1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Copyright (C) 2002 Richard Henderson
4 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5
6 */
7 #include <linux/export.h>
8 #include <linux/extable.h>
9 #include <linux/moduleloader.h>
10 #include <linux/module_signature.h>
11 #include <linux/trace_events.h>
12 #include <linux/init.h>
13 #include <linux/kallsyms.h>
14 #include <linux/file.h>
15 #include <linux/fs.h>
16 #include <linux/sysfs.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/elf.h>
21 #include <linux/proc_fs.h>
22 #include <linux/security.h>
23 #include <linux/seq_file.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/rcupdate.h>
27 #include <linux/capability.h>
28 #include <linux/cpu.h>
29 #include <linux/moduleparam.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/vermagic.h>
33 #include <linux/notifier.h>
34 #include <linux/sched.h>
35 #include <linux/device.h>
36 #include <linux/string.h>
37 #include <linux/mutex.h>
38 #include <linux/rculist.h>
39 #include <linux/uaccess.h>
40 #include <asm/cacheflush.h>
41 #include <linux/set_memory.h>
42 #include <asm/mmu_context.h>
43 #include <linux/license.h>
44 #include <asm/sections.h>
45 #include <linux/tracepoint.h>
46 #include <linux/ftrace.h>
47 #include <linux/livepatch.h>
48 #include <linux/async.h>
49 #include <linux/percpu.h>
50 #include <linux/kmemleak.h>
51 #include <linux/jump_label.h>
52 #include <linux/pfn.h>
53 #include <linux/bsearch.h>
54 #include <linux/dynamic_debug.h>
55 #include <linux/audit.h>
56 #include <uapi/linux/module.h>
57 #include "module-internal.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/module.h>
61
62 #ifndef ARCH_SHF_SMALL
63 #define ARCH_SHF_SMALL 0
64 #endif
65
66 /*
67 * Modules' sections will be aligned on page boundaries
68 * to ensure complete separation of code and data, but
69 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
70 */
71 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
72 # define debug_align(X) ALIGN(X, PAGE_SIZE)
73 #else
74 # define debug_align(X) (X)
75 #endif
76
77 /* If this is set, the section belongs in the init part of the module */
78 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
79
80 /*
81 * Mutex protects:
82 * 1) List of modules (also safely readable with preempt_disable),
83 * 2) module_use links,
84 * 3) module_addr_min/module_addr_max.
85 * (delete and add uses RCU list operations). */
86 DEFINE_MUTEX(module_mutex);
87 EXPORT_SYMBOL_GPL(module_mutex);
88 static LIST_HEAD(modules);
89
90 /* Work queue for freeing init sections in success case */
91 static void do_free_init(struct work_struct *w);
92 static DECLARE_WORK(init_free_wq, do_free_init);
93 static LLIST_HEAD(init_free_list);
94
95 #ifdef CONFIG_MODULES_TREE_LOOKUP
96
97 /*
98 * Use a latched RB-tree for __module_address(); this allows us to use
99 * RCU-sched lookups of the address from any context.
100 *
101 * This is conditional on PERF_EVENTS || TRACING because those can really hit
102 * __module_address() hard by doing a lot of stack unwinding; potentially from
103 * NMI context.
104 */
105
__mod_tree_val(struct latch_tree_node * n)106 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
107 {
108 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
109
110 return (unsigned long)layout->base;
111 }
112
__mod_tree_size(struct latch_tree_node * n)113 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
114 {
115 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
116
117 return (unsigned long)layout->size;
118 }
119
120 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)121 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
122 {
123 return __mod_tree_val(a) < __mod_tree_val(b);
124 }
125
126 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)127 mod_tree_comp(void *key, struct latch_tree_node *n)
128 {
129 unsigned long val = (unsigned long)key;
130 unsigned long start, end;
131
132 start = __mod_tree_val(n);
133 if (val < start)
134 return -1;
135
136 end = start + __mod_tree_size(n);
137 if (val >= end)
138 return 1;
139
140 return 0;
141 }
142
143 static const struct latch_tree_ops mod_tree_ops = {
144 .less = mod_tree_less,
145 .comp = mod_tree_comp,
146 };
147
148 static struct mod_tree_root {
149 struct latch_tree_root root;
150 unsigned long addr_min;
151 unsigned long addr_max;
152 } mod_tree __cacheline_aligned = {
153 .addr_min = -1UL,
154 };
155
156 #define module_addr_min mod_tree.addr_min
157 #define module_addr_max mod_tree.addr_max
158
__mod_tree_insert(struct mod_tree_node * node)159 static noinline void __mod_tree_insert(struct mod_tree_node *node)
160 {
161 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
162 }
163
__mod_tree_remove(struct mod_tree_node * node)164 static void __mod_tree_remove(struct mod_tree_node *node)
165 {
166 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
167 }
168
169 /*
170 * These modifications: insert, remove_init and remove; are serialized by the
171 * module_mutex.
172 */
mod_tree_insert(struct module * mod)173 static void mod_tree_insert(struct module *mod)
174 {
175 mod->core_layout.mtn.mod = mod;
176 mod->init_layout.mtn.mod = mod;
177
178 __mod_tree_insert(&mod->core_layout.mtn);
179 if (mod->init_layout.size)
180 __mod_tree_insert(&mod->init_layout.mtn);
181 }
182
mod_tree_remove_init(struct module * mod)183 static void mod_tree_remove_init(struct module *mod)
184 {
185 if (mod->init_layout.size)
186 __mod_tree_remove(&mod->init_layout.mtn);
187 }
188
mod_tree_remove(struct module * mod)189 static void mod_tree_remove(struct module *mod)
190 {
191 __mod_tree_remove(&mod->core_layout.mtn);
192 mod_tree_remove_init(mod);
193 }
194
mod_find(unsigned long addr)195 static struct module *mod_find(unsigned long addr)
196 {
197 struct latch_tree_node *ltn;
198
199 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
200 if (!ltn)
201 return NULL;
202
203 return container_of(ltn, struct mod_tree_node, node)->mod;
204 }
205
206 #else /* MODULES_TREE_LOOKUP */
207
208 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
209
mod_tree_insert(struct module * mod)210 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)211 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)212 static void mod_tree_remove(struct module *mod) { }
213
mod_find(unsigned long addr)214 static struct module *mod_find(unsigned long addr)
215 {
216 struct module *mod;
217
218 list_for_each_entry_rcu(mod, &modules, list,
219 lockdep_is_held(&module_mutex)) {
220 if (within_module(addr, mod))
221 return mod;
222 }
223
224 return NULL;
225 }
226
227 #endif /* MODULES_TREE_LOOKUP */
228
229 /*
230 * Bounds of module text, for speeding up __module_address.
231 * Protected by module_mutex.
232 */
__mod_update_bounds(void * base,unsigned int size)233 static void __mod_update_bounds(void *base, unsigned int size)
234 {
235 unsigned long min = (unsigned long)base;
236 unsigned long max = min + size;
237
238 if (min < module_addr_min)
239 module_addr_min = min;
240 if (max > module_addr_max)
241 module_addr_max = max;
242 }
243
mod_update_bounds(struct module * mod)244 static void mod_update_bounds(struct module *mod)
245 {
246 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
247 if (mod->init_layout.size)
248 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
249 }
250
251 #ifdef CONFIG_KGDB_KDB
252 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
253 #endif /* CONFIG_KGDB_KDB */
254
module_assert_mutex(void)255 static void module_assert_mutex(void)
256 {
257 lockdep_assert_held(&module_mutex);
258 }
259
module_assert_mutex_or_preempt(void)260 static void module_assert_mutex_or_preempt(void)
261 {
262 #ifdef CONFIG_LOCKDEP
263 if (unlikely(!debug_locks))
264 return;
265
266 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
267 !lockdep_is_held(&module_mutex));
268 #endif
269 }
270
271 #ifdef CONFIG_MODULE_SIG
272 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
273 module_param(sig_enforce, bool_enable_only, 0644);
274
set_module_sig_enforced(void)275 void set_module_sig_enforced(void)
276 {
277 sig_enforce = true;
278 }
279 #else
280 #define sig_enforce false
281 #endif
282
283 /*
284 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
285 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
286 */
is_module_sig_enforced(void)287 bool is_module_sig_enforced(void)
288 {
289 return sig_enforce;
290 }
291 EXPORT_SYMBOL(is_module_sig_enforced);
292
293 /* Block module loading/unloading? */
294 int modules_disabled = 0;
295 core_param(nomodule, modules_disabled, bint, 0);
296
297 /* Waiting for a module to finish initializing? */
298 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
299
300 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
301
register_module_notifier(struct notifier_block * nb)302 int register_module_notifier(struct notifier_block *nb)
303 {
304 return blocking_notifier_chain_register(&module_notify_list, nb);
305 }
306 EXPORT_SYMBOL(register_module_notifier);
307
unregister_module_notifier(struct notifier_block * nb)308 int unregister_module_notifier(struct notifier_block *nb)
309 {
310 return blocking_notifier_chain_unregister(&module_notify_list, nb);
311 }
312 EXPORT_SYMBOL(unregister_module_notifier);
313
314 /*
315 * We require a truly strong try_module_get(): 0 means success.
316 * Otherwise an error is returned due to ongoing or failed
317 * initialization etc.
318 */
strong_try_module_get(struct module * mod)319 static inline int strong_try_module_get(struct module *mod)
320 {
321 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
322 if (mod && mod->state == MODULE_STATE_COMING)
323 return -EBUSY;
324 if (try_module_get(mod))
325 return 0;
326 else
327 return -ENOENT;
328 }
329
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)330 static inline void add_taint_module(struct module *mod, unsigned flag,
331 enum lockdep_ok lockdep_ok)
332 {
333 add_taint(flag, lockdep_ok);
334 set_bit(flag, &mod->taints);
335 }
336
337 /*
338 * A thread that wants to hold a reference to a module only while it
339 * is running can call this to safely exit. nfsd and lockd use this.
340 */
__module_put_and_exit(struct module * mod,long code)341 void __noreturn __module_put_and_exit(struct module *mod, long code)
342 {
343 module_put(mod);
344 do_exit(code);
345 }
346 EXPORT_SYMBOL(__module_put_and_exit);
347
348 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)349 static unsigned int find_sec(const struct load_info *info, const char *name)
350 {
351 unsigned int i;
352
353 for (i = 1; i < info->hdr->e_shnum; i++) {
354 Elf_Shdr *shdr = &info->sechdrs[i];
355 /* Alloc bit cleared means "ignore it." */
356 if ((shdr->sh_flags & SHF_ALLOC)
357 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
358 return i;
359 }
360 return 0;
361 }
362
363 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)364 static void *section_addr(const struct load_info *info, const char *name)
365 {
366 /* Section 0 has sh_addr 0. */
367 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
368 }
369
370 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)371 static void *section_objs(const struct load_info *info,
372 const char *name,
373 size_t object_size,
374 unsigned int *num)
375 {
376 unsigned int sec = find_sec(info, name);
377
378 /* Section 0 has sh_addr 0 and sh_size 0. */
379 *num = info->sechdrs[sec].sh_size / object_size;
380 return (void *)info->sechdrs[sec].sh_addr;
381 }
382
383 /* Provided by the linker */
384 extern const struct kernel_symbol __start___ksymtab[];
385 extern const struct kernel_symbol __stop___ksymtab[];
386 extern const struct kernel_symbol __start___ksymtab_gpl[];
387 extern const struct kernel_symbol __stop___ksymtab_gpl[];
388 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
389 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
390 extern const s32 __start___kcrctab[];
391 extern const s32 __start___kcrctab_gpl[];
392 extern const s32 __start___kcrctab_gpl_future[];
393 #ifdef CONFIG_UNUSED_SYMBOLS
394 extern const struct kernel_symbol __start___ksymtab_unused[];
395 extern const struct kernel_symbol __stop___ksymtab_unused[];
396 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
397 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
398 extern const s32 __start___kcrctab_unused[];
399 extern const s32 __start___kcrctab_unused_gpl[];
400 #endif
401
402 #ifndef CONFIG_MODVERSIONS
403 #define symversion(base, idx) NULL
404 #else
405 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
406 #endif
407
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,void * data),void * data)408 static bool each_symbol_in_section(const struct symsearch *arr,
409 unsigned int arrsize,
410 struct module *owner,
411 bool (*fn)(const struct symsearch *syms,
412 struct module *owner,
413 void *data),
414 void *data)
415 {
416 unsigned int j;
417
418 for (j = 0; j < arrsize; j++) {
419 if (fn(&arr[j], owner, data))
420 return true;
421 }
422
423 return false;
424 }
425
426 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol_section(bool (* fn)(const struct symsearch * arr,struct module * owner,void * data),void * data)427 static bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
428 struct module *owner,
429 void *data),
430 void *data)
431 {
432 struct module *mod;
433 static const struct symsearch arr[] = {
434 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
435 NOT_GPL_ONLY, false },
436 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
437 __start___kcrctab_gpl,
438 GPL_ONLY, false },
439 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
440 __start___kcrctab_gpl_future,
441 WILL_BE_GPL_ONLY, false },
442 #ifdef CONFIG_UNUSED_SYMBOLS
443 { __start___ksymtab_unused, __stop___ksymtab_unused,
444 __start___kcrctab_unused,
445 NOT_GPL_ONLY, true },
446 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
447 __start___kcrctab_unused_gpl,
448 GPL_ONLY, true },
449 #endif
450 };
451
452 module_assert_mutex_or_preempt();
453
454 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
455 return true;
456
457 list_for_each_entry_rcu(mod, &modules, list,
458 lockdep_is_held(&module_mutex)) {
459 struct symsearch arr[] = {
460 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
461 NOT_GPL_ONLY, false },
462 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
463 mod->gpl_crcs,
464 GPL_ONLY, false },
465 { mod->gpl_future_syms,
466 mod->gpl_future_syms + mod->num_gpl_future_syms,
467 mod->gpl_future_crcs,
468 WILL_BE_GPL_ONLY, false },
469 #ifdef CONFIG_UNUSED_SYMBOLS
470 { mod->unused_syms,
471 mod->unused_syms + mod->num_unused_syms,
472 mod->unused_crcs,
473 NOT_GPL_ONLY, true },
474 { mod->unused_gpl_syms,
475 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
476 mod->unused_gpl_crcs,
477 GPL_ONLY, true },
478 #endif
479 };
480
481 if (mod->state == MODULE_STATE_UNFORMED)
482 continue;
483
484 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
485 return true;
486 }
487 return false;
488 }
489
490 struct find_symbol_arg {
491 /* Input */
492 const char *name;
493 bool gplok;
494 bool warn;
495
496 /* Output */
497 struct module *owner;
498 const s32 *crc;
499 const struct kernel_symbol *sym;
500 enum mod_license license;
501 };
502
check_exported_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)503 static bool check_exported_symbol(const struct symsearch *syms,
504 struct module *owner,
505 unsigned int symnum, void *data)
506 {
507 struct find_symbol_arg *fsa = data;
508
509 if (!fsa->gplok) {
510 if (syms->license == GPL_ONLY)
511 return false;
512 if (syms->license == WILL_BE_GPL_ONLY && fsa->warn) {
513 pr_warn("Symbol %s is being used by a non-GPL module, "
514 "which will not be allowed in the future\n",
515 fsa->name);
516 }
517 }
518
519 #ifdef CONFIG_UNUSED_SYMBOLS
520 if (syms->unused && fsa->warn) {
521 pr_warn("Symbol %s is marked as UNUSED, however this module is "
522 "using it.\n", fsa->name);
523 pr_warn("This symbol will go away in the future.\n");
524 pr_warn("Please evaluate if this is the right api to use and "
525 "if it really is, submit a report to the linux kernel "
526 "mailing list together with submitting your code for "
527 "inclusion.\n");
528 }
529 #endif
530
531 fsa->owner = owner;
532 fsa->crc = symversion(syms->crcs, symnum);
533 fsa->sym = &syms->start[symnum];
534 fsa->license = syms->license;
535 return true;
536 }
537
kernel_symbol_value(const struct kernel_symbol * sym)538 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
539 {
540 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
541 return (unsigned long)offset_to_ptr(&sym->value_offset);
542 #else
543 return sym->value;
544 #endif
545 }
546
kernel_symbol_name(const struct kernel_symbol * sym)547 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
548 {
549 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
550 return offset_to_ptr(&sym->name_offset);
551 #else
552 return sym->name;
553 #endif
554 }
555
kernel_symbol_namespace(const struct kernel_symbol * sym)556 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
557 {
558 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
559 if (!sym->namespace_offset)
560 return NULL;
561 return offset_to_ptr(&sym->namespace_offset);
562 #else
563 return sym->namespace;
564 #endif
565 }
566
cmp_name(const void * name,const void * sym)567 static int cmp_name(const void *name, const void *sym)
568 {
569 return strcmp(name, kernel_symbol_name(sym));
570 }
571
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)572 static bool find_exported_symbol_in_section(const struct symsearch *syms,
573 struct module *owner,
574 void *data)
575 {
576 struct find_symbol_arg *fsa = data;
577 struct kernel_symbol *sym;
578
579 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
580 sizeof(struct kernel_symbol), cmp_name);
581
582 if (sym != NULL && check_exported_symbol(syms, owner,
583 sym - syms->start, data))
584 return true;
585
586 return false;
587 }
588
589 /* Find an exported symbol and return it, along with, (optional) crc and
590 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const s32 ** crc,enum mod_license * license,bool gplok,bool warn)591 static const struct kernel_symbol *find_symbol(const char *name,
592 struct module **owner,
593 const s32 **crc,
594 enum mod_license *license,
595 bool gplok,
596 bool warn)
597 {
598 struct find_symbol_arg fsa;
599
600 fsa.name = name;
601 fsa.gplok = gplok;
602 fsa.warn = warn;
603
604 if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
605 if (owner)
606 *owner = fsa.owner;
607 if (crc)
608 *crc = fsa.crc;
609 if (license)
610 *license = fsa.license;
611 return fsa.sym;
612 }
613
614 pr_debug("Failed to find symbol %s\n", name);
615 return NULL;
616 }
617
618 /*
619 * Search for module by name: must hold module_mutex (or preempt disabled
620 * for read-only access).
621 */
find_module_all(const char * name,size_t len,bool even_unformed)622 static struct module *find_module_all(const char *name, size_t len,
623 bool even_unformed)
624 {
625 struct module *mod;
626
627 module_assert_mutex_or_preempt();
628
629 list_for_each_entry_rcu(mod, &modules, list,
630 lockdep_is_held(&module_mutex)) {
631 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
632 continue;
633 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
634 return mod;
635 }
636 return NULL;
637 }
638
find_module(const char * name)639 struct module *find_module(const char *name)
640 {
641 module_assert_mutex();
642 return find_module_all(name, strlen(name), false);
643 }
644 EXPORT_SYMBOL_GPL(find_module);
645
646 #ifdef CONFIG_SMP
647
mod_percpu(struct module * mod)648 static inline void __percpu *mod_percpu(struct module *mod)
649 {
650 return mod->percpu;
651 }
652
percpu_modalloc(struct module * mod,struct load_info * info)653 static int percpu_modalloc(struct module *mod, struct load_info *info)
654 {
655 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
656 unsigned long align = pcpusec->sh_addralign;
657
658 if (!pcpusec->sh_size)
659 return 0;
660
661 if (align > PAGE_SIZE) {
662 pr_warn("%s: per-cpu alignment %li > %li\n",
663 mod->name, align, PAGE_SIZE);
664 align = PAGE_SIZE;
665 }
666
667 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
668 if (!mod->percpu) {
669 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
670 mod->name, (unsigned long)pcpusec->sh_size);
671 return -ENOMEM;
672 }
673 mod->percpu_size = pcpusec->sh_size;
674 return 0;
675 }
676
percpu_modfree(struct module * mod)677 static void percpu_modfree(struct module *mod)
678 {
679 free_percpu(mod->percpu);
680 }
681
find_pcpusec(struct load_info * info)682 static unsigned int find_pcpusec(struct load_info *info)
683 {
684 return find_sec(info, ".data..percpu");
685 }
686
percpu_modcopy(struct module * mod,const void * from,unsigned long size)687 static void percpu_modcopy(struct module *mod,
688 const void *from, unsigned long size)
689 {
690 int cpu;
691
692 for_each_possible_cpu(cpu)
693 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
694 }
695
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)696 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
697 {
698 struct module *mod;
699 unsigned int cpu;
700
701 preempt_disable();
702
703 list_for_each_entry_rcu(mod, &modules, list) {
704 if (mod->state == MODULE_STATE_UNFORMED)
705 continue;
706 if (!mod->percpu_size)
707 continue;
708 for_each_possible_cpu(cpu) {
709 void *start = per_cpu_ptr(mod->percpu, cpu);
710 void *va = (void *)addr;
711
712 if (va >= start && va < start + mod->percpu_size) {
713 if (can_addr) {
714 *can_addr = (unsigned long) (va - start);
715 *can_addr += (unsigned long)
716 per_cpu_ptr(mod->percpu,
717 get_boot_cpu_id());
718 }
719 preempt_enable();
720 return true;
721 }
722 }
723 }
724
725 preempt_enable();
726 return false;
727 }
728
729 /**
730 * is_module_percpu_address - test whether address is from module static percpu
731 * @addr: address to test
732 *
733 * Test whether @addr belongs to module static percpu area.
734 *
735 * RETURNS:
736 * %true if @addr is from module static percpu area
737 */
is_module_percpu_address(unsigned long addr)738 bool is_module_percpu_address(unsigned long addr)
739 {
740 return __is_module_percpu_address(addr, NULL);
741 }
742
743 #else /* ... !CONFIG_SMP */
744
mod_percpu(struct module * mod)745 static inline void __percpu *mod_percpu(struct module *mod)
746 {
747 return NULL;
748 }
percpu_modalloc(struct module * mod,struct load_info * info)749 static int percpu_modalloc(struct module *mod, struct load_info *info)
750 {
751 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
752 if (info->sechdrs[info->index.pcpu].sh_size != 0)
753 return -ENOMEM;
754 return 0;
755 }
percpu_modfree(struct module * mod)756 static inline void percpu_modfree(struct module *mod)
757 {
758 }
find_pcpusec(struct load_info * info)759 static unsigned int find_pcpusec(struct load_info *info)
760 {
761 return 0;
762 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)763 static inline void percpu_modcopy(struct module *mod,
764 const void *from, unsigned long size)
765 {
766 /* pcpusec should be 0, and size of that section should be 0. */
767 BUG_ON(size != 0);
768 }
is_module_percpu_address(unsigned long addr)769 bool is_module_percpu_address(unsigned long addr)
770 {
771 return false;
772 }
773
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)774 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
775 {
776 return false;
777 }
778
779 #endif /* CONFIG_SMP */
780
781 #define MODINFO_ATTR(field) \
782 static void setup_modinfo_##field(struct module *mod, const char *s) \
783 { \
784 mod->field = kstrdup(s, GFP_KERNEL); \
785 } \
786 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
787 struct module_kobject *mk, char *buffer) \
788 { \
789 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
790 } \
791 static int modinfo_##field##_exists(struct module *mod) \
792 { \
793 return mod->field != NULL; \
794 } \
795 static void free_modinfo_##field(struct module *mod) \
796 { \
797 kfree(mod->field); \
798 mod->field = NULL; \
799 } \
800 static struct module_attribute modinfo_##field = { \
801 .attr = { .name = __stringify(field), .mode = 0444 }, \
802 .show = show_modinfo_##field, \
803 .setup = setup_modinfo_##field, \
804 .test = modinfo_##field##_exists, \
805 .free = free_modinfo_##field, \
806 };
807
808 MODINFO_ATTR(version);
809 MODINFO_ATTR(srcversion);
810
811 static char last_unloaded_module[MODULE_NAME_LEN+1];
812
813 #ifdef CONFIG_MODULE_UNLOAD
814
815 EXPORT_TRACEPOINT_SYMBOL(module_get);
816
817 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
818 #define MODULE_REF_BASE 1
819
820 /* Init the unload section of the module. */
module_unload_init(struct module * mod)821 static int module_unload_init(struct module *mod)
822 {
823 /*
824 * Initialize reference counter to MODULE_REF_BASE.
825 * refcnt == 0 means module is going.
826 */
827 atomic_set(&mod->refcnt, MODULE_REF_BASE);
828
829 INIT_LIST_HEAD(&mod->source_list);
830 INIT_LIST_HEAD(&mod->target_list);
831
832 /* Hold reference count during initialization. */
833 atomic_inc(&mod->refcnt);
834
835 return 0;
836 }
837
838 /* Does a already use b? */
already_uses(struct module * a,struct module * b)839 static int already_uses(struct module *a, struct module *b)
840 {
841 struct module_use *use;
842
843 list_for_each_entry(use, &b->source_list, source_list) {
844 if (use->source == a) {
845 pr_debug("%s uses %s!\n", a->name, b->name);
846 return 1;
847 }
848 }
849 pr_debug("%s does not use %s!\n", a->name, b->name);
850 return 0;
851 }
852
853 /*
854 * Module a uses b
855 * - we add 'a' as a "source", 'b' as a "target" of module use
856 * - the module_use is added to the list of 'b' sources (so
857 * 'b' can walk the list to see who sourced them), and of 'a'
858 * targets (so 'a' can see what modules it targets).
859 */
add_module_usage(struct module * a,struct module * b)860 static int add_module_usage(struct module *a, struct module *b)
861 {
862 struct module_use *use;
863
864 pr_debug("Allocating new usage for %s.\n", a->name);
865 use = kmalloc(sizeof(*use), GFP_ATOMIC);
866 if (!use)
867 return -ENOMEM;
868
869 use->source = a;
870 use->target = b;
871 list_add(&use->source_list, &b->source_list);
872 list_add(&use->target_list, &a->target_list);
873 return 0;
874 }
875
876 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)877 static int ref_module(struct module *a, struct module *b)
878 {
879 int err;
880
881 if (b == NULL || already_uses(a, b))
882 return 0;
883
884 /* If module isn't available, we fail. */
885 err = strong_try_module_get(b);
886 if (err)
887 return err;
888
889 err = add_module_usage(a, b);
890 if (err) {
891 module_put(b);
892 return err;
893 }
894 return 0;
895 }
896
897 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)898 static void module_unload_free(struct module *mod)
899 {
900 struct module_use *use, *tmp;
901
902 mutex_lock(&module_mutex);
903 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
904 struct module *i = use->target;
905 pr_debug("%s unusing %s\n", mod->name, i->name);
906 module_put(i);
907 list_del(&use->source_list);
908 list_del(&use->target_list);
909 kfree(use);
910 }
911 mutex_unlock(&module_mutex);
912 }
913
914 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)915 static inline int try_force_unload(unsigned int flags)
916 {
917 int ret = (flags & O_TRUNC);
918 if (ret)
919 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
920 return ret;
921 }
922 #else
try_force_unload(unsigned int flags)923 static inline int try_force_unload(unsigned int flags)
924 {
925 return 0;
926 }
927 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
928
929 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)930 static int try_release_module_ref(struct module *mod)
931 {
932 int ret;
933
934 /* Try to decrement refcnt which we set at loading */
935 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
936 BUG_ON(ret < 0);
937 if (ret)
938 /* Someone can put this right now, recover with checking */
939 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
940
941 return ret;
942 }
943
try_stop_module(struct module * mod,int flags,int * forced)944 static int try_stop_module(struct module *mod, int flags, int *forced)
945 {
946 /* If it's not unused, quit unless we're forcing. */
947 if (try_release_module_ref(mod) != 0) {
948 *forced = try_force_unload(flags);
949 if (!(*forced))
950 return -EWOULDBLOCK;
951 }
952
953 /* Mark it as dying. */
954 mod->state = MODULE_STATE_GOING;
955
956 return 0;
957 }
958
959 /**
960 * module_refcount - return the refcount or -1 if unloading
961 *
962 * @mod: the module we're checking
963 *
964 * Returns:
965 * -1 if the module is in the process of unloading
966 * otherwise the number of references in the kernel to the module
967 */
module_refcount(struct module * mod)968 int module_refcount(struct module *mod)
969 {
970 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
971 }
972 EXPORT_SYMBOL(module_refcount);
973
974 /* This exists whether we can unload or not */
975 static void free_module(struct module *mod);
976
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)977 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
978 unsigned int, flags)
979 {
980 struct module *mod;
981 char name[MODULE_NAME_LEN];
982 int ret, forced = 0;
983
984 if (!capable(CAP_SYS_MODULE) || modules_disabled)
985 return -EPERM;
986
987 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
988 return -EFAULT;
989 name[MODULE_NAME_LEN-1] = '\0';
990
991 audit_log_kern_module(name);
992
993 if (mutex_lock_interruptible(&module_mutex) != 0)
994 return -EINTR;
995
996 mod = find_module(name);
997 if (!mod) {
998 ret = -ENOENT;
999 goto out;
1000 }
1001
1002 if (!list_empty(&mod->source_list)) {
1003 /* Other modules depend on us: get rid of them first. */
1004 ret = -EWOULDBLOCK;
1005 goto out;
1006 }
1007
1008 /* Doing init or already dying? */
1009 if (mod->state != MODULE_STATE_LIVE) {
1010 /* FIXME: if (force), slam module count damn the torpedoes */
1011 pr_debug("%s already dying\n", mod->name);
1012 ret = -EBUSY;
1013 goto out;
1014 }
1015
1016 /* If it has an init func, it must have an exit func to unload */
1017 if (mod->init && !mod->exit) {
1018 forced = try_force_unload(flags);
1019 if (!forced) {
1020 /* This module can't be removed */
1021 ret = -EBUSY;
1022 goto out;
1023 }
1024 }
1025
1026 /* Stop the machine so refcounts can't move and disable module. */
1027 ret = try_stop_module(mod, flags, &forced);
1028 if (ret != 0)
1029 goto out;
1030
1031 mutex_unlock(&module_mutex);
1032 /* Final destruction now no one is using it. */
1033 if (mod->exit != NULL)
1034 mod->exit();
1035 blocking_notifier_call_chain(&module_notify_list,
1036 MODULE_STATE_GOING, mod);
1037 klp_module_going(mod);
1038 ftrace_release_mod(mod);
1039
1040 async_synchronize_full();
1041
1042 /* Store the name of the last unloaded module for diagnostic purposes */
1043 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1044
1045 free_module(mod);
1046 /* someone could wait for the module in add_unformed_module() */
1047 wake_up_all(&module_wq);
1048 return 0;
1049 out:
1050 mutex_unlock(&module_mutex);
1051 return ret;
1052 }
1053
print_unload_info(struct seq_file * m,struct module * mod)1054 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1055 {
1056 struct module_use *use;
1057 int printed_something = 0;
1058
1059 seq_printf(m, " %i ", module_refcount(mod));
1060
1061 /*
1062 * Always include a trailing , so userspace can differentiate
1063 * between this and the old multi-field proc format.
1064 */
1065 list_for_each_entry(use, &mod->source_list, source_list) {
1066 printed_something = 1;
1067 seq_printf(m, "%s,", use->source->name);
1068 }
1069
1070 if (mod->init != NULL && mod->exit == NULL) {
1071 printed_something = 1;
1072 seq_puts(m, "[permanent],");
1073 }
1074
1075 if (!printed_something)
1076 seq_puts(m, "-");
1077 }
1078
__symbol_put(const char * symbol)1079 void __symbol_put(const char *symbol)
1080 {
1081 struct module *owner;
1082
1083 preempt_disable();
1084 if (!find_symbol(symbol, &owner, NULL, NULL, true, false))
1085 BUG();
1086 module_put(owner);
1087 preempt_enable();
1088 }
1089
1090 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1091 void symbol_put_addr(void *addr)
1092 {
1093 struct module *modaddr;
1094 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1095
1096 if (core_kernel_text(a))
1097 return;
1098
1099 /*
1100 * Even though we hold a reference on the module; we still need to
1101 * disable preemption in order to safely traverse the data structure.
1102 */
1103 preempt_disable();
1104 modaddr = __module_text_address(a);
1105 BUG_ON(!modaddr);
1106 module_put(modaddr);
1107 preempt_enable();
1108 }
1109 EXPORT_SYMBOL_GPL(symbol_put_addr);
1110
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1111 static ssize_t show_refcnt(struct module_attribute *mattr,
1112 struct module_kobject *mk, char *buffer)
1113 {
1114 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1115 }
1116
1117 static struct module_attribute modinfo_refcnt =
1118 __ATTR(refcnt, 0444, show_refcnt, NULL);
1119
__module_get(struct module * module)1120 void __module_get(struct module *module)
1121 {
1122 if (module) {
1123 preempt_disable();
1124 atomic_inc(&module->refcnt);
1125 trace_module_get(module, _RET_IP_);
1126 preempt_enable();
1127 }
1128 }
1129 EXPORT_SYMBOL(__module_get);
1130
try_module_get(struct module * module)1131 bool try_module_get(struct module *module)
1132 {
1133 bool ret = true;
1134
1135 if (module) {
1136 preempt_disable();
1137 /* Note: here, we can fail to get a reference */
1138 if (likely(module_is_live(module) &&
1139 atomic_inc_not_zero(&module->refcnt) != 0))
1140 trace_module_get(module, _RET_IP_);
1141 else
1142 ret = false;
1143
1144 preempt_enable();
1145 }
1146 return ret;
1147 }
1148 EXPORT_SYMBOL(try_module_get);
1149
module_put(struct module * module)1150 void module_put(struct module *module)
1151 {
1152 int ret;
1153
1154 if (module) {
1155 preempt_disable();
1156 ret = atomic_dec_if_positive(&module->refcnt);
1157 WARN_ON(ret < 0); /* Failed to put refcount */
1158 trace_module_put(module, _RET_IP_);
1159 preempt_enable();
1160 }
1161 }
1162 EXPORT_SYMBOL(module_put);
1163
1164 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1165 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1166 {
1167 /* We don't know the usage count, or what modules are using. */
1168 seq_puts(m, " - -");
1169 }
1170
module_unload_free(struct module * mod)1171 static inline void module_unload_free(struct module *mod)
1172 {
1173 }
1174
ref_module(struct module * a,struct module * b)1175 static int ref_module(struct module *a, struct module *b)
1176 {
1177 return strong_try_module_get(b);
1178 }
1179
module_unload_init(struct module * mod)1180 static inline int module_unload_init(struct module *mod)
1181 {
1182 return 0;
1183 }
1184 #endif /* CONFIG_MODULE_UNLOAD */
1185
module_flags_taint(struct module * mod,char * buf)1186 static size_t module_flags_taint(struct module *mod, char *buf)
1187 {
1188 size_t l = 0;
1189 int i;
1190
1191 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1192 if (taint_flags[i].module && test_bit(i, &mod->taints))
1193 buf[l++] = taint_flags[i].c_true;
1194 }
1195
1196 return l;
1197 }
1198
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1199 static ssize_t show_initstate(struct module_attribute *mattr,
1200 struct module_kobject *mk, char *buffer)
1201 {
1202 const char *state = "unknown";
1203
1204 switch (mk->mod->state) {
1205 case MODULE_STATE_LIVE:
1206 state = "live";
1207 break;
1208 case MODULE_STATE_COMING:
1209 state = "coming";
1210 break;
1211 case MODULE_STATE_GOING:
1212 state = "going";
1213 break;
1214 default:
1215 BUG();
1216 }
1217 return sprintf(buffer, "%s\n", state);
1218 }
1219
1220 static struct module_attribute modinfo_initstate =
1221 __ATTR(initstate, 0444, show_initstate, NULL);
1222
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1223 static ssize_t store_uevent(struct module_attribute *mattr,
1224 struct module_kobject *mk,
1225 const char *buffer, size_t count)
1226 {
1227 int rc;
1228
1229 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1230 return rc ? rc : count;
1231 }
1232
1233 struct module_attribute module_uevent =
1234 __ATTR(uevent, 0200, NULL, store_uevent);
1235
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1236 static ssize_t show_coresize(struct module_attribute *mattr,
1237 struct module_kobject *mk, char *buffer)
1238 {
1239 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1240 }
1241
1242 static struct module_attribute modinfo_coresize =
1243 __ATTR(coresize, 0444, show_coresize, NULL);
1244
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1245 static ssize_t show_initsize(struct module_attribute *mattr,
1246 struct module_kobject *mk, char *buffer)
1247 {
1248 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1249 }
1250
1251 static struct module_attribute modinfo_initsize =
1252 __ATTR(initsize, 0444, show_initsize, NULL);
1253
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1254 static ssize_t show_taint(struct module_attribute *mattr,
1255 struct module_kobject *mk, char *buffer)
1256 {
1257 size_t l;
1258
1259 l = module_flags_taint(mk->mod, buffer);
1260 buffer[l++] = '\n';
1261 return l;
1262 }
1263
1264 static struct module_attribute modinfo_taint =
1265 __ATTR(taint, 0444, show_taint, NULL);
1266
1267 static struct module_attribute *modinfo_attrs[] = {
1268 &module_uevent,
1269 &modinfo_version,
1270 &modinfo_srcversion,
1271 &modinfo_initstate,
1272 &modinfo_coresize,
1273 &modinfo_initsize,
1274 &modinfo_taint,
1275 #ifdef CONFIG_MODULE_UNLOAD
1276 &modinfo_refcnt,
1277 #endif
1278 NULL,
1279 };
1280
1281 static const char vermagic[] = VERMAGIC_STRING;
1282
try_to_force_load(struct module * mod,const char * reason)1283 static int try_to_force_load(struct module *mod, const char *reason)
1284 {
1285 #ifdef CONFIG_MODULE_FORCE_LOAD
1286 if (!test_taint(TAINT_FORCED_MODULE))
1287 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1288 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1289 return 0;
1290 #else
1291 return -ENOEXEC;
1292 #endif
1293 }
1294
1295 #ifdef CONFIG_MODVERSIONS
1296
resolve_rel_crc(const s32 * crc)1297 static u32 resolve_rel_crc(const s32 *crc)
1298 {
1299 return *(u32 *)((void *)crc + *crc);
1300 }
1301
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1302 static int check_version(const struct load_info *info,
1303 const char *symname,
1304 struct module *mod,
1305 const s32 *crc)
1306 {
1307 Elf_Shdr *sechdrs = info->sechdrs;
1308 unsigned int versindex = info->index.vers;
1309 unsigned int i, num_versions;
1310 struct modversion_info *versions;
1311
1312 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1313 if (!crc)
1314 return 1;
1315
1316 /* No versions at all? modprobe --force does this. */
1317 if (versindex == 0)
1318 return try_to_force_load(mod, symname) == 0;
1319
1320 versions = (void *) sechdrs[versindex].sh_addr;
1321 num_versions = sechdrs[versindex].sh_size
1322 / sizeof(struct modversion_info);
1323
1324 for (i = 0; i < num_versions; i++) {
1325 u32 crcval;
1326
1327 if (strcmp(versions[i].name, symname) != 0)
1328 continue;
1329
1330 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1331 crcval = resolve_rel_crc(crc);
1332 else
1333 crcval = *crc;
1334 if (versions[i].crc == crcval)
1335 return 1;
1336 pr_debug("Found checksum %X vs module %lX\n",
1337 crcval, versions[i].crc);
1338 goto bad_version;
1339 }
1340
1341 /* Broken toolchain. Warn once, then let it go.. */
1342 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1343 return 1;
1344
1345 bad_version:
1346 pr_warn("%s: disagrees about version of symbol %s\n",
1347 info->name, symname);
1348 return 0;
1349 }
1350
check_modstruct_version(const struct load_info * info,struct module * mod)1351 static inline int check_modstruct_version(const struct load_info *info,
1352 struct module *mod)
1353 {
1354 const s32 *crc;
1355
1356 /*
1357 * Since this should be found in kernel (which can't be removed), no
1358 * locking is necessary -- use preempt_disable() to placate lockdep.
1359 */
1360 preempt_disable();
1361 if (!find_symbol("module_layout", NULL, &crc, NULL, true, false)) {
1362 preempt_enable();
1363 BUG();
1364 }
1365 preempt_enable();
1366 return check_version(info, "module_layout", mod, crc);
1367 }
1368
1369 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1370 static inline int same_magic(const char *amagic, const char *bmagic,
1371 bool has_crcs)
1372 {
1373 if (has_crcs) {
1374 amagic += strcspn(amagic, " ");
1375 bmagic += strcspn(bmagic, " ");
1376 }
1377 return strcmp(amagic, bmagic) == 0;
1378 }
1379 #else
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1380 static inline int check_version(const struct load_info *info,
1381 const char *symname,
1382 struct module *mod,
1383 const s32 *crc)
1384 {
1385 return 1;
1386 }
1387
check_modstruct_version(const struct load_info * info,struct module * mod)1388 static inline int check_modstruct_version(const struct load_info *info,
1389 struct module *mod)
1390 {
1391 return 1;
1392 }
1393
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1394 static inline int same_magic(const char *amagic, const char *bmagic,
1395 bool has_crcs)
1396 {
1397 return strcmp(amagic, bmagic) == 0;
1398 }
1399 #endif /* CONFIG_MODVERSIONS */
1400
1401 static char *get_modinfo(const struct load_info *info, const char *tag);
1402 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1403 char *prev);
1404
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1405 static int verify_namespace_is_imported(const struct load_info *info,
1406 const struct kernel_symbol *sym,
1407 struct module *mod)
1408 {
1409 const char *namespace;
1410 char *imported_namespace;
1411
1412 namespace = kernel_symbol_namespace(sym);
1413 if (namespace) {
1414 imported_namespace = get_modinfo(info, "import_ns");
1415 while (imported_namespace) {
1416 if (strcmp(namespace, imported_namespace) == 0)
1417 return 0;
1418 imported_namespace = get_next_modinfo(
1419 info, "import_ns", imported_namespace);
1420 }
1421 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1422 pr_warn(
1423 #else
1424 pr_err(
1425 #endif
1426 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1427 mod->name, kernel_symbol_name(sym), namespace);
1428 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1429 return -EINVAL;
1430 #endif
1431 }
1432 return 0;
1433 }
1434
inherit_taint(struct module * mod,struct module * owner)1435 static bool inherit_taint(struct module *mod, struct module *owner)
1436 {
1437 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1438 return true;
1439
1440 if (mod->using_gplonly_symbols) {
1441 pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1442 mod->name, owner->name);
1443 return false;
1444 }
1445
1446 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1447 pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1448 mod->name, owner->name);
1449 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1450 }
1451 return true;
1452 }
1453
1454 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1455 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1456 const struct load_info *info,
1457 const char *name,
1458 char ownername[])
1459 {
1460 struct module *owner;
1461 const struct kernel_symbol *sym;
1462 const s32 *crc;
1463 enum mod_license license;
1464 int err;
1465
1466 /*
1467 * The module_mutex should not be a heavily contended lock;
1468 * if we get the occasional sleep here, we'll go an extra iteration
1469 * in the wait_event_interruptible(), which is harmless.
1470 */
1471 sched_annotate_sleep();
1472 mutex_lock(&module_mutex);
1473 sym = find_symbol(name, &owner, &crc, &license,
1474 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1475 if (!sym)
1476 goto unlock;
1477
1478 if (license == GPL_ONLY)
1479 mod->using_gplonly_symbols = true;
1480
1481 if (!inherit_taint(mod, owner)) {
1482 sym = NULL;
1483 goto getname;
1484 }
1485
1486 if (!check_version(info, name, mod, crc)) {
1487 sym = ERR_PTR(-EINVAL);
1488 goto getname;
1489 }
1490
1491 err = verify_namespace_is_imported(info, sym, mod);
1492 if (err) {
1493 sym = ERR_PTR(err);
1494 goto getname;
1495 }
1496
1497 err = ref_module(mod, owner);
1498 if (err) {
1499 sym = ERR_PTR(err);
1500 goto getname;
1501 }
1502
1503 getname:
1504 /* We must make copy under the lock if we failed to get ref. */
1505 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1506 unlock:
1507 mutex_unlock(&module_mutex);
1508 return sym;
1509 }
1510
1511 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1512 resolve_symbol_wait(struct module *mod,
1513 const struct load_info *info,
1514 const char *name)
1515 {
1516 const struct kernel_symbol *ksym;
1517 char owner[MODULE_NAME_LEN];
1518
1519 if (wait_event_interruptible_timeout(module_wq,
1520 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1521 || PTR_ERR(ksym) != -EBUSY,
1522 30 * HZ) <= 0) {
1523 pr_warn("%s: gave up waiting for init of module %s.\n",
1524 mod->name, owner);
1525 }
1526 return ksym;
1527 }
1528
1529 /*
1530 * /sys/module/foo/sections stuff
1531 * J. Corbet <corbet@lwn.net>
1532 */
1533 #ifdef CONFIG_SYSFS
1534
1535 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1536 static inline bool sect_empty(const Elf_Shdr *sect)
1537 {
1538 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1539 }
1540
1541 struct module_sect_attr {
1542 struct bin_attribute battr;
1543 unsigned long address;
1544 };
1545
1546 struct module_sect_attrs {
1547 struct attribute_group grp;
1548 unsigned int nsections;
1549 struct module_sect_attr attrs[0];
1550 };
1551
1552 #define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
module_sect_read(struct file * file,struct kobject * kobj,struct bin_attribute * battr,char * buf,loff_t pos,size_t count)1553 static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1554 struct bin_attribute *battr,
1555 char *buf, loff_t pos, size_t count)
1556 {
1557 struct module_sect_attr *sattr =
1558 container_of(battr, struct module_sect_attr, battr);
1559 char bounce[MODULE_SECT_READ_SIZE + 1];
1560 size_t wrote;
1561
1562 if (pos != 0)
1563 return -EINVAL;
1564
1565 /*
1566 * Since we're a binary read handler, we must account for the
1567 * trailing NUL byte that sprintf will write: if "buf" is
1568 * too small to hold the NUL, or the NUL is exactly the last
1569 * byte, the read will look like it got truncated by one byte.
1570 * Since there is no way to ask sprintf nicely to not write
1571 * the NUL, we have to use a bounce buffer.
1572 */
1573 wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1574 kallsyms_show_value(file->f_cred)
1575 ? (void *)sattr->address : NULL);
1576 count = min(count, wrote);
1577 memcpy(buf, bounce, count);
1578
1579 return count;
1580 }
1581
free_sect_attrs(struct module_sect_attrs * sect_attrs)1582 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1583 {
1584 unsigned int section;
1585
1586 for (section = 0; section < sect_attrs->nsections; section++)
1587 kfree(sect_attrs->attrs[section].battr.attr.name);
1588 kfree(sect_attrs);
1589 }
1590
add_sect_attrs(struct module * mod,const struct load_info * info)1591 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1592 {
1593 unsigned int nloaded = 0, i, size[2];
1594 struct module_sect_attrs *sect_attrs;
1595 struct module_sect_attr *sattr;
1596 struct bin_attribute **gattr;
1597
1598 /* Count loaded sections and allocate structures */
1599 for (i = 0; i < info->hdr->e_shnum; i++)
1600 if (!sect_empty(&info->sechdrs[i]))
1601 nloaded++;
1602 size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1603 sizeof(sect_attrs->grp.bin_attrs[0]));
1604 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1605 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1606 if (sect_attrs == NULL)
1607 return;
1608
1609 /* Setup section attributes. */
1610 sect_attrs->grp.name = "sections";
1611 sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1612
1613 sect_attrs->nsections = 0;
1614 sattr = §_attrs->attrs[0];
1615 gattr = §_attrs->grp.bin_attrs[0];
1616 for (i = 0; i < info->hdr->e_shnum; i++) {
1617 Elf_Shdr *sec = &info->sechdrs[i];
1618 if (sect_empty(sec))
1619 continue;
1620 sysfs_bin_attr_init(&sattr->battr);
1621 sattr->address = sec->sh_addr;
1622 sattr->battr.attr.name =
1623 kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1624 if (sattr->battr.attr.name == NULL)
1625 goto out;
1626 sect_attrs->nsections++;
1627 sattr->battr.read = module_sect_read;
1628 sattr->battr.size = MODULE_SECT_READ_SIZE;
1629 sattr->battr.attr.mode = 0400;
1630 *(gattr++) = &(sattr++)->battr;
1631 }
1632 *gattr = NULL;
1633
1634 if (sysfs_create_group(&mod->mkobj.kobj, §_attrs->grp))
1635 goto out;
1636
1637 mod->sect_attrs = sect_attrs;
1638 return;
1639 out:
1640 free_sect_attrs(sect_attrs);
1641 }
1642
remove_sect_attrs(struct module * mod)1643 static void remove_sect_attrs(struct module *mod)
1644 {
1645 if (mod->sect_attrs) {
1646 sysfs_remove_group(&mod->mkobj.kobj,
1647 &mod->sect_attrs->grp);
1648 /* We are positive that no one is using any sect attrs
1649 * at this point. Deallocate immediately. */
1650 free_sect_attrs(mod->sect_attrs);
1651 mod->sect_attrs = NULL;
1652 }
1653 }
1654
1655 /*
1656 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1657 */
1658
1659 struct module_notes_attrs {
1660 struct kobject *dir;
1661 unsigned int notes;
1662 struct bin_attribute attrs[0];
1663 };
1664
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1665 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1666 struct bin_attribute *bin_attr,
1667 char *buf, loff_t pos, size_t count)
1668 {
1669 /*
1670 * The caller checked the pos and count against our size.
1671 */
1672 memcpy(buf, bin_attr->private + pos, count);
1673 return count;
1674 }
1675
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1676 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1677 unsigned int i)
1678 {
1679 if (notes_attrs->dir) {
1680 while (i-- > 0)
1681 sysfs_remove_bin_file(notes_attrs->dir,
1682 ¬es_attrs->attrs[i]);
1683 kobject_put(notes_attrs->dir);
1684 }
1685 kfree(notes_attrs);
1686 }
1687
add_notes_attrs(struct module * mod,const struct load_info * info)1688 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1689 {
1690 unsigned int notes, loaded, i;
1691 struct module_notes_attrs *notes_attrs;
1692 struct bin_attribute *nattr;
1693
1694 /* failed to create section attributes, so can't create notes */
1695 if (!mod->sect_attrs)
1696 return;
1697
1698 /* Count notes sections and allocate structures. */
1699 notes = 0;
1700 for (i = 0; i < info->hdr->e_shnum; i++)
1701 if (!sect_empty(&info->sechdrs[i]) &&
1702 (info->sechdrs[i].sh_type == SHT_NOTE))
1703 ++notes;
1704
1705 if (notes == 0)
1706 return;
1707
1708 notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1709 GFP_KERNEL);
1710 if (notes_attrs == NULL)
1711 return;
1712
1713 notes_attrs->notes = notes;
1714 nattr = ¬es_attrs->attrs[0];
1715 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1716 if (sect_empty(&info->sechdrs[i]))
1717 continue;
1718 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1719 sysfs_bin_attr_init(nattr);
1720 nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1721 nattr->attr.mode = S_IRUGO;
1722 nattr->size = info->sechdrs[i].sh_size;
1723 nattr->private = (void *) info->sechdrs[i].sh_addr;
1724 nattr->read = module_notes_read;
1725 ++nattr;
1726 }
1727 ++loaded;
1728 }
1729
1730 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1731 if (!notes_attrs->dir)
1732 goto out;
1733
1734 for (i = 0; i < notes; ++i)
1735 if (sysfs_create_bin_file(notes_attrs->dir,
1736 ¬es_attrs->attrs[i]))
1737 goto out;
1738
1739 mod->notes_attrs = notes_attrs;
1740 return;
1741
1742 out:
1743 free_notes_attrs(notes_attrs, i);
1744 }
1745
remove_notes_attrs(struct module * mod)1746 static void remove_notes_attrs(struct module *mod)
1747 {
1748 if (mod->notes_attrs)
1749 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1750 }
1751
1752 #else
1753
add_sect_attrs(struct module * mod,const struct load_info * info)1754 static inline void add_sect_attrs(struct module *mod,
1755 const struct load_info *info)
1756 {
1757 }
1758
remove_sect_attrs(struct module * mod)1759 static inline void remove_sect_attrs(struct module *mod)
1760 {
1761 }
1762
add_notes_attrs(struct module * mod,const struct load_info * info)1763 static inline void add_notes_attrs(struct module *mod,
1764 const struct load_info *info)
1765 {
1766 }
1767
remove_notes_attrs(struct module * mod)1768 static inline void remove_notes_attrs(struct module *mod)
1769 {
1770 }
1771 #endif /* CONFIG_KALLSYMS */
1772
del_usage_links(struct module * mod)1773 static void del_usage_links(struct module *mod)
1774 {
1775 #ifdef CONFIG_MODULE_UNLOAD
1776 struct module_use *use;
1777
1778 mutex_lock(&module_mutex);
1779 list_for_each_entry(use, &mod->target_list, target_list)
1780 sysfs_remove_link(use->target->holders_dir, mod->name);
1781 mutex_unlock(&module_mutex);
1782 #endif
1783 }
1784
add_usage_links(struct module * mod)1785 static int add_usage_links(struct module *mod)
1786 {
1787 int ret = 0;
1788 #ifdef CONFIG_MODULE_UNLOAD
1789 struct module_use *use;
1790
1791 mutex_lock(&module_mutex);
1792 list_for_each_entry(use, &mod->target_list, target_list) {
1793 ret = sysfs_create_link(use->target->holders_dir,
1794 &mod->mkobj.kobj, mod->name);
1795 if (ret)
1796 break;
1797 }
1798 mutex_unlock(&module_mutex);
1799 if (ret)
1800 del_usage_links(mod);
1801 #endif
1802 return ret;
1803 }
1804
1805 static void module_remove_modinfo_attrs(struct module *mod, int end);
1806
module_add_modinfo_attrs(struct module * mod)1807 static int module_add_modinfo_attrs(struct module *mod)
1808 {
1809 struct module_attribute *attr;
1810 struct module_attribute *temp_attr;
1811 int error = 0;
1812 int i;
1813
1814 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1815 (ARRAY_SIZE(modinfo_attrs) + 1)),
1816 GFP_KERNEL);
1817 if (!mod->modinfo_attrs)
1818 return -ENOMEM;
1819
1820 temp_attr = mod->modinfo_attrs;
1821 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1822 if (!attr->test || attr->test(mod)) {
1823 memcpy(temp_attr, attr, sizeof(*temp_attr));
1824 sysfs_attr_init(&temp_attr->attr);
1825 error = sysfs_create_file(&mod->mkobj.kobj,
1826 &temp_attr->attr);
1827 if (error)
1828 goto error_out;
1829 ++temp_attr;
1830 }
1831 }
1832
1833 return 0;
1834
1835 error_out:
1836 if (i > 0)
1837 module_remove_modinfo_attrs(mod, --i);
1838 else
1839 kfree(mod->modinfo_attrs);
1840 return error;
1841 }
1842
module_remove_modinfo_attrs(struct module * mod,int end)1843 static void module_remove_modinfo_attrs(struct module *mod, int end)
1844 {
1845 struct module_attribute *attr;
1846 int i;
1847
1848 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1849 if (end >= 0 && i > end)
1850 break;
1851 /* pick a field to test for end of list */
1852 if (!attr->attr.name)
1853 break;
1854 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1855 if (attr->free)
1856 attr->free(mod);
1857 }
1858 kfree(mod->modinfo_attrs);
1859 }
1860
mod_kobject_put(struct module * mod)1861 static void mod_kobject_put(struct module *mod)
1862 {
1863 DECLARE_COMPLETION_ONSTACK(c);
1864 mod->mkobj.kobj_completion = &c;
1865 kobject_put(&mod->mkobj.kobj);
1866 wait_for_completion(&c);
1867 }
1868
mod_sysfs_init(struct module * mod)1869 static int mod_sysfs_init(struct module *mod)
1870 {
1871 int err;
1872 struct kobject *kobj;
1873
1874 if (!module_sysfs_initialized) {
1875 pr_err("%s: module sysfs not initialized\n", mod->name);
1876 err = -EINVAL;
1877 goto out;
1878 }
1879
1880 kobj = kset_find_obj(module_kset, mod->name);
1881 if (kobj) {
1882 pr_err("%s: module is already loaded\n", mod->name);
1883 kobject_put(kobj);
1884 err = -EINVAL;
1885 goto out;
1886 }
1887
1888 mod->mkobj.mod = mod;
1889
1890 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1891 mod->mkobj.kobj.kset = module_kset;
1892 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1893 "%s", mod->name);
1894 if (err)
1895 mod_kobject_put(mod);
1896
1897 out:
1898 return err;
1899 }
1900
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1901 static int mod_sysfs_setup(struct module *mod,
1902 const struct load_info *info,
1903 struct kernel_param *kparam,
1904 unsigned int num_params)
1905 {
1906 int err;
1907
1908 err = mod_sysfs_init(mod);
1909 if (err)
1910 goto out;
1911
1912 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1913 if (!mod->holders_dir) {
1914 err = -ENOMEM;
1915 goto out_unreg;
1916 }
1917
1918 err = module_param_sysfs_setup(mod, kparam, num_params);
1919 if (err)
1920 goto out_unreg_holders;
1921
1922 err = module_add_modinfo_attrs(mod);
1923 if (err)
1924 goto out_unreg_param;
1925
1926 err = add_usage_links(mod);
1927 if (err)
1928 goto out_unreg_modinfo_attrs;
1929
1930 add_sect_attrs(mod, info);
1931 add_notes_attrs(mod, info);
1932
1933 return 0;
1934
1935 out_unreg_modinfo_attrs:
1936 module_remove_modinfo_attrs(mod, -1);
1937 out_unreg_param:
1938 module_param_sysfs_remove(mod);
1939 out_unreg_holders:
1940 kobject_put(mod->holders_dir);
1941 out_unreg:
1942 mod_kobject_put(mod);
1943 out:
1944 return err;
1945 }
1946
mod_sysfs_fini(struct module * mod)1947 static void mod_sysfs_fini(struct module *mod)
1948 {
1949 remove_notes_attrs(mod);
1950 remove_sect_attrs(mod);
1951 mod_kobject_put(mod);
1952 }
1953
init_param_lock(struct module * mod)1954 static void init_param_lock(struct module *mod)
1955 {
1956 mutex_init(&mod->param_lock);
1957 }
1958 #else /* !CONFIG_SYSFS */
1959
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1960 static int mod_sysfs_setup(struct module *mod,
1961 const struct load_info *info,
1962 struct kernel_param *kparam,
1963 unsigned int num_params)
1964 {
1965 return 0;
1966 }
1967
mod_sysfs_fini(struct module * mod)1968 static void mod_sysfs_fini(struct module *mod)
1969 {
1970 }
1971
module_remove_modinfo_attrs(struct module * mod,int end)1972 static void module_remove_modinfo_attrs(struct module *mod, int end)
1973 {
1974 }
1975
del_usage_links(struct module * mod)1976 static void del_usage_links(struct module *mod)
1977 {
1978 }
1979
init_param_lock(struct module * mod)1980 static void init_param_lock(struct module *mod)
1981 {
1982 }
1983 #endif /* CONFIG_SYSFS */
1984
mod_sysfs_teardown(struct module * mod)1985 static void mod_sysfs_teardown(struct module *mod)
1986 {
1987 del_usage_links(mod);
1988 module_remove_modinfo_attrs(mod, -1);
1989 module_param_sysfs_remove(mod);
1990 kobject_put(mod->mkobj.drivers_dir);
1991 kobject_put(mod->holders_dir);
1992 mod_sysfs_fini(mod);
1993 }
1994
1995 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1996 /*
1997 * LKM RO/NX protection: protect module's text/ro-data
1998 * from modification and any data from execution.
1999 *
2000 * General layout of module is:
2001 * [text] [read-only-data] [ro-after-init] [writable data]
2002 * text_size -----^ ^ ^ ^
2003 * ro_size ------------------------| | |
2004 * ro_after_init_size -----------------------------| |
2005 * size -----------------------------------------------------------|
2006 *
2007 * These values are always page-aligned (as is base)
2008 */
frob_text(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2009 static void frob_text(const struct module_layout *layout,
2010 int (*set_memory)(unsigned long start, int num_pages))
2011 {
2012 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2013 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2014 set_memory((unsigned long)layout->base,
2015 layout->text_size >> PAGE_SHIFT);
2016 }
2017
2018 #ifdef CONFIG_STRICT_MODULE_RWX
frob_rodata(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2019 static void frob_rodata(const struct module_layout *layout,
2020 int (*set_memory)(unsigned long start, int num_pages))
2021 {
2022 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2023 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2024 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2025 set_memory((unsigned long)layout->base + layout->text_size,
2026 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
2027 }
2028
frob_ro_after_init(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2029 static void frob_ro_after_init(const struct module_layout *layout,
2030 int (*set_memory)(unsigned long start, int num_pages))
2031 {
2032 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2033 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2034 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2035 set_memory((unsigned long)layout->base + layout->ro_size,
2036 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
2037 }
2038
frob_writable_data(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2039 static void frob_writable_data(const struct module_layout *layout,
2040 int (*set_memory)(unsigned long start, int num_pages))
2041 {
2042 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2043 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2044 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2045 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2046 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2047 }
2048
2049 /* livepatching wants to disable read-only so it can frob module. */
module_disable_ro(const struct module * mod)2050 void module_disable_ro(const struct module *mod)
2051 {
2052 if (!rodata_enabled)
2053 return;
2054
2055 frob_text(&mod->core_layout, set_memory_rw);
2056 frob_rodata(&mod->core_layout, set_memory_rw);
2057 frob_ro_after_init(&mod->core_layout, set_memory_rw);
2058 frob_text(&mod->init_layout, set_memory_rw);
2059 frob_rodata(&mod->init_layout, set_memory_rw);
2060 }
2061
module_enable_ro(const struct module * mod,bool after_init)2062 void module_enable_ro(const struct module *mod, bool after_init)
2063 {
2064 if (!rodata_enabled)
2065 return;
2066
2067 set_vm_flush_reset_perms(mod->core_layout.base);
2068 set_vm_flush_reset_perms(mod->init_layout.base);
2069 frob_text(&mod->core_layout, set_memory_ro);
2070
2071 frob_rodata(&mod->core_layout, set_memory_ro);
2072 frob_text(&mod->init_layout, set_memory_ro);
2073 frob_rodata(&mod->init_layout, set_memory_ro);
2074
2075 if (after_init)
2076 frob_ro_after_init(&mod->core_layout, set_memory_ro);
2077 }
2078
module_enable_nx(const struct module * mod)2079 static void module_enable_nx(const struct module *mod)
2080 {
2081 frob_rodata(&mod->core_layout, set_memory_nx);
2082 frob_ro_after_init(&mod->core_layout, set_memory_nx);
2083 frob_writable_data(&mod->core_layout, set_memory_nx);
2084 frob_rodata(&mod->init_layout, set_memory_nx);
2085 frob_writable_data(&mod->init_layout, set_memory_nx);
2086 }
2087
2088 /* Iterate through all modules and set each module's text as RW */
set_all_modules_text_rw(void)2089 void set_all_modules_text_rw(void)
2090 {
2091 struct module *mod;
2092
2093 if (!rodata_enabled)
2094 return;
2095
2096 mutex_lock(&module_mutex);
2097 list_for_each_entry_rcu(mod, &modules, list) {
2098 if (mod->state == MODULE_STATE_UNFORMED)
2099 continue;
2100
2101 frob_text(&mod->core_layout, set_memory_rw);
2102 frob_text(&mod->init_layout, set_memory_rw);
2103 }
2104 mutex_unlock(&module_mutex);
2105 }
2106
2107 /* Iterate through all modules and set each module's text as RO */
set_all_modules_text_ro(void)2108 void set_all_modules_text_ro(void)
2109 {
2110 struct module *mod;
2111
2112 if (!rodata_enabled)
2113 return;
2114
2115 mutex_lock(&module_mutex);
2116 list_for_each_entry_rcu(mod, &modules, list) {
2117 /*
2118 * Ignore going modules since it's possible that ro
2119 * protection has already been disabled, otherwise we'll
2120 * run into protection faults at module deallocation.
2121 */
2122 if (mod->state == MODULE_STATE_UNFORMED ||
2123 mod->state == MODULE_STATE_GOING)
2124 continue;
2125
2126 frob_text(&mod->core_layout, set_memory_ro);
2127 frob_text(&mod->init_layout, set_memory_ro);
2128 }
2129 mutex_unlock(&module_mutex);
2130 }
2131 #else /* !CONFIG_STRICT_MODULE_RWX */
module_enable_nx(const struct module * mod)2132 static void module_enable_nx(const struct module *mod) { }
2133 #endif /* CONFIG_STRICT_MODULE_RWX */
module_enable_x(const struct module * mod)2134 static void module_enable_x(const struct module *mod)
2135 {
2136 frob_text(&mod->core_layout, set_memory_x);
2137 frob_text(&mod->init_layout, set_memory_x);
2138 }
2139 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
module_enable_nx(const struct module * mod)2140 static void module_enable_nx(const struct module *mod) { }
module_enable_x(const struct module * mod)2141 static void module_enable_x(const struct module *mod) { }
2142 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2143
2144
2145 #ifdef CONFIG_LIVEPATCH
2146 /*
2147 * Persist Elf information about a module. Copy the Elf header,
2148 * section header table, section string table, and symtab section
2149 * index from info to mod->klp_info.
2150 */
copy_module_elf(struct module * mod,struct load_info * info)2151 static int copy_module_elf(struct module *mod, struct load_info *info)
2152 {
2153 unsigned int size, symndx;
2154 int ret;
2155
2156 size = sizeof(*mod->klp_info);
2157 mod->klp_info = kmalloc(size, GFP_KERNEL);
2158 if (mod->klp_info == NULL)
2159 return -ENOMEM;
2160
2161 /* Elf header */
2162 size = sizeof(mod->klp_info->hdr);
2163 memcpy(&mod->klp_info->hdr, info->hdr, size);
2164
2165 /* Elf section header table */
2166 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2167 mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2168 if (mod->klp_info->sechdrs == NULL) {
2169 ret = -ENOMEM;
2170 goto free_info;
2171 }
2172
2173 /* Elf section name string table */
2174 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2175 mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2176 if (mod->klp_info->secstrings == NULL) {
2177 ret = -ENOMEM;
2178 goto free_sechdrs;
2179 }
2180
2181 /* Elf symbol section index */
2182 symndx = info->index.sym;
2183 mod->klp_info->symndx = symndx;
2184
2185 /*
2186 * For livepatch modules, core_kallsyms.symtab is a complete
2187 * copy of the original symbol table. Adjust sh_addr to point
2188 * to core_kallsyms.symtab since the copy of the symtab in module
2189 * init memory is freed at the end of do_init_module().
2190 */
2191 mod->klp_info->sechdrs[symndx].sh_addr = \
2192 (unsigned long) mod->core_kallsyms.symtab;
2193
2194 return 0;
2195
2196 free_sechdrs:
2197 kfree(mod->klp_info->sechdrs);
2198 free_info:
2199 kfree(mod->klp_info);
2200 return ret;
2201 }
2202
free_module_elf(struct module * mod)2203 static void free_module_elf(struct module *mod)
2204 {
2205 kfree(mod->klp_info->sechdrs);
2206 kfree(mod->klp_info->secstrings);
2207 kfree(mod->klp_info);
2208 }
2209 #else /* !CONFIG_LIVEPATCH */
copy_module_elf(struct module * mod,struct load_info * info)2210 static int copy_module_elf(struct module *mod, struct load_info *info)
2211 {
2212 return 0;
2213 }
2214
free_module_elf(struct module * mod)2215 static void free_module_elf(struct module *mod)
2216 {
2217 }
2218 #endif /* CONFIG_LIVEPATCH */
2219
module_memfree(void * module_region)2220 void __weak module_memfree(void *module_region)
2221 {
2222 /*
2223 * This memory may be RO, and freeing RO memory in an interrupt is not
2224 * supported by vmalloc.
2225 */
2226 WARN_ON(in_interrupt());
2227 vfree(module_region);
2228 }
2229
module_arch_cleanup(struct module * mod)2230 void __weak module_arch_cleanup(struct module *mod)
2231 {
2232 }
2233
module_arch_freeing_init(struct module * mod)2234 void __weak module_arch_freeing_init(struct module *mod)
2235 {
2236 }
2237
2238 static void cfi_cleanup(struct module *mod);
2239
2240 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2241 static void free_module(struct module *mod)
2242 {
2243 trace_module_free(mod);
2244
2245 mod_sysfs_teardown(mod);
2246
2247 /* We leave it in list to prevent duplicate loads, but make sure
2248 * that noone uses it while it's being deconstructed. */
2249 mutex_lock(&module_mutex);
2250 mod->state = MODULE_STATE_UNFORMED;
2251 mutex_unlock(&module_mutex);
2252
2253 /* Remove dynamic debug info */
2254 ddebug_remove_module(mod->name);
2255
2256 /* Arch-specific cleanup. */
2257 module_arch_cleanup(mod);
2258
2259 /* Module unload stuff */
2260 module_unload_free(mod);
2261
2262 /* Free any allocated parameters. */
2263 destroy_params(mod->kp, mod->num_kp);
2264
2265 if (is_livepatch_module(mod))
2266 free_module_elf(mod);
2267
2268 /* Now we can delete it from the lists */
2269 mutex_lock(&module_mutex);
2270 /* Unlink carefully: kallsyms could be walking list. */
2271 list_del_rcu(&mod->list);
2272 mod_tree_remove(mod);
2273 /* Remove this module from bug list, this uses list_del_rcu */
2274 module_bug_cleanup(mod);
2275 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2276 synchronize_rcu();
2277 mutex_unlock(&module_mutex);
2278
2279 /* Clean up CFI for the module. */
2280 cfi_cleanup(mod);
2281
2282 /* This may be empty, but that's OK */
2283 module_arch_freeing_init(mod);
2284 module_memfree(mod->init_layout.base);
2285 kfree(mod->args);
2286 percpu_modfree(mod);
2287
2288 /* Free lock-classes; relies on the preceding sync_rcu(). */
2289 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2290
2291 /* Finally, free the core (containing the module structure) */
2292 module_memfree(mod->core_layout.base);
2293 }
2294
__symbol_get(const char * symbol)2295 void *__symbol_get(const char *symbol)
2296 {
2297 struct module *owner;
2298 enum mod_license license;
2299 const struct kernel_symbol *sym;
2300
2301 preempt_disable();
2302 sym = find_symbol(symbol, &owner, NULL, &license, true, true);
2303 if (!sym)
2304 goto fail;
2305 if (license != GPL_ONLY) {
2306 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
2307 symbol);
2308 goto fail;
2309 }
2310 if (strong_try_module_get(owner))
2311 sym = NULL;
2312 preempt_enable();
2313
2314 return sym ? (void *)kernel_symbol_value(sym) : NULL;
2315 fail:
2316 preempt_enable();
2317 return NULL;
2318 }
2319
2320 /*
2321 * Ensure that an exported symbol [global namespace] does not already exist
2322 * in the kernel or in some other module's exported symbol table.
2323 *
2324 * You must hold the module_mutex.
2325 */
verify_exported_symbols(struct module * mod)2326 static int verify_exported_symbols(struct module *mod)
2327 {
2328 unsigned int i;
2329 struct module *owner;
2330 const struct kernel_symbol *s;
2331 struct {
2332 const struct kernel_symbol *sym;
2333 unsigned int num;
2334 } arr[] = {
2335 { mod->syms, mod->num_syms },
2336 { mod->gpl_syms, mod->num_gpl_syms },
2337 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2338 #ifdef CONFIG_UNUSED_SYMBOLS
2339 { mod->unused_syms, mod->num_unused_syms },
2340 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2341 #endif
2342 };
2343
2344 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2345 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2346 if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2347 NULL, true, false)) {
2348 pr_err("%s: exports duplicate symbol %s"
2349 " (owned by %s)\n",
2350 mod->name, kernel_symbol_name(s),
2351 module_name(owner));
2352 return -ENOEXEC;
2353 }
2354 }
2355 }
2356 return 0;
2357 }
2358
ignore_undef_symbol(Elf_Half emachine,const char * name)2359 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2360 {
2361 /*
2362 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2363 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2364 * i386 has a similar problem but may not deserve a fix.
2365 *
2366 * If we ever have to ignore many symbols, consider refactoring the code to
2367 * only warn if referenced by a relocation.
2368 */
2369 if (emachine == EM_386 || emachine == EM_X86_64)
2370 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2371 return false;
2372 }
2373
2374 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2375 static int simplify_symbols(struct module *mod, const struct load_info *info)
2376 {
2377 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2378 Elf_Sym *sym = (void *)symsec->sh_addr;
2379 unsigned long secbase;
2380 unsigned int i;
2381 int ret = 0;
2382 const struct kernel_symbol *ksym;
2383
2384 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2385 const char *name = info->strtab + sym[i].st_name;
2386
2387 switch (sym[i].st_shndx) {
2388 case SHN_COMMON:
2389 /* Ignore common symbols */
2390 if (!strncmp(name, "__gnu_lto", 9))
2391 break;
2392
2393 /* We compiled with -fno-common. These are not
2394 supposed to happen. */
2395 pr_debug("Common symbol: %s\n", name);
2396 pr_warn("%s: please compile with -fno-common\n",
2397 mod->name);
2398 ret = -ENOEXEC;
2399 break;
2400
2401 case SHN_ABS:
2402 /* Don't need to do anything */
2403 pr_debug("Absolute symbol: 0x%08lx\n",
2404 (long)sym[i].st_value);
2405 break;
2406
2407 case SHN_LIVEPATCH:
2408 /* Livepatch symbols are resolved by livepatch */
2409 break;
2410
2411 case SHN_UNDEF:
2412 ksym = resolve_symbol_wait(mod, info, name);
2413 /* Ok if resolved. */
2414 if (ksym && !IS_ERR(ksym)) {
2415 sym[i].st_value = kernel_symbol_value(ksym);
2416 break;
2417 }
2418
2419 /* Ok if weak or ignored. */
2420 if (!ksym &&
2421 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2422 ignore_undef_symbol(info->hdr->e_machine, name)))
2423 break;
2424
2425 ret = PTR_ERR(ksym) ?: -ENOENT;
2426 pr_warn("%s: Unknown symbol %s (err %d)\n",
2427 mod->name, name, ret);
2428 break;
2429
2430 default:
2431 /* Divert to percpu allocation if a percpu var. */
2432 if (sym[i].st_shndx == info->index.pcpu)
2433 secbase = (unsigned long)mod_percpu(mod);
2434 else
2435 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2436 sym[i].st_value += secbase;
2437 break;
2438 }
2439 }
2440
2441 return ret;
2442 }
2443
apply_relocations(struct module * mod,const struct load_info * info)2444 static int apply_relocations(struct module *mod, const struct load_info *info)
2445 {
2446 unsigned int i;
2447 int err = 0;
2448
2449 /* Now do relocations. */
2450 for (i = 1; i < info->hdr->e_shnum; i++) {
2451 unsigned int infosec = info->sechdrs[i].sh_info;
2452
2453 /* Not a valid relocation section? */
2454 if (infosec >= info->hdr->e_shnum)
2455 continue;
2456
2457 /* Don't bother with non-allocated sections */
2458 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2459 continue;
2460
2461 /* Livepatch relocation sections are applied by livepatch */
2462 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2463 continue;
2464
2465 if (info->sechdrs[i].sh_type == SHT_REL)
2466 err = apply_relocate(info->sechdrs, info->strtab,
2467 info->index.sym, i, mod);
2468 else if (info->sechdrs[i].sh_type == SHT_RELA)
2469 err = apply_relocate_add(info->sechdrs, info->strtab,
2470 info->index.sym, i, mod);
2471 if (err < 0)
2472 break;
2473 }
2474 return err;
2475 }
2476
2477 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2478 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2479 unsigned int section)
2480 {
2481 /* default implementation just returns zero */
2482 return 0;
2483 }
2484
2485 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2486 static long get_offset(struct module *mod, unsigned int *size,
2487 Elf_Shdr *sechdr, unsigned int section)
2488 {
2489 long ret;
2490
2491 *size += arch_mod_section_prepend(mod, section);
2492 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2493 *size = ret + sechdr->sh_size;
2494 return ret;
2495 }
2496
2497 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2498 might -- code, read-only data, read-write data, small data. Tally
2499 sizes, and place the offsets into sh_entsize fields: high bit means it
2500 belongs in init. */
layout_sections(struct module * mod,struct load_info * info)2501 static void layout_sections(struct module *mod, struct load_info *info)
2502 {
2503 static unsigned long const masks[][2] = {
2504 /* NOTE: all executable code must be the first section
2505 * in this array; otherwise modify the text_size
2506 * finder in the two loops below */
2507 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2508 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2509 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2510 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2511 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2512 };
2513 unsigned int m, i;
2514
2515 for (i = 0; i < info->hdr->e_shnum; i++)
2516 info->sechdrs[i].sh_entsize = ~0UL;
2517
2518 pr_debug("Core section allocation order:\n");
2519 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2520 for (i = 0; i < info->hdr->e_shnum; ++i) {
2521 Elf_Shdr *s = &info->sechdrs[i];
2522 const char *sname = info->secstrings + s->sh_name;
2523
2524 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2525 || (s->sh_flags & masks[m][1])
2526 || s->sh_entsize != ~0UL
2527 || strstarts(sname, ".init"))
2528 continue;
2529 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2530 pr_debug("\t%s\n", sname);
2531 }
2532 switch (m) {
2533 case 0: /* executable */
2534 mod->core_layout.size = debug_align(mod->core_layout.size);
2535 mod->core_layout.text_size = mod->core_layout.size;
2536 break;
2537 case 1: /* RO: text and ro-data */
2538 mod->core_layout.size = debug_align(mod->core_layout.size);
2539 mod->core_layout.ro_size = mod->core_layout.size;
2540 break;
2541 case 2: /* RO after init */
2542 mod->core_layout.size = debug_align(mod->core_layout.size);
2543 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2544 break;
2545 case 4: /* whole core */
2546 mod->core_layout.size = debug_align(mod->core_layout.size);
2547 break;
2548 }
2549 }
2550
2551 pr_debug("Init section allocation order:\n");
2552 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2553 for (i = 0; i < info->hdr->e_shnum; ++i) {
2554 Elf_Shdr *s = &info->sechdrs[i];
2555 const char *sname = info->secstrings + s->sh_name;
2556
2557 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2558 || (s->sh_flags & masks[m][1])
2559 || s->sh_entsize != ~0UL
2560 || !strstarts(sname, ".init"))
2561 continue;
2562 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2563 | INIT_OFFSET_MASK);
2564 pr_debug("\t%s\n", sname);
2565 }
2566 switch (m) {
2567 case 0: /* executable */
2568 mod->init_layout.size = debug_align(mod->init_layout.size);
2569 mod->init_layout.text_size = mod->init_layout.size;
2570 break;
2571 case 1: /* RO: text and ro-data */
2572 mod->init_layout.size = debug_align(mod->init_layout.size);
2573 mod->init_layout.ro_size = mod->init_layout.size;
2574 break;
2575 case 2:
2576 /*
2577 * RO after init doesn't apply to init_layout (only
2578 * core_layout), so it just takes the value of ro_size.
2579 */
2580 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2581 break;
2582 case 4: /* whole init */
2583 mod->init_layout.size = debug_align(mod->init_layout.size);
2584 break;
2585 }
2586 }
2587 }
2588
set_license(struct module * mod,const char * license)2589 static void set_license(struct module *mod, const char *license)
2590 {
2591 if (!license)
2592 license = "unspecified";
2593
2594 if (!license_is_gpl_compatible(license)) {
2595 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2596 pr_warn("%s: module license '%s' taints kernel.\n",
2597 mod->name, license);
2598 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2599 LOCKDEP_NOW_UNRELIABLE);
2600 }
2601 }
2602
2603 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2604 static char *next_string(char *string, unsigned long *secsize)
2605 {
2606 /* Skip non-zero chars */
2607 while (string[0]) {
2608 string++;
2609 if ((*secsize)-- <= 1)
2610 return NULL;
2611 }
2612
2613 /* Skip any zero padding. */
2614 while (!string[0]) {
2615 string++;
2616 if ((*secsize)-- <= 1)
2617 return NULL;
2618 }
2619 return string;
2620 }
2621
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)2622 static char *get_next_modinfo(const struct load_info *info, const char *tag,
2623 char *prev)
2624 {
2625 char *p;
2626 unsigned int taglen = strlen(tag);
2627 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2628 unsigned long size = infosec->sh_size;
2629
2630 /*
2631 * get_modinfo() calls made before rewrite_section_headers()
2632 * must use sh_offset, as sh_addr isn't set!
2633 */
2634 char *modinfo = (char *)info->hdr + infosec->sh_offset;
2635
2636 if (prev) {
2637 size -= prev - modinfo;
2638 modinfo = next_string(prev, &size);
2639 }
2640
2641 for (p = modinfo; p; p = next_string(p, &size)) {
2642 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2643 return p + taglen + 1;
2644 }
2645 return NULL;
2646 }
2647
get_modinfo(const struct load_info * info,const char * tag)2648 static char *get_modinfo(const struct load_info *info, const char *tag)
2649 {
2650 return get_next_modinfo(info, tag, NULL);
2651 }
2652
setup_modinfo(struct module * mod,struct load_info * info)2653 static void setup_modinfo(struct module *mod, struct load_info *info)
2654 {
2655 struct module_attribute *attr;
2656 int i;
2657
2658 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2659 if (attr->setup)
2660 attr->setup(mod, get_modinfo(info, attr->attr.name));
2661 }
2662 }
2663
free_modinfo(struct module * mod)2664 static void free_modinfo(struct module *mod)
2665 {
2666 struct module_attribute *attr;
2667 int i;
2668
2669 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2670 if (attr->free)
2671 attr->free(mod);
2672 }
2673 }
2674
2675 #ifdef CONFIG_KALLSYMS
2676
2677 /* Lookup exported symbol in given range of kernel_symbols */
lookup_exported_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2678 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2679 const struct kernel_symbol *start,
2680 const struct kernel_symbol *stop)
2681 {
2682 return bsearch(name, start, stop - start,
2683 sizeof(struct kernel_symbol), cmp_name);
2684 }
2685
is_exported(const char * name,unsigned long value,const struct module * mod)2686 static int is_exported(const char *name, unsigned long value,
2687 const struct module *mod)
2688 {
2689 const struct kernel_symbol *ks;
2690 if (!mod)
2691 ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2692 else
2693 ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2694
2695 return ks != NULL && kernel_symbol_value(ks) == value;
2696 }
2697
2698 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2699 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2700 {
2701 const Elf_Shdr *sechdrs = info->sechdrs;
2702
2703 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2704 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2705 return 'v';
2706 else
2707 return 'w';
2708 }
2709 if (sym->st_shndx == SHN_UNDEF)
2710 return 'U';
2711 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2712 return 'a';
2713 if (sym->st_shndx >= SHN_LORESERVE)
2714 return '?';
2715 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2716 return 't';
2717 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2718 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2719 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2720 return 'r';
2721 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2722 return 'g';
2723 else
2724 return 'd';
2725 }
2726 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2727 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2728 return 's';
2729 else
2730 return 'b';
2731 }
2732 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2733 ".debug")) {
2734 return 'n';
2735 }
2736 return '?';
2737 }
2738
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum,unsigned int pcpundx)2739 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2740 unsigned int shnum, unsigned int pcpundx)
2741 {
2742 const Elf_Shdr *sec;
2743
2744 if (src->st_shndx == SHN_UNDEF
2745 || src->st_shndx >= shnum
2746 || !src->st_name)
2747 return false;
2748
2749 #ifdef CONFIG_KALLSYMS_ALL
2750 if (src->st_shndx == pcpundx)
2751 return true;
2752 #endif
2753
2754 sec = sechdrs + src->st_shndx;
2755 if (!(sec->sh_flags & SHF_ALLOC)
2756 #ifndef CONFIG_KALLSYMS_ALL
2757 || !(sec->sh_flags & SHF_EXECINSTR)
2758 #endif
2759 || (sec->sh_entsize & INIT_OFFSET_MASK))
2760 return false;
2761
2762 return true;
2763 }
2764
2765 /*
2766 * We only allocate and copy the strings needed by the parts of symtab
2767 * we keep. This is simple, but has the effect of making multiple
2768 * copies of duplicates. We could be more sophisticated, see
2769 * linux-kernel thread starting with
2770 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2771 */
layout_symtab(struct module * mod,struct load_info * info)2772 static void layout_symtab(struct module *mod, struct load_info *info)
2773 {
2774 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2775 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2776 const Elf_Sym *src;
2777 unsigned int i, nsrc, ndst, strtab_size = 0;
2778
2779 /* Put symbol section at end of init part of module. */
2780 symsect->sh_flags |= SHF_ALLOC;
2781 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2782 info->index.sym) | INIT_OFFSET_MASK;
2783 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2784
2785 src = (void *)info->hdr + symsect->sh_offset;
2786 nsrc = symsect->sh_size / sizeof(*src);
2787
2788 /* Compute total space required for the core symbols' strtab. */
2789 for (ndst = i = 0; i < nsrc; i++) {
2790 if (i == 0 || is_livepatch_module(mod) ||
2791 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2792 info->index.pcpu)) {
2793 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2794 ndst++;
2795 }
2796 }
2797
2798 /* Append room for core symbols at end of core part. */
2799 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2800 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2801 mod->core_layout.size += strtab_size;
2802 info->core_typeoffs = mod->core_layout.size;
2803 mod->core_layout.size += ndst * sizeof(char);
2804 mod->core_layout.size = debug_align(mod->core_layout.size);
2805
2806 /* Put string table section at end of init part of module. */
2807 strsect->sh_flags |= SHF_ALLOC;
2808 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2809 info->index.str) | INIT_OFFSET_MASK;
2810 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2811
2812 /* We'll tack temporary mod_kallsyms on the end. */
2813 mod->init_layout.size = ALIGN(mod->init_layout.size,
2814 __alignof__(struct mod_kallsyms));
2815 info->mod_kallsyms_init_off = mod->init_layout.size;
2816 mod->init_layout.size += sizeof(struct mod_kallsyms);
2817 info->init_typeoffs = mod->init_layout.size;
2818 mod->init_layout.size += nsrc * sizeof(char);
2819 mod->init_layout.size = debug_align(mod->init_layout.size);
2820 }
2821
2822 /*
2823 * We use the full symtab and strtab which layout_symtab arranged to
2824 * be appended to the init section. Later we switch to the cut-down
2825 * core-only ones.
2826 */
add_kallsyms(struct module * mod,const struct load_info * info)2827 static void add_kallsyms(struct module *mod, const struct load_info *info)
2828 {
2829 unsigned int i, ndst;
2830 const Elf_Sym *src;
2831 Elf_Sym *dst;
2832 char *s;
2833 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2834
2835 /* Set up to point into init section. */
2836 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2837
2838 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2839 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2840 /* Make sure we get permanent strtab: don't use info->strtab. */
2841 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2842 mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2843
2844 /*
2845 * Now populate the cut down core kallsyms for after init
2846 * and set types up while we still have access to sections.
2847 */
2848 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2849 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2850 mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2851 src = mod->kallsyms->symtab;
2852 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2853 mod->kallsyms->typetab[i] = elf_type(src + i, info);
2854 if (i == 0 || is_livepatch_module(mod) ||
2855 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2856 info->index.pcpu)) {
2857 mod->core_kallsyms.typetab[ndst] =
2858 mod->kallsyms->typetab[i];
2859 dst[ndst] = src[i];
2860 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2861 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2862 KSYM_NAME_LEN) + 1;
2863 }
2864 }
2865 mod->core_kallsyms.num_symtab = ndst;
2866 }
2867 #else
layout_symtab(struct module * mod,struct load_info * info)2868 static inline void layout_symtab(struct module *mod, struct load_info *info)
2869 {
2870 }
2871
add_kallsyms(struct module * mod,const struct load_info * info)2872 static void add_kallsyms(struct module *mod, const struct load_info *info)
2873 {
2874 }
2875 #endif /* CONFIG_KALLSYMS */
2876
dynamic_debug_setup(struct module * mod,struct _ddebug * debug,unsigned int num)2877 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2878 {
2879 if (!debug)
2880 return;
2881 ddebug_add_module(debug, num, mod->name);
2882 }
2883
dynamic_debug_remove(struct module * mod,struct _ddebug * debug)2884 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2885 {
2886 if (debug)
2887 ddebug_remove_module(mod->name);
2888 }
2889
module_alloc(unsigned long size)2890 void * __weak module_alloc(unsigned long size)
2891 {
2892 return vmalloc_exec(size);
2893 }
2894
module_exit_section(const char * name)2895 bool __weak module_exit_section(const char *name)
2896 {
2897 return strstarts(name, ".exit");
2898 }
2899
2900 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2901 static void kmemleak_load_module(const struct module *mod,
2902 const struct load_info *info)
2903 {
2904 unsigned int i;
2905
2906 /* only scan the sections containing data */
2907 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2908
2909 for (i = 1; i < info->hdr->e_shnum; i++) {
2910 /* Scan all writable sections that's not executable */
2911 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2912 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2913 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2914 continue;
2915
2916 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2917 info->sechdrs[i].sh_size, GFP_KERNEL);
2918 }
2919 }
2920 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2921 static inline void kmemleak_load_module(const struct module *mod,
2922 const struct load_info *info)
2923 {
2924 }
2925 #endif
2926
2927 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info,int flags)2928 static int module_sig_check(struct load_info *info, int flags)
2929 {
2930 int err = -ENODATA;
2931 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2932 const char *reason;
2933 const void *mod = info->hdr;
2934
2935 /*
2936 * Require flags == 0, as a module with version information
2937 * removed is no longer the module that was signed
2938 */
2939 if (flags == 0 &&
2940 info->len > markerlen &&
2941 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2942 /* We truncate the module to discard the signature */
2943 info->len -= markerlen;
2944 err = mod_verify_sig(mod, info);
2945 }
2946
2947 switch (err) {
2948 case 0:
2949 info->sig_ok = true;
2950 return 0;
2951
2952 /* We don't permit modules to be loaded into trusted kernels
2953 * without a valid signature on them, but if we're not
2954 * enforcing, certain errors are non-fatal.
2955 */
2956 case -ENODATA:
2957 reason = "unsigned module";
2958 break;
2959 case -ENOPKG:
2960 reason = "module with unsupported crypto";
2961 break;
2962 case -ENOKEY:
2963 reason = "module with unavailable key";
2964 break;
2965
2966 /* All other errors are fatal, including nomem, unparseable
2967 * signatures and signature check failures - even if signatures
2968 * aren't required.
2969 */
2970 default:
2971 return err;
2972 }
2973
2974 if (is_module_sig_enforced()) {
2975 pr_notice("Loading of %s is rejected\n", reason);
2976 return -EKEYREJECTED;
2977 }
2978
2979 return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2980 }
2981 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info,int flags)2982 static int module_sig_check(struct load_info *info, int flags)
2983 {
2984 return 0;
2985 }
2986 #endif /* !CONFIG_MODULE_SIG */
2987
validate_section_offset(struct load_info * info,Elf_Shdr * shdr)2988 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
2989 {
2990 unsigned long secend;
2991
2992 /*
2993 * Check for both overflow and offset/size being
2994 * too large.
2995 */
2996 secend = shdr->sh_offset + shdr->sh_size;
2997 if (secend < shdr->sh_offset || secend > info->len)
2998 return -ENOEXEC;
2999
3000 return 0;
3001 }
3002
3003 /*
3004 * Sanity checks against invalid binaries, wrong arch, weird elf version.
3005 *
3006 * Also do basic validity checks against section offsets and sizes, the
3007 * section name string table, and the indices used for it (sh_name).
3008 */
elf_validity_check(struct load_info * info)3009 static int elf_validity_check(struct load_info *info)
3010 {
3011 unsigned int i;
3012 Elf_Shdr *shdr, *strhdr;
3013 int err;
3014
3015 if (info->len < sizeof(*(info->hdr)))
3016 return -ENOEXEC;
3017
3018 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
3019 || info->hdr->e_type != ET_REL
3020 || !elf_check_arch(info->hdr)
3021 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
3022 return -ENOEXEC;
3023
3024 /*
3025 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
3026 * known and small. So e_shnum * sizeof(Elf_Shdr)
3027 * will not overflow unsigned long on any platform.
3028 */
3029 if (info->hdr->e_shoff >= info->len
3030 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
3031 info->len - info->hdr->e_shoff))
3032 return -ENOEXEC;
3033
3034 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3035
3036 /*
3037 * Verify if the section name table index is valid.
3038 */
3039 if (info->hdr->e_shstrndx == SHN_UNDEF
3040 || info->hdr->e_shstrndx >= info->hdr->e_shnum)
3041 return -ENOEXEC;
3042
3043 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
3044 err = validate_section_offset(info, strhdr);
3045 if (err < 0)
3046 return err;
3047
3048 /*
3049 * The section name table must be NUL-terminated, as required
3050 * by the spec. This makes strcmp and pr_* calls that access
3051 * strings in the section safe.
3052 */
3053 info->secstrings = (void *)info->hdr + strhdr->sh_offset;
3054 if (info->secstrings[strhdr->sh_size - 1] != '\0')
3055 return -ENOEXEC;
3056
3057 /*
3058 * The code assumes that section 0 has a length of zero and
3059 * an addr of zero, so check for it.
3060 */
3061 if (info->sechdrs[0].sh_type != SHT_NULL
3062 || info->sechdrs[0].sh_size != 0
3063 || info->sechdrs[0].sh_addr != 0)
3064 return -ENOEXEC;
3065
3066 for (i = 1; i < info->hdr->e_shnum; i++) {
3067 shdr = &info->sechdrs[i];
3068 switch (shdr->sh_type) {
3069 case SHT_NULL:
3070 case SHT_NOBITS:
3071 continue;
3072 case SHT_SYMTAB:
3073 if (shdr->sh_link == SHN_UNDEF
3074 || shdr->sh_link >= info->hdr->e_shnum)
3075 return -ENOEXEC;
3076 fallthrough;
3077 default:
3078 err = validate_section_offset(info, shdr);
3079 if (err < 0) {
3080 pr_err("Invalid ELF section in module (section %u type %u)\n",
3081 i, shdr->sh_type);
3082 return err;
3083 }
3084
3085 if (shdr->sh_flags & SHF_ALLOC) {
3086 if (shdr->sh_name >= strhdr->sh_size) {
3087 pr_err("Invalid ELF section name in module (section %u type %u)\n",
3088 i, shdr->sh_type);
3089 return -ENOEXEC;
3090 }
3091 }
3092 break;
3093 }
3094 }
3095
3096 return 0;
3097 }
3098
3099 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3100
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)3101 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3102 {
3103 do {
3104 unsigned long n = min(len, COPY_CHUNK_SIZE);
3105
3106 if (copy_from_user(dst, usrc, n) != 0)
3107 return -EFAULT;
3108 cond_resched();
3109 dst += n;
3110 usrc += n;
3111 len -= n;
3112 } while (len);
3113 return 0;
3114 }
3115
3116 #ifdef CONFIG_LIVEPATCH
check_modinfo_livepatch(struct module * mod,struct load_info * info)3117 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3118 {
3119 if (get_modinfo(info, "livepatch")) {
3120 mod->klp = true;
3121 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3122 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3123 mod->name);
3124 }
3125
3126 return 0;
3127 }
3128 #else /* !CONFIG_LIVEPATCH */
check_modinfo_livepatch(struct module * mod,struct load_info * info)3129 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3130 {
3131 if (get_modinfo(info, "livepatch")) {
3132 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3133 mod->name);
3134 return -ENOEXEC;
3135 }
3136
3137 return 0;
3138 }
3139 #endif /* CONFIG_LIVEPATCH */
3140
check_modinfo_retpoline(struct module * mod,struct load_info * info)3141 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3142 {
3143 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3144 return;
3145
3146 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3147 mod->name);
3148 }
3149
3150 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)3151 static int copy_module_from_user(const void __user *umod, unsigned long len,
3152 struct load_info *info)
3153 {
3154 int err;
3155
3156 info->len = len;
3157 if (info->len < sizeof(*(info->hdr)))
3158 return -ENOEXEC;
3159
3160 err = security_kernel_load_data(LOADING_MODULE);
3161 if (err)
3162 return err;
3163
3164 /* Suck in entire file: we'll want most of it. */
3165 info->hdr = __vmalloc(info->len,
3166 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
3167 if (!info->hdr)
3168 return -ENOMEM;
3169
3170 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3171 vfree(info->hdr);
3172 return -EFAULT;
3173 }
3174
3175 return 0;
3176 }
3177
free_copy(struct load_info * info)3178 static void free_copy(struct load_info *info)
3179 {
3180 vfree(info->hdr);
3181 }
3182
rewrite_section_headers(struct load_info * info,int flags)3183 static int rewrite_section_headers(struct load_info *info, int flags)
3184 {
3185 unsigned int i;
3186
3187 /* This should always be true, but let's be sure. */
3188 info->sechdrs[0].sh_addr = 0;
3189
3190 for (i = 1; i < info->hdr->e_shnum; i++) {
3191 Elf_Shdr *shdr = &info->sechdrs[i];
3192
3193 /* Mark all sections sh_addr with their address in the
3194 temporary image. */
3195 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3196
3197 #ifndef CONFIG_MODULE_UNLOAD
3198 /* Don't load .exit sections */
3199 if (module_exit_section(info->secstrings+shdr->sh_name))
3200 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
3201 #endif
3202 }
3203
3204 /* Track but don't keep modinfo and version sections. */
3205 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3206 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3207
3208 return 0;
3209 }
3210
3211 /*
3212 * Set up our basic convenience variables (pointers to section headers,
3213 * search for module section index etc), and do some basic section
3214 * verification.
3215 *
3216 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3217 * will be allocated in move_module().
3218 */
setup_load_info(struct load_info * info,int flags)3219 static int setup_load_info(struct load_info *info, int flags)
3220 {
3221 unsigned int i;
3222
3223 /* Try to find a name early so we can log errors with a module name */
3224 info->index.info = find_sec(info, ".modinfo");
3225 if (info->index.info)
3226 info->name = get_modinfo(info, "name");
3227
3228 /* Find internal symbols and strings. */
3229 for (i = 1; i < info->hdr->e_shnum; i++) {
3230 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3231 info->index.sym = i;
3232 info->index.str = info->sechdrs[i].sh_link;
3233 info->strtab = (char *)info->hdr
3234 + info->sechdrs[info->index.str].sh_offset;
3235 break;
3236 }
3237 }
3238
3239 if (info->index.sym == 0) {
3240 pr_warn("%s: module has no symbols (stripped?)\n",
3241 info->name ?: "(missing .modinfo section or name field)");
3242 return -ENOEXEC;
3243 }
3244
3245 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3246 if (!info->index.mod) {
3247 pr_warn("%s: No module found in object\n",
3248 info->name ?: "(missing .modinfo section or name field)");
3249 return -ENOEXEC;
3250 }
3251 /* This is temporary: point mod into copy of data. */
3252 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3253
3254 /*
3255 * If we didn't load the .modinfo 'name' field earlier, fall back to
3256 * on-disk struct mod 'name' field.
3257 */
3258 if (!info->name)
3259 info->name = info->mod->name;
3260
3261 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3262 info->index.vers = 0; /* Pretend no __versions section! */
3263 else
3264 info->index.vers = find_sec(info, "__versions");
3265
3266 info->index.pcpu = find_pcpusec(info);
3267
3268 return 0;
3269 }
3270
check_modinfo(struct module * mod,struct load_info * info,int flags)3271 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3272 {
3273 const char *modmagic = get_modinfo(info, "vermagic");
3274 int err;
3275
3276 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3277 modmagic = NULL;
3278
3279 /* This is allowed: modprobe --force will invalidate it. */
3280 if (!modmagic) {
3281 err = try_to_force_load(mod, "bad vermagic");
3282 if (err)
3283 return err;
3284 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3285 pr_err("%s: version magic '%s' should be '%s'\n",
3286 info->name, modmagic, vermagic);
3287 return -ENOEXEC;
3288 }
3289
3290 if (!get_modinfo(info, "intree")) {
3291 if (!test_taint(TAINT_OOT_MODULE))
3292 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3293 mod->name);
3294 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3295 }
3296
3297 check_modinfo_retpoline(mod, info);
3298
3299 if (get_modinfo(info, "staging")) {
3300 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3301 pr_warn("%s: module is from the staging directory, the quality "
3302 "is unknown, you have been warned.\n", mod->name);
3303 }
3304
3305 err = check_modinfo_livepatch(mod, info);
3306 if (err)
3307 return err;
3308
3309 /* Set up license info based on the info section */
3310 set_license(mod, get_modinfo(info, "license"));
3311
3312 return 0;
3313 }
3314
find_module_sections(struct module * mod,struct load_info * info)3315 static int find_module_sections(struct module *mod, struct load_info *info)
3316 {
3317 mod->kp = section_objs(info, "__param",
3318 sizeof(*mod->kp), &mod->num_kp);
3319 mod->syms = section_objs(info, "__ksymtab",
3320 sizeof(*mod->syms), &mod->num_syms);
3321 mod->crcs = section_addr(info, "__kcrctab");
3322 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3323 sizeof(*mod->gpl_syms),
3324 &mod->num_gpl_syms);
3325 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3326 mod->gpl_future_syms = section_objs(info,
3327 "__ksymtab_gpl_future",
3328 sizeof(*mod->gpl_future_syms),
3329 &mod->num_gpl_future_syms);
3330 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3331
3332 #ifdef CONFIG_UNUSED_SYMBOLS
3333 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3334 sizeof(*mod->unused_syms),
3335 &mod->num_unused_syms);
3336 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3337 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3338 sizeof(*mod->unused_gpl_syms),
3339 &mod->num_unused_gpl_syms);
3340 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3341 #endif
3342 #ifdef CONFIG_CONSTRUCTORS
3343 mod->ctors = section_objs(info, ".ctors",
3344 sizeof(*mod->ctors), &mod->num_ctors);
3345 if (!mod->ctors)
3346 mod->ctors = section_objs(info, ".init_array",
3347 sizeof(*mod->ctors), &mod->num_ctors);
3348 else if (find_sec(info, ".init_array")) {
3349 /*
3350 * This shouldn't happen with same compiler and binutils
3351 * building all parts of the module.
3352 */
3353 pr_warn("%s: has both .ctors and .init_array.\n",
3354 mod->name);
3355 return -EINVAL;
3356 }
3357 #endif
3358
3359 #ifdef CONFIG_TRACEPOINTS
3360 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3361 sizeof(*mod->tracepoints_ptrs),
3362 &mod->num_tracepoints);
3363 #endif
3364 #ifdef CONFIG_TREE_SRCU
3365 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3366 sizeof(*mod->srcu_struct_ptrs),
3367 &mod->num_srcu_structs);
3368 #endif
3369 #ifdef CONFIG_BPF_EVENTS
3370 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3371 sizeof(*mod->bpf_raw_events),
3372 &mod->num_bpf_raw_events);
3373 #endif
3374 #ifdef CONFIG_JUMP_LABEL
3375 mod->jump_entries = section_objs(info, "__jump_table",
3376 sizeof(*mod->jump_entries),
3377 &mod->num_jump_entries);
3378 #endif
3379 #ifdef CONFIG_EVENT_TRACING
3380 mod->trace_events = section_objs(info, "_ftrace_events",
3381 sizeof(*mod->trace_events),
3382 &mod->num_trace_events);
3383 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3384 sizeof(*mod->trace_evals),
3385 &mod->num_trace_evals);
3386 #endif
3387 #ifdef CONFIG_TRACING
3388 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3389 sizeof(*mod->trace_bprintk_fmt_start),
3390 &mod->num_trace_bprintk_fmt);
3391 #endif
3392 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3393 /* sechdrs[0].sh_size is always zero */
3394 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3395 sizeof(*mod->ftrace_callsites),
3396 &mod->num_ftrace_callsites);
3397 #endif
3398 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3399 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3400 sizeof(*mod->ei_funcs),
3401 &mod->num_ei_funcs);
3402 #endif
3403 mod->extable = section_objs(info, "__ex_table",
3404 sizeof(*mod->extable), &mod->num_exentries);
3405
3406 if (section_addr(info, "__obsparm"))
3407 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3408
3409 info->debug = section_objs(info, "__verbose",
3410 sizeof(*info->debug), &info->num_debug);
3411
3412 return 0;
3413 }
3414
move_module(struct module * mod,struct load_info * info)3415 static int move_module(struct module *mod, struct load_info *info)
3416 {
3417 int i;
3418 void *ptr;
3419
3420 /* Do the allocs. */
3421 ptr = module_alloc(mod->core_layout.size);
3422 /*
3423 * The pointer to this block is stored in the module structure
3424 * which is inside the block. Just mark it as not being a
3425 * leak.
3426 */
3427 kmemleak_not_leak(ptr);
3428 if (!ptr)
3429 return -ENOMEM;
3430
3431 memset(ptr, 0, mod->core_layout.size);
3432 mod->core_layout.base = ptr;
3433
3434 if (mod->init_layout.size) {
3435 ptr = module_alloc(mod->init_layout.size);
3436 /*
3437 * The pointer to this block is stored in the module structure
3438 * which is inside the block. This block doesn't need to be
3439 * scanned as it contains data and code that will be freed
3440 * after the module is initialized.
3441 */
3442 kmemleak_ignore(ptr);
3443 if (!ptr) {
3444 module_memfree(mod->core_layout.base);
3445 return -ENOMEM;
3446 }
3447 memset(ptr, 0, mod->init_layout.size);
3448 mod->init_layout.base = ptr;
3449 } else
3450 mod->init_layout.base = NULL;
3451
3452 /* Transfer each section which specifies SHF_ALLOC */
3453 pr_debug("final section addresses:\n");
3454 for (i = 0; i < info->hdr->e_shnum; i++) {
3455 void *dest;
3456 Elf_Shdr *shdr = &info->sechdrs[i];
3457
3458 if (!(shdr->sh_flags & SHF_ALLOC))
3459 continue;
3460
3461 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3462 dest = mod->init_layout.base
3463 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3464 else
3465 dest = mod->core_layout.base + shdr->sh_entsize;
3466
3467 if (shdr->sh_type != SHT_NOBITS)
3468 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3469 /* Update sh_addr to point to copy in image. */
3470 shdr->sh_addr = (unsigned long)dest;
3471 pr_debug("\t0x%lx %s\n",
3472 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3473 }
3474
3475 return 0;
3476 }
3477
check_module_license_and_versions(struct module * mod)3478 static int check_module_license_and_versions(struct module *mod)
3479 {
3480 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3481
3482 /*
3483 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3484 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3485 * using GPL-only symbols it needs.
3486 */
3487 if (strcmp(mod->name, "ndiswrapper") == 0)
3488 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3489
3490 /* driverloader was caught wrongly pretending to be under GPL */
3491 if (strcmp(mod->name, "driverloader") == 0)
3492 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3493 LOCKDEP_NOW_UNRELIABLE);
3494
3495 /* lve claims to be GPL but upstream won't provide source */
3496 if (strcmp(mod->name, "lve") == 0)
3497 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3498 LOCKDEP_NOW_UNRELIABLE);
3499
3500 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3501 pr_warn("%s: module license taints kernel.\n", mod->name);
3502
3503 #ifdef CONFIG_MODVERSIONS
3504 if ((mod->num_syms && !mod->crcs)
3505 || (mod->num_gpl_syms && !mod->gpl_crcs)
3506 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3507 #ifdef CONFIG_UNUSED_SYMBOLS
3508 || (mod->num_unused_syms && !mod->unused_crcs)
3509 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3510 #endif
3511 ) {
3512 return try_to_force_load(mod,
3513 "no versions for exported symbols");
3514 }
3515 #endif
3516 return 0;
3517 }
3518
flush_module_icache(const struct module * mod)3519 static void flush_module_icache(const struct module *mod)
3520 {
3521 mm_segment_t old_fs;
3522
3523 /* flush the icache in correct context */
3524 old_fs = get_fs();
3525 set_fs(KERNEL_DS);
3526
3527 /*
3528 * Flush the instruction cache, since we've played with text.
3529 * Do it before processing of module parameters, so the module
3530 * can provide parameter accessor functions of its own.
3531 */
3532 if (mod->init_layout.base)
3533 flush_icache_range((unsigned long)mod->init_layout.base,
3534 (unsigned long)mod->init_layout.base
3535 + mod->init_layout.size);
3536 flush_icache_range((unsigned long)mod->core_layout.base,
3537 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3538
3539 set_fs(old_fs);
3540 }
3541
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3542 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3543 Elf_Shdr *sechdrs,
3544 char *secstrings,
3545 struct module *mod)
3546 {
3547 return 0;
3548 }
3549
3550 /* module_blacklist is a comma-separated list of module names */
3551 static char *module_blacklist;
blacklisted(const char * module_name)3552 static bool blacklisted(const char *module_name)
3553 {
3554 const char *p;
3555 size_t len;
3556
3557 if (!module_blacklist)
3558 return false;
3559
3560 for (p = module_blacklist; *p; p += len) {
3561 len = strcspn(p, ",");
3562 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3563 return true;
3564 if (p[len] == ',')
3565 len++;
3566 }
3567 return false;
3568 }
3569 core_param(module_blacklist, module_blacklist, charp, 0400);
3570
layout_and_allocate(struct load_info * info,int flags)3571 static struct module *layout_and_allocate(struct load_info *info, int flags)
3572 {
3573 struct module *mod;
3574 unsigned int ndx;
3575 int err;
3576
3577 err = check_modinfo(info->mod, info, flags);
3578 if (err)
3579 return ERR_PTR(err);
3580
3581 /* Allow arches to frob section contents and sizes. */
3582 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3583 info->secstrings, info->mod);
3584 if (err < 0)
3585 return ERR_PTR(err);
3586
3587 /* We will do a special allocation for per-cpu sections later. */
3588 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3589
3590 /*
3591 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3592 * layout_sections() can put it in the right place.
3593 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3594 */
3595 ndx = find_sec(info, ".data..ro_after_init");
3596 if (ndx)
3597 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3598 /*
3599 * Mark the __jump_table section as ro_after_init as well: these data
3600 * structures are never modified, with the exception of entries that
3601 * refer to code in the __init section, which are annotated as such
3602 * at module load time.
3603 */
3604 ndx = find_sec(info, "__jump_table");
3605 if (ndx)
3606 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3607
3608 /* Determine total sizes, and put offsets in sh_entsize. For now
3609 this is done generically; there doesn't appear to be any
3610 special cases for the architectures. */
3611 layout_sections(info->mod, info);
3612 layout_symtab(info->mod, info);
3613
3614 /* Allocate and move to the final place */
3615 err = move_module(info->mod, info);
3616 if (err)
3617 return ERR_PTR(err);
3618
3619 /* Module has been copied to its final place now: return it. */
3620 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3621 kmemleak_load_module(mod, info);
3622 return mod;
3623 }
3624
3625 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3626 static void module_deallocate(struct module *mod, struct load_info *info)
3627 {
3628 percpu_modfree(mod);
3629 module_arch_freeing_init(mod);
3630 module_memfree(mod->init_layout.base);
3631 module_memfree(mod->core_layout.base);
3632 }
3633
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3634 int __weak module_finalize(const Elf_Ehdr *hdr,
3635 const Elf_Shdr *sechdrs,
3636 struct module *me)
3637 {
3638 return 0;
3639 }
3640
3641 static void cfi_init(struct module *mod);
3642
post_relocation(struct module * mod,const struct load_info * info)3643 static int post_relocation(struct module *mod, const struct load_info *info)
3644 {
3645 /* Sort exception table now relocations are done. */
3646 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3647
3648 /* Copy relocated percpu area over. */
3649 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3650 info->sechdrs[info->index.pcpu].sh_size);
3651
3652 /* Setup kallsyms-specific fields. */
3653 add_kallsyms(mod, info);
3654
3655 /* Setup CFI for the module. */
3656 cfi_init(mod);
3657
3658 /* Arch-specific module finalizing. */
3659 return module_finalize(info->hdr, info->sechdrs, mod);
3660 }
3661
3662 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)3663 static bool finished_loading(const char *name)
3664 {
3665 struct module *mod;
3666 bool ret;
3667
3668 /*
3669 * The module_mutex should not be a heavily contended lock;
3670 * if we get the occasional sleep here, we'll go an extra iteration
3671 * in the wait_event_interruptible(), which is harmless.
3672 */
3673 sched_annotate_sleep();
3674 mutex_lock(&module_mutex);
3675 mod = find_module_all(name, strlen(name), true);
3676 ret = !mod || mod->state == MODULE_STATE_LIVE
3677 || mod->state == MODULE_STATE_GOING;
3678 mutex_unlock(&module_mutex);
3679
3680 return ret;
3681 }
3682
3683 /* Call module constructors. */
do_mod_ctors(struct module * mod)3684 static void do_mod_ctors(struct module *mod)
3685 {
3686 #ifdef CONFIG_CONSTRUCTORS
3687 unsigned long i;
3688
3689 for (i = 0; i < mod->num_ctors; i++)
3690 mod->ctors[i]();
3691 #endif
3692 }
3693
3694 /* For freeing module_init on success, in case kallsyms traversing */
3695 struct mod_initfree {
3696 struct llist_node node;
3697 void *module_init;
3698 };
3699
do_free_init(struct work_struct * w)3700 static void do_free_init(struct work_struct *w)
3701 {
3702 struct llist_node *pos, *n, *list;
3703 struct mod_initfree *initfree;
3704
3705 list = llist_del_all(&init_free_list);
3706
3707 synchronize_rcu();
3708
3709 llist_for_each_safe(pos, n, list) {
3710 initfree = container_of(pos, struct mod_initfree, node);
3711 module_memfree(initfree->module_init);
3712 kfree(initfree);
3713 }
3714 }
3715
3716 /*
3717 * This is where the real work happens.
3718 *
3719 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3720 * helper command 'lx-symbols'.
3721 */
do_init_module(struct module * mod)3722 static noinline int do_init_module(struct module *mod)
3723 {
3724 int ret = 0;
3725 struct mod_initfree *freeinit;
3726
3727 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3728 if (!freeinit) {
3729 ret = -ENOMEM;
3730 goto fail;
3731 }
3732 freeinit->module_init = mod->init_layout.base;
3733
3734 do_mod_ctors(mod);
3735 /* Start the module */
3736 if (mod->init != NULL)
3737 ret = do_one_initcall(mod->init);
3738 if (ret < 0) {
3739 goto fail_free_freeinit;
3740 }
3741 if (ret > 0) {
3742 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3743 "follow 0/-E convention\n"
3744 "%s: loading module anyway...\n",
3745 __func__, mod->name, ret, __func__);
3746 dump_stack();
3747 }
3748
3749 /* Now it's a first class citizen! */
3750 mod->state = MODULE_STATE_LIVE;
3751 blocking_notifier_call_chain(&module_notify_list,
3752 MODULE_STATE_LIVE, mod);
3753
3754 /* Delay uevent until module has finished its init routine */
3755 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3756
3757 /*
3758 * We need to finish all async code before the module init sequence
3759 * is done. This has potential to deadlock if synchronous module
3760 * loading is requested from async (which is not allowed!).
3761 *
3762 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3763 * request_module() from async workers") for more details.
3764 */
3765 if (!mod->async_probe_requested)
3766 async_synchronize_full();
3767
3768 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3769 mod->init_layout.size);
3770 mutex_lock(&module_mutex);
3771 /* Drop initial reference. */
3772 module_put(mod);
3773 trim_init_extable(mod);
3774 #ifdef CONFIG_KALLSYMS
3775 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3776 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3777 #endif
3778 module_enable_ro(mod, true);
3779 mod_tree_remove_init(mod);
3780 module_arch_freeing_init(mod);
3781 mod->init_layout.base = NULL;
3782 mod->init_layout.size = 0;
3783 mod->init_layout.ro_size = 0;
3784 mod->init_layout.ro_after_init_size = 0;
3785 mod->init_layout.text_size = 0;
3786 /*
3787 * We want to free module_init, but be aware that kallsyms may be
3788 * walking this with preempt disabled. In all the failure paths, we
3789 * call synchronize_rcu(), but we don't want to slow down the success
3790 * path. module_memfree() cannot be called in an interrupt, so do the
3791 * work and call synchronize_rcu() in a work queue.
3792 *
3793 * Note that module_alloc() on most architectures creates W+X page
3794 * mappings which won't be cleaned up until do_free_init() runs. Any
3795 * code such as mark_rodata_ro() which depends on those mappings to
3796 * be cleaned up needs to sync with the queued work - ie
3797 * rcu_barrier()
3798 */
3799 if (llist_add(&freeinit->node, &init_free_list))
3800 schedule_work(&init_free_wq);
3801
3802 mutex_unlock(&module_mutex);
3803 wake_up_all(&module_wq);
3804
3805 return 0;
3806
3807 fail_free_freeinit:
3808 kfree(freeinit);
3809 fail:
3810 /* Try to protect us from buggy refcounters. */
3811 mod->state = MODULE_STATE_GOING;
3812 synchronize_rcu();
3813 module_put(mod);
3814 blocking_notifier_call_chain(&module_notify_list,
3815 MODULE_STATE_GOING, mod);
3816 klp_module_going(mod);
3817 ftrace_release_mod(mod);
3818 free_module(mod);
3819 wake_up_all(&module_wq);
3820 return ret;
3821 }
3822
may_init_module(void)3823 static int may_init_module(void)
3824 {
3825 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3826 return -EPERM;
3827
3828 return 0;
3829 }
3830
3831 /*
3832 * We try to place it in the list now to make sure it's unique before
3833 * we dedicate too many resources. In particular, temporary percpu
3834 * memory exhaustion.
3835 */
add_unformed_module(struct module * mod)3836 static int add_unformed_module(struct module *mod)
3837 {
3838 int err;
3839 struct module *old;
3840
3841 mod->state = MODULE_STATE_UNFORMED;
3842
3843 mutex_lock(&module_mutex);
3844 old = find_module_all(mod->name, strlen(mod->name), true);
3845 if (old != NULL) {
3846 if (old->state == MODULE_STATE_COMING
3847 || old->state == MODULE_STATE_UNFORMED) {
3848 /* Wait in case it fails to load. */
3849 mutex_unlock(&module_mutex);
3850 err = wait_event_interruptible(module_wq,
3851 finished_loading(mod->name));
3852 if (err)
3853 goto out_unlocked;
3854
3855 /* The module might have gone in the meantime. */
3856 mutex_lock(&module_mutex);
3857 old = find_module_all(mod->name, strlen(mod->name),
3858 true);
3859 }
3860
3861 /*
3862 * We are here only when the same module was being loaded. Do
3863 * not try to load it again right now. It prevents long delays
3864 * caused by serialized module load failures. It might happen
3865 * when more devices of the same type trigger load of
3866 * a particular module.
3867 */
3868 if (old && old->state == MODULE_STATE_LIVE)
3869 err = -EEXIST;
3870 else
3871 err = -EBUSY;
3872 goto out;
3873 }
3874 mod_update_bounds(mod);
3875 list_add_rcu(&mod->list, &modules);
3876 mod_tree_insert(mod);
3877 err = 0;
3878
3879 out:
3880 mutex_unlock(&module_mutex);
3881 out_unlocked:
3882 return err;
3883 }
3884
complete_formation(struct module * mod,struct load_info * info)3885 static int complete_formation(struct module *mod, struct load_info *info)
3886 {
3887 int err;
3888
3889 mutex_lock(&module_mutex);
3890
3891 /* Find duplicate symbols (must be called under lock). */
3892 err = verify_exported_symbols(mod);
3893 if (err < 0)
3894 goto out;
3895
3896 /* This relies on module_mutex for list integrity. */
3897 module_bug_finalize(info->hdr, info->sechdrs, mod);
3898
3899 module_enable_ro(mod, false);
3900 module_enable_nx(mod);
3901 module_enable_x(mod);
3902
3903 /* Mark state as coming so strong_try_module_get() ignores us,
3904 * but kallsyms etc. can see us. */
3905 mod->state = MODULE_STATE_COMING;
3906 mutex_unlock(&module_mutex);
3907
3908 return 0;
3909
3910 out:
3911 mutex_unlock(&module_mutex);
3912 return err;
3913 }
3914
prepare_coming_module(struct module * mod)3915 static int prepare_coming_module(struct module *mod)
3916 {
3917 int err;
3918
3919 ftrace_module_enable(mod);
3920 err = klp_module_coming(mod);
3921 if (err)
3922 return err;
3923
3924 blocking_notifier_call_chain(&module_notify_list,
3925 MODULE_STATE_COMING, mod);
3926 return 0;
3927 }
3928
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3929 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3930 void *arg)
3931 {
3932 struct module *mod = arg;
3933 int ret;
3934
3935 if (strcmp(param, "async_probe") == 0) {
3936 mod->async_probe_requested = true;
3937 return 0;
3938 }
3939
3940 /* Check for magic 'dyndbg' arg */
3941 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3942 if (ret != 0)
3943 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3944 return 0;
3945 }
3946
3947 /* Allocate and load the module: note that size of section 0 is always
3948 zero, and we rely on this for optional sections. */
load_module(struct load_info * info,const char __user * uargs,int flags)3949 static int load_module(struct load_info *info, const char __user *uargs,
3950 int flags)
3951 {
3952 struct module *mod;
3953 long err = 0;
3954 char *after_dashes;
3955
3956 /*
3957 * Do the signature check (if any) first. All that
3958 * the signature check needs is info->len, it does
3959 * not need any of the section info. That can be
3960 * set up later. This will minimize the chances
3961 * of a corrupt module causing problems before
3962 * we even get to the signature check.
3963 *
3964 * The check will also adjust info->len by stripping
3965 * off the sig length at the end of the module, making
3966 * checks against info->len more correct.
3967 */
3968 err = module_sig_check(info, flags);
3969 if (err)
3970 goto free_copy;
3971
3972 /*
3973 * Do basic sanity checks against the ELF header and
3974 * sections.
3975 */
3976 err = elf_validity_check(info);
3977 if (err) {
3978 pr_err("Module has invalid ELF structures\n");
3979 goto free_copy;
3980 }
3981
3982 /*
3983 * Everything checks out, so set up the section info
3984 * in the info structure.
3985 */
3986 err = setup_load_info(info, flags);
3987 if (err)
3988 goto free_copy;
3989
3990 /*
3991 * Now that we know we have the correct module name, check
3992 * if it's blacklisted.
3993 */
3994 if (blacklisted(info->name)) {
3995 err = -EPERM;
3996 goto free_copy;
3997 }
3998
3999 err = rewrite_section_headers(info, flags);
4000 if (err)
4001 goto free_copy;
4002
4003 /* Check module struct version now, before we try to use module. */
4004 if (!check_modstruct_version(info, info->mod)) {
4005 err = -ENOEXEC;
4006 goto free_copy;
4007 }
4008
4009 /* Figure out module layout, and allocate all the memory. */
4010 mod = layout_and_allocate(info, flags);
4011 if (IS_ERR(mod)) {
4012 err = PTR_ERR(mod);
4013 goto free_copy;
4014 }
4015
4016 audit_log_kern_module(mod->name);
4017
4018 /* Reserve our place in the list. */
4019 err = add_unformed_module(mod);
4020 if (err)
4021 goto free_module;
4022
4023 #ifdef CONFIG_MODULE_SIG
4024 mod->sig_ok = info->sig_ok;
4025 if (!mod->sig_ok) {
4026 pr_notice_once("%s: module verification failed: signature "
4027 "and/or required key missing - tainting "
4028 "kernel\n", mod->name);
4029 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
4030 }
4031 #endif
4032
4033 /* To avoid stressing percpu allocator, do this once we're unique. */
4034 err = percpu_modalloc(mod, info);
4035 if (err)
4036 goto unlink_mod;
4037
4038 /* Now module is in final location, initialize linked lists, etc. */
4039 err = module_unload_init(mod);
4040 if (err)
4041 goto unlink_mod;
4042
4043 init_param_lock(mod);
4044
4045 /* Now we've got everything in the final locations, we can
4046 * find optional sections. */
4047 err = find_module_sections(mod, info);
4048 if (err)
4049 goto free_unload;
4050
4051 err = check_module_license_and_versions(mod);
4052 if (err)
4053 goto free_unload;
4054
4055 /* Set up MODINFO_ATTR fields */
4056 setup_modinfo(mod, info);
4057
4058 /* Fix up syms, so that st_value is a pointer to location. */
4059 err = simplify_symbols(mod, info);
4060 if (err < 0)
4061 goto free_modinfo;
4062
4063 err = apply_relocations(mod, info);
4064 if (err < 0)
4065 goto free_modinfo;
4066
4067 err = post_relocation(mod, info);
4068 if (err < 0)
4069 goto free_modinfo;
4070
4071 flush_module_icache(mod);
4072
4073 /* Now copy in args */
4074 mod->args = strndup_user(uargs, ~0UL >> 1);
4075 if (IS_ERR(mod->args)) {
4076 err = PTR_ERR(mod->args);
4077 goto free_arch_cleanup;
4078 }
4079
4080 dynamic_debug_setup(mod, info->debug, info->num_debug);
4081
4082 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4083 ftrace_module_init(mod);
4084
4085 /* Finally it's fully formed, ready to start executing. */
4086 err = complete_formation(mod, info);
4087 if (err)
4088 goto ddebug_cleanup;
4089
4090 err = prepare_coming_module(mod);
4091 if (err)
4092 goto bug_cleanup;
4093
4094 /* Module is ready to execute: parsing args may do that. */
4095 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4096 -32768, 32767, mod,
4097 unknown_module_param_cb);
4098 if (IS_ERR(after_dashes)) {
4099 err = PTR_ERR(after_dashes);
4100 goto coming_cleanup;
4101 } else if (after_dashes) {
4102 pr_warn("%s: parameters '%s' after `--' ignored\n",
4103 mod->name, after_dashes);
4104 }
4105
4106 /* Link in to sysfs. */
4107 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4108 if (err < 0)
4109 goto coming_cleanup;
4110
4111 if (is_livepatch_module(mod)) {
4112 err = copy_module_elf(mod, info);
4113 if (err < 0)
4114 goto sysfs_cleanup;
4115 }
4116
4117 /* Get rid of temporary copy. */
4118 free_copy(info);
4119
4120 /* Done! */
4121 trace_module_load(mod);
4122
4123 return do_init_module(mod);
4124
4125 sysfs_cleanup:
4126 mod_sysfs_teardown(mod);
4127 coming_cleanup:
4128 mod->state = MODULE_STATE_GOING;
4129 destroy_params(mod->kp, mod->num_kp);
4130 blocking_notifier_call_chain(&module_notify_list,
4131 MODULE_STATE_GOING, mod);
4132 klp_module_going(mod);
4133 bug_cleanup:
4134 mod->state = MODULE_STATE_GOING;
4135 /* module_bug_cleanup needs module_mutex protection */
4136 mutex_lock(&module_mutex);
4137 module_bug_cleanup(mod);
4138 mutex_unlock(&module_mutex);
4139
4140 ddebug_cleanup:
4141 /* Clean up CFI for the module. */
4142 cfi_cleanup(mod);
4143 ftrace_release_mod(mod);
4144 dynamic_debug_remove(mod, info->debug);
4145 synchronize_rcu();
4146 kfree(mod->args);
4147 free_arch_cleanup:
4148 module_arch_cleanup(mod);
4149 free_modinfo:
4150 free_modinfo(mod);
4151 free_unload:
4152 module_unload_free(mod);
4153 unlink_mod:
4154 mutex_lock(&module_mutex);
4155 /* Unlink carefully: kallsyms could be walking list. */
4156 list_del_rcu(&mod->list);
4157 mod_tree_remove(mod);
4158 wake_up_all(&module_wq);
4159 /* Wait for RCU-sched synchronizing before releasing mod->list. */
4160 synchronize_rcu();
4161 mutex_unlock(&module_mutex);
4162 free_module:
4163 /* Free lock-classes; relies on the preceding sync_rcu() */
4164 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4165
4166 module_deallocate(mod, info);
4167 free_copy:
4168 free_copy(info);
4169 return err;
4170 }
4171
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)4172 SYSCALL_DEFINE3(init_module, void __user *, umod,
4173 unsigned long, len, const char __user *, uargs)
4174 {
4175 int err;
4176 struct load_info info = { };
4177
4178 err = may_init_module();
4179 if (err)
4180 return err;
4181
4182 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4183 umod, len, uargs);
4184
4185 err = copy_module_from_user(umod, len, &info);
4186 if (err)
4187 return err;
4188
4189 return load_module(&info, uargs, 0);
4190 }
4191
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)4192 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4193 {
4194 struct load_info info = { };
4195 loff_t size;
4196 void *hdr;
4197 int err;
4198
4199 err = may_init_module();
4200 if (err)
4201 return err;
4202
4203 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4204
4205 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4206 |MODULE_INIT_IGNORE_VERMAGIC))
4207 return -EINVAL;
4208
4209 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
4210 READING_MODULE);
4211 if (err)
4212 return err;
4213 info.hdr = hdr;
4214 info.len = size;
4215
4216 return load_module(&info, uargs, flags);
4217 }
4218
within(unsigned long addr,void * start,unsigned long size)4219 static inline int within(unsigned long addr, void *start, unsigned long size)
4220 {
4221 return ((void *)addr >= start && (void *)addr < start + size);
4222 }
4223
4224 #ifdef CONFIG_KALLSYMS
4225 /*
4226 * This ignores the intensely annoying "mapping symbols" found
4227 * in ARM ELF files: $a, $t and $d.
4228 */
is_arm_mapping_symbol(const char * str)4229 static inline int is_arm_mapping_symbol(const char *str)
4230 {
4231 if (str[0] == '.' && str[1] == 'L')
4232 return true;
4233 return str[0] == '$' && strchr("axtd", str[1])
4234 && (str[2] == '\0' || str[2] == '.');
4235 }
4236
kallsyms_symbol_name(struct mod_kallsyms * kallsyms,unsigned int symnum)4237 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4238 {
4239 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4240 }
4241
4242 /*
4243 * Given a module and address, find the corresponding symbol and return its name
4244 * while providing its size and offset if needed.
4245 */
find_kallsyms_symbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)4246 static const char *find_kallsyms_symbol(struct module *mod,
4247 unsigned long addr,
4248 unsigned long *size,
4249 unsigned long *offset)
4250 {
4251 unsigned int i, best = 0;
4252 unsigned long nextval, bestval;
4253 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4254
4255 /* At worse, next value is at end of module */
4256 if (within_module_init(addr, mod))
4257 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4258 else
4259 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4260
4261 bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4262
4263 /* Scan for closest preceding symbol, and next symbol. (ELF
4264 starts real symbols at 1). */
4265 for (i = 1; i < kallsyms->num_symtab; i++) {
4266 const Elf_Sym *sym = &kallsyms->symtab[i];
4267 unsigned long thisval = kallsyms_symbol_value(sym);
4268
4269 if (sym->st_shndx == SHN_UNDEF)
4270 continue;
4271
4272 /* We ignore unnamed symbols: they're uninformative
4273 * and inserted at a whim. */
4274 if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4275 || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4276 continue;
4277
4278 if (thisval <= addr && thisval > bestval) {
4279 best = i;
4280 bestval = thisval;
4281 }
4282 if (thisval > addr && thisval < nextval)
4283 nextval = thisval;
4284 }
4285
4286 if (!best)
4287 return NULL;
4288
4289 if (size)
4290 *size = nextval - bestval;
4291 if (offset)
4292 *offset = addr - bestval;
4293
4294 return kallsyms_symbol_name(kallsyms, best);
4295 }
4296
dereference_module_function_descriptor(struct module * mod,void * ptr)4297 void * __weak dereference_module_function_descriptor(struct module *mod,
4298 void *ptr)
4299 {
4300 return ptr;
4301 }
4302
4303 /* For kallsyms to ask for address resolution. NULL means not found. Careful
4304 * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)4305 const char *module_address_lookup(unsigned long addr,
4306 unsigned long *size,
4307 unsigned long *offset,
4308 char **modname,
4309 char *namebuf)
4310 {
4311 const char *ret = NULL;
4312 struct module *mod;
4313
4314 preempt_disable();
4315 mod = __module_address(addr);
4316 if (mod) {
4317 if (modname)
4318 *modname = mod->name;
4319
4320 ret = find_kallsyms_symbol(mod, addr, size, offset);
4321 }
4322 /* Make a copy in here where it's safe */
4323 if (ret) {
4324 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4325 ret = namebuf;
4326 }
4327 preempt_enable();
4328
4329 return ret;
4330 }
4331
lookup_module_symbol_name(unsigned long addr,char * symname)4332 int lookup_module_symbol_name(unsigned long addr, char *symname)
4333 {
4334 struct module *mod;
4335
4336 preempt_disable();
4337 list_for_each_entry_rcu(mod, &modules, list) {
4338 if (mod->state == MODULE_STATE_UNFORMED)
4339 continue;
4340 if (within_module(addr, mod)) {
4341 const char *sym;
4342
4343 sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4344 if (!sym)
4345 goto out;
4346
4347 strlcpy(symname, sym, KSYM_NAME_LEN);
4348 preempt_enable();
4349 return 0;
4350 }
4351 }
4352 out:
4353 preempt_enable();
4354 return -ERANGE;
4355 }
4356
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)4357 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4358 unsigned long *offset, char *modname, char *name)
4359 {
4360 struct module *mod;
4361
4362 preempt_disable();
4363 list_for_each_entry_rcu(mod, &modules, list) {
4364 if (mod->state == MODULE_STATE_UNFORMED)
4365 continue;
4366 if (within_module(addr, mod)) {
4367 const char *sym;
4368
4369 sym = find_kallsyms_symbol(mod, addr, size, offset);
4370 if (!sym)
4371 goto out;
4372 if (modname)
4373 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4374 if (name)
4375 strlcpy(name, sym, KSYM_NAME_LEN);
4376 preempt_enable();
4377 return 0;
4378 }
4379 }
4380 out:
4381 preempt_enable();
4382 return -ERANGE;
4383 }
4384
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)4385 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4386 char *name, char *module_name, int *exported)
4387 {
4388 struct module *mod;
4389
4390 preempt_disable();
4391 list_for_each_entry_rcu(mod, &modules, list) {
4392 struct mod_kallsyms *kallsyms;
4393
4394 if (mod->state == MODULE_STATE_UNFORMED)
4395 continue;
4396 kallsyms = rcu_dereference_sched(mod->kallsyms);
4397 if (symnum < kallsyms->num_symtab) {
4398 const Elf_Sym *sym = &kallsyms->symtab[symnum];
4399
4400 *value = kallsyms_symbol_value(sym);
4401 *type = kallsyms->typetab[symnum];
4402 strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4403 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4404 *exported = is_exported(name, *value, mod);
4405 preempt_enable();
4406 return 0;
4407 }
4408 symnum -= kallsyms->num_symtab;
4409 }
4410 preempt_enable();
4411 return -ERANGE;
4412 }
4413
4414 /* Given a module and name of symbol, find and return the symbol's value */
find_kallsyms_symbol_value(struct module * mod,const char * name)4415 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4416 {
4417 unsigned int i;
4418 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4419
4420 for (i = 0; i < kallsyms->num_symtab; i++) {
4421 const Elf_Sym *sym = &kallsyms->symtab[i];
4422
4423 if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4424 sym->st_shndx != SHN_UNDEF)
4425 return kallsyms_symbol_value(sym);
4426 }
4427 return 0;
4428 }
4429
4430 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)4431 unsigned long module_kallsyms_lookup_name(const char *name)
4432 {
4433 struct module *mod;
4434 char *colon;
4435 unsigned long ret = 0;
4436
4437 /* Don't lock: we're in enough trouble already. */
4438 preempt_disable();
4439 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4440 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4441 ret = find_kallsyms_symbol_value(mod, colon+1);
4442 } else {
4443 list_for_each_entry_rcu(mod, &modules, list) {
4444 if (mod->state == MODULE_STATE_UNFORMED)
4445 continue;
4446 if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4447 break;
4448 }
4449 }
4450 preempt_enable();
4451 return ret;
4452 }
4453
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)4454 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4455 struct module *, unsigned long),
4456 void *data)
4457 {
4458 struct module *mod;
4459 unsigned int i;
4460 int ret;
4461
4462 module_assert_mutex();
4463
4464 list_for_each_entry(mod, &modules, list) {
4465 /* We hold module_mutex: no need for rcu_dereference_sched */
4466 struct mod_kallsyms *kallsyms = mod->kallsyms;
4467
4468 if (mod->state == MODULE_STATE_UNFORMED)
4469 continue;
4470 for (i = 0; i < kallsyms->num_symtab; i++) {
4471 const Elf_Sym *sym = &kallsyms->symtab[i];
4472
4473 if (sym->st_shndx == SHN_UNDEF)
4474 continue;
4475
4476 ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4477 mod, kallsyms_symbol_value(sym));
4478 if (ret != 0)
4479 return ret;
4480 }
4481 }
4482 return 0;
4483 }
4484 #endif /* CONFIG_KALLSYMS */
4485
cfi_init(struct module * mod)4486 static void cfi_init(struct module *mod)
4487 {
4488 #ifdef CONFIG_CFI_CLANG
4489 rcu_read_lock_sched();
4490 mod->cfi_check = (cfi_check_fn)find_kallsyms_symbol_value(mod,
4491 CFI_CHECK_FN_NAME);
4492 rcu_read_unlock_sched();
4493 cfi_module_add(mod, module_addr_min, module_addr_max);
4494 #endif
4495 }
4496
cfi_cleanup(struct module * mod)4497 static void cfi_cleanup(struct module *mod)
4498 {
4499 #ifdef CONFIG_CFI_CLANG
4500 cfi_module_remove(mod, module_addr_min, module_addr_max);
4501 #endif
4502 }
4503
4504 /* Maximum number of characters written by module_flags() */
4505 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4506
4507 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf)4508 static char *module_flags(struct module *mod, char *buf)
4509 {
4510 int bx = 0;
4511
4512 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4513 if (mod->taints ||
4514 mod->state == MODULE_STATE_GOING ||
4515 mod->state == MODULE_STATE_COMING) {
4516 buf[bx++] = '(';
4517 bx += module_flags_taint(mod, buf + bx);
4518 /* Show a - for module-is-being-unloaded */
4519 if (mod->state == MODULE_STATE_GOING)
4520 buf[bx++] = '-';
4521 /* Show a + for module-is-being-loaded */
4522 if (mod->state == MODULE_STATE_COMING)
4523 buf[bx++] = '+';
4524 buf[bx++] = ')';
4525 }
4526 buf[bx] = '\0';
4527
4528 return buf;
4529 }
4530
4531 #ifdef CONFIG_PROC_FS
4532 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)4533 static void *m_start(struct seq_file *m, loff_t *pos)
4534 {
4535 mutex_lock(&module_mutex);
4536 return seq_list_start(&modules, *pos);
4537 }
4538
m_next(struct seq_file * m,void * p,loff_t * pos)4539 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4540 {
4541 return seq_list_next(p, &modules, pos);
4542 }
4543
m_stop(struct seq_file * m,void * p)4544 static void m_stop(struct seq_file *m, void *p)
4545 {
4546 mutex_unlock(&module_mutex);
4547 }
4548
m_show(struct seq_file * m,void * p)4549 static int m_show(struct seq_file *m, void *p)
4550 {
4551 struct module *mod = list_entry(p, struct module, list);
4552 char buf[MODULE_FLAGS_BUF_SIZE];
4553 void *value;
4554
4555 /* We always ignore unformed modules. */
4556 if (mod->state == MODULE_STATE_UNFORMED)
4557 return 0;
4558
4559 seq_printf(m, "%s %u",
4560 mod->name, mod->init_layout.size + mod->core_layout.size);
4561 print_unload_info(m, mod);
4562
4563 /* Informative for users. */
4564 seq_printf(m, " %s",
4565 mod->state == MODULE_STATE_GOING ? "Unloading" :
4566 mod->state == MODULE_STATE_COMING ? "Loading" :
4567 "Live");
4568 /* Used by oprofile and other similar tools. */
4569 value = m->private ? NULL : mod->core_layout.base;
4570 seq_printf(m, " 0x%px", value);
4571
4572 /* Taints info */
4573 if (mod->taints)
4574 seq_printf(m, " %s", module_flags(mod, buf));
4575
4576 seq_puts(m, "\n");
4577 return 0;
4578 }
4579
4580 /* Format: modulename size refcount deps address
4581
4582 Where refcount is a number or -, and deps is a comma-separated list
4583 of depends or -.
4584 */
4585 static const struct seq_operations modules_op = {
4586 .start = m_start,
4587 .next = m_next,
4588 .stop = m_stop,
4589 .show = m_show
4590 };
4591
4592 /*
4593 * This also sets the "private" pointer to non-NULL if the
4594 * kernel pointers should be hidden (so you can just test
4595 * "m->private" to see if you should keep the values private).
4596 *
4597 * We use the same logic as for /proc/kallsyms.
4598 */
modules_open(struct inode * inode,struct file * file)4599 static int modules_open(struct inode *inode, struct file *file)
4600 {
4601 int err = seq_open(file, &modules_op);
4602
4603 if (!err) {
4604 struct seq_file *m = file->private_data;
4605 m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4606 }
4607
4608 return err;
4609 }
4610
4611 static const struct file_operations proc_modules_operations = {
4612 .open = modules_open,
4613 .read = seq_read,
4614 .llseek = seq_lseek,
4615 .release = seq_release,
4616 };
4617
proc_modules_init(void)4618 static int __init proc_modules_init(void)
4619 {
4620 proc_create("modules", 0, NULL, &proc_modules_operations);
4621 return 0;
4622 }
4623 module_init(proc_modules_init);
4624 #endif
4625
4626 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)4627 const struct exception_table_entry *search_module_extables(unsigned long addr)
4628 {
4629 const struct exception_table_entry *e = NULL;
4630 struct module *mod;
4631
4632 preempt_disable();
4633 mod = __module_address(addr);
4634 if (!mod)
4635 goto out;
4636
4637 if (!mod->num_exentries)
4638 goto out;
4639
4640 e = search_extable(mod->extable,
4641 mod->num_exentries,
4642 addr);
4643 out:
4644 preempt_enable();
4645
4646 /*
4647 * Now, if we found one, we are running inside it now, hence
4648 * we cannot unload the module, hence no refcnt needed.
4649 */
4650 return e;
4651 }
4652
4653 /*
4654 * is_module_address - is this address inside a module?
4655 * @addr: the address to check.
4656 *
4657 * See is_module_text_address() if you simply want to see if the address
4658 * is code (not data).
4659 */
is_module_address(unsigned long addr)4660 bool is_module_address(unsigned long addr)
4661 {
4662 bool ret;
4663
4664 preempt_disable();
4665 ret = __module_address(addr) != NULL;
4666 preempt_enable();
4667
4668 return ret;
4669 }
4670
4671 /*
4672 * __module_address - get the module which contains an address.
4673 * @addr: the address.
4674 *
4675 * Must be called with preempt disabled or module mutex held so that
4676 * module doesn't get freed during this.
4677 */
__module_address(unsigned long addr)4678 struct module *__module_address(unsigned long addr)
4679 {
4680 struct module *mod;
4681
4682 if (addr < module_addr_min || addr > module_addr_max)
4683 return NULL;
4684
4685 module_assert_mutex_or_preempt();
4686
4687 mod = mod_find(addr);
4688 if (mod) {
4689 BUG_ON(!within_module(addr, mod));
4690 if (mod->state == MODULE_STATE_UNFORMED)
4691 mod = NULL;
4692 }
4693 return mod;
4694 }
4695
4696 /*
4697 * is_module_text_address - is this address inside module code?
4698 * @addr: the address to check.
4699 *
4700 * See is_module_address() if you simply want to see if the address is
4701 * anywhere in a module. See kernel_text_address() for testing if an
4702 * address corresponds to kernel or module code.
4703 */
is_module_text_address(unsigned long addr)4704 bool is_module_text_address(unsigned long addr)
4705 {
4706 bool ret;
4707
4708 preempt_disable();
4709 ret = __module_text_address(addr) != NULL;
4710 preempt_enable();
4711
4712 return ret;
4713 }
4714
4715 /*
4716 * __module_text_address - get the module whose code contains an address.
4717 * @addr: the address.
4718 *
4719 * Must be called with preempt disabled or module mutex held so that
4720 * module doesn't get freed during this.
4721 */
__module_text_address(unsigned long addr)4722 struct module *__module_text_address(unsigned long addr)
4723 {
4724 struct module *mod = __module_address(addr);
4725 if (mod) {
4726 /* Make sure it's within the text section. */
4727 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4728 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4729 mod = NULL;
4730 }
4731 return mod;
4732 }
4733
4734 /* Don't grab lock, we're oopsing. */
print_modules(void)4735 void print_modules(void)
4736 {
4737 struct module *mod;
4738 char buf[MODULE_FLAGS_BUF_SIZE];
4739
4740 printk(KERN_DEFAULT "Modules linked in:");
4741 /* Most callers should already have preempt disabled, but make sure */
4742 preempt_disable();
4743 list_for_each_entry_rcu(mod, &modules, list) {
4744 if (mod->state == MODULE_STATE_UNFORMED)
4745 continue;
4746 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4747 }
4748 preempt_enable();
4749 if (last_unloaded_module[0])
4750 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4751 pr_cont("\n");
4752 }
4753
4754 #ifdef CONFIG_MODVERSIONS
4755 /* Generate the signature for all relevant module structures here.
4756 * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4757 void module_layout(struct module *mod,
4758 struct modversion_info *ver,
4759 struct kernel_param *kp,
4760 struct kernel_symbol *ks,
4761 struct tracepoint * const *tp)
4762 {
4763 }
4764 EXPORT_SYMBOL(module_layout);
4765 #endif
4766