• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * LZMA2 decoder
3  *
4  * Authors: Lasse Collin <lasse.collin@tukaani.org>
5  *          Igor Pavlov <http://7-zip.org/>
6  *
7  * This file has been put into the public domain.
8  * You can do whatever you want with this file.
9  */
10 
11 #include "xz_private.h"
12 #include "xz_lzma2.h"
13 
14 /*
15  * Range decoder initialization eats the first five bytes of each LZMA chunk.
16  */
17 #define RC_INIT_BYTES 5
18 
19 /*
20  * Minimum number of usable input buffer to safely decode one LZMA symbol.
21  * The worst case is that we decode 22 bits using probabilities and 26
22  * direct bits. This may decode at maximum of 20 bytes of input. However,
23  * lzma_main() does an extra normalization before returning, thus we
24  * need to put 21 here.
25  */
26 #define LZMA_IN_REQUIRED 21
27 
28 /*
29  * Dictionary (history buffer)
30  *
31  * These are always true:
32  *    start <= pos <= full <= end
33  *    pos <= limit <= end
34  *
35  * In multi-call mode, also these are true:
36  *    end == size
37  *    size <= size_max
38  *    allocated <= size
39  *
40  * Most of these variables are size_t to support single-call mode,
41  * in which the dictionary variables address the actual output
42  * buffer directly.
43  */
44 struct dictionary {
45 	/* Beginning of the history buffer */
46 	uint8_t *buf;
47 
48 	/* Old position in buf (before decoding more data) */
49 	size_t start;
50 
51 	/* Position in buf */
52 	size_t pos;
53 
54 	/*
55 	 * How full dictionary is. This is used to detect corrupt input that
56 	 * would read beyond the beginning of the uncompressed stream.
57 	 */
58 	size_t full;
59 
60 	/* Write limit; we don't write to buf[limit] or later bytes. */
61 	size_t limit;
62 
63 	/*
64 	 * End of the dictionary buffer. In multi-call mode, this is
65 	 * the same as the dictionary size. In single-call mode, this
66 	 * indicates the size of the output buffer.
67 	 */
68 	size_t end;
69 
70 	/*
71 	 * Size of the dictionary as specified in Block Header. This is used
72 	 * together with "full" to detect corrupt input that would make us
73 	 * read beyond the beginning of the uncompressed stream.
74 	 */
75 	uint32_t size;
76 
77 	/*
78 	 * Maximum allowed dictionary size in multi-call mode.
79 	 * This is ignored in single-call mode.
80 	 */
81 	uint32_t size_max;
82 
83 	/*
84 	 * Amount of memory currently allocated for the dictionary.
85 	 * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
86 	 * size_max is always the same as the allocated size.)
87 	 */
88 	uint32_t allocated;
89 
90 	/* Operation mode */
91 	enum xz_mode mode;
92 };
93 
94 /* Range decoder */
95 struct rc_dec {
96 	uint32_t range;
97 	uint32_t code;
98 
99 	/*
100 	 * Number of initializing bytes remaining to be read
101 	 * by rc_read_init().
102 	 */
103 	uint32_t init_bytes_left;
104 
105 	/*
106 	 * Buffer from which we read our input. It can be either
107 	 * temp.buf or the caller-provided input buffer.
108 	 */
109 	const uint8_t *in;
110 	size_t in_pos;
111 	size_t in_limit;
112 };
113 
114 /* Probabilities for a length decoder. */
115 struct lzma_len_dec {
116 	/* Probability of match length being at least 10 */
117 	uint16_t choice;
118 
119 	/* Probability of match length being at least 18 */
120 	uint16_t choice2;
121 
122 	/* Probabilities for match lengths 2-9 */
123 	uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
124 
125 	/* Probabilities for match lengths 10-17 */
126 	uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
127 
128 	/* Probabilities for match lengths 18-273 */
129 	uint16_t high[LEN_HIGH_SYMBOLS];
130 };
131 
132 struct lzma_dec {
133 	/* Distances of latest four matches */
134 	uint32_t rep0;
135 	uint32_t rep1;
136 	uint32_t rep2;
137 	uint32_t rep3;
138 
139 	/* Types of the most recently seen LZMA symbols */
140 	enum lzma_state state;
141 
142 	/*
143 	 * Length of a match. This is updated so that dict_repeat can
144 	 * be called again to finish repeating the whole match.
145 	 */
146 	uint32_t len;
147 
148 	/*
149 	 * LZMA properties or related bit masks (number of literal
150 	 * context bits, a mask dervied from the number of literal
151 	 * position bits, and a mask dervied from the number
152 	 * position bits)
153 	 */
154 	uint32_t lc;
155 	uint32_t literal_pos_mask; /* (1 << lp) - 1 */
156 	uint32_t pos_mask;         /* (1 << pb) - 1 */
157 
158 	/* If 1, it's a match. Otherwise it's a single 8-bit literal. */
159 	uint16_t is_match[STATES][POS_STATES_MAX];
160 
161 	/* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
162 	uint16_t is_rep[STATES];
163 
164 	/*
165 	 * If 0, distance of a repeated match is rep0.
166 	 * Otherwise check is_rep1.
167 	 */
168 	uint16_t is_rep0[STATES];
169 
170 	/*
171 	 * If 0, distance of a repeated match is rep1.
172 	 * Otherwise check is_rep2.
173 	 */
174 	uint16_t is_rep1[STATES];
175 
176 	/* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
177 	uint16_t is_rep2[STATES];
178 
179 	/*
180 	 * If 1, the repeated match has length of one byte. Otherwise
181 	 * the length is decoded from rep_len_decoder.
182 	 */
183 	uint16_t is_rep0_long[STATES][POS_STATES_MAX];
184 
185 	/*
186 	 * Probability tree for the highest two bits of the match
187 	 * distance. There is a separate probability tree for match
188 	 * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
189 	 */
190 	uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
191 
192 	/*
193 	 * Probility trees for additional bits for match distance
194 	 * when the distance is in the range [4, 127].
195 	 */
196 	uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
197 
198 	/*
199 	 * Probability tree for the lowest four bits of a match
200 	 * distance that is equal to or greater than 128.
201 	 */
202 	uint16_t dist_align[ALIGN_SIZE];
203 
204 	/* Length of a normal match */
205 	struct lzma_len_dec match_len_dec;
206 
207 	/* Length of a repeated match */
208 	struct lzma_len_dec rep_len_dec;
209 
210 	/* Probabilities of literals */
211 	uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
212 };
213 
214 struct lzma2_dec {
215 	/* Position in xz_dec_lzma2_run(). */
216 	enum lzma2_seq {
217 		SEQ_CONTROL,
218 		SEQ_UNCOMPRESSED_1,
219 		SEQ_UNCOMPRESSED_2,
220 		SEQ_COMPRESSED_0,
221 		SEQ_COMPRESSED_1,
222 		SEQ_PROPERTIES,
223 		SEQ_LZMA_PREPARE,
224 		SEQ_LZMA_RUN,
225 		SEQ_COPY
226 	} sequence;
227 
228 	/* Next position after decoding the compressed size of the chunk. */
229 	enum lzma2_seq next_sequence;
230 
231 	/* Uncompressed size of LZMA chunk (2 MiB at maximum) */
232 	uint32_t uncompressed;
233 
234 	/*
235 	 * Compressed size of LZMA chunk or compressed/uncompressed
236 	 * size of uncompressed chunk (64 KiB at maximum)
237 	 */
238 	uint32_t compressed;
239 
240 	/*
241 	 * True if dictionary reset is needed. This is false before
242 	 * the first chunk (LZMA or uncompressed).
243 	 */
244 	bool need_dict_reset;
245 
246 	/*
247 	 * True if new LZMA properties are needed. This is false
248 	 * before the first LZMA chunk.
249 	 */
250 	bool need_props;
251 };
252 
253 struct xz_dec_lzma2 {
254 	/*
255 	 * The order below is important on x86 to reduce code size and
256 	 * it shouldn't hurt on other platforms. Everything up to and
257 	 * including lzma.pos_mask are in the first 128 bytes on x86-32,
258 	 * which allows using smaller instructions to access those
259 	 * variables. On x86-64, fewer variables fit into the first 128
260 	 * bytes, but this is still the best order without sacrificing
261 	 * the readability by splitting the structures.
262 	 */
263 	struct rc_dec rc;
264 	struct dictionary dict;
265 	struct lzma2_dec lzma2;
266 	struct lzma_dec lzma;
267 
268 	/*
269 	 * Temporary buffer which holds small number of input bytes between
270 	 * decoder calls. See lzma2_lzma() for details.
271 	 */
272 	struct {
273 		uint32_t size;
274 		uint8_t buf[3 * LZMA_IN_REQUIRED];
275 	} temp;
276 };
277 
278 /**************
279  * Dictionary *
280  **************/
281 
282 /*
283  * Reset the dictionary state. When in single-call mode, set up the beginning
284  * of the dictionary to point to the actual output buffer.
285  */
dict_reset(struct dictionary * dict,struct xz_buf * b)286 static void dict_reset(struct dictionary *dict, struct xz_buf *b)
287 {
288 	if (DEC_IS_SINGLE(dict->mode)) {
289 		dict->buf = b->out + b->out_pos;
290 		dict->end = b->out_size - b->out_pos;
291 	}
292 
293 	dict->start = 0;
294 	dict->pos = 0;
295 	dict->limit = 0;
296 	dict->full = 0;
297 }
298 
299 /* Set dictionary write limit */
dict_limit(struct dictionary * dict,size_t out_max)300 static void dict_limit(struct dictionary *dict, size_t out_max)
301 {
302 	if (dict->end - dict->pos <= out_max)
303 		dict->limit = dict->end;
304 	else
305 		dict->limit = dict->pos + out_max;
306 }
307 
308 /* Return true if at least one byte can be written into the dictionary. */
dict_has_space(const struct dictionary * dict)309 static inline bool dict_has_space(const struct dictionary *dict)
310 {
311 	return dict->pos < dict->limit;
312 }
313 
314 /*
315  * Get a byte from the dictionary at the given distance. The distance is
316  * assumed to valid, or as a special case, zero when the dictionary is
317  * still empty. This special case is needed for single-call decoding to
318  * avoid writing a '\0' to the end of the destination buffer.
319  */
dict_get(const struct dictionary * dict,uint32_t dist)320 static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
321 {
322 	size_t offset = dict->pos - dist - 1;
323 
324 	if (dist >= dict->pos)
325 		offset += dict->end;
326 
327 	return dict->full > 0 ? dict->buf[offset] : 0;
328 }
329 
330 /*
331  * Put one byte into the dictionary. It is assumed that there is space for it.
332  */
dict_put(struct dictionary * dict,uint8_t byte)333 static inline void dict_put(struct dictionary *dict, uint8_t byte)
334 {
335 	dict->buf[dict->pos++] = byte;
336 
337 	if (dict->full < dict->pos)
338 		dict->full = dict->pos;
339 }
340 
341 /*
342  * Repeat given number of bytes from the given distance. If the distance is
343  * invalid, false is returned. On success, true is returned and *len is
344  * updated to indicate how many bytes were left to be repeated.
345  */
dict_repeat(struct dictionary * dict,uint32_t * len,uint32_t dist)346 static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
347 {
348 	size_t back;
349 	uint32_t left;
350 
351 	if (dist >= dict->full || dist >= dict->size)
352 		return false;
353 
354 	left = min_t(size_t, dict->limit - dict->pos, *len);
355 	*len -= left;
356 
357 	back = dict->pos - dist - 1;
358 	if (dist >= dict->pos)
359 		back += dict->end;
360 
361 	do {
362 		dict->buf[dict->pos++] = dict->buf[back++];
363 		if (back == dict->end)
364 			back = 0;
365 	} while (--left > 0);
366 
367 	if (dict->full < dict->pos)
368 		dict->full = dict->pos;
369 
370 	return true;
371 }
372 
373 /* Copy uncompressed data as is from input to dictionary and output buffers. */
dict_uncompressed(struct dictionary * dict,struct xz_buf * b,uint32_t * left)374 static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
375 			      uint32_t *left)
376 {
377 	size_t copy_size;
378 
379 	while (*left > 0 && b->in_pos < b->in_size
380 			&& b->out_pos < b->out_size) {
381 		copy_size = min(b->in_size - b->in_pos,
382 				b->out_size - b->out_pos);
383 		if (copy_size > dict->end - dict->pos)
384 			copy_size = dict->end - dict->pos;
385 		if (copy_size > *left)
386 			copy_size = *left;
387 
388 		*left -= copy_size;
389 
390 		/*
391 		 * If doing in-place decompression in single-call mode and the
392 		 * uncompressed size of the file is larger than the caller
393 		 * thought (i.e. it is invalid input!), the buffers below may
394 		 * overlap and cause undefined behavior with memcpy().
395 		 * With valid inputs memcpy() would be fine here.
396 		 */
397 		memmove(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
398 		dict->pos += copy_size;
399 
400 		if (dict->full < dict->pos)
401 			dict->full = dict->pos;
402 
403 		if (DEC_IS_MULTI(dict->mode)) {
404 			if (dict->pos == dict->end)
405 				dict->pos = 0;
406 
407 			/*
408 			 * Like above but for multi-call mode: use memmove()
409 			 * to avoid undefined behavior with invalid input.
410 			 */
411 			memmove(b->out + b->out_pos, b->in + b->in_pos,
412 					copy_size);
413 		}
414 
415 		dict->start = dict->pos;
416 
417 		b->out_pos += copy_size;
418 		b->in_pos += copy_size;
419 	}
420 }
421 
422 /*
423  * Flush pending data from dictionary to b->out. It is assumed that there is
424  * enough space in b->out. This is guaranteed because caller uses dict_limit()
425  * before decoding data into the dictionary.
426  */
dict_flush(struct dictionary * dict,struct xz_buf * b)427 static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
428 {
429 	size_t copy_size = dict->pos - dict->start;
430 
431 	if (DEC_IS_MULTI(dict->mode)) {
432 		if (dict->pos == dict->end)
433 			dict->pos = 0;
434 
435 		/*
436 		 * These buffers cannot overlap even if doing in-place
437 		 * decompression because in multi-call mode dict->buf
438 		 * has been allocated by us in this file; it's not
439 		 * provided by the caller like in single-call mode.
440 		 */
441 		memcpy(b->out + b->out_pos, dict->buf + dict->start,
442 				copy_size);
443 	}
444 
445 	dict->start = dict->pos;
446 	b->out_pos += copy_size;
447 	return copy_size;
448 }
449 
450 /*****************
451  * Range decoder *
452  *****************/
453 
454 /* Reset the range decoder. */
rc_reset(struct rc_dec * rc)455 static void rc_reset(struct rc_dec *rc)
456 {
457 	rc->range = (uint32_t)-1;
458 	rc->code = 0;
459 	rc->init_bytes_left = RC_INIT_BYTES;
460 }
461 
462 /*
463  * Read the first five initial bytes into rc->code if they haven't been
464  * read already. (Yes, the first byte gets completely ignored.)
465  */
rc_read_init(struct rc_dec * rc,struct xz_buf * b)466 static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b)
467 {
468 	while (rc->init_bytes_left > 0) {
469 		if (b->in_pos == b->in_size)
470 			return false;
471 
472 		rc->code = (rc->code << 8) + b->in[b->in_pos++];
473 		--rc->init_bytes_left;
474 	}
475 
476 	return true;
477 }
478 
479 /* Return true if there may not be enough input for the next decoding loop. */
rc_limit_exceeded(const struct rc_dec * rc)480 static inline bool rc_limit_exceeded(const struct rc_dec *rc)
481 {
482 	return rc->in_pos > rc->in_limit;
483 }
484 
485 /*
486  * Return true if it is possible (from point of view of range decoder) that
487  * we have reached the end of the LZMA chunk.
488  */
rc_is_finished(const struct rc_dec * rc)489 static inline bool rc_is_finished(const struct rc_dec *rc)
490 {
491 	return rc->code == 0;
492 }
493 
494 /* Read the next input byte if needed. */
rc_normalize(struct rc_dec * rc)495 static __always_inline void rc_normalize(struct rc_dec *rc)
496 {
497 	if (rc->range < RC_TOP_VALUE) {
498 		rc->range <<= RC_SHIFT_BITS;
499 		rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
500 	}
501 }
502 
503 /*
504  * Decode one bit. In some versions, this function has been splitted in three
505  * functions so that the compiler is supposed to be able to more easily avoid
506  * an extra branch. In this particular version of the LZMA decoder, this
507  * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
508  * on x86). Using a non-splitted version results in nicer looking code too.
509  *
510  * NOTE: This must return an int. Do not make it return a bool or the speed
511  * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
512  * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
513  */
rc_bit(struct rc_dec * rc,uint16_t * prob)514 static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
515 {
516 	uint32_t bound;
517 	int bit;
518 
519 	rc_normalize(rc);
520 	bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
521 	if (rc->code < bound) {
522 		rc->range = bound;
523 		*prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
524 		bit = 0;
525 	} else {
526 		rc->range -= bound;
527 		rc->code -= bound;
528 		*prob -= *prob >> RC_MOVE_BITS;
529 		bit = 1;
530 	}
531 
532 	return bit;
533 }
534 
535 /* Decode a bittree starting from the most significant bit. */
rc_bittree(struct rc_dec * rc,uint16_t * probs,uint32_t limit)536 static __always_inline uint32_t rc_bittree(struct rc_dec *rc,
537 					   uint16_t *probs, uint32_t limit)
538 {
539 	uint32_t symbol = 1;
540 
541 	do {
542 		if (rc_bit(rc, &probs[symbol]))
543 			symbol = (symbol << 1) + 1;
544 		else
545 			symbol <<= 1;
546 	} while (symbol < limit);
547 
548 	return symbol;
549 }
550 
551 /* Decode a bittree starting from the least significant bit. */
rc_bittree_reverse(struct rc_dec * rc,uint16_t * probs,uint32_t * dest,uint32_t limit)552 static __always_inline void rc_bittree_reverse(struct rc_dec *rc,
553 					       uint16_t *probs,
554 					       uint32_t *dest, uint32_t limit)
555 {
556 	uint32_t symbol = 1;
557 	uint32_t i = 0;
558 
559 	do {
560 		if (rc_bit(rc, &probs[symbol])) {
561 			symbol = (symbol << 1) + 1;
562 			*dest += 1 << i;
563 		} else {
564 			symbol <<= 1;
565 		}
566 	} while (++i < limit);
567 }
568 
569 /* Decode direct bits (fixed fifty-fifty probability) */
rc_direct(struct rc_dec * rc,uint32_t * dest,uint32_t limit)570 static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
571 {
572 	uint32_t mask;
573 
574 	do {
575 		rc_normalize(rc);
576 		rc->range >>= 1;
577 		rc->code -= rc->range;
578 		mask = (uint32_t)0 - (rc->code >> 31);
579 		rc->code += rc->range & mask;
580 		*dest = (*dest << 1) + (mask + 1);
581 	} while (--limit > 0);
582 }
583 
584 /********
585  * LZMA *
586  ********/
587 
588 /* Get pointer to literal coder probability array. */
lzma_literal_probs(struct xz_dec_lzma2 * s)589 static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
590 {
591 	uint32_t prev_byte = dict_get(&s->dict, 0);
592 	uint32_t low = prev_byte >> (8 - s->lzma.lc);
593 	uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
594 	return s->lzma.literal[low + high];
595 }
596 
597 /* Decode a literal (one 8-bit byte) */
lzma_literal(struct xz_dec_lzma2 * s)598 static void lzma_literal(struct xz_dec_lzma2 *s)
599 {
600 	uint16_t *probs;
601 	uint32_t symbol;
602 	uint32_t match_byte;
603 	uint32_t match_bit;
604 	uint32_t offset;
605 	uint32_t i;
606 
607 	probs = lzma_literal_probs(s);
608 
609 	if (lzma_state_is_literal(s->lzma.state)) {
610 		symbol = rc_bittree(&s->rc, probs, 0x100);
611 	} else {
612 		symbol = 1;
613 		match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
614 		offset = 0x100;
615 
616 		do {
617 			match_bit = match_byte & offset;
618 			match_byte <<= 1;
619 			i = offset + match_bit + symbol;
620 
621 			if (rc_bit(&s->rc, &probs[i])) {
622 				symbol = (symbol << 1) + 1;
623 				offset &= match_bit;
624 			} else {
625 				symbol <<= 1;
626 				offset &= ~match_bit;
627 			}
628 		} while (symbol < 0x100);
629 	}
630 
631 	dict_put(&s->dict, (uint8_t)symbol);
632 	lzma_state_literal(&s->lzma.state);
633 }
634 
635 /* Decode the length of the match into s->lzma.len. */
lzma_len(struct xz_dec_lzma2 * s,struct lzma_len_dec * l,uint32_t pos_state)636 static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
637 		     uint32_t pos_state)
638 {
639 	uint16_t *probs;
640 	uint32_t limit;
641 
642 	if (!rc_bit(&s->rc, &l->choice)) {
643 		probs = l->low[pos_state];
644 		limit = LEN_LOW_SYMBOLS;
645 		s->lzma.len = MATCH_LEN_MIN;
646 	} else {
647 		if (!rc_bit(&s->rc, &l->choice2)) {
648 			probs = l->mid[pos_state];
649 			limit = LEN_MID_SYMBOLS;
650 			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
651 		} else {
652 			probs = l->high;
653 			limit = LEN_HIGH_SYMBOLS;
654 			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
655 					+ LEN_MID_SYMBOLS;
656 		}
657 	}
658 
659 	s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
660 }
661 
662 /* Decode a match. The distance will be stored in s->lzma.rep0. */
lzma_match(struct xz_dec_lzma2 * s,uint32_t pos_state)663 static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
664 {
665 	uint16_t *probs;
666 	uint32_t dist_slot;
667 	uint32_t limit;
668 
669 	lzma_state_match(&s->lzma.state);
670 
671 	s->lzma.rep3 = s->lzma.rep2;
672 	s->lzma.rep2 = s->lzma.rep1;
673 	s->lzma.rep1 = s->lzma.rep0;
674 
675 	lzma_len(s, &s->lzma.match_len_dec, pos_state);
676 
677 	probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
678 	dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
679 
680 	if (dist_slot < DIST_MODEL_START) {
681 		s->lzma.rep0 = dist_slot;
682 	} else {
683 		limit = (dist_slot >> 1) - 1;
684 		s->lzma.rep0 = 2 + (dist_slot & 1);
685 
686 		if (dist_slot < DIST_MODEL_END) {
687 			s->lzma.rep0 <<= limit;
688 			probs = s->lzma.dist_special + s->lzma.rep0
689 					- dist_slot - 1;
690 			rc_bittree_reverse(&s->rc, probs,
691 					&s->lzma.rep0, limit);
692 		} else {
693 			rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
694 			s->lzma.rep0 <<= ALIGN_BITS;
695 			rc_bittree_reverse(&s->rc, s->lzma.dist_align,
696 					&s->lzma.rep0, ALIGN_BITS);
697 		}
698 	}
699 }
700 
701 /*
702  * Decode a repeated match. The distance is one of the four most recently
703  * seen matches. The distance will be stored in s->lzma.rep0.
704  */
lzma_rep_match(struct xz_dec_lzma2 * s,uint32_t pos_state)705 static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
706 {
707 	uint32_t tmp;
708 
709 	if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
710 		if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
711 				s->lzma.state][pos_state])) {
712 			lzma_state_short_rep(&s->lzma.state);
713 			s->lzma.len = 1;
714 			return;
715 		}
716 	} else {
717 		if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
718 			tmp = s->lzma.rep1;
719 		} else {
720 			if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
721 				tmp = s->lzma.rep2;
722 			} else {
723 				tmp = s->lzma.rep3;
724 				s->lzma.rep3 = s->lzma.rep2;
725 			}
726 
727 			s->lzma.rep2 = s->lzma.rep1;
728 		}
729 
730 		s->lzma.rep1 = s->lzma.rep0;
731 		s->lzma.rep0 = tmp;
732 	}
733 
734 	lzma_state_long_rep(&s->lzma.state);
735 	lzma_len(s, &s->lzma.rep_len_dec, pos_state);
736 }
737 
738 /* LZMA decoder core */
lzma_main(struct xz_dec_lzma2 * s)739 static bool lzma_main(struct xz_dec_lzma2 *s)
740 {
741 	uint32_t pos_state;
742 
743 	/*
744 	 * If the dictionary was reached during the previous call, try to
745 	 * finish the possibly pending repeat in the dictionary.
746 	 */
747 	if (dict_has_space(&s->dict) && s->lzma.len > 0)
748 		dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
749 
750 	/*
751 	 * Decode more LZMA symbols. One iteration may consume up to
752 	 * LZMA_IN_REQUIRED - 1 bytes.
753 	 */
754 	while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
755 		pos_state = s->dict.pos & s->lzma.pos_mask;
756 
757 		if (!rc_bit(&s->rc, &s->lzma.is_match[
758 				s->lzma.state][pos_state])) {
759 			lzma_literal(s);
760 		} else {
761 			if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
762 				lzma_rep_match(s, pos_state);
763 			else
764 				lzma_match(s, pos_state);
765 
766 			if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
767 				return false;
768 		}
769 	}
770 
771 	/*
772 	 * Having the range decoder always normalized when we are outside
773 	 * this function makes it easier to correctly handle end of the chunk.
774 	 */
775 	rc_normalize(&s->rc);
776 
777 	return true;
778 }
779 
780 /*
781  * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
782  * here, because LZMA state may be reset without resetting the dictionary.
783  */
lzma_reset(struct xz_dec_lzma2 * s)784 static void lzma_reset(struct xz_dec_lzma2 *s)
785 {
786 	uint16_t *probs;
787 	size_t i;
788 
789 	s->lzma.state = STATE_LIT_LIT;
790 	s->lzma.rep0 = 0;
791 	s->lzma.rep1 = 0;
792 	s->lzma.rep2 = 0;
793 	s->lzma.rep3 = 0;
794 
795 	/*
796 	 * All probabilities are initialized to the same value. This hack
797 	 * makes the code smaller by avoiding a separate loop for each
798 	 * probability array.
799 	 *
800 	 * This could be optimized so that only that part of literal
801 	 * probabilities that are actually required. In the common case
802 	 * we would write 12 KiB less.
803 	 */
804 	probs = s->lzma.is_match[0];
805 	for (i = 0; i < PROBS_TOTAL; ++i)
806 		probs[i] = RC_BIT_MODEL_TOTAL / 2;
807 
808 	rc_reset(&s->rc);
809 }
810 
811 /*
812  * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
813  * from the decoded lp and pb values. On success, the LZMA decoder state is
814  * reset and true is returned.
815  */
lzma_props(struct xz_dec_lzma2 * s,uint8_t props)816 static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
817 {
818 	if (props > (4 * 5 + 4) * 9 + 8)
819 		return false;
820 
821 	s->lzma.pos_mask = 0;
822 	while (props >= 9 * 5) {
823 		props -= 9 * 5;
824 		++s->lzma.pos_mask;
825 	}
826 
827 	s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
828 
829 	s->lzma.literal_pos_mask = 0;
830 	while (props >= 9) {
831 		props -= 9;
832 		++s->lzma.literal_pos_mask;
833 	}
834 
835 	s->lzma.lc = props;
836 
837 	if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
838 		return false;
839 
840 	s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
841 
842 	lzma_reset(s);
843 
844 	return true;
845 }
846 
847 /*********
848  * LZMA2 *
849  *********/
850 
851 /*
852  * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
853  * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
854  * wrapper function takes care of making the LZMA decoder's assumption safe.
855  *
856  * As long as there is plenty of input left to be decoded in the current LZMA
857  * chunk, we decode directly from the caller-supplied input buffer until
858  * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
859  * s->temp.buf, which (hopefully) gets filled on the next call to this
860  * function. We decode a few bytes from the temporary buffer so that we can
861  * continue decoding from the caller-supplied input buffer again.
862  */
lzma2_lzma(struct xz_dec_lzma2 * s,struct xz_buf * b)863 static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
864 {
865 	size_t in_avail;
866 	uint32_t tmp;
867 
868 	in_avail = b->in_size - b->in_pos;
869 	if (s->temp.size > 0 || s->lzma2.compressed == 0) {
870 		tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
871 		if (tmp > s->lzma2.compressed - s->temp.size)
872 			tmp = s->lzma2.compressed - s->temp.size;
873 		if (tmp > in_avail)
874 			tmp = in_avail;
875 
876 		memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
877 
878 		if (s->temp.size + tmp == s->lzma2.compressed) {
879 			memzero(s->temp.buf + s->temp.size + tmp,
880 					sizeof(s->temp.buf)
881 						- s->temp.size - tmp);
882 			s->rc.in_limit = s->temp.size + tmp;
883 		} else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
884 			s->temp.size += tmp;
885 			b->in_pos += tmp;
886 			return true;
887 		} else {
888 			s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
889 		}
890 
891 		s->rc.in = s->temp.buf;
892 		s->rc.in_pos = 0;
893 
894 		if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
895 			return false;
896 
897 		s->lzma2.compressed -= s->rc.in_pos;
898 
899 		if (s->rc.in_pos < s->temp.size) {
900 			s->temp.size -= s->rc.in_pos;
901 			memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
902 					s->temp.size);
903 			return true;
904 		}
905 
906 		b->in_pos += s->rc.in_pos - s->temp.size;
907 		s->temp.size = 0;
908 	}
909 
910 	in_avail = b->in_size - b->in_pos;
911 	if (in_avail >= LZMA_IN_REQUIRED) {
912 		s->rc.in = b->in;
913 		s->rc.in_pos = b->in_pos;
914 
915 		if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
916 			s->rc.in_limit = b->in_pos + s->lzma2.compressed;
917 		else
918 			s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
919 
920 		if (!lzma_main(s))
921 			return false;
922 
923 		in_avail = s->rc.in_pos - b->in_pos;
924 		if (in_avail > s->lzma2.compressed)
925 			return false;
926 
927 		s->lzma2.compressed -= in_avail;
928 		b->in_pos = s->rc.in_pos;
929 	}
930 
931 	in_avail = b->in_size - b->in_pos;
932 	if (in_avail < LZMA_IN_REQUIRED) {
933 		if (in_avail > s->lzma2.compressed)
934 			in_avail = s->lzma2.compressed;
935 
936 		memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
937 		s->temp.size = in_avail;
938 		b->in_pos += in_avail;
939 	}
940 
941 	return true;
942 }
943 
944 /*
945  * Take care of the LZMA2 control layer, and forward the job of actual LZMA
946  * decoding or copying of uncompressed chunks to other functions.
947  */
xz_dec_lzma2_run(struct xz_dec_lzma2 * s,struct xz_buf * b)948 XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
949 				       struct xz_buf *b)
950 {
951 	uint32_t tmp;
952 
953 	while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
954 		switch (s->lzma2.sequence) {
955 		case SEQ_CONTROL:
956 			/*
957 			 * LZMA2 control byte
958 			 *
959 			 * Exact values:
960 			 *   0x00   End marker
961 			 *   0x01   Dictionary reset followed by
962 			 *          an uncompressed chunk
963 			 *   0x02   Uncompressed chunk (no dictionary reset)
964 			 *
965 			 * Highest three bits (s->control & 0xE0):
966 			 *   0xE0   Dictionary reset, new properties and state
967 			 *          reset, followed by LZMA compressed chunk
968 			 *   0xC0   New properties and state reset, followed
969 			 *          by LZMA compressed chunk (no dictionary
970 			 *          reset)
971 			 *   0xA0   State reset using old properties,
972 			 *          followed by LZMA compressed chunk (no
973 			 *          dictionary reset)
974 			 *   0x80   LZMA chunk (no dictionary or state reset)
975 			 *
976 			 * For LZMA compressed chunks, the lowest five bits
977 			 * (s->control & 1F) are the highest bits of the
978 			 * uncompressed size (bits 16-20).
979 			 *
980 			 * A new LZMA2 stream must begin with a dictionary
981 			 * reset. The first LZMA chunk must set new
982 			 * properties and reset the LZMA state.
983 			 *
984 			 * Values that don't match anything described above
985 			 * are invalid and we return XZ_DATA_ERROR.
986 			 */
987 			tmp = b->in[b->in_pos++];
988 
989 			if (tmp == 0x00)
990 				return XZ_STREAM_END;
991 
992 			if (tmp >= 0xE0 || tmp == 0x01) {
993 				s->lzma2.need_props = true;
994 				s->lzma2.need_dict_reset = false;
995 				dict_reset(&s->dict, b);
996 			} else if (s->lzma2.need_dict_reset) {
997 				return XZ_DATA_ERROR;
998 			}
999 
1000 			if (tmp >= 0x80) {
1001 				s->lzma2.uncompressed = (tmp & 0x1F) << 16;
1002 				s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
1003 
1004 				if (tmp >= 0xC0) {
1005 					/*
1006 					 * When there are new properties,
1007 					 * state reset is done at
1008 					 * SEQ_PROPERTIES.
1009 					 */
1010 					s->lzma2.need_props = false;
1011 					s->lzma2.next_sequence
1012 							= SEQ_PROPERTIES;
1013 
1014 				} else if (s->lzma2.need_props) {
1015 					return XZ_DATA_ERROR;
1016 
1017 				} else {
1018 					s->lzma2.next_sequence
1019 							= SEQ_LZMA_PREPARE;
1020 					if (tmp >= 0xA0)
1021 						lzma_reset(s);
1022 				}
1023 			} else {
1024 				if (tmp > 0x02)
1025 					return XZ_DATA_ERROR;
1026 
1027 				s->lzma2.sequence = SEQ_COMPRESSED_0;
1028 				s->lzma2.next_sequence = SEQ_COPY;
1029 			}
1030 
1031 			break;
1032 
1033 		case SEQ_UNCOMPRESSED_1:
1034 			s->lzma2.uncompressed
1035 					+= (uint32_t)b->in[b->in_pos++] << 8;
1036 			s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
1037 			break;
1038 
1039 		case SEQ_UNCOMPRESSED_2:
1040 			s->lzma2.uncompressed
1041 					+= (uint32_t)b->in[b->in_pos++] + 1;
1042 			s->lzma2.sequence = SEQ_COMPRESSED_0;
1043 			break;
1044 
1045 		case SEQ_COMPRESSED_0:
1046 			s->lzma2.compressed
1047 					= (uint32_t)b->in[b->in_pos++] << 8;
1048 			s->lzma2.sequence = SEQ_COMPRESSED_1;
1049 			break;
1050 
1051 		case SEQ_COMPRESSED_1:
1052 			s->lzma2.compressed
1053 					+= (uint32_t)b->in[b->in_pos++] + 1;
1054 			s->lzma2.sequence = s->lzma2.next_sequence;
1055 			break;
1056 
1057 		case SEQ_PROPERTIES:
1058 			if (!lzma_props(s, b->in[b->in_pos++]))
1059 				return XZ_DATA_ERROR;
1060 
1061 			s->lzma2.sequence = SEQ_LZMA_PREPARE;
1062 
1063 		/* Fall through */
1064 
1065 		case SEQ_LZMA_PREPARE:
1066 			if (s->lzma2.compressed < RC_INIT_BYTES)
1067 				return XZ_DATA_ERROR;
1068 
1069 			if (!rc_read_init(&s->rc, b))
1070 				return XZ_OK;
1071 
1072 			s->lzma2.compressed -= RC_INIT_BYTES;
1073 			s->lzma2.sequence = SEQ_LZMA_RUN;
1074 
1075 		/* Fall through */
1076 
1077 		case SEQ_LZMA_RUN:
1078 			/*
1079 			 * Set dictionary limit to indicate how much we want
1080 			 * to be encoded at maximum. Decode new data into the
1081 			 * dictionary. Flush the new data from dictionary to
1082 			 * b->out. Check if we finished decoding this chunk.
1083 			 * In case the dictionary got full but we didn't fill
1084 			 * the output buffer yet, we may run this loop
1085 			 * multiple times without changing s->lzma2.sequence.
1086 			 */
1087 			dict_limit(&s->dict, min_t(size_t,
1088 					b->out_size - b->out_pos,
1089 					s->lzma2.uncompressed));
1090 			if (!lzma2_lzma(s, b))
1091 				return XZ_DATA_ERROR;
1092 
1093 			s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1094 
1095 			if (s->lzma2.uncompressed == 0) {
1096 				if (s->lzma2.compressed > 0 || s->lzma.len > 0
1097 						|| !rc_is_finished(&s->rc))
1098 					return XZ_DATA_ERROR;
1099 
1100 				rc_reset(&s->rc);
1101 				s->lzma2.sequence = SEQ_CONTROL;
1102 
1103 			} else if (b->out_pos == b->out_size
1104 					|| (b->in_pos == b->in_size
1105 						&& s->temp.size
1106 						< s->lzma2.compressed)) {
1107 				return XZ_OK;
1108 			}
1109 
1110 			break;
1111 
1112 		case SEQ_COPY:
1113 			dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
1114 			if (s->lzma2.compressed > 0)
1115 				return XZ_OK;
1116 
1117 			s->lzma2.sequence = SEQ_CONTROL;
1118 			break;
1119 		}
1120 	}
1121 
1122 	return XZ_OK;
1123 }
1124 
xz_dec_lzma2_create(enum xz_mode mode,uint32_t dict_max)1125 XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
1126 						   uint32_t dict_max)
1127 {
1128 	struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
1129 	if (s == NULL)
1130 		return NULL;
1131 
1132 	s->dict.mode = mode;
1133 	s->dict.size_max = dict_max;
1134 
1135 	if (DEC_IS_PREALLOC(mode)) {
1136 		s->dict.buf = vmalloc(dict_max);
1137 		if (s->dict.buf == NULL) {
1138 			kfree(s);
1139 			return NULL;
1140 		}
1141 	} else if (DEC_IS_DYNALLOC(mode)) {
1142 		s->dict.buf = NULL;
1143 		s->dict.allocated = 0;
1144 	}
1145 
1146 	return s;
1147 }
1148 
xz_dec_lzma2_reset(struct xz_dec_lzma2 * s,uint8_t props)1149 XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
1150 {
1151 	/* This limits dictionary size to 3 GiB to keep parsing simpler. */
1152 	if (props > 39)
1153 		return XZ_OPTIONS_ERROR;
1154 
1155 	s->dict.size = 2 + (props & 1);
1156 	s->dict.size <<= (props >> 1) + 11;
1157 
1158 	if (DEC_IS_MULTI(s->dict.mode)) {
1159 		if (s->dict.size > s->dict.size_max)
1160 			return XZ_MEMLIMIT_ERROR;
1161 
1162 		s->dict.end = s->dict.size;
1163 
1164 		if (DEC_IS_DYNALLOC(s->dict.mode)) {
1165 			if (s->dict.allocated < s->dict.size) {
1166 				s->dict.allocated = s->dict.size;
1167 				vfree(s->dict.buf);
1168 				s->dict.buf = vmalloc(s->dict.size);
1169 				if (s->dict.buf == NULL) {
1170 					s->dict.allocated = 0;
1171 					return XZ_MEM_ERROR;
1172 				}
1173 			}
1174 		}
1175 	}
1176 
1177 	s->lzma.len = 0;
1178 
1179 	s->lzma2.sequence = SEQ_CONTROL;
1180 	s->lzma2.need_dict_reset = true;
1181 
1182 	s->temp.size = 0;
1183 
1184 	return XZ_OK;
1185 }
1186 
xz_dec_lzma2_end(struct xz_dec_lzma2 * s)1187 XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
1188 {
1189 	if (DEC_IS_MULTI(s->dict.mode))
1190 		vfree(s->dict.buf);
1191 
1192 	kfree(s);
1193 }
1194