• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * srmmu.c:  SRMMU specific routines for memory management.
4  *
5  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
6  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10  */
11 
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/memblock.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42 
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51 
52 #include "mm_32.h"
53 
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 EXPORT_SYMBOL(vac_cache_size);
58 int vac_line_size;
59 
60 extern struct resource sparc_iomap;
61 
62 extern unsigned long last_valid_pfn;
63 
64 static pgd_t *srmmu_swapper_pg_dir;
65 
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
68 
69 #ifdef CONFIG_SMP
70 const struct sparc32_cachetlb_ops *local_ops;
71 
72 #define FLUSH_BEGIN(mm)
73 #define FLUSH_END
74 #else
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 #define FLUSH_END	}
77 #endif
78 
79 int flush_page_for_dma_global = 1;
80 
81 char *srmmu_name;
82 
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
85 
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
88 
89 static int is_hypersparc;
90 
91 static int srmmu_cache_pagetables;
92 
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
96 
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99 
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102 
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
105 
srmmu_pmd_none(pmd_t pmd)106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
108 
109 /* XXX should we hyper_flush_whole_icache here - Anton */
srmmu_ctxd_set(ctxd_t * ctxp,pgd_t * pgdp)110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111 {
112 	pte_t pte;
113 
114 	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115 	set_pte((pte_t *)ctxp, pte);
116 }
117 
118 /*
119  * Locations of MSI Registers.
120  */
121 #define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
122 
123 /*
124  * Useful bits in the MSI Registers.
125  */
126 #define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
127 
msi_set_sync(void)128 static void msi_set_sync(void)
129 {
130 	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131 			      "andn %%g3, %2, %%g3\n\t"
132 			      "sta %%g3, [%0] %1\n\t" : :
133 			      "r" (MSI_MBUS_ARBEN),
134 			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135 }
136 
pmd_set(pmd_t * pmdp,pte_t * ptep)137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
138 {
139 	unsigned long ptp;	/* Physical address, shifted right by 4 */
140 	int i;
141 
142 	ptp = __nocache_pa(ptep) >> 4;
143 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
144 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
145 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
146 	}
147 }
148 
pmd_populate(struct mm_struct * mm,pmd_t * pmdp,struct page * ptep)149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
150 {
151 	unsigned long ptp;	/* Physical address, shifted right by 4 */
152 	int i;
153 
154 	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
155 	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
156 		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
157 		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
158 	}
159 }
160 
161 /* Find an entry in the third-level page table.. */
pte_offset_kernel(pmd_t * dir,unsigned long address)162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
163 {
164 	void *pte;
165 
166 	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
167 	return (pte_t *) pte +
168 	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
169 }
170 
171 /*
172  * size: bytes to allocate in the nocache area.
173  * align: bytes, number to align at.
174  * Returns the virtual address of the allocated area.
175  */
__srmmu_get_nocache(int size,int align)176 static void *__srmmu_get_nocache(int size, int align)
177 {
178 	int offset;
179 	unsigned long addr;
180 
181 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182 		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
183 		       size);
184 		size = SRMMU_NOCACHE_BITMAP_SHIFT;
185 	}
186 	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
187 		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
188 		       size);
189 		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
190 	}
191 	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
192 
193 	offset = bit_map_string_get(&srmmu_nocache_map,
194 				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
195 				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
196 	if (offset == -1) {
197 		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
198 		       size, (int) srmmu_nocache_size,
199 		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
200 		return NULL;
201 	}
202 
203 	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
204 	return (void *)addr;
205 }
206 
srmmu_get_nocache(int size,int align)207 void *srmmu_get_nocache(int size, int align)
208 {
209 	void *tmp;
210 
211 	tmp = __srmmu_get_nocache(size, align);
212 
213 	if (tmp)
214 		memset(tmp, 0, size);
215 
216 	return tmp;
217 }
218 
srmmu_free_nocache(void * addr,int size)219 void srmmu_free_nocache(void *addr, int size)
220 {
221 	unsigned long vaddr;
222 	int offset;
223 
224 	vaddr = (unsigned long)addr;
225 	if (vaddr < SRMMU_NOCACHE_VADDR) {
226 		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227 		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
228 		BUG();
229 	}
230 	if (vaddr + size > srmmu_nocache_end) {
231 		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232 		    vaddr, srmmu_nocache_end);
233 		BUG();
234 	}
235 	if (!is_power_of_2(size)) {
236 		printk("Size 0x%x is not a power of 2\n", size);
237 		BUG();
238 	}
239 	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
240 		printk("Size 0x%x is too small\n", size);
241 		BUG();
242 	}
243 	if (vaddr & (size - 1)) {
244 		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
245 		BUG();
246 	}
247 
248 	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
249 	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
250 
251 	bit_map_clear(&srmmu_nocache_map, offset, size);
252 }
253 
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
255 						 unsigned long end);
256 
257 /* Return how much physical memory we have.  */
probe_memory(void)258 static unsigned long __init probe_memory(void)
259 {
260 	unsigned long total = 0;
261 	int i;
262 
263 	for (i = 0; sp_banks[i].num_bytes; i++)
264 		total += sp_banks[i].num_bytes;
265 
266 	return total;
267 }
268 
269 /*
270  * Reserve nocache dynamically proportionally to the amount of
271  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
272  */
srmmu_nocache_calcsize(void)273 static void __init srmmu_nocache_calcsize(void)
274 {
275 	unsigned long sysmemavail = probe_memory() / 1024;
276 	int srmmu_nocache_npages;
277 
278 	srmmu_nocache_npages =
279 		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
280 
281  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282 	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283 	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
284 		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
285 
286 	/* anything above 1280 blows up */
287 	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
288 		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
289 
290 	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
291 	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
292 }
293 
srmmu_nocache_init(void)294 static void __init srmmu_nocache_init(void)
295 {
296 	void *srmmu_nocache_bitmap;
297 	unsigned int bitmap_bits;
298 	pgd_t *pgd;
299 	pmd_t *pmd;
300 	pte_t *pte;
301 	unsigned long paddr, vaddr;
302 	unsigned long pteval;
303 
304 	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
305 
306 	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
307 					    SRMMU_NOCACHE_ALIGN_MAX);
308 	if (!srmmu_nocache_pool)
309 		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
310 		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
311 	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
312 
313 	srmmu_nocache_bitmap =
314 		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
315 			       SMP_CACHE_BYTES);
316 	if (!srmmu_nocache_bitmap)
317 		panic("%s: Failed to allocate %zu bytes\n", __func__,
318 		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
319 	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
320 
321 	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
322 	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
323 	init_mm.pgd = srmmu_swapper_pg_dir;
324 
325 	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
326 
327 	paddr = __pa((unsigned long)srmmu_nocache_pool);
328 	vaddr = SRMMU_NOCACHE_VADDR;
329 
330 	while (vaddr < srmmu_nocache_end) {
331 		pgd = pgd_offset_k(vaddr);
332 		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
333 		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
334 
335 		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
336 
337 		if (srmmu_cache_pagetables)
338 			pteval |= SRMMU_CACHE;
339 
340 		set_pte(__nocache_fix(pte), __pte(pteval));
341 
342 		vaddr += PAGE_SIZE;
343 		paddr += PAGE_SIZE;
344 	}
345 
346 	flush_cache_all();
347 	flush_tlb_all();
348 }
349 
get_pgd_fast(void)350 pgd_t *get_pgd_fast(void)
351 {
352 	pgd_t *pgd = NULL;
353 
354 	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
355 	if (pgd) {
356 		pgd_t *init = pgd_offset_k(0);
357 		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
358 		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
359 						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
360 	}
361 
362 	return pgd;
363 }
364 
365 /*
366  * Hardware needs alignment to 256 only, but we align to whole page size
367  * to reduce fragmentation problems due to the buddy principle.
368  * XXX Provide actual fragmentation statistics in /proc.
369  *
370  * Alignments up to the page size are the same for physical and virtual
371  * addresses of the nocache area.
372  */
pte_alloc_one(struct mm_struct * mm)373 pgtable_t pte_alloc_one(struct mm_struct *mm)
374 {
375 	unsigned long pte;
376 	struct page *page;
377 
378 	if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
379 		return NULL;
380 	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
381 	if (!pgtable_pte_page_ctor(page)) {
382 		return NULL;
383 	}
384 	return page;
385 }
386 
pte_free(struct mm_struct * mm,pgtable_t pte)387 void pte_free(struct mm_struct *mm, pgtable_t pte)
388 {
389 	unsigned long p;
390 
391 	pgtable_pte_page_dtor(pte);
392 	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
393 	if (p == 0)
394 		BUG();
395 	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
396 
397 	/* free non cached virtual address*/
398 	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
399 }
400 
401 /* context handling - a dynamically sized pool is used */
402 #define NO_CONTEXT	-1
403 
404 struct ctx_list {
405 	struct ctx_list *next;
406 	struct ctx_list *prev;
407 	unsigned int ctx_number;
408 	struct mm_struct *ctx_mm;
409 };
410 
411 static struct ctx_list *ctx_list_pool;
412 static struct ctx_list ctx_free;
413 static struct ctx_list ctx_used;
414 
415 /* At boot time we determine the number of contexts */
416 static int num_contexts;
417 
remove_from_ctx_list(struct ctx_list * entry)418 static inline void remove_from_ctx_list(struct ctx_list *entry)
419 {
420 	entry->next->prev = entry->prev;
421 	entry->prev->next = entry->next;
422 }
423 
add_to_ctx_list(struct ctx_list * head,struct ctx_list * entry)424 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
425 {
426 	entry->next = head;
427 	(entry->prev = head->prev)->next = entry;
428 	head->prev = entry;
429 }
430 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
431 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
432 
433 
alloc_context(struct mm_struct * old_mm,struct mm_struct * mm)434 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
435 {
436 	struct ctx_list *ctxp;
437 
438 	ctxp = ctx_free.next;
439 	if (ctxp != &ctx_free) {
440 		remove_from_ctx_list(ctxp);
441 		add_to_used_ctxlist(ctxp);
442 		mm->context = ctxp->ctx_number;
443 		ctxp->ctx_mm = mm;
444 		return;
445 	}
446 	ctxp = ctx_used.next;
447 	if (ctxp->ctx_mm == old_mm)
448 		ctxp = ctxp->next;
449 	if (ctxp == &ctx_used)
450 		panic("out of mmu contexts");
451 	flush_cache_mm(ctxp->ctx_mm);
452 	flush_tlb_mm(ctxp->ctx_mm);
453 	remove_from_ctx_list(ctxp);
454 	add_to_used_ctxlist(ctxp);
455 	ctxp->ctx_mm->context = NO_CONTEXT;
456 	ctxp->ctx_mm = mm;
457 	mm->context = ctxp->ctx_number;
458 }
459 
free_context(int context)460 static inline void free_context(int context)
461 {
462 	struct ctx_list *ctx_old;
463 
464 	ctx_old = ctx_list_pool + context;
465 	remove_from_ctx_list(ctx_old);
466 	add_to_free_ctxlist(ctx_old);
467 }
468 
sparc_context_init(int numctx)469 static void __init sparc_context_init(int numctx)
470 {
471 	int ctx;
472 	unsigned long size;
473 
474 	size = numctx * sizeof(struct ctx_list);
475 	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
476 	if (!ctx_list_pool)
477 		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
478 
479 	for (ctx = 0; ctx < numctx; ctx++) {
480 		struct ctx_list *clist;
481 
482 		clist = (ctx_list_pool + ctx);
483 		clist->ctx_number = ctx;
484 		clist->ctx_mm = NULL;
485 	}
486 	ctx_free.next = ctx_free.prev = &ctx_free;
487 	ctx_used.next = ctx_used.prev = &ctx_used;
488 	for (ctx = 0; ctx < numctx; ctx++)
489 		add_to_free_ctxlist(ctx_list_pool + ctx);
490 }
491 
switch_mm(struct mm_struct * old_mm,struct mm_struct * mm,struct task_struct * tsk)492 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
493 	       struct task_struct *tsk)
494 {
495 	unsigned long flags;
496 
497 	if (mm->context == NO_CONTEXT) {
498 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
499 		alloc_context(old_mm, mm);
500 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
501 		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
502 	}
503 
504 	if (sparc_cpu_model == sparc_leon)
505 		leon_switch_mm();
506 
507 	if (is_hypersparc)
508 		hyper_flush_whole_icache();
509 
510 	srmmu_set_context(mm->context);
511 }
512 
513 /* Low level IO area allocation on the SRMMU. */
srmmu_mapioaddr(unsigned long physaddr,unsigned long virt_addr,int bus_type)514 static inline void srmmu_mapioaddr(unsigned long physaddr,
515 				   unsigned long virt_addr, int bus_type)
516 {
517 	pgd_t *pgdp;
518 	pmd_t *pmdp;
519 	pte_t *ptep;
520 	unsigned long tmp;
521 
522 	physaddr &= PAGE_MASK;
523 	pgdp = pgd_offset_k(virt_addr);
524 	pmdp = pmd_offset(pgdp, virt_addr);
525 	ptep = pte_offset_kernel(pmdp, virt_addr);
526 	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
527 
528 	/* I need to test whether this is consistent over all
529 	 * sun4m's.  The bus_type represents the upper 4 bits of
530 	 * 36-bit physical address on the I/O space lines...
531 	 */
532 	tmp |= (bus_type << 28);
533 	tmp |= SRMMU_PRIV;
534 	__flush_page_to_ram(virt_addr);
535 	set_pte(ptep, __pte(tmp));
536 }
537 
srmmu_mapiorange(unsigned int bus,unsigned long xpa,unsigned long xva,unsigned int len)538 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
539 		      unsigned long xva, unsigned int len)
540 {
541 	while (len != 0) {
542 		len -= PAGE_SIZE;
543 		srmmu_mapioaddr(xpa, xva, bus);
544 		xva += PAGE_SIZE;
545 		xpa += PAGE_SIZE;
546 	}
547 	flush_tlb_all();
548 }
549 
srmmu_unmapioaddr(unsigned long virt_addr)550 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
551 {
552 	pgd_t *pgdp;
553 	pmd_t *pmdp;
554 	pte_t *ptep;
555 
556 	pgdp = pgd_offset_k(virt_addr);
557 	pmdp = pmd_offset(pgdp, virt_addr);
558 	ptep = pte_offset_kernel(pmdp, virt_addr);
559 
560 	/* No need to flush uncacheable page. */
561 	__pte_clear(ptep);
562 }
563 
srmmu_unmapiorange(unsigned long virt_addr,unsigned int len)564 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
565 {
566 	while (len != 0) {
567 		len -= PAGE_SIZE;
568 		srmmu_unmapioaddr(virt_addr);
569 		virt_addr += PAGE_SIZE;
570 	}
571 	flush_tlb_all();
572 }
573 
574 /* tsunami.S */
575 extern void tsunami_flush_cache_all(void);
576 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
577 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
578 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
579 extern void tsunami_flush_page_to_ram(unsigned long page);
580 extern void tsunami_flush_page_for_dma(unsigned long page);
581 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
582 extern void tsunami_flush_tlb_all(void);
583 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
584 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
585 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
586 extern void tsunami_setup_blockops(void);
587 
588 /* swift.S */
589 extern void swift_flush_cache_all(void);
590 extern void swift_flush_cache_mm(struct mm_struct *mm);
591 extern void swift_flush_cache_range(struct vm_area_struct *vma,
592 				    unsigned long start, unsigned long end);
593 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
594 extern void swift_flush_page_to_ram(unsigned long page);
595 extern void swift_flush_page_for_dma(unsigned long page);
596 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
597 extern void swift_flush_tlb_all(void);
598 extern void swift_flush_tlb_mm(struct mm_struct *mm);
599 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
600 				  unsigned long start, unsigned long end);
601 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
602 
603 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
604 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
605 {
606 	int cctx, ctx1;
607 
608 	page &= PAGE_MASK;
609 	if ((ctx1 = vma->vm_mm->context) != -1) {
610 		cctx = srmmu_get_context();
611 /* Is context # ever different from current context? P3 */
612 		if (cctx != ctx1) {
613 			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
614 			srmmu_set_context(ctx1);
615 			swift_flush_page(page);
616 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
617 					"r" (page), "i" (ASI_M_FLUSH_PROBE));
618 			srmmu_set_context(cctx);
619 		} else {
620 			 /* Rm. prot. bits from virt. c. */
621 			/* swift_flush_cache_all(); */
622 			/* swift_flush_cache_page(vma, page); */
623 			swift_flush_page(page);
624 
625 			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
626 				"r" (page), "i" (ASI_M_FLUSH_PROBE));
627 			/* same as above: srmmu_flush_tlb_page() */
628 		}
629 	}
630 }
631 #endif
632 
633 /*
634  * The following are all MBUS based SRMMU modules, and therefore could
635  * be found in a multiprocessor configuration.  On the whole, these
636  * chips seems to be much more touchy about DVMA and page tables
637  * with respect to cache coherency.
638  */
639 
640 /* viking.S */
641 extern void viking_flush_cache_all(void);
642 extern void viking_flush_cache_mm(struct mm_struct *mm);
643 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
644 				     unsigned long end);
645 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
646 extern void viking_flush_page_to_ram(unsigned long page);
647 extern void viking_flush_page_for_dma(unsigned long page);
648 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
649 extern void viking_flush_page(unsigned long page);
650 extern void viking_mxcc_flush_page(unsigned long page);
651 extern void viking_flush_tlb_all(void);
652 extern void viking_flush_tlb_mm(struct mm_struct *mm);
653 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
654 				   unsigned long end);
655 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
656 				  unsigned long page);
657 extern void sun4dsmp_flush_tlb_all(void);
658 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
659 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
660 				   unsigned long end);
661 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
662 				  unsigned long page);
663 
664 /* hypersparc.S */
665 extern void hypersparc_flush_cache_all(void);
666 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
667 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
668 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
669 extern void hypersparc_flush_page_to_ram(unsigned long page);
670 extern void hypersparc_flush_page_for_dma(unsigned long page);
671 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
672 extern void hypersparc_flush_tlb_all(void);
673 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
674 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
675 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
676 extern void hypersparc_setup_blockops(void);
677 
678 /*
679  * NOTE: All of this startup code assumes the low 16mb (approx.) of
680  *       kernel mappings are done with one single contiguous chunk of
681  *       ram.  On small ram machines (classics mainly) we only get
682  *       around 8mb mapped for us.
683  */
684 
early_pgtable_allocfail(char * type)685 static void __init early_pgtable_allocfail(char *type)
686 {
687 	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
688 	prom_halt();
689 }
690 
srmmu_early_allocate_ptable_skeleton(unsigned long start,unsigned long end)691 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
692 							unsigned long end)
693 {
694 	pgd_t *pgdp;
695 	pmd_t *pmdp;
696 	pte_t *ptep;
697 
698 	while (start < end) {
699 		pgdp = pgd_offset_k(start);
700 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
701 			pmdp = __srmmu_get_nocache(
702 			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
703 			if (pmdp == NULL)
704 				early_pgtable_allocfail("pmd");
705 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
706 			pgd_set(__nocache_fix(pgdp), pmdp);
707 		}
708 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
709 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
710 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
711 			if (ptep == NULL)
712 				early_pgtable_allocfail("pte");
713 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
714 			pmd_set(__nocache_fix(pmdp), ptep);
715 		}
716 		if (start > (0xffffffffUL - PMD_SIZE))
717 			break;
718 		start = (start + PMD_SIZE) & PMD_MASK;
719 	}
720 }
721 
srmmu_allocate_ptable_skeleton(unsigned long start,unsigned long end)722 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
723 						  unsigned long end)
724 {
725 	pgd_t *pgdp;
726 	pmd_t *pmdp;
727 	pte_t *ptep;
728 
729 	while (start < end) {
730 		pgdp = pgd_offset_k(start);
731 		if (pgd_none(*pgdp)) {
732 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
733 			if (pmdp == NULL)
734 				early_pgtable_allocfail("pmd");
735 			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
736 			pgd_set(pgdp, pmdp);
737 		}
738 		pmdp = pmd_offset(pgdp, start);
739 		if (srmmu_pmd_none(*pmdp)) {
740 			ptep = __srmmu_get_nocache(PTE_SIZE,
741 							     PTE_SIZE);
742 			if (ptep == NULL)
743 				early_pgtable_allocfail("pte");
744 			memset(ptep, 0, PTE_SIZE);
745 			pmd_set(pmdp, ptep);
746 		}
747 		if (start > (0xffffffffUL - PMD_SIZE))
748 			break;
749 		start = (start + PMD_SIZE) & PMD_MASK;
750 	}
751 }
752 
753 /* These flush types are not available on all chips... */
srmmu_probe(unsigned long vaddr)754 static inline unsigned long srmmu_probe(unsigned long vaddr)
755 {
756 	unsigned long retval;
757 
758 	if (sparc_cpu_model != sparc_leon) {
759 
760 		vaddr &= PAGE_MASK;
761 		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
762 				     "=r" (retval) :
763 				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
764 	} else {
765 		retval = leon_swprobe(vaddr, NULL);
766 	}
767 	return retval;
768 }
769 
770 /*
771  * This is much cleaner than poking around physical address space
772  * looking at the prom's page table directly which is what most
773  * other OS's do.  Yuck... this is much better.
774  */
srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)775 static void __init srmmu_inherit_prom_mappings(unsigned long start,
776 					       unsigned long end)
777 {
778 	unsigned long probed;
779 	unsigned long addr;
780 	pgd_t *pgdp;
781 	pmd_t *pmdp;
782 	pte_t *ptep;
783 	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
784 
785 	while (start <= end) {
786 		if (start == 0)
787 			break; /* probably wrap around */
788 		if (start == 0xfef00000)
789 			start = KADB_DEBUGGER_BEGVM;
790 		probed = srmmu_probe(start);
791 		if (!probed) {
792 			/* continue probing until we find an entry */
793 			start += PAGE_SIZE;
794 			continue;
795 		}
796 
797 		/* A red snapper, see what it really is. */
798 		what = 0;
799 		addr = start - PAGE_SIZE;
800 
801 		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
802 			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
803 				what = 1;
804 		}
805 
806 		if (!(start & ~(SRMMU_PGDIR_MASK))) {
807 			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
808 				what = 2;
809 		}
810 
811 		pgdp = pgd_offset_k(start);
812 		if (what == 2) {
813 			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
814 			start += SRMMU_PGDIR_SIZE;
815 			continue;
816 		}
817 		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
818 			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
819 						   SRMMU_PMD_TABLE_SIZE);
820 			if (pmdp == NULL)
821 				early_pgtable_allocfail("pmd");
822 			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
823 			pgd_set(__nocache_fix(pgdp), pmdp);
824 		}
825 		pmdp = pmd_offset(__nocache_fix(pgdp), start);
826 		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
827 			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
828 			if (ptep == NULL)
829 				early_pgtable_allocfail("pte");
830 			memset(__nocache_fix(ptep), 0, PTE_SIZE);
831 			pmd_set(__nocache_fix(pmdp), ptep);
832 		}
833 		if (what == 1) {
834 			/* We bend the rule where all 16 PTPs in a pmd_t point
835 			 * inside the same PTE page, and we leak a perfectly
836 			 * good hardware PTE piece. Alternatives seem worse.
837 			 */
838 			unsigned int x;	/* Index of HW PMD in soft cluster */
839 			unsigned long *val;
840 			x = (start >> PMD_SHIFT) & 15;
841 			val = &pmdp->pmdv[x];
842 			*(unsigned long *)__nocache_fix(val) = probed;
843 			start += SRMMU_REAL_PMD_SIZE;
844 			continue;
845 		}
846 		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
847 		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
848 		start += PAGE_SIZE;
849 	}
850 }
851 
852 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
853 
854 /* Create a third-level SRMMU 16MB page mapping. */
do_large_mapping(unsigned long vaddr,unsigned long phys_base)855 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
856 {
857 	pgd_t *pgdp = pgd_offset_k(vaddr);
858 	unsigned long big_pte;
859 
860 	big_pte = KERNEL_PTE(phys_base >> 4);
861 	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
862 }
863 
864 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
map_spbank(unsigned long vbase,int sp_entry)865 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
866 {
867 	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
868 	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
869 	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
870 	/* Map "low" memory only */
871 	const unsigned long min_vaddr = PAGE_OFFSET;
872 	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
873 
874 	if (vstart < min_vaddr || vstart >= max_vaddr)
875 		return vstart;
876 
877 	if (vend > max_vaddr || vend < min_vaddr)
878 		vend = max_vaddr;
879 
880 	while (vstart < vend) {
881 		do_large_mapping(vstart, pstart);
882 		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
883 	}
884 	return vstart;
885 }
886 
map_kernel(void)887 static void __init map_kernel(void)
888 {
889 	int i;
890 
891 	if (phys_base > 0) {
892 		do_large_mapping(PAGE_OFFSET, phys_base);
893 	}
894 
895 	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
896 		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
897 	}
898 }
899 
900 void (*poke_srmmu)(void) = NULL;
901 
srmmu_paging_init(void)902 void __init srmmu_paging_init(void)
903 {
904 	int i;
905 	phandle cpunode;
906 	char node_str[128];
907 	pgd_t *pgd;
908 	pmd_t *pmd;
909 	pte_t *pte;
910 	unsigned long pages_avail;
911 
912 	init_mm.context = (unsigned long) NO_CONTEXT;
913 	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
914 
915 	if (sparc_cpu_model == sun4d)
916 		num_contexts = 65536; /* We know it is Viking */
917 	else {
918 		/* Find the number of contexts on the srmmu. */
919 		cpunode = prom_getchild(prom_root_node);
920 		num_contexts = 0;
921 		while (cpunode != 0) {
922 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
923 			if (!strcmp(node_str, "cpu")) {
924 				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
925 				break;
926 			}
927 			cpunode = prom_getsibling(cpunode);
928 		}
929 	}
930 
931 	if (!num_contexts) {
932 		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
933 		prom_halt();
934 	}
935 
936 	pages_avail = 0;
937 	last_valid_pfn = bootmem_init(&pages_avail);
938 
939 	srmmu_nocache_calcsize();
940 	srmmu_nocache_init();
941 	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
942 	map_kernel();
943 
944 	/* ctx table has to be physically aligned to its size */
945 	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
946 	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
947 
948 	for (i = 0; i < num_contexts; i++)
949 		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
950 
951 	flush_cache_all();
952 	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
953 #ifdef CONFIG_SMP
954 	/* Stop from hanging here... */
955 	local_ops->tlb_all();
956 #else
957 	flush_tlb_all();
958 #endif
959 	poke_srmmu();
960 
961 	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
962 	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
963 
964 	srmmu_allocate_ptable_skeleton(
965 		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
966 	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
967 
968 	pgd = pgd_offset_k(PKMAP_BASE);
969 	pmd = pmd_offset(pgd, PKMAP_BASE);
970 	pte = pte_offset_kernel(pmd, PKMAP_BASE);
971 	pkmap_page_table = pte;
972 
973 	flush_cache_all();
974 	flush_tlb_all();
975 
976 	sparc_context_init(num_contexts);
977 
978 	kmap_init();
979 
980 	{
981 		unsigned long zones_size[MAX_NR_ZONES];
982 		unsigned long zholes_size[MAX_NR_ZONES];
983 		unsigned long npages;
984 		int znum;
985 
986 		for (znum = 0; znum < MAX_NR_ZONES; znum++)
987 			zones_size[znum] = zholes_size[znum] = 0;
988 
989 		npages = max_low_pfn - pfn_base;
990 
991 		zones_size[ZONE_DMA] = npages;
992 		zholes_size[ZONE_DMA] = npages - pages_avail;
993 
994 		npages = highend_pfn - max_low_pfn;
995 		zones_size[ZONE_HIGHMEM] = npages;
996 		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
997 
998 		free_area_init_node(0, zones_size, pfn_base, zholes_size);
999 	}
1000 }
1001 
mmu_info(struct seq_file * m)1002 void mmu_info(struct seq_file *m)
1003 {
1004 	seq_printf(m,
1005 		   "MMU type\t: %s\n"
1006 		   "contexts\t: %d\n"
1007 		   "nocache total\t: %ld\n"
1008 		   "nocache used\t: %d\n",
1009 		   srmmu_name,
1010 		   num_contexts,
1011 		   srmmu_nocache_size,
1012 		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1013 }
1014 
init_new_context(struct task_struct * tsk,struct mm_struct * mm)1015 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1016 {
1017 	mm->context = NO_CONTEXT;
1018 	return 0;
1019 }
1020 
destroy_context(struct mm_struct * mm)1021 void destroy_context(struct mm_struct *mm)
1022 {
1023 	unsigned long flags;
1024 
1025 	if (mm->context != NO_CONTEXT) {
1026 		flush_cache_mm(mm);
1027 		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1028 		flush_tlb_mm(mm);
1029 		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1030 		free_context(mm->context);
1031 		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1032 		mm->context = NO_CONTEXT;
1033 	}
1034 }
1035 
1036 /* Init various srmmu chip types. */
srmmu_is_bad(void)1037 static void __init srmmu_is_bad(void)
1038 {
1039 	prom_printf("Could not determine SRMMU chip type.\n");
1040 	prom_halt();
1041 }
1042 
init_vac_layout(void)1043 static void __init init_vac_layout(void)
1044 {
1045 	phandle nd;
1046 	int cache_lines;
1047 	char node_str[128];
1048 #ifdef CONFIG_SMP
1049 	int cpu = 0;
1050 	unsigned long max_size = 0;
1051 	unsigned long min_line_size = 0x10000000;
1052 #endif
1053 
1054 	nd = prom_getchild(prom_root_node);
1055 	while ((nd = prom_getsibling(nd)) != 0) {
1056 		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1057 		if (!strcmp(node_str, "cpu")) {
1058 			vac_line_size = prom_getint(nd, "cache-line-size");
1059 			if (vac_line_size == -1) {
1060 				prom_printf("can't determine cache-line-size, halting.\n");
1061 				prom_halt();
1062 			}
1063 			cache_lines = prom_getint(nd, "cache-nlines");
1064 			if (cache_lines == -1) {
1065 				prom_printf("can't determine cache-nlines, halting.\n");
1066 				prom_halt();
1067 			}
1068 
1069 			vac_cache_size = cache_lines * vac_line_size;
1070 #ifdef CONFIG_SMP
1071 			if (vac_cache_size > max_size)
1072 				max_size = vac_cache_size;
1073 			if (vac_line_size < min_line_size)
1074 				min_line_size = vac_line_size;
1075 			//FIXME: cpus not contiguous!!
1076 			cpu++;
1077 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1078 				break;
1079 #else
1080 			break;
1081 #endif
1082 		}
1083 	}
1084 	if (nd == 0) {
1085 		prom_printf("No CPU nodes found, halting.\n");
1086 		prom_halt();
1087 	}
1088 #ifdef CONFIG_SMP
1089 	vac_cache_size = max_size;
1090 	vac_line_size = min_line_size;
1091 #endif
1092 	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1093 	       (int)vac_cache_size, (int)vac_line_size);
1094 }
1095 
poke_hypersparc(void)1096 static void poke_hypersparc(void)
1097 {
1098 	volatile unsigned long clear;
1099 	unsigned long mreg = srmmu_get_mmureg();
1100 
1101 	hyper_flush_unconditional_combined();
1102 
1103 	mreg &= ~(HYPERSPARC_CWENABLE);
1104 	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1105 	mreg |= (HYPERSPARC_CMODE);
1106 
1107 	srmmu_set_mmureg(mreg);
1108 
1109 #if 0 /* XXX I think this is bad news... -DaveM */
1110 	hyper_clear_all_tags();
1111 #endif
1112 
1113 	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1114 	hyper_flush_whole_icache();
1115 	clear = srmmu_get_faddr();
1116 	clear = srmmu_get_fstatus();
1117 }
1118 
1119 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1120 	.cache_all	= hypersparc_flush_cache_all,
1121 	.cache_mm	= hypersparc_flush_cache_mm,
1122 	.cache_page	= hypersparc_flush_cache_page,
1123 	.cache_range	= hypersparc_flush_cache_range,
1124 	.tlb_all	= hypersparc_flush_tlb_all,
1125 	.tlb_mm		= hypersparc_flush_tlb_mm,
1126 	.tlb_page	= hypersparc_flush_tlb_page,
1127 	.tlb_range	= hypersparc_flush_tlb_range,
1128 	.page_to_ram	= hypersparc_flush_page_to_ram,
1129 	.sig_insns	= hypersparc_flush_sig_insns,
1130 	.page_for_dma	= hypersparc_flush_page_for_dma,
1131 };
1132 
init_hypersparc(void)1133 static void __init init_hypersparc(void)
1134 {
1135 	srmmu_name = "ROSS HyperSparc";
1136 	srmmu_modtype = HyperSparc;
1137 
1138 	init_vac_layout();
1139 
1140 	is_hypersparc = 1;
1141 	sparc32_cachetlb_ops = &hypersparc_ops;
1142 
1143 	poke_srmmu = poke_hypersparc;
1144 
1145 	hypersparc_setup_blockops();
1146 }
1147 
poke_swift(void)1148 static void poke_swift(void)
1149 {
1150 	unsigned long mreg;
1151 
1152 	/* Clear any crap from the cache or else... */
1153 	swift_flush_cache_all();
1154 
1155 	/* Enable I & D caches */
1156 	mreg = srmmu_get_mmureg();
1157 	mreg |= (SWIFT_IE | SWIFT_DE);
1158 	/*
1159 	 * The Swift branch folding logic is completely broken.  At
1160 	 * trap time, if things are just right, if can mistakenly
1161 	 * think that a trap is coming from kernel mode when in fact
1162 	 * it is coming from user mode (it mis-executes the branch in
1163 	 * the trap code).  So you see things like crashme completely
1164 	 * hosing your machine which is completely unacceptable.  Turn
1165 	 * this shit off... nice job Fujitsu.
1166 	 */
1167 	mreg &= ~(SWIFT_BF);
1168 	srmmu_set_mmureg(mreg);
1169 }
1170 
1171 static const struct sparc32_cachetlb_ops swift_ops = {
1172 	.cache_all	= swift_flush_cache_all,
1173 	.cache_mm	= swift_flush_cache_mm,
1174 	.cache_page	= swift_flush_cache_page,
1175 	.cache_range	= swift_flush_cache_range,
1176 	.tlb_all	= swift_flush_tlb_all,
1177 	.tlb_mm		= swift_flush_tlb_mm,
1178 	.tlb_page	= swift_flush_tlb_page,
1179 	.tlb_range	= swift_flush_tlb_range,
1180 	.page_to_ram	= swift_flush_page_to_ram,
1181 	.sig_insns	= swift_flush_sig_insns,
1182 	.page_for_dma	= swift_flush_page_for_dma,
1183 };
1184 
1185 #define SWIFT_MASKID_ADDR  0x10003018
init_swift(void)1186 static void __init init_swift(void)
1187 {
1188 	unsigned long swift_rev;
1189 
1190 	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1191 			     "srl %0, 0x18, %0\n\t" :
1192 			     "=r" (swift_rev) :
1193 			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1194 	srmmu_name = "Fujitsu Swift";
1195 	switch (swift_rev) {
1196 	case 0x11:
1197 	case 0x20:
1198 	case 0x23:
1199 	case 0x30:
1200 		srmmu_modtype = Swift_lots_o_bugs;
1201 		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1202 		/*
1203 		 * Gee george, I wonder why Sun is so hush hush about
1204 		 * this hardware bug... really braindamage stuff going
1205 		 * on here.  However I think we can find a way to avoid
1206 		 * all of the workaround overhead under Linux.  Basically,
1207 		 * any page fault can cause kernel pages to become user
1208 		 * accessible (the mmu gets confused and clears some of
1209 		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1210 		 * horrible eh?  But wait, after extensive testing it appears
1211 		 * that if you use pgd_t level large kernel pte's (like the
1212 		 * 4MB pages on the Pentium) the bug does not get tripped
1213 		 * at all.  This avoids almost all of the major overhead.
1214 		 * Welcome to a world where your vendor tells you to,
1215 		 * "apply this kernel patch" instead of "sorry for the
1216 		 * broken hardware, send it back and we'll give you
1217 		 * properly functioning parts"
1218 		 */
1219 		break;
1220 	case 0x25:
1221 	case 0x31:
1222 		srmmu_modtype = Swift_bad_c;
1223 		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1224 		/*
1225 		 * You see Sun allude to this hardware bug but never
1226 		 * admit things directly, they'll say things like,
1227 		 * "the Swift chip cache problems" or similar.
1228 		 */
1229 		break;
1230 	default:
1231 		srmmu_modtype = Swift_ok;
1232 		break;
1233 	}
1234 
1235 	sparc32_cachetlb_ops = &swift_ops;
1236 	flush_page_for_dma_global = 0;
1237 
1238 	/*
1239 	 * Are you now convinced that the Swift is one of the
1240 	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1241 	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1242 	 * you examined the microcode of the Swift you'd find
1243 	 * XXX's all over the place.
1244 	 */
1245 	poke_srmmu = poke_swift;
1246 }
1247 
turbosparc_flush_cache_all(void)1248 static void turbosparc_flush_cache_all(void)
1249 {
1250 	flush_user_windows();
1251 	turbosparc_idflash_clear();
1252 }
1253 
turbosparc_flush_cache_mm(struct mm_struct * mm)1254 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1255 {
1256 	FLUSH_BEGIN(mm)
1257 	flush_user_windows();
1258 	turbosparc_idflash_clear();
1259 	FLUSH_END
1260 }
1261 
turbosparc_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1262 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1263 {
1264 	FLUSH_BEGIN(vma->vm_mm)
1265 	flush_user_windows();
1266 	turbosparc_idflash_clear();
1267 	FLUSH_END
1268 }
1269 
turbosparc_flush_cache_page(struct vm_area_struct * vma,unsigned long page)1270 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1271 {
1272 	FLUSH_BEGIN(vma->vm_mm)
1273 	flush_user_windows();
1274 	if (vma->vm_flags & VM_EXEC)
1275 		turbosparc_flush_icache();
1276 	turbosparc_flush_dcache();
1277 	FLUSH_END
1278 }
1279 
1280 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
turbosparc_flush_page_to_ram(unsigned long page)1281 static void turbosparc_flush_page_to_ram(unsigned long page)
1282 {
1283 #ifdef TURBOSPARC_WRITEBACK
1284 	volatile unsigned long clear;
1285 
1286 	if (srmmu_probe(page))
1287 		turbosparc_flush_page_cache(page);
1288 	clear = srmmu_get_fstatus();
1289 #endif
1290 }
1291 
turbosparc_flush_sig_insns(struct mm_struct * mm,unsigned long insn_addr)1292 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1293 {
1294 }
1295 
turbosparc_flush_page_for_dma(unsigned long page)1296 static void turbosparc_flush_page_for_dma(unsigned long page)
1297 {
1298 	turbosparc_flush_dcache();
1299 }
1300 
turbosparc_flush_tlb_all(void)1301 static void turbosparc_flush_tlb_all(void)
1302 {
1303 	srmmu_flush_whole_tlb();
1304 }
1305 
turbosparc_flush_tlb_mm(struct mm_struct * mm)1306 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1307 {
1308 	FLUSH_BEGIN(mm)
1309 	srmmu_flush_whole_tlb();
1310 	FLUSH_END
1311 }
1312 
turbosparc_flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1313 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1314 {
1315 	FLUSH_BEGIN(vma->vm_mm)
1316 	srmmu_flush_whole_tlb();
1317 	FLUSH_END
1318 }
1319 
turbosparc_flush_tlb_page(struct vm_area_struct * vma,unsigned long page)1320 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1321 {
1322 	FLUSH_BEGIN(vma->vm_mm)
1323 	srmmu_flush_whole_tlb();
1324 	FLUSH_END
1325 }
1326 
1327 
poke_turbosparc(void)1328 static void poke_turbosparc(void)
1329 {
1330 	unsigned long mreg = srmmu_get_mmureg();
1331 	unsigned long ccreg;
1332 
1333 	/* Clear any crap from the cache or else... */
1334 	turbosparc_flush_cache_all();
1335 	/* Temporarily disable I & D caches */
1336 	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1337 	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1338 	srmmu_set_mmureg(mreg);
1339 
1340 	ccreg = turbosparc_get_ccreg();
1341 
1342 #ifdef TURBOSPARC_WRITEBACK
1343 	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1344 	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1345 			/* Write-back D-cache, emulate VLSI
1346 			 * abortion number three, not number one */
1347 #else
1348 	/* For now let's play safe, optimize later */
1349 	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1350 			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1351 	ccreg &= ~(TURBOSPARC_uS2);
1352 			/* Emulate VLSI abortion number three, not number one */
1353 #endif
1354 
1355 	switch (ccreg & 7) {
1356 	case 0: /* No SE cache */
1357 	case 7: /* Test mode */
1358 		break;
1359 	default:
1360 		ccreg |= (TURBOSPARC_SCENABLE);
1361 	}
1362 	turbosparc_set_ccreg(ccreg);
1363 
1364 	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1365 	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1366 	srmmu_set_mmureg(mreg);
1367 }
1368 
1369 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1370 	.cache_all	= turbosparc_flush_cache_all,
1371 	.cache_mm	= turbosparc_flush_cache_mm,
1372 	.cache_page	= turbosparc_flush_cache_page,
1373 	.cache_range	= turbosparc_flush_cache_range,
1374 	.tlb_all	= turbosparc_flush_tlb_all,
1375 	.tlb_mm		= turbosparc_flush_tlb_mm,
1376 	.tlb_page	= turbosparc_flush_tlb_page,
1377 	.tlb_range	= turbosparc_flush_tlb_range,
1378 	.page_to_ram	= turbosparc_flush_page_to_ram,
1379 	.sig_insns	= turbosparc_flush_sig_insns,
1380 	.page_for_dma	= turbosparc_flush_page_for_dma,
1381 };
1382 
init_turbosparc(void)1383 static void __init init_turbosparc(void)
1384 {
1385 	srmmu_name = "Fujitsu TurboSparc";
1386 	srmmu_modtype = TurboSparc;
1387 	sparc32_cachetlb_ops = &turbosparc_ops;
1388 	poke_srmmu = poke_turbosparc;
1389 }
1390 
poke_tsunami(void)1391 static void poke_tsunami(void)
1392 {
1393 	unsigned long mreg = srmmu_get_mmureg();
1394 
1395 	tsunami_flush_icache();
1396 	tsunami_flush_dcache();
1397 	mreg &= ~TSUNAMI_ITD;
1398 	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1399 	srmmu_set_mmureg(mreg);
1400 }
1401 
1402 static const struct sparc32_cachetlb_ops tsunami_ops = {
1403 	.cache_all	= tsunami_flush_cache_all,
1404 	.cache_mm	= tsunami_flush_cache_mm,
1405 	.cache_page	= tsunami_flush_cache_page,
1406 	.cache_range	= tsunami_flush_cache_range,
1407 	.tlb_all	= tsunami_flush_tlb_all,
1408 	.tlb_mm		= tsunami_flush_tlb_mm,
1409 	.tlb_page	= tsunami_flush_tlb_page,
1410 	.tlb_range	= tsunami_flush_tlb_range,
1411 	.page_to_ram	= tsunami_flush_page_to_ram,
1412 	.sig_insns	= tsunami_flush_sig_insns,
1413 	.page_for_dma	= tsunami_flush_page_for_dma,
1414 };
1415 
init_tsunami(void)1416 static void __init init_tsunami(void)
1417 {
1418 	/*
1419 	 * Tsunami's pretty sane, Sun and TI actually got it
1420 	 * somewhat right this time.  Fujitsu should have
1421 	 * taken some lessons from them.
1422 	 */
1423 
1424 	srmmu_name = "TI Tsunami";
1425 	srmmu_modtype = Tsunami;
1426 	sparc32_cachetlb_ops = &tsunami_ops;
1427 	poke_srmmu = poke_tsunami;
1428 
1429 	tsunami_setup_blockops();
1430 }
1431 
poke_viking(void)1432 static void poke_viking(void)
1433 {
1434 	unsigned long mreg = srmmu_get_mmureg();
1435 	static int smp_catch;
1436 
1437 	if (viking_mxcc_present) {
1438 		unsigned long mxcc_control = mxcc_get_creg();
1439 
1440 		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1441 		mxcc_control &= ~(MXCC_CTL_RRC);
1442 		mxcc_set_creg(mxcc_control);
1443 
1444 		/*
1445 		 * We don't need memory parity checks.
1446 		 * XXX This is a mess, have to dig out later. ecd.
1447 		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1448 		 */
1449 
1450 		/* We do cache ptables on MXCC. */
1451 		mreg |= VIKING_TCENABLE;
1452 	} else {
1453 		unsigned long bpreg;
1454 
1455 		mreg &= ~(VIKING_TCENABLE);
1456 		if (smp_catch++) {
1457 			/* Must disable mixed-cmd mode here for other cpu's. */
1458 			bpreg = viking_get_bpreg();
1459 			bpreg &= ~(VIKING_ACTION_MIX);
1460 			viking_set_bpreg(bpreg);
1461 
1462 			/* Just in case PROM does something funny. */
1463 			msi_set_sync();
1464 		}
1465 	}
1466 
1467 	mreg |= VIKING_SPENABLE;
1468 	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1469 	mreg |= VIKING_SBENABLE;
1470 	mreg &= ~(VIKING_ACENABLE);
1471 	srmmu_set_mmureg(mreg);
1472 }
1473 
1474 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1475 	.cache_all	= viking_flush_cache_all,
1476 	.cache_mm	= viking_flush_cache_mm,
1477 	.cache_page	= viking_flush_cache_page,
1478 	.cache_range	= viking_flush_cache_range,
1479 	.tlb_all	= viking_flush_tlb_all,
1480 	.tlb_mm		= viking_flush_tlb_mm,
1481 	.tlb_page	= viking_flush_tlb_page,
1482 	.tlb_range	= viking_flush_tlb_range,
1483 	.page_to_ram	= viking_flush_page_to_ram,
1484 	.sig_insns	= viking_flush_sig_insns,
1485 	.page_for_dma	= viking_flush_page_for_dma,
1486 };
1487 
1488 #ifdef CONFIG_SMP
1489 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1490  * perform the local TLB flush and all the other cpus will see it.
1491  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1492  * that requires that we add some synchronization to these flushes.
1493  *
1494  * The bug is that the fifo which keeps track of all the pending TLB
1495  * broadcasts in the system is an entry or two too small, so if we
1496  * have too many going at once we'll overflow that fifo and lose a TLB
1497  * flush resulting in corruption.
1498  *
1499  * Our workaround is to take a global spinlock around the TLB flushes,
1500  * which guarentees we won't ever have too many pending.  It's a big
1501  * hammer, but a semaphore like system to make sure we only have N TLB
1502  * flushes going at once will require SMP locking anyways so there's
1503  * no real value in trying any harder than this.
1504  */
1505 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1506 	.cache_all	= viking_flush_cache_all,
1507 	.cache_mm	= viking_flush_cache_mm,
1508 	.cache_page	= viking_flush_cache_page,
1509 	.cache_range	= viking_flush_cache_range,
1510 	.tlb_all	= sun4dsmp_flush_tlb_all,
1511 	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1512 	.tlb_page	= sun4dsmp_flush_tlb_page,
1513 	.tlb_range	= sun4dsmp_flush_tlb_range,
1514 	.page_to_ram	= viking_flush_page_to_ram,
1515 	.sig_insns	= viking_flush_sig_insns,
1516 	.page_for_dma	= viking_flush_page_for_dma,
1517 };
1518 #endif
1519 
init_viking(void)1520 static void __init init_viking(void)
1521 {
1522 	unsigned long mreg = srmmu_get_mmureg();
1523 
1524 	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1525 	if (mreg & VIKING_MMODE) {
1526 		srmmu_name = "TI Viking";
1527 		viking_mxcc_present = 0;
1528 		msi_set_sync();
1529 
1530 		/*
1531 		 * We need this to make sure old viking takes no hits
1532 		 * on it's cache for dma snoops to workaround the
1533 		 * "load from non-cacheable memory" interrupt bug.
1534 		 * This is only necessary because of the new way in
1535 		 * which we use the IOMMU.
1536 		 */
1537 		viking_ops.page_for_dma = viking_flush_page;
1538 #ifdef CONFIG_SMP
1539 		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1540 #endif
1541 		flush_page_for_dma_global = 0;
1542 	} else {
1543 		srmmu_name = "TI Viking/MXCC";
1544 		viking_mxcc_present = 1;
1545 		srmmu_cache_pagetables = 1;
1546 	}
1547 
1548 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1549 		&viking_ops;
1550 #ifdef CONFIG_SMP
1551 	if (sparc_cpu_model == sun4d)
1552 		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1553 			&viking_sun4d_smp_ops;
1554 #endif
1555 
1556 	poke_srmmu = poke_viking;
1557 }
1558 
1559 /* Probe for the srmmu chip version. */
get_srmmu_type(void)1560 static void __init get_srmmu_type(void)
1561 {
1562 	unsigned long mreg, psr;
1563 	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1564 
1565 	srmmu_modtype = SRMMU_INVAL_MOD;
1566 	hwbug_bitmask = 0;
1567 
1568 	mreg = srmmu_get_mmureg(); psr = get_psr();
1569 	mod_typ = (mreg & 0xf0000000) >> 28;
1570 	mod_rev = (mreg & 0x0f000000) >> 24;
1571 	psr_typ = (psr >> 28) & 0xf;
1572 	psr_vers = (psr >> 24) & 0xf;
1573 
1574 	/* First, check for sparc-leon. */
1575 	if (sparc_cpu_model == sparc_leon) {
1576 		init_leon();
1577 		return;
1578 	}
1579 
1580 	/* Second, check for HyperSparc or Cypress. */
1581 	if (mod_typ == 1) {
1582 		switch (mod_rev) {
1583 		case 7:
1584 			/* UP or MP Hypersparc */
1585 			init_hypersparc();
1586 			break;
1587 		case 0:
1588 		case 2:
1589 		case 10:
1590 		case 11:
1591 		case 12:
1592 		case 13:
1593 		case 14:
1594 		case 15:
1595 		default:
1596 			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1597 			prom_halt();
1598 			break;
1599 		}
1600 		return;
1601 	}
1602 
1603 	/* Now Fujitsu TurboSparc. It might happen that it is
1604 	 * in Swift emulation mode, so we will check later...
1605 	 */
1606 	if (psr_typ == 0 && psr_vers == 5) {
1607 		init_turbosparc();
1608 		return;
1609 	}
1610 
1611 	/* Next check for Fujitsu Swift. */
1612 	if (psr_typ == 0 && psr_vers == 4) {
1613 		phandle cpunode;
1614 		char node_str[128];
1615 
1616 		/* Look if it is not a TurboSparc emulating Swift... */
1617 		cpunode = prom_getchild(prom_root_node);
1618 		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1619 			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1620 			if (!strcmp(node_str, "cpu")) {
1621 				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1622 				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1623 					init_turbosparc();
1624 					return;
1625 				}
1626 				break;
1627 			}
1628 		}
1629 
1630 		init_swift();
1631 		return;
1632 	}
1633 
1634 	/* Now the Viking family of srmmu. */
1635 	if (psr_typ == 4 &&
1636 	   ((psr_vers == 0) ||
1637 	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1638 		init_viking();
1639 		return;
1640 	}
1641 
1642 	/* Finally the Tsunami. */
1643 	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1644 		init_tsunami();
1645 		return;
1646 	}
1647 
1648 	/* Oh well */
1649 	srmmu_is_bad();
1650 }
1651 
1652 #ifdef CONFIG_SMP
1653 /* Local cross-calls. */
smp_flush_page_for_dma(unsigned long page)1654 static void smp_flush_page_for_dma(unsigned long page)
1655 {
1656 	xc1((smpfunc_t) local_ops->page_for_dma, page);
1657 	local_ops->page_for_dma(page);
1658 }
1659 
smp_flush_cache_all(void)1660 static void smp_flush_cache_all(void)
1661 {
1662 	xc0((smpfunc_t) local_ops->cache_all);
1663 	local_ops->cache_all();
1664 }
1665 
smp_flush_tlb_all(void)1666 static void smp_flush_tlb_all(void)
1667 {
1668 	xc0((smpfunc_t) local_ops->tlb_all);
1669 	local_ops->tlb_all();
1670 }
1671 
smp_flush_cache_mm(struct mm_struct * mm)1672 static void smp_flush_cache_mm(struct mm_struct *mm)
1673 {
1674 	if (mm->context != NO_CONTEXT) {
1675 		cpumask_t cpu_mask;
1676 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1677 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1678 		if (!cpumask_empty(&cpu_mask))
1679 			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1680 		local_ops->cache_mm(mm);
1681 	}
1682 }
1683 
smp_flush_tlb_mm(struct mm_struct * mm)1684 static void smp_flush_tlb_mm(struct mm_struct *mm)
1685 {
1686 	if (mm->context != NO_CONTEXT) {
1687 		cpumask_t cpu_mask;
1688 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1689 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1690 		if (!cpumask_empty(&cpu_mask)) {
1691 			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1692 			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1693 				cpumask_copy(mm_cpumask(mm),
1694 					     cpumask_of(smp_processor_id()));
1695 		}
1696 		local_ops->tlb_mm(mm);
1697 	}
1698 }
1699 
smp_flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1700 static void smp_flush_cache_range(struct vm_area_struct *vma,
1701 				  unsigned long start,
1702 				  unsigned long end)
1703 {
1704 	struct mm_struct *mm = vma->vm_mm;
1705 
1706 	if (mm->context != NO_CONTEXT) {
1707 		cpumask_t cpu_mask;
1708 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1709 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1710 		if (!cpumask_empty(&cpu_mask))
1711 			xc3((smpfunc_t) local_ops->cache_range,
1712 			    (unsigned long) vma, start, end);
1713 		local_ops->cache_range(vma, start, end);
1714 	}
1715 }
1716 
smp_flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)1717 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1718 				unsigned long start,
1719 				unsigned long end)
1720 {
1721 	struct mm_struct *mm = vma->vm_mm;
1722 
1723 	if (mm->context != NO_CONTEXT) {
1724 		cpumask_t cpu_mask;
1725 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1726 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1727 		if (!cpumask_empty(&cpu_mask))
1728 			xc3((smpfunc_t) local_ops->tlb_range,
1729 			    (unsigned long) vma, start, end);
1730 		local_ops->tlb_range(vma, start, end);
1731 	}
1732 }
1733 
smp_flush_cache_page(struct vm_area_struct * vma,unsigned long page)1734 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1735 {
1736 	struct mm_struct *mm = vma->vm_mm;
1737 
1738 	if (mm->context != NO_CONTEXT) {
1739 		cpumask_t cpu_mask;
1740 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1741 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1742 		if (!cpumask_empty(&cpu_mask))
1743 			xc2((smpfunc_t) local_ops->cache_page,
1744 			    (unsigned long) vma, page);
1745 		local_ops->cache_page(vma, page);
1746 	}
1747 }
1748 
smp_flush_tlb_page(struct vm_area_struct * vma,unsigned long page)1749 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1750 {
1751 	struct mm_struct *mm = vma->vm_mm;
1752 
1753 	if (mm->context != NO_CONTEXT) {
1754 		cpumask_t cpu_mask;
1755 		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1756 		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1757 		if (!cpumask_empty(&cpu_mask))
1758 			xc2((smpfunc_t) local_ops->tlb_page,
1759 			    (unsigned long) vma, page);
1760 		local_ops->tlb_page(vma, page);
1761 	}
1762 }
1763 
smp_flush_page_to_ram(unsigned long page)1764 static void smp_flush_page_to_ram(unsigned long page)
1765 {
1766 	/* Current theory is that those who call this are the one's
1767 	 * who have just dirtied their cache with the pages contents
1768 	 * in kernel space, therefore we only run this on local cpu.
1769 	 *
1770 	 * XXX This experiment failed, research further... -DaveM
1771 	 */
1772 #if 1
1773 	xc1((smpfunc_t) local_ops->page_to_ram, page);
1774 #endif
1775 	local_ops->page_to_ram(page);
1776 }
1777 
smp_flush_sig_insns(struct mm_struct * mm,unsigned long insn_addr)1778 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1779 {
1780 	cpumask_t cpu_mask;
1781 	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1782 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1783 	if (!cpumask_empty(&cpu_mask))
1784 		xc2((smpfunc_t) local_ops->sig_insns,
1785 		    (unsigned long) mm, insn_addr);
1786 	local_ops->sig_insns(mm, insn_addr);
1787 }
1788 
1789 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1790 	.cache_all	= smp_flush_cache_all,
1791 	.cache_mm	= smp_flush_cache_mm,
1792 	.cache_page	= smp_flush_cache_page,
1793 	.cache_range	= smp_flush_cache_range,
1794 	.tlb_all	= smp_flush_tlb_all,
1795 	.tlb_mm		= smp_flush_tlb_mm,
1796 	.tlb_page	= smp_flush_tlb_page,
1797 	.tlb_range	= smp_flush_tlb_range,
1798 	.page_to_ram	= smp_flush_page_to_ram,
1799 	.sig_insns	= smp_flush_sig_insns,
1800 	.page_for_dma	= smp_flush_page_for_dma,
1801 };
1802 #endif
1803 
1804 /* Load up routines and constants for sun4m and sun4d mmu */
load_mmu(void)1805 void __init load_mmu(void)
1806 {
1807 	/* Functions */
1808 	get_srmmu_type();
1809 
1810 #ifdef CONFIG_SMP
1811 	/* El switcheroo... */
1812 	local_ops = sparc32_cachetlb_ops;
1813 
1814 	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1815 		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1816 		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1817 		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1818 		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1819 	}
1820 
1821 	if (poke_srmmu == poke_viking) {
1822 		/* Avoid unnecessary cross calls. */
1823 		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1824 		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1825 		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1826 		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1827 
1828 		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1829 		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1830 		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1831 	}
1832 
1833 	/* It really is const after this point. */
1834 	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1835 		&smp_cachetlb_ops;
1836 #endif
1837 
1838 	if (sparc_cpu_model == sun4d)
1839 		ld_mmu_iounit();
1840 	else
1841 		ld_mmu_iommu();
1842 #ifdef CONFIG_SMP
1843 	if (sparc_cpu_model == sun4d)
1844 		sun4d_init_smp();
1845 	else if (sparc_cpu_model == sparc_leon)
1846 		leon_init_smp();
1847 	else
1848 		sun4m_init_smp();
1849 #endif
1850 }
1851