1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #include "internal.h"
57
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags) (0)
60 #endif
61
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75
76 static void unmap_region(struct mm_struct *mm,
77 struct vm_area_struct *vma, struct vm_area_struct *prev,
78 unsigned long start, unsigned long end);
79
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
83 *
84 * map_type prot
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 *
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 */
94 pgprot_t protection_map[16] __ro_after_init = {
95 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97 };
98
99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
101 {
102 return prot;
103 }
104 #endif
105
vm_get_page_prot(unsigned long vm_flags)106 pgprot_t vm_get_page_prot(unsigned long vm_flags)
107 {
108 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
109 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
110 pgprot_val(arch_vm_get_page_prot(vm_flags)));
111
112 return arch_filter_pgprot(ret);
113 }
114 EXPORT_SYMBOL(vm_get_page_prot);
115
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
117 {
118 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
119 }
120
121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)122 void vma_set_page_prot(struct vm_area_struct *vma)
123 {
124 unsigned long vm_flags = vma->vm_flags;
125 pgprot_t vm_page_prot;
126
127 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
128 if (vma_wants_writenotify(vma, vm_page_prot)) {
129 vm_flags &= ~VM_SHARED;
130 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
131 }
132 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
133 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
134 }
135
136 /*
137 * Requires inode->i_mapping->i_mmap_rwsem
138 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)139 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
140 struct file *file, struct address_space *mapping)
141 {
142 if (vma->vm_flags & VM_DENYWRITE)
143 atomic_inc(&file_inode(file)->i_writecount);
144 if (vma->vm_flags & VM_SHARED)
145 mapping_unmap_writable(mapping);
146
147 flush_dcache_mmap_lock(mapping);
148 vma_interval_tree_remove(vma, &mapping->i_mmap);
149 flush_dcache_mmap_unlock(mapping);
150 }
151
152 /*
153 * Unlink a file-based vm structure from its interval tree, to hide
154 * vma from rmap and vmtruncate before freeing its page tables.
155 */
unlink_file_vma(struct vm_area_struct * vma)156 void unlink_file_vma(struct vm_area_struct *vma)
157 {
158 struct file *file = vma->vm_file;
159
160 if (file) {
161 struct address_space *mapping = file->f_mapping;
162 i_mmap_lock_write(mapping);
163 __remove_shared_vm_struct(vma, file, mapping);
164 i_mmap_unlock_write(mapping);
165 }
166 }
167
168 /*
169 * Close a vm structure and free it, returning the next.
170 */
remove_vma(struct vm_area_struct * vma)171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
172 {
173 struct vm_area_struct *next = vma->vm_next;
174
175 might_sleep();
176 if (vma->vm_ops && vma->vm_ops->close)
177 vma->vm_ops->close(vma);
178 if (vma->vm_file)
179 fput(vma->vm_file);
180 mpol_put(vma_policy(vma));
181 vm_area_free(vma);
182 return next;
183 }
184
185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
186 struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)187 SYSCALL_DEFINE1(brk, unsigned long, brk)
188 {
189 unsigned long retval;
190 unsigned long newbrk, oldbrk, origbrk;
191 struct mm_struct *mm = current->mm;
192 struct vm_area_struct *next;
193 unsigned long min_brk;
194 bool populate;
195 bool downgraded = false;
196 LIST_HEAD(uf);
197
198 if (down_write_killable(&mm->mmap_sem))
199 return -EINTR;
200
201 origbrk = mm->brk;
202
203 #ifdef CONFIG_COMPAT_BRK
204 /*
205 * CONFIG_COMPAT_BRK can still be overridden by setting
206 * randomize_va_space to 2, which will still cause mm->start_brk
207 * to be arbitrarily shifted
208 */
209 if (current->brk_randomized)
210 min_brk = mm->start_brk;
211 else
212 min_brk = mm->end_data;
213 #else
214 min_brk = mm->start_brk;
215 #endif
216 if (brk < min_brk)
217 goto out;
218
219 /*
220 * Check against rlimit here. If this check is done later after the test
221 * of oldbrk with newbrk then it can escape the test and let the data
222 * segment grow beyond its set limit the in case where the limit is
223 * not page aligned -Ram Gupta
224 */
225 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
226 mm->end_data, mm->start_data))
227 goto out;
228
229 newbrk = PAGE_ALIGN(brk);
230 oldbrk = PAGE_ALIGN(mm->brk);
231 if (oldbrk == newbrk) {
232 mm->brk = brk;
233 goto success;
234 }
235
236 /*
237 * Always allow shrinking brk.
238 * __do_munmap() may downgrade mmap_sem to read.
239 */
240 if (brk <= mm->brk) {
241 int ret;
242
243 /*
244 * mm->brk must to be protected by write mmap_sem so update it
245 * before downgrading mmap_sem. When __do_munmap() fails,
246 * mm->brk will be restored from origbrk.
247 */
248 mm->brk = brk;
249 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
250 if (ret < 0) {
251 mm->brk = origbrk;
252 goto out;
253 } else if (ret == 1) {
254 downgraded = true;
255 }
256 goto success;
257 }
258
259 /* Check against existing mmap mappings. */
260 next = find_vma(mm, oldbrk);
261 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
262 goto out;
263
264 /* Ok, looks good - let it rip. */
265 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
266 goto out;
267 mm->brk = brk;
268
269 success:
270 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
271 if (downgraded)
272 up_read(&mm->mmap_sem);
273 else
274 up_write(&mm->mmap_sem);
275 userfaultfd_unmap_complete(mm, &uf);
276 if (populate)
277 mm_populate(oldbrk, newbrk - oldbrk);
278 return brk;
279
280 out:
281 retval = origbrk;
282 up_write(&mm->mmap_sem);
283 return retval;
284 }
285
vma_compute_gap(struct vm_area_struct * vma)286 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
287 {
288 unsigned long gap, prev_end;
289
290 /*
291 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
292 * allow two stack_guard_gaps between them here, and when choosing
293 * an unmapped area; whereas when expanding we only require one.
294 * That's a little inconsistent, but keeps the code here simpler.
295 */
296 gap = vm_start_gap(vma);
297 if (vma->vm_prev) {
298 prev_end = vm_end_gap(vma->vm_prev);
299 if (gap > prev_end)
300 gap -= prev_end;
301 else
302 gap = 0;
303 }
304 return gap;
305 }
306
307 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)308 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
309 {
310 unsigned long max = vma_compute_gap(vma), subtree_gap;
311 if (vma->vm_rb.rb_left) {
312 subtree_gap = rb_entry(vma->vm_rb.rb_left,
313 struct vm_area_struct, vm_rb)->rb_subtree_gap;
314 if (subtree_gap > max)
315 max = subtree_gap;
316 }
317 if (vma->vm_rb.rb_right) {
318 subtree_gap = rb_entry(vma->vm_rb.rb_right,
319 struct vm_area_struct, vm_rb)->rb_subtree_gap;
320 if (subtree_gap > max)
321 max = subtree_gap;
322 }
323 return max;
324 }
325
browse_rb(struct mm_struct * mm)326 static int browse_rb(struct mm_struct *mm)
327 {
328 struct rb_root *root = &mm->mm_rb;
329 int i = 0, j, bug = 0;
330 struct rb_node *nd, *pn = NULL;
331 unsigned long prev = 0, pend = 0;
332
333 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
334 struct vm_area_struct *vma;
335 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
336 if (vma->vm_start < prev) {
337 pr_emerg("vm_start %lx < prev %lx\n",
338 vma->vm_start, prev);
339 bug = 1;
340 }
341 if (vma->vm_start < pend) {
342 pr_emerg("vm_start %lx < pend %lx\n",
343 vma->vm_start, pend);
344 bug = 1;
345 }
346 if (vma->vm_start > vma->vm_end) {
347 pr_emerg("vm_start %lx > vm_end %lx\n",
348 vma->vm_start, vma->vm_end);
349 bug = 1;
350 }
351 spin_lock(&mm->page_table_lock);
352 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
353 pr_emerg("free gap %lx, correct %lx\n",
354 vma->rb_subtree_gap,
355 vma_compute_subtree_gap(vma));
356 bug = 1;
357 }
358 spin_unlock(&mm->page_table_lock);
359 i++;
360 pn = nd;
361 prev = vma->vm_start;
362 pend = vma->vm_end;
363 }
364 j = 0;
365 for (nd = pn; nd; nd = rb_prev(nd))
366 j++;
367 if (i != j) {
368 pr_emerg("backwards %d, forwards %d\n", j, i);
369 bug = 1;
370 }
371 return bug ? -1 : i;
372 }
373
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)374 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
375 {
376 struct rb_node *nd;
377
378 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
379 struct vm_area_struct *vma;
380 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
381 VM_BUG_ON_VMA(vma != ignore &&
382 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
383 vma);
384 }
385 }
386
validate_mm(struct mm_struct * mm)387 static void validate_mm(struct mm_struct *mm)
388 {
389 int bug = 0;
390 int i = 0;
391 unsigned long highest_address = 0;
392 struct vm_area_struct *vma = mm->mmap;
393
394 while (vma) {
395 struct anon_vma *anon_vma = vma->anon_vma;
396 struct anon_vma_chain *avc;
397
398 if (anon_vma) {
399 anon_vma_lock_read(anon_vma);
400 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
401 anon_vma_interval_tree_verify(avc);
402 anon_vma_unlock_read(anon_vma);
403 }
404
405 highest_address = vm_end_gap(vma);
406 vma = vma->vm_next;
407 i++;
408 }
409 if (i != mm->map_count) {
410 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
411 bug = 1;
412 }
413 if (highest_address != mm->highest_vm_end) {
414 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
415 mm->highest_vm_end, highest_address);
416 bug = 1;
417 }
418 i = browse_rb(mm);
419 if (i != mm->map_count) {
420 if (i != -1)
421 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
422 bug = 1;
423 }
424 VM_BUG_ON_MM(bug, mm);
425 }
426 #else
427 #define validate_mm_rb(root, ignore) do { } while (0)
428 #define validate_mm(mm) do { } while (0)
429 #endif
430
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)431 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
432 struct vm_area_struct, vm_rb,
433 unsigned long, rb_subtree_gap, vma_compute_gap)
434
435 /*
436 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
437 * vma->vm_prev->vm_end values changed, without modifying the vma's position
438 * in the rbtree.
439 */
440 static void vma_gap_update(struct vm_area_struct *vma)
441 {
442 /*
443 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
444 * a callback function that does exactly what we want.
445 */
446 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
447 }
448
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)449 static inline void vma_rb_insert(struct vm_area_struct *vma,
450 struct rb_root *root)
451 {
452 /* All rb_subtree_gap values must be consistent prior to insertion */
453 validate_mm_rb(root, NULL);
454
455 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
456 }
457
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)458 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
459 {
460 /*
461 * Note rb_erase_augmented is a fairly large inline function,
462 * so make sure we instantiate it only once with our desired
463 * augmented rbtree callbacks.
464 */
465 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
466 }
467
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)468 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
469 struct rb_root *root,
470 struct vm_area_struct *ignore)
471 {
472 /*
473 * All rb_subtree_gap values must be consistent prior to erase,
474 * with the possible exception of the "next" vma being erased if
475 * next->vm_start was reduced.
476 */
477 validate_mm_rb(root, ignore);
478
479 __vma_rb_erase(vma, root);
480 }
481
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)482 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
483 struct rb_root *root)
484 {
485 /*
486 * All rb_subtree_gap values must be consistent prior to erase,
487 * with the possible exception of the vma being erased.
488 */
489 validate_mm_rb(root, vma);
490
491 __vma_rb_erase(vma, root);
492 }
493
494 /*
495 * vma has some anon_vma assigned, and is already inserted on that
496 * anon_vma's interval trees.
497 *
498 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
499 * vma must be removed from the anon_vma's interval trees using
500 * anon_vma_interval_tree_pre_update_vma().
501 *
502 * After the update, the vma will be reinserted using
503 * anon_vma_interval_tree_post_update_vma().
504 *
505 * The entire update must be protected by exclusive mmap_sem and by
506 * the root anon_vma's mutex.
507 */
508 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)509 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
510 {
511 struct anon_vma_chain *avc;
512
513 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
514 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
515 }
516
517 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)518 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
519 {
520 struct anon_vma_chain *avc;
521
522 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
523 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
524 }
525
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)526 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
527 unsigned long end, struct vm_area_struct **pprev,
528 struct rb_node ***rb_link, struct rb_node **rb_parent)
529 {
530 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
531
532 __rb_link = &mm->mm_rb.rb_node;
533 rb_prev = __rb_parent = NULL;
534
535 while (*__rb_link) {
536 struct vm_area_struct *vma_tmp;
537
538 __rb_parent = *__rb_link;
539 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
540
541 if (vma_tmp->vm_end > addr) {
542 /* Fail if an existing vma overlaps the area */
543 if (vma_tmp->vm_start < end)
544 return -ENOMEM;
545 __rb_link = &__rb_parent->rb_left;
546 } else {
547 rb_prev = __rb_parent;
548 __rb_link = &__rb_parent->rb_right;
549 }
550 }
551
552 *pprev = NULL;
553 if (rb_prev)
554 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
555 *rb_link = __rb_link;
556 *rb_parent = __rb_parent;
557 return 0;
558 }
559
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)560 static unsigned long count_vma_pages_range(struct mm_struct *mm,
561 unsigned long addr, unsigned long end)
562 {
563 unsigned long nr_pages = 0;
564 struct vm_area_struct *vma;
565
566 /* Find first overlaping mapping */
567 vma = find_vma_intersection(mm, addr, end);
568 if (!vma)
569 return 0;
570
571 nr_pages = (min(end, vma->vm_end) -
572 max(addr, vma->vm_start)) >> PAGE_SHIFT;
573
574 /* Iterate over the rest of the overlaps */
575 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
576 unsigned long overlap_len;
577
578 if (vma->vm_start > end)
579 break;
580
581 overlap_len = min(end, vma->vm_end) - vma->vm_start;
582 nr_pages += overlap_len >> PAGE_SHIFT;
583 }
584
585 return nr_pages;
586 }
587
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)588 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
589 struct rb_node **rb_link, struct rb_node *rb_parent)
590 {
591 /* Update tracking information for the gap following the new vma. */
592 if (vma->vm_next)
593 vma_gap_update(vma->vm_next);
594 else
595 mm->highest_vm_end = vm_end_gap(vma);
596
597 /*
598 * vma->vm_prev wasn't known when we followed the rbtree to find the
599 * correct insertion point for that vma. As a result, we could not
600 * update the vma vm_rb parents rb_subtree_gap values on the way down.
601 * So, we first insert the vma with a zero rb_subtree_gap value
602 * (to be consistent with what we did on the way down), and then
603 * immediately update the gap to the correct value. Finally we
604 * rebalance the rbtree after all augmented values have been set.
605 */
606 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
607 vma->rb_subtree_gap = 0;
608 vma_gap_update(vma);
609 vma_rb_insert(vma, &mm->mm_rb);
610 }
611
__vma_link_file(struct vm_area_struct * vma)612 static void __vma_link_file(struct vm_area_struct *vma)
613 {
614 struct file *file;
615
616 file = vma->vm_file;
617 if (file) {
618 struct address_space *mapping = file->f_mapping;
619
620 if (vma->vm_flags & VM_DENYWRITE)
621 atomic_dec(&file_inode(file)->i_writecount);
622 if (vma->vm_flags & VM_SHARED)
623 atomic_inc(&mapping->i_mmap_writable);
624
625 flush_dcache_mmap_lock(mapping);
626 vma_interval_tree_insert(vma, &mapping->i_mmap);
627 flush_dcache_mmap_unlock(mapping);
628 }
629 }
630
631 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)632 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
633 struct vm_area_struct *prev, struct rb_node **rb_link,
634 struct rb_node *rb_parent)
635 {
636 __vma_link_list(mm, vma, prev, rb_parent);
637 __vma_link_rb(mm, vma, rb_link, rb_parent);
638 }
639
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)640 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641 struct vm_area_struct *prev, struct rb_node **rb_link,
642 struct rb_node *rb_parent)
643 {
644 struct address_space *mapping = NULL;
645
646 if (vma->vm_file) {
647 mapping = vma->vm_file->f_mapping;
648 i_mmap_lock_write(mapping);
649 }
650
651 __vma_link(mm, vma, prev, rb_link, rb_parent);
652 __vma_link_file(vma);
653
654 if (mapping)
655 i_mmap_unlock_write(mapping);
656
657 mm->map_count++;
658 validate_mm(mm);
659 }
660
661 /*
662 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
663 * mm's list and rbtree. It has already been inserted into the interval tree.
664 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)665 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
666 {
667 struct vm_area_struct *prev;
668 struct rb_node **rb_link, *rb_parent;
669
670 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
671 &prev, &rb_link, &rb_parent))
672 BUG();
673 __vma_link(mm, vma, prev, rb_link, rb_parent);
674 mm->map_count++;
675 }
676
__vma_unlink_common(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,bool has_prev,struct vm_area_struct * ignore)677 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
678 struct vm_area_struct *vma,
679 struct vm_area_struct *prev,
680 bool has_prev,
681 struct vm_area_struct *ignore)
682 {
683 struct vm_area_struct *next;
684
685 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
686 next = vma->vm_next;
687 if (has_prev)
688 prev->vm_next = next;
689 else {
690 prev = vma->vm_prev;
691 if (prev)
692 prev->vm_next = next;
693 else
694 mm->mmap = next;
695 }
696 if (next)
697 next->vm_prev = prev;
698
699 /* Kill the cache */
700 vmacache_invalidate(mm);
701 }
702
__vma_unlink_prev(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)703 static inline void __vma_unlink_prev(struct mm_struct *mm,
704 struct vm_area_struct *vma,
705 struct vm_area_struct *prev)
706 {
707 __vma_unlink_common(mm, vma, prev, true, vma);
708 }
709
710 /*
711 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
712 * is already present in an i_mmap tree without adjusting the tree.
713 * The following helper function should be used when such adjustments
714 * are necessary. The "insert" vma (if any) is to be inserted
715 * before we drop the necessary locks.
716 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)717 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
718 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
719 struct vm_area_struct *expand)
720 {
721 struct mm_struct *mm = vma->vm_mm;
722 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
723 struct address_space *mapping = NULL;
724 struct rb_root_cached *root = NULL;
725 struct anon_vma *anon_vma = NULL;
726 struct file *file = vma->vm_file;
727 bool start_changed = false, end_changed = false;
728 long adjust_next = 0;
729 int remove_next = 0;
730
731 if (next && !insert) {
732 struct vm_area_struct *exporter = NULL, *importer = NULL;
733
734 if (end >= next->vm_end) {
735 /*
736 * vma expands, overlapping all the next, and
737 * perhaps the one after too (mprotect case 6).
738 * The only other cases that gets here are
739 * case 1, case 7 and case 8.
740 */
741 if (next == expand) {
742 /*
743 * The only case where we don't expand "vma"
744 * and we expand "next" instead is case 8.
745 */
746 VM_WARN_ON(end != next->vm_end);
747 /*
748 * remove_next == 3 means we're
749 * removing "vma" and that to do so we
750 * swapped "vma" and "next".
751 */
752 remove_next = 3;
753 VM_WARN_ON(file != next->vm_file);
754 swap(vma, next);
755 } else {
756 VM_WARN_ON(expand != vma);
757 /*
758 * case 1, 6, 7, remove_next == 2 is case 6,
759 * remove_next == 1 is case 1 or 7.
760 */
761 remove_next = 1 + (end > next->vm_end);
762 VM_WARN_ON(remove_next == 2 &&
763 end != next->vm_next->vm_end);
764 VM_WARN_ON(remove_next == 1 &&
765 end != next->vm_end);
766 /* trim end to next, for case 6 first pass */
767 end = next->vm_end;
768 }
769
770 exporter = next;
771 importer = vma;
772
773 /*
774 * If next doesn't have anon_vma, import from vma after
775 * next, if the vma overlaps with it.
776 */
777 if (remove_next == 2 && !next->anon_vma)
778 exporter = next->vm_next;
779
780 } else if (end > next->vm_start) {
781 /*
782 * vma expands, overlapping part of the next:
783 * mprotect case 5 shifting the boundary up.
784 */
785 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
786 exporter = next;
787 importer = vma;
788 VM_WARN_ON(expand != importer);
789 } else if (end < vma->vm_end) {
790 /*
791 * vma shrinks, and !insert tells it's not
792 * split_vma inserting another: so it must be
793 * mprotect case 4 shifting the boundary down.
794 */
795 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
796 exporter = vma;
797 importer = next;
798 VM_WARN_ON(expand != importer);
799 }
800
801 /*
802 * Easily overlooked: when mprotect shifts the boundary,
803 * make sure the expanding vma has anon_vma set if the
804 * shrinking vma had, to cover any anon pages imported.
805 */
806 if (exporter && exporter->anon_vma && !importer->anon_vma) {
807 int error;
808
809 importer->anon_vma = exporter->anon_vma;
810 error = anon_vma_clone(importer, exporter);
811 if (error)
812 return error;
813 }
814 }
815 again:
816 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
817
818 if (file) {
819 mapping = file->f_mapping;
820 root = &mapping->i_mmap;
821 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
822
823 if (adjust_next)
824 uprobe_munmap(next, next->vm_start, next->vm_end);
825
826 i_mmap_lock_write(mapping);
827 if (insert) {
828 /*
829 * Put into interval tree now, so instantiated pages
830 * are visible to arm/parisc __flush_dcache_page
831 * throughout; but we cannot insert into address
832 * space until vma start or end is updated.
833 */
834 __vma_link_file(insert);
835 }
836 }
837
838 anon_vma = vma->anon_vma;
839 if (!anon_vma && adjust_next)
840 anon_vma = next->anon_vma;
841 if (anon_vma) {
842 VM_WARN_ON(adjust_next && next->anon_vma &&
843 anon_vma != next->anon_vma);
844 anon_vma_lock_write(anon_vma);
845 anon_vma_interval_tree_pre_update_vma(vma);
846 if (adjust_next)
847 anon_vma_interval_tree_pre_update_vma(next);
848 }
849
850 if (root) {
851 flush_dcache_mmap_lock(mapping);
852 vma_interval_tree_remove(vma, root);
853 if (adjust_next)
854 vma_interval_tree_remove(next, root);
855 }
856
857 if (start != vma->vm_start) {
858 vma->vm_start = start;
859 start_changed = true;
860 }
861 if (end != vma->vm_end) {
862 vma->vm_end = end;
863 end_changed = true;
864 }
865 vma->vm_pgoff = pgoff;
866 if (adjust_next) {
867 next->vm_start += adjust_next << PAGE_SHIFT;
868 next->vm_pgoff += adjust_next;
869 }
870
871 if (root) {
872 if (adjust_next)
873 vma_interval_tree_insert(next, root);
874 vma_interval_tree_insert(vma, root);
875 flush_dcache_mmap_unlock(mapping);
876 }
877
878 if (remove_next) {
879 /*
880 * vma_merge has merged next into vma, and needs
881 * us to remove next before dropping the locks.
882 */
883 if (remove_next != 3)
884 __vma_unlink_prev(mm, next, vma);
885 else
886 /*
887 * vma is not before next if they've been
888 * swapped.
889 *
890 * pre-swap() next->vm_start was reduced so
891 * tell validate_mm_rb to ignore pre-swap()
892 * "next" (which is stored in post-swap()
893 * "vma").
894 */
895 __vma_unlink_common(mm, next, NULL, false, vma);
896 if (file)
897 __remove_shared_vm_struct(next, file, mapping);
898 } else if (insert) {
899 /*
900 * split_vma has split insert from vma, and needs
901 * us to insert it before dropping the locks
902 * (it may either follow vma or precede it).
903 */
904 __insert_vm_struct(mm, insert);
905 } else {
906 if (start_changed)
907 vma_gap_update(vma);
908 if (end_changed) {
909 if (!next)
910 mm->highest_vm_end = vm_end_gap(vma);
911 else if (!adjust_next)
912 vma_gap_update(next);
913 }
914 }
915
916 if (anon_vma) {
917 anon_vma_interval_tree_post_update_vma(vma);
918 if (adjust_next)
919 anon_vma_interval_tree_post_update_vma(next);
920 anon_vma_unlock_write(anon_vma);
921 }
922 if (mapping)
923 i_mmap_unlock_write(mapping);
924
925 if (root) {
926 uprobe_mmap(vma);
927
928 if (adjust_next)
929 uprobe_mmap(next);
930 }
931
932 if (remove_next) {
933 if (file) {
934 uprobe_munmap(next, next->vm_start, next->vm_end);
935 fput(file);
936 }
937 if (next->anon_vma)
938 anon_vma_merge(vma, next);
939 mm->map_count--;
940 mpol_put(vma_policy(next));
941 vm_area_free(next);
942 /*
943 * In mprotect's case 6 (see comments on vma_merge),
944 * we must remove another next too. It would clutter
945 * up the code too much to do both in one go.
946 */
947 if (remove_next != 3) {
948 /*
949 * If "next" was removed and vma->vm_end was
950 * expanded (up) over it, in turn
951 * "next->vm_prev->vm_end" changed and the
952 * "vma->vm_next" gap must be updated.
953 */
954 next = vma->vm_next;
955 } else {
956 /*
957 * For the scope of the comment "next" and
958 * "vma" considered pre-swap(): if "vma" was
959 * removed, next->vm_start was expanded (down)
960 * over it and the "next" gap must be updated.
961 * Because of the swap() the post-swap() "vma"
962 * actually points to pre-swap() "next"
963 * (post-swap() "next" as opposed is now a
964 * dangling pointer).
965 */
966 next = vma;
967 }
968 if (remove_next == 2) {
969 remove_next = 1;
970 end = next->vm_end;
971 goto again;
972 }
973 else if (next)
974 vma_gap_update(next);
975 else {
976 /*
977 * If remove_next == 2 we obviously can't
978 * reach this path.
979 *
980 * If remove_next == 3 we can't reach this
981 * path because pre-swap() next is always not
982 * NULL. pre-swap() "next" is not being
983 * removed and its next->vm_end is not altered
984 * (and furthermore "end" already matches
985 * next->vm_end in remove_next == 3).
986 *
987 * We reach this only in the remove_next == 1
988 * case if the "next" vma that was removed was
989 * the highest vma of the mm. However in such
990 * case next->vm_end == "end" and the extended
991 * "vma" has vma->vm_end == next->vm_end so
992 * mm->highest_vm_end doesn't need any update
993 * in remove_next == 1 case.
994 */
995 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
996 }
997 }
998 if (insert && file)
999 uprobe_mmap(insert);
1000
1001 validate_mm(mm);
1002
1003 return 0;
1004 }
1005
1006 /*
1007 * If the vma has a ->close operation then the driver probably needs to release
1008 * per-vma resources, so we don't attempt to merge those.
1009 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1010 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1011 struct file *file, unsigned long vm_flags,
1012 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1013 const char __user *anon_name)
1014 {
1015 /*
1016 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1017 * match the flags but dirty bit -- the caller should mark
1018 * merged VMA as dirty. If dirty bit won't be excluded from
1019 * comparison, we increase pressure on the memory system forcing
1020 * the kernel to generate new VMAs when old one could be
1021 * extended instead.
1022 */
1023 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1024 return 0;
1025 if (vma->vm_file != file)
1026 return 0;
1027 if (vma->vm_ops && vma->vm_ops->close)
1028 return 0;
1029 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1030 return 0;
1031 if (vma_get_anon_name(vma) != anon_name)
1032 return 0;
1033 return 1;
1034 }
1035
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1036 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1037 struct anon_vma *anon_vma2,
1038 struct vm_area_struct *vma)
1039 {
1040 /*
1041 * The list_is_singular() test is to avoid merging VMA cloned from
1042 * parents. This can improve scalability caused by anon_vma lock.
1043 */
1044 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1045 list_is_singular(&vma->anon_vma_chain)))
1046 return 1;
1047 return anon_vma1 == anon_vma2;
1048 }
1049
1050 /*
1051 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1052 * in front of (at a lower virtual address and file offset than) the vma.
1053 *
1054 * We cannot merge two vmas if they have differently assigned (non-NULL)
1055 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1056 *
1057 * We don't check here for the merged mmap wrapping around the end of pagecache
1058 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1059 * wrap, nor mmaps which cover the final page at index -1UL.
1060 */
1061 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1062 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1063 struct anon_vma *anon_vma, struct file *file,
1064 pgoff_t vm_pgoff,
1065 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1066 const char __user *anon_name)
1067 {
1068 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1069 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1070 if (vma->vm_pgoff == vm_pgoff)
1071 return 1;
1072 }
1073 return 0;
1074 }
1075
1076 /*
1077 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1078 * beyond (at a higher virtual address and file offset than) the vma.
1079 *
1080 * We cannot merge two vmas if they have differently assigned (non-NULL)
1081 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1082 */
1083 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1084 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1085 struct anon_vma *anon_vma, struct file *file,
1086 pgoff_t vm_pgoff,
1087 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1088 const char __user *anon_name)
1089 {
1090 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1091 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1092 pgoff_t vm_pglen;
1093 vm_pglen = vma_pages(vma);
1094 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1095 return 1;
1096 }
1097 return 0;
1098 }
1099
1100 /*
1101 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1102 * figure out whether that can be merged with its predecessor or its
1103 * successor. Or both (it neatly fills a hole).
1104 *
1105 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1106 * certain not to be mapped by the time vma_merge is called; but when
1107 * called for mprotect, it is certain to be already mapped (either at
1108 * an offset within prev, or at the start of next), and the flags of
1109 * this area are about to be changed to vm_flags - and the no-change
1110 * case has already been eliminated.
1111 *
1112 * The following mprotect cases have to be considered, where AAAA is
1113 * the area passed down from mprotect_fixup, never extending beyond one
1114 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1115 *
1116 * AAAA AAAA AAAA AAAA
1117 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1118 * cannot merge might become might become might become
1119 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1120 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1121 * mremap move: PPPPXXXXXXXX 8
1122 * AAAA
1123 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1124 * might become case 1 below case 2 below case 3 below
1125 *
1126 * It is important for case 8 that the vma NNNN overlapping the
1127 * region AAAA is never going to extended over XXXX. Instead XXXX must
1128 * be extended in region AAAA and NNNN must be removed. This way in
1129 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1130 * rmap_locks, the properties of the merged vma will be already
1131 * correct for the whole merged range. Some of those properties like
1132 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1133 * be correct for the whole merged range immediately after the
1134 * rmap_locks are released. Otherwise if XXXX would be removed and
1135 * NNNN would be extended over the XXXX range, remove_migration_ptes
1136 * or other rmap walkers (if working on addresses beyond the "end"
1137 * parameter) may establish ptes with the wrong permissions of NNNN
1138 * instead of the right permissions of XXXX.
1139 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,const char __user * anon_name)1140 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1141 struct vm_area_struct *prev, unsigned long addr,
1142 unsigned long end, unsigned long vm_flags,
1143 struct anon_vma *anon_vma, struct file *file,
1144 pgoff_t pgoff, struct mempolicy *policy,
1145 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1146 const char __user *anon_name)
1147 {
1148 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1149 struct vm_area_struct *area, *next;
1150 int err;
1151
1152 /*
1153 * We later require that vma->vm_flags == vm_flags,
1154 * so this tests vma->vm_flags & VM_SPECIAL, too.
1155 */
1156 if (vm_flags & VM_SPECIAL)
1157 return NULL;
1158
1159 if (prev)
1160 next = prev->vm_next;
1161 else
1162 next = mm->mmap;
1163 area = next;
1164 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1165 next = next->vm_next;
1166
1167 /* verify some invariant that must be enforced by the caller */
1168 VM_WARN_ON(prev && addr <= prev->vm_start);
1169 VM_WARN_ON(area && end > area->vm_end);
1170 VM_WARN_ON(addr >= end);
1171
1172 /*
1173 * Can it merge with the predecessor?
1174 */
1175 if (prev && prev->vm_end == addr &&
1176 mpol_equal(vma_policy(prev), policy) &&
1177 can_vma_merge_after(prev, vm_flags,
1178 anon_vma, file, pgoff,
1179 vm_userfaultfd_ctx,
1180 anon_name)) {
1181 /*
1182 * OK, it can. Can we now merge in the successor as well?
1183 */
1184 if (next && end == next->vm_start &&
1185 mpol_equal(policy, vma_policy(next)) &&
1186 can_vma_merge_before(next, vm_flags,
1187 anon_vma, file,
1188 pgoff+pglen,
1189 vm_userfaultfd_ctx,
1190 anon_name) &&
1191 is_mergeable_anon_vma(prev->anon_vma,
1192 next->anon_vma, NULL)) {
1193 /* cases 1, 6 */
1194 err = __vma_adjust(prev, prev->vm_start,
1195 next->vm_end, prev->vm_pgoff, NULL,
1196 prev);
1197 } else /* cases 2, 5, 7 */
1198 err = __vma_adjust(prev, prev->vm_start,
1199 end, prev->vm_pgoff, NULL, prev);
1200 if (err)
1201 return NULL;
1202 khugepaged_enter_vma_merge(prev, vm_flags);
1203 return prev;
1204 }
1205
1206 /*
1207 * Can this new request be merged in front of next?
1208 */
1209 if (next && end == next->vm_start &&
1210 mpol_equal(policy, vma_policy(next)) &&
1211 can_vma_merge_before(next, vm_flags,
1212 anon_vma, file, pgoff+pglen,
1213 vm_userfaultfd_ctx,
1214 anon_name)) {
1215 if (prev && addr < prev->vm_end) /* case 4 */
1216 err = __vma_adjust(prev, prev->vm_start,
1217 addr, prev->vm_pgoff, NULL, next);
1218 else { /* cases 3, 8 */
1219 err = __vma_adjust(area, addr, next->vm_end,
1220 next->vm_pgoff - pglen, NULL, next);
1221 /*
1222 * In case 3 area is already equal to next and
1223 * this is a noop, but in case 8 "area" has
1224 * been removed and next was expanded over it.
1225 */
1226 area = next;
1227 }
1228 if (err)
1229 return NULL;
1230 khugepaged_enter_vma_merge(area, vm_flags);
1231 return area;
1232 }
1233
1234 return NULL;
1235 }
1236
1237 /*
1238 * Rough compatbility check to quickly see if it's even worth looking
1239 * at sharing an anon_vma.
1240 *
1241 * They need to have the same vm_file, and the flags can only differ
1242 * in things that mprotect may change.
1243 *
1244 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1245 * we can merge the two vma's. For example, we refuse to merge a vma if
1246 * there is a vm_ops->close() function, because that indicates that the
1247 * driver is doing some kind of reference counting. But that doesn't
1248 * really matter for the anon_vma sharing case.
1249 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1250 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1251 {
1252 return a->vm_end == b->vm_start &&
1253 mpol_equal(vma_policy(a), vma_policy(b)) &&
1254 a->vm_file == b->vm_file &&
1255 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1256 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1257 }
1258
1259 /*
1260 * Do some basic sanity checking to see if we can re-use the anon_vma
1261 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1262 * the same as 'old', the other will be the new one that is trying
1263 * to share the anon_vma.
1264 *
1265 * NOTE! This runs with mm_sem held for reading, so it is possible that
1266 * the anon_vma of 'old' is concurrently in the process of being set up
1267 * by another page fault trying to merge _that_. But that's ok: if it
1268 * is being set up, that automatically means that it will be a singleton
1269 * acceptable for merging, so we can do all of this optimistically. But
1270 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1271 *
1272 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1273 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1274 * is to return an anon_vma that is "complex" due to having gone through
1275 * a fork).
1276 *
1277 * We also make sure that the two vma's are compatible (adjacent,
1278 * and with the same memory policies). That's all stable, even with just
1279 * a read lock on the mm_sem.
1280 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1281 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1282 {
1283 if (anon_vma_compatible(a, b)) {
1284 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1285
1286 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1287 return anon_vma;
1288 }
1289 return NULL;
1290 }
1291
1292 /*
1293 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1294 * neighbouring vmas for a suitable anon_vma, before it goes off
1295 * to allocate a new anon_vma. It checks because a repetitive
1296 * sequence of mprotects and faults may otherwise lead to distinct
1297 * anon_vmas being allocated, preventing vma merge in subsequent
1298 * mprotect.
1299 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1300 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1301 {
1302 struct anon_vma *anon_vma;
1303 struct vm_area_struct *near;
1304
1305 near = vma->vm_next;
1306 if (!near)
1307 goto try_prev;
1308
1309 anon_vma = reusable_anon_vma(near, vma, near);
1310 if (anon_vma)
1311 return anon_vma;
1312 try_prev:
1313 near = vma->vm_prev;
1314 if (!near)
1315 goto none;
1316
1317 anon_vma = reusable_anon_vma(near, near, vma);
1318 if (anon_vma)
1319 return anon_vma;
1320 none:
1321 /*
1322 * There's no absolute need to look only at touching neighbours:
1323 * we could search further afield for "compatible" anon_vmas.
1324 * But it would probably just be a waste of time searching,
1325 * or lead to too many vmas hanging off the same anon_vma.
1326 * We're trying to allow mprotect remerging later on,
1327 * not trying to minimize memory used for anon_vmas.
1328 */
1329 return NULL;
1330 }
1331
1332 /*
1333 * If a hint addr is less than mmap_min_addr change hint to be as
1334 * low as possible but still greater than mmap_min_addr
1335 */
round_hint_to_min(unsigned long hint)1336 static inline unsigned long round_hint_to_min(unsigned long hint)
1337 {
1338 hint &= PAGE_MASK;
1339 if (((void *)hint != NULL) &&
1340 (hint < mmap_min_addr))
1341 return PAGE_ALIGN(mmap_min_addr);
1342 return hint;
1343 }
1344
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1345 static inline int mlock_future_check(struct mm_struct *mm,
1346 unsigned long flags,
1347 unsigned long len)
1348 {
1349 unsigned long locked, lock_limit;
1350
1351 /* mlock MCL_FUTURE? */
1352 if (flags & VM_LOCKED) {
1353 locked = len >> PAGE_SHIFT;
1354 locked += mm->locked_vm;
1355 lock_limit = rlimit(RLIMIT_MEMLOCK);
1356 lock_limit >>= PAGE_SHIFT;
1357 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1358 return -EAGAIN;
1359 }
1360 return 0;
1361 }
1362
file_mmap_size_max(struct file * file,struct inode * inode)1363 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1364 {
1365 if (S_ISREG(inode->i_mode))
1366 return MAX_LFS_FILESIZE;
1367
1368 if (S_ISBLK(inode->i_mode))
1369 return MAX_LFS_FILESIZE;
1370
1371 if (S_ISSOCK(inode->i_mode))
1372 return MAX_LFS_FILESIZE;
1373
1374 /* Special "we do even unsigned file positions" case */
1375 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1376 return 0;
1377
1378 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1379 return ULONG_MAX;
1380 }
1381
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1382 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1383 unsigned long pgoff, unsigned long len)
1384 {
1385 u64 maxsize = file_mmap_size_max(file, inode);
1386
1387 if (maxsize && len > maxsize)
1388 return false;
1389 maxsize -= len;
1390 if (pgoff > maxsize >> PAGE_SHIFT)
1391 return false;
1392 return true;
1393 }
1394
1395 /*
1396 * The caller must hold down_write(¤t->mm->mmap_sem).
1397 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1398 unsigned long do_mmap(struct file *file, unsigned long addr,
1399 unsigned long len, unsigned long prot,
1400 unsigned long flags, vm_flags_t vm_flags,
1401 unsigned long pgoff, unsigned long *populate,
1402 struct list_head *uf)
1403 {
1404 struct mm_struct *mm = current->mm;
1405 int pkey = 0;
1406
1407 *populate = 0;
1408
1409 if (!len)
1410 return -EINVAL;
1411
1412 /*
1413 * Does the application expect PROT_READ to imply PROT_EXEC?
1414 *
1415 * (the exception is when the underlying filesystem is noexec
1416 * mounted, in which case we dont add PROT_EXEC.)
1417 */
1418 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1419 if (!(file && path_noexec(&file->f_path)))
1420 prot |= PROT_EXEC;
1421
1422 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1423 if (flags & MAP_FIXED_NOREPLACE)
1424 flags |= MAP_FIXED;
1425
1426 if (!(flags & MAP_FIXED))
1427 addr = round_hint_to_min(addr);
1428
1429 /* Careful about overflows.. */
1430 len = PAGE_ALIGN(len);
1431 if (!len)
1432 return -ENOMEM;
1433
1434 /* offset overflow? */
1435 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1436 return -EOVERFLOW;
1437
1438 /* Too many mappings? */
1439 if (mm->map_count > sysctl_max_map_count)
1440 return -ENOMEM;
1441
1442 /* Obtain the address to map to. we verify (or select) it and ensure
1443 * that it represents a valid section of the address space.
1444 */
1445 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1446 if (offset_in_page(addr))
1447 return addr;
1448
1449 if (flags & MAP_FIXED_NOREPLACE) {
1450 struct vm_area_struct *vma = find_vma(mm, addr);
1451
1452 if (vma && vma->vm_start < addr + len)
1453 return -EEXIST;
1454 }
1455
1456 if (prot == PROT_EXEC) {
1457 pkey = execute_only_pkey(mm);
1458 if (pkey < 0)
1459 pkey = 0;
1460 }
1461
1462 /* Do simple checking here so the lower-level routines won't have
1463 * to. we assume access permissions have been handled by the open
1464 * of the memory object, so we don't do any here.
1465 */
1466 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1467 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1468
1469 if (flags & MAP_LOCKED)
1470 if (!can_do_mlock())
1471 return -EPERM;
1472
1473 if (mlock_future_check(mm, vm_flags, len))
1474 return -EAGAIN;
1475
1476 if (file) {
1477 struct inode *inode = file_inode(file);
1478 unsigned long flags_mask;
1479
1480 if (!file_mmap_ok(file, inode, pgoff, len))
1481 return -EOVERFLOW;
1482
1483 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1484
1485 switch (flags & MAP_TYPE) {
1486 case MAP_SHARED:
1487 /*
1488 * Force use of MAP_SHARED_VALIDATE with non-legacy
1489 * flags. E.g. MAP_SYNC is dangerous to use with
1490 * MAP_SHARED as you don't know which consistency model
1491 * you will get. We silently ignore unsupported flags
1492 * with MAP_SHARED to preserve backward compatibility.
1493 */
1494 flags &= LEGACY_MAP_MASK;
1495 /* fall through */
1496 case MAP_SHARED_VALIDATE:
1497 if (flags & ~flags_mask)
1498 return -EOPNOTSUPP;
1499 if (prot & PROT_WRITE) {
1500 if (!(file->f_mode & FMODE_WRITE))
1501 return -EACCES;
1502 if (IS_SWAPFILE(file->f_mapping->host))
1503 return -ETXTBSY;
1504 }
1505
1506 /*
1507 * Make sure we don't allow writing to an append-only
1508 * file..
1509 */
1510 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1511 return -EACCES;
1512
1513 /*
1514 * Make sure there are no mandatory locks on the file.
1515 */
1516 if (locks_verify_locked(file))
1517 return -EAGAIN;
1518
1519 vm_flags |= VM_SHARED | VM_MAYSHARE;
1520 if (!(file->f_mode & FMODE_WRITE))
1521 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1522
1523 /* fall through */
1524 case MAP_PRIVATE:
1525 if (!(file->f_mode & FMODE_READ))
1526 return -EACCES;
1527 if (path_noexec(&file->f_path)) {
1528 if (vm_flags & VM_EXEC)
1529 return -EPERM;
1530 vm_flags &= ~VM_MAYEXEC;
1531 }
1532
1533 if (!file->f_op->mmap)
1534 return -ENODEV;
1535 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1536 return -EINVAL;
1537 break;
1538
1539 default:
1540 return -EINVAL;
1541 }
1542 } else {
1543 switch (flags & MAP_TYPE) {
1544 case MAP_SHARED:
1545 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1546 return -EINVAL;
1547 /*
1548 * Ignore pgoff.
1549 */
1550 pgoff = 0;
1551 vm_flags |= VM_SHARED | VM_MAYSHARE;
1552 break;
1553 case MAP_PRIVATE:
1554 /*
1555 * Set pgoff according to addr for anon_vma.
1556 */
1557 pgoff = addr >> PAGE_SHIFT;
1558 break;
1559 default:
1560 return -EINVAL;
1561 }
1562 }
1563
1564 /*
1565 * Set 'VM_NORESERVE' if we should not account for the
1566 * memory use of this mapping.
1567 */
1568 if (flags & MAP_NORESERVE) {
1569 /* We honor MAP_NORESERVE if allowed to overcommit */
1570 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1571 vm_flags |= VM_NORESERVE;
1572
1573 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1574 if (file && is_file_hugepages(file))
1575 vm_flags |= VM_NORESERVE;
1576 }
1577
1578 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1579 if (!IS_ERR_VALUE(addr) &&
1580 ((vm_flags & VM_LOCKED) ||
1581 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1582 *populate = len;
1583 return addr;
1584 }
1585
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1586 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1587 unsigned long prot, unsigned long flags,
1588 unsigned long fd, unsigned long pgoff)
1589 {
1590 struct file *file = NULL;
1591 unsigned long retval;
1592
1593 if (!(flags & MAP_ANONYMOUS)) {
1594 audit_mmap_fd(fd, flags);
1595 file = fget(fd);
1596 if (!file)
1597 return -EBADF;
1598 if (is_file_hugepages(file))
1599 len = ALIGN(len, huge_page_size(hstate_file(file)));
1600 retval = -EINVAL;
1601 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1602 goto out_fput;
1603 } else if (flags & MAP_HUGETLB) {
1604 struct user_struct *user = NULL;
1605 struct hstate *hs;
1606
1607 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1608 if (!hs)
1609 return -EINVAL;
1610
1611 len = ALIGN(len, huge_page_size(hs));
1612 /*
1613 * VM_NORESERVE is used because the reservations will be
1614 * taken when vm_ops->mmap() is called
1615 * A dummy user value is used because we are not locking
1616 * memory so no accounting is necessary
1617 */
1618 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1619 VM_NORESERVE,
1620 &user, HUGETLB_ANONHUGE_INODE,
1621 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1622 if (IS_ERR(file))
1623 return PTR_ERR(file);
1624 }
1625
1626 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1627
1628 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1629 out_fput:
1630 if (file)
1631 fput(file);
1632 return retval;
1633 }
1634
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1635 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1636 unsigned long, prot, unsigned long, flags,
1637 unsigned long, fd, unsigned long, pgoff)
1638 {
1639 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1640 }
1641
1642 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1643 struct mmap_arg_struct {
1644 unsigned long addr;
1645 unsigned long len;
1646 unsigned long prot;
1647 unsigned long flags;
1648 unsigned long fd;
1649 unsigned long offset;
1650 };
1651
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1652 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1653 {
1654 struct mmap_arg_struct a;
1655
1656 if (copy_from_user(&a, arg, sizeof(a)))
1657 return -EFAULT;
1658 if (offset_in_page(a.offset))
1659 return -EINVAL;
1660
1661 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1662 a.offset >> PAGE_SHIFT);
1663 }
1664 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1665
1666 /*
1667 * Some shared mappings will want the pages marked read-only
1668 * to track write events. If so, we'll downgrade vm_page_prot
1669 * to the private version (using protection_map[] without the
1670 * VM_SHARED bit).
1671 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1672 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1673 {
1674 vm_flags_t vm_flags = vma->vm_flags;
1675 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1676
1677 /* If it was private or non-writable, the write bit is already clear */
1678 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1679 return 0;
1680
1681 /* The backer wishes to know when pages are first written to? */
1682 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1683 return 1;
1684
1685 /* The open routine did something to the protections that pgprot_modify
1686 * won't preserve? */
1687 if (pgprot_val(vm_page_prot) !=
1688 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1689 return 0;
1690
1691 /*
1692 * Do we need to track softdirty? hugetlb does not support softdirty
1693 * tracking yet.
1694 */
1695 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1696 !is_vm_hugetlb_page(vma))
1697 return 1;
1698
1699 /* Specialty mapping? */
1700 if (vm_flags & VM_PFNMAP)
1701 return 0;
1702
1703 /* Can the mapping track the dirty pages? */
1704 return vma->vm_file && vma->vm_file->f_mapping &&
1705 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1706 }
1707
1708 /*
1709 * We account for memory if it's a private writeable mapping,
1710 * not hugepages and VM_NORESERVE wasn't set.
1711 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1712 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1713 {
1714 /*
1715 * hugetlb has its own accounting separate from the core VM
1716 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1717 */
1718 if (file && is_file_hugepages(file))
1719 return 0;
1720
1721 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1722 }
1723
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1724 unsigned long mmap_region(struct file *file, unsigned long addr,
1725 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1726 struct list_head *uf)
1727 {
1728 struct mm_struct *mm = current->mm;
1729 struct vm_area_struct *vma, *prev;
1730 int error;
1731 struct rb_node **rb_link, *rb_parent;
1732 unsigned long charged = 0;
1733
1734 /* Check against address space limit. */
1735 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1736 unsigned long nr_pages;
1737
1738 /*
1739 * MAP_FIXED may remove pages of mappings that intersects with
1740 * requested mapping. Account for the pages it would unmap.
1741 */
1742 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1743
1744 if (!may_expand_vm(mm, vm_flags,
1745 (len >> PAGE_SHIFT) - nr_pages))
1746 return -ENOMEM;
1747 }
1748
1749 /* Clear old maps */
1750 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1751 &rb_parent)) {
1752 if (do_munmap(mm, addr, len, uf))
1753 return -ENOMEM;
1754 }
1755
1756 /*
1757 * Private writable mapping: check memory availability
1758 */
1759 if (accountable_mapping(file, vm_flags)) {
1760 charged = len >> PAGE_SHIFT;
1761 if (security_vm_enough_memory_mm(mm, charged))
1762 return -ENOMEM;
1763 vm_flags |= VM_ACCOUNT;
1764 }
1765
1766 /*
1767 * Can we just expand an old mapping?
1768 */
1769 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1770 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1771 if (vma)
1772 goto out;
1773
1774 /*
1775 * Determine the object being mapped and call the appropriate
1776 * specific mapper. the address has already been validated, but
1777 * not unmapped, but the maps are removed from the list.
1778 */
1779 vma = vm_area_alloc(mm);
1780 if (!vma) {
1781 error = -ENOMEM;
1782 goto unacct_error;
1783 }
1784
1785 vma->vm_start = addr;
1786 vma->vm_end = addr + len;
1787 vma->vm_flags = vm_flags;
1788 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1789 vma->vm_pgoff = pgoff;
1790
1791 if (file) {
1792 if (vm_flags & VM_DENYWRITE) {
1793 error = deny_write_access(file);
1794 if (error)
1795 goto free_vma;
1796 }
1797 if (vm_flags & VM_SHARED) {
1798 error = mapping_map_writable(file->f_mapping);
1799 if (error)
1800 goto allow_write_and_free_vma;
1801 }
1802
1803 /* ->mmap() can change vma->vm_file, but must guarantee that
1804 * vma_link() below can deny write-access if VM_DENYWRITE is set
1805 * and map writably if VM_SHARED is set. This usually means the
1806 * new file must not have been exposed to user-space, yet.
1807 */
1808 vma->vm_file = get_file(file);
1809 error = call_mmap(file, vma);
1810 if (error)
1811 goto unmap_and_free_vma;
1812
1813 /* Can addr have changed??
1814 *
1815 * Answer: Yes, several device drivers can do it in their
1816 * f_op->mmap method. -DaveM
1817 * Bug: If addr is changed, prev, rb_link, rb_parent should
1818 * be updated for vma_link()
1819 */
1820 WARN_ON_ONCE(addr != vma->vm_start);
1821
1822 addr = vma->vm_start;
1823 vm_flags = vma->vm_flags;
1824 } else if (vm_flags & VM_SHARED) {
1825 error = shmem_zero_setup(vma);
1826 if (error)
1827 goto free_vma;
1828 } else {
1829 vma_set_anonymous(vma);
1830 }
1831
1832 vma_link(mm, vma, prev, rb_link, rb_parent);
1833 /* Once vma denies write, undo our temporary denial count */
1834 if (file) {
1835 if (vm_flags & VM_SHARED)
1836 mapping_unmap_writable(file->f_mapping);
1837 if (vm_flags & VM_DENYWRITE)
1838 allow_write_access(file);
1839 }
1840 file = vma->vm_file;
1841 out:
1842 perf_event_mmap(vma);
1843
1844 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1845 if (vm_flags & VM_LOCKED) {
1846 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1847 is_vm_hugetlb_page(vma) ||
1848 vma == get_gate_vma(current->mm))
1849 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1850 else
1851 mm->locked_vm += (len >> PAGE_SHIFT);
1852 }
1853
1854 if (file)
1855 uprobe_mmap(vma);
1856
1857 /*
1858 * New (or expanded) vma always get soft dirty status.
1859 * Otherwise user-space soft-dirty page tracker won't
1860 * be able to distinguish situation when vma area unmapped,
1861 * then new mapped in-place (which must be aimed as
1862 * a completely new data area).
1863 */
1864 vma->vm_flags |= VM_SOFTDIRTY;
1865
1866 vma_set_page_prot(vma);
1867
1868 return addr;
1869
1870 unmap_and_free_vma:
1871 vma->vm_file = NULL;
1872 fput(file);
1873
1874 /* Undo any partial mapping done by a device driver. */
1875 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1876 if (vm_flags & VM_SHARED)
1877 mapping_unmap_writable(file->f_mapping);
1878 allow_write_and_free_vma:
1879 if (vm_flags & VM_DENYWRITE)
1880 allow_write_access(file);
1881 free_vma:
1882 vm_area_free(vma);
1883 unacct_error:
1884 if (charged)
1885 vm_unacct_memory(charged);
1886 return error;
1887 }
1888
unmapped_area(struct vm_unmapped_area_info * info)1889 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1890 {
1891 /*
1892 * We implement the search by looking for an rbtree node that
1893 * immediately follows a suitable gap. That is,
1894 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1895 * - gap_end = vma->vm_start >= info->low_limit + length;
1896 * - gap_end - gap_start >= length
1897 */
1898
1899 struct mm_struct *mm = current->mm;
1900 struct vm_area_struct *vma;
1901 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1902
1903 /* Adjust search length to account for worst case alignment overhead */
1904 length = info->length + info->align_mask;
1905 if (length < info->length)
1906 return -ENOMEM;
1907
1908 /* Adjust search limits by the desired length */
1909 if (info->high_limit < length)
1910 return -ENOMEM;
1911 high_limit = info->high_limit - length;
1912
1913 if (info->low_limit > high_limit)
1914 return -ENOMEM;
1915 low_limit = info->low_limit + length;
1916
1917 /* Check if rbtree root looks promising */
1918 if (RB_EMPTY_ROOT(&mm->mm_rb))
1919 goto check_highest;
1920 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1921 if (vma->rb_subtree_gap < length)
1922 goto check_highest;
1923
1924 while (true) {
1925 /* Visit left subtree if it looks promising */
1926 gap_end = vm_start_gap(vma);
1927 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1928 struct vm_area_struct *left =
1929 rb_entry(vma->vm_rb.rb_left,
1930 struct vm_area_struct, vm_rb);
1931 if (left->rb_subtree_gap >= length) {
1932 vma = left;
1933 continue;
1934 }
1935 }
1936
1937 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1938 check_current:
1939 /* Check if current node has a suitable gap */
1940 if (gap_start > high_limit)
1941 return -ENOMEM;
1942 if (gap_end >= low_limit &&
1943 gap_end > gap_start && gap_end - gap_start >= length)
1944 goto found;
1945
1946 /* Visit right subtree if it looks promising */
1947 if (vma->vm_rb.rb_right) {
1948 struct vm_area_struct *right =
1949 rb_entry(vma->vm_rb.rb_right,
1950 struct vm_area_struct, vm_rb);
1951 if (right->rb_subtree_gap >= length) {
1952 vma = right;
1953 continue;
1954 }
1955 }
1956
1957 /* Go back up the rbtree to find next candidate node */
1958 while (true) {
1959 struct rb_node *prev = &vma->vm_rb;
1960 if (!rb_parent(prev))
1961 goto check_highest;
1962 vma = rb_entry(rb_parent(prev),
1963 struct vm_area_struct, vm_rb);
1964 if (prev == vma->vm_rb.rb_left) {
1965 gap_start = vm_end_gap(vma->vm_prev);
1966 gap_end = vm_start_gap(vma);
1967 goto check_current;
1968 }
1969 }
1970 }
1971
1972 check_highest:
1973 /* Check highest gap, which does not precede any rbtree node */
1974 gap_start = mm->highest_vm_end;
1975 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1976 if (gap_start > high_limit)
1977 return -ENOMEM;
1978
1979 found:
1980 /* We found a suitable gap. Clip it with the original low_limit. */
1981 if (gap_start < info->low_limit)
1982 gap_start = info->low_limit;
1983
1984 /* Adjust gap address to the desired alignment */
1985 gap_start += (info->align_offset - gap_start) & info->align_mask;
1986
1987 VM_BUG_ON(gap_start + info->length > info->high_limit);
1988 VM_BUG_ON(gap_start + info->length > gap_end);
1989 return gap_start;
1990 }
1991
unmapped_area_topdown(struct vm_unmapped_area_info * info)1992 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1993 {
1994 struct mm_struct *mm = current->mm;
1995 struct vm_area_struct *vma;
1996 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1997
1998 /* Adjust search length to account for worst case alignment overhead */
1999 length = info->length + info->align_mask;
2000 if (length < info->length)
2001 return -ENOMEM;
2002
2003 /*
2004 * Adjust search limits by the desired length.
2005 * See implementation comment at top of unmapped_area().
2006 */
2007 gap_end = info->high_limit;
2008 if (gap_end < length)
2009 return -ENOMEM;
2010 high_limit = gap_end - length;
2011
2012 if (info->low_limit > high_limit)
2013 return -ENOMEM;
2014 low_limit = info->low_limit + length;
2015
2016 /* Check highest gap, which does not precede any rbtree node */
2017 gap_start = mm->highest_vm_end;
2018 if (gap_start <= high_limit)
2019 goto found_highest;
2020
2021 /* Check if rbtree root looks promising */
2022 if (RB_EMPTY_ROOT(&mm->mm_rb))
2023 return -ENOMEM;
2024 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2025 if (vma->rb_subtree_gap < length)
2026 return -ENOMEM;
2027
2028 while (true) {
2029 /* Visit right subtree if it looks promising */
2030 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2031 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2032 struct vm_area_struct *right =
2033 rb_entry(vma->vm_rb.rb_right,
2034 struct vm_area_struct, vm_rb);
2035 if (right->rb_subtree_gap >= length) {
2036 vma = right;
2037 continue;
2038 }
2039 }
2040
2041 check_current:
2042 /* Check if current node has a suitable gap */
2043 gap_end = vm_start_gap(vma);
2044 if (gap_end < low_limit)
2045 return -ENOMEM;
2046 if (gap_start <= high_limit &&
2047 gap_end > gap_start && gap_end - gap_start >= length)
2048 goto found;
2049
2050 /* Visit left subtree if it looks promising */
2051 if (vma->vm_rb.rb_left) {
2052 struct vm_area_struct *left =
2053 rb_entry(vma->vm_rb.rb_left,
2054 struct vm_area_struct, vm_rb);
2055 if (left->rb_subtree_gap >= length) {
2056 vma = left;
2057 continue;
2058 }
2059 }
2060
2061 /* Go back up the rbtree to find next candidate node */
2062 while (true) {
2063 struct rb_node *prev = &vma->vm_rb;
2064 if (!rb_parent(prev))
2065 return -ENOMEM;
2066 vma = rb_entry(rb_parent(prev),
2067 struct vm_area_struct, vm_rb);
2068 if (prev == vma->vm_rb.rb_right) {
2069 gap_start = vma->vm_prev ?
2070 vm_end_gap(vma->vm_prev) : 0;
2071 goto check_current;
2072 }
2073 }
2074 }
2075
2076 found:
2077 /* We found a suitable gap. Clip it with the original high_limit. */
2078 if (gap_end > info->high_limit)
2079 gap_end = info->high_limit;
2080
2081 found_highest:
2082 /* Compute highest gap address at the desired alignment */
2083 gap_end -= info->length;
2084 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2085
2086 VM_BUG_ON(gap_end < info->low_limit);
2087 VM_BUG_ON(gap_end < gap_start);
2088 return gap_end;
2089 }
2090
2091
2092 /* Get an address range which is currently unmapped.
2093 * For shmat() with addr=0.
2094 *
2095 * Ugly calling convention alert:
2096 * Return value with the low bits set means error value,
2097 * ie
2098 * if (ret & ~PAGE_MASK)
2099 * error = ret;
2100 *
2101 * This function "knows" that -ENOMEM has the bits set.
2102 */
2103 #ifndef HAVE_ARCH_UNMAPPED_AREA
2104 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2105 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2106 unsigned long len, unsigned long pgoff, unsigned long flags)
2107 {
2108 struct mm_struct *mm = current->mm;
2109 struct vm_area_struct *vma, *prev;
2110 struct vm_unmapped_area_info info;
2111 const unsigned long mmap_end = arch_get_mmap_end(addr);
2112
2113 if (len > mmap_end - mmap_min_addr)
2114 return -ENOMEM;
2115
2116 if (flags & MAP_FIXED)
2117 return addr;
2118
2119 if (addr) {
2120 addr = PAGE_ALIGN(addr);
2121 vma = find_vma_prev(mm, addr, &prev);
2122 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2123 (!vma || addr + len <= vm_start_gap(vma)) &&
2124 (!prev || addr >= vm_end_gap(prev)))
2125 return addr;
2126 }
2127
2128 info.flags = 0;
2129 info.length = len;
2130 info.low_limit = mm->mmap_base;
2131 info.high_limit = mmap_end;
2132 info.align_mask = 0;
2133 info.align_offset = 0;
2134 return vm_unmapped_area(&info);
2135 }
2136 #endif
2137
2138 /*
2139 * This mmap-allocator allocates new areas top-down from below the
2140 * stack's low limit (the base):
2141 */
2142 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2143 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2144 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2145 unsigned long len, unsigned long pgoff,
2146 unsigned long flags)
2147 {
2148 struct vm_area_struct *vma, *prev;
2149 struct mm_struct *mm = current->mm;
2150 struct vm_unmapped_area_info info;
2151 const unsigned long mmap_end = arch_get_mmap_end(addr);
2152
2153 /* requested length too big for entire address space */
2154 if (len > mmap_end - mmap_min_addr)
2155 return -ENOMEM;
2156
2157 if (flags & MAP_FIXED)
2158 return addr;
2159
2160 /* requesting a specific address */
2161 if (addr) {
2162 addr = PAGE_ALIGN(addr);
2163 vma = find_vma_prev(mm, addr, &prev);
2164 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2165 (!vma || addr + len <= vm_start_gap(vma)) &&
2166 (!prev || addr >= vm_end_gap(prev)))
2167 return addr;
2168 }
2169
2170 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2171 info.length = len;
2172 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2173 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2174 info.align_mask = 0;
2175 info.align_offset = 0;
2176 addr = vm_unmapped_area(&info);
2177
2178 /*
2179 * A failed mmap() very likely causes application failure,
2180 * so fall back to the bottom-up function here. This scenario
2181 * can happen with large stack limits and large mmap()
2182 * allocations.
2183 */
2184 if (offset_in_page(addr)) {
2185 VM_BUG_ON(addr != -ENOMEM);
2186 info.flags = 0;
2187 info.low_limit = TASK_UNMAPPED_BASE;
2188 info.high_limit = mmap_end;
2189 addr = vm_unmapped_area(&info);
2190 }
2191
2192 return addr;
2193 }
2194 #endif
2195
2196 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2197 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2198 unsigned long pgoff, unsigned long flags)
2199 {
2200 unsigned long (*get_area)(struct file *, unsigned long,
2201 unsigned long, unsigned long, unsigned long);
2202
2203 unsigned long error = arch_mmap_check(addr, len, flags);
2204 if (error)
2205 return error;
2206
2207 /* Careful about overflows.. */
2208 if (len > TASK_SIZE)
2209 return -ENOMEM;
2210
2211 get_area = current->mm->get_unmapped_area;
2212 if (file) {
2213 if (file->f_op->get_unmapped_area)
2214 get_area = file->f_op->get_unmapped_area;
2215 } else if (flags & MAP_SHARED) {
2216 /*
2217 * mmap_region() will call shmem_zero_setup() to create a file,
2218 * so use shmem's get_unmapped_area in case it can be huge.
2219 * do_mmap_pgoff() will clear pgoff, so match alignment.
2220 */
2221 pgoff = 0;
2222 get_area = shmem_get_unmapped_area;
2223 }
2224
2225 addr = get_area(file, addr, len, pgoff, flags);
2226 if (IS_ERR_VALUE(addr))
2227 return addr;
2228
2229 if (addr > TASK_SIZE - len)
2230 return -ENOMEM;
2231 if (offset_in_page(addr))
2232 return -EINVAL;
2233
2234 error = security_mmap_addr(addr);
2235 return error ? error : addr;
2236 }
2237
2238 EXPORT_SYMBOL(get_unmapped_area);
2239
2240 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2241 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2242 {
2243 struct rb_node *rb_node;
2244 struct vm_area_struct *vma;
2245
2246 /* Check the cache first. */
2247 vma = vmacache_find(mm, addr);
2248 if (likely(vma))
2249 return vma;
2250
2251 rb_node = mm->mm_rb.rb_node;
2252
2253 while (rb_node) {
2254 struct vm_area_struct *tmp;
2255
2256 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2257
2258 if (tmp->vm_end > addr) {
2259 vma = tmp;
2260 if (tmp->vm_start <= addr)
2261 break;
2262 rb_node = rb_node->rb_left;
2263 } else
2264 rb_node = rb_node->rb_right;
2265 }
2266
2267 if (vma)
2268 vmacache_update(addr, vma);
2269 return vma;
2270 }
2271
2272 EXPORT_SYMBOL(find_vma);
2273
2274 /*
2275 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2276 */
2277 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2278 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2279 struct vm_area_struct **pprev)
2280 {
2281 struct vm_area_struct *vma;
2282
2283 vma = find_vma(mm, addr);
2284 if (vma) {
2285 *pprev = vma->vm_prev;
2286 } else {
2287 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2288
2289 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2290 }
2291 return vma;
2292 }
2293
2294 /*
2295 * Verify that the stack growth is acceptable and
2296 * update accounting. This is shared with both the
2297 * grow-up and grow-down cases.
2298 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2299 static int acct_stack_growth(struct vm_area_struct *vma,
2300 unsigned long size, unsigned long grow)
2301 {
2302 struct mm_struct *mm = vma->vm_mm;
2303 unsigned long new_start;
2304
2305 /* address space limit tests */
2306 if (!may_expand_vm(mm, vma->vm_flags, grow))
2307 return -ENOMEM;
2308
2309 /* Stack limit test */
2310 if (size > rlimit(RLIMIT_STACK))
2311 return -ENOMEM;
2312
2313 /* mlock limit tests */
2314 if (vma->vm_flags & VM_LOCKED) {
2315 unsigned long locked;
2316 unsigned long limit;
2317 locked = mm->locked_vm + grow;
2318 limit = rlimit(RLIMIT_MEMLOCK);
2319 limit >>= PAGE_SHIFT;
2320 if (locked > limit && !capable(CAP_IPC_LOCK))
2321 return -ENOMEM;
2322 }
2323
2324 /* Check to ensure the stack will not grow into a hugetlb-only region */
2325 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2326 vma->vm_end - size;
2327 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2328 return -EFAULT;
2329
2330 /*
2331 * Overcommit.. This must be the final test, as it will
2332 * update security statistics.
2333 */
2334 if (security_vm_enough_memory_mm(mm, grow))
2335 return -ENOMEM;
2336
2337 return 0;
2338 }
2339
2340 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2341 /*
2342 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2343 * vma is the last one with address > vma->vm_end. Have to extend vma.
2344 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2345 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2346 {
2347 struct mm_struct *mm = vma->vm_mm;
2348 struct vm_area_struct *next;
2349 unsigned long gap_addr;
2350 int error = 0;
2351
2352 if (!(vma->vm_flags & VM_GROWSUP))
2353 return -EFAULT;
2354
2355 /* Guard against exceeding limits of the address space. */
2356 address &= PAGE_MASK;
2357 if (address >= (TASK_SIZE & PAGE_MASK))
2358 return -ENOMEM;
2359 address += PAGE_SIZE;
2360
2361 /* Enforce stack_guard_gap */
2362 gap_addr = address + stack_guard_gap;
2363
2364 /* Guard against overflow */
2365 if (gap_addr < address || gap_addr > TASK_SIZE)
2366 gap_addr = TASK_SIZE;
2367
2368 next = vma->vm_next;
2369 if (next && next->vm_start < gap_addr &&
2370 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2371 if (!(next->vm_flags & VM_GROWSUP))
2372 return -ENOMEM;
2373 /* Check that both stack segments have the same anon_vma? */
2374 }
2375
2376 /* We must make sure the anon_vma is allocated. */
2377 if (unlikely(anon_vma_prepare(vma)))
2378 return -ENOMEM;
2379
2380 /*
2381 * vma->vm_start/vm_end cannot change under us because the caller
2382 * is required to hold the mmap_sem in read mode. We need the
2383 * anon_vma lock to serialize against concurrent expand_stacks.
2384 */
2385 anon_vma_lock_write(vma->anon_vma);
2386
2387 /* Somebody else might have raced and expanded it already */
2388 if (address > vma->vm_end) {
2389 unsigned long size, grow;
2390
2391 size = address - vma->vm_start;
2392 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2393
2394 error = -ENOMEM;
2395 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2396 error = acct_stack_growth(vma, size, grow);
2397 if (!error) {
2398 /*
2399 * vma_gap_update() doesn't support concurrent
2400 * updates, but we only hold a shared mmap_sem
2401 * lock here, so we need to protect against
2402 * concurrent vma expansions.
2403 * anon_vma_lock_write() doesn't help here, as
2404 * we don't guarantee that all growable vmas
2405 * in a mm share the same root anon vma.
2406 * So, we reuse mm->page_table_lock to guard
2407 * against concurrent vma expansions.
2408 */
2409 spin_lock(&mm->page_table_lock);
2410 if (vma->vm_flags & VM_LOCKED)
2411 mm->locked_vm += grow;
2412 vm_stat_account(mm, vma->vm_flags, grow);
2413 anon_vma_interval_tree_pre_update_vma(vma);
2414 vma->vm_end = address;
2415 anon_vma_interval_tree_post_update_vma(vma);
2416 if (vma->vm_next)
2417 vma_gap_update(vma->vm_next);
2418 else
2419 mm->highest_vm_end = vm_end_gap(vma);
2420 spin_unlock(&mm->page_table_lock);
2421
2422 perf_event_mmap(vma);
2423 }
2424 }
2425 }
2426 anon_vma_unlock_write(vma->anon_vma);
2427 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2428 validate_mm(mm);
2429 return error;
2430 }
2431 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2432
2433 /*
2434 * vma is the first one with address < vma->vm_start. Have to extend vma.
2435 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2436 int expand_downwards(struct vm_area_struct *vma,
2437 unsigned long address)
2438 {
2439 struct mm_struct *mm = vma->vm_mm;
2440 struct vm_area_struct *prev;
2441 int error = 0;
2442
2443 address &= PAGE_MASK;
2444 if (address < mmap_min_addr)
2445 return -EPERM;
2446
2447 /* Enforce stack_guard_gap */
2448 prev = vma->vm_prev;
2449 /* Check that both stack segments have the same anon_vma? */
2450 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2451 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2452 if (address - prev->vm_end < stack_guard_gap)
2453 return -ENOMEM;
2454 }
2455
2456 /* We must make sure the anon_vma is allocated. */
2457 if (unlikely(anon_vma_prepare(vma)))
2458 return -ENOMEM;
2459
2460 /*
2461 * vma->vm_start/vm_end cannot change under us because the caller
2462 * is required to hold the mmap_sem in read mode. We need the
2463 * anon_vma lock to serialize against concurrent expand_stacks.
2464 */
2465 anon_vma_lock_write(vma->anon_vma);
2466
2467 /* Somebody else might have raced and expanded it already */
2468 if (address < vma->vm_start) {
2469 unsigned long size, grow;
2470
2471 size = vma->vm_end - address;
2472 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2473
2474 error = -ENOMEM;
2475 if (grow <= vma->vm_pgoff) {
2476 error = acct_stack_growth(vma, size, grow);
2477 if (!error) {
2478 /*
2479 * vma_gap_update() doesn't support concurrent
2480 * updates, but we only hold a shared mmap_sem
2481 * lock here, so we need to protect against
2482 * concurrent vma expansions.
2483 * anon_vma_lock_write() doesn't help here, as
2484 * we don't guarantee that all growable vmas
2485 * in a mm share the same root anon vma.
2486 * So, we reuse mm->page_table_lock to guard
2487 * against concurrent vma expansions.
2488 */
2489 spin_lock(&mm->page_table_lock);
2490 if (vma->vm_flags & VM_LOCKED)
2491 mm->locked_vm += grow;
2492 vm_stat_account(mm, vma->vm_flags, grow);
2493 anon_vma_interval_tree_pre_update_vma(vma);
2494 vma->vm_start = address;
2495 vma->vm_pgoff -= grow;
2496 anon_vma_interval_tree_post_update_vma(vma);
2497 vma_gap_update(vma);
2498 spin_unlock(&mm->page_table_lock);
2499
2500 perf_event_mmap(vma);
2501 }
2502 }
2503 }
2504 anon_vma_unlock_write(vma->anon_vma);
2505 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2506 validate_mm(mm);
2507 return error;
2508 }
2509
2510 /* enforced gap between the expanding stack and other mappings. */
2511 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2512
cmdline_parse_stack_guard_gap(char * p)2513 static int __init cmdline_parse_stack_guard_gap(char *p)
2514 {
2515 unsigned long val;
2516 char *endptr;
2517
2518 val = simple_strtoul(p, &endptr, 10);
2519 if (!*endptr)
2520 stack_guard_gap = val << PAGE_SHIFT;
2521
2522 return 1;
2523 }
2524 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2525
2526 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2527 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2528 {
2529 return expand_upwards(vma, address);
2530 }
2531
2532 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2533 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2534 {
2535 struct vm_area_struct *vma, *prev;
2536
2537 addr &= PAGE_MASK;
2538 vma = find_vma_prev(mm, addr, &prev);
2539 if (vma && (vma->vm_start <= addr))
2540 return vma;
2541 /* don't alter vm_end if the coredump is running */
2542 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2543 return NULL;
2544 if (prev->vm_flags & VM_LOCKED)
2545 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2546 return prev;
2547 }
2548 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2549 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2550 {
2551 return expand_downwards(vma, address);
2552 }
2553
2554 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2555 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2556 {
2557 struct vm_area_struct *vma;
2558 unsigned long start;
2559
2560 addr &= PAGE_MASK;
2561 vma = find_vma(mm, addr);
2562 if (!vma)
2563 return NULL;
2564 if (vma->vm_start <= addr)
2565 return vma;
2566 if (!(vma->vm_flags & VM_GROWSDOWN))
2567 return NULL;
2568 /* don't alter vm_start if the coredump is running */
2569 if (!mmget_still_valid(mm))
2570 return NULL;
2571 start = vma->vm_start;
2572 if (expand_stack(vma, addr))
2573 return NULL;
2574 if (vma->vm_flags & VM_LOCKED)
2575 populate_vma_page_range(vma, addr, start, NULL);
2576 return vma;
2577 }
2578 #endif
2579
2580 EXPORT_SYMBOL_GPL(find_extend_vma);
2581
2582 /*
2583 * Ok - we have the memory areas we should free on the vma list,
2584 * so release them, and do the vma updates.
2585 *
2586 * Called with the mm semaphore held.
2587 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2588 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2589 {
2590 unsigned long nr_accounted = 0;
2591
2592 /* Update high watermark before we lower total_vm */
2593 update_hiwater_vm(mm);
2594 do {
2595 long nrpages = vma_pages(vma);
2596
2597 if (vma->vm_flags & VM_ACCOUNT)
2598 nr_accounted += nrpages;
2599 vm_stat_account(mm, vma->vm_flags, -nrpages);
2600 vma = remove_vma(vma);
2601 } while (vma);
2602 vm_unacct_memory(nr_accounted);
2603 validate_mm(mm);
2604 }
2605
2606 /*
2607 * Get rid of page table information in the indicated region.
2608 *
2609 * Called with the mm semaphore held.
2610 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2611 static void unmap_region(struct mm_struct *mm,
2612 struct vm_area_struct *vma, struct vm_area_struct *prev,
2613 unsigned long start, unsigned long end)
2614 {
2615 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2616 struct mmu_gather tlb;
2617 struct vm_area_struct *cur_vma;
2618
2619 lru_add_drain();
2620 tlb_gather_mmu(&tlb, mm, start, end);
2621 update_hiwater_rss(mm);
2622 unmap_vmas(&tlb, vma, start, end);
2623
2624 /*
2625 * Ensure we have no stale TLB entries by the time this mapping is
2626 * removed from the rmap.
2627 * Note that we don't have to worry about nested flushes here because
2628 * we're holding the mm semaphore for removing the mapping - so any
2629 * concurrent flush in this region has to be coming through the rmap,
2630 * and we synchronize against that using the rmap lock.
2631 */
2632 for (cur_vma = vma; cur_vma; cur_vma = cur_vma->vm_next) {
2633 if ((cur_vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0) {
2634 tlb_flush_mmu(&tlb);
2635 break;
2636 }
2637 }
2638
2639 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2640 next ? next->vm_start : USER_PGTABLES_CEILING);
2641 tlb_finish_mmu(&tlb, start, end);
2642 }
2643
2644 /*
2645 * Create a list of vma's touched by the unmap, removing them from the mm's
2646 * vma list as we go..
2647 */
2648 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2649 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2650 struct vm_area_struct *prev, unsigned long end)
2651 {
2652 struct vm_area_struct **insertion_point;
2653 struct vm_area_struct *tail_vma = NULL;
2654
2655 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2656 vma->vm_prev = NULL;
2657 do {
2658 vma_rb_erase(vma, &mm->mm_rb);
2659 mm->map_count--;
2660 tail_vma = vma;
2661 vma = vma->vm_next;
2662 } while (vma && vma->vm_start < end);
2663 *insertion_point = vma;
2664 if (vma) {
2665 vma->vm_prev = prev;
2666 vma_gap_update(vma);
2667 } else
2668 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2669 tail_vma->vm_next = NULL;
2670
2671 /* Kill the cache */
2672 vmacache_invalidate(mm);
2673
2674 /*
2675 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2676 * VM_GROWSUP VMA. Such VMAs can change their size under
2677 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2678 */
2679 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2680 return false;
2681 if (prev && (prev->vm_flags & VM_GROWSUP))
2682 return false;
2683 return true;
2684 }
2685
2686 /*
2687 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2688 * has already been checked or doesn't make sense to fail.
2689 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2690 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2691 unsigned long addr, int new_below)
2692 {
2693 struct vm_area_struct *new;
2694 int err;
2695
2696 if (vma->vm_ops && vma->vm_ops->split) {
2697 err = vma->vm_ops->split(vma, addr);
2698 if (err)
2699 return err;
2700 }
2701
2702 new = vm_area_dup(vma);
2703 if (!new)
2704 return -ENOMEM;
2705
2706 if (new_below)
2707 new->vm_end = addr;
2708 else {
2709 new->vm_start = addr;
2710 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2711 }
2712
2713 err = vma_dup_policy(vma, new);
2714 if (err)
2715 goto out_free_vma;
2716
2717 err = anon_vma_clone(new, vma);
2718 if (err)
2719 goto out_free_mpol;
2720
2721 if (new->vm_file)
2722 get_file(new->vm_file);
2723
2724 if (new->vm_ops && new->vm_ops->open)
2725 new->vm_ops->open(new);
2726
2727 if (new_below)
2728 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2729 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2730 else
2731 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2732
2733 /* Success. */
2734 if (!err)
2735 return 0;
2736
2737 /* Clean everything up if vma_adjust failed. */
2738 if (new->vm_ops && new->vm_ops->close)
2739 new->vm_ops->close(new);
2740 if (new->vm_file)
2741 fput(new->vm_file);
2742 unlink_anon_vmas(new);
2743 out_free_mpol:
2744 mpol_put(vma_policy(new));
2745 out_free_vma:
2746 vm_area_free(new);
2747 return err;
2748 }
2749
2750 /*
2751 * Split a vma into two pieces at address 'addr', a new vma is allocated
2752 * either for the first part or the tail.
2753 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2754 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2755 unsigned long addr, int new_below)
2756 {
2757 if (mm->map_count >= sysctl_max_map_count)
2758 return -ENOMEM;
2759
2760 return __split_vma(mm, vma, addr, new_below);
2761 }
2762
2763 /* Munmap is split into 2 main parts -- this part which finds
2764 * what needs doing, and the areas themselves, which do the
2765 * work. This now handles partial unmappings.
2766 * Jeremy Fitzhardinge <jeremy@goop.org>
2767 */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2768 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2769 struct list_head *uf, bool downgrade)
2770 {
2771 unsigned long end;
2772 struct vm_area_struct *vma, *prev, *last;
2773
2774 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2775 return -EINVAL;
2776
2777 len = PAGE_ALIGN(len);
2778 end = start + len;
2779 if (len == 0)
2780 return -EINVAL;
2781
2782 /*
2783 * arch_unmap() might do unmaps itself. It must be called
2784 * and finish any rbtree manipulation before this code
2785 * runs and also starts to manipulate the rbtree.
2786 */
2787 arch_unmap(mm, start, end);
2788
2789 /* Find the first overlapping VMA */
2790 vma = find_vma(mm, start);
2791 if (!vma)
2792 return 0;
2793 prev = vma->vm_prev;
2794 /* we have start < vma->vm_end */
2795
2796 /* if it doesn't overlap, we have nothing.. */
2797 if (vma->vm_start >= end)
2798 return 0;
2799
2800 /*
2801 * If we need to split any vma, do it now to save pain later.
2802 *
2803 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2804 * unmapped vm_area_struct will remain in use: so lower split_vma
2805 * places tmp vma above, and higher split_vma places tmp vma below.
2806 */
2807 if (start > vma->vm_start) {
2808 int error;
2809
2810 /*
2811 * Make sure that map_count on return from munmap() will
2812 * not exceed its limit; but let map_count go just above
2813 * its limit temporarily, to help free resources as expected.
2814 */
2815 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2816 return -ENOMEM;
2817
2818 error = __split_vma(mm, vma, start, 0);
2819 if (error)
2820 return error;
2821 prev = vma;
2822 }
2823
2824 /* Does it split the last one? */
2825 last = find_vma(mm, end);
2826 if (last && end > last->vm_start) {
2827 int error = __split_vma(mm, last, end, 1);
2828 if (error)
2829 return error;
2830 }
2831 vma = prev ? prev->vm_next : mm->mmap;
2832
2833 if (unlikely(uf)) {
2834 /*
2835 * If userfaultfd_unmap_prep returns an error the vmas
2836 * will remain splitted, but userland will get a
2837 * highly unexpected error anyway. This is no
2838 * different than the case where the first of the two
2839 * __split_vma fails, but we don't undo the first
2840 * split, despite we could. This is unlikely enough
2841 * failure that it's not worth optimizing it for.
2842 */
2843 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2844 if (error)
2845 return error;
2846 }
2847
2848 /*
2849 * unlock any mlock()ed ranges before detaching vmas
2850 */
2851 if (mm->locked_vm) {
2852 struct vm_area_struct *tmp = vma;
2853 while (tmp && tmp->vm_start < end) {
2854 if (tmp->vm_flags & VM_LOCKED) {
2855 mm->locked_vm -= vma_pages(tmp);
2856 munlock_vma_pages_all(tmp);
2857 }
2858
2859 tmp = tmp->vm_next;
2860 }
2861 }
2862
2863 /* Detach vmas from rbtree */
2864 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2865 downgrade = false;
2866
2867 if (downgrade)
2868 downgrade_write(&mm->mmap_sem);
2869
2870 unmap_region(mm, vma, prev, start, end);
2871
2872 /* Fix up all other VM information */
2873 remove_vma_list(mm, vma);
2874
2875 return downgrade ? 1 : 0;
2876 }
2877
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2878 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2879 struct list_head *uf)
2880 {
2881 return __do_munmap(mm, start, len, uf, false);
2882 }
2883
__vm_munmap(unsigned long start,size_t len,bool downgrade)2884 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2885 {
2886 int ret;
2887 struct mm_struct *mm = current->mm;
2888 LIST_HEAD(uf);
2889
2890 if (down_write_killable(&mm->mmap_sem))
2891 return -EINTR;
2892
2893 ret = __do_munmap(mm, start, len, &uf, downgrade);
2894 /*
2895 * Returning 1 indicates mmap_sem is downgraded.
2896 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2897 * it to 0 before return.
2898 */
2899 if (ret == 1) {
2900 up_read(&mm->mmap_sem);
2901 ret = 0;
2902 } else
2903 up_write(&mm->mmap_sem);
2904
2905 userfaultfd_unmap_complete(mm, &uf);
2906 return ret;
2907 }
2908
vm_munmap(unsigned long start,size_t len)2909 int vm_munmap(unsigned long start, size_t len)
2910 {
2911 return __vm_munmap(start, len, false);
2912 }
2913 EXPORT_SYMBOL(vm_munmap);
2914
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2915 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2916 {
2917 addr = untagged_addr(addr);
2918 profile_munmap(addr);
2919 return __vm_munmap(addr, len, true);
2920 }
2921
2922
2923 /*
2924 * Emulation of deprecated remap_file_pages() syscall.
2925 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2926 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2927 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2928 {
2929
2930 struct mm_struct *mm = current->mm;
2931 struct vm_area_struct *vma;
2932 unsigned long populate = 0;
2933 unsigned long ret = -EINVAL;
2934 struct file *file;
2935
2936 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2937 current->comm, current->pid);
2938
2939 if (prot)
2940 return ret;
2941 start = start & PAGE_MASK;
2942 size = size & PAGE_MASK;
2943
2944 if (start + size <= start)
2945 return ret;
2946
2947 /* Does pgoff wrap? */
2948 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2949 return ret;
2950
2951 if (down_write_killable(&mm->mmap_sem))
2952 return -EINTR;
2953
2954 vma = find_vma(mm, start);
2955
2956 if (!vma || !(vma->vm_flags & VM_SHARED))
2957 goto out;
2958
2959 if (start < vma->vm_start)
2960 goto out;
2961
2962 if (start + size > vma->vm_end) {
2963 struct vm_area_struct *next;
2964
2965 for (next = vma->vm_next; next; next = next->vm_next) {
2966 /* hole between vmas ? */
2967 if (next->vm_start != next->vm_prev->vm_end)
2968 goto out;
2969
2970 if (next->vm_file != vma->vm_file)
2971 goto out;
2972
2973 if (next->vm_flags != vma->vm_flags)
2974 goto out;
2975
2976 if (start + size <= next->vm_end)
2977 break;
2978 }
2979
2980 if (!next)
2981 goto out;
2982 }
2983
2984 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2985 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2986 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2987
2988 flags &= MAP_NONBLOCK;
2989 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2990 if (vma->vm_flags & VM_LOCKED) {
2991 struct vm_area_struct *tmp;
2992 flags |= MAP_LOCKED;
2993
2994 /* drop PG_Mlocked flag for over-mapped range */
2995 for (tmp = vma; tmp->vm_start >= start + size;
2996 tmp = tmp->vm_next) {
2997 /*
2998 * Split pmd and munlock page on the border
2999 * of the range.
3000 */
3001 vma_adjust_trans_huge(tmp, start, start + size, 0);
3002
3003 munlock_vma_pages_range(tmp,
3004 max(tmp->vm_start, start),
3005 min(tmp->vm_end, start + size));
3006 }
3007 }
3008
3009 file = get_file(vma->vm_file);
3010 ret = do_mmap_pgoff(vma->vm_file, start, size,
3011 prot, flags, pgoff, &populate, NULL);
3012 fput(file);
3013 out:
3014 up_write(&mm->mmap_sem);
3015 if (populate)
3016 mm_populate(ret, populate);
3017 if (!IS_ERR_VALUE(ret))
3018 ret = 0;
3019 return ret;
3020 }
3021
3022 /*
3023 * this is really a simplified "do_mmap". it only handles
3024 * anonymous maps. eventually we may be able to do some
3025 * brk-specific accounting here.
3026 */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3027 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3028 {
3029 struct mm_struct *mm = current->mm;
3030 struct vm_area_struct *vma, *prev;
3031 struct rb_node **rb_link, *rb_parent;
3032 pgoff_t pgoff = addr >> PAGE_SHIFT;
3033 int error;
3034
3035 /* Until we need other flags, refuse anything except VM_EXEC. */
3036 if ((flags & (~VM_EXEC)) != 0)
3037 return -EINVAL;
3038 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3039
3040 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3041 if (offset_in_page(error))
3042 return error;
3043
3044 error = mlock_future_check(mm, mm->def_flags, len);
3045 if (error)
3046 return error;
3047
3048 /*
3049 * Clear old maps. this also does some error checking for us
3050 */
3051 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3052 &rb_parent)) {
3053 if (do_munmap(mm, addr, len, uf))
3054 return -ENOMEM;
3055 }
3056
3057 /* Check against address space limits *after* clearing old maps... */
3058 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3059 return -ENOMEM;
3060
3061 if (mm->map_count > sysctl_max_map_count)
3062 return -ENOMEM;
3063
3064 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3065 return -ENOMEM;
3066
3067 /* Can we just expand an old private anonymous mapping? */
3068 vma = vma_merge(mm, prev, addr, addr + len, flags,
3069 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3070 if (vma)
3071 goto out;
3072
3073 /*
3074 * create a vma struct for an anonymous mapping
3075 */
3076 vma = vm_area_alloc(mm);
3077 if (!vma) {
3078 vm_unacct_memory(len >> PAGE_SHIFT);
3079 return -ENOMEM;
3080 }
3081
3082 vma_set_anonymous(vma);
3083 vma->vm_start = addr;
3084 vma->vm_end = addr + len;
3085 vma->vm_pgoff = pgoff;
3086 vma->vm_flags = flags;
3087 vma->vm_page_prot = vm_get_page_prot(flags);
3088 vma_link(mm, vma, prev, rb_link, rb_parent);
3089 out:
3090 perf_event_mmap(vma);
3091 mm->total_vm += len >> PAGE_SHIFT;
3092 mm->data_vm += len >> PAGE_SHIFT;
3093 if (flags & VM_LOCKED)
3094 mm->locked_vm += (len >> PAGE_SHIFT);
3095 vma->vm_flags |= VM_SOFTDIRTY;
3096 return 0;
3097 }
3098
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3099 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3100 {
3101 struct mm_struct *mm = current->mm;
3102 unsigned long len;
3103 int ret;
3104 bool populate;
3105 LIST_HEAD(uf);
3106
3107 len = PAGE_ALIGN(request);
3108 if (len < request)
3109 return -ENOMEM;
3110 if (!len)
3111 return 0;
3112
3113 if (down_write_killable(&mm->mmap_sem))
3114 return -EINTR;
3115
3116 ret = do_brk_flags(addr, len, flags, &uf);
3117 populate = ((mm->def_flags & VM_LOCKED) != 0);
3118 up_write(&mm->mmap_sem);
3119 userfaultfd_unmap_complete(mm, &uf);
3120 if (populate && !ret)
3121 mm_populate(addr, len);
3122 return ret;
3123 }
3124 EXPORT_SYMBOL(vm_brk_flags);
3125
vm_brk(unsigned long addr,unsigned long len)3126 int vm_brk(unsigned long addr, unsigned long len)
3127 {
3128 return vm_brk_flags(addr, len, 0);
3129 }
3130 EXPORT_SYMBOL(vm_brk);
3131
3132 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3133 void exit_mmap(struct mm_struct *mm)
3134 {
3135 struct mmu_gather tlb;
3136 struct vm_area_struct *vma;
3137 unsigned long nr_accounted = 0;
3138
3139 /* mm's last user has gone, and its about to be pulled down */
3140 mmu_notifier_release(mm);
3141
3142 if (unlikely(mm_is_oom_victim(mm))) {
3143 /*
3144 * Manually reap the mm to free as much memory as possible.
3145 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3146 * this mm from further consideration. Taking mm->mmap_sem for
3147 * write after setting MMF_OOM_SKIP will guarantee that the oom
3148 * reaper will not run on this mm again after mmap_sem is
3149 * dropped.
3150 *
3151 * Nothing can be holding mm->mmap_sem here and the above call
3152 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3153 * __oom_reap_task_mm() will not block.
3154 *
3155 * This needs to be done before calling munlock_vma_pages_all(),
3156 * which clears VM_LOCKED, otherwise the oom reaper cannot
3157 * reliably test it.
3158 */
3159 (void)__oom_reap_task_mm(mm);
3160
3161 set_bit(MMF_OOM_SKIP, &mm->flags);
3162 down_write(&mm->mmap_sem);
3163 up_write(&mm->mmap_sem);
3164 }
3165
3166 if (mm->locked_vm) {
3167 vma = mm->mmap;
3168 while (vma) {
3169 if (vma->vm_flags & VM_LOCKED)
3170 munlock_vma_pages_all(vma);
3171 vma = vma->vm_next;
3172 }
3173 }
3174
3175 arch_exit_mmap(mm);
3176
3177 vma = mm->mmap;
3178 if (!vma) /* Can happen if dup_mmap() received an OOM */
3179 return;
3180
3181 lru_add_drain();
3182 flush_cache_mm(mm);
3183 tlb_gather_mmu(&tlb, mm, 0, -1);
3184 /* update_hiwater_rss(mm) here? but nobody should be looking */
3185 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3186 unmap_vmas(&tlb, vma, 0, -1);
3187 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3188 tlb_finish_mmu(&tlb, 0, -1);
3189
3190 /*
3191 * Walk the list again, actually closing and freeing it,
3192 * with preemption enabled, without holding any MM locks.
3193 */
3194 while (vma) {
3195 if (vma->vm_flags & VM_ACCOUNT)
3196 nr_accounted += vma_pages(vma);
3197 vma = remove_vma(vma);
3198 cond_resched();
3199 }
3200 vm_unacct_memory(nr_accounted);
3201 }
3202
3203 /* Insert vm structure into process list sorted by address
3204 * and into the inode's i_mmap tree. If vm_file is non-NULL
3205 * then i_mmap_rwsem is taken here.
3206 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3207 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3208 {
3209 struct vm_area_struct *prev;
3210 struct rb_node **rb_link, *rb_parent;
3211
3212 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3213 &prev, &rb_link, &rb_parent))
3214 return -ENOMEM;
3215 if ((vma->vm_flags & VM_ACCOUNT) &&
3216 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3217 return -ENOMEM;
3218
3219 /*
3220 * The vm_pgoff of a purely anonymous vma should be irrelevant
3221 * until its first write fault, when page's anon_vma and index
3222 * are set. But now set the vm_pgoff it will almost certainly
3223 * end up with (unless mremap moves it elsewhere before that
3224 * first wfault), so /proc/pid/maps tells a consistent story.
3225 *
3226 * By setting it to reflect the virtual start address of the
3227 * vma, merges and splits can happen in a seamless way, just
3228 * using the existing file pgoff checks and manipulations.
3229 * Similarly in do_mmap_pgoff and in do_brk.
3230 */
3231 if (vma_is_anonymous(vma)) {
3232 BUG_ON(vma->anon_vma);
3233 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3234 }
3235
3236 vma_link(mm, vma, prev, rb_link, rb_parent);
3237 return 0;
3238 }
3239
3240 /*
3241 * Copy the vma structure to a new location in the same mm,
3242 * prior to moving page table entries, to effect an mremap move.
3243 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3244 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3245 unsigned long addr, unsigned long len, pgoff_t pgoff,
3246 bool *need_rmap_locks)
3247 {
3248 struct vm_area_struct *vma = *vmap;
3249 unsigned long vma_start = vma->vm_start;
3250 struct mm_struct *mm = vma->vm_mm;
3251 struct vm_area_struct *new_vma, *prev;
3252 struct rb_node **rb_link, *rb_parent;
3253 bool faulted_in_anon_vma = true;
3254
3255 /*
3256 * If anonymous vma has not yet been faulted, update new pgoff
3257 * to match new location, to increase its chance of merging.
3258 */
3259 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3260 pgoff = addr >> PAGE_SHIFT;
3261 faulted_in_anon_vma = false;
3262 }
3263
3264 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3265 return NULL; /* should never get here */
3266 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3267 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3268 vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
3269 if (new_vma) {
3270 /*
3271 * Source vma may have been merged into new_vma
3272 */
3273 if (unlikely(vma_start >= new_vma->vm_start &&
3274 vma_start < new_vma->vm_end)) {
3275 /*
3276 * The only way we can get a vma_merge with
3277 * self during an mremap is if the vma hasn't
3278 * been faulted in yet and we were allowed to
3279 * reset the dst vma->vm_pgoff to the
3280 * destination address of the mremap to allow
3281 * the merge to happen. mremap must change the
3282 * vm_pgoff linearity between src and dst vmas
3283 * (in turn preventing a vma_merge) to be
3284 * safe. It is only safe to keep the vm_pgoff
3285 * linear if there are no pages mapped yet.
3286 */
3287 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3288 *vmap = vma = new_vma;
3289 }
3290 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3291 } else {
3292 new_vma = vm_area_dup(vma);
3293 if (!new_vma)
3294 goto out;
3295 new_vma->vm_start = addr;
3296 new_vma->vm_end = addr + len;
3297 new_vma->vm_pgoff = pgoff;
3298 if (vma_dup_policy(vma, new_vma))
3299 goto out_free_vma;
3300 if (anon_vma_clone(new_vma, vma))
3301 goto out_free_mempol;
3302 if (new_vma->vm_file)
3303 get_file(new_vma->vm_file);
3304 if (new_vma->vm_ops && new_vma->vm_ops->open)
3305 new_vma->vm_ops->open(new_vma);
3306 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3307 *need_rmap_locks = false;
3308 }
3309 return new_vma;
3310
3311 out_free_mempol:
3312 mpol_put(vma_policy(new_vma));
3313 out_free_vma:
3314 vm_area_free(new_vma);
3315 out:
3316 return NULL;
3317 }
3318
3319 /*
3320 * Return true if the calling process may expand its vm space by the passed
3321 * number of pages
3322 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3323 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3324 {
3325 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3326 return false;
3327
3328 if (is_data_mapping(flags) &&
3329 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3330 /* Workaround for Valgrind */
3331 if (rlimit(RLIMIT_DATA) == 0 &&
3332 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3333 return true;
3334
3335 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3336 current->comm, current->pid,
3337 (mm->data_vm + npages) << PAGE_SHIFT,
3338 rlimit(RLIMIT_DATA),
3339 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3340
3341 if (!ignore_rlimit_data)
3342 return false;
3343 }
3344
3345 return true;
3346 }
3347
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3348 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3349 {
3350 mm->total_vm += npages;
3351
3352 if (is_exec_mapping(flags))
3353 mm->exec_vm += npages;
3354 else if (is_stack_mapping(flags))
3355 mm->stack_vm += npages;
3356 else if (is_data_mapping(flags))
3357 mm->data_vm += npages;
3358 }
3359
3360 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3361
3362 /*
3363 * Having a close hook prevents vma merging regardless of flags.
3364 */
special_mapping_close(struct vm_area_struct * vma)3365 static void special_mapping_close(struct vm_area_struct *vma)
3366 {
3367 }
3368
special_mapping_name(struct vm_area_struct * vma)3369 static const char *special_mapping_name(struct vm_area_struct *vma)
3370 {
3371 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3372 }
3373
special_mapping_mremap(struct vm_area_struct * new_vma)3374 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3375 {
3376 struct vm_special_mapping *sm = new_vma->vm_private_data;
3377
3378 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3379 return -EFAULT;
3380
3381 if (sm->mremap)
3382 return sm->mremap(sm, new_vma);
3383
3384 return 0;
3385 }
3386
3387 static const struct vm_operations_struct special_mapping_vmops = {
3388 .close = special_mapping_close,
3389 .fault = special_mapping_fault,
3390 .mremap = special_mapping_mremap,
3391 .name = special_mapping_name,
3392 };
3393
3394 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3395 .close = special_mapping_close,
3396 .fault = special_mapping_fault,
3397 };
3398
special_mapping_fault(struct vm_fault * vmf)3399 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3400 {
3401 struct vm_area_struct *vma = vmf->vma;
3402 pgoff_t pgoff;
3403 struct page **pages;
3404
3405 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3406 pages = vma->vm_private_data;
3407 } else {
3408 struct vm_special_mapping *sm = vma->vm_private_data;
3409
3410 if (sm->fault)
3411 return sm->fault(sm, vmf->vma, vmf);
3412
3413 pages = sm->pages;
3414 }
3415
3416 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3417 pgoff--;
3418
3419 if (*pages) {
3420 struct page *page = *pages;
3421 get_page(page);
3422 vmf->page = page;
3423 return 0;
3424 }
3425
3426 return VM_FAULT_SIGBUS;
3427 }
3428
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3429 static struct vm_area_struct *__install_special_mapping(
3430 struct mm_struct *mm,
3431 unsigned long addr, unsigned long len,
3432 unsigned long vm_flags, void *priv,
3433 const struct vm_operations_struct *ops)
3434 {
3435 int ret;
3436 struct vm_area_struct *vma;
3437
3438 vma = vm_area_alloc(mm);
3439 if (unlikely(vma == NULL))
3440 return ERR_PTR(-ENOMEM);
3441
3442 vma->vm_start = addr;
3443 vma->vm_end = addr + len;
3444
3445 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3446 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3447
3448 vma->vm_ops = ops;
3449 vma->vm_private_data = priv;
3450
3451 ret = insert_vm_struct(mm, vma);
3452 if (ret)
3453 goto out;
3454
3455 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3456
3457 perf_event_mmap(vma);
3458
3459 return vma;
3460
3461 out:
3462 vm_area_free(vma);
3463 return ERR_PTR(ret);
3464 }
3465
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3466 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3467 const struct vm_special_mapping *sm)
3468 {
3469 return vma->vm_private_data == sm &&
3470 (vma->vm_ops == &special_mapping_vmops ||
3471 vma->vm_ops == &legacy_special_mapping_vmops);
3472 }
3473
3474 /*
3475 * Called with mm->mmap_sem held for writing.
3476 * Insert a new vma covering the given region, with the given flags.
3477 * Its pages are supplied by the given array of struct page *.
3478 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3479 * The region past the last page supplied will always produce SIGBUS.
3480 * The array pointer and the pages it points to are assumed to stay alive
3481 * for as long as this mapping might exist.
3482 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3483 struct vm_area_struct *_install_special_mapping(
3484 struct mm_struct *mm,
3485 unsigned long addr, unsigned long len,
3486 unsigned long vm_flags, const struct vm_special_mapping *spec)
3487 {
3488 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3489 &special_mapping_vmops);
3490 }
3491
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3492 int install_special_mapping(struct mm_struct *mm,
3493 unsigned long addr, unsigned long len,
3494 unsigned long vm_flags, struct page **pages)
3495 {
3496 struct vm_area_struct *vma = __install_special_mapping(
3497 mm, addr, len, vm_flags, (void *)pages,
3498 &legacy_special_mapping_vmops);
3499
3500 return PTR_ERR_OR_ZERO(vma);
3501 }
3502
3503 static DEFINE_MUTEX(mm_all_locks_mutex);
3504
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3505 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3506 {
3507 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3508 /*
3509 * The LSB of head.next can't change from under us
3510 * because we hold the mm_all_locks_mutex.
3511 */
3512 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3513 /*
3514 * We can safely modify head.next after taking the
3515 * anon_vma->root->rwsem. If some other vma in this mm shares
3516 * the same anon_vma we won't take it again.
3517 *
3518 * No need of atomic instructions here, head.next
3519 * can't change from under us thanks to the
3520 * anon_vma->root->rwsem.
3521 */
3522 if (__test_and_set_bit(0, (unsigned long *)
3523 &anon_vma->root->rb_root.rb_root.rb_node))
3524 BUG();
3525 }
3526 }
3527
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3528 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3529 {
3530 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3531 /*
3532 * AS_MM_ALL_LOCKS can't change from under us because
3533 * we hold the mm_all_locks_mutex.
3534 *
3535 * Operations on ->flags have to be atomic because
3536 * even if AS_MM_ALL_LOCKS is stable thanks to the
3537 * mm_all_locks_mutex, there may be other cpus
3538 * changing other bitflags in parallel to us.
3539 */
3540 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3541 BUG();
3542 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3543 }
3544 }
3545
3546 /*
3547 * This operation locks against the VM for all pte/vma/mm related
3548 * operations that could ever happen on a certain mm. This includes
3549 * vmtruncate, try_to_unmap, and all page faults.
3550 *
3551 * The caller must take the mmap_sem in write mode before calling
3552 * mm_take_all_locks(). The caller isn't allowed to release the
3553 * mmap_sem until mm_drop_all_locks() returns.
3554 *
3555 * mmap_sem in write mode is required in order to block all operations
3556 * that could modify pagetables and free pages without need of
3557 * altering the vma layout. It's also needed in write mode to avoid new
3558 * anon_vmas to be associated with existing vmas.
3559 *
3560 * A single task can't take more than one mm_take_all_locks() in a row
3561 * or it would deadlock.
3562 *
3563 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3564 * mapping->flags avoid to take the same lock twice, if more than one
3565 * vma in this mm is backed by the same anon_vma or address_space.
3566 *
3567 * We take locks in following order, accordingly to comment at beginning
3568 * of mm/rmap.c:
3569 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3570 * hugetlb mapping);
3571 * - all i_mmap_rwsem locks;
3572 * - all anon_vma->rwseml
3573 *
3574 * We can take all locks within these types randomly because the VM code
3575 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3576 * mm_all_locks_mutex.
3577 *
3578 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3579 * that may have to take thousand of locks.
3580 *
3581 * mm_take_all_locks() can fail if it's interrupted by signals.
3582 */
mm_take_all_locks(struct mm_struct * mm)3583 int mm_take_all_locks(struct mm_struct *mm)
3584 {
3585 struct vm_area_struct *vma;
3586 struct anon_vma_chain *avc;
3587
3588 BUG_ON(down_read_trylock(&mm->mmap_sem));
3589
3590 mutex_lock(&mm_all_locks_mutex);
3591
3592 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3593 if (signal_pending(current))
3594 goto out_unlock;
3595 if (vma->vm_file && vma->vm_file->f_mapping &&
3596 is_vm_hugetlb_page(vma))
3597 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3598 }
3599
3600 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3601 if (signal_pending(current))
3602 goto out_unlock;
3603 if (vma->vm_file && vma->vm_file->f_mapping &&
3604 !is_vm_hugetlb_page(vma))
3605 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3606 }
3607
3608 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3609 if (signal_pending(current))
3610 goto out_unlock;
3611 if (vma->anon_vma)
3612 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3613 vm_lock_anon_vma(mm, avc->anon_vma);
3614 }
3615
3616 return 0;
3617
3618 out_unlock:
3619 mm_drop_all_locks(mm);
3620 return -EINTR;
3621 }
3622
vm_unlock_anon_vma(struct anon_vma * anon_vma)3623 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3624 {
3625 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3626 /*
3627 * The LSB of head.next can't change to 0 from under
3628 * us because we hold the mm_all_locks_mutex.
3629 *
3630 * We must however clear the bitflag before unlocking
3631 * the vma so the users using the anon_vma->rb_root will
3632 * never see our bitflag.
3633 *
3634 * No need of atomic instructions here, head.next
3635 * can't change from under us until we release the
3636 * anon_vma->root->rwsem.
3637 */
3638 if (!__test_and_clear_bit(0, (unsigned long *)
3639 &anon_vma->root->rb_root.rb_root.rb_node))
3640 BUG();
3641 anon_vma_unlock_write(anon_vma);
3642 }
3643 }
3644
vm_unlock_mapping(struct address_space * mapping)3645 static void vm_unlock_mapping(struct address_space *mapping)
3646 {
3647 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3648 /*
3649 * AS_MM_ALL_LOCKS can't change to 0 from under us
3650 * because we hold the mm_all_locks_mutex.
3651 */
3652 i_mmap_unlock_write(mapping);
3653 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3654 &mapping->flags))
3655 BUG();
3656 }
3657 }
3658
3659 /*
3660 * The mmap_sem cannot be released by the caller until
3661 * mm_drop_all_locks() returns.
3662 */
mm_drop_all_locks(struct mm_struct * mm)3663 void mm_drop_all_locks(struct mm_struct *mm)
3664 {
3665 struct vm_area_struct *vma;
3666 struct anon_vma_chain *avc;
3667
3668 BUG_ON(down_read_trylock(&mm->mmap_sem));
3669 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3670
3671 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3672 if (vma->anon_vma)
3673 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3674 vm_unlock_anon_vma(avc->anon_vma);
3675 if (vma->vm_file && vma->vm_file->f_mapping)
3676 vm_unlock_mapping(vma->vm_file->f_mapping);
3677 }
3678
3679 mutex_unlock(&mm_all_locks_mutex);
3680 }
3681
3682 /*
3683 * initialise the percpu counter for VM
3684 */
mmap_init(void)3685 void __init mmap_init(void)
3686 {
3687 int ret;
3688
3689 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3690 VM_BUG_ON(ret);
3691 }
3692
3693 /*
3694 * Initialise sysctl_user_reserve_kbytes.
3695 *
3696 * This is intended to prevent a user from starting a single memory hogging
3697 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3698 * mode.
3699 *
3700 * The default value is min(3% of free memory, 128MB)
3701 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3702 */
init_user_reserve(void)3703 static int init_user_reserve(void)
3704 {
3705 unsigned long free_kbytes;
3706
3707 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3708
3709 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3710 return 0;
3711 }
3712 subsys_initcall(init_user_reserve);
3713
3714 /*
3715 * Initialise sysctl_admin_reserve_kbytes.
3716 *
3717 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3718 * to log in and kill a memory hogging process.
3719 *
3720 * Systems with more than 256MB will reserve 8MB, enough to recover
3721 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3722 * only reserve 3% of free pages by default.
3723 */
init_admin_reserve(void)3724 static int init_admin_reserve(void)
3725 {
3726 unsigned long free_kbytes;
3727
3728 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3729
3730 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3731 return 0;
3732 }
3733 subsys_initcall(init_admin_reserve);
3734
3735 /*
3736 * Reinititalise user and admin reserves if memory is added or removed.
3737 *
3738 * The default user reserve max is 128MB, and the default max for the
3739 * admin reserve is 8MB. These are usually, but not always, enough to
3740 * enable recovery from a memory hogging process using login/sshd, a shell,
3741 * and tools like top. It may make sense to increase or even disable the
3742 * reserve depending on the existence of swap or variations in the recovery
3743 * tools. So, the admin may have changed them.
3744 *
3745 * If memory is added and the reserves have been eliminated or increased above
3746 * the default max, then we'll trust the admin.
3747 *
3748 * If memory is removed and there isn't enough free memory, then we
3749 * need to reset the reserves.
3750 *
3751 * Otherwise keep the reserve set by the admin.
3752 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3753 static int reserve_mem_notifier(struct notifier_block *nb,
3754 unsigned long action, void *data)
3755 {
3756 unsigned long tmp, free_kbytes;
3757
3758 switch (action) {
3759 case MEM_ONLINE:
3760 /* Default max is 128MB. Leave alone if modified by operator. */
3761 tmp = sysctl_user_reserve_kbytes;
3762 if (0 < tmp && tmp < (1UL << 17))
3763 init_user_reserve();
3764
3765 /* Default max is 8MB. Leave alone if modified by operator. */
3766 tmp = sysctl_admin_reserve_kbytes;
3767 if (0 < tmp && tmp < (1UL << 13))
3768 init_admin_reserve();
3769
3770 break;
3771 case MEM_OFFLINE:
3772 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3773
3774 if (sysctl_user_reserve_kbytes > free_kbytes) {
3775 init_user_reserve();
3776 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3777 sysctl_user_reserve_kbytes);
3778 }
3779
3780 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3781 init_admin_reserve();
3782 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3783 sysctl_admin_reserve_kbytes);
3784 }
3785 break;
3786 default:
3787 break;
3788 }
3789 return NOTIFY_OK;
3790 }
3791
3792 static struct notifier_block reserve_mem_nb = {
3793 .notifier_call = reserve_mem_notifier,
3794 };
3795
init_reserve_notifier(void)3796 static int __meminit init_reserve_notifier(void)
3797 {
3798 if (register_hotmemory_notifier(&reserve_mem_nb))
3799 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3800
3801 return 0;
3802 }
3803 subsys_initcall(init_reserve_notifier);
3804