1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * check TSC synchronization.
4 *
5 * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
6 *
7 * We check whether all boot CPUs have their TSC's synchronized,
8 * print a warning if not and turn off the TSC clock-source.
9 *
10 * The warp-check is point-to-point between two CPUs, the CPU
11 * initiating the bootup is the 'source CPU', the freshly booting
12 * CPU is the 'target CPU'.
13 *
14 * Only two CPUs may participate - they can enter in any order.
15 * ( The serial nature of the boot logic and the CPU hotplug lock
16 * protects against more than 2 CPUs entering this code. )
17 */
18 #include <linux/topology.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/nmi.h>
23 #include <asm/tsc.h>
24
25 struct tsc_adjust {
26 s64 bootval;
27 s64 adjusted;
28 unsigned long nextcheck;
29 bool warned;
30 };
31
32 static DEFINE_PER_CPU(struct tsc_adjust, tsc_adjust);
33 static struct timer_list tsc_sync_check_timer;
34
35 /*
36 * TSC's on different sockets may be reset asynchronously.
37 * This may cause the TSC ADJUST value on socket 0 to be NOT 0.
38 */
39 bool __read_mostly tsc_async_resets;
40
mark_tsc_async_resets(char * reason)41 void mark_tsc_async_resets(char *reason)
42 {
43 if (tsc_async_resets)
44 return;
45 tsc_async_resets = true;
46 pr_info("tsc: Marking TSC async resets true due to %s\n", reason);
47 }
48
tsc_verify_tsc_adjust(bool resume)49 void tsc_verify_tsc_adjust(bool resume)
50 {
51 struct tsc_adjust *adj = this_cpu_ptr(&tsc_adjust);
52 s64 curval;
53
54 if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
55 return;
56
57 /* Skip unnecessary error messages if TSC already unstable */
58 if (check_tsc_unstable())
59 return;
60
61 /* Rate limit the MSR check */
62 if (!resume && time_before(jiffies, adj->nextcheck))
63 return;
64
65 adj->nextcheck = jiffies + HZ;
66
67 rdmsrl(MSR_IA32_TSC_ADJUST, curval);
68 if (adj->adjusted == curval)
69 return;
70
71 /* Restore the original value */
72 wrmsrl(MSR_IA32_TSC_ADJUST, adj->adjusted);
73
74 if (!adj->warned || resume) {
75 pr_warn(FW_BUG "TSC ADJUST differs: CPU%u %lld --> %lld. Restoring\n",
76 smp_processor_id(), adj->adjusted, curval);
77 adj->warned = true;
78 }
79 }
80
81 /*
82 * Normally the tsc_sync will be checked every time system enters idle
83 * state, but there is still caveat that a system won't enter idle,
84 * either because it's too busy or configured purposely to not enter
85 * idle.
86 *
87 * So setup a periodic timer (every 10 minutes) to make sure the check
88 * is always on.
89 */
90
91 #define SYNC_CHECK_INTERVAL (HZ * 600)
92
tsc_sync_check_timer_fn(struct timer_list * unused)93 static void tsc_sync_check_timer_fn(struct timer_list *unused)
94 {
95 int next_cpu;
96
97 tsc_verify_tsc_adjust(false);
98
99 /* Run the check for all onlined CPUs in turn */
100 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
101 if (next_cpu >= nr_cpu_ids)
102 next_cpu = cpumask_first(cpu_online_mask);
103
104 tsc_sync_check_timer.expires += SYNC_CHECK_INTERVAL;
105 add_timer_on(&tsc_sync_check_timer, next_cpu);
106 }
107
start_sync_check_timer(void)108 static int __init start_sync_check_timer(void)
109 {
110 if (!cpu_feature_enabled(X86_FEATURE_TSC_ADJUST) || tsc_clocksource_reliable)
111 return 0;
112
113 timer_setup(&tsc_sync_check_timer, tsc_sync_check_timer_fn, 0);
114 tsc_sync_check_timer.expires = jiffies + SYNC_CHECK_INTERVAL;
115 add_timer(&tsc_sync_check_timer);
116
117 return 0;
118 }
119 late_initcall(start_sync_check_timer);
120
tsc_sanitize_first_cpu(struct tsc_adjust * cur,s64 bootval,unsigned int cpu,bool bootcpu)121 static void tsc_sanitize_first_cpu(struct tsc_adjust *cur, s64 bootval,
122 unsigned int cpu, bool bootcpu)
123 {
124 /*
125 * First online CPU in a package stores the boot value in the
126 * adjustment value. This value might change later via the sync
127 * mechanism. If that fails we still can yell about boot values not
128 * being consistent.
129 *
130 * On the boot cpu we just force set the ADJUST value to 0 if it's
131 * non zero. We don't do that on non boot cpus because physical
132 * hotplug should have set the ADJUST register to a value > 0 so
133 * the TSC is in sync with the already running cpus.
134 *
135 * Also don't force the ADJUST value to zero if that is a valid value
136 * for socket 0 as determined by the system arch. This is required
137 * when multiple sockets are reset asynchronously with each other
138 * and socket 0 may not have an TSC ADJUST value of 0.
139 */
140 if (bootcpu && bootval != 0) {
141 if (likely(!tsc_async_resets)) {
142 pr_warn(FW_BUG "TSC ADJUST: CPU%u: %lld force to 0\n",
143 cpu, bootval);
144 wrmsrl(MSR_IA32_TSC_ADJUST, 0);
145 bootval = 0;
146 } else {
147 pr_info("TSC ADJUST: CPU%u: %lld NOT forced to 0\n",
148 cpu, bootval);
149 }
150 }
151 cur->adjusted = bootval;
152 }
153
154 #ifndef CONFIG_SMP
tsc_store_and_check_tsc_adjust(bool bootcpu)155 bool __init tsc_store_and_check_tsc_adjust(bool bootcpu)
156 {
157 struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust);
158 s64 bootval;
159
160 if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
161 return false;
162
163 /* Skip unnecessary error messages if TSC already unstable */
164 if (check_tsc_unstable())
165 return false;
166
167 rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
168 cur->bootval = bootval;
169 cur->nextcheck = jiffies + HZ;
170 tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(), bootcpu);
171 return false;
172 }
173
174 #else /* !CONFIG_SMP */
175
176 /*
177 * Store and check the TSC ADJUST MSR if available
178 */
tsc_store_and_check_tsc_adjust(bool bootcpu)179 bool tsc_store_and_check_tsc_adjust(bool bootcpu)
180 {
181 struct tsc_adjust *ref, *cur = this_cpu_ptr(&tsc_adjust);
182 unsigned int refcpu, cpu = smp_processor_id();
183 struct cpumask *mask;
184 s64 bootval;
185
186 if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
187 return false;
188
189 rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
190 cur->bootval = bootval;
191 cur->nextcheck = jiffies + HZ;
192 cur->warned = false;
193
194 /*
195 * If a non-zero TSC value for socket 0 may be valid then the default
196 * adjusted value cannot assumed to be zero either.
197 */
198 if (tsc_async_resets)
199 cur->adjusted = bootval;
200
201 /*
202 * Check whether this CPU is the first in a package to come up. In
203 * this case do not check the boot value against another package
204 * because the new package might have been physically hotplugged,
205 * where TSC_ADJUST is expected to be different. When called on the
206 * boot CPU topology_core_cpumask() might not be available yet.
207 */
208 mask = topology_core_cpumask(cpu);
209 refcpu = mask ? cpumask_any_but(mask, cpu) : nr_cpu_ids;
210
211 if (refcpu >= nr_cpu_ids) {
212 tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(),
213 bootcpu);
214 return false;
215 }
216
217 ref = per_cpu_ptr(&tsc_adjust, refcpu);
218 /*
219 * Compare the boot value and complain if it differs in the
220 * package.
221 */
222 if (bootval != ref->bootval)
223 printk_once(FW_BUG "TSC ADJUST differs within socket(s), fixing all errors\n");
224
225 /*
226 * The TSC_ADJUST values in a package must be the same. If the boot
227 * value on this newly upcoming CPU differs from the adjustment
228 * value of the already online CPU in this package, set it to that
229 * adjusted value.
230 */
231 if (bootval != ref->adjusted) {
232 cur->adjusted = ref->adjusted;
233 wrmsrl(MSR_IA32_TSC_ADJUST, ref->adjusted);
234 }
235 /*
236 * We have the TSCs forced to be in sync on this package. Skip sync
237 * test:
238 */
239 return true;
240 }
241
242 /*
243 * Entry/exit counters that make sure that both CPUs
244 * run the measurement code at once:
245 */
246 static atomic_t start_count;
247 static atomic_t stop_count;
248 static atomic_t skip_test;
249 static atomic_t test_runs;
250
251 /*
252 * We use a raw spinlock in this exceptional case, because
253 * we want to have the fastest, inlined, non-debug version
254 * of a critical section, to be able to prove TSC time-warps:
255 */
256 static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
257
258 static cycles_t last_tsc;
259 static cycles_t max_warp;
260 static int nr_warps;
261 static int random_warps;
262
263 /*
264 * TSC-warp measurement loop running on both CPUs. This is not called
265 * if there is no TSC.
266 */
check_tsc_warp(unsigned int timeout)267 static cycles_t check_tsc_warp(unsigned int timeout)
268 {
269 cycles_t start, now, prev, end, cur_max_warp = 0;
270 int i, cur_warps = 0;
271
272 start = rdtsc_ordered();
273 /*
274 * The measurement runs for 'timeout' msecs:
275 */
276 end = start + (cycles_t) tsc_khz * timeout;
277 now = start;
278
279 for (i = 0; ; i++) {
280 /*
281 * We take the global lock, measure TSC, save the
282 * previous TSC that was measured (possibly on
283 * another CPU) and update the previous TSC timestamp.
284 */
285 arch_spin_lock(&sync_lock);
286 prev = last_tsc;
287 now = rdtsc_ordered();
288 last_tsc = now;
289 arch_spin_unlock(&sync_lock);
290
291 /*
292 * Be nice every now and then (and also check whether
293 * measurement is done [we also insert a 10 million
294 * loops safety exit, so we dont lock up in case the
295 * TSC readout is totally broken]):
296 */
297 if (unlikely(!(i & 7))) {
298 if (now > end || i > 10000000)
299 break;
300 cpu_relax();
301 touch_nmi_watchdog();
302 }
303 /*
304 * Outside the critical section we can now see whether
305 * we saw a time-warp of the TSC going backwards:
306 */
307 if (unlikely(prev > now)) {
308 arch_spin_lock(&sync_lock);
309 max_warp = max(max_warp, prev - now);
310 cur_max_warp = max_warp;
311 /*
312 * Check whether this bounces back and forth. Only
313 * one CPU should observe time going backwards.
314 */
315 if (cur_warps != nr_warps)
316 random_warps++;
317 nr_warps++;
318 cur_warps = nr_warps;
319 arch_spin_unlock(&sync_lock);
320 }
321 }
322 WARN(!(now-start),
323 "Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
324 now-start, end-start);
325 return cur_max_warp;
326 }
327
328 /*
329 * If the target CPU coming online doesn't have any of its core-siblings
330 * online, a timeout of 20msec will be used for the TSC-warp measurement
331 * loop. Otherwise a smaller timeout of 2msec will be used, as we have some
332 * information about this socket already (and this information grows as we
333 * have more and more logical-siblings in that socket).
334 *
335 * Ideally we should be able to skip the TSC sync check on the other
336 * core-siblings, if the first logical CPU in a socket passed the sync test.
337 * But as the TSC is per-logical CPU and can potentially be modified wrongly
338 * by the bios, TSC sync test for smaller duration should be able
339 * to catch such errors. Also this will catch the condition where all the
340 * cores in the socket doesn't get reset at the same time.
341 */
loop_timeout(int cpu)342 static inline unsigned int loop_timeout(int cpu)
343 {
344 return (cpumask_weight(topology_core_cpumask(cpu)) > 1) ? 2 : 20;
345 }
346
347 /*
348 * Source CPU calls into this - it waits for the freshly booted
349 * target CPU to arrive and then starts the measurement:
350 */
check_tsc_sync_source(int cpu)351 void check_tsc_sync_source(int cpu)
352 {
353 int cpus = 2;
354
355 /*
356 * No need to check if we already know that the TSC is not
357 * synchronized or if we have no TSC.
358 */
359 if (unsynchronized_tsc())
360 return;
361
362 /*
363 * Set the maximum number of test runs to
364 * 1 if the CPU does not provide the TSC_ADJUST MSR
365 * 3 if the MSR is available, so the target can try to adjust
366 */
367 if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
368 atomic_set(&test_runs, 1);
369 else
370 atomic_set(&test_runs, 3);
371 retry:
372 /*
373 * Wait for the target to start or to skip the test:
374 */
375 while (atomic_read(&start_count) != cpus - 1) {
376 if (atomic_read(&skip_test) > 0) {
377 atomic_set(&skip_test, 0);
378 return;
379 }
380 cpu_relax();
381 }
382
383 /*
384 * Trigger the target to continue into the measurement too:
385 */
386 atomic_inc(&start_count);
387
388 check_tsc_warp(loop_timeout(cpu));
389
390 while (atomic_read(&stop_count) != cpus-1)
391 cpu_relax();
392
393 /*
394 * If the test was successful set the number of runs to zero and
395 * stop. If not, decrement the number of runs an check if we can
396 * retry. In case of random warps no retry is attempted.
397 */
398 if (!nr_warps) {
399 atomic_set(&test_runs, 0);
400
401 pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
402 smp_processor_id(), cpu);
403
404 } else if (atomic_dec_and_test(&test_runs) || random_warps) {
405 /* Force it to 0 if random warps brought us here */
406 atomic_set(&test_runs, 0);
407
408 pr_warning("TSC synchronization [CPU#%d -> CPU#%d]:\n",
409 smp_processor_id(), cpu);
410 pr_warning("Measured %Ld cycles TSC warp between CPUs, "
411 "turning off TSC clock.\n", max_warp);
412 if (random_warps)
413 pr_warning("TSC warped randomly between CPUs\n");
414 mark_tsc_unstable("check_tsc_sync_source failed");
415 }
416
417 /*
418 * Reset it - just in case we boot another CPU later:
419 */
420 atomic_set(&start_count, 0);
421 random_warps = 0;
422 nr_warps = 0;
423 max_warp = 0;
424 last_tsc = 0;
425
426 /*
427 * Let the target continue with the bootup:
428 */
429 atomic_inc(&stop_count);
430
431 /*
432 * Retry, if there is a chance to do so.
433 */
434 if (atomic_read(&test_runs) > 0)
435 goto retry;
436 }
437
438 /*
439 * Freshly booted CPUs call into this:
440 */
check_tsc_sync_target(void)441 void check_tsc_sync_target(void)
442 {
443 struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust);
444 unsigned int cpu = smp_processor_id();
445 cycles_t cur_max_warp, gbl_max_warp;
446 int cpus = 2;
447
448 /* Also aborts if there is no TSC. */
449 if (unsynchronized_tsc())
450 return;
451
452 /*
453 * Store, verify and sanitize the TSC adjust register. If
454 * successful skip the test.
455 *
456 * The test is also skipped when the TSC is marked reliable. This
457 * is true for SoCs which have no fallback clocksource. On these
458 * SoCs the TSC is frequency synchronized, but still the TSC ADJUST
459 * register might have been wreckaged by the BIOS..
460 */
461 if (tsc_store_and_check_tsc_adjust(false) || tsc_clocksource_reliable) {
462 atomic_inc(&skip_test);
463 return;
464 }
465
466 retry:
467 /*
468 * Register this CPU's participation and wait for the
469 * source CPU to start the measurement:
470 */
471 atomic_inc(&start_count);
472 while (atomic_read(&start_count) != cpus)
473 cpu_relax();
474
475 cur_max_warp = check_tsc_warp(loop_timeout(cpu));
476
477 /*
478 * Store the maximum observed warp value for a potential retry:
479 */
480 gbl_max_warp = max_warp;
481
482 /*
483 * Ok, we are done:
484 */
485 atomic_inc(&stop_count);
486
487 /*
488 * Wait for the source CPU to print stuff:
489 */
490 while (atomic_read(&stop_count) != cpus)
491 cpu_relax();
492
493 /*
494 * Reset it for the next sync test:
495 */
496 atomic_set(&stop_count, 0);
497
498 /*
499 * Check the number of remaining test runs. If not zero, the test
500 * failed and a retry with adjusted TSC is possible. If zero the
501 * test was either successful or failed terminally.
502 */
503 if (!atomic_read(&test_runs))
504 return;
505
506 /*
507 * If the warp value of this CPU is 0, then the other CPU
508 * observed time going backwards so this TSC was ahead and
509 * needs to move backwards.
510 */
511 if (!cur_max_warp)
512 cur_max_warp = -gbl_max_warp;
513
514 /*
515 * Add the result to the previous adjustment value.
516 *
517 * The adjustement value is slightly off by the overhead of the
518 * sync mechanism (observed values are ~200 TSC cycles), but this
519 * really depends on CPU, node distance and frequency. So
520 * compensating for this is hard to get right. Experiments show
521 * that the warp is not longer detectable when the observed warp
522 * value is used. In the worst case the adjustment needs to go
523 * through a 3rd run for fine tuning.
524 */
525 cur->adjusted += cur_max_warp;
526
527 pr_warn("TSC ADJUST compensate: CPU%u observed %lld warp. Adjust: %lld\n",
528 cpu, cur_max_warp, cur->adjusted);
529
530 wrmsrl(MSR_IA32_TSC_ADJUST, cur->adjusted);
531 goto retry;
532
533 }
534
535 #endif /* CONFIG_SMP */
536