), it can cause that CPU not to receive an IPI
335 	 * when it really should issue a memory barrier.  Writing to CR3
336 	 * provides that full memory barrier and core serializing
337 	 * instruction.
338 	 */
339 	if (real_prev == next) {
340 		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
341 			   next->context.ctx_id);
342 
343 		/*
344 		 * Even in lazy TLB mode, the CPU should stay set in the
345 		 * mm_cpumask. The TLB shootdown code can figure out from
346 		 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
347 		 */
348 		if (WARN_ON_ONCE(real_prev != &init_mm &&
349 				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
350 			cpumask_set_cpu(cpu, mm_cpumask(next));
351 
352 		/*
353 		 * If the CPU is not in lazy TLB mode, we are just switching
354 		 * from one thread in a process to another thread in the same
355 		 * process. No TLB flush required.
356 		 */
357 		if (!was_lazy)
358 			return;
359 
360 		/*
361 		 * Read the tlb_gen to check whether a flush is needed.
362 		 * If the TLB is up to date, just use it.
363 		 * The barrier synchronizes with the tlb_gen increment in
364 		 * the TLB shootdown code.
365 		 */
366 		smp_mb();
367 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
368 		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
369 				next_tlb_gen)
370 			return;
371 
372 		/*
373 		 * TLB contents went out of date while we were in lazy
374 		 * mode. Fall through to the TLB switching code below.
375 		 */
376 		new_asid = prev_asid;
377 		need_flush = true;
378 	} else {
379 		/*
380 		 * Avoid user/user BTB poisoning by flushing the branch
381 		 * predictor when switching between processes. This stops
382 		 * one process from doing Spectre-v2 attacks on another.
383 		 */
384 		cond_ibpb(tsk);
385 
386 		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
387 			/*
388 			 * If our current stack is in vmalloc space and isn't
389 			 * mapped in the new pgd, we'll double-fault.  Forcibly
390 			 * map it.
391 			 */
392 			sync_current_stack_to_mm(next);
393 		}
394 
395 		/*
396 		 * Stop remote flushes for the previous mm.
397 		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
398 		 * but the bitmap manipulation can cause cache line contention.
399 		 */
400 		if (real_prev != &init_mm) {
401 			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
402 						mm_cpumask(real_prev)));
403 			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
404 		}
405 
406 		/*
407 		 * Start remote flushes and then read tlb_gen.
408 		 */
409 		if (next != &init_mm)
410 			cpumask_set_cpu(cpu, mm_cpumask(next));
411 		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
412 
413 		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
414 
415 		/* Let nmi_uaccess_okay() know that we're changing CR3. */
416 		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
417 		barrier();
418 	}
419 
420 	if (need_flush) {
421 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
422 		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
423 		load_new_mm_cr3(next->pgd, new_asid, true);
424 
425 		/*
426 		 * NB: This gets called via leave_mm() in the idle path
427 		 * where RCU functions differently.  Tracing normally
428 		 * uses RCU, so we need to use the _rcuidle variant.
429 		 *
430 		 * (There is no good reason for this.  The idle code should
431 		 *  be rearranged to call this before rcu_idle_enter().)
432 		 */
433 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
434 	} else {
435 		/* The new ASID is already up to date. */
436 		load_new_mm_cr3(next->pgd, new_asid, false);
437 
438 		/* See above wrt _rcuidle. */
439 		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
440 	}
441 
442 	/* Make sure we write CR3 before loaded_mm. */
443 	barrier();
444 
445 	this_cpu_write(cpu_tlbstate.loaded_mm, next);
446 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
447 
448 	if (next != real_prev) {
449 		load_mm_cr4_irqsoff(next);
450 		switch_ldt(real_prev, next);
451 	}
452 }
453 
454 /*
455  * Please ignore the name of this function.  It should be called
456  * switch_to_kernel_thread().
457  *
458  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
459  * kernel thread or other context without an mm.  Acceptable implementations
460  * include doing nothing whatsoever, switching to init_mm, or various clever
461  * lazy tricks to try to minimize TLB flushes.
462  *
463  * The scheduler reserves the right to call enter_lazy_tlb() several times
464  * in a row.  It will notify us that we're going back to a real mm by
465  * calling switch_mm_irqs_off().
466  */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)467 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
468 {
469 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
470 		return;
471 
472 	this_cpu_write(cpu_tlbstate.is_lazy, true);
473 }
474 
475 /*
476  * Call this when reinitializing a CPU.  It fixes the following potential
477  * problems:
478  *
479  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
480  *   because the CPU was taken down and came back up with CR3's PCID
481  *   bits clear.  CPU hotplug can do this.
482  *
483  * - The TLB contains junk in slots corresponding to inactive ASIDs.
484  *
485  * - The CPU went so far out to lunch that it may have missed a TLB
486  *   flush.
487  */
initialize_tlbstate_and_flush(void)488 void initialize_tlbstate_and_flush(void)
489 {
490 	int i;
491 	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
492 	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
493 	unsigned long cr3 = __read_cr3();
494 
495 	/* Assert that CR3 already references the right mm. */
496 	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
497 
498 	/*
499 	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
500 	 * doesn't work like other CR4 bits because it can only be set from
501 	 * long mode.)
502 	 */
503 	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
504 		!(cr4_read_shadow() & X86_CR4_PCIDE));
505 
506 	/* Force ASID 0 and force a TLB flush. */
507 	write_cr3(build_cr3(mm->pgd, 0));
508 
509 	/* Reinitialize tlbstate. */
510 	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
511 	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
512 	this_cpu_write(cpu_tlbstate.next_asid, 1);
513 	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
514 	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
515 
516 	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
517 		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
518 }
519 
520 /*
521  * flush_tlb_func_common()'s memory ordering requirement is that any
522  * TLB fills that happen after we flush the TLB are ordered after we
523  * read active_mm's tlb_gen.  We don't need any explicit barriers
524  * because all x86 flush operations are serializing and the
525  * atomic64_read operation won't be reordered by the compiler.
526  */
flush_tlb_func_common(const struct flush_tlb_info * f,bool local,enum tlb_flush_reason reason)527 static void flush_tlb_func_common(const struct flush_tlb_info *f,
528 				  bool local, enum tlb_flush_reason reason)
529 {
530 	/*
531 	 * We have three different tlb_gen values in here.  They are:
532 	 *
533 	 * - mm_tlb_gen:     the latest generation.
534 	 * - local_tlb_gen:  the generation that this CPU has already caught
535 	 *                   up to.
536 	 * - f->new_tlb_gen: the generation that the requester of the flush
537 	 *                   wants us to catch up to.
538 	 */
539 	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
540 	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
541 	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
542 	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
543 
544 	/* This code cannot presently handle being reentered. */
545 	VM_WARN_ON(!irqs_disabled());
546 
547 	if (unlikely(loaded_mm == &init_mm))
548 		return;
549 
550 	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
551 		   loaded_mm->context.ctx_id);
552 
553 	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
554 		/*
555 		 * We're in lazy mode.  We need to at least flush our
556 		 * paging-structure cache to avoid speculatively reading
557 		 * garbage into our TLB.  Since switching to init_mm is barely
558 		 * slower than a minimal flush, just switch to init_mm.
559 		 *
560 		 * This should be rare, with native_flush_tlb_others skipping
561 		 * IPIs to lazy TLB mode CPUs.
562 		 */
563 		switch_mm_irqs_off(NULL, &init_mm, NULL);
564 		return;
565 	}
566 
567 	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
568 		/*
569 		 * There's nothing to do: we're already up to date.  This can
570 		 * happen if two concurrent flushes happen -- the first flush to
571 		 * be handled can catch us all the way up, leaving no work for
572 		 * the second flush.
573 		 */
574 		trace_tlb_flush(reason, 0);
575 		return;
576 	}
577 
578 	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
579 	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
580 
581 	/*
582 	 * If we get to this point, we know that our TLB is out of date.
583 	 * This does not strictly imply that we need to flush (it's
584 	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
585 	 * going to need to flush in the very near future, so we might
586 	 * as well get it over with.
587 	 *
588 	 * The only question is whether to do a full or partial flush.
589 	 *
590 	 * We do a partial flush if requested and two extra conditions
591 	 * are met:
592 	 *
593 	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
594 	 *    we've always done all needed flushes to catch up to
595 	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
596 	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
597 	 *    us up to date for tlb_gen 3 is the partial flush we're
598 	 *    processing.
599 	 *
600 	 *    As an example of why this check is needed, suppose that there
601 	 *    are two concurrent flushes.  The first is a full flush that
602 	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
603 	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
604 	 *    processed on this CPU in reverse order, we'll see
605 	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
606 	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
607 	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
608 	 *    1 without the full flush that's needed for tlb_gen 2.
609 	 *
610 	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
611 	 *    Partial TLB flushes are not all that much cheaper than full TLB
612 	 *    flushes, so it seems unlikely that it would be a performance win
613 	 *    to do a partial flush if that won't bring our TLB fully up to
614 	 *    date.  By doing a full flush instead, we can increase
615 	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
616 	 *    avoid another flush in the very near future.
617 	 */
618 	if (f->end != TLB_FLUSH_ALL &&
619 	    f->new_tlb_gen == local_tlb_gen + 1 &&
620 	    f->new_tlb_gen == mm_tlb_gen) {
621 		/* Partial flush */
622 		unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
623 		unsigned long addr = f->start;
624 
625 		while (addr < f->end) {
626 			__flush_tlb_one_user(addr);
627 			addr += 1UL << f->stride_shift;
628 		}
629 		if (local)
630 			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
631 		trace_tlb_flush(reason, nr_invalidate);
632 	} else {
633 		/* Full flush. */
634 		local_flush_tlb();
635 		if (local)
636 			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
637 		trace_tlb_flush(reason, TLB_FLUSH_ALL);
638 	}
639 
640 	/* Both paths above update our state to mm_tlb_gen. */
641 	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
642 }
643 
flush_tlb_func_local(const void * info,enum tlb_flush_reason reason)644 static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
645 {
646 	const struct flush_tlb_info *f = info;
647 
648 	flush_tlb_func_common(f, true, reason);
649 }
650 
flush_tlb_func_remote(void * info)651 static void flush_tlb_func_remote(void *info)
652 {
653 	const struct flush_tlb_info *f = info;
654 
655 	inc_irq_stat(irq_tlb_count);
656 
657 	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
658 		return;
659 
660 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
661 	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
662 }
663 
tlb_is_not_lazy(int cpu,void * data)664 static bool tlb_is_not_lazy(int cpu, void *data)
665 {
666 	return !per_cpu(cpu_tlbstate.is_lazy, cpu);
667 }
668 
native_flush_tlb_others(const struct cpumask * cpumask,const struct flush_tlb_info * info)669 void native_flush_tlb_others(const struct cpumask *cpumask,
670 			     const struct flush_tlb_info *info)
671 {
672 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
673 	if (info->end == TLB_FLUSH_ALL)
674 		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
675 	else
676 		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
677 				(info->end - info->start) >> PAGE_SHIFT);
678 
679 	if (is_uv_system()) {
680 		/*
681 		 * This whole special case is confused.  UV has a "Broadcast
682 		 * Assist Unit", which seems to be a fancy way to send IPIs.
683 		 * Back when x86 used an explicit TLB flush IPI, UV was
684 		 * optimized to use its own mechanism.  These days, x86 uses
685 		 * smp_call_function_many(), but UV still uses a manual IPI,
686 		 * and that IPI's action is out of date -- it does a manual
687 		 * flush instead of calling flush_tlb_func_remote().  This
688 		 * means that the percpu tlb_gen variables won't be updated
689 		 * and we'll do pointless flushes on future context switches.
690 		 *
691 		 * Rather than hooking native_flush_tlb_others() here, I think
692 		 * that UV should be updated so that smp_call_function_many(),
693 		 * etc, are optimal on UV.
694 		 */
695 		cpumask = uv_flush_tlb_others(cpumask, info);
696 		if (cpumask)
697 			smp_call_function_many(cpumask, flush_tlb_func_remote,
698 					       (void *)info, 1);
699 		return;
700 	}
701 
702 	/*
703 	 * If no page tables were freed, we can skip sending IPIs to
704 	 * CPUs in lazy TLB mode. They will flush the CPU themselves
705 	 * at the next context switch.
706 	 *
707 	 * However, if page tables are getting freed, we need to send the
708 	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
709 	 * up on the new contents of what used to be page tables, while
710 	 * doing a speculative memory access.
711 	 */
712 	if (info->freed_tables)
713 		smp_call_function_many(cpumask, flush_tlb_func_remote,
714 			       (void *)info, 1);
715 	else
716 		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
717 				(void *)info, 1, GFP_ATOMIC, cpumask);
718 }
719 
720 /*
721  * See Documentation/x86/tlb.rst for details.  We choose 33
722  * because it is large enough to cover the vast majority (at
723  * least 95%) of allocations, and is small enough that we are
724  * confident it will not cause too much overhead.  Each single
725  * flush is about 100 ns, so this caps the maximum overhead at
726  * _about_ 3,000 ns.
727  *
728  * This is in units of pages.
729  */
730 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
731 
732 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
733 
734 #ifdef CONFIG_DEBUG_VM
735 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
736 #endif
737 
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)738 static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
739 			unsigned long start, unsigned long end,
740 			unsigned int stride_shift, bool freed_tables,
741 			u64 new_tlb_gen)
742 {
743 	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
744 
745 #ifdef CONFIG_DEBUG_VM
746 	/*
747 	 * Ensure that the following code is non-reentrant and flush_tlb_info
748 	 * is not overwritten. This means no TLB flushing is initiated by
749 	 * interrupt handlers and machine-check exception handlers.
750 	 */
751 	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
752 #endif
753 
754 	info->start		= start;
755 	info->end		= end;
756 	info->mm		= mm;
757 	info->stride_shift	= stride_shift;
758 	info->freed_tables	= freed_tables;
759 	info->new_tlb_gen	= new_tlb_gen;
760 
761 	return info;
762 }
763 
put_flush_tlb_info(void)764 static inline void put_flush_tlb_info(void)
765 {
766 #ifdef CONFIG_DEBUG_VM
767 	/* Complete reentrency prevention checks */
768 	barrier();
769 	this_cpu_dec(flush_tlb_info_idx);
770 #endif
771 }
772 
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)773 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
774 				unsigned long end, unsigned int stride_shift,
775 				bool freed_tables)
776 {
777 	struct flush_tlb_info *info;
778 	u64 new_tlb_gen;
779 	int cpu;
780 
781 	cpu = get_cpu();
782 
783 	/* Should we flush just the requested range? */
784 	if ((end == TLB_FLUSH_ALL) ||
785 	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
786 		start = 0;
787 		end = TLB_FLUSH_ALL;
788 	}
789 
790 	/* This is also a barrier that synchronizes with switch_mm(). */
791 	new_tlb_gen = inc_mm_tlb_gen(mm);
792 
793 	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
794 				  new_tlb_gen);
795 
796 	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
797 		lockdep_assert_irqs_enabled();
798 		local_irq_disable();
799 		flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
800 		local_irq_enable();
801 	}
802 
803 	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
804 		flush_tlb_others(mm_cpumask(mm), info);
805 
806 	put_flush_tlb_info();
807 	put_cpu();
808 }
809 
810 
do_flush_tlb_all(void * info)811 static void do_flush_tlb_all(void *info)
812 {
813 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
814 	__flush_tlb_all();
815 }
816 
flush_tlb_all(void)817 void flush_tlb_all(void)
818 {
819 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
820 	on_each_cpu(do_flush_tlb_all, NULL, 1);
821 }
822 
do_kernel_range_flush(void * info)823 static void do_kernel_range_flush(void *info)
824 {
825 	struct flush_tlb_info *f = info;
826 	unsigned long addr;
827 
828 	/* flush range by one by one 'invlpg' */
829 	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
830 		__flush_tlb_one_kernel(addr);
831 }
832 
flush_tlb_kernel_range(unsigned long start,unsigned long end)833 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
834 {
835 	/* Balance as user space task's flush, a bit conservative */
836 	if (end == TLB_FLUSH_ALL ||
837 	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
838 		on_each_cpu(do_flush_tlb_all, NULL, 1);
839 	} else {
840 		struct flush_tlb_info *info;
841 
842 		preempt_disable();
843 		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
844 
845 		on_each_cpu(do_kernel_range_flush, info, 1);
846 
847 		put_flush_tlb_info();
848 		preempt_enable();
849 	}
850 }
851 
852 /*
853  * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
854  * This means that the 'struct flush_tlb_info' that describes which mappings to
855  * flush is actually fixed. We therefore set a single fixed struct and use it in
856  * arch_tlbbatch_flush().
857  */
858 static const struct flush_tlb_info full_flush_tlb_info = {
859 	.mm = NULL,
860 	.start = 0,
861 	.end = TLB_FLUSH_ALL,
862 };
863 
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)864 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
865 {
866 	int cpu = get_cpu();
867 
868 	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
869 		lockdep_assert_irqs_enabled();
870 		local_irq_disable();
871 		flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
872 		local_irq_enable();
873 	}
874 
875 	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
876 		flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
877 
878 	cpumask_clear(&batch->cpumask);
879 
880 	put_cpu();
881 }
882 
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)883 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
884 			     size_t count, loff_t *ppos)
885 {
886 	char buf[32];
887 	unsigned int len;
888 
889 	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
890 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
891 }
892 
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)893 static ssize_t tlbflush_write_file(struct file *file,
894 		 const char __user *user_buf, size_t count, loff_t *ppos)
895 {
896 	char buf[32];
897 	ssize_t len;
898 	int ceiling;
899 
900 	len = min(count, sizeof(buf) - 1);
901 	if (copy_from_user(buf, user_buf, len))
902 		return -EFAULT;
903 
904 	buf[len] = '\0';
905 	if (kstrtoint(buf, 0, &ceiling))
906 		return -EINVAL;
907 
908 	if (ceiling < 0)
909 		return -EINVAL;
910 
911 	tlb_single_page_flush_ceiling = ceiling;
912 	return count;
913 }
914 
915 static const struct file_operations fops_tlbflush = {
916 	.read = tlbflush_read_file,
917 	.write = tlbflush_write_file,
918 	.llseek = default_llseek,
919 };
920 
create_tlb_single_page_flush_ceiling(void)921 static int __init create_tlb_single_page_flush_ceiling(void)
922 {
923 	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
924 			    arch_debugfs_dir, NULL, &fops_tlbflush);
925 	return 0;
926 }
927 late_initcall(create_tlb_single_page_flush_ceiling);
928