1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36
37 #include <linux/ctype.h>
38 #include <symbol/kallsyms.h>
39 #include <linux/mman.h>
40 #include <linux/string.h>
41 #include <linux/zalloc.h>
42
43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44
dsos__init(struct dsos * dsos)45 static void dsos__init(struct dsos *dsos)
46 {
47 INIT_LIST_HEAD(&dsos->head);
48 dsos->root = RB_ROOT;
49 init_rwsem(&dsos->lock);
50 }
51
machine__threads_init(struct machine * machine)52 static void machine__threads_init(struct machine *machine)
53 {
54 int i;
55
56 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
57 struct threads *threads = &machine->threads[i];
58 threads->entries = RB_ROOT_CACHED;
59 init_rwsem(&threads->lock);
60 threads->nr = 0;
61 INIT_LIST_HEAD(&threads->dead);
62 threads->last_match = NULL;
63 }
64 }
65
machine__set_mmap_name(struct machine * machine)66 static int machine__set_mmap_name(struct machine *machine)
67 {
68 if (machine__is_host(machine))
69 machine->mmap_name = strdup("[kernel.kallsyms]");
70 else if (machine__is_default_guest(machine))
71 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
72 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
73 machine->pid) < 0)
74 machine->mmap_name = NULL;
75
76 return machine->mmap_name ? 0 : -ENOMEM;
77 }
78
machine__init(struct machine * machine,const char * root_dir,pid_t pid)79 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
80 {
81 int err = -ENOMEM;
82
83 memset(machine, 0, sizeof(*machine));
84 map_groups__init(&machine->kmaps, machine);
85 RB_CLEAR_NODE(&machine->rb_node);
86 dsos__init(&machine->dsos);
87
88 machine__threads_init(machine);
89
90 machine->vdso_info = NULL;
91 machine->env = NULL;
92
93 machine->pid = pid;
94
95 machine->id_hdr_size = 0;
96 machine->kptr_restrict_warned = false;
97 machine->comm_exec = false;
98 machine->kernel_start = 0;
99 machine->vmlinux_map = NULL;
100
101 machine->root_dir = strdup(root_dir);
102 if (machine->root_dir == NULL)
103 return -ENOMEM;
104
105 if (machine__set_mmap_name(machine))
106 goto out;
107
108 if (pid != HOST_KERNEL_ID) {
109 struct thread *thread = machine__findnew_thread(machine, -1,
110 pid);
111 char comm[64];
112
113 if (thread == NULL)
114 goto out;
115
116 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
117 thread__set_comm(thread, comm, 0);
118 thread__put(thread);
119 }
120
121 machine->current_tid = NULL;
122 err = 0;
123
124 out:
125 if (err) {
126 zfree(&machine->root_dir);
127 zfree(&machine->mmap_name);
128 }
129 return 0;
130 }
131
machine__new_host(void)132 struct machine *machine__new_host(void)
133 {
134 struct machine *machine = malloc(sizeof(*machine));
135
136 if (machine != NULL) {
137 machine__init(machine, "", HOST_KERNEL_ID);
138
139 if (machine__create_kernel_maps(machine) < 0)
140 goto out_delete;
141 }
142
143 return machine;
144 out_delete:
145 free(machine);
146 return NULL;
147 }
148
machine__new_kallsyms(void)149 struct machine *machine__new_kallsyms(void)
150 {
151 struct machine *machine = machine__new_host();
152 /*
153 * FIXME:
154 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
155 * ask for not using the kcore parsing code, once this one is fixed
156 * to create a map per module.
157 */
158 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
159 machine__delete(machine);
160 machine = NULL;
161 }
162
163 return machine;
164 }
165
dsos__purge(struct dsos * dsos)166 static void dsos__purge(struct dsos *dsos)
167 {
168 struct dso *pos, *n;
169
170 down_write(&dsos->lock);
171
172 list_for_each_entry_safe(pos, n, &dsos->head, node) {
173 RB_CLEAR_NODE(&pos->rb_node);
174 pos->root = NULL;
175 list_del_init(&pos->node);
176 dso__put(pos);
177 }
178
179 up_write(&dsos->lock);
180 }
181
dsos__exit(struct dsos * dsos)182 static void dsos__exit(struct dsos *dsos)
183 {
184 dsos__purge(dsos);
185 exit_rwsem(&dsos->lock);
186 }
187
machine__delete_threads(struct machine * machine)188 void machine__delete_threads(struct machine *machine)
189 {
190 struct rb_node *nd;
191 int i;
192
193 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
194 struct threads *threads = &machine->threads[i];
195 down_write(&threads->lock);
196 nd = rb_first_cached(&threads->entries);
197 while (nd) {
198 struct thread *t = rb_entry(nd, struct thread, rb_node);
199
200 nd = rb_next(nd);
201 __machine__remove_thread(machine, t, false);
202 }
203 up_write(&threads->lock);
204 }
205 }
206
machine__exit(struct machine * machine)207 void machine__exit(struct machine *machine)
208 {
209 int i;
210
211 if (machine == NULL)
212 return;
213
214 machine__destroy_kernel_maps(machine);
215 map_groups__exit(&machine->kmaps);
216 dsos__exit(&machine->dsos);
217 machine__exit_vdso(machine);
218 zfree(&machine->root_dir);
219 zfree(&machine->mmap_name);
220 zfree(&machine->current_tid);
221
222 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
223 struct threads *threads = &machine->threads[i];
224 struct thread *thread, *n;
225 /*
226 * Forget about the dead, at this point whatever threads were
227 * left in the dead lists better have a reference count taken
228 * by who is using them, and then, when they drop those references
229 * and it finally hits zero, thread__put() will check and see that
230 * its not in the dead threads list and will not try to remove it
231 * from there, just calling thread__delete() straight away.
232 */
233 list_for_each_entry_safe(thread, n, &threads->dead, node)
234 list_del_init(&thread->node);
235
236 exit_rwsem(&threads->lock);
237 }
238 }
239
machine__delete(struct machine * machine)240 void machine__delete(struct machine *machine)
241 {
242 if (machine) {
243 machine__exit(machine);
244 free(machine);
245 }
246 }
247
machines__init(struct machines * machines)248 void machines__init(struct machines *machines)
249 {
250 machine__init(&machines->host, "", HOST_KERNEL_ID);
251 machines->guests = RB_ROOT_CACHED;
252 }
253
machines__exit(struct machines * machines)254 void machines__exit(struct machines *machines)
255 {
256 machine__exit(&machines->host);
257 /* XXX exit guest */
258 }
259
machines__add(struct machines * machines,pid_t pid,const char * root_dir)260 struct machine *machines__add(struct machines *machines, pid_t pid,
261 const char *root_dir)
262 {
263 struct rb_node **p = &machines->guests.rb_root.rb_node;
264 struct rb_node *parent = NULL;
265 struct machine *pos, *machine = malloc(sizeof(*machine));
266 bool leftmost = true;
267
268 if (machine == NULL)
269 return NULL;
270
271 if (machine__init(machine, root_dir, pid) != 0) {
272 free(machine);
273 return NULL;
274 }
275
276 while (*p != NULL) {
277 parent = *p;
278 pos = rb_entry(parent, struct machine, rb_node);
279 if (pid < pos->pid)
280 p = &(*p)->rb_left;
281 else {
282 p = &(*p)->rb_right;
283 leftmost = false;
284 }
285 }
286
287 rb_link_node(&machine->rb_node, parent, p);
288 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
289
290 return machine;
291 }
292
machines__set_comm_exec(struct machines * machines,bool comm_exec)293 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
294 {
295 struct rb_node *nd;
296
297 machines->host.comm_exec = comm_exec;
298
299 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
300 struct machine *machine = rb_entry(nd, struct machine, rb_node);
301
302 machine->comm_exec = comm_exec;
303 }
304 }
305
machines__find(struct machines * machines,pid_t pid)306 struct machine *machines__find(struct machines *machines, pid_t pid)
307 {
308 struct rb_node **p = &machines->guests.rb_root.rb_node;
309 struct rb_node *parent = NULL;
310 struct machine *machine;
311 struct machine *default_machine = NULL;
312
313 if (pid == HOST_KERNEL_ID)
314 return &machines->host;
315
316 while (*p != NULL) {
317 parent = *p;
318 machine = rb_entry(parent, struct machine, rb_node);
319 if (pid < machine->pid)
320 p = &(*p)->rb_left;
321 else if (pid > machine->pid)
322 p = &(*p)->rb_right;
323 else
324 return machine;
325 if (!machine->pid)
326 default_machine = machine;
327 }
328
329 return default_machine;
330 }
331
machines__findnew(struct machines * machines,pid_t pid)332 struct machine *machines__findnew(struct machines *machines, pid_t pid)
333 {
334 char path[PATH_MAX];
335 const char *root_dir = "";
336 struct machine *machine = machines__find(machines, pid);
337
338 if (machine && (machine->pid == pid))
339 goto out;
340
341 if ((pid != HOST_KERNEL_ID) &&
342 (pid != DEFAULT_GUEST_KERNEL_ID) &&
343 (symbol_conf.guestmount)) {
344 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
345 if (access(path, R_OK)) {
346 static struct strlist *seen;
347
348 if (!seen)
349 seen = strlist__new(NULL, NULL);
350
351 if (!strlist__has_entry(seen, path)) {
352 pr_err("Can't access file %s\n", path);
353 strlist__add(seen, path);
354 }
355 machine = NULL;
356 goto out;
357 }
358 root_dir = path;
359 }
360
361 machine = machines__add(machines, pid, root_dir);
362 out:
363 return machine;
364 }
365
machines__process_guests(struct machines * machines,machine__process_t process,void * data)366 void machines__process_guests(struct machines *machines,
367 machine__process_t process, void *data)
368 {
369 struct rb_node *nd;
370
371 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
372 struct machine *pos = rb_entry(nd, struct machine, rb_node);
373 process(pos, data);
374 }
375 }
376
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)377 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
378 {
379 struct rb_node *node;
380 struct machine *machine;
381
382 machines->host.id_hdr_size = id_hdr_size;
383
384 for (node = rb_first_cached(&machines->guests); node;
385 node = rb_next(node)) {
386 machine = rb_entry(node, struct machine, rb_node);
387 machine->id_hdr_size = id_hdr_size;
388 }
389
390 return;
391 }
392
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)393 static void machine__update_thread_pid(struct machine *machine,
394 struct thread *th, pid_t pid)
395 {
396 struct thread *leader;
397
398 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
399 return;
400
401 th->pid_ = pid;
402
403 if (th->pid_ == th->tid)
404 return;
405
406 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
407 if (!leader)
408 goto out_err;
409
410 if (!leader->mg)
411 leader->mg = map_groups__new(machine);
412
413 if (!leader->mg)
414 goto out_err;
415
416 if (th->mg == leader->mg)
417 return;
418
419 if (th->mg) {
420 /*
421 * Maps are created from MMAP events which provide the pid and
422 * tid. Consequently there never should be any maps on a thread
423 * with an unknown pid. Just print an error if there are.
424 */
425 if (!map_groups__empty(th->mg))
426 pr_err("Discarding thread maps for %d:%d\n",
427 th->pid_, th->tid);
428 map_groups__put(th->mg);
429 }
430
431 th->mg = map_groups__get(leader->mg);
432 out_put:
433 thread__put(leader);
434 return;
435 out_err:
436 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
437 goto out_put;
438 }
439
440 /*
441 * Front-end cache - TID lookups come in blocks,
442 * so most of the time we dont have to look up
443 * the full rbtree:
444 */
445 static struct thread*
__threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)446 __threads__get_last_match(struct threads *threads, struct machine *machine,
447 int pid, int tid)
448 {
449 struct thread *th;
450
451 th = threads->last_match;
452 if (th != NULL) {
453 if (th->tid == tid) {
454 machine__update_thread_pid(machine, th, pid);
455 return thread__get(th);
456 }
457
458 threads->last_match = NULL;
459 }
460
461 return NULL;
462 }
463
464 static struct thread*
threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)465 threads__get_last_match(struct threads *threads, struct machine *machine,
466 int pid, int tid)
467 {
468 struct thread *th = NULL;
469
470 if (perf_singlethreaded)
471 th = __threads__get_last_match(threads, machine, pid, tid);
472
473 return th;
474 }
475
476 static void
__threads__set_last_match(struct threads * threads,struct thread * th)477 __threads__set_last_match(struct threads *threads, struct thread *th)
478 {
479 threads->last_match = th;
480 }
481
482 static void
threads__set_last_match(struct threads * threads,struct thread * th)483 threads__set_last_match(struct threads *threads, struct thread *th)
484 {
485 if (perf_singlethreaded)
486 __threads__set_last_match(threads, th);
487 }
488
489 /*
490 * Caller must eventually drop thread->refcnt returned with a successful
491 * lookup/new thread inserted.
492 */
____machine__findnew_thread(struct machine * machine,struct threads * threads,pid_t pid,pid_t tid,bool create)493 static struct thread *____machine__findnew_thread(struct machine *machine,
494 struct threads *threads,
495 pid_t pid, pid_t tid,
496 bool create)
497 {
498 struct rb_node **p = &threads->entries.rb_root.rb_node;
499 struct rb_node *parent = NULL;
500 struct thread *th;
501 bool leftmost = true;
502
503 th = threads__get_last_match(threads, machine, pid, tid);
504 if (th)
505 return th;
506
507 while (*p != NULL) {
508 parent = *p;
509 th = rb_entry(parent, struct thread, rb_node);
510
511 if (th->tid == tid) {
512 threads__set_last_match(threads, th);
513 machine__update_thread_pid(machine, th, pid);
514 return thread__get(th);
515 }
516
517 if (tid < th->tid)
518 p = &(*p)->rb_left;
519 else {
520 p = &(*p)->rb_right;
521 leftmost = false;
522 }
523 }
524
525 if (!create)
526 return NULL;
527
528 th = thread__new(pid, tid);
529 if (th != NULL) {
530 rb_link_node(&th->rb_node, parent, p);
531 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
532
533 /*
534 * We have to initialize map_groups separately
535 * after rb tree is updated.
536 *
537 * The reason is that we call machine__findnew_thread
538 * within thread__init_map_groups to find the thread
539 * leader and that would screwed the rb tree.
540 */
541 if (thread__init_map_groups(th, machine)) {
542 rb_erase_cached(&th->rb_node, &threads->entries);
543 RB_CLEAR_NODE(&th->rb_node);
544 thread__put(th);
545 return NULL;
546 }
547 /*
548 * It is now in the rbtree, get a ref
549 */
550 thread__get(th);
551 threads__set_last_match(threads, th);
552 ++threads->nr;
553 }
554
555 return th;
556 }
557
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)558 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
559 {
560 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
561 }
562
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)563 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
564 pid_t tid)
565 {
566 struct threads *threads = machine__threads(machine, tid);
567 struct thread *th;
568
569 down_write(&threads->lock);
570 th = __machine__findnew_thread(machine, pid, tid);
571 up_write(&threads->lock);
572 return th;
573 }
574
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)575 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
576 pid_t tid)
577 {
578 struct threads *threads = machine__threads(machine, tid);
579 struct thread *th;
580
581 down_read(&threads->lock);
582 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
583 up_read(&threads->lock);
584 return th;
585 }
586
machine__thread_exec_comm(struct machine * machine,struct thread * thread)587 struct comm *machine__thread_exec_comm(struct machine *machine,
588 struct thread *thread)
589 {
590 if (machine->comm_exec)
591 return thread__exec_comm(thread);
592 else
593 return thread__comm(thread);
594 }
595
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)596 int machine__process_comm_event(struct machine *machine, union perf_event *event,
597 struct perf_sample *sample)
598 {
599 struct thread *thread = machine__findnew_thread(machine,
600 event->comm.pid,
601 event->comm.tid);
602 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
603 int err = 0;
604
605 if (exec)
606 machine->comm_exec = true;
607
608 if (dump_trace)
609 perf_event__fprintf_comm(event, stdout);
610
611 if (thread == NULL ||
612 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
613 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
614 err = -1;
615 }
616
617 thread__put(thread);
618
619 return err;
620 }
621
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)622 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
623 union perf_event *event,
624 struct perf_sample *sample __maybe_unused)
625 {
626 struct thread *thread = machine__findnew_thread(machine,
627 event->namespaces.pid,
628 event->namespaces.tid);
629 int err = 0;
630
631 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
632 "\nWARNING: kernel seems to support more namespaces than perf"
633 " tool.\nTry updating the perf tool..\n\n");
634
635 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
636 "\nWARNING: perf tool seems to support more namespaces than"
637 " the kernel.\nTry updating the kernel..\n\n");
638
639 if (dump_trace)
640 perf_event__fprintf_namespaces(event, stdout);
641
642 if (thread == NULL ||
643 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
644 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
645 err = -1;
646 }
647
648 thread__put(thread);
649
650 return err;
651 }
652
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)653 int machine__process_lost_event(struct machine *machine __maybe_unused,
654 union perf_event *event, struct perf_sample *sample __maybe_unused)
655 {
656 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
657 event->lost.id, event->lost.lost);
658 return 0;
659 }
660
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)661 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
662 union perf_event *event, struct perf_sample *sample)
663 {
664 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
665 sample->id, event->lost_samples.lost);
666 return 0;
667 }
668
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)669 static struct dso *machine__findnew_module_dso(struct machine *machine,
670 struct kmod_path *m,
671 const char *filename)
672 {
673 struct dso *dso;
674
675 down_write(&machine->dsos.lock);
676
677 dso = __dsos__find(&machine->dsos, m->name, true);
678 if (!dso) {
679 dso = __dsos__addnew(&machine->dsos, m->name);
680 if (dso == NULL)
681 goto out_unlock;
682
683 dso__set_module_info(dso, m, machine);
684 dso__set_long_name(dso, strdup(filename), true);
685 }
686
687 dso__get(dso);
688 out_unlock:
689 up_write(&machine->dsos.lock);
690 return dso;
691 }
692
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)693 int machine__process_aux_event(struct machine *machine __maybe_unused,
694 union perf_event *event)
695 {
696 if (dump_trace)
697 perf_event__fprintf_aux(event, stdout);
698 return 0;
699 }
700
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)701 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
702 union perf_event *event)
703 {
704 if (dump_trace)
705 perf_event__fprintf_itrace_start(event, stdout);
706 return 0;
707 }
708
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)709 int machine__process_switch_event(struct machine *machine __maybe_unused,
710 union perf_event *event)
711 {
712 if (dump_trace)
713 perf_event__fprintf_switch(event, stdout);
714 return 0;
715 }
716
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)717 static int machine__process_ksymbol_register(struct machine *machine,
718 union perf_event *event,
719 struct perf_sample *sample __maybe_unused)
720 {
721 struct symbol *sym;
722 struct map *map;
723
724 map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
725 if (!map) {
726 map = dso__new_map(event->ksymbol.name);
727 if (!map)
728 return -ENOMEM;
729
730 map->start = event->ksymbol.addr;
731 map->end = map->start + event->ksymbol.len;
732 map_groups__insert(&machine->kmaps, map);
733 }
734
735 sym = symbol__new(map->map_ip(map, map->start),
736 event->ksymbol.len,
737 0, 0, event->ksymbol.name);
738 if (!sym)
739 return -ENOMEM;
740 dso__insert_symbol(map->dso, sym);
741 return 0;
742 }
743
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)744 static int machine__process_ksymbol_unregister(struct machine *machine,
745 union perf_event *event,
746 struct perf_sample *sample __maybe_unused)
747 {
748 struct map *map;
749
750 map = map_groups__find(&machine->kmaps, event->ksymbol.addr);
751 if (map)
752 map_groups__remove(&machine->kmaps, map);
753
754 return 0;
755 }
756
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)757 int machine__process_ksymbol(struct machine *machine __maybe_unused,
758 union perf_event *event,
759 struct perf_sample *sample)
760 {
761 if (dump_trace)
762 perf_event__fprintf_ksymbol(event, stdout);
763
764 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
765 return machine__process_ksymbol_unregister(machine, event,
766 sample);
767 return machine__process_ksymbol_register(machine, event, sample);
768 }
769
machine__findnew_module_map(struct machine * machine,u64 start,const char * filename)770 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
771 const char *filename)
772 {
773 struct map *map = NULL;
774 struct dso *dso = NULL;
775 struct kmod_path m;
776
777 if (kmod_path__parse_name(&m, filename))
778 return NULL;
779
780 map = map_groups__find_by_name(&machine->kmaps, m.name);
781 if (map)
782 goto out;
783
784 dso = machine__findnew_module_dso(machine, &m, filename);
785 if (dso == NULL)
786 goto out;
787
788 map = map__new2(start, dso);
789 if (map == NULL)
790 goto out;
791
792 map_groups__insert(&machine->kmaps, map);
793
794 /* Put the map here because map_groups__insert alread got it */
795 map__put(map);
796 out:
797 /* put the dso here, corresponding to machine__findnew_module_dso */
798 dso__put(dso);
799 zfree(&m.name);
800 return map;
801 }
802
machines__fprintf_dsos(struct machines * machines,FILE * fp)803 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
804 {
805 struct rb_node *nd;
806 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
807
808 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
809 struct machine *pos = rb_entry(nd, struct machine, rb_node);
810 ret += __dsos__fprintf(&pos->dsos.head, fp);
811 }
812
813 return ret;
814 }
815
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)816 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
817 bool (skip)(struct dso *dso, int parm), int parm)
818 {
819 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
820 }
821
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)822 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
823 bool (skip)(struct dso *dso, int parm), int parm)
824 {
825 struct rb_node *nd;
826 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
827
828 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
829 struct machine *pos = rb_entry(nd, struct machine, rb_node);
830 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
831 }
832 return ret;
833 }
834
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)835 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
836 {
837 int i;
838 size_t printed = 0;
839 struct dso *kdso = machine__kernel_map(machine)->dso;
840
841 if (kdso->has_build_id) {
842 char filename[PATH_MAX];
843 if (dso__build_id_filename(kdso, filename, sizeof(filename),
844 false))
845 printed += fprintf(fp, "[0] %s\n", filename);
846 }
847
848 for (i = 0; i < vmlinux_path__nr_entries; ++i)
849 printed += fprintf(fp, "[%d] %s\n",
850 i + kdso->has_build_id, vmlinux_path[i]);
851
852 return printed;
853 }
854
machine__fprintf(struct machine * machine,FILE * fp)855 size_t machine__fprintf(struct machine *machine, FILE *fp)
856 {
857 struct rb_node *nd;
858 size_t ret;
859 int i;
860
861 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
862 struct threads *threads = &machine->threads[i];
863
864 down_read(&threads->lock);
865
866 ret = fprintf(fp, "Threads: %u\n", threads->nr);
867
868 for (nd = rb_first_cached(&threads->entries); nd;
869 nd = rb_next(nd)) {
870 struct thread *pos = rb_entry(nd, struct thread, rb_node);
871
872 ret += thread__fprintf(pos, fp);
873 }
874
875 up_read(&threads->lock);
876 }
877 return ret;
878 }
879
machine__get_kernel(struct machine * machine)880 static struct dso *machine__get_kernel(struct machine *machine)
881 {
882 const char *vmlinux_name = machine->mmap_name;
883 struct dso *kernel;
884
885 if (machine__is_host(machine)) {
886 if (symbol_conf.vmlinux_name)
887 vmlinux_name = symbol_conf.vmlinux_name;
888
889 kernel = machine__findnew_kernel(machine, vmlinux_name,
890 "[kernel]", DSO_TYPE_KERNEL);
891 } else {
892 if (symbol_conf.default_guest_vmlinux_name)
893 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
894
895 kernel = machine__findnew_kernel(machine, vmlinux_name,
896 "[guest.kernel]",
897 DSO_TYPE_GUEST_KERNEL);
898 }
899
900 if (kernel != NULL && (!kernel->has_build_id))
901 dso__read_running_kernel_build_id(kernel, machine);
902
903 return kernel;
904 }
905
906 struct process_args {
907 u64 start;
908 };
909
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)910 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
911 size_t bufsz)
912 {
913 if (machine__is_default_guest(machine))
914 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
915 else
916 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
917 }
918
919 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
920
921 /* Figure out the start address of kernel map from /proc/kallsyms.
922 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
923 * symbol_name if it's not that important.
924 */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)925 static int machine__get_running_kernel_start(struct machine *machine,
926 const char **symbol_name,
927 u64 *start, u64 *end)
928 {
929 char filename[PATH_MAX];
930 int i, err = -1;
931 const char *name;
932 u64 addr = 0;
933
934 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
935
936 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
937 return 0;
938
939 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
940 err = kallsyms__get_function_start(filename, name, &addr);
941 if (!err)
942 break;
943 }
944
945 if (err)
946 return -1;
947
948 if (symbol_name)
949 *symbol_name = name;
950
951 *start = addr;
952
953 err = kallsyms__get_function_start(filename, "_etext", &addr);
954 if (!err)
955 *end = addr;
956
957 return 0;
958 }
959
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)960 int machine__create_extra_kernel_map(struct machine *machine,
961 struct dso *kernel,
962 struct extra_kernel_map *xm)
963 {
964 struct kmap *kmap;
965 struct map *map;
966
967 map = map__new2(xm->start, kernel);
968 if (!map)
969 return -1;
970
971 map->end = xm->end;
972 map->pgoff = xm->pgoff;
973
974 kmap = map__kmap(map);
975
976 kmap->kmaps = &machine->kmaps;
977 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
978
979 map_groups__insert(&machine->kmaps, map);
980
981 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
982 kmap->name, map->start, map->end);
983
984 map__put(map);
985
986 return 0;
987 }
988
find_entry_trampoline(struct dso * dso)989 static u64 find_entry_trampoline(struct dso *dso)
990 {
991 /* Duplicates are removed so lookup all aliases */
992 const char *syms[] = {
993 "_entry_trampoline",
994 "__entry_trampoline_start",
995 "entry_SYSCALL_64_trampoline",
996 };
997 struct symbol *sym = dso__first_symbol(dso);
998 unsigned int i;
999
1000 for (; sym; sym = dso__next_symbol(sym)) {
1001 if (sym->binding != STB_GLOBAL)
1002 continue;
1003 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1004 if (!strcmp(sym->name, syms[i]))
1005 return sym->start;
1006 }
1007 }
1008
1009 return 0;
1010 }
1011
1012 /*
1013 * These values can be used for kernels that do not have symbols for the entry
1014 * trampolines in kallsyms.
1015 */
1016 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1017 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1018 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1019
1020 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1021 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1022 struct dso *kernel)
1023 {
1024 struct map_groups *kmaps = &machine->kmaps;
1025 struct maps *maps = &kmaps->maps;
1026 int nr_cpus_avail, cpu;
1027 bool found = false;
1028 struct map *map;
1029 u64 pgoff;
1030
1031 /*
1032 * In the vmlinux case, pgoff is a virtual address which must now be
1033 * mapped to a vmlinux offset.
1034 */
1035 for (map = maps__first(maps); map; map = map__next(map)) {
1036 struct kmap *kmap = __map__kmap(map);
1037 struct map *dest_map;
1038
1039 if (!kmap || !is_entry_trampoline(kmap->name))
1040 continue;
1041
1042 dest_map = map_groups__find(kmaps, map->pgoff);
1043 if (dest_map != map)
1044 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1045 found = true;
1046 }
1047 if (found || machine->trampolines_mapped)
1048 return 0;
1049
1050 pgoff = find_entry_trampoline(kernel);
1051 if (!pgoff)
1052 return 0;
1053
1054 nr_cpus_avail = machine__nr_cpus_avail(machine);
1055
1056 /* Add a 1 page map for each CPU's entry trampoline */
1057 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1058 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1059 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1060 X86_64_ENTRY_TRAMPOLINE;
1061 struct extra_kernel_map xm = {
1062 .start = va,
1063 .end = va + page_size,
1064 .pgoff = pgoff,
1065 };
1066
1067 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1068
1069 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1070 return -1;
1071 }
1072
1073 machine->trampolines_mapped = nr_cpus_avail;
1074
1075 return 0;
1076 }
1077
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1078 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1079 struct dso *kernel __maybe_unused)
1080 {
1081 return 0;
1082 }
1083
1084 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1085 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1086 {
1087 struct kmap *kmap;
1088 struct map *map;
1089
1090 /* In case of renewal the kernel map, destroy previous one */
1091 machine__destroy_kernel_maps(machine);
1092
1093 machine->vmlinux_map = map__new2(0, kernel);
1094 if (machine->vmlinux_map == NULL)
1095 return -1;
1096
1097 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1098 map = machine__kernel_map(machine);
1099 kmap = map__kmap(map);
1100 if (!kmap)
1101 return -1;
1102
1103 kmap->kmaps = &machine->kmaps;
1104 map_groups__insert(&machine->kmaps, map);
1105
1106 return 0;
1107 }
1108
machine__destroy_kernel_maps(struct machine * machine)1109 void machine__destroy_kernel_maps(struct machine *machine)
1110 {
1111 struct kmap *kmap;
1112 struct map *map = machine__kernel_map(machine);
1113
1114 if (map == NULL)
1115 return;
1116
1117 kmap = map__kmap(map);
1118 map_groups__remove(&machine->kmaps, map);
1119 if (kmap && kmap->ref_reloc_sym) {
1120 zfree((char **)&kmap->ref_reloc_sym->name);
1121 zfree(&kmap->ref_reloc_sym);
1122 }
1123
1124 map__zput(machine->vmlinux_map);
1125 }
1126
machines__create_guest_kernel_maps(struct machines * machines)1127 int machines__create_guest_kernel_maps(struct machines *machines)
1128 {
1129 int ret = 0;
1130 struct dirent **namelist = NULL;
1131 int i, items = 0;
1132 char path[PATH_MAX];
1133 pid_t pid;
1134 char *endp;
1135
1136 if (symbol_conf.default_guest_vmlinux_name ||
1137 symbol_conf.default_guest_modules ||
1138 symbol_conf.default_guest_kallsyms) {
1139 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1140 }
1141
1142 if (symbol_conf.guestmount) {
1143 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1144 if (items <= 0)
1145 return -ENOENT;
1146 for (i = 0; i < items; i++) {
1147 if (!isdigit(namelist[i]->d_name[0])) {
1148 /* Filter out . and .. */
1149 continue;
1150 }
1151 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1152 if ((*endp != '\0') ||
1153 (endp == namelist[i]->d_name) ||
1154 (errno == ERANGE)) {
1155 pr_debug("invalid directory (%s). Skipping.\n",
1156 namelist[i]->d_name);
1157 continue;
1158 }
1159 sprintf(path, "%s/%s/proc/kallsyms",
1160 symbol_conf.guestmount,
1161 namelist[i]->d_name);
1162 ret = access(path, R_OK);
1163 if (ret) {
1164 pr_debug("Can't access file %s\n", path);
1165 goto failure;
1166 }
1167 machines__create_kernel_maps(machines, pid);
1168 }
1169 failure:
1170 free(namelist);
1171 }
1172
1173 return ret;
1174 }
1175
machines__destroy_kernel_maps(struct machines * machines)1176 void machines__destroy_kernel_maps(struct machines *machines)
1177 {
1178 struct rb_node *next = rb_first_cached(&machines->guests);
1179
1180 machine__destroy_kernel_maps(&machines->host);
1181
1182 while (next) {
1183 struct machine *pos = rb_entry(next, struct machine, rb_node);
1184
1185 next = rb_next(&pos->rb_node);
1186 rb_erase_cached(&pos->rb_node, &machines->guests);
1187 machine__delete(pos);
1188 }
1189 }
1190
machines__create_kernel_maps(struct machines * machines,pid_t pid)1191 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1192 {
1193 struct machine *machine = machines__findnew(machines, pid);
1194
1195 if (machine == NULL)
1196 return -1;
1197
1198 return machine__create_kernel_maps(machine);
1199 }
1200
machine__load_kallsyms(struct machine * machine,const char * filename)1201 int machine__load_kallsyms(struct machine *machine, const char *filename)
1202 {
1203 struct map *map = machine__kernel_map(machine);
1204 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1205
1206 if (ret > 0) {
1207 dso__set_loaded(map->dso);
1208 /*
1209 * Since /proc/kallsyms will have multiple sessions for the
1210 * kernel, with modules between them, fixup the end of all
1211 * sections.
1212 */
1213 map_groups__fixup_end(&machine->kmaps);
1214 }
1215
1216 return ret;
1217 }
1218
machine__load_vmlinux_path(struct machine * machine)1219 int machine__load_vmlinux_path(struct machine *machine)
1220 {
1221 struct map *map = machine__kernel_map(machine);
1222 int ret = dso__load_vmlinux_path(map->dso, map);
1223
1224 if (ret > 0)
1225 dso__set_loaded(map->dso);
1226
1227 return ret;
1228 }
1229
get_kernel_version(const char * root_dir)1230 static char *get_kernel_version(const char *root_dir)
1231 {
1232 char version[PATH_MAX];
1233 FILE *file;
1234 char *name, *tmp;
1235 const char *prefix = "Linux version ";
1236
1237 sprintf(version, "%s/proc/version", root_dir);
1238 file = fopen(version, "r");
1239 if (!file)
1240 return NULL;
1241
1242 tmp = fgets(version, sizeof(version), file);
1243 fclose(file);
1244 if (!tmp)
1245 return NULL;
1246
1247 name = strstr(version, prefix);
1248 if (!name)
1249 return NULL;
1250 name += strlen(prefix);
1251 tmp = strchr(name, ' ');
1252 if (tmp)
1253 *tmp = '\0';
1254
1255 return strdup(name);
1256 }
1257
is_kmod_dso(struct dso * dso)1258 static bool is_kmod_dso(struct dso *dso)
1259 {
1260 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1261 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1262 }
1263
map_groups__set_module_path(struct map_groups * mg,const char * path,struct kmod_path * m)1264 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1265 struct kmod_path *m)
1266 {
1267 char *long_name;
1268 struct map *map = map_groups__find_by_name(mg, m->name);
1269
1270 if (map == NULL)
1271 return 0;
1272
1273 long_name = strdup(path);
1274 if (long_name == NULL)
1275 return -ENOMEM;
1276
1277 dso__set_long_name(map->dso, long_name, true);
1278 dso__kernel_module_get_build_id(map->dso, "");
1279
1280 /*
1281 * Full name could reveal us kmod compression, so
1282 * we need to update the symtab_type if needed.
1283 */
1284 if (m->comp && is_kmod_dso(map->dso)) {
1285 map->dso->symtab_type++;
1286 map->dso->comp = m->comp;
1287 }
1288
1289 return 0;
1290 }
1291
map_groups__set_modules_path_dir(struct map_groups * mg,const char * dir_name,int depth)1292 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1293 const char *dir_name, int depth)
1294 {
1295 struct dirent *dent;
1296 DIR *dir = opendir(dir_name);
1297 int ret = 0;
1298
1299 if (!dir) {
1300 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1301 return -1;
1302 }
1303
1304 while ((dent = readdir(dir)) != NULL) {
1305 char path[PATH_MAX];
1306 struct stat st;
1307
1308 /*sshfs might return bad dent->d_type, so we have to stat*/
1309 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1310 if (stat(path, &st))
1311 continue;
1312
1313 if (S_ISDIR(st.st_mode)) {
1314 if (!strcmp(dent->d_name, ".") ||
1315 !strcmp(dent->d_name, ".."))
1316 continue;
1317
1318 /* Do not follow top-level source and build symlinks */
1319 if (depth == 0) {
1320 if (!strcmp(dent->d_name, "source") ||
1321 !strcmp(dent->d_name, "build"))
1322 continue;
1323 }
1324
1325 ret = map_groups__set_modules_path_dir(mg, path,
1326 depth + 1);
1327 if (ret < 0)
1328 goto out;
1329 } else {
1330 struct kmod_path m;
1331
1332 ret = kmod_path__parse_name(&m, dent->d_name);
1333 if (ret)
1334 goto out;
1335
1336 if (m.kmod)
1337 ret = map_groups__set_module_path(mg, path, &m);
1338
1339 zfree(&m.name);
1340
1341 if (ret)
1342 goto out;
1343 }
1344 }
1345
1346 out:
1347 closedir(dir);
1348 return ret;
1349 }
1350
machine__set_modules_path(struct machine * machine)1351 static int machine__set_modules_path(struct machine *machine)
1352 {
1353 char *version;
1354 char modules_path[PATH_MAX];
1355
1356 version = get_kernel_version(machine->root_dir);
1357 if (!version)
1358 return -1;
1359
1360 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1361 machine->root_dir, version);
1362 free(version);
1363
1364 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1365 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1366 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1367 u64 *size __maybe_unused,
1368 const char *name __maybe_unused)
1369 {
1370 return 0;
1371 }
1372
machine__create_module(void * arg,const char * name,u64 start,u64 size)1373 static int machine__create_module(void *arg, const char *name, u64 start,
1374 u64 size)
1375 {
1376 struct machine *machine = arg;
1377 struct map *map;
1378
1379 if (arch__fix_module_text_start(&start, &size, name) < 0)
1380 return -1;
1381
1382 map = machine__findnew_module_map(machine, start, name);
1383 if (map == NULL)
1384 return -1;
1385 map->end = start + size;
1386
1387 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1388
1389 return 0;
1390 }
1391
machine__create_modules(struct machine * machine)1392 static int machine__create_modules(struct machine *machine)
1393 {
1394 const char *modules;
1395 char path[PATH_MAX];
1396
1397 if (machine__is_default_guest(machine)) {
1398 modules = symbol_conf.default_guest_modules;
1399 } else {
1400 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1401 modules = path;
1402 }
1403
1404 if (symbol__restricted_filename(modules, "/proc/modules"))
1405 return -1;
1406
1407 if (modules__parse(modules, machine, machine__create_module))
1408 return -1;
1409
1410 if (!machine__set_modules_path(machine))
1411 return 0;
1412
1413 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1414
1415 return 0;
1416 }
1417
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1418 static void machine__set_kernel_mmap(struct machine *machine,
1419 u64 start, u64 end)
1420 {
1421 machine->vmlinux_map->start = start;
1422 machine->vmlinux_map->end = end;
1423 /*
1424 * Be a bit paranoid here, some perf.data file came with
1425 * a zero sized synthesized MMAP event for the kernel.
1426 */
1427 if (start == 0 && end == 0)
1428 machine->vmlinux_map->end = ~0ULL;
1429 }
1430
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1431 static void machine__update_kernel_mmap(struct machine *machine,
1432 u64 start, u64 end)
1433 {
1434 struct map *map = machine__kernel_map(machine);
1435
1436 map__get(map);
1437 map_groups__remove(&machine->kmaps, map);
1438
1439 machine__set_kernel_mmap(machine, start, end);
1440
1441 map_groups__insert(&machine->kmaps, map);
1442 map__put(map);
1443 }
1444
machine__create_kernel_maps(struct machine * machine)1445 int machine__create_kernel_maps(struct machine *machine)
1446 {
1447 struct dso *kernel = machine__get_kernel(machine);
1448 const char *name = NULL;
1449 struct map *map;
1450 u64 start = 0, end = ~0ULL;
1451 int ret;
1452
1453 if (kernel == NULL)
1454 return -1;
1455
1456 ret = __machine__create_kernel_maps(machine, kernel);
1457 if (ret < 0)
1458 goto out_put;
1459
1460 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1461 if (machine__is_host(machine))
1462 pr_debug("Problems creating module maps, "
1463 "continuing anyway...\n");
1464 else
1465 pr_debug("Problems creating module maps for guest %d, "
1466 "continuing anyway...\n", machine->pid);
1467 }
1468
1469 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1470 if (name &&
1471 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1472 machine__destroy_kernel_maps(machine);
1473 ret = -1;
1474 goto out_put;
1475 }
1476
1477 /*
1478 * we have a real start address now, so re-order the kmaps
1479 * assume it's the last in the kmaps
1480 */
1481 machine__update_kernel_mmap(machine, start, end);
1482 }
1483
1484 if (machine__create_extra_kernel_maps(machine, kernel))
1485 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1486
1487 if (end == ~0ULL) {
1488 /* update end address of the kernel map using adjacent module address */
1489 map = map__next(machine__kernel_map(machine));
1490 if (map)
1491 machine__set_kernel_mmap(machine, start, map->start);
1492 }
1493
1494 out_put:
1495 dso__put(kernel);
1496 return ret;
1497 }
1498
machine__uses_kcore(struct machine * machine)1499 static bool machine__uses_kcore(struct machine *machine)
1500 {
1501 struct dso *dso;
1502
1503 list_for_each_entry(dso, &machine->dsos.head, node) {
1504 if (dso__is_kcore(dso))
1505 return true;
1506 }
1507
1508 return false;
1509 }
1510
perf_event__is_extra_kernel_mmap(struct machine * machine,union perf_event * event)1511 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1512 union perf_event *event)
1513 {
1514 return machine__is(machine, "x86_64") &&
1515 is_entry_trampoline(event->mmap.filename);
1516 }
1517
machine__process_extra_kernel_map(struct machine * machine,union perf_event * event)1518 static int machine__process_extra_kernel_map(struct machine *machine,
1519 union perf_event *event)
1520 {
1521 struct map *kernel_map = machine__kernel_map(machine);
1522 struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1523 struct extra_kernel_map xm = {
1524 .start = event->mmap.start,
1525 .end = event->mmap.start + event->mmap.len,
1526 .pgoff = event->mmap.pgoff,
1527 };
1528
1529 if (kernel == NULL)
1530 return -1;
1531
1532 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1533
1534 return machine__create_extra_kernel_map(machine, kernel, &xm);
1535 }
1536
machine__process_kernel_mmap_event(struct machine * machine,union perf_event * event)1537 static int machine__process_kernel_mmap_event(struct machine *machine,
1538 union perf_event *event)
1539 {
1540 struct map *map;
1541 enum dso_kernel_type kernel_type;
1542 bool is_kernel_mmap;
1543
1544 /* If we have maps from kcore then we do not need or want any others */
1545 if (machine__uses_kcore(machine))
1546 return 0;
1547
1548 if (machine__is_host(machine))
1549 kernel_type = DSO_TYPE_KERNEL;
1550 else
1551 kernel_type = DSO_TYPE_GUEST_KERNEL;
1552
1553 is_kernel_mmap = memcmp(event->mmap.filename,
1554 machine->mmap_name,
1555 strlen(machine->mmap_name) - 1) == 0;
1556 if (event->mmap.filename[0] == '/' ||
1557 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1558 map = machine__findnew_module_map(machine, event->mmap.start,
1559 event->mmap.filename);
1560 if (map == NULL)
1561 goto out_problem;
1562
1563 map->end = map->start + event->mmap.len;
1564 } else if (is_kernel_mmap) {
1565 const char *symbol_name = (event->mmap.filename +
1566 strlen(machine->mmap_name));
1567 /*
1568 * Should be there already, from the build-id table in
1569 * the header.
1570 */
1571 struct dso *kernel = NULL;
1572 struct dso *dso;
1573
1574 down_read(&machine->dsos.lock);
1575
1576 list_for_each_entry(dso, &machine->dsos.head, node) {
1577
1578 /*
1579 * The cpumode passed to is_kernel_module is not the
1580 * cpumode of *this* event. If we insist on passing
1581 * correct cpumode to is_kernel_module, we should
1582 * record the cpumode when we adding this dso to the
1583 * linked list.
1584 *
1585 * However we don't really need passing correct
1586 * cpumode. We know the correct cpumode must be kernel
1587 * mode (if not, we should not link it onto kernel_dsos
1588 * list).
1589 *
1590 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1591 * is_kernel_module() treats it as a kernel cpumode.
1592 */
1593
1594 if (!dso->kernel ||
1595 is_kernel_module(dso->long_name,
1596 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1597 continue;
1598
1599
1600 kernel = dso;
1601 break;
1602 }
1603
1604 up_read(&machine->dsos.lock);
1605
1606 if (kernel == NULL)
1607 kernel = machine__findnew_dso(machine, machine->mmap_name);
1608 if (kernel == NULL)
1609 goto out_problem;
1610
1611 kernel->kernel = kernel_type;
1612 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1613 dso__put(kernel);
1614 goto out_problem;
1615 }
1616
1617 if (strstr(kernel->long_name, "vmlinux"))
1618 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1619
1620 machine__update_kernel_mmap(machine, event->mmap.start,
1621 event->mmap.start + event->mmap.len);
1622
1623 /*
1624 * Avoid using a zero address (kptr_restrict) for the ref reloc
1625 * symbol. Effectively having zero here means that at record
1626 * time /proc/sys/kernel/kptr_restrict was non zero.
1627 */
1628 if (event->mmap.pgoff != 0) {
1629 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1630 symbol_name,
1631 event->mmap.pgoff);
1632 }
1633
1634 if (machine__is_default_guest(machine)) {
1635 /*
1636 * preload dso of guest kernel and modules
1637 */
1638 dso__load(kernel, machine__kernel_map(machine));
1639 }
1640 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1641 return machine__process_extra_kernel_map(machine, event);
1642 }
1643 return 0;
1644 out_problem:
1645 return -1;
1646 }
1647
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1648 int machine__process_mmap2_event(struct machine *machine,
1649 union perf_event *event,
1650 struct perf_sample *sample)
1651 {
1652 struct thread *thread;
1653 struct map *map;
1654 int ret = 0;
1655
1656 if (dump_trace)
1657 perf_event__fprintf_mmap2(event, stdout);
1658
1659 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1660 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1661 ret = machine__process_kernel_mmap_event(machine, event);
1662 if (ret < 0)
1663 goto out_problem;
1664 return 0;
1665 }
1666
1667 thread = machine__findnew_thread(machine, event->mmap2.pid,
1668 event->mmap2.tid);
1669 if (thread == NULL)
1670 goto out_problem;
1671
1672 map = map__new(machine, event->mmap2.start,
1673 event->mmap2.len, event->mmap2.pgoff,
1674 event->mmap2.maj,
1675 event->mmap2.min, event->mmap2.ino,
1676 event->mmap2.ino_generation,
1677 event->mmap2.prot,
1678 event->mmap2.flags,
1679 event->mmap2.filename, thread);
1680
1681 if (map == NULL)
1682 goto out_problem_map;
1683
1684 ret = thread__insert_map(thread, map);
1685 if (ret)
1686 goto out_problem_insert;
1687
1688 thread__put(thread);
1689 map__put(map);
1690 return 0;
1691
1692 out_problem_insert:
1693 map__put(map);
1694 out_problem_map:
1695 thread__put(thread);
1696 out_problem:
1697 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1698 return 0;
1699 }
1700
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1701 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1702 struct perf_sample *sample)
1703 {
1704 struct thread *thread;
1705 struct map *map;
1706 u32 prot = 0;
1707 int ret = 0;
1708
1709 if (dump_trace)
1710 perf_event__fprintf_mmap(event, stdout);
1711
1712 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1713 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1714 ret = machine__process_kernel_mmap_event(machine, event);
1715 if (ret < 0)
1716 goto out_problem;
1717 return 0;
1718 }
1719
1720 thread = machine__findnew_thread(machine, event->mmap.pid,
1721 event->mmap.tid);
1722 if (thread == NULL)
1723 goto out_problem;
1724
1725 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1726 prot = PROT_EXEC;
1727
1728 map = map__new(machine, event->mmap.start,
1729 event->mmap.len, event->mmap.pgoff,
1730 0, 0, 0, 0, prot, 0,
1731 event->mmap.filename,
1732 thread);
1733
1734 if (map == NULL)
1735 goto out_problem_map;
1736
1737 ret = thread__insert_map(thread, map);
1738 if (ret)
1739 goto out_problem_insert;
1740
1741 thread__put(thread);
1742 map__put(map);
1743 return 0;
1744
1745 out_problem_insert:
1746 map__put(map);
1747 out_problem_map:
1748 thread__put(thread);
1749 out_problem:
1750 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1751 return 0;
1752 }
1753
__machine__remove_thread(struct machine * machine,struct thread * th,bool lock)1754 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1755 {
1756 struct threads *threads = machine__threads(machine, th->tid);
1757
1758 if (threads->last_match == th)
1759 threads__set_last_match(threads, NULL);
1760
1761 if (lock)
1762 down_write(&threads->lock);
1763
1764 BUG_ON(refcount_read(&th->refcnt) == 0);
1765
1766 rb_erase_cached(&th->rb_node, &threads->entries);
1767 RB_CLEAR_NODE(&th->rb_node);
1768 --threads->nr;
1769 /*
1770 * Move it first to the dead_threads list, then drop the reference,
1771 * if this is the last reference, then the thread__delete destructor
1772 * will be called and we will remove it from the dead_threads list.
1773 */
1774 list_add_tail(&th->node, &threads->dead);
1775
1776 /*
1777 * We need to do the put here because if this is the last refcount,
1778 * then we will be touching the threads->dead head when removing the
1779 * thread.
1780 */
1781 thread__put(th);
1782
1783 if (lock)
1784 up_write(&threads->lock);
1785 }
1786
machine__remove_thread(struct machine * machine,struct thread * th)1787 void machine__remove_thread(struct machine *machine, struct thread *th)
1788 {
1789 return __machine__remove_thread(machine, th, true);
1790 }
1791
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1792 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1793 struct perf_sample *sample)
1794 {
1795 struct thread *thread = machine__find_thread(machine,
1796 event->fork.pid,
1797 event->fork.tid);
1798 struct thread *parent = machine__findnew_thread(machine,
1799 event->fork.ppid,
1800 event->fork.ptid);
1801 bool do_maps_clone = true;
1802 int err = 0;
1803
1804 if (dump_trace)
1805 perf_event__fprintf_task(event, stdout);
1806
1807 /*
1808 * There may be an existing thread that is not actually the parent,
1809 * either because we are processing events out of order, or because the
1810 * (fork) event that would have removed the thread was lost. Assume the
1811 * latter case and continue on as best we can.
1812 */
1813 if (parent->pid_ != (pid_t)event->fork.ppid) {
1814 dump_printf("removing erroneous parent thread %d/%d\n",
1815 parent->pid_, parent->tid);
1816 machine__remove_thread(machine, parent);
1817 thread__put(parent);
1818 parent = machine__findnew_thread(machine, event->fork.ppid,
1819 event->fork.ptid);
1820 }
1821
1822 /* if a thread currently exists for the thread id remove it */
1823 if (thread != NULL) {
1824 machine__remove_thread(machine, thread);
1825 thread__put(thread);
1826 }
1827
1828 thread = machine__findnew_thread(machine, event->fork.pid,
1829 event->fork.tid);
1830 /*
1831 * When synthesizing FORK events, we are trying to create thread
1832 * objects for the already running tasks on the machine.
1833 *
1834 * Normally, for a kernel FORK event, we want to clone the parent's
1835 * maps because that is what the kernel just did.
1836 *
1837 * But when synthesizing, this should not be done. If we do, we end up
1838 * with overlapping maps as we process the sythesized MMAP2 events that
1839 * get delivered shortly thereafter.
1840 *
1841 * Use the FORK event misc flags in an internal way to signal this
1842 * situation, so we can elide the map clone when appropriate.
1843 */
1844 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1845 do_maps_clone = false;
1846
1847 if (thread == NULL || parent == NULL ||
1848 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1849 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1850 err = -1;
1851 }
1852 thread__put(thread);
1853 thread__put(parent);
1854
1855 return err;
1856 }
1857
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1858 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1859 struct perf_sample *sample __maybe_unused)
1860 {
1861 struct thread *thread = machine__find_thread(machine,
1862 event->fork.pid,
1863 event->fork.tid);
1864
1865 if (dump_trace)
1866 perf_event__fprintf_task(event, stdout);
1867
1868 if (thread != NULL) {
1869 thread__exited(thread);
1870 thread__put(thread);
1871 }
1872
1873 return 0;
1874 }
1875
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1876 int machine__process_event(struct machine *machine, union perf_event *event,
1877 struct perf_sample *sample)
1878 {
1879 int ret;
1880
1881 switch (event->header.type) {
1882 case PERF_RECORD_COMM:
1883 ret = machine__process_comm_event(machine, event, sample); break;
1884 case PERF_RECORD_MMAP:
1885 ret = machine__process_mmap_event(machine, event, sample); break;
1886 case PERF_RECORD_NAMESPACES:
1887 ret = machine__process_namespaces_event(machine, event, sample); break;
1888 case PERF_RECORD_MMAP2:
1889 ret = machine__process_mmap2_event(machine, event, sample); break;
1890 case PERF_RECORD_FORK:
1891 ret = machine__process_fork_event(machine, event, sample); break;
1892 case PERF_RECORD_EXIT:
1893 ret = machine__process_exit_event(machine, event, sample); break;
1894 case PERF_RECORD_LOST:
1895 ret = machine__process_lost_event(machine, event, sample); break;
1896 case PERF_RECORD_AUX:
1897 ret = machine__process_aux_event(machine, event); break;
1898 case PERF_RECORD_ITRACE_START:
1899 ret = machine__process_itrace_start_event(machine, event); break;
1900 case PERF_RECORD_LOST_SAMPLES:
1901 ret = machine__process_lost_samples_event(machine, event, sample); break;
1902 case PERF_RECORD_SWITCH:
1903 case PERF_RECORD_SWITCH_CPU_WIDE:
1904 ret = machine__process_switch_event(machine, event); break;
1905 case PERF_RECORD_KSYMBOL:
1906 ret = machine__process_ksymbol(machine, event, sample); break;
1907 case PERF_RECORD_BPF_EVENT:
1908 ret = machine__process_bpf(machine, event, sample); break;
1909 default:
1910 ret = -1;
1911 break;
1912 }
1913
1914 return ret;
1915 }
1916
symbol__match_regex(struct symbol * sym,regex_t * regex)1917 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1918 {
1919 if (!regexec(regex, sym->name, 0, NULL, 0))
1920 return 1;
1921 return 0;
1922 }
1923
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)1924 static void ip__resolve_ams(struct thread *thread,
1925 struct addr_map_symbol *ams,
1926 u64 ip)
1927 {
1928 struct addr_location al;
1929
1930 memset(&al, 0, sizeof(al));
1931 /*
1932 * We cannot use the header.misc hint to determine whether a
1933 * branch stack address is user, kernel, guest, hypervisor.
1934 * Branches may straddle the kernel/user/hypervisor boundaries.
1935 * Thus, we have to try consecutively until we find a match
1936 * or else, the symbol is unknown
1937 */
1938 thread__find_cpumode_addr_location(thread, ip, &al);
1939
1940 ams->addr = ip;
1941 ams->al_addr = al.addr;
1942 ams->sym = al.sym;
1943 ams->map = al.map;
1944 ams->phys_addr = 0;
1945 }
1946
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr)1947 static void ip__resolve_data(struct thread *thread,
1948 u8 m, struct addr_map_symbol *ams,
1949 u64 addr, u64 phys_addr)
1950 {
1951 struct addr_location al;
1952
1953 memset(&al, 0, sizeof(al));
1954
1955 thread__find_symbol(thread, m, addr, &al);
1956
1957 ams->addr = addr;
1958 ams->al_addr = al.addr;
1959 ams->sym = al.sym;
1960 ams->map = al.map;
1961 ams->phys_addr = phys_addr;
1962 }
1963
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)1964 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1965 struct addr_location *al)
1966 {
1967 struct mem_info *mi = mem_info__new();
1968
1969 if (!mi)
1970 return NULL;
1971
1972 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1973 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1974 sample->addr, sample->phys_addr);
1975 mi->data_src.val = sample->data_src;
1976
1977 return mi;
1978 }
1979
callchain_srcline(struct map * map,struct symbol * sym,u64 ip)1980 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1981 {
1982 char *srcline = NULL;
1983
1984 if (!map || callchain_param.key == CCKEY_FUNCTION)
1985 return srcline;
1986
1987 srcline = srcline__tree_find(&map->dso->srclines, ip);
1988 if (!srcline) {
1989 bool show_sym = false;
1990 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1991
1992 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1993 sym, show_sym, show_addr, ip);
1994 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1995 }
1996
1997 return srcline;
1998 }
1999
2000 struct iterations {
2001 int nr_loop_iter;
2002 u64 cycles;
2003 };
2004
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from)2005 static int add_callchain_ip(struct thread *thread,
2006 struct callchain_cursor *cursor,
2007 struct symbol **parent,
2008 struct addr_location *root_al,
2009 u8 *cpumode,
2010 u64 ip,
2011 bool branch,
2012 struct branch_flags *flags,
2013 struct iterations *iter,
2014 u64 branch_from)
2015 {
2016 struct addr_location al;
2017 int nr_loop_iter = 0;
2018 u64 iter_cycles = 0;
2019 const char *srcline = NULL;
2020
2021 al.filtered = 0;
2022 al.sym = NULL;
2023 al.srcline = NULL;
2024 if (!cpumode) {
2025 thread__find_cpumode_addr_location(thread, ip, &al);
2026 } else {
2027 if (ip >= PERF_CONTEXT_MAX) {
2028 switch (ip) {
2029 case PERF_CONTEXT_HV:
2030 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2031 break;
2032 case PERF_CONTEXT_KERNEL:
2033 *cpumode = PERF_RECORD_MISC_KERNEL;
2034 break;
2035 case PERF_CONTEXT_USER:
2036 *cpumode = PERF_RECORD_MISC_USER;
2037 break;
2038 default:
2039 pr_debug("invalid callchain context: "
2040 "%"PRId64"\n", (s64) ip);
2041 /*
2042 * It seems the callchain is corrupted.
2043 * Discard all.
2044 */
2045 callchain_cursor_reset(cursor);
2046 return 1;
2047 }
2048 return 0;
2049 }
2050 thread__find_symbol(thread, *cpumode, ip, &al);
2051 }
2052
2053 if (al.sym != NULL) {
2054 if (perf_hpp_list.parent && !*parent &&
2055 symbol__match_regex(al.sym, &parent_regex))
2056 *parent = al.sym;
2057 else if (have_ignore_callees && root_al &&
2058 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2059 /* Treat this symbol as the root,
2060 forgetting its callees. */
2061 *root_al = al;
2062 callchain_cursor_reset(cursor);
2063 }
2064 }
2065
2066 if (symbol_conf.hide_unresolved && al.sym == NULL)
2067 return 0;
2068
2069 if (iter) {
2070 nr_loop_iter = iter->nr_loop_iter;
2071 iter_cycles = iter->cycles;
2072 }
2073
2074 srcline = callchain_srcline(al.map, al.sym, al.addr);
2075 return callchain_cursor_append(cursor, ip, al.map, al.sym,
2076 branch, flags, nr_loop_iter,
2077 iter_cycles, branch_from, srcline);
2078 }
2079
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2080 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2081 struct addr_location *al)
2082 {
2083 unsigned int i;
2084 const struct branch_stack *bs = sample->branch_stack;
2085 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2086
2087 if (!bi)
2088 return NULL;
2089
2090 for (i = 0; i < bs->nr; i++) {
2091 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2092 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2093 bi[i].flags = bs->entries[i].flags;
2094 }
2095 return bi;
2096 }
2097
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2098 static void save_iterations(struct iterations *iter,
2099 struct branch_entry *be, int nr)
2100 {
2101 int i;
2102
2103 iter->nr_loop_iter++;
2104 iter->cycles = 0;
2105
2106 for (i = 0; i < nr; i++)
2107 iter->cycles += be[i].flags.cycles;
2108 }
2109
2110 #define CHASHSZ 127
2111 #define CHASHBITS 7
2112 #define NO_ENTRY 0xff
2113
2114 #define PERF_MAX_BRANCH_DEPTH 127
2115
2116 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2117 static int remove_loops(struct branch_entry *l, int nr,
2118 struct iterations *iter)
2119 {
2120 int i, j, off;
2121 unsigned char chash[CHASHSZ];
2122
2123 memset(chash, NO_ENTRY, sizeof(chash));
2124
2125 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2126
2127 for (i = 0; i < nr; i++) {
2128 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2129
2130 /* no collision handling for now */
2131 if (chash[h] == NO_ENTRY) {
2132 chash[h] = i;
2133 } else if (l[chash[h]].from == l[i].from) {
2134 bool is_loop = true;
2135 /* check if it is a real loop */
2136 off = 0;
2137 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2138 if (l[j].from != l[i + off].from) {
2139 is_loop = false;
2140 break;
2141 }
2142 if (is_loop) {
2143 j = nr - (i + off);
2144 if (j > 0) {
2145 save_iterations(iter + i + off,
2146 l + i, off);
2147
2148 memmove(iter + i, iter + i + off,
2149 j * sizeof(*iter));
2150
2151 memmove(l + i, l + i + off,
2152 j * sizeof(*l));
2153 }
2154
2155 nr -= off;
2156 }
2157 }
2158 }
2159 return nr;
2160 }
2161
2162 /*
2163 * Recolve LBR callstack chain sample
2164 * Return:
2165 * 1 on success get LBR callchain information
2166 * 0 no available LBR callchain information, should try fp
2167 * negative error code on other errors.
2168 */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2169 static int resolve_lbr_callchain_sample(struct thread *thread,
2170 struct callchain_cursor *cursor,
2171 struct perf_sample *sample,
2172 struct symbol **parent,
2173 struct addr_location *root_al,
2174 int max_stack)
2175 {
2176 struct ip_callchain *chain = sample->callchain;
2177 int chain_nr = min(max_stack, (int)chain->nr), i;
2178 u8 cpumode = PERF_RECORD_MISC_USER;
2179 u64 ip, branch_from = 0;
2180
2181 for (i = 0; i < chain_nr; i++) {
2182 if (chain->ips[i] == PERF_CONTEXT_USER)
2183 break;
2184 }
2185
2186 /* LBR only affects the user callchain */
2187 if (i != chain_nr) {
2188 struct branch_stack *lbr_stack = sample->branch_stack;
2189 int lbr_nr = lbr_stack->nr, j, k;
2190 bool branch;
2191 struct branch_flags *flags;
2192 /*
2193 * LBR callstack can only get user call chain.
2194 * The mix_chain_nr is kernel call chain
2195 * number plus LBR user call chain number.
2196 * i is kernel call chain number,
2197 * 1 is PERF_CONTEXT_USER,
2198 * lbr_nr + 1 is the user call chain number.
2199 * For details, please refer to the comments
2200 * in callchain__printf
2201 */
2202 int mix_chain_nr = i + 1 + lbr_nr + 1;
2203
2204 for (j = 0; j < mix_chain_nr; j++) {
2205 int err;
2206 branch = false;
2207 flags = NULL;
2208
2209 if (callchain_param.order == ORDER_CALLEE) {
2210 if (j < i + 1)
2211 ip = chain->ips[j];
2212 else if (j > i + 1) {
2213 k = j - i - 2;
2214 ip = lbr_stack->entries[k].from;
2215 branch = true;
2216 flags = &lbr_stack->entries[k].flags;
2217 } else {
2218 ip = lbr_stack->entries[0].to;
2219 branch = true;
2220 flags = &lbr_stack->entries[0].flags;
2221 branch_from =
2222 lbr_stack->entries[0].from;
2223 }
2224 } else {
2225 if (j < lbr_nr) {
2226 k = lbr_nr - j - 1;
2227 ip = lbr_stack->entries[k].from;
2228 branch = true;
2229 flags = &lbr_stack->entries[k].flags;
2230 }
2231 else if (j > lbr_nr)
2232 ip = chain->ips[i + 1 - (j - lbr_nr)];
2233 else {
2234 ip = lbr_stack->entries[0].to;
2235 branch = true;
2236 flags = &lbr_stack->entries[0].flags;
2237 branch_from =
2238 lbr_stack->entries[0].from;
2239 }
2240 }
2241
2242 err = add_callchain_ip(thread, cursor, parent,
2243 root_al, &cpumode, ip,
2244 branch, flags, NULL,
2245 branch_from);
2246 if (err)
2247 return (err < 0) ? err : 0;
2248 }
2249 return 1;
2250 }
2251
2252 return 0;
2253 }
2254
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent)2255 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2256 struct callchain_cursor *cursor,
2257 struct symbol **parent,
2258 struct addr_location *root_al,
2259 u8 *cpumode, int ent)
2260 {
2261 int err = 0;
2262
2263 while (--ent >= 0) {
2264 u64 ip = chain->ips[ent];
2265
2266 if (ip >= PERF_CONTEXT_MAX) {
2267 err = add_callchain_ip(thread, cursor, parent,
2268 root_al, cpumode, ip,
2269 false, NULL, NULL, 0);
2270 break;
2271 }
2272 }
2273 return err;
2274 }
2275
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2276 static int thread__resolve_callchain_sample(struct thread *thread,
2277 struct callchain_cursor *cursor,
2278 struct evsel *evsel,
2279 struct perf_sample *sample,
2280 struct symbol **parent,
2281 struct addr_location *root_al,
2282 int max_stack)
2283 {
2284 struct branch_stack *branch = sample->branch_stack;
2285 struct ip_callchain *chain = sample->callchain;
2286 int chain_nr = 0;
2287 u8 cpumode = PERF_RECORD_MISC_USER;
2288 int i, j, err, nr_entries;
2289 int skip_idx = -1;
2290 int first_call = 0;
2291
2292 if (chain)
2293 chain_nr = chain->nr;
2294
2295 if (perf_evsel__has_branch_callstack(evsel)) {
2296 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2297 root_al, max_stack);
2298 if (err)
2299 return (err < 0) ? err : 0;
2300 }
2301
2302 /*
2303 * Based on DWARF debug information, some architectures skip
2304 * a callchain entry saved by the kernel.
2305 */
2306 skip_idx = arch_skip_callchain_idx(thread, chain);
2307
2308 /*
2309 * Add branches to call stack for easier browsing. This gives
2310 * more context for a sample than just the callers.
2311 *
2312 * This uses individual histograms of paths compared to the
2313 * aggregated histograms the normal LBR mode uses.
2314 *
2315 * Limitations for now:
2316 * - No extra filters
2317 * - No annotations (should annotate somehow)
2318 */
2319
2320 if (branch && callchain_param.branch_callstack) {
2321 int nr = min(max_stack, (int)branch->nr);
2322 struct branch_entry be[nr];
2323 struct iterations iter[nr];
2324
2325 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2326 pr_warning("corrupted branch chain. skipping...\n");
2327 goto check_calls;
2328 }
2329
2330 for (i = 0; i < nr; i++) {
2331 if (callchain_param.order == ORDER_CALLEE) {
2332 be[i] = branch->entries[i];
2333
2334 if (chain == NULL)
2335 continue;
2336
2337 /*
2338 * Check for overlap into the callchain.
2339 * The return address is one off compared to
2340 * the branch entry. To adjust for this
2341 * assume the calling instruction is not longer
2342 * than 8 bytes.
2343 */
2344 if (i == skip_idx ||
2345 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2346 first_call++;
2347 else if (be[i].from < chain->ips[first_call] &&
2348 be[i].from >= chain->ips[first_call] - 8)
2349 first_call++;
2350 } else
2351 be[i] = branch->entries[branch->nr - i - 1];
2352 }
2353
2354 memset(iter, 0, sizeof(struct iterations) * nr);
2355 nr = remove_loops(be, nr, iter);
2356
2357 for (i = 0; i < nr; i++) {
2358 err = add_callchain_ip(thread, cursor, parent,
2359 root_al,
2360 NULL, be[i].to,
2361 true, &be[i].flags,
2362 NULL, be[i].from);
2363
2364 if (!err)
2365 err = add_callchain_ip(thread, cursor, parent, root_al,
2366 NULL, be[i].from,
2367 true, &be[i].flags,
2368 &iter[i], 0);
2369 if (err == -EINVAL)
2370 break;
2371 if (err)
2372 return err;
2373 }
2374
2375 if (chain_nr == 0)
2376 return 0;
2377
2378 chain_nr -= nr;
2379 }
2380
2381 check_calls:
2382 if (chain && callchain_param.order != ORDER_CALLEE) {
2383 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2384 &cpumode, chain->nr - first_call);
2385 if (err)
2386 return (err < 0) ? err : 0;
2387 }
2388 for (i = first_call, nr_entries = 0;
2389 i < chain_nr && nr_entries < max_stack; i++) {
2390 u64 ip;
2391
2392 if (callchain_param.order == ORDER_CALLEE)
2393 j = i;
2394 else
2395 j = chain->nr - i - 1;
2396
2397 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2398 if (j == skip_idx)
2399 continue;
2400 #endif
2401 ip = chain->ips[j];
2402 if (ip < PERF_CONTEXT_MAX)
2403 ++nr_entries;
2404 else if (callchain_param.order != ORDER_CALLEE) {
2405 err = find_prev_cpumode(chain, thread, cursor, parent,
2406 root_al, &cpumode, j);
2407 if (err)
2408 return (err < 0) ? err : 0;
2409 continue;
2410 }
2411
2412 err = add_callchain_ip(thread, cursor, parent,
2413 root_al, &cpumode, ip,
2414 false, NULL, NULL, 0);
2415
2416 if (err)
2417 return (err < 0) ? err : 0;
2418 }
2419
2420 return 0;
2421 }
2422
append_inlines(struct callchain_cursor * cursor,struct map * map,struct symbol * sym,u64 ip)2423 static int append_inlines(struct callchain_cursor *cursor,
2424 struct map *map, struct symbol *sym, u64 ip)
2425 {
2426 struct inline_node *inline_node;
2427 struct inline_list *ilist;
2428 u64 addr;
2429 int ret = 1;
2430
2431 if (!symbol_conf.inline_name || !map || !sym)
2432 return ret;
2433
2434 addr = map__map_ip(map, ip);
2435 addr = map__rip_2objdump(map, addr);
2436
2437 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2438 if (!inline_node) {
2439 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2440 if (!inline_node)
2441 return ret;
2442 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2443 }
2444
2445 list_for_each_entry(ilist, &inline_node->val, list) {
2446 ret = callchain_cursor_append(cursor, ip, map,
2447 ilist->symbol, false,
2448 NULL, 0, 0, 0, ilist->srcline);
2449
2450 if (ret != 0)
2451 return ret;
2452 }
2453
2454 return ret;
2455 }
2456
unwind_entry(struct unwind_entry * entry,void * arg)2457 static int unwind_entry(struct unwind_entry *entry, void *arg)
2458 {
2459 struct callchain_cursor *cursor = arg;
2460 const char *srcline = NULL;
2461 u64 addr = entry->ip;
2462
2463 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2464 return 0;
2465
2466 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2467 return 0;
2468
2469 /*
2470 * Convert entry->ip from a virtual address to an offset in
2471 * its corresponding binary.
2472 */
2473 if (entry->map)
2474 addr = map__map_ip(entry->map, entry->ip);
2475
2476 srcline = callchain_srcline(entry->map, entry->sym, addr);
2477 return callchain_cursor_append(cursor, entry->ip,
2478 entry->map, entry->sym,
2479 false, NULL, 0, 0, 0, srcline);
2480 }
2481
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack)2482 static int thread__resolve_callchain_unwind(struct thread *thread,
2483 struct callchain_cursor *cursor,
2484 struct evsel *evsel,
2485 struct perf_sample *sample,
2486 int max_stack)
2487 {
2488 /* Can we do dwarf post unwind? */
2489 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2490 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2491 return 0;
2492
2493 /* Bail out if nothing was captured. */
2494 if ((!sample->user_regs.regs) ||
2495 (!sample->user_stack.size))
2496 return 0;
2497
2498 return unwind__get_entries(unwind_entry, cursor,
2499 thread, sample, max_stack);
2500 }
2501
thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2502 int thread__resolve_callchain(struct thread *thread,
2503 struct callchain_cursor *cursor,
2504 struct evsel *evsel,
2505 struct perf_sample *sample,
2506 struct symbol **parent,
2507 struct addr_location *root_al,
2508 int max_stack)
2509 {
2510 int ret = 0;
2511
2512 callchain_cursor_reset(cursor);
2513
2514 if (callchain_param.order == ORDER_CALLEE) {
2515 ret = thread__resolve_callchain_sample(thread, cursor,
2516 evsel, sample,
2517 parent, root_al,
2518 max_stack);
2519 if (ret)
2520 return ret;
2521 ret = thread__resolve_callchain_unwind(thread, cursor,
2522 evsel, sample,
2523 max_stack);
2524 } else {
2525 ret = thread__resolve_callchain_unwind(thread, cursor,
2526 evsel, sample,
2527 max_stack);
2528 if (ret)
2529 return ret;
2530 ret = thread__resolve_callchain_sample(thread, cursor,
2531 evsel, sample,
2532 parent, root_al,
2533 max_stack);
2534 }
2535
2536 return ret;
2537 }
2538
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)2539 int machine__for_each_thread(struct machine *machine,
2540 int (*fn)(struct thread *thread, void *p),
2541 void *priv)
2542 {
2543 struct threads *threads;
2544 struct rb_node *nd;
2545 struct thread *thread;
2546 int rc = 0;
2547 int i;
2548
2549 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2550 threads = &machine->threads[i];
2551 for (nd = rb_first_cached(&threads->entries); nd;
2552 nd = rb_next(nd)) {
2553 thread = rb_entry(nd, struct thread, rb_node);
2554 rc = fn(thread, priv);
2555 if (rc != 0)
2556 return rc;
2557 }
2558
2559 list_for_each_entry(thread, &threads->dead, node) {
2560 rc = fn(thread, priv);
2561 if (rc != 0)
2562 return rc;
2563 }
2564 }
2565 return rc;
2566 }
2567
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)2568 int machines__for_each_thread(struct machines *machines,
2569 int (*fn)(struct thread *thread, void *p),
2570 void *priv)
2571 {
2572 struct rb_node *nd;
2573 int rc = 0;
2574
2575 rc = machine__for_each_thread(&machines->host, fn, priv);
2576 if (rc != 0)
2577 return rc;
2578
2579 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2580 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2581
2582 rc = machine__for_each_thread(machine, fn, priv);
2583 if (rc != 0)
2584 return rc;
2585 }
2586 return rc;
2587 }
2588
machine__get_current_tid(struct machine * machine,int cpu)2589 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2590 {
2591 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
2592
2593 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2594 return -1;
2595
2596 return machine->current_tid[cpu];
2597 }
2598
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)2599 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2600 pid_t tid)
2601 {
2602 struct thread *thread;
2603 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
2604
2605 if (cpu < 0)
2606 return -EINVAL;
2607
2608 if (!machine->current_tid) {
2609 int i;
2610
2611 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2612 if (!machine->current_tid)
2613 return -ENOMEM;
2614 for (i = 0; i < nr_cpus; i++)
2615 machine->current_tid[i] = -1;
2616 }
2617
2618 if (cpu >= nr_cpus) {
2619 pr_err("Requested CPU %d too large. ", cpu);
2620 pr_err("Consider raising MAX_NR_CPUS\n");
2621 return -EINVAL;
2622 }
2623
2624 machine->current_tid[cpu] = tid;
2625
2626 thread = machine__findnew_thread(machine, pid, tid);
2627 if (!thread)
2628 return -ENOMEM;
2629
2630 thread->cpu = cpu;
2631 thread__put(thread);
2632
2633 return 0;
2634 }
2635
2636 /*
2637 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2638 * normalized arch is needed.
2639 */
machine__is(struct machine * machine,const char * arch)2640 bool machine__is(struct machine *machine, const char *arch)
2641 {
2642 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2643 }
2644
machine__nr_cpus_avail(struct machine * machine)2645 int machine__nr_cpus_avail(struct machine *machine)
2646 {
2647 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2648 }
2649
machine__get_kernel_start(struct machine * machine)2650 int machine__get_kernel_start(struct machine *machine)
2651 {
2652 struct map *map = machine__kernel_map(machine);
2653 int err = 0;
2654
2655 /*
2656 * The only addresses above 2^63 are kernel addresses of a 64-bit
2657 * kernel. Note that addresses are unsigned so that on a 32-bit system
2658 * all addresses including kernel addresses are less than 2^32. In
2659 * that case (32-bit system), if the kernel mapping is unknown, all
2660 * addresses will be assumed to be in user space - see
2661 * machine__kernel_ip().
2662 */
2663 machine->kernel_start = 1ULL << 63;
2664 if (map) {
2665 err = map__load(map);
2666 /*
2667 * On x86_64, PTI entry trampolines are less than the
2668 * start of kernel text, but still above 2^63. So leave
2669 * kernel_start = 1ULL << 63 for x86_64.
2670 */
2671 if (!err && !machine__is(machine, "x86_64"))
2672 machine->kernel_start = map->start;
2673 }
2674 return err;
2675 }
2676
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)2677 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2678 {
2679 u8 addr_cpumode = cpumode;
2680 bool kernel_ip;
2681
2682 if (!machine->single_address_space)
2683 goto out;
2684
2685 kernel_ip = machine__kernel_ip(machine, addr);
2686 switch (cpumode) {
2687 case PERF_RECORD_MISC_KERNEL:
2688 case PERF_RECORD_MISC_USER:
2689 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2690 PERF_RECORD_MISC_USER;
2691 break;
2692 case PERF_RECORD_MISC_GUEST_KERNEL:
2693 case PERF_RECORD_MISC_GUEST_USER:
2694 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2695 PERF_RECORD_MISC_GUEST_USER;
2696 break;
2697 default:
2698 break;
2699 }
2700 out:
2701 return addr_cpumode;
2702 }
2703
machine__findnew_dso(struct machine * machine,const char * filename)2704 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2705 {
2706 return dsos__findnew(&machine->dsos, filename);
2707 }
2708
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)2709 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2710 {
2711 struct machine *machine = vmachine;
2712 struct map *map;
2713 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2714
2715 if (sym == NULL)
2716 return NULL;
2717
2718 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2719 *addrp = map->unmap_ip(map, sym->start);
2720 return sym->name;
2721 }
2722