1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/locking/mutex.c
4 *
5 * Mutexes: blocking mutual exclusion locks
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 *
11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12 * David Howells for suggestions and improvements.
13 *
14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15 * from the -rt tree, where it was originally implemented for rtmutexes
16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17 * and Sven Dietrich.
18 *
19 * Also see Documentation/locking/mutex-design.rst.
20 */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
35 #else
36 # include "mutex.h"
37 #endif
38
39 #include <trace/hooks/dtask.h>
40
41 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)42 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
43 {
44 atomic_long_set(&lock->owner, 0);
45 spin_lock_init(&lock->wait_lock);
46 INIT_LIST_HEAD(&lock->wait_list);
47 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
48 osq_lock_init(&lock->osq);
49 #endif
50
51 debug_mutex_init(lock, name, key);
52 }
53 EXPORT_SYMBOL(__mutex_init);
54
55 /*
56 * @owner: contains: 'struct task_struct *' to the current lock owner,
57 * NULL means not owned. Since task_struct pointers are aligned at
58 * at least L1_CACHE_BYTES, we have low bits to store extra state.
59 *
60 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
61 * Bit1 indicates unlock needs to hand the lock to the top-waiter
62 * Bit2 indicates handoff has been done and we're waiting for pickup.
63 */
64 #define MUTEX_FLAG_WAITERS 0x01
65 #define MUTEX_FLAG_HANDOFF 0x02
66 #define MUTEX_FLAG_PICKUP 0x04
67
68 #define MUTEX_FLAGS 0x07
69
70 /*
71 * Internal helper function; C doesn't allow us to hide it :/
72 *
73 * DO NOT USE (outside of mutex code).
74 */
__mutex_owner(struct mutex * lock)75 static inline struct task_struct *__mutex_owner(struct mutex *lock)
76 {
77 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
78 }
79
__owner_task(unsigned long owner)80 static inline struct task_struct *__owner_task(unsigned long owner)
81 {
82 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
83 }
84
mutex_is_locked(struct mutex * lock)85 bool mutex_is_locked(struct mutex *lock)
86 {
87 return __mutex_owner(lock) != NULL;
88 }
89 EXPORT_SYMBOL(mutex_is_locked);
90
91 __must_check enum mutex_trylock_recursive_enum
mutex_trylock_recursive(struct mutex * lock)92 mutex_trylock_recursive(struct mutex *lock)
93 {
94 if (unlikely(__mutex_owner(lock) == current))
95 return MUTEX_TRYLOCK_RECURSIVE;
96
97 return mutex_trylock(lock);
98 }
99 EXPORT_SYMBOL(mutex_trylock_recursive);
100
__owner_flags(unsigned long owner)101 static inline unsigned long __owner_flags(unsigned long owner)
102 {
103 return owner & MUTEX_FLAGS;
104 }
105
106 /*
107 * Trylock variant that retuns the owning task on failure.
108 */
__mutex_trylock_or_owner(struct mutex * lock)109 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
110 {
111 unsigned long owner, curr = (unsigned long)current;
112
113 owner = atomic_long_read(&lock->owner);
114 for (;;) { /* must loop, can race against a flag */
115 unsigned long old, flags = __owner_flags(owner);
116 unsigned long task = owner & ~MUTEX_FLAGS;
117
118 if (task) {
119 if (likely(task != curr))
120 break;
121
122 if (likely(!(flags & MUTEX_FLAG_PICKUP)))
123 break;
124
125 flags &= ~MUTEX_FLAG_PICKUP;
126 } else {
127 #ifdef CONFIG_DEBUG_MUTEXES
128 DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
129 #endif
130 }
131
132 /*
133 * We set the HANDOFF bit, we must make sure it doesn't live
134 * past the point where we acquire it. This would be possible
135 * if we (accidentally) set the bit on an unlocked mutex.
136 */
137 flags &= ~MUTEX_FLAG_HANDOFF;
138
139 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
140 if (old == owner)
141 return NULL;
142
143 owner = old;
144 }
145
146 return __owner_task(owner);
147 }
148
149 /*
150 * Actual trylock that will work on any unlocked state.
151 */
__mutex_trylock(struct mutex * lock)152 static inline bool __mutex_trylock(struct mutex *lock)
153 {
154 return !__mutex_trylock_or_owner(lock);
155 }
156
157 #ifndef CONFIG_DEBUG_LOCK_ALLOC
158 /*
159 * Lockdep annotations are contained to the slow paths for simplicity.
160 * There is nothing that would stop spreading the lockdep annotations outwards
161 * except more code.
162 */
163
164 /*
165 * Optimistic trylock that only works in the uncontended case. Make sure to
166 * follow with a __mutex_trylock() before failing.
167 */
__mutex_trylock_fast(struct mutex * lock)168 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
169 {
170 unsigned long curr = (unsigned long)current;
171 unsigned long zero = 0UL;
172
173 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
174 return true;
175
176 return false;
177 }
178
__mutex_unlock_fast(struct mutex * lock)179 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
180 {
181 unsigned long curr = (unsigned long)current;
182
183 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
184 return true;
185
186 return false;
187 }
188 #endif
189
__mutex_set_flag(struct mutex * lock,unsigned long flag)190 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
191 {
192 atomic_long_or(flag, &lock->owner);
193 }
194
__mutex_clear_flag(struct mutex * lock,unsigned long flag)195 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
196 {
197 atomic_long_andnot(flag, &lock->owner);
198 }
199
__mutex_waiter_is_first(struct mutex * lock,struct mutex_waiter * waiter)200 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
201 {
202 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
203 }
204
205 /*
206 * Add @waiter to a given location in the lock wait_list and set the
207 * FLAG_WAITERS flag if it's the first waiter.
208 */
209 static void
__mutex_add_waiter(struct mutex * lock,struct mutex_waiter * waiter,struct list_head * list)210 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
211 struct list_head *list)
212 {
213 debug_mutex_add_waiter(lock, waiter, current);
214
215 list_add_tail(&waiter->list, list);
216 if (__mutex_waiter_is_first(lock, waiter))
217 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
218 }
219
220 static void
__mutex_remove_waiter(struct mutex * lock,struct mutex_waiter * waiter)221 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
222 {
223 list_del(&waiter->list);
224 if (likely(list_empty(&lock->wait_list)))
225 __mutex_clear_flag(lock, MUTEX_FLAGS);
226
227 debug_mutex_remove_waiter(lock, waiter, current);
228 }
229
230 /*
231 * Give up ownership to a specific task, when @task = NULL, this is equivalent
232 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
233 * WAITERS. Provides RELEASE semantics like a regular unlock, the
234 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
235 */
__mutex_handoff(struct mutex * lock,struct task_struct * task)236 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
237 {
238 unsigned long owner = atomic_long_read(&lock->owner);
239
240 for (;;) {
241 unsigned long old, new;
242
243 #ifdef CONFIG_DEBUG_MUTEXES
244 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
245 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
246 #endif
247
248 new = (owner & MUTEX_FLAG_WAITERS);
249 new |= (unsigned long)task;
250 if (task)
251 new |= MUTEX_FLAG_PICKUP;
252
253 old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
254 if (old == owner)
255 break;
256
257 owner = old;
258 }
259 }
260
261 #ifndef CONFIG_DEBUG_LOCK_ALLOC
262 /*
263 * We split the mutex lock/unlock logic into separate fastpath and
264 * slowpath functions, to reduce the register pressure on the fastpath.
265 * We also put the fastpath first in the kernel image, to make sure the
266 * branch is predicted by the CPU as default-untaken.
267 */
268 static void __sched __mutex_lock_slowpath(struct mutex *lock);
269
270 /**
271 * mutex_lock - acquire the mutex
272 * @lock: the mutex to be acquired
273 *
274 * Lock the mutex exclusively for this task. If the mutex is not
275 * available right now, it will sleep until it can get it.
276 *
277 * The mutex must later on be released by the same task that
278 * acquired it. Recursive locking is not allowed. The task
279 * may not exit without first unlocking the mutex. Also, kernel
280 * memory where the mutex resides must not be freed with
281 * the mutex still locked. The mutex must first be initialized
282 * (or statically defined) before it can be locked. memset()-ing
283 * the mutex to 0 is not allowed.
284 *
285 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
286 * checks that will enforce the restrictions and will also do
287 * deadlock debugging)
288 *
289 * This function is similar to (but not equivalent to) down().
290 */
mutex_lock(struct mutex * lock)291 void __sched mutex_lock(struct mutex *lock)
292 {
293 might_sleep();
294
295 if (!__mutex_trylock_fast(lock))
296 __mutex_lock_slowpath(lock);
297 }
298 EXPORT_SYMBOL(mutex_lock);
299 #endif
300
301 /*
302 * Wait-Die:
303 * The newer transactions are killed when:
304 * It (the new transaction) makes a request for a lock being held
305 * by an older transaction.
306 *
307 * Wound-Wait:
308 * The newer transactions are wounded when:
309 * An older transaction makes a request for a lock being held by
310 * the newer transaction.
311 */
312
313 /*
314 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
315 * it.
316 */
317 static __always_inline void
ww_mutex_lock_acquired(struct ww_mutex * ww,struct ww_acquire_ctx * ww_ctx)318 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
319 {
320 #ifdef CONFIG_DEBUG_MUTEXES
321 /*
322 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
323 * but released with a normal mutex_unlock in this call.
324 *
325 * This should never happen, always use ww_mutex_unlock.
326 */
327 DEBUG_LOCKS_WARN_ON(ww->ctx);
328
329 /*
330 * Not quite done after calling ww_acquire_done() ?
331 */
332 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
333
334 if (ww_ctx->contending_lock) {
335 /*
336 * After -EDEADLK you tried to
337 * acquire a different ww_mutex? Bad!
338 */
339 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
340
341 /*
342 * You called ww_mutex_lock after receiving -EDEADLK,
343 * but 'forgot' to unlock everything else first?
344 */
345 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
346 ww_ctx->contending_lock = NULL;
347 }
348
349 /*
350 * Naughty, using a different class will lead to undefined behavior!
351 */
352 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
353 #endif
354 ww_ctx->acquired++;
355 ww->ctx = ww_ctx;
356 }
357
358 /*
359 * Determine if context @a is 'after' context @b. IOW, @a is a younger
360 * transaction than @b and depending on algorithm either needs to wait for
361 * @b or die.
362 */
363 static inline bool __sched
__ww_ctx_stamp_after(struct ww_acquire_ctx * a,struct ww_acquire_ctx * b)364 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
365 {
366
367 return (signed long)(a->stamp - b->stamp) > 0;
368 }
369
370 /*
371 * Wait-Die; wake a younger waiter context (when locks held) such that it can
372 * die.
373 *
374 * Among waiters with context, only the first one can have other locks acquired
375 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
376 * __ww_mutex_check_kill() wake any but the earliest context.
377 */
378 static bool __sched
__ww_mutex_die(struct mutex * lock,struct mutex_waiter * waiter,struct ww_acquire_ctx * ww_ctx)379 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
380 struct ww_acquire_ctx *ww_ctx)
381 {
382 if (!ww_ctx->is_wait_die)
383 return false;
384
385 if (waiter->ww_ctx->acquired > 0 &&
386 __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
387 debug_mutex_wake_waiter(lock, waiter);
388 wake_up_process(waiter->task);
389 }
390
391 return true;
392 }
393
394 /*
395 * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
396 *
397 * Wound the lock holder if there are waiters with older transactions than
398 * the lock holders. Even if multiple waiters may wound the lock holder,
399 * it's sufficient that only one does.
400 */
__ww_mutex_wound(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct ww_acquire_ctx * hold_ctx)401 static bool __ww_mutex_wound(struct mutex *lock,
402 struct ww_acquire_ctx *ww_ctx,
403 struct ww_acquire_ctx *hold_ctx)
404 {
405 struct task_struct *owner = __mutex_owner(lock);
406
407 lockdep_assert_held(&lock->wait_lock);
408
409 /*
410 * Possible through __ww_mutex_add_waiter() when we race with
411 * ww_mutex_set_context_fastpath(). In that case we'll get here again
412 * through __ww_mutex_check_waiters().
413 */
414 if (!hold_ctx)
415 return false;
416
417 /*
418 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
419 * it cannot go away because we'll have FLAG_WAITERS set and hold
420 * wait_lock.
421 */
422 if (!owner)
423 return false;
424
425 if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
426 hold_ctx->wounded = 1;
427
428 /*
429 * wake_up_process() paired with set_current_state()
430 * inserts sufficient barriers to make sure @owner either sees
431 * it's wounded in __ww_mutex_check_kill() or has a
432 * wakeup pending to re-read the wounded state.
433 */
434 if (owner != current)
435 wake_up_process(owner);
436
437 return true;
438 }
439
440 return false;
441 }
442
443 /*
444 * We just acquired @lock under @ww_ctx, if there are later contexts waiting
445 * behind us on the wait-list, check if they need to die, or wound us.
446 *
447 * See __ww_mutex_add_waiter() for the list-order construction; basically the
448 * list is ordered by stamp, smallest (oldest) first.
449 *
450 * This relies on never mixing wait-die/wound-wait on the same wait-list;
451 * which is currently ensured by that being a ww_class property.
452 *
453 * The current task must not be on the wait list.
454 */
455 static void __sched
__ww_mutex_check_waiters(struct mutex * lock,struct ww_acquire_ctx * ww_ctx)456 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
457 {
458 struct mutex_waiter *cur;
459
460 lockdep_assert_held(&lock->wait_lock);
461
462 list_for_each_entry(cur, &lock->wait_list, list) {
463 if (!cur->ww_ctx)
464 continue;
465
466 if (__ww_mutex_die(lock, cur, ww_ctx) ||
467 __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
468 break;
469 }
470 }
471
472 /*
473 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
474 * and wake up any waiters so they can recheck.
475 */
476 static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)477 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
478 {
479 ww_mutex_lock_acquired(lock, ctx);
480
481 /*
482 * The lock->ctx update should be visible on all cores before
483 * the WAITERS check is done, otherwise contended waiters might be
484 * missed. The contended waiters will either see ww_ctx == NULL
485 * and keep spinning, or it will acquire wait_lock, add itself
486 * to waiter list and sleep.
487 */
488 smp_mb(); /* See comments above and below. */
489
490 /*
491 * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS
492 * MB MB
493 * [R] MUTEX_FLAG_WAITERS [R] ww->ctx
494 *
495 * The memory barrier above pairs with the memory barrier in
496 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
497 * and/or !empty list.
498 */
499 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
500 return;
501
502 /*
503 * Uh oh, we raced in fastpath, check if any of the waiters need to
504 * die or wound us.
505 */
506 spin_lock(&lock->base.wait_lock);
507 __ww_mutex_check_waiters(&lock->base, ctx);
508 spin_unlock(&lock->base.wait_lock);
509 }
510
511 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
512
513 static inline
ww_mutex_spin_on_owner(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)514 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
515 struct mutex_waiter *waiter)
516 {
517 struct ww_mutex *ww;
518
519 ww = container_of(lock, struct ww_mutex, base);
520
521 /*
522 * If ww->ctx is set the contents are undefined, only
523 * by acquiring wait_lock there is a guarantee that
524 * they are not invalid when reading.
525 *
526 * As such, when deadlock detection needs to be
527 * performed the optimistic spinning cannot be done.
528 *
529 * Check this in every inner iteration because we may
530 * be racing against another thread's ww_mutex_lock.
531 */
532 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
533 return false;
534
535 /*
536 * If we aren't on the wait list yet, cancel the spin
537 * if there are waiters. We want to avoid stealing the
538 * lock from a waiter with an earlier stamp, since the
539 * other thread may already own a lock that we also
540 * need.
541 */
542 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
543 return false;
544
545 /*
546 * Similarly, stop spinning if we are no longer the
547 * first waiter.
548 */
549 if (waiter && !__mutex_waiter_is_first(lock, waiter))
550 return false;
551
552 return true;
553 }
554
555 /*
556 * Look out! "owner" is an entirely speculative pointer access and not
557 * reliable.
558 *
559 * "noinline" so that this function shows up on perf profiles.
560 */
561 static noinline
mutex_spin_on_owner(struct mutex * lock,struct task_struct * owner,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)562 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
563 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
564 {
565 bool ret = true;
566
567 rcu_read_lock();
568 while (__mutex_owner(lock) == owner) {
569 /*
570 * Ensure we emit the owner->on_cpu, dereference _after_
571 * checking lock->owner still matches owner. If that fails,
572 * owner might point to freed memory. If it still matches,
573 * the rcu_read_lock() ensures the memory stays valid.
574 */
575 barrier();
576
577 /*
578 * Use vcpu_is_preempted to detect lock holder preemption issue.
579 */
580 if (!owner->on_cpu || need_resched() ||
581 vcpu_is_preempted(task_cpu(owner))) {
582 ret = false;
583 break;
584 }
585
586 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
587 ret = false;
588 break;
589 }
590
591 cpu_relax();
592 }
593 rcu_read_unlock();
594
595 return ret;
596 }
597
598 /*
599 * Initial check for entering the mutex spinning loop
600 */
mutex_can_spin_on_owner(struct mutex * lock)601 static inline int mutex_can_spin_on_owner(struct mutex *lock)
602 {
603 struct task_struct *owner;
604 int retval = 1;
605
606 if (need_resched())
607 return 0;
608
609 rcu_read_lock();
610 owner = __mutex_owner(lock);
611
612 /*
613 * As lock holder preemption issue, we both skip spinning if task is not
614 * on cpu or its cpu is preempted
615 */
616 if (owner)
617 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
618 rcu_read_unlock();
619
620 /*
621 * If lock->owner is not set, the mutex has been released. Return true
622 * such that we'll trylock in the spin path, which is a faster option
623 * than the blocking slow path.
624 */
625 return retval;
626 }
627
628 /*
629 * Optimistic spinning.
630 *
631 * We try to spin for acquisition when we find that the lock owner
632 * is currently running on a (different) CPU and while we don't
633 * need to reschedule. The rationale is that if the lock owner is
634 * running, it is likely to release the lock soon.
635 *
636 * The mutex spinners are queued up using MCS lock so that only one
637 * spinner can compete for the mutex. However, if mutex spinning isn't
638 * going to happen, there is no point in going through the lock/unlock
639 * overhead.
640 *
641 * Returns true when the lock was taken, otherwise false, indicating
642 * that we need to jump to the slowpath and sleep.
643 *
644 * The waiter flag is set to true if the spinner is a waiter in the wait
645 * queue. The waiter-spinner will spin on the lock directly and concurrently
646 * with the spinner at the head of the OSQ, if present, until the owner is
647 * changed to itself.
648 */
649 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)650 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
651 struct mutex_waiter *waiter)
652 {
653 if (!waiter) {
654 /*
655 * The purpose of the mutex_can_spin_on_owner() function is
656 * to eliminate the overhead of osq_lock() and osq_unlock()
657 * in case spinning isn't possible. As a waiter-spinner
658 * is not going to take OSQ lock anyway, there is no need
659 * to call mutex_can_spin_on_owner().
660 */
661 if (!mutex_can_spin_on_owner(lock))
662 goto fail;
663
664 /*
665 * In order to avoid a stampede of mutex spinners trying to
666 * acquire the mutex all at once, the spinners need to take a
667 * MCS (queued) lock first before spinning on the owner field.
668 */
669 if (!osq_lock(&lock->osq))
670 goto fail;
671 }
672
673 for (;;) {
674 struct task_struct *owner;
675
676 /* Try to acquire the mutex... */
677 owner = __mutex_trylock_or_owner(lock);
678 if (!owner)
679 break;
680
681 /*
682 * There's an owner, wait for it to either
683 * release the lock or go to sleep.
684 */
685 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
686 goto fail_unlock;
687
688 /*
689 * The cpu_relax() call is a compiler barrier which forces
690 * everything in this loop to be re-loaded. We don't need
691 * memory barriers as we'll eventually observe the right
692 * values at the cost of a few extra spins.
693 */
694 cpu_relax();
695 }
696
697 if (!waiter)
698 osq_unlock(&lock->osq);
699
700 return true;
701
702
703 fail_unlock:
704 if (!waiter)
705 osq_unlock(&lock->osq);
706
707 fail:
708 /*
709 * If we fell out of the spin path because of need_resched(),
710 * reschedule now, before we try-lock the mutex. This avoids getting
711 * scheduled out right after we obtained the mutex.
712 */
713 if (need_resched()) {
714 /*
715 * We _should_ have TASK_RUNNING here, but just in case
716 * we do not, make it so, otherwise we might get stuck.
717 */
718 __set_current_state(TASK_RUNNING);
719 schedule_preempt_disabled();
720 }
721
722 return false;
723 }
724 #else
725 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)726 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
727 struct mutex_waiter *waiter)
728 {
729 return false;
730 }
731 #endif
732
733 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
734
735 /**
736 * mutex_unlock - release the mutex
737 * @lock: the mutex to be released
738 *
739 * Unlock a mutex that has been locked by this task previously.
740 *
741 * This function must not be used in interrupt context. Unlocking
742 * of a not locked mutex is not allowed.
743 *
744 * This function is similar to (but not equivalent to) up().
745 */
mutex_unlock(struct mutex * lock)746 void __sched mutex_unlock(struct mutex *lock)
747 {
748 #ifndef CONFIG_DEBUG_LOCK_ALLOC
749 if (__mutex_unlock_fast(lock))
750 return;
751 #endif
752 __mutex_unlock_slowpath(lock, _RET_IP_);
753 }
754 EXPORT_SYMBOL(mutex_unlock);
755
756 /**
757 * ww_mutex_unlock - release the w/w mutex
758 * @lock: the mutex to be released
759 *
760 * Unlock a mutex that has been locked by this task previously with any of the
761 * ww_mutex_lock* functions (with or without an acquire context). It is
762 * forbidden to release the locks after releasing the acquire context.
763 *
764 * This function must not be used in interrupt context. Unlocking
765 * of a unlocked mutex is not allowed.
766 */
ww_mutex_unlock(struct ww_mutex * lock)767 void __sched ww_mutex_unlock(struct ww_mutex *lock)
768 {
769 /*
770 * The unlocking fastpath is the 0->1 transition from 'locked'
771 * into 'unlocked' state:
772 */
773 if (lock->ctx) {
774 #ifdef CONFIG_DEBUG_MUTEXES
775 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
776 #endif
777 if (lock->ctx->acquired > 0)
778 lock->ctx->acquired--;
779 lock->ctx = NULL;
780 }
781
782 mutex_unlock(&lock->base);
783 }
784 EXPORT_SYMBOL(ww_mutex_unlock);
785
786
787 static __always_inline int __sched
__ww_mutex_kill(struct mutex * lock,struct ww_acquire_ctx * ww_ctx)788 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
789 {
790 if (ww_ctx->acquired > 0) {
791 #ifdef CONFIG_DEBUG_MUTEXES
792 struct ww_mutex *ww;
793
794 ww = container_of(lock, struct ww_mutex, base);
795 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
796 ww_ctx->contending_lock = ww;
797 #endif
798 return -EDEADLK;
799 }
800
801 return 0;
802 }
803
804
805 /*
806 * Check the wound condition for the current lock acquire.
807 *
808 * Wound-Wait: If we're wounded, kill ourself.
809 *
810 * Wait-Die: If we're trying to acquire a lock already held by an older
811 * context, kill ourselves.
812 *
813 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
814 * look at waiters before us in the wait-list.
815 */
816 static inline int __sched
__ww_mutex_check_kill(struct mutex * lock,struct mutex_waiter * waiter,struct ww_acquire_ctx * ctx)817 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
818 struct ww_acquire_ctx *ctx)
819 {
820 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
821 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
822 struct mutex_waiter *cur;
823
824 if (ctx->acquired == 0)
825 return 0;
826
827 if (!ctx->is_wait_die) {
828 if (ctx->wounded)
829 return __ww_mutex_kill(lock, ctx);
830
831 return 0;
832 }
833
834 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
835 return __ww_mutex_kill(lock, ctx);
836
837 /*
838 * If there is a waiter in front of us that has a context, then its
839 * stamp is earlier than ours and we must kill ourself.
840 */
841 cur = waiter;
842 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
843 if (!cur->ww_ctx)
844 continue;
845
846 return __ww_mutex_kill(lock, ctx);
847 }
848
849 return 0;
850 }
851
852 /*
853 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
854 * first. Such that older contexts are preferred to acquire the lock over
855 * younger contexts.
856 *
857 * Waiters without context are interspersed in FIFO order.
858 *
859 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
860 * older contexts already waiting) to avoid unnecessary waiting and for
861 * Wound-Wait ensure we wound the owning context when it is younger.
862 */
863 static inline int __sched
__ww_mutex_add_waiter(struct mutex_waiter * waiter,struct mutex * lock,struct ww_acquire_ctx * ww_ctx)864 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
865 struct mutex *lock,
866 struct ww_acquire_ctx *ww_ctx)
867 {
868 struct mutex_waiter *cur;
869 struct list_head *pos;
870 bool is_wait_die;
871
872 if (!ww_ctx) {
873 __mutex_add_waiter(lock, waiter, &lock->wait_list);
874 return 0;
875 }
876
877 is_wait_die = ww_ctx->is_wait_die;
878
879 /*
880 * Add the waiter before the first waiter with a higher stamp.
881 * Waiters without a context are skipped to avoid starving
882 * them. Wait-Die waiters may die here. Wound-Wait waiters
883 * never die here, but they are sorted in stamp order and
884 * may wound the lock holder.
885 */
886 pos = &lock->wait_list;
887 list_for_each_entry_reverse(cur, &lock->wait_list, list) {
888 if (!cur->ww_ctx)
889 continue;
890
891 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
892 /*
893 * Wait-Die: if we find an older context waiting, there
894 * is no point in queueing behind it, as we'd have to
895 * die the moment it would acquire the lock.
896 */
897 if (is_wait_die) {
898 int ret = __ww_mutex_kill(lock, ww_ctx);
899
900 if (ret)
901 return ret;
902 }
903
904 break;
905 }
906
907 pos = &cur->list;
908
909 /* Wait-Die: ensure younger waiters die. */
910 __ww_mutex_die(lock, cur, ww_ctx);
911 }
912
913 __mutex_add_waiter(lock, waiter, pos);
914
915 /*
916 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
917 * wound that such that we might proceed.
918 */
919 if (!is_wait_die) {
920 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
921
922 /*
923 * See ww_mutex_set_context_fastpath(). Orders setting
924 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
925 * such that either we or the fastpath will wound @ww->ctx.
926 */
927 smp_mb();
928 __ww_mutex_wound(lock, ww_ctx, ww->ctx);
929 }
930
931 return 0;
932 }
933
934 /*
935 * Lock a mutex (possibly interruptible), slowpath:
936 */
937 static __always_inline int __sched
__mutex_lock_common(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)938 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
939 struct lockdep_map *nest_lock, unsigned long ip,
940 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
941 {
942 struct mutex_waiter waiter;
943 struct ww_mutex *ww;
944 int ret;
945
946 if (!use_ww_ctx)
947 ww_ctx = NULL;
948
949 might_sleep();
950
951 #ifdef CONFIG_DEBUG_MUTEXES
952 DEBUG_LOCKS_WARN_ON(lock->magic != lock);
953 #endif
954
955 ww = container_of(lock, struct ww_mutex, base);
956 if (ww_ctx) {
957 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
958 return -EALREADY;
959
960 /*
961 * Reset the wounded flag after a kill. No other process can
962 * race and wound us here since they can't have a valid owner
963 * pointer if we don't have any locks held.
964 */
965 if (ww_ctx->acquired == 0)
966 ww_ctx->wounded = 0;
967 }
968
969 preempt_disable();
970 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
971
972 if (__mutex_trylock(lock) ||
973 mutex_optimistic_spin(lock, ww_ctx, NULL)) {
974 /* got the lock, yay! */
975 lock_acquired(&lock->dep_map, ip);
976 if (ww_ctx)
977 ww_mutex_set_context_fastpath(ww, ww_ctx);
978 preempt_enable();
979 return 0;
980 }
981
982 spin_lock(&lock->wait_lock);
983 /*
984 * After waiting to acquire the wait_lock, try again.
985 */
986 if (__mutex_trylock(lock)) {
987 if (ww_ctx)
988 __ww_mutex_check_waiters(lock, ww_ctx);
989
990 goto skip_wait;
991 }
992
993 debug_mutex_lock_common(lock, &waiter);
994
995 lock_contended(&lock->dep_map, ip);
996
997 if (!use_ww_ctx) {
998 /* add waiting tasks to the end of the waitqueue (FIFO): */
999 __mutex_add_waiter(lock, &waiter, &lock->wait_list);
1000
1001
1002 #ifdef CONFIG_DEBUG_MUTEXES
1003 waiter.ww_ctx = MUTEX_POISON_WW_CTX;
1004 #endif
1005 } else {
1006 /*
1007 * Add in stamp order, waking up waiters that must kill
1008 * themselves.
1009 */
1010 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
1011 if (ret)
1012 goto err_early_kill;
1013
1014 waiter.ww_ctx = ww_ctx;
1015 }
1016
1017 waiter.task = current;
1018
1019 trace_android_vh_mutex_wait_start(lock);
1020 set_current_state(state);
1021 for (;;) {
1022 bool first;
1023
1024 /*
1025 * Once we hold wait_lock, we're serialized against
1026 * mutex_unlock() handing the lock off to us, do a trylock
1027 * before testing the error conditions to make sure we pick up
1028 * the handoff.
1029 */
1030 if (__mutex_trylock(lock))
1031 goto acquired;
1032
1033 /*
1034 * Check for signals and kill conditions while holding
1035 * wait_lock. This ensures the lock cancellation is ordered
1036 * against mutex_unlock() and wake-ups do not go missing.
1037 */
1038 if (signal_pending_state(state, current)) {
1039 ret = -EINTR;
1040 goto err;
1041 }
1042
1043 if (ww_ctx) {
1044 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
1045 if (ret)
1046 goto err;
1047 }
1048
1049 spin_unlock(&lock->wait_lock);
1050 schedule_preempt_disabled();
1051
1052 first = __mutex_waiter_is_first(lock, &waiter);
1053 if (first)
1054 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1055
1056 set_current_state(state);
1057 /*
1058 * Here we order against unlock; we must either see it change
1059 * state back to RUNNING and fall through the next schedule(),
1060 * or we must see its unlock and acquire.
1061 */
1062 if (__mutex_trylock(lock) ||
1063 (first && mutex_optimistic_spin(lock, ww_ctx, &waiter)))
1064 break;
1065
1066 spin_lock(&lock->wait_lock);
1067 }
1068 spin_lock(&lock->wait_lock);
1069 acquired:
1070 __set_current_state(TASK_RUNNING);
1071 trace_android_vh_mutex_wait_finish(lock);
1072
1073 if (ww_ctx) {
1074 /*
1075 * Wound-Wait; we stole the lock (!first_waiter), check the
1076 * waiters as anyone might want to wound us.
1077 */
1078 if (!ww_ctx->is_wait_die &&
1079 !__mutex_waiter_is_first(lock, &waiter))
1080 __ww_mutex_check_waiters(lock, ww_ctx);
1081 }
1082
1083 __mutex_remove_waiter(lock, &waiter);
1084
1085 debug_mutex_free_waiter(&waiter);
1086
1087 skip_wait:
1088 /* got the lock - cleanup and rejoice! */
1089 lock_acquired(&lock->dep_map, ip);
1090
1091 if (ww_ctx)
1092 ww_mutex_lock_acquired(ww, ww_ctx);
1093
1094 spin_unlock(&lock->wait_lock);
1095 preempt_enable();
1096 return 0;
1097
1098 err:
1099 __set_current_state(TASK_RUNNING);
1100 trace_android_vh_mutex_wait_finish(lock);
1101 __mutex_remove_waiter(lock, &waiter);
1102 err_early_kill:
1103 spin_unlock(&lock->wait_lock);
1104 debug_mutex_free_waiter(&waiter);
1105 mutex_release(&lock->dep_map, 1, ip);
1106 preempt_enable();
1107 return ret;
1108 }
1109
1110 static int __sched
__mutex_lock(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)1111 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1112 struct lockdep_map *nest_lock, unsigned long ip)
1113 {
1114 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1115 }
1116
1117 static int __sched
__ww_mutex_lock(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx)1118 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1119 struct lockdep_map *nest_lock, unsigned long ip,
1120 struct ww_acquire_ctx *ww_ctx)
1121 {
1122 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1123 }
1124
1125 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1126 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)1127 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1128 {
1129 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1130 }
1131
1132 EXPORT_SYMBOL_GPL(mutex_lock_nested);
1133
1134 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)1135 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1136 {
1137 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1138 }
1139 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1140
1141 int __sched
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)1142 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1143 {
1144 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1145 }
1146 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1147
1148 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)1149 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1150 {
1151 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1152 }
1153 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1154
1155 void __sched
mutex_lock_io_nested(struct mutex * lock,unsigned int subclass)1156 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1157 {
1158 int token;
1159
1160 might_sleep();
1161
1162 token = io_schedule_prepare();
1163 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1164 subclass, NULL, _RET_IP_, NULL, 0);
1165 io_schedule_finish(token);
1166 }
1167 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1168
1169 static inline int
ww_mutex_deadlock_injection(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1170 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1171 {
1172 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1173 unsigned tmp;
1174
1175 if (ctx->deadlock_inject_countdown-- == 0) {
1176 tmp = ctx->deadlock_inject_interval;
1177 if (tmp > UINT_MAX/4)
1178 tmp = UINT_MAX;
1179 else
1180 tmp = tmp*2 + tmp + tmp/2;
1181
1182 ctx->deadlock_inject_interval = tmp;
1183 ctx->deadlock_inject_countdown = tmp;
1184 ctx->contending_lock = lock;
1185
1186 ww_mutex_unlock(lock);
1187
1188 return -EDEADLK;
1189 }
1190 #endif
1191
1192 return 0;
1193 }
1194
1195 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1196 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1197 {
1198 int ret;
1199
1200 might_sleep();
1201 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1202 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1203 ctx);
1204 if (!ret && ctx && ctx->acquired > 1)
1205 return ww_mutex_deadlock_injection(lock, ctx);
1206
1207 return ret;
1208 }
1209 EXPORT_SYMBOL_GPL(ww_mutex_lock);
1210
1211 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1212 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1213 {
1214 int ret;
1215
1216 might_sleep();
1217 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1218 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1219 ctx);
1220
1221 if (!ret && ctx && ctx->acquired > 1)
1222 return ww_mutex_deadlock_injection(lock, ctx);
1223
1224 return ret;
1225 }
1226 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1227
1228 #endif
1229
1230 /*
1231 * Release the lock, slowpath:
1232 */
__mutex_unlock_slowpath(struct mutex * lock,unsigned long ip)1233 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1234 {
1235 struct task_struct *next = NULL;
1236 DEFINE_WAKE_Q(wake_q);
1237 unsigned long owner;
1238
1239 mutex_release(&lock->dep_map, 1, ip);
1240
1241 /*
1242 * Release the lock before (potentially) taking the spinlock such that
1243 * other contenders can get on with things ASAP.
1244 *
1245 * Except when HANDOFF, in that case we must not clear the owner field,
1246 * but instead set it to the top waiter.
1247 */
1248 owner = atomic_long_read(&lock->owner);
1249 for (;;) {
1250 unsigned long old;
1251
1252 #ifdef CONFIG_DEBUG_MUTEXES
1253 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1254 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1255 #endif
1256
1257 if (owner & MUTEX_FLAG_HANDOFF)
1258 break;
1259
1260 old = atomic_long_cmpxchg_release(&lock->owner, owner,
1261 __owner_flags(owner));
1262 if (old == owner) {
1263 if (owner & MUTEX_FLAG_WAITERS)
1264 break;
1265
1266 return;
1267 }
1268
1269 owner = old;
1270 }
1271
1272 spin_lock(&lock->wait_lock);
1273 debug_mutex_unlock(lock);
1274 if (!list_empty(&lock->wait_list)) {
1275 /* get the first entry from the wait-list: */
1276 struct mutex_waiter *waiter =
1277 list_first_entry(&lock->wait_list,
1278 struct mutex_waiter, list);
1279
1280 next = waiter->task;
1281
1282 debug_mutex_wake_waiter(lock, waiter);
1283 wake_q_add(&wake_q, next);
1284 }
1285
1286 if (owner & MUTEX_FLAG_HANDOFF)
1287 __mutex_handoff(lock, next);
1288
1289 spin_unlock(&lock->wait_lock);
1290
1291 wake_up_q(&wake_q);
1292 }
1293
1294 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1295 /*
1296 * Here come the less common (and hence less performance-critical) APIs:
1297 * mutex_lock_interruptible() and mutex_trylock().
1298 */
1299 static noinline int __sched
1300 __mutex_lock_killable_slowpath(struct mutex *lock);
1301
1302 static noinline int __sched
1303 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1304
1305 /**
1306 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1307 * @lock: The mutex to be acquired.
1308 *
1309 * Lock the mutex like mutex_lock(). If a signal is delivered while the
1310 * process is sleeping, this function will return without acquiring the
1311 * mutex.
1312 *
1313 * Context: Process context.
1314 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1315 * signal arrived.
1316 */
mutex_lock_interruptible(struct mutex * lock)1317 int __sched mutex_lock_interruptible(struct mutex *lock)
1318 {
1319 might_sleep();
1320
1321 if (__mutex_trylock_fast(lock))
1322 return 0;
1323
1324 return __mutex_lock_interruptible_slowpath(lock);
1325 }
1326
1327 EXPORT_SYMBOL(mutex_lock_interruptible);
1328
1329 /**
1330 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1331 * @lock: The mutex to be acquired.
1332 *
1333 * Lock the mutex like mutex_lock(). If a signal which will be fatal to
1334 * the current process is delivered while the process is sleeping, this
1335 * function will return without acquiring the mutex.
1336 *
1337 * Context: Process context.
1338 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1339 * fatal signal arrived.
1340 */
mutex_lock_killable(struct mutex * lock)1341 int __sched mutex_lock_killable(struct mutex *lock)
1342 {
1343 might_sleep();
1344
1345 if (__mutex_trylock_fast(lock))
1346 return 0;
1347
1348 return __mutex_lock_killable_slowpath(lock);
1349 }
1350 EXPORT_SYMBOL(mutex_lock_killable);
1351
1352 /**
1353 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1354 * @lock: The mutex to be acquired.
1355 *
1356 * Lock the mutex like mutex_lock(). While the task is waiting for this
1357 * mutex, it will be accounted as being in the IO wait state by the
1358 * scheduler.
1359 *
1360 * Context: Process context.
1361 */
mutex_lock_io(struct mutex * lock)1362 void __sched mutex_lock_io(struct mutex *lock)
1363 {
1364 int token;
1365
1366 token = io_schedule_prepare();
1367 mutex_lock(lock);
1368 io_schedule_finish(token);
1369 }
1370 EXPORT_SYMBOL_GPL(mutex_lock_io);
1371
1372 static noinline void __sched
__mutex_lock_slowpath(struct mutex * lock)1373 __mutex_lock_slowpath(struct mutex *lock)
1374 {
1375 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1376 }
1377
1378 static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex * lock)1379 __mutex_lock_killable_slowpath(struct mutex *lock)
1380 {
1381 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1382 }
1383
1384 static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex * lock)1385 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1386 {
1387 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1388 }
1389
1390 static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1391 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1392 {
1393 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1394 _RET_IP_, ctx);
1395 }
1396
1397 static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1398 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1399 struct ww_acquire_ctx *ctx)
1400 {
1401 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1402 _RET_IP_, ctx);
1403 }
1404
1405 #endif
1406
1407 /**
1408 * mutex_trylock - try to acquire the mutex, without waiting
1409 * @lock: the mutex to be acquired
1410 *
1411 * Try to acquire the mutex atomically. Returns 1 if the mutex
1412 * has been acquired successfully, and 0 on contention.
1413 *
1414 * NOTE: this function follows the spin_trylock() convention, so
1415 * it is negated from the down_trylock() return values! Be careful
1416 * about this when converting semaphore users to mutexes.
1417 *
1418 * This function must not be used in interrupt context. The
1419 * mutex must be released by the same task that acquired it.
1420 */
mutex_trylock(struct mutex * lock)1421 int __sched mutex_trylock(struct mutex *lock)
1422 {
1423 bool locked;
1424
1425 #ifdef CONFIG_DEBUG_MUTEXES
1426 DEBUG_LOCKS_WARN_ON(lock->magic != lock);
1427 #endif
1428
1429 locked = __mutex_trylock(lock);
1430 if (locked)
1431 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1432
1433 return locked;
1434 }
1435 EXPORT_SYMBOL(mutex_trylock);
1436
1437 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1438 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1439 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1440 {
1441 might_sleep();
1442
1443 if (__mutex_trylock_fast(&lock->base)) {
1444 if (ctx)
1445 ww_mutex_set_context_fastpath(lock, ctx);
1446 return 0;
1447 }
1448
1449 return __ww_mutex_lock_slowpath(lock, ctx);
1450 }
1451 EXPORT_SYMBOL(ww_mutex_lock);
1452
1453 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1454 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1455 {
1456 might_sleep();
1457
1458 if (__mutex_trylock_fast(&lock->base)) {
1459 if (ctx)
1460 ww_mutex_set_context_fastpath(lock, ctx);
1461 return 0;
1462 }
1463
1464 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1465 }
1466 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1467
1468 #endif
1469
1470 /**
1471 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1472 * @cnt: the atomic which we are to dec
1473 * @lock: the mutex to return holding if we dec to 0
1474 *
1475 * return true and hold lock if we dec to 0, return false otherwise
1476 */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)1477 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1478 {
1479 /* dec if we can't possibly hit 0 */
1480 if (atomic_add_unless(cnt, -1, 1))
1481 return 0;
1482 /* we might hit 0, so take the lock */
1483 mutex_lock(lock);
1484 if (!atomic_dec_and_test(cnt)) {
1485 /* when we actually did the dec, we didn't hit 0 */
1486 mutex_unlock(lock);
1487 return 0;
1488 }
1489 /* we hit 0, and we hold the lock */
1490 return 1;
1491 }
1492 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1493