• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 /**
33  * DOC: memblock overview
34  *
35  * Memblock is a method of managing memory regions during the early
36  * boot period when the usual kernel memory allocators are not up and
37  * running.
38  *
39  * Memblock views the system memory as collections of contiguous
40  * regions. There are several types of these collections:
41  *
42  * * ``memory`` - describes the physical memory available to the
43  *   kernel; this may differ from the actual physical memory installed
44  *   in the system, for instance when the memory is restricted with
45  *   ``mem=`` command line parameter
46  * * ``reserved`` - describes the regions that were allocated
47  * * ``physmap`` - describes the actual physical memory regardless of
48  *   the possible restrictions; the ``physmap`` type is only available
49  *   on some architectures.
50  *
51  * Each region is represented by :c:type:`struct memblock_region` that
52  * defines the region extents, its attributes and NUMA node id on NUMA
53  * systems. Every memory type is described by the :c:type:`struct
54  * memblock_type` which contains an array of memory regions along with
55  * the allocator metadata. The memory types are nicely wrapped with
56  * :c:type:`struct memblock`. This structure is statically initialzed
57  * at build time. The region arrays for the "memory" and "reserved"
58  * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
59  * "physmap" type to %INIT_PHYSMEM_REGIONS.
60  * The :c:func:`memblock_allow_resize` enables automatic resizing of
61  * the region arrays during addition of new regions. This feature
62  * should be used with care so that memory allocated for the region
63  * array will not overlap with areas that should be reserved, for
64  * example initrd.
65  *
66  * The early architecture setup should tell memblock what the physical
67  * memory layout is by using :c:func:`memblock_add` or
68  * :c:func:`memblock_add_node` functions. The first function does not
69  * assign the region to a NUMA node and it is appropriate for UMA
70  * systems. Yet, it is possible to use it on NUMA systems as well and
71  * assign the region to a NUMA node later in the setup process using
72  * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
73  * performs such an assignment directly.
74  *
75  * Once memblock is setup the memory can be allocated using one of the
76  * API variants:
77  *
78  * * :c:func:`memblock_phys_alloc*` - these functions return the
79  *   **physical** address of the allocated memory
80  * * :c:func:`memblock_alloc*` - these functions return the **virtual**
81  *   address of the allocated memory.
82  *
83  * Note, that both API variants use implict assumptions about allowed
84  * memory ranges and the fallback methods. Consult the documentation
85  * of :c:func:`memblock_alloc_internal` and
86  * :c:func:`memblock_alloc_range_nid` functions for more elaboarte
87  * description.
88  *
89  * As the system boot progresses, the architecture specific
90  * :c:func:`mem_init` function frees all the memory to the buddy page
91  * allocator.
92  *
93  * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
94  * memblock data structures will be discarded after the system
95  * initialization compltes.
96  */
97 
98 #ifndef CONFIG_NEED_MULTIPLE_NODES
99 struct pglist_data __refdata contig_page_data;
100 EXPORT_SYMBOL(contig_page_data);
101 #endif
102 
103 unsigned long max_low_pfn;
104 unsigned long min_low_pfn;
105 unsigned long max_pfn;
106 unsigned long long max_possible_pfn;
107 
108 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
109 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
110 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
111 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
112 #endif
113 
114 struct memblock memblock __initdata_memblock = {
115 	.memory.regions		= memblock_memory_init_regions,
116 	.memory.cnt		= 1,	/* empty dummy entry */
117 	.memory.max		= INIT_MEMBLOCK_REGIONS,
118 	.memory.name		= "memory",
119 
120 	.reserved.regions	= memblock_reserved_init_regions,
121 	.reserved.cnt		= 1,	/* empty dummy entry */
122 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
123 	.reserved.name		= "reserved",
124 
125 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
126 	.physmem.regions	= memblock_physmem_init_regions,
127 	.physmem.cnt		= 1,	/* empty dummy entry */
128 	.physmem.max		= INIT_PHYSMEM_REGIONS,
129 	.physmem.name		= "physmem",
130 #endif
131 
132 	.bottom_up		= false,
133 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
134 };
135 
136 int memblock_debug __initdata_memblock;
137 static bool system_has_some_mirror __initdata_memblock = false;
138 static int memblock_can_resize __initdata_memblock;
139 static int memblock_memory_in_slab __initdata_memblock = 0;
140 static int memblock_reserved_in_slab __initdata_memblock = 0;
141 
choose_memblock_flags(void)142 static enum memblock_flags __init_memblock choose_memblock_flags(void)
143 {
144 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
145 }
146 
147 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)148 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
149 {
150 	return *size = min(*size, PHYS_ADDR_MAX - base);
151 }
152 
153 /*
154  * Address comparison utilities
155  */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)156 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
157 				       phys_addr_t base2, phys_addr_t size2)
158 {
159 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
160 }
161 
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)162 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
163 					phys_addr_t base, phys_addr_t size)
164 {
165 	unsigned long i;
166 
167 	memblock_cap_size(base, &size);
168 
169 	for (i = 0; i < type->cnt; i++)
170 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
171 					   type->regions[i].size))
172 			break;
173 	return i < type->cnt;
174 }
175 
176 /**
177  * __memblock_find_range_bottom_up - find free area utility in bottom-up
178  * @start: start of candidate range
179  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
180  *       %MEMBLOCK_ALLOC_ACCESSIBLE
181  * @size: size of free area to find
182  * @align: alignment of free area to find
183  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
184  * @flags: pick from blocks based on memory attributes
185  *
186  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
187  *
188  * Return:
189  * Found address on success, 0 on failure.
190  */
191 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)192 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
193 				phys_addr_t size, phys_addr_t align, int nid,
194 				enum memblock_flags flags)
195 {
196 	phys_addr_t this_start, this_end, cand;
197 	u64 i;
198 
199 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
200 		this_start = clamp(this_start, start, end);
201 		this_end = clamp(this_end, start, end);
202 
203 		cand = round_up(this_start, align);
204 		if (cand < this_end && this_end - cand >= size)
205 			return cand;
206 	}
207 
208 	return 0;
209 }
210 
211 /**
212  * __memblock_find_range_top_down - find free area utility, in top-down
213  * @start: start of candidate range
214  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
215  *       %MEMBLOCK_ALLOC_ACCESSIBLE
216  * @size: size of free area to find
217  * @align: alignment of free area to find
218  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
219  * @flags: pick from blocks based on memory attributes
220  *
221  * Utility called from memblock_find_in_range_node(), find free area top-down.
222  *
223  * Return:
224  * Found address on success, 0 on failure.
225  */
226 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)227 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
228 			       phys_addr_t size, phys_addr_t align, int nid,
229 			       enum memblock_flags flags)
230 {
231 	phys_addr_t this_start, this_end, cand;
232 	u64 i;
233 
234 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
235 					NULL) {
236 		this_start = clamp(this_start, start, end);
237 		this_end = clamp(this_end, start, end);
238 
239 		if (this_end < size)
240 			continue;
241 
242 		cand = round_down(this_end - size, align);
243 		if (cand >= this_start)
244 			return cand;
245 	}
246 
247 	return 0;
248 }
249 
250 /**
251  * memblock_find_in_range_node - find free area in given range and node
252  * @size: size of free area to find
253  * @align: alignment of free area to find
254  * @start: start of candidate range
255  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
256  *       %MEMBLOCK_ALLOC_ACCESSIBLE
257  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
258  * @flags: pick from blocks based on memory attributes
259  *
260  * Find @size free area aligned to @align in the specified range and node.
261  *
262  * Return:
263  * Found address on success, 0 on failure.
264  */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)265 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
266 					phys_addr_t align, phys_addr_t start,
267 					phys_addr_t end, int nid,
268 					enum memblock_flags flags)
269 {
270 	/* pump up @end */
271 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
272 	    end == MEMBLOCK_ALLOC_KASAN)
273 		end = memblock.current_limit;
274 
275 	/* avoid allocating the first page */
276 	start = max_t(phys_addr_t, start, PAGE_SIZE);
277 	end = max(start, end);
278 
279 	if (memblock_bottom_up())
280 		return __memblock_find_range_bottom_up(start, end, size, align,
281 						       nid, flags);
282 	else
283 		return __memblock_find_range_top_down(start, end, size, align,
284 						      nid, flags);
285 }
286 
287 /**
288  * memblock_find_in_range - find free area in given range
289  * @start: start of candidate range
290  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
291  *       %MEMBLOCK_ALLOC_ACCESSIBLE
292  * @size: size of free area to find
293  * @align: alignment of free area to find
294  *
295  * Find @size free area aligned to @align in the specified range.
296  *
297  * Return:
298  * Found address on success, 0 on failure.
299  */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)300 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
301 					phys_addr_t end, phys_addr_t size,
302 					phys_addr_t align)
303 {
304 	phys_addr_t ret;
305 	enum memblock_flags flags = choose_memblock_flags();
306 
307 again:
308 	ret = memblock_find_in_range_node(size, align, start, end,
309 					    NUMA_NO_NODE, flags);
310 
311 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
312 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
313 			&size);
314 		flags &= ~MEMBLOCK_MIRROR;
315 		goto again;
316 	}
317 
318 	return ret;
319 }
320 
memblock_remove_region(struct memblock_type * type,unsigned long r)321 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
322 {
323 	type->total_size -= type->regions[r].size;
324 	memmove(&type->regions[r], &type->regions[r + 1],
325 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
326 	type->cnt--;
327 
328 	/* Special case for empty arrays */
329 	if (type->cnt == 0) {
330 		WARN_ON(type->total_size != 0);
331 		type->cnt = 1;
332 		type->regions[0].base = 0;
333 		type->regions[0].size = 0;
334 		type->regions[0].flags = 0;
335 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
336 	}
337 }
338 
339 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
340 /**
341  * memblock_discard - discard memory and reserved arrays if they were allocated
342  */
memblock_discard(void)343 void __init memblock_discard(void)
344 {
345 	phys_addr_t addr, size;
346 
347 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
348 		addr = __pa(memblock.reserved.regions);
349 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
350 				  memblock.reserved.max);
351 		if (memblock_reserved_in_slab)
352 			kfree(memblock.reserved.regions);
353 		else
354 			__memblock_free_late(addr, size);
355 	}
356 
357 	if (memblock.memory.regions != memblock_memory_init_regions) {
358 		addr = __pa(memblock.memory.regions);
359 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
360 				  memblock.memory.max);
361 		if (memblock_memory_in_slab)
362 			kfree(memblock.memory.regions);
363 		else
364 			__memblock_free_late(addr, size);
365 	}
366 }
367 #endif
368 
369 /**
370  * memblock_double_array - double the size of the memblock regions array
371  * @type: memblock type of the regions array being doubled
372  * @new_area_start: starting address of memory range to avoid overlap with
373  * @new_area_size: size of memory range to avoid overlap with
374  *
375  * Double the size of the @type regions array. If memblock is being used to
376  * allocate memory for a new reserved regions array and there is a previously
377  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
378  * waiting to be reserved, ensure the memory used by the new array does
379  * not overlap.
380  *
381  * Return:
382  * 0 on success, -1 on failure.
383  */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)384 static int __init_memblock memblock_double_array(struct memblock_type *type,
385 						phys_addr_t new_area_start,
386 						phys_addr_t new_area_size)
387 {
388 	struct memblock_region *new_array, *old_array;
389 	phys_addr_t old_alloc_size, new_alloc_size;
390 	phys_addr_t old_size, new_size, addr, new_end;
391 	int use_slab = slab_is_available();
392 	int *in_slab;
393 
394 	/* We don't allow resizing until we know about the reserved regions
395 	 * of memory that aren't suitable for allocation
396 	 */
397 	if (!memblock_can_resize)
398 		return -1;
399 
400 	/* Calculate new doubled size */
401 	old_size = type->max * sizeof(struct memblock_region);
402 	new_size = old_size << 1;
403 	/*
404 	 * We need to allocated new one align to PAGE_SIZE,
405 	 *   so we can free them completely later.
406 	 */
407 	old_alloc_size = PAGE_ALIGN(old_size);
408 	new_alloc_size = PAGE_ALIGN(new_size);
409 
410 	/* Retrieve the slab flag */
411 	if (type == &memblock.memory)
412 		in_slab = &memblock_memory_in_slab;
413 	else
414 		in_slab = &memblock_reserved_in_slab;
415 
416 	/* Try to find some space for it */
417 	if (use_slab) {
418 		new_array = kmalloc(new_size, GFP_KERNEL);
419 		addr = new_array ? __pa(new_array) : 0;
420 	} else {
421 		/* only exclude range when trying to double reserved.regions */
422 		if (type != &memblock.reserved)
423 			new_area_start = new_area_size = 0;
424 
425 		addr = memblock_find_in_range(new_area_start + new_area_size,
426 						memblock.current_limit,
427 						new_alloc_size, PAGE_SIZE);
428 		if (!addr && new_area_size)
429 			addr = memblock_find_in_range(0,
430 				min(new_area_start, memblock.current_limit),
431 				new_alloc_size, PAGE_SIZE);
432 
433 		new_array = addr ? __va(addr) : NULL;
434 	}
435 	if (!addr) {
436 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
437 		       type->name, type->max, type->max * 2);
438 		return -1;
439 	}
440 
441 	new_end = addr + new_size - 1;
442 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
443 			type->name, type->max * 2, &addr, &new_end);
444 
445 	/*
446 	 * Found space, we now need to move the array over before we add the
447 	 * reserved region since it may be our reserved array itself that is
448 	 * full.
449 	 */
450 	memcpy(new_array, type->regions, old_size);
451 	memset(new_array + type->max, 0, old_size);
452 	old_array = type->regions;
453 	type->regions = new_array;
454 	type->max <<= 1;
455 
456 	/* Free old array. We needn't free it if the array is the static one */
457 	if (*in_slab)
458 		kfree(old_array);
459 	else if (old_array != memblock_memory_init_regions &&
460 		 old_array != memblock_reserved_init_regions)
461 		memblock_free(__pa(old_array), old_alloc_size);
462 
463 	/*
464 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
465 	 * needn't do it
466 	 */
467 	if (!use_slab)
468 		BUG_ON(memblock_reserve(addr, new_alloc_size));
469 
470 	/* Update slab flag */
471 	*in_slab = use_slab;
472 
473 	return 0;
474 }
475 
476 /**
477  * memblock_merge_regions - merge neighboring compatible regions
478  * @type: memblock type to scan
479  *
480  * Scan @type and merge neighboring compatible regions.
481  */
memblock_merge_regions(struct memblock_type * type)482 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
483 {
484 	int i = 0;
485 
486 	/* cnt never goes below 1 */
487 	while (i < type->cnt - 1) {
488 		struct memblock_region *this = &type->regions[i];
489 		struct memblock_region *next = &type->regions[i + 1];
490 
491 		if (this->base + this->size != next->base ||
492 		    memblock_get_region_node(this) !=
493 		    memblock_get_region_node(next) ||
494 		    this->flags != next->flags) {
495 			BUG_ON(this->base + this->size > next->base);
496 			i++;
497 			continue;
498 		}
499 
500 		this->size += next->size;
501 		/* move forward from next + 1, index of which is i + 2 */
502 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
503 		type->cnt--;
504 	}
505 }
506 
507 /**
508  * memblock_insert_region - insert new memblock region
509  * @type:	memblock type to insert into
510  * @idx:	index for the insertion point
511  * @base:	base address of the new region
512  * @size:	size of the new region
513  * @nid:	node id of the new region
514  * @flags:	flags of the new region
515  *
516  * Insert new memblock region [@base, @base + @size) into @type at @idx.
517  * @type must already have extra room to accommodate the new region.
518  */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)519 static void __init_memblock memblock_insert_region(struct memblock_type *type,
520 						   int idx, phys_addr_t base,
521 						   phys_addr_t size,
522 						   int nid,
523 						   enum memblock_flags flags)
524 {
525 	struct memblock_region *rgn = &type->regions[idx];
526 
527 	BUG_ON(type->cnt >= type->max);
528 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
529 	rgn->base = base;
530 	rgn->size = size;
531 	rgn->flags = flags;
532 	memblock_set_region_node(rgn, nid);
533 	type->cnt++;
534 	type->total_size += size;
535 }
536 
537 /**
538  * memblock_add_range - add new memblock region
539  * @type: memblock type to add new region into
540  * @base: base address of the new region
541  * @size: size of the new region
542  * @nid: nid of the new region
543  * @flags: flags of the new region
544  *
545  * Add new memblock region [@base, @base + @size) into @type.  The new region
546  * is allowed to overlap with existing ones - overlaps don't affect already
547  * existing regions.  @type is guaranteed to be minimal (all neighbouring
548  * compatible regions are merged) after the addition.
549  *
550  * Return:
551  * 0 on success, -errno on failure.
552  */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)553 int __init_memblock memblock_add_range(struct memblock_type *type,
554 				phys_addr_t base, phys_addr_t size,
555 				int nid, enum memblock_flags flags)
556 {
557 	bool insert = false;
558 	phys_addr_t obase = base;
559 	phys_addr_t end = base + memblock_cap_size(base, &size);
560 	int idx, nr_new;
561 	struct memblock_region *rgn;
562 
563 	if (!size)
564 		return 0;
565 
566 	/* special case for empty array */
567 	if (type->regions[0].size == 0) {
568 		WARN_ON(type->cnt != 1 || type->total_size);
569 		type->regions[0].base = base;
570 		type->regions[0].size = size;
571 		type->regions[0].flags = flags;
572 		memblock_set_region_node(&type->regions[0], nid);
573 		type->total_size = size;
574 		return 0;
575 	}
576 repeat:
577 	/*
578 	 * The following is executed twice.  Once with %false @insert and
579 	 * then with %true.  The first counts the number of regions needed
580 	 * to accommodate the new area.  The second actually inserts them.
581 	 */
582 	base = obase;
583 	nr_new = 0;
584 
585 	for_each_memblock_type(idx, type, rgn) {
586 		phys_addr_t rbase = rgn->base;
587 		phys_addr_t rend = rbase + rgn->size;
588 
589 		if (rbase >= end)
590 			break;
591 		if (rend <= base)
592 			continue;
593 		/*
594 		 * @rgn overlaps.  If it separates the lower part of new
595 		 * area, insert that portion.
596 		 */
597 		if (rbase > base) {
598 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
599 			WARN_ON(nid != memblock_get_region_node(rgn));
600 #endif
601 			WARN_ON(flags != rgn->flags);
602 			nr_new++;
603 			if (insert)
604 				memblock_insert_region(type, idx++, base,
605 						       rbase - base, nid,
606 						       flags);
607 		}
608 		/* area below @rend is dealt with, forget about it */
609 		base = min(rend, end);
610 	}
611 
612 	/* insert the remaining portion */
613 	if (base < end) {
614 		nr_new++;
615 		if (insert)
616 			memblock_insert_region(type, idx, base, end - base,
617 					       nid, flags);
618 	}
619 
620 	if (!nr_new)
621 		return 0;
622 
623 	/*
624 	 * If this was the first round, resize array and repeat for actual
625 	 * insertions; otherwise, merge and return.
626 	 */
627 	if (!insert) {
628 		while (type->cnt + nr_new > type->max)
629 			if (memblock_double_array(type, obase, size) < 0)
630 				return -ENOMEM;
631 		insert = true;
632 		goto repeat;
633 	} else {
634 		memblock_merge_regions(type);
635 		return 0;
636 	}
637 }
638 
639 /**
640  * memblock_add_node - add new memblock region within a NUMA node
641  * @base: base address of the new region
642  * @size: size of the new region
643  * @nid: nid of the new region
644  *
645  * Add new memblock region [@base, @base + @size) to the "memory"
646  * type. See memblock_add_range() description for mode details
647  *
648  * Return:
649  * 0 on success, -errno on failure.
650  */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)651 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
652 				       int nid)
653 {
654 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
655 }
656 
657 /**
658  * memblock_add - add new memblock region
659  * @base: base address of the new region
660  * @size: size of the new region
661  *
662  * Add new memblock region [@base, @base + @size) to the "memory"
663  * type. See memblock_add_range() description for mode details
664  *
665  * Return:
666  * 0 on success, -errno on failure.
667  */
memblock_add(phys_addr_t base,phys_addr_t size)668 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
669 {
670 	phys_addr_t end = base + size - 1;
671 
672 	memblock_dbg("memblock_add: [%pa-%pa] %pS\n",
673 		     &base, &end, (void *)_RET_IP_);
674 
675 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
676 }
677 
678 /**
679  * memblock_isolate_range - isolate given range into disjoint memblocks
680  * @type: memblock type to isolate range for
681  * @base: base of range to isolate
682  * @size: size of range to isolate
683  * @start_rgn: out parameter for the start of isolated region
684  * @end_rgn: out parameter for the end of isolated region
685  *
686  * Walk @type and ensure that regions don't cross the boundaries defined by
687  * [@base, @base + @size).  Crossing regions are split at the boundaries,
688  * which may create at most two more regions.  The index of the first
689  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
690  *
691  * Return:
692  * 0 on success, -errno on failure.
693  */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)694 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
695 					phys_addr_t base, phys_addr_t size,
696 					int *start_rgn, int *end_rgn)
697 {
698 	phys_addr_t end = base + memblock_cap_size(base, &size);
699 	int idx;
700 	struct memblock_region *rgn;
701 
702 	*start_rgn = *end_rgn = 0;
703 
704 	if (!size)
705 		return 0;
706 
707 	/* we'll create at most two more regions */
708 	while (type->cnt + 2 > type->max)
709 		if (memblock_double_array(type, base, size) < 0)
710 			return -ENOMEM;
711 
712 	for_each_memblock_type(idx, type, rgn) {
713 		phys_addr_t rbase = rgn->base;
714 		phys_addr_t rend = rbase + rgn->size;
715 
716 		if (rbase >= end)
717 			break;
718 		if (rend <= base)
719 			continue;
720 
721 		if (rbase < base) {
722 			/*
723 			 * @rgn intersects from below.  Split and continue
724 			 * to process the next region - the new top half.
725 			 */
726 			rgn->base = base;
727 			rgn->size -= base - rbase;
728 			type->total_size -= base - rbase;
729 			memblock_insert_region(type, idx, rbase, base - rbase,
730 					       memblock_get_region_node(rgn),
731 					       rgn->flags);
732 		} else if (rend > end) {
733 			/*
734 			 * @rgn intersects from above.  Split and redo the
735 			 * current region - the new bottom half.
736 			 */
737 			rgn->base = end;
738 			rgn->size -= end - rbase;
739 			type->total_size -= end - rbase;
740 			memblock_insert_region(type, idx--, rbase, end - rbase,
741 					       memblock_get_region_node(rgn),
742 					       rgn->flags);
743 		} else {
744 			/* @rgn is fully contained, record it */
745 			if (!*end_rgn)
746 				*start_rgn = idx;
747 			*end_rgn = idx + 1;
748 		}
749 	}
750 
751 	return 0;
752 }
753 
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)754 static int __init_memblock memblock_remove_range(struct memblock_type *type,
755 					  phys_addr_t base, phys_addr_t size)
756 {
757 	int start_rgn, end_rgn;
758 	int i, ret;
759 
760 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
761 	if (ret)
762 		return ret;
763 
764 	for (i = end_rgn - 1; i >= start_rgn; i--)
765 		memblock_remove_region(type, i);
766 	return 0;
767 }
768 
memblock_remove(phys_addr_t base,phys_addr_t size)769 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
770 {
771 	phys_addr_t end = base + size - 1;
772 
773 	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
774 		     &base, &end, (void *)_RET_IP_);
775 
776 	return memblock_remove_range(&memblock.memory, base, size);
777 }
778 
779 /**
780  * memblock_free - free boot memory block
781  * @base: phys starting address of the  boot memory block
782  * @size: size of the boot memory block in bytes
783  *
784  * Free boot memory block previously allocated by memblock_alloc_xx() API.
785  * The freeing memory will not be released to the buddy allocator.
786  */
memblock_free(phys_addr_t base,phys_addr_t size)787 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
788 {
789 	phys_addr_t end = base + size - 1;
790 
791 	memblock_dbg("   memblock_free: [%pa-%pa] %pS\n",
792 		     &base, &end, (void *)_RET_IP_);
793 
794 	kmemleak_free_part_phys(base, size);
795 	return memblock_remove_range(&memblock.reserved, base, size);
796 }
797 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
798 EXPORT_SYMBOL_GPL(memblock_free);
799 #endif
800 
memblock_reserve(phys_addr_t base,phys_addr_t size)801 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
802 {
803 	phys_addr_t end = base + size - 1;
804 
805 	memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n",
806 		     &base, &end, (void *)_RET_IP_);
807 
808 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
809 }
810 
811 /**
812  * memblock_setclr_flag - set or clear flag for a memory region
813  * @base: base address of the region
814  * @size: size of the region
815  * @set: set or clear the flag
816  * @flag: the flag to udpate
817  *
818  * This function isolates region [@base, @base + @size), and sets/clears flag
819  *
820  * Return: 0 on success, -errno on failure.
821  */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)822 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
823 				phys_addr_t size, int set, int flag)
824 {
825 	struct memblock_type *type = &memblock.memory;
826 	int i, ret, start_rgn, end_rgn;
827 
828 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
829 	if (ret)
830 		return ret;
831 
832 	for (i = start_rgn; i < end_rgn; i++) {
833 		struct memblock_region *r = &type->regions[i];
834 
835 		if (set)
836 			r->flags |= flag;
837 		else
838 			r->flags &= ~flag;
839 	}
840 
841 	memblock_merge_regions(type);
842 	return 0;
843 }
844 
845 /**
846  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
847  * @base: the base phys addr of the region
848  * @size: the size of the region
849  *
850  * Return: 0 on success, -errno on failure.
851  */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)852 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
853 {
854 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
855 }
856 
857 /**
858  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
859  * @base: the base phys addr of the region
860  * @size: the size of the region
861  *
862  * Return: 0 on success, -errno on failure.
863  */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)864 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
865 {
866 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
867 }
868 
869 /**
870  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
871  * @base: the base phys addr of the region
872  * @size: the size of the region
873  *
874  * Return: 0 on success, -errno on failure.
875  */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)876 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
877 {
878 	system_has_some_mirror = true;
879 
880 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
881 }
882 
883 /**
884  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
885  * @base: the base phys addr of the region
886  * @size: the size of the region
887  *
888  * Return: 0 on success, -errno on failure.
889  */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)890 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
891 {
892 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
893 }
894 
895 /**
896  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
897  * @base: the base phys addr of the region
898  * @size: the size of the region
899  *
900  * Return: 0 on success, -errno on failure.
901  */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)902 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
903 {
904 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
905 }
906 
907 /**
908  * __next_reserved_mem_region - next function for for_each_reserved_region()
909  * @idx: pointer to u64 loop variable
910  * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
911  * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
912  *
913  * Iterate over all reserved memory regions.
914  */
__next_reserved_mem_region(u64 * idx,phys_addr_t * out_start,phys_addr_t * out_end)915 void __init_memblock __next_reserved_mem_region(u64 *idx,
916 					   phys_addr_t *out_start,
917 					   phys_addr_t *out_end)
918 {
919 	struct memblock_type *type = &memblock.reserved;
920 
921 	if (*idx < type->cnt) {
922 		struct memblock_region *r = &type->regions[*idx];
923 		phys_addr_t base = r->base;
924 		phys_addr_t size = r->size;
925 
926 		if (out_start)
927 			*out_start = base;
928 		if (out_end)
929 			*out_end = base + size - 1;
930 
931 		*idx += 1;
932 		return;
933 	}
934 
935 	/* signal end of iteration */
936 	*idx = ULLONG_MAX;
937 }
938 
should_skip_region(struct memblock_region * m,int nid,int flags)939 static bool should_skip_region(struct memblock_region *m, int nid, int flags)
940 {
941 	int m_nid = memblock_get_region_node(m);
942 
943 	/* only memory regions are associated with nodes, check it */
944 	if (nid != NUMA_NO_NODE && nid != m_nid)
945 		return true;
946 
947 	/* skip hotpluggable memory regions if needed */
948 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
949 		return true;
950 
951 	/* if we want mirror memory skip non-mirror memory regions */
952 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
953 		return true;
954 
955 	/* skip nomap memory unless we were asked for it explicitly */
956 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
957 		return true;
958 
959 	return false;
960 }
961 
962 /**
963  * __next_mem_range - next function for for_each_free_mem_range() etc.
964  * @idx: pointer to u64 loop variable
965  * @nid: node selector, %NUMA_NO_NODE for all nodes
966  * @flags: pick from blocks based on memory attributes
967  * @type_a: pointer to memblock_type from where the range is taken
968  * @type_b: pointer to memblock_type which excludes memory from being taken
969  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
970  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
971  * @out_nid: ptr to int for nid of the range, can be %NULL
972  *
973  * Find the first area from *@idx which matches @nid, fill the out
974  * parameters, and update *@idx for the next iteration.  The lower 32bit of
975  * *@idx contains index into type_a and the upper 32bit indexes the
976  * areas before each region in type_b.	For example, if type_b regions
977  * look like the following,
978  *
979  *	0:[0-16), 1:[32-48), 2:[128-130)
980  *
981  * The upper 32bit indexes the following regions.
982  *
983  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
984  *
985  * As both region arrays are sorted, the function advances the two indices
986  * in lockstep and returns each intersection.
987  */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)988 void __init_memblock __next_mem_range(u64 *idx, int nid,
989 				      enum memblock_flags flags,
990 				      struct memblock_type *type_a,
991 				      struct memblock_type *type_b,
992 				      phys_addr_t *out_start,
993 				      phys_addr_t *out_end, int *out_nid)
994 {
995 	int idx_a = *idx & 0xffffffff;
996 	int idx_b = *idx >> 32;
997 
998 	if (WARN_ONCE(nid == MAX_NUMNODES,
999 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1000 		nid = NUMA_NO_NODE;
1001 
1002 	for (; idx_a < type_a->cnt; idx_a++) {
1003 		struct memblock_region *m = &type_a->regions[idx_a];
1004 
1005 		phys_addr_t m_start = m->base;
1006 		phys_addr_t m_end = m->base + m->size;
1007 		int	    m_nid = memblock_get_region_node(m);
1008 
1009 		if (should_skip_region(m, nid, flags))
1010 			continue;
1011 
1012 		if (!type_b) {
1013 			if (out_start)
1014 				*out_start = m_start;
1015 			if (out_end)
1016 				*out_end = m_end;
1017 			if (out_nid)
1018 				*out_nid = m_nid;
1019 			idx_a++;
1020 			*idx = (u32)idx_a | (u64)idx_b << 32;
1021 			return;
1022 		}
1023 
1024 		/* scan areas before each reservation */
1025 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1026 			struct memblock_region *r;
1027 			phys_addr_t r_start;
1028 			phys_addr_t r_end;
1029 
1030 			r = &type_b->regions[idx_b];
1031 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1032 			r_end = idx_b < type_b->cnt ?
1033 				r->base : PHYS_ADDR_MAX;
1034 
1035 			/*
1036 			 * if idx_b advanced past idx_a,
1037 			 * break out to advance idx_a
1038 			 */
1039 			if (r_start >= m_end)
1040 				break;
1041 			/* if the two regions intersect, we're done */
1042 			if (m_start < r_end) {
1043 				if (out_start)
1044 					*out_start =
1045 						max(m_start, r_start);
1046 				if (out_end)
1047 					*out_end = min(m_end, r_end);
1048 				if (out_nid)
1049 					*out_nid = m_nid;
1050 				/*
1051 				 * The region which ends first is
1052 				 * advanced for the next iteration.
1053 				 */
1054 				if (m_end <= r_end)
1055 					idx_a++;
1056 				else
1057 					idx_b++;
1058 				*idx = (u32)idx_a | (u64)idx_b << 32;
1059 				return;
1060 			}
1061 		}
1062 	}
1063 
1064 	/* signal end of iteration */
1065 	*idx = ULLONG_MAX;
1066 }
1067 
1068 /**
1069  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1070  *
1071  * @idx: pointer to u64 loop variable
1072  * @nid: node selector, %NUMA_NO_NODE for all nodes
1073  * @flags: pick from blocks based on memory attributes
1074  * @type_a: pointer to memblock_type from where the range is taken
1075  * @type_b: pointer to memblock_type which excludes memory from being taken
1076  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1077  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1078  * @out_nid: ptr to int for nid of the range, can be %NULL
1079  *
1080  * Finds the next range from type_a which is not marked as unsuitable
1081  * in type_b.
1082  *
1083  * Reverse of __next_mem_range().
1084  */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1085 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1086 					  enum memblock_flags flags,
1087 					  struct memblock_type *type_a,
1088 					  struct memblock_type *type_b,
1089 					  phys_addr_t *out_start,
1090 					  phys_addr_t *out_end, int *out_nid)
1091 {
1092 	int idx_a = *idx & 0xffffffff;
1093 	int idx_b = *idx >> 32;
1094 
1095 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1096 		nid = NUMA_NO_NODE;
1097 
1098 	if (*idx == (u64)ULLONG_MAX) {
1099 		idx_a = type_a->cnt - 1;
1100 		if (type_b != NULL)
1101 			idx_b = type_b->cnt;
1102 		else
1103 			idx_b = 0;
1104 	}
1105 
1106 	for (; idx_a >= 0; idx_a--) {
1107 		struct memblock_region *m = &type_a->regions[idx_a];
1108 
1109 		phys_addr_t m_start = m->base;
1110 		phys_addr_t m_end = m->base + m->size;
1111 		int m_nid = memblock_get_region_node(m);
1112 
1113 		if (should_skip_region(m, nid, flags))
1114 			continue;
1115 
1116 		if (!type_b) {
1117 			if (out_start)
1118 				*out_start = m_start;
1119 			if (out_end)
1120 				*out_end = m_end;
1121 			if (out_nid)
1122 				*out_nid = m_nid;
1123 			idx_a--;
1124 			*idx = (u32)idx_a | (u64)idx_b << 32;
1125 			return;
1126 		}
1127 
1128 		/* scan areas before each reservation */
1129 		for (; idx_b >= 0; idx_b--) {
1130 			struct memblock_region *r;
1131 			phys_addr_t r_start;
1132 			phys_addr_t r_end;
1133 
1134 			r = &type_b->regions[idx_b];
1135 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1136 			r_end = idx_b < type_b->cnt ?
1137 				r->base : PHYS_ADDR_MAX;
1138 			/*
1139 			 * if idx_b advanced past idx_a,
1140 			 * break out to advance idx_a
1141 			 */
1142 
1143 			if (r_end <= m_start)
1144 				break;
1145 			/* if the two regions intersect, we're done */
1146 			if (m_end > r_start) {
1147 				if (out_start)
1148 					*out_start = max(m_start, r_start);
1149 				if (out_end)
1150 					*out_end = min(m_end, r_end);
1151 				if (out_nid)
1152 					*out_nid = m_nid;
1153 				if (m_start >= r_start)
1154 					idx_a--;
1155 				else
1156 					idx_b--;
1157 				*idx = (u32)idx_a | (u64)idx_b << 32;
1158 				return;
1159 			}
1160 		}
1161 	}
1162 	/* signal end of iteration */
1163 	*idx = ULLONG_MAX;
1164 }
1165 
1166 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1167 /*
1168  * Common iterator interface used to define for_each_mem_pfn_range().
1169  */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1170 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1171 				unsigned long *out_start_pfn,
1172 				unsigned long *out_end_pfn, int *out_nid)
1173 {
1174 	struct memblock_type *type = &memblock.memory;
1175 	struct memblock_region *r;
1176 
1177 	while (++*idx < type->cnt) {
1178 		r = &type->regions[*idx];
1179 
1180 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1181 			continue;
1182 		if (nid == MAX_NUMNODES || nid == r->nid)
1183 			break;
1184 	}
1185 	if (*idx >= type->cnt) {
1186 		*idx = -1;
1187 		return;
1188 	}
1189 
1190 	if (out_start_pfn)
1191 		*out_start_pfn = PFN_UP(r->base);
1192 	if (out_end_pfn)
1193 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1194 	if (out_nid)
1195 		*out_nid = r->nid;
1196 }
1197 
1198 /**
1199  * memblock_set_node - set node ID on memblock regions
1200  * @base: base of area to set node ID for
1201  * @size: size of area to set node ID for
1202  * @type: memblock type to set node ID for
1203  * @nid: node ID to set
1204  *
1205  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1206  * Regions which cross the area boundaries are split as necessary.
1207  *
1208  * Return:
1209  * 0 on success, -errno on failure.
1210  */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1211 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1212 				      struct memblock_type *type, int nid)
1213 {
1214 	int start_rgn, end_rgn;
1215 	int i, ret;
1216 
1217 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1218 	if (ret)
1219 		return ret;
1220 
1221 	for (i = start_rgn; i < end_rgn; i++)
1222 		memblock_set_region_node(&type->regions[i], nid);
1223 
1224 	memblock_merge_regions(type);
1225 	return 0;
1226 }
1227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1228 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1229 /**
1230  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1231  *
1232  * @idx: pointer to u64 loop variable
1233  * @zone: zone in which all of the memory blocks reside
1234  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1235  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1236  *
1237  * This function is meant to be a zone/pfn specific wrapper for the
1238  * for_each_mem_range type iterators. Specifically they are used in the
1239  * deferred memory init routines and as such we were duplicating much of
1240  * this logic throughout the code. So instead of having it in multiple
1241  * locations it seemed like it would make more sense to centralize this to
1242  * one new iterator that does everything they need.
1243  */
1244 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1245 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1246 			     unsigned long *out_spfn, unsigned long *out_epfn)
1247 {
1248 	int zone_nid = zone_to_nid(zone);
1249 	phys_addr_t spa, epa;
1250 	int nid;
1251 
1252 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1253 			 &memblock.memory, &memblock.reserved,
1254 			 &spa, &epa, &nid);
1255 
1256 	while (*idx != U64_MAX) {
1257 		unsigned long epfn = PFN_DOWN(epa);
1258 		unsigned long spfn = PFN_UP(spa);
1259 
1260 		/*
1261 		 * Verify the end is at least past the start of the zone and
1262 		 * that we have at least one PFN to initialize.
1263 		 */
1264 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1265 			/* if we went too far just stop searching */
1266 			if (zone_end_pfn(zone) <= spfn) {
1267 				*idx = U64_MAX;
1268 				break;
1269 			}
1270 
1271 			if (out_spfn)
1272 				*out_spfn = max(zone->zone_start_pfn, spfn);
1273 			if (out_epfn)
1274 				*out_epfn = min(zone_end_pfn(zone), epfn);
1275 
1276 			return;
1277 		}
1278 
1279 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1280 				 &memblock.memory, &memblock.reserved,
1281 				 &spa, &epa, &nid);
1282 	}
1283 
1284 	/* signal end of iteration */
1285 	if (out_spfn)
1286 		*out_spfn = ULONG_MAX;
1287 	if (out_epfn)
1288 		*out_epfn = 0;
1289 }
1290 
1291 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1292 
1293 /**
1294  * memblock_alloc_range_nid - allocate boot memory block
1295  * @size: size of memory block to be allocated in bytes
1296  * @align: alignment of the region and block's size
1297  * @start: the lower bound of the memory region to allocate (phys address)
1298  * @end: the upper bound of the memory region to allocate (phys address)
1299  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1300  *
1301  * The allocation is performed from memory region limited by
1302  * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1303  *
1304  * If the specified node can not hold the requested memory the
1305  * allocation falls back to any node in the system
1306  *
1307  * For systems with memory mirroring, the allocation is attempted first
1308  * from the regions with mirroring enabled and then retried from any
1309  * memory region.
1310  *
1311  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1312  * allocated boot memory block, so that it is never reported as leaks.
1313  *
1314  * Return:
1315  * Physical address of allocated memory block on success, %0 on failure.
1316  */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid)1317 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1318 					phys_addr_t align, phys_addr_t start,
1319 					phys_addr_t end, int nid)
1320 {
1321 	enum memblock_flags flags = choose_memblock_flags();
1322 	phys_addr_t found;
1323 
1324 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1325 		nid = NUMA_NO_NODE;
1326 
1327 	if (!align) {
1328 		/* Can't use WARNs this early in boot on powerpc */
1329 		dump_stack();
1330 		align = SMP_CACHE_BYTES;
1331 	}
1332 
1333 again:
1334 	found = memblock_find_in_range_node(size, align, start, end, nid,
1335 					    flags);
1336 	if (found && !memblock_reserve(found, size))
1337 		goto done;
1338 
1339 	if (nid != NUMA_NO_NODE) {
1340 		found = memblock_find_in_range_node(size, align, start,
1341 						    end, NUMA_NO_NODE,
1342 						    flags);
1343 		if (found && !memblock_reserve(found, size))
1344 			goto done;
1345 	}
1346 
1347 	if (flags & MEMBLOCK_MIRROR) {
1348 		flags &= ~MEMBLOCK_MIRROR;
1349 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1350 			&size);
1351 		goto again;
1352 	}
1353 
1354 	return 0;
1355 
1356 done:
1357 	/* Skip kmemleak for kasan_init() due to high volume. */
1358 	if (end != MEMBLOCK_ALLOC_KASAN)
1359 		/*
1360 		 * The min_count is set to 0 so that memblock allocated
1361 		 * blocks are never reported as leaks. This is because many
1362 		 * of these blocks are only referred via the physical
1363 		 * address which is not looked up by kmemleak.
1364 		 */
1365 		kmemleak_alloc_phys(found, size, 0, 0);
1366 
1367 	return found;
1368 }
1369 
1370 /**
1371  * memblock_phys_alloc_range - allocate a memory block inside specified range
1372  * @size: size of memory block to be allocated in bytes
1373  * @align: alignment of the region and block's size
1374  * @start: the lower bound of the memory region to allocate (physical address)
1375  * @end: the upper bound of the memory region to allocate (physical address)
1376  *
1377  * Allocate @size bytes in the between @start and @end.
1378  *
1379  * Return: physical address of the allocated memory block on success,
1380  * %0 on failure.
1381  */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1382 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1383 					     phys_addr_t align,
1384 					     phys_addr_t start,
1385 					     phys_addr_t end)
1386 {
1387 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
1388 }
1389 
1390 /**
1391  * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1392  * @size: size of memory block to be allocated in bytes
1393  * @align: alignment of the region and block's size
1394  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1395  *
1396  * Allocates memory block from the specified NUMA node. If the node
1397  * has no available memory, attempts to allocated from any node in the
1398  * system.
1399  *
1400  * Return: physical address of the allocated memory block on success,
1401  * %0 on failure.
1402  */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1403 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1404 {
1405 	return memblock_alloc_range_nid(size, align, 0,
1406 					MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1407 }
1408 
1409 /**
1410  * memblock_alloc_internal - allocate boot memory block
1411  * @size: size of memory block to be allocated in bytes
1412  * @align: alignment of the region and block's size
1413  * @min_addr: the lower bound of the memory region to allocate (phys address)
1414  * @max_addr: the upper bound of the memory region to allocate (phys address)
1415  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1416  *
1417  * Allocates memory block using memblock_alloc_range_nid() and
1418  * converts the returned physical address to virtual.
1419  *
1420  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1421  * will fall back to memory below @min_addr. Other constraints, such
1422  * as node and mirrored memory will be handled again in
1423  * memblock_alloc_range_nid().
1424  *
1425  * Return:
1426  * Virtual address of allocated memory block on success, NULL on failure.
1427  */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1428 static void * __init memblock_alloc_internal(
1429 				phys_addr_t size, phys_addr_t align,
1430 				phys_addr_t min_addr, phys_addr_t max_addr,
1431 				int nid)
1432 {
1433 	phys_addr_t alloc;
1434 
1435 	/*
1436 	 * Detect any accidental use of these APIs after slab is ready, as at
1437 	 * this moment memblock may be deinitialized already and its
1438 	 * internal data may be destroyed (after execution of memblock_free_all)
1439 	 */
1440 	if (WARN_ON_ONCE(slab_is_available()))
1441 		return kzalloc_node(size, GFP_NOWAIT, nid);
1442 
1443 	if (max_addr > memblock.current_limit)
1444 		max_addr = memblock.current_limit;
1445 
1446 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid);
1447 
1448 	/* retry allocation without lower limit */
1449 	if (!alloc && min_addr)
1450 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid);
1451 
1452 	if (!alloc)
1453 		return NULL;
1454 
1455 	return phys_to_virt(alloc);
1456 }
1457 
1458 /**
1459  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1460  * memory and without panicking
1461  * @size: size of memory block to be allocated in bytes
1462  * @align: alignment of the region and block's size
1463  * @min_addr: the lower bound of the memory region from where the allocation
1464  *	  is preferred (phys address)
1465  * @max_addr: the upper bound of the memory region from where the allocation
1466  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1467  *	      allocate only from memory limited by memblock.current_limit value
1468  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1469  *
1470  * Public function, provides additional debug information (including caller
1471  * info), if enabled. Does not zero allocated memory, does not panic if request
1472  * cannot be satisfied.
1473  *
1474  * Return:
1475  * Virtual address of allocated memory block on success, NULL on failure.
1476  */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1477 void * __init memblock_alloc_try_nid_raw(
1478 			phys_addr_t size, phys_addr_t align,
1479 			phys_addr_t min_addr, phys_addr_t max_addr,
1480 			int nid)
1481 {
1482 	void *ptr;
1483 
1484 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1485 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1486 		     &max_addr, (void *)_RET_IP_);
1487 
1488 	ptr = memblock_alloc_internal(size, align,
1489 					   min_addr, max_addr, nid);
1490 	if (ptr && size > 0)
1491 		page_init_poison(ptr, size);
1492 
1493 	return ptr;
1494 }
1495 
1496 /**
1497  * memblock_alloc_try_nid - allocate boot memory block
1498  * @size: size of memory block to be allocated in bytes
1499  * @align: alignment of the region and block's size
1500  * @min_addr: the lower bound of the memory region from where the allocation
1501  *	  is preferred (phys address)
1502  * @max_addr: the upper bound of the memory region from where the allocation
1503  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1504  *	      allocate only from memory limited by memblock.current_limit value
1505  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1506  *
1507  * Public function, provides additional debug information (including caller
1508  * info), if enabled. This function zeroes the allocated memory.
1509  *
1510  * Return:
1511  * Virtual address of allocated memory block on success, NULL on failure.
1512  */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1513 void * __init memblock_alloc_try_nid(
1514 			phys_addr_t size, phys_addr_t align,
1515 			phys_addr_t min_addr, phys_addr_t max_addr,
1516 			int nid)
1517 {
1518 	void *ptr;
1519 
1520 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1521 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1522 		     &max_addr, (void *)_RET_IP_);
1523 	ptr = memblock_alloc_internal(size, align,
1524 					   min_addr, max_addr, nid);
1525 	if (ptr)
1526 		memset(ptr, 0, size);
1527 
1528 	return ptr;
1529 }
1530 
1531 /**
1532  * __memblock_free_late - free pages directly to buddy allocator
1533  * @base: phys starting address of the  boot memory block
1534  * @size: size of the boot memory block in bytes
1535  *
1536  * This is only useful when the memblock allocator has already been torn
1537  * down, but we are still initializing the system.  Pages are released directly
1538  * to the buddy allocator.
1539  */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1540 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1541 {
1542 	phys_addr_t cursor, end;
1543 
1544 	end = base + size - 1;
1545 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1546 		     __func__, &base, &end, (void *)_RET_IP_);
1547 	kmemleak_free_part_phys(base, size);
1548 	cursor = PFN_UP(base);
1549 	end = PFN_DOWN(base + size);
1550 
1551 	for (; cursor < end; cursor++) {
1552 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1553 		totalram_pages_inc();
1554 	}
1555 }
1556 
1557 /*
1558  * Remaining API functions
1559  */
1560 
memblock_phys_mem_size(void)1561 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1562 {
1563 	return memblock.memory.total_size;
1564 }
1565 
memblock_reserved_size(void)1566 phys_addr_t __init_memblock memblock_reserved_size(void)
1567 {
1568 	return memblock.reserved.total_size;
1569 }
1570 
memblock_mem_size(unsigned long limit_pfn)1571 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1572 {
1573 	unsigned long pages = 0;
1574 	struct memblock_region *r;
1575 	unsigned long start_pfn, end_pfn;
1576 
1577 	for_each_memblock(memory, r) {
1578 		start_pfn = memblock_region_memory_base_pfn(r);
1579 		end_pfn = memblock_region_memory_end_pfn(r);
1580 		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1581 		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1582 		pages += end_pfn - start_pfn;
1583 	}
1584 
1585 	return PFN_PHYS(pages);
1586 }
1587 
1588 /* lowest address */
memblock_start_of_DRAM(void)1589 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1590 {
1591 	return memblock.memory.regions[0].base;
1592 }
1593 
memblock_end_of_DRAM(void)1594 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1595 {
1596 	int idx = memblock.memory.cnt - 1;
1597 
1598 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1599 }
1600 EXPORT_SYMBOL_GPL(memblock_end_of_DRAM);
1601 
__find_max_addr(phys_addr_t limit)1602 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1603 {
1604 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1605 	struct memblock_region *r;
1606 
1607 	/*
1608 	 * translate the memory @limit size into the max address within one of
1609 	 * the memory memblock regions, if the @limit exceeds the total size
1610 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1611 	 */
1612 	for_each_memblock(memory, r) {
1613 		if (limit <= r->size) {
1614 			max_addr = r->base + limit;
1615 			break;
1616 		}
1617 		limit -= r->size;
1618 	}
1619 
1620 	return max_addr;
1621 }
1622 
memblock_enforce_memory_limit(phys_addr_t limit)1623 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1624 {
1625 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1626 
1627 	if (!limit)
1628 		return;
1629 
1630 	max_addr = __find_max_addr(limit);
1631 
1632 	/* @limit exceeds the total size of the memory, do nothing */
1633 	if (max_addr == PHYS_ADDR_MAX)
1634 		return;
1635 
1636 	/* truncate both memory and reserved regions */
1637 	memblock_remove_range(&memblock.memory, max_addr,
1638 			      PHYS_ADDR_MAX);
1639 	memblock_remove_range(&memblock.reserved, max_addr,
1640 			      PHYS_ADDR_MAX);
1641 }
1642 
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1643 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1644 {
1645 	int start_rgn, end_rgn;
1646 	int i, ret;
1647 
1648 	if (!size)
1649 		return;
1650 
1651 	ret = memblock_isolate_range(&memblock.memory, base, size,
1652 						&start_rgn, &end_rgn);
1653 	if (ret)
1654 		return;
1655 
1656 	/* remove all the MAP regions */
1657 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1658 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1659 			memblock_remove_region(&memblock.memory, i);
1660 
1661 	for (i = start_rgn - 1; i >= 0; i--)
1662 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1663 			memblock_remove_region(&memblock.memory, i);
1664 
1665 	/* truncate the reserved regions */
1666 	memblock_remove_range(&memblock.reserved, 0, base);
1667 	memblock_remove_range(&memblock.reserved,
1668 			base + size, PHYS_ADDR_MAX);
1669 }
1670 
memblock_mem_limit_remove_map(phys_addr_t limit)1671 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1672 {
1673 	phys_addr_t max_addr;
1674 
1675 	if (!limit)
1676 		return;
1677 
1678 	max_addr = __find_max_addr(limit);
1679 
1680 	/* @limit exceeds the total size of the memory, do nothing */
1681 	if (max_addr == PHYS_ADDR_MAX)
1682 		return;
1683 
1684 	memblock_cap_memory_range(0, max_addr);
1685 }
1686 
memblock_search(struct memblock_type * type,phys_addr_t addr)1687 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1688 {
1689 	unsigned int left = 0, right = type->cnt;
1690 
1691 	do {
1692 		unsigned int mid = (right + left) / 2;
1693 
1694 		if (addr < type->regions[mid].base)
1695 			right = mid;
1696 		else if (addr >= (type->regions[mid].base +
1697 				  type->regions[mid].size))
1698 			left = mid + 1;
1699 		else
1700 			return mid;
1701 	} while (left < right);
1702 	return -1;
1703 }
1704 
memblock_is_reserved(phys_addr_t addr)1705 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1706 {
1707 	return memblock_search(&memblock.reserved, addr) != -1;
1708 }
1709 
memblock_is_memory(phys_addr_t addr)1710 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1711 {
1712 	return memblock_search(&memblock.memory, addr) != -1;
1713 }
1714 
memblock_is_map_memory(phys_addr_t addr)1715 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1716 {
1717 	int i = memblock_search(&memblock.memory, addr);
1718 
1719 	if (i == -1)
1720 		return false;
1721 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1722 }
1723 
1724 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1725 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1726 			 unsigned long *start_pfn, unsigned long *end_pfn)
1727 {
1728 	struct memblock_type *type = &memblock.memory;
1729 	int mid = memblock_search(type, PFN_PHYS(pfn));
1730 
1731 	if (mid == -1)
1732 		return -1;
1733 
1734 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1735 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1736 
1737 	return type->regions[mid].nid;
1738 }
1739 #endif
1740 
1741 /**
1742  * memblock_is_region_memory - check if a region is a subset of memory
1743  * @base: base of region to check
1744  * @size: size of region to check
1745  *
1746  * Check if the region [@base, @base + @size) is a subset of a memory block.
1747  *
1748  * Return:
1749  * 0 if false, non-zero if true
1750  */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1751 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1752 {
1753 	int idx = memblock_search(&memblock.memory, base);
1754 	phys_addr_t end = base + memblock_cap_size(base, &size);
1755 
1756 	if (idx == -1)
1757 		return false;
1758 	return (memblock.memory.regions[idx].base +
1759 		 memblock.memory.regions[idx].size) >= end;
1760 }
1761 
1762 /**
1763  * memblock_is_region_reserved - check if a region intersects reserved memory
1764  * @base: base of region to check
1765  * @size: size of region to check
1766  *
1767  * Check if the region [@base, @base + @size) intersects a reserved
1768  * memory block.
1769  *
1770  * Return:
1771  * True if they intersect, false if not.
1772  */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1773 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1774 {
1775 	return memblock_overlaps_region(&memblock.reserved, base, size);
1776 }
1777 
memblock_trim_memory(phys_addr_t align)1778 void __init_memblock memblock_trim_memory(phys_addr_t align)
1779 {
1780 	phys_addr_t start, end, orig_start, orig_end;
1781 	struct memblock_region *r;
1782 
1783 	for_each_memblock(memory, r) {
1784 		orig_start = r->base;
1785 		orig_end = r->base + r->size;
1786 		start = round_up(orig_start, align);
1787 		end = round_down(orig_end, align);
1788 
1789 		if (start == orig_start && end == orig_end)
1790 			continue;
1791 
1792 		if (start < end) {
1793 			r->base = start;
1794 			r->size = end - start;
1795 		} else {
1796 			memblock_remove_region(&memblock.memory,
1797 					       r - memblock.memory.regions);
1798 			r--;
1799 		}
1800 	}
1801 }
1802 
memblock_set_current_limit(phys_addr_t limit)1803 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1804 {
1805 	memblock.current_limit = limit;
1806 }
1807 
memblock_get_current_limit(void)1808 phys_addr_t __init_memblock memblock_get_current_limit(void)
1809 {
1810 	return memblock.current_limit;
1811 }
1812 
memblock_dump(struct memblock_type * type)1813 static void __init_memblock memblock_dump(struct memblock_type *type)
1814 {
1815 	phys_addr_t base, end, size;
1816 	enum memblock_flags flags;
1817 	int idx;
1818 	struct memblock_region *rgn;
1819 
1820 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1821 
1822 	for_each_memblock_type(idx, type, rgn) {
1823 		char nid_buf[32] = "";
1824 
1825 		base = rgn->base;
1826 		size = rgn->size;
1827 		end = base + size - 1;
1828 		flags = rgn->flags;
1829 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1830 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1831 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1832 				 memblock_get_region_node(rgn));
1833 #endif
1834 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1835 			type->name, idx, &base, &end, &size, nid_buf, flags);
1836 	}
1837 }
1838 
__memblock_dump_all(void)1839 void __init_memblock __memblock_dump_all(void)
1840 {
1841 	pr_info("MEMBLOCK configuration:\n");
1842 	pr_info(" memory size = %pa reserved size = %pa\n",
1843 		&memblock.memory.total_size,
1844 		&memblock.reserved.total_size);
1845 
1846 	memblock_dump(&memblock.memory);
1847 	memblock_dump(&memblock.reserved);
1848 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1849 	memblock_dump(&memblock.physmem);
1850 #endif
1851 }
1852 
memblock_allow_resize(void)1853 void __init memblock_allow_resize(void)
1854 {
1855 	memblock_can_resize = 1;
1856 }
1857 
early_memblock(char * p)1858 static int __init early_memblock(char *p)
1859 {
1860 	if (p && strstr(p, "debug"))
1861 		memblock_debug = 1;
1862 	return 0;
1863 }
1864 early_param("memblock", early_memblock);
1865 
__free_pages_memory(unsigned long start,unsigned long end)1866 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1867 {
1868 	int order;
1869 
1870 	while (start < end) {
1871 		order = min(MAX_ORDER - 1UL, __ffs(start));
1872 
1873 		while (start + (1UL << order) > end)
1874 			order--;
1875 
1876 		memblock_free_pages(pfn_to_page(start), start, order);
1877 
1878 		start += (1UL << order);
1879 	}
1880 }
1881 
__free_memory_core(phys_addr_t start,phys_addr_t end)1882 static unsigned long __init __free_memory_core(phys_addr_t start,
1883 				 phys_addr_t end)
1884 {
1885 	unsigned long start_pfn = PFN_UP(start);
1886 	unsigned long end_pfn = min_t(unsigned long,
1887 				      PFN_DOWN(end), max_low_pfn);
1888 
1889 	if (start_pfn >= end_pfn)
1890 		return 0;
1891 
1892 	__free_pages_memory(start_pfn, end_pfn);
1893 
1894 	return end_pfn - start_pfn;
1895 }
1896 
free_low_memory_core_early(void)1897 static unsigned long __init free_low_memory_core_early(void)
1898 {
1899 	unsigned long count = 0;
1900 	phys_addr_t start, end;
1901 	u64 i;
1902 
1903 	memblock_clear_hotplug(0, -1);
1904 
1905 	for_each_reserved_mem_region(i, &start, &end)
1906 		reserve_bootmem_region(start, end);
1907 
1908 	/*
1909 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1910 	 *  because in some case like Node0 doesn't have RAM installed
1911 	 *  low ram will be on Node1
1912 	 */
1913 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1914 				NULL)
1915 		count += __free_memory_core(start, end);
1916 
1917 	return count;
1918 }
1919 
1920 static int reset_managed_pages_done __initdata;
1921 
reset_node_managed_pages(pg_data_t * pgdat)1922 void reset_node_managed_pages(pg_data_t *pgdat)
1923 {
1924 	struct zone *z;
1925 
1926 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1927 		atomic_long_set(&z->managed_pages, 0);
1928 }
1929 
reset_all_zones_managed_pages(void)1930 void __init reset_all_zones_managed_pages(void)
1931 {
1932 	struct pglist_data *pgdat;
1933 
1934 	if (reset_managed_pages_done)
1935 		return;
1936 
1937 	for_each_online_pgdat(pgdat)
1938 		reset_node_managed_pages(pgdat);
1939 
1940 	reset_managed_pages_done = 1;
1941 }
1942 
1943 /**
1944  * memblock_free_all - release free pages to the buddy allocator
1945  *
1946  * Return: the number of pages actually released.
1947  */
memblock_free_all(void)1948 unsigned long __init memblock_free_all(void)
1949 {
1950 	unsigned long pages;
1951 
1952 	reset_all_zones_managed_pages();
1953 
1954 	pages = free_low_memory_core_early();
1955 	totalram_pages_add(pages);
1956 
1957 	return pages;
1958 }
1959 
1960 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
1961 
memblock_debug_show(struct seq_file * m,void * private)1962 static int memblock_debug_show(struct seq_file *m, void *private)
1963 {
1964 	struct memblock_type *type = m->private;
1965 	struct memblock_region *reg;
1966 	int i;
1967 	phys_addr_t end;
1968 
1969 	for (i = 0; i < type->cnt; i++) {
1970 		reg = &type->regions[i];
1971 		end = reg->base + reg->size - 1;
1972 
1973 		seq_printf(m, "%4d: ", i);
1974 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1975 	}
1976 	return 0;
1977 }
1978 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1979 
memblock_init_debugfs(void)1980 static int __init memblock_init_debugfs(void)
1981 {
1982 	struct dentry *root = debugfs_create_dir("memblock", NULL);
1983 
1984 	debugfs_create_file("memory", 0444, root,
1985 			    &memblock.memory, &memblock_debug_fops);
1986 	debugfs_create_file("reserved", 0444, root,
1987 			    &memblock.reserved, &memblock_debug_fops);
1988 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1989 	debugfs_create_file("physmem", 0444, root,
1990 			    &memblock.physmem, &memblock_debug_fops);
1991 #endif
1992 
1993 	return 0;
1994 }
1995 __initcall(memblock_init_debugfs);
1996 
1997 #endif /* CONFIG_DEBUG_FS */
1998