1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/siphash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36 #include <trace/hooks/net.h>
37
38 #include <net/netfilter/nf_conntrack.h>
39 #include <net/netfilter/nf_conntrack_l4proto.h>
40 #include <net/netfilter/nf_conntrack_expect.h>
41 #include <net/netfilter/nf_conntrack_helper.h>
42 #include <net/netfilter/nf_conntrack_seqadj.h>
43 #include <net/netfilter/nf_conntrack_core.h>
44 #include <net/netfilter/nf_conntrack_extend.h>
45 #include <net/netfilter/nf_conntrack_acct.h>
46 #include <net/netfilter/nf_conntrack_ecache.h>
47 #include <net/netfilter/nf_conntrack_zones.h>
48 #include <net/netfilter/nf_conntrack_timestamp.h>
49 #include <net/netfilter/nf_conntrack_timeout.h>
50 #include <net/netfilter/nf_conntrack_labels.h>
51 #include <net/netfilter/nf_conntrack_synproxy.h>
52 #include <net/netfilter/nf_nat.h>
53 #include <net/netfilter/nf_nat_helper.h>
54 #include <net/netns/hash.h>
55 #include <net/ip.h>
56
57 #include "nf_internals.h"
58
59 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
60 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
61
62 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
63 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
64
65 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
66 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
67
68 struct conntrack_gc_work {
69 struct delayed_work dwork;
70 u32 next_bucket;
71 bool exiting;
72 bool early_drop;
73 };
74
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78
79 #define GC_SCAN_INTERVAL (120u * HZ)
80 #define GC_SCAN_MAX_DURATION msecs_to_jiffies(10)
81
82 static struct conntrack_gc_work conntrack_gc_work;
83
nf_conntrack_lock(spinlock_t * lock)84 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
85 {
86 /* 1) Acquire the lock */
87 spin_lock(lock);
88
89 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
90 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
91 */
92 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
93 return;
94
95 /* fast path failed, unlock */
96 spin_unlock(lock);
97
98 /* Slow path 1) get global lock */
99 spin_lock(&nf_conntrack_locks_all_lock);
100
101 /* Slow path 2) get the lock we want */
102 spin_lock(lock);
103
104 /* Slow path 3) release the global lock */
105 spin_unlock(&nf_conntrack_locks_all_lock);
106 }
107 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
108
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)109 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
110 {
111 h1 %= CONNTRACK_LOCKS;
112 h2 %= CONNTRACK_LOCKS;
113 spin_unlock(&nf_conntrack_locks[h1]);
114 if (h1 != h2)
115 spin_unlock(&nf_conntrack_locks[h2]);
116 }
117
118 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)119 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
120 unsigned int h2, unsigned int sequence)
121 {
122 h1 %= CONNTRACK_LOCKS;
123 h2 %= CONNTRACK_LOCKS;
124 if (h1 <= h2) {
125 nf_conntrack_lock(&nf_conntrack_locks[h1]);
126 if (h1 != h2)
127 spin_lock_nested(&nf_conntrack_locks[h2],
128 SINGLE_DEPTH_NESTING);
129 } else {
130 nf_conntrack_lock(&nf_conntrack_locks[h2]);
131 spin_lock_nested(&nf_conntrack_locks[h1],
132 SINGLE_DEPTH_NESTING);
133 }
134 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
135 nf_conntrack_double_unlock(h1, h2);
136 return true;
137 }
138 return false;
139 }
140
nf_conntrack_all_lock(void)141 static void nf_conntrack_all_lock(void)
142 {
143 int i;
144
145 spin_lock(&nf_conntrack_locks_all_lock);
146
147 nf_conntrack_locks_all = true;
148
149 for (i = 0; i < CONNTRACK_LOCKS; i++) {
150 spin_lock(&nf_conntrack_locks[i]);
151
152 /* This spin_unlock provides the "release" to ensure that
153 * nf_conntrack_locks_all==true is visible to everyone that
154 * acquired spin_lock(&nf_conntrack_locks[]).
155 */
156 spin_unlock(&nf_conntrack_locks[i]);
157 }
158 }
159
nf_conntrack_all_unlock(void)160 static void nf_conntrack_all_unlock(void)
161 {
162 /* All prior stores must be complete before we clear
163 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
164 * might observe the false value but not the entire
165 * critical section.
166 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
167 */
168 smp_store_release(&nf_conntrack_locks_all, false);
169 spin_unlock(&nf_conntrack_locks_all_lock);
170 }
171
172 unsigned int nf_conntrack_htable_size __read_mostly;
173 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
174
175 unsigned int nf_conntrack_max __read_mostly;
176 EXPORT_SYMBOL_GPL(nf_conntrack_max);
177 seqcount_t nf_conntrack_generation __read_mostly;
178 static unsigned int nf_conntrack_hash_rnd __read_mostly;
179
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,const struct net * net)180 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
181 const struct net *net)
182 {
183 unsigned int n;
184 u32 seed;
185
186 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
187
188 /* The direction must be ignored, so we hash everything up to the
189 * destination ports (which is a multiple of 4) and treat the last
190 * three bytes manually.
191 */
192 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
193 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
194 return jhash2((u32 *)tuple, n, seed ^
195 (((__force __u16)tuple->dst.u.all << 16) |
196 tuple->dst.protonum));
197 }
198
scale_hash(u32 hash)199 static u32 scale_hash(u32 hash)
200 {
201 return reciprocal_scale(hash, nf_conntrack_htable_size);
202 }
203
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int size)204 static u32 __hash_conntrack(const struct net *net,
205 const struct nf_conntrack_tuple *tuple,
206 unsigned int size)
207 {
208 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
209 }
210
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple)211 static u32 hash_conntrack(const struct net *net,
212 const struct nf_conntrack_tuple *tuple)
213 {
214 return scale_hash(hash_conntrack_raw(tuple, net));
215 }
216
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)217 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
218 unsigned int dataoff,
219 struct nf_conntrack_tuple *tuple)
220 { struct {
221 __be16 sport;
222 __be16 dport;
223 } _inet_hdr, *inet_hdr;
224
225 /* Actually only need first 4 bytes to get ports. */
226 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
227 if (!inet_hdr)
228 return false;
229
230 tuple->src.u.udp.port = inet_hdr->sport;
231 tuple->dst.u.udp.port = inet_hdr->dport;
232 return true;
233 }
234
235 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)236 nf_ct_get_tuple(const struct sk_buff *skb,
237 unsigned int nhoff,
238 unsigned int dataoff,
239 u_int16_t l3num,
240 u_int8_t protonum,
241 struct net *net,
242 struct nf_conntrack_tuple *tuple)
243 {
244 unsigned int size;
245 const __be32 *ap;
246 __be32 _addrs[8];
247
248 memset(tuple, 0, sizeof(*tuple));
249
250 tuple->src.l3num = l3num;
251 switch (l3num) {
252 case NFPROTO_IPV4:
253 nhoff += offsetof(struct iphdr, saddr);
254 size = 2 * sizeof(__be32);
255 break;
256 case NFPROTO_IPV6:
257 nhoff += offsetof(struct ipv6hdr, saddr);
258 size = sizeof(_addrs);
259 break;
260 default:
261 return true;
262 }
263
264 ap = skb_header_pointer(skb, nhoff, size, _addrs);
265 if (!ap)
266 return false;
267
268 switch (l3num) {
269 case NFPROTO_IPV4:
270 tuple->src.u3.ip = ap[0];
271 tuple->dst.u3.ip = ap[1];
272 break;
273 case NFPROTO_IPV6:
274 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
275 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
276 break;
277 }
278
279 tuple->dst.protonum = protonum;
280 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
281
282 switch (protonum) {
283 #if IS_ENABLED(CONFIG_IPV6)
284 case IPPROTO_ICMPV6:
285 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
286 #endif
287 case IPPROTO_ICMP:
288 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
289 #ifdef CONFIG_NF_CT_PROTO_GRE
290 case IPPROTO_GRE:
291 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
292 #endif
293 case IPPROTO_TCP:
294 case IPPROTO_UDP: /* fallthrough */
295 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
296 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
297 case IPPROTO_UDPLITE:
298 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
299 #endif
300 #ifdef CONFIG_NF_CT_PROTO_SCTP
301 case IPPROTO_SCTP:
302 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
303 #endif
304 #ifdef CONFIG_NF_CT_PROTO_DCCP
305 case IPPROTO_DCCP:
306 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
307 #endif
308 default:
309 break;
310 }
311
312 return true;
313 }
314
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)315 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
316 u_int8_t *protonum)
317 {
318 int dataoff = -1;
319 const struct iphdr *iph;
320 struct iphdr _iph;
321
322 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
323 if (!iph)
324 return -1;
325
326 /* Conntrack defragments packets, we might still see fragments
327 * inside ICMP packets though.
328 */
329 if (iph->frag_off & htons(IP_OFFSET))
330 return -1;
331
332 dataoff = nhoff + (iph->ihl << 2);
333 *protonum = iph->protocol;
334
335 /* Check bogus IP headers */
336 if (dataoff > skb->len) {
337 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
338 nhoff, iph->ihl << 2, skb->len);
339 return -1;
340 }
341 return dataoff;
342 }
343
344 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)345 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
346 u8 *protonum)
347 {
348 int protoff = -1;
349 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
350 __be16 frag_off;
351 u8 nexthdr;
352
353 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
354 &nexthdr, sizeof(nexthdr)) != 0) {
355 pr_debug("can't get nexthdr\n");
356 return -1;
357 }
358 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
359 /*
360 * (protoff == skb->len) means the packet has not data, just
361 * IPv6 and possibly extensions headers, but it is tracked anyway
362 */
363 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
364 pr_debug("can't find proto in pkt\n");
365 return -1;
366 }
367
368 *protonum = nexthdr;
369 return protoff;
370 }
371 #endif
372
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)373 static int get_l4proto(const struct sk_buff *skb,
374 unsigned int nhoff, u8 pf, u8 *l4num)
375 {
376 switch (pf) {
377 case NFPROTO_IPV4:
378 return ipv4_get_l4proto(skb, nhoff, l4num);
379 #if IS_ENABLED(CONFIG_IPV6)
380 case NFPROTO_IPV6:
381 return ipv6_get_l4proto(skb, nhoff, l4num);
382 #endif
383 default:
384 *l4num = 0;
385 break;
386 }
387 return -1;
388 }
389
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)390 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
391 u_int16_t l3num,
392 struct net *net, struct nf_conntrack_tuple *tuple)
393 {
394 u8 protonum;
395 int protoff;
396
397 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
398 if (protoff <= 0)
399 return false;
400
401 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
402 }
403 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
404
405 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)406 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
407 const struct nf_conntrack_tuple *orig)
408 {
409 memset(inverse, 0, sizeof(*inverse));
410
411 inverse->src.l3num = orig->src.l3num;
412
413 switch (orig->src.l3num) {
414 case NFPROTO_IPV4:
415 inverse->src.u3.ip = orig->dst.u3.ip;
416 inverse->dst.u3.ip = orig->src.u3.ip;
417 break;
418 case NFPROTO_IPV6:
419 inverse->src.u3.in6 = orig->dst.u3.in6;
420 inverse->dst.u3.in6 = orig->src.u3.in6;
421 break;
422 default:
423 break;
424 }
425
426 inverse->dst.dir = !orig->dst.dir;
427
428 inverse->dst.protonum = orig->dst.protonum;
429
430 switch (orig->dst.protonum) {
431 case IPPROTO_ICMP:
432 return nf_conntrack_invert_icmp_tuple(inverse, orig);
433 #if IS_ENABLED(CONFIG_IPV6)
434 case IPPROTO_ICMPV6:
435 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
436 #endif
437 }
438
439 inverse->src.u.all = orig->dst.u.all;
440 inverse->dst.u.all = orig->src.u.all;
441 return true;
442 }
443 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
444
445 /* Generate a almost-unique pseudo-id for a given conntrack.
446 *
447 * intentionally doesn't re-use any of the seeds used for hash
448 * table location, we assume id gets exposed to userspace.
449 *
450 * Following nf_conn items do not change throughout lifetime
451 * of the nf_conn:
452 *
453 * 1. nf_conn address
454 * 2. nf_conn->master address (normally NULL)
455 * 3. the associated net namespace
456 * 4. the original direction tuple
457 */
nf_ct_get_id(const struct nf_conn * ct)458 u32 nf_ct_get_id(const struct nf_conn *ct)
459 {
460 static __read_mostly siphash_key_t ct_id_seed;
461 unsigned long a, b, c, d;
462
463 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
464
465 a = (unsigned long)ct;
466 b = (unsigned long)ct->master;
467 c = (unsigned long)nf_ct_net(ct);
468 d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
469 sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
470 &ct_id_seed);
471 #ifdef CONFIG_64BIT
472 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
473 #else
474 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
475 #endif
476 }
477 EXPORT_SYMBOL_GPL(nf_ct_get_id);
478
479 static void
clean_from_lists(struct nf_conn * ct)480 clean_from_lists(struct nf_conn *ct)
481 {
482 pr_debug("clean_from_lists(%p)\n", ct);
483 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
484 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
485
486 /* Destroy all pending expectations */
487 nf_ct_remove_expectations(ct);
488 }
489
490 /* must be called with local_bh_disable */
nf_ct_add_to_dying_list(struct nf_conn * ct)491 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
492 {
493 struct ct_pcpu *pcpu;
494
495 /* add this conntrack to the (per cpu) dying list */
496 ct->cpu = smp_processor_id();
497 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
498
499 spin_lock(&pcpu->lock);
500 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
501 &pcpu->dying);
502 spin_unlock(&pcpu->lock);
503 }
504
505 /* must be called with local_bh_disable */
nf_ct_add_to_unconfirmed_list(struct nf_conn * ct)506 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
507 {
508 struct ct_pcpu *pcpu;
509
510 /* add this conntrack to the (per cpu) unconfirmed list */
511 ct->cpu = smp_processor_id();
512 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
513
514 spin_lock(&pcpu->lock);
515 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
516 &pcpu->unconfirmed);
517 spin_unlock(&pcpu->lock);
518 }
519
520 /* must be called with local_bh_disable */
nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn * ct)521 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
522 {
523 struct ct_pcpu *pcpu;
524
525 /* We overload first tuple to link into unconfirmed or dying list.*/
526 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
527
528 spin_lock(&pcpu->lock);
529 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
530 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
531 spin_unlock(&pcpu->lock);
532 }
533
534 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
535
536 /* Released via destroy_conntrack() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)537 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
538 const struct nf_conntrack_zone *zone,
539 gfp_t flags)
540 {
541 struct nf_conn *tmpl, *p;
542
543 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
544 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
545 if (!tmpl)
546 return NULL;
547
548 p = tmpl;
549 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
550 if (tmpl != p) {
551 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
552 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
553 }
554 } else {
555 tmpl = kzalloc(sizeof(*tmpl), flags);
556 if (!tmpl)
557 return NULL;
558 }
559
560 tmpl->status = IPS_TEMPLATE;
561 write_pnet(&tmpl->ct_net, net);
562 nf_ct_zone_add(tmpl, zone);
563 atomic_set(&tmpl->ct_general.use, 0);
564
565 return tmpl;
566 }
567 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
568
nf_ct_tmpl_free(struct nf_conn * tmpl)569 void nf_ct_tmpl_free(struct nf_conn *tmpl)
570 {
571 nf_ct_ext_destroy(tmpl);
572 nf_ct_ext_free(tmpl);
573
574 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
575 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
576 else
577 kfree(tmpl);
578 }
579 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
580
destroy_gre_conntrack(struct nf_conn * ct)581 static void destroy_gre_conntrack(struct nf_conn *ct)
582 {
583 #ifdef CONFIG_NF_CT_PROTO_GRE
584 struct nf_conn *master = ct->master;
585
586 if (master)
587 nf_ct_gre_keymap_destroy(master);
588 #endif
589 }
590
591 static void
destroy_conntrack(struct nf_conntrack * nfct)592 destroy_conntrack(struct nf_conntrack *nfct)
593 {
594 struct nf_conn *ct = (struct nf_conn *)nfct;
595
596 pr_debug("destroy_conntrack(%p)\n", ct);
597 WARN_ON(atomic_read(&nfct->use) != 0);
598
599 if (unlikely(nf_ct_is_template(ct))) {
600 nf_ct_tmpl_free(ct);
601 return;
602 }
603
604 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
605 destroy_gre_conntrack(ct);
606
607 local_bh_disable();
608 /* Expectations will have been removed in clean_from_lists,
609 * except TFTP can create an expectation on the first packet,
610 * before connection is in the list, so we need to clean here,
611 * too.
612 */
613 nf_ct_remove_expectations(ct);
614
615 nf_ct_del_from_dying_or_unconfirmed_list(ct);
616
617 local_bh_enable();
618
619 if (ct->master)
620 nf_ct_put(ct->master);
621
622 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
623 nf_conntrack_free(ct);
624 }
625
nf_ct_delete_from_lists(struct nf_conn * ct)626 static void nf_ct_delete_from_lists(struct nf_conn *ct)
627 {
628 struct net *net = nf_ct_net(ct);
629 unsigned int hash, reply_hash;
630 unsigned int sequence;
631
632 nf_ct_helper_destroy(ct);
633
634 local_bh_disable();
635 do {
636 sequence = read_seqcount_begin(&nf_conntrack_generation);
637 hash = hash_conntrack(net,
638 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
639 reply_hash = hash_conntrack(net,
640 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
641 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
642
643 clean_from_lists(ct);
644 nf_conntrack_double_unlock(hash, reply_hash);
645
646 nf_ct_add_to_dying_list(ct);
647
648 local_bh_enable();
649 }
650
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)651 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
652 {
653 struct nf_conn_tstamp *tstamp;
654
655 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
656 return false;
657
658 tstamp = nf_conn_tstamp_find(ct);
659 if (tstamp) {
660 s32 timeout = ct->timeout - nfct_time_stamp;
661
662 tstamp->stop = ktime_get_real_ns();
663 if (timeout < 0)
664 tstamp->stop -= jiffies_to_nsecs(-timeout);
665 }
666
667 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
668 portid, report) < 0) {
669 /* destroy event was not delivered. nf_ct_put will
670 * be done by event cache worker on redelivery.
671 */
672 nf_ct_delete_from_lists(ct);
673 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
674 return false;
675 }
676
677 nf_conntrack_ecache_work(nf_ct_net(ct));
678 nf_ct_delete_from_lists(ct);
679 nf_ct_put(ct);
680 return true;
681 }
682 EXPORT_SYMBOL_GPL(nf_ct_delete);
683
684 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)685 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
686 const struct nf_conntrack_tuple *tuple,
687 const struct nf_conntrack_zone *zone,
688 const struct net *net)
689 {
690 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
691
692 /* A conntrack can be recreated with the equal tuple,
693 * so we need to check that the conntrack is confirmed
694 */
695 return nf_ct_tuple_equal(tuple, &h->tuple) &&
696 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
697 nf_ct_is_confirmed(ct) &&
698 net_eq(net, nf_ct_net(ct));
699 }
700
701 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)702 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
703 {
704 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
705 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
706 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
707 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
708 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
709 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
710 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
711 }
712
713 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)714 static void nf_ct_gc_expired(struct nf_conn *ct)
715 {
716 if (!atomic_inc_not_zero(&ct->ct_general.use))
717 return;
718
719 if (nf_ct_should_gc(ct))
720 nf_ct_kill(ct);
721
722 nf_ct_put(ct);
723 }
724
725 /*
726 * Warning :
727 * - Caller must take a reference on returned object
728 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
729 */
730 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)731 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
732 const struct nf_conntrack_tuple *tuple, u32 hash)
733 {
734 struct nf_conntrack_tuple_hash *h;
735 struct hlist_nulls_head *ct_hash;
736 struct hlist_nulls_node *n;
737 unsigned int bucket, hsize;
738
739 begin:
740 nf_conntrack_get_ht(&ct_hash, &hsize);
741 bucket = reciprocal_scale(hash, hsize);
742
743 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
744 struct nf_conn *ct;
745
746 ct = nf_ct_tuplehash_to_ctrack(h);
747 if (nf_ct_is_expired(ct)) {
748 nf_ct_gc_expired(ct);
749 continue;
750 }
751
752 if (nf_ct_key_equal(h, tuple, zone, net))
753 return h;
754 }
755 /*
756 * if the nulls value we got at the end of this lookup is
757 * not the expected one, we must restart lookup.
758 * We probably met an item that was moved to another chain.
759 */
760 if (get_nulls_value(n) != bucket) {
761 NF_CT_STAT_INC_ATOMIC(net, search_restart);
762 goto begin;
763 }
764
765 return NULL;
766 }
767
768 /* Find a connection corresponding to a tuple. */
769 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)770 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
771 const struct nf_conntrack_tuple *tuple, u32 hash)
772 {
773 struct nf_conntrack_tuple_hash *h;
774 struct nf_conn *ct;
775
776 rcu_read_lock();
777
778 h = ____nf_conntrack_find(net, zone, tuple, hash);
779 if (h) {
780 /* We have a candidate that matches the tuple we're interested
781 * in, try to obtain a reference and re-check tuple
782 */
783 ct = nf_ct_tuplehash_to_ctrack(h);
784 if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
785 if (likely(nf_ct_key_equal(h, tuple, zone, net)))
786 goto found;
787
788 /* TYPESAFE_BY_RCU recycled the candidate */
789 nf_ct_put(ct);
790 }
791
792 h = NULL;
793 }
794 found:
795 rcu_read_unlock();
796
797 return h;
798 }
799
800 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)801 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
802 const struct nf_conntrack_tuple *tuple)
803 {
804 return __nf_conntrack_find_get(net, zone, tuple,
805 hash_conntrack_raw(tuple, net));
806 }
807 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
808
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)809 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
810 unsigned int hash,
811 unsigned int reply_hash)
812 {
813 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
814 &nf_conntrack_hash[hash]);
815 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
816 &nf_conntrack_hash[reply_hash]);
817 }
818
819 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)820 nf_conntrack_hash_check_insert(struct nf_conn *ct)
821 {
822 const struct nf_conntrack_zone *zone;
823 struct net *net = nf_ct_net(ct);
824 unsigned int hash, reply_hash;
825 struct nf_conntrack_tuple_hash *h;
826 struct hlist_nulls_node *n;
827 unsigned int sequence;
828
829 zone = nf_ct_zone(ct);
830
831 local_bh_disable();
832 do {
833 sequence = read_seqcount_begin(&nf_conntrack_generation);
834 hash = hash_conntrack(net,
835 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
836 reply_hash = hash_conntrack(net,
837 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
838 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
839
840 /* See if there's one in the list already, including reverse */
841 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
842 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
843 zone, net))
844 goto out;
845
846 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
847 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
848 zone, net))
849 goto out;
850
851 smp_wmb();
852 /* The caller holds a reference to this object */
853 atomic_set(&ct->ct_general.use, 2);
854 __nf_conntrack_hash_insert(ct, hash, reply_hash);
855 nf_conntrack_double_unlock(hash, reply_hash);
856 NF_CT_STAT_INC(net, insert);
857 local_bh_enable();
858 return 0;
859
860 out:
861 nf_conntrack_double_unlock(hash, reply_hash);
862 NF_CT_STAT_INC(net, insert_failed);
863 local_bh_enable();
864 return -EEXIST;
865 }
866 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
867
nf_ct_acct_update(struct nf_conn * ct,enum ip_conntrack_info ctinfo,unsigned int len)868 static inline void nf_ct_acct_update(struct nf_conn *ct,
869 enum ip_conntrack_info ctinfo,
870 unsigned int len)
871 {
872 struct nf_conn_acct *acct;
873
874 acct = nf_conn_acct_find(ct);
875 if (acct) {
876 struct nf_conn_counter *counter = acct->counter;
877
878 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
879 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
880 }
881 }
882
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)883 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
884 const struct nf_conn *loser_ct)
885 {
886 struct nf_conn_acct *acct;
887
888 acct = nf_conn_acct_find(loser_ct);
889 if (acct) {
890 struct nf_conn_counter *counter = acct->counter;
891 unsigned int bytes;
892
893 /* u32 should be fine since we must have seen one packet. */
894 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
895 nf_ct_acct_update(ct, ctinfo, bytes);
896 }
897 }
898
899 /* Resolve race on insertion if this protocol allows this. */
nf_ct_resolve_clash(struct net * net,struct sk_buff * skb,enum ip_conntrack_info ctinfo,struct nf_conntrack_tuple_hash * h)900 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
901 enum ip_conntrack_info ctinfo,
902 struct nf_conntrack_tuple_hash *h)
903 {
904 /* This is the conntrack entry already in hashes that won race. */
905 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
906 const struct nf_conntrack_l4proto *l4proto;
907 enum ip_conntrack_info oldinfo;
908 struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
909
910 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
911 if (l4proto->allow_clash &&
912 !nf_ct_is_dying(ct) &&
913 atomic_inc_not_zero(&ct->ct_general.use)) {
914 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
915 nf_ct_match(ct, loser_ct)) {
916 nf_ct_acct_merge(ct, ctinfo, loser_ct);
917 nf_conntrack_put(&loser_ct->ct_general);
918 nf_ct_set(skb, ct, oldinfo);
919 return NF_ACCEPT;
920 }
921 nf_ct_put(ct);
922 }
923 NF_CT_STAT_INC(net, drop);
924 return NF_DROP;
925 }
926
927 /* Confirm a connection given skb; places it in hash table */
928 int
__nf_conntrack_confirm(struct sk_buff * skb)929 __nf_conntrack_confirm(struct sk_buff *skb)
930 {
931 const struct nf_conntrack_zone *zone;
932 unsigned int hash, reply_hash;
933 struct nf_conntrack_tuple_hash *h;
934 struct nf_conn *ct;
935 struct nf_conn_help *help;
936 struct nf_conn_tstamp *tstamp;
937 struct hlist_nulls_node *n;
938 enum ip_conntrack_info ctinfo;
939 struct net *net;
940 unsigned int sequence;
941 int ret = NF_DROP;
942
943 ct = nf_ct_get(skb, &ctinfo);
944 net = nf_ct_net(ct);
945
946 /* ipt_REJECT uses nf_conntrack_attach to attach related
947 ICMP/TCP RST packets in other direction. Actual packet
948 which created connection will be IP_CT_NEW or for an
949 expected connection, IP_CT_RELATED. */
950 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
951 return NF_ACCEPT;
952
953 zone = nf_ct_zone(ct);
954 local_bh_disable();
955
956 do {
957 sequence = read_seqcount_begin(&nf_conntrack_generation);
958 /* reuse the hash saved before */
959 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
960 hash = scale_hash(hash);
961 reply_hash = hash_conntrack(net,
962 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
963
964 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
965
966 /* We're not in hash table, and we refuse to set up related
967 * connections for unconfirmed conns. But packet copies and
968 * REJECT will give spurious warnings here.
969 */
970
971 /* Another skb with the same unconfirmed conntrack may
972 * win the race. This may happen for bridge(br_flood)
973 * or broadcast/multicast packets do skb_clone with
974 * unconfirmed conntrack.
975 */
976 if (unlikely(nf_ct_is_confirmed(ct))) {
977 WARN_ON_ONCE(1);
978 nf_conntrack_double_unlock(hash, reply_hash);
979 local_bh_enable();
980 return NF_DROP;
981 }
982
983 pr_debug("Confirming conntrack %p\n", ct);
984 /* We have to check the DYING flag after unlink to prevent
985 * a race against nf_ct_get_next_corpse() possibly called from
986 * user context, else we insert an already 'dead' hash, blocking
987 * further use of that particular connection -JM.
988 */
989 nf_ct_del_from_dying_or_unconfirmed_list(ct);
990
991 if (unlikely(nf_ct_is_dying(ct))) {
992 nf_ct_add_to_dying_list(ct);
993 goto dying;
994 }
995
996 /* See if there's one in the list already, including reverse:
997 NAT could have grabbed it without realizing, since we're
998 not in the hash. If there is, we lost race. */
999 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
1000 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1001 zone, net))
1002 goto out;
1003
1004 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1005 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1006 zone, net))
1007 goto out;
1008
1009 /* Timer relative to confirmation time, not original
1010 setting time, otherwise we'd get timer wrap in
1011 weird delay cases. */
1012 ct->timeout += nfct_time_stamp;
1013 atomic_inc(&ct->ct_general.use);
1014 ct->status |= IPS_CONFIRMED;
1015
1016 /* set conntrack timestamp, if enabled. */
1017 tstamp = nf_conn_tstamp_find(ct);
1018 if (tstamp)
1019 tstamp->start = ktime_get_real_ns();
1020
1021 /* Since the lookup is lockless, hash insertion must be done after
1022 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1023 * guarantee that no other CPU can find the conntrack before the above
1024 * stores are visible.
1025 */
1026 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1027 nf_conntrack_double_unlock(hash, reply_hash);
1028 local_bh_enable();
1029
1030 help = nfct_help(ct);
1031 if (help && help->helper)
1032 nf_conntrack_event_cache(IPCT_HELPER, ct);
1033
1034 nf_conntrack_event_cache(master_ct(ct) ?
1035 IPCT_RELATED : IPCT_NEW, ct);
1036 return NF_ACCEPT;
1037
1038 out:
1039 nf_ct_add_to_dying_list(ct);
1040 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
1041 dying:
1042 nf_conntrack_double_unlock(hash, reply_hash);
1043 NF_CT_STAT_INC(net, insert_failed);
1044 local_bh_enable();
1045 return ret;
1046 }
1047 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1048
1049 /* Returns true if a connection correspondings to the tuple (required
1050 for NAT). */
1051 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1052 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1053 const struct nf_conn *ignored_conntrack)
1054 {
1055 struct net *net = nf_ct_net(ignored_conntrack);
1056 const struct nf_conntrack_zone *zone;
1057 struct nf_conntrack_tuple_hash *h;
1058 struct hlist_nulls_head *ct_hash;
1059 unsigned int hash, hsize;
1060 struct hlist_nulls_node *n;
1061 struct nf_conn *ct;
1062
1063 zone = nf_ct_zone(ignored_conntrack);
1064
1065 rcu_read_lock();
1066 begin:
1067 nf_conntrack_get_ht(&ct_hash, &hsize);
1068 hash = __hash_conntrack(net, tuple, hsize);
1069
1070 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1071 ct = nf_ct_tuplehash_to_ctrack(h);
1072
1073 if (ct == ignored_conntrack)
1074 continue;
1075
1076 if (nf_ct_is_expired(ct)) {
1077 nf_ct_gc_expired(ct);
1078 continue;
1079 }
1080
1081 if (nf_ct_key_equal(h, tuple, zone, net)) {
1082 /* Tuple is taken already, so caller will need to find
1083 * a new source port to use.
1084 *
1085 * Only exception:
1086 * If the *original tuples* are identical, then both
1087 * conntracks refer to the same flow.
1088 * This is a rare situation, it can occur e.g. when
1089 * more than one UDP packet is sent from same socket
1090 * in different threads.
1091 *
1092 * Let nf_ct_resolve_clash() deal with this later.
1093 */
1094 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1095 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1096 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1097 continue;
1098
1099 NF_CT_STAT_INC_ATOMIC(net, found);
1100 rcu_read_unlock();
1101 return 1;
1102 }
1103 }
1104
1105 if (get_nulls_value(n) != hash) {
1106 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1107 goto begin;
1108 }
1109
1110 rcu_read_unlock();
1111
1112 return 0;
1113 }
1114 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1115
1116 #define NF_CT_EVICTION_RANGE 8
1117
1118 /* There's a small race here where we may free a just-assured
1119 connection. Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1120 static unsigned int early_drop_list(struct net *net,
1121 struct hlist_nulls_head *head)
1122 {
1123 struct nf_conntrack_tuple_hash *h;
1124 struct hlist_nulls_node *n;
1125 unsigned int drops = 0;
1126 struct nf_conn *tmp;
1127
1128 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1129 tmp = nf_ct_tuplehash_to_ctrack(h);
1130
1131 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1132 continue;
1133
1134 if (nf_ct_is_expired(tmp)) {
1135 nf_ct_gc_expired(tmp);
1136 continue;
1137 }
1138
1139 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1140 !net_eq(nf_ct_net(tmp), net) ||
1141 nf_ct_is_dying(tmp))
1142 continue;
1143
1144 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1145 continue;
1146
1147 /* kill only if still in same netns -- might have moved due to
1148 * SLAB_TYPESAFE_BY_RCU rules.
1149 *
1150 * We steal the timer reference. If that fails timer has
1151 * already fired or someone else deleted it. Just drop ref
1152 * and move to next entry.
1153 */
1154 if (net_eq(nf_ct_net(tmp), net) &&
1155 nf_ct_is_confirmed(tmp) &&
1156 nf_ct_delete(tmp, 0, 0))
1157 drops++;
1158
1159 nf_ct_put(tmp);
1160 }
1161
1162 return drops;
1163 }
1164
early_drop(struct net * net,unsigned int hash)1165 static noinline int early_drop(struct net *net, unsigned int hash)
1166 {
1167 unsigned int i, bucket;
1168
1169 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1170 struct hlist_nulls_head *ct_hash;
1171 unsigned int hsize, drops;
1172
1173 rcu_read_lock();
1174 nf_conntrack_get_ht(&ct_hash, &hsize);
1175 if (!i)
1176 bucket = reciprocal_scale(hash, hsize);
1177 else
1178 bucket = (bucket + 1) % hsize;
1179
1180 drops = early_drop_list(net, &ct_hash[bucket]);
1181 rcu_read_unlock();
1182
1183 if (drops) {
1184 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1185 return true;
1186 }
1187 }
1188
1189 return false;
1190 }
1191
gc_worker_skip_ct(const struct nf_conn * ct)1192 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1193 {
1194 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1195 }
1196
gc_worker_can_early_drop(const struct nf_conn * ct)1197 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1198 {
1199 const struct nf_conntrack_l4proto *l4proto;
1200
1201 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1202 return true;
1203
1204 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1205 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1206 return true;
1207
1208 return false;
1209 }
1210
1211 #define DAY (86400 * HZ)
1212
1213 /* Set an arbitrary timeout large enough not to ever expire, this save
1214 * us a check for the IPS_OFFLOAD_BIT from the packet path via
1215 * nf_ct_is_expired().
1216 */
nf_ct_offload_timeout(struct nf_conn * ct)1217 static void nf_ct_offload_timeout(struct nf_conn *ct)
1218 {
1219 if (nf_ct_expires(ct) < DAY / 2)
1220 ct->timeout = nfct_time_stamp + DAY;
1221 }
1222
gc_worker(struct work_struct * work)1223 static void gc_worker(struct work_struct *work)
1224 {
1225 unsigned long end_time = jiffies + GC_SCAN_MAX_DURATION;
1226 unsigned int i, hashsz, nf_conntrack_max95 = 0;
1227 unsigned long next_run = GC_SCAN_INTERVAL;
1228 struct conntrack_gc_work *gc_work;
1229 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1230
1231 i = gc_work->next_bucket;
1232 if (gc_work->early_drop)
1233 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1234
1235 do {
1236 struct nf_conntrack_tuple_hash *h;
1237 struct hlist_nulls_head *ct_hash;
1238 struct hlist_nulls_node *n;
1239 struct nf_conn *tmp;
1240
1241 rcu_read_lock();
1242
1243 nf_conntrack_get_ht(&ct_hash, &hashsz);
1244 if (i >= hashsz) {
1245 rcu_read_unlock();
1246 break;
1247 }
1248
1249 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1250 struct net *net;
1251
1252 tmp = nf_ct_tuplehash_to_ctrack(h);
1253
1254 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1255 nf_ct_offload_timeout(tmp);
1256 continue;
1257 }
1258
1259 if (nf_ct_is_expired(tmp)) {
1260 nf_ct_gc_expired(tmp);
1261 continue;
1262 }
1263
1264 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1265 continue;
1266
1267 net = nf_ct_net(tmp);
1268 if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1269 continue;
1270
1271 /* need to take reference to avoid possible races */
1272 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1273 continue;
1274
1275 if (gc_worker_skip_ct(tmp)) {
1276 nf_ct_put(tmp);
1277 continue;
1278 }
1279
1280 if (gc_worker_can_early_drop(tmp))
1281 nf_ct_kill(tmp);
1282
1283 nf_ct_put(tmp);
1284 }
1285
1286 /* could check get_nulls_value() here and restart if ct
1287 * was moved to another chain. But given gc is best-effort
1288 * we will just continue with next hash slot.
1289 */
1290 rcu_read_unlock();
1291 cond_resched();
1292 i++;
1293
1294 if (time_after(jiffies, end_time) && i < hashsz) {
1295 gc_work->next_bucket = i;
1296 next_run = 0;
1297 break;
1298 }
1299 } while (i < hashsz);
1300
1301 if (gc_work->exiting)
1302 return;
1303
1304 /*
1305 * Eviction will normally happen from the packet path, and not
1306 * from this gc worker.
1307 *
1308 * This worker is only here to reap expired entries when system went
1309 * idle after a busy period.
1310 */
1311 if (next_run) {
1312 gc_work->early_drop = false;
1313 gc_work->next_bucket = 0;
1314 }
1315 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1316 }
1317
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1318 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1319 {
1320 INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1321 gc_work->exiting = false;
1322 }
1323
1324 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1325 __nf_conntrack_alloc(struct net *net,
1326 const struct nf_conntrack_zone *zone,
1327 const struct nf_conntrack_tuple *orig,
1328 const struct nf_conntrack_tuple *repl,
1329 gfp_t gfp, u32 hash)
1330 {
1331 struct nf_conn *ct;
1332
1333 /* We don't want any race condition at early drop stage */
1334 atomic_inc(&net->ct.count);
1335
1336 if (nf_conntrack_max &&
1337 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1338 if (!early_drop(net, hash)) {
1339 if (!conntrack_gc_work.early_drop)
1340 conntrack_gc_work.early_drop = true;
1341 atomic_dec(&net->ct.count);
1342 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1343 return ERR_PTR(-ENOMEM);
1344 }
1345 }
1346
1347 /*
1348 * Do not use kmem_cache_zalloc(), as this cache uses
1349 * SLAB_TYPESAFE_BY_RCU.
1350 */
1351 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1352 if (ct == NULL)
1353 goto out;
1354
1355 spin_lock_init(&ct->lock);
1356 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1357 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1358 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1359 /* save hash for reusing when confirming */
1360 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1361 ct->status = 0;
1362 ct->timeout = 0;
1363 write_pnet(&ct->ct_net, net);
1364 memset(&ct->__nfct_init_offset, 0,
1365 offsetof(struct nf_conn, proto) -
1366 offsetof(struct nf_conn, __nfct_init_offset));
1367
1368 nf_ct_zone_add(ct, zone);
1369
1370 trace_android_rvh_nf_conn_alloc(ct);
1371
1372 /* Because we use RCU lookups, we set ct_general.use to zero before
1373 * this is inserted in any list.
1374 */
1375 atomic_set(&ct->ct_general.use, 0);
1376 return ct;
1377 out:
1378 atomic_dec(&net->ct.count);
1379 return ERR_PTR(-ENOMEM);
1380 }
1381
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1382 struct nf_conn *nf_conntrack_alloc(struct net *net,
1383 const struct nf_conntrack_zone *zone,
1384 const struct nf_conntrack_tuple *orig,
1385 const struct nf_conntrack_tuple *repl,
1386 gfp_t gfp)
1387 {
1388 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1389 }
1390 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1391
nf_conntrack_free(struct nf_conn * ct)1392 void nf_conntrack_free(struct nf_conn *ct)
1393 {
1394 struct net *net = nf_ct_net(ct);
1395
1396 /* A freed object has refcnt == 0, that's
1397 * the golden rule for SLAB_TYPESAFE_BY_RCU
1398 */
1399 WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1400
1401 nf_ct_ext_destroy(ct);
1402 nf_ct_ext_free(ct);
1403 kmem_cache_free(nf_conntrack_cachep, ct);
1404 smp_mb__before_atomic();
1405 trace_android_rvh_nf_conn_free(ct);
1406 atomic_dec(&net->ct.count);
1407 }
1408 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1409
1410
1411 /* Allocate a new conntrack: we return -ENOMEM if classification
1412 failed due to stress. Otherwise it really is unclassifiable. */
1413 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1414 init_conntrack(struct net *net, struct nf_conn *tmpl,
1415 const struct nf_conntrack_tuple *tuple,
1416 struct sk_buff *skb,
1417 unsigned int dataoff, u32 hash)
1418 {
1419 struct nf_conn *ct;
1420 struct nf_conn_help *help;
1421 struct nf_conntrack_tuple repl_tuple;
1422 struct nf_conntrack_ecache *ecache;
1423 struct nf_conntrack_expect *exp = NULL;
1424 const struct nf_conntrack_zone *zone;
1425 struct nf_conn_timeout *timeout_ext;
1426 struct nf_conntrack_zone tmp;
1427
1428 if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1429 pr_debug("Can't invert tuple.\n");
1430 return NULL;
1431 }
1432
1433 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1434 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1435 hash);
1436 if (IS_ERR(ct))
1437 return (struct nf_conntrack_tuple_hash *)ct;
1438
1439 if (!nf_ct_add_synproxy(ct, tmpl)) {
1440 nf_conntrack_free(ct);
1441 return ERR_PTR(-ENOMEM);
1442 }
1443
1444 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1445
1446 if (timeout_ext)
1447 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1448 GFP_ATOMIC);
1449
1450 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1451 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1452 nf_ct_labels_ext_add(ct);
1453
1454 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1455 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1456 ecache ? ecache->expmask : 0,
1457 GFP_ATOMIC);
1458
1459 local_bh_disable();
1460 if (net->ct.expect_count) {
1461 spin_lock(&nf_conntrack_expect_lock);
1462 exp = nf_ct_find_expectation(net, zone, tuple);
1463 if (exp) {
1464 pr_debug("expectation arrives ct=%p exp=%p\n",
1465 ct, exp);
1466 /* Welcome, Mr. Bond. We've been expecting you... */
1467 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1468 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1469 ct->master = exp->master;
1470 if (exp->helper) {
1471 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1472 if (help)
1473 rcu_assign_pointer(help->helper, exp->helper);
1474 }
1475
1476 #ifdef CONFIG_NF_CONNTRACK_MARK
1477 ct->mark = exp->master->mark;
1478 #endif
1479 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1480 ct->secmark = exp->master->secmark;
1481 #endif
1482 NF_CT_STAT_INC(net, expect_new);
1483 }
1484 spin_unlock(&nf_conntrack_expect_lock);
1485 }
1486 if (!exp)
1487 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1488
1489 /* Now it is inserted into the unconfirmed list, bump refcount */
1490 nf_conntrack_get(&ct->ct_general);
1491 nf_ct_add_to_unconfirmed_list(ct);
1492
1493 local_bh_enable();
1494
1495 if (exp) {
1496 if (exp->expectfn)
1497 exp->expectfn(ct, exp);
1498 nf_ct_expect_put(exp);
1499 }
1500
1501 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1502 }
1503
1504 /* On success, returns 0, sets skb->_nfct | ctinfo */
1505 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1506 resolve_normal_ct(struct nf_conn *tmpl,
1507 struct sk_buff *skb,
1508 unsigned int dataoff,
1509 u_int8_t protonum,
1510 const struct nf_hook_state *state)
1511 {
1512 const struct nf_conntrack_zone *zone;
1513 struct nf_conntrack_tuple tuple;
1514 struct nf_conntrack_tuple_hash *h;
1515 enum ip_conntrack_info ctinfo;
1516 struct nf_conntrack_zone tmp;
1517 struct nf_conn *ct;
1518 u32 hash;
1519
1520 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1521 dataoff, state->pf, protonum, state->net,
1522 &tuple)) {
1523 pr_debug("Can't get tuple\n");
1524 return 0;
1525 }
1526
1527 /* look for tuple match */
1528 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1529 hash = hash_conntrack_raw(&tuple, state->net);
1530 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1531 if (!h) {
1532 h = init_conntrack(state->net, tmpl, &tuple,
1533 skb, dataoff, hash);
1534 if (!h)
1535 return 0;
1536 if (IS_ERR(h))
1537 return PTR_ERR(h);
1538 }
1539 ct = nf_ct_tuplehash_to_ctrack(h);
1540
1541 /* It exists; we have (non-exclusive) reference. */
1542 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1543 ctinfo = IP_CT_ESTABLISHED_REPLY;
1544 } else {
1545 /* Once we've had two way comms, always ESTABLISHED. */
1546 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1547 pr_debug("normal packet for %p\n", ct);
1548 ctinfo = IP_CT_ESTABLISHED;
1549 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1550 pr_debug("related packet for %p\n", ct);
1551 ctinfo = IP_CT_RELATED;
1552 } else {
1553 pr_debug("new packet for %p\n", ct);
1554 ctinfo = IP_CT_NEW;
1555 }
1556 }
1557 nf_ct_set(skb, ct, ctinfo);
1558 return 0;
1559 }
1560
1561 /*
1562 * icmp packets need special treatment to handle error messages that are
1563 * related to a connection.
1564 *
1565 * Callers need to check if skb has a conntrack assigned when this
1566 * helper returns; in such case skb belongs to an already known connection.
1567 */
1568 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1569 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1570 struct sk_buff *skb,
1571 unsigned int dataoff,
1572 u8 protonum,
1573 const struct nf_hook_state *state)
1574 {
1575 int ret;
1576
1577 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1578 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1579 #if IS_ENABLED(CONFIG_IPV6)
1580 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1581 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1582 #endif
1583 else
1584 return NF_ACCEPT;
1585
1586 if (ret <= 0) {
1587 NF_CT_STAT_INC_ATOMIC(state->net, error);
1588 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1589 }
1590
1591 return ret;
1592 }
1593
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1594 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1595 enum ip_conntrack_info ctinfo)
1596 {
1597 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1598
1599 if (!timeout)
1600 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1601
1602 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1603 return NF_ACCEPT;
1604 }
1605
1606 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1607 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1608 struct sk_buff *skb,
1609 unsigned int dataoff,
1610 enum ip_conntrack_info ctinfo,
1611 const struct nf_hook_state *state)
1612 {
1613 switch (nf_ct_protonum(ct)) {
1614 case IPPROTO_TCP:
1615 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1616 ctinfo, state);
1617 case IPPROTO_UDP:
1618 return nf_conntrack_udp_packet(ct, skb, dataoff,
1619 ctinfo, state);
1620 case IPPROTO_ICMP:
1621 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1622 #if IS_ENABLED(CONFIG_IPV6)
1623 case IPPROTO_ICMPV6:
1624 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1625 #endif
1626 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1627 case IPPROTO_UDPLITE:
1628 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1629 ctinfo, state);
1630 #endif
1631 #ifdef CONFIG_NF_CT_PROTO_SCTP
1632 case IPPROTO_SCTP:
1633 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1634 ctinfo, state);
1635 #endif
1636 #ifdef CONFIG_NF_CT_PROTO_DCCP
1637 case IPPROTO_DCCP:
1638 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1639 ctinfo, state);
1640 #endif
1641 #ifdef CONFIG_NF_CT_PROTO_GRE
1642 case IPPROTO_GRE:
1643 return nf_conntrack_gre_packet(ct, skb, dataoff,
1644 ctinfo, state);
1645 #endif
1646 }
1647
1648 return generic_packet(ct, skb, ctinfo);
1649 }
1650
1651 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1652 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1653 {
1654 enum ip_conntrack_info ctinfo;
1655 struct nf_conn *ct, *tmpl;
1656 u_int8_t protonum;
1657 int dataoff, ret;
1658
1659 tmpl = nf_ct_get(skb, &ctinfo);
1660 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1661 /* Previously seen (loopback or untracked)? Ignore. */
1662 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1663 ctinfo == IP_CT_UNTRACKED) {
1664 NF_CT_STAT_INC_ATOMIC(state->net, ignore);
1665 return NF_ACCEPT;
1666 }
1667 skb->_nfct = 0;
1668 }
1669
1670 /* rcu_read_lock()ed by nf_hook_thresh */
1671 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1672 if (dataoff <= 0) {
1673 pr_debug("not prepared to track yet or error occurred\n");
1674 NF_CT_STAT_INC_ATOMIC(state->net, error);
1675 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1676 ret = NF_ACCEPT;
1677 goto out;
1678 }
1679
1680 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1681 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1682 protonum, state);
1683 if (ret <= 0) {
1684 ret = -ret;
1685 goto out;
1686 }
1687 /* ICMP[v6] protocol trackers may assign one conntrack. */
1688 if (skb->_nfct)
1689 goto out;
1690 }
1691 repeat:
1692 ret = resolve_normal_ct(tmpl, skb, dataoff,
1693 protonum, state);
1694 if (ret < 0) {
1695 /* Too stressed to deal. */
1696 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1697 ret = NF_DROP;
1698 goto out;
1699 }
1700
1701 ct = nf_ct_get(skb, &ctinfo);
1702 if (!ct) {
1703 /* Not valid part of a connection */
1704 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1705 ret = NF_ACCEPT;
1706 goto out;
1707 }
1708
1709 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1710 if (ret <= 0) {
1711 /* Invalid: inverse of the return code tells
1712 * the netfilter core what to do */
1713 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1714 nf_conntrack_put(&ct->ct_general);
1715 skb->_nfct = 0;
1716 /* Special case: TCP tracker reports an attempt to reopen a
1717 * closed/aborted connection. We have to go back and create a
1718 * fresh conntrack.
1719 */
1720 if (ret == -NF_REPEAT)
1721 goto repeat;
1722
1723 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1724 if (ret == -NF_DROP)
1725 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1726
1727 ret = -ret;
1728 goto out;
1729 }
1730
1731 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1732 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1733 nf_conntrack_event_cache(IPCT_REPLY, ct);
1734 out:
1735 if (tmpl)
1736 nf_ct_put(tmpl);
1737
1738 return ret;
1739 }
1740 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1741
1742 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1743 implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)1744 void nf_conntrack_alter_reply(struct nf_conn *ct,
1745 const struct nf_conntrack_tuple *newreply)
1746 {
1747 struct nf_conn_help *help = nfct_help(ct);
1748
1749 /* Should be unconfirmed, so not in hash table yet */
1750 WARN_ON(nf_ct_is_confirmed(ct));
1751
1752 pr_debug("Altering reply tuple of %p to ", ct);
1753 nf_ct_dump_tuple(newreply);
1754
1755 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1756 if (ct->master || (help && !hlist_empty(&help->expectations)))
1757 return;
1758
1759 rcu_read_lock();
1760 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1761 rcu_read_unlock();
1762 }
1763 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1764
1765 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)1766 void __nf_ct_refresh_acct(struct nf_conn *ct,
1767 enum ip_conntrack_info ctinfo,
1768 const struct sk_buff *skb,
1769 u32 extra_jiffies,
1770 bool do_acct)
1771 {
1772 /* Only update if this is not a fixed timeout */
1773 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1774 goto acct;
1775
1776 /* If not in hash table, timer will not be active yet */
1777 if (nf_ct_is_confirmed(ct))
1778 extra_jiffies += nfct_time_stamp;
1779
1780 if (READ_ONCE(ct->timeout) != extra_jiffies)
1781 WRITE_ONCE(ct->timeout, extra_jiffies);
1782 acct:
1783 if (do_acct)
1784 nf_ct_acct_update(ct, ctinfo, skb->len);
1785 }
1786 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1787
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)1788 bool nf_ct_kill_acct(struct nf_conn *ct,
1789 enum ip_conntrack_info ctinfo,
1790 const struct sk_buff *skb)
1791 {
1792 nf_ct_acct_update(ct, ctinfo, skb->len);
1793
1794 return nf_ct_delete(ct, 0, 0);
1795 }
1796 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1797
1798 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1799
1800 #include <linux/netfilter/nfnetlink.h>
1801 #include <linux/netfilter/nfnetlink_conntrack.h>
1802 #include <linux/mutex.h>
1803
1804 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)1805 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1806 const struct nf_conntrack_tuple *tuple)
1807 {
1808 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1809 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1810 goto nla_put_failure;
1811 return 0;
1812
1813 nla_put_failure:
1814 return -1;
1815 }
1816 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1817
1818 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1819 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1820 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1821 };
1822 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1823
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t)1824 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1825 struct nf_conntrack_tuple *t)
1826 {
1827 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1828 return -EINVAL;
1829
1830 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1831 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1832
1833 return 0;
1834 }
1835 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1836
nf_ct_port_nlattr_tuple_size(void)1837 unsigned int nf_ct_port_nlattr_tuple_size(void)
1838 {
1839 static unsigned int size __read_mostly;
1840
1841 if (!size)
1842 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1843
1844 return size;
1845 }
1846 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1847 #endif
1848
1849 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)1850 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1851 {
1852 struct nf_conn *ct;
1853 enum ip_conntrack_info ctinfo;
1854
1855 /* This ICMP is in reverse direction to the packet which caused it */
1856 ct = nf_ct_get(skb, &ctinfo);
1857 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1858 ctinfo = IP_CT_RELATED_REPLY;
1859 else
1860 ctinfo = IP_CT_RELATED;
1861
1862 /* Attach to new skbuff, and increment count */
1863 nf_ct_set(nskb, ct, ctinfo);
1864 nf_conntrack_get(skb_nfct(nskb));
1865 }
1866
__nf_conntrack_update(struct net * net,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)1867 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
1868 struct nf_conn *ct,
1869 enum ip_conntrack_info ctinfo)
1870 {
1871 struct nf_conntrack_tuple_hash *h;
1872 struct nf_conntrack_tuple tuple;
1873 struct nf_nat_hook *nat_hook;
1874 unsigned int status;
1875 int dataoff;
1876 u16 l3num;
1877 u8 l4num;
1878
1879 l3num = nf_ct_l3num(ct);
1880
1881 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
1882 if (dataoff <= 0)
1883 return -1;
1884
1885 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
1886 l4num, net, &tuple))
1887 return -1;
1888
1889 if (ct->status & IPS_SRC_NAT) {
1890 memcpy(tuple.src.u3.all,
1891 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
1892 sizeof(tuple.src.u3.all));
1893 tuple.src.u.all =
1894 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
1895 }
1896
1897 if (ct->status & IPS_DST_NAT) {
1898 memcpy(tuple.dst.u3.all,
1899 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
1900 sizeof(tuple.dst.u3.all));
1901 tuple.dst.u.all =
1902 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
1903 }
1904
1905 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
1906 if (!h)
1907 return 0;
1908
1909 /* Store status bits of the conntrack that is clashing to re-do NAT
1910 * mangling according to what it has been done already to this packet.
1911 */
1912 status = ct->status;
1913
1914 nf_ct_put(ct);
1915 ct = nf_ct_tuplehash_to_ctrack(h);
1916 nf_ct_set(skb, ct, ctinfo);
1917
1918 nat_hook = rcu_dereference(nf_nat_hook);
1919 if (!nat_hook)
1920 return 0;
1921
1922 if (status & IPS_SRC_NAT &&
1923 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
1924 IP_CT_DIR_ORIGINAL) == NF_DROP)
1925 return -1;
1926
1927 if (status & IPS_DST_NAT &&
1928 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
1929 IP_CT_DIR_ORIGINAL) == NF_DROP)
1930 return -1;
1931
1932 return 0;
1933 }
1934
1935 /* This packet is coming from userspace via nf_queue, complete the packet
1936 * processing after the helper invocation in nf_confirm().
1937 */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)1938 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
1939 enum ip_conntrack_info ctinfo)
1940 {
1941 const struct nf_conntrack_helper *helper;
1942 const struct nf_conn_help *help;
1943 int protoff;
1944
1945 help = nfct_help(ct);
1946 if (!help)
1947 return 0;
1948
1949 helper = rcu_dereference(help->helper);
1950 if (!helper)
1951 return 0;
1952
1953 if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
1954 return 0;
1955
1956 switch (nf_ct_l3num(ct)) {
1957 case NFPROTO_IPV4:
1958 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
1959 break;
1960 #if IS_ENABLED(CONFIG_IPV6)
1961 case NFPROTO_IPV6: {
1962 __be16 frag_off;
1963 u8 pnum;
1964
1965 pnum = ipv6_hdr(skb)->nexthdr;
1966 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
1967 &frag_off);
1968 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
1969 return 0;
1970 break;
1971 }
1972 #endif
1973 default:
1974 return 0;
1975 }
1976
1977 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
1978 !nf_is_loopback_packet(skb)) {
1979 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
1980 NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
1981 return -1;
1982 }
1983 }
1984
1985 /* We've seen it coming out the other side: confirm it */
1986 return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
1987 }
1988
nf_conntrack_update(struct net * net,struct sk_buff * skb)1989 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
1990 {
1991 enum ip_conntrack_info ctinfo;
1992 struct nf_conn *ct;
1993 int err;
1994
1995 ct = nf_ct_get(skb, &ctinfo);
1996 if (!ct)
1997 return 0;
1998
1999 if (!nf_ct_is_confirmed(ct)) {
2000 err = __nf_conntrack_update(net, skb, ct, ctinfo);
2001 if (err < 0)
2002 return err;
2003
2004 ct = nf_ct_get(skb, &ctinfo);
2005 }
2006
2007 return nf_confirm_cthelper(skb, ct, ctinfo);
2008 }
2009
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2010 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2011 const struct sk_buff *skb)
2012 {
2013 const struct nf_conntrack_tuple *src_tuple;
2014 const struct nf_conntrack_tuple_hash *hash;
2015 struct nf_conntrack_tuple srctuple;
2016 enum ip_conntrack_info ctinfo;
2017 struct nf_conn *ct;
2018
2019 ct = nf_ct_get(skb, &ctinfo);
2020 if (ct) {
2021 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2022 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2023 return true;
2024 }
2025
2026 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2027 NFPROTO_IPV4, dev_net(skb->dev),
2028 &srctuple))
2029 return false;
2030
2031 hash = nf_conntrack_find_get(dev_net(skb->dev),
2032 &nf_ct_zone_dflt,
2033 &srctuple);
2034 if (!hash)
2035 return false;
2036
2037 ct = nf_ct_tuplehash_to_ctrack(hash);
2038 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2039 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2040 nf_ct_put(ct);
2041
2042 return true;
2043 }
2044
2045 /* Bring out ya dead! */
2046 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),void * data,unsigned int * bucket)2047 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2048 void *data, unsigned int *bucket)
2049 {
2050 struct nf_conntrack_tuple_hash *h;
2051 struct nf_conn *ct;
2052 struct hlist_nulls_node *n;
2053 spinlock_t *lockp;
2054
2055 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2056 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2057 local_bh_disable();
2058 nf_conntrack_lock(lockp);
2059 if (*bucket < nf_conntrack_htable_size) {
2060 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2061 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
2062 continue;
2063 ct = nf_ct_tuplehash_to_ctrack(h);
2064 if (iter(ct, data))
2065 goto found;
2066 }
2067 }
2068 spin_unlock(lockp);
2069 local_bh_enable();
2070 cond_resched();
2071 }
2072
2073 return NULL;
2074 found:
2075 atomic_inc(&ct->ct_general.use);
2076 spin_unlock(lockp);
2077 local_bh_enable();
2078 return ct;
2079 }
2080
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2081 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2082 void *data, u32 portid, int report)
2083 {
2084 unsigned int bucket = 0, sequence;
2085 struct nf_conn *ct;
2086
2087 might_sleep();
2088
2089 for (;;) {
2090 sequence = read_seqcount_begin(&nf_conntrack_generation);
2091
2092 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2093 /* Time to push up daises... */
2094
2095 nf_ct_delete(ct, portid, report);
2096 nf_ct_put(ct);
2097 cond_resched();
2098 }
2099
2100 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2101 break;
2102 bucket = 0;
2103 }
2104 }
2105
2106 struct iter_data {
2107 int (*iter)(struct nf_conn *i, void *data);
2108 void *data;
2109 struct net *net;
2110 };
2111
iter_net_only(struct nf_conn * i,void * data)2112 static int iter_net_only(struct nf_conn *i, void *data)
2113 {
2114 struct iter_data *d = data;
2115
2116 if (!net_eq(d->net, nf_ct_net(i)))
2117 return 0;
2118
2119 return d->iter(i, d->data);
2120 }
2121
2122 static void
__nf_ct_unconfirmed_destroy(struct net * net)2123 __nf_ct_unconfirmed_destroy(struct net *net)
2124 {
2125 int cpu;
2126
2127 for_each_possible_cpu(cpu) {
2128 struct nf_conntrack_tuple_hash *h;
2129 struct hlist_nulls_node *n;
2130 struct ct_pcpu *pcpu;
2131
2132 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2133
2134 spin_lock_bh(&pcpu->lock);
2135 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2136 struct nf_conn *ct;
2137
2138 ct = nf_ct_tuplehash_to_ctrack(h);
2139
2140 /* we cannot call iter() on unconfirmed list, the
2141 * owning cpu can reallocate ct->ext at any time.
2142 */
2143 set_bit(IPS_DYING_BIT, &ct->status);
2144 }
2145 spin_unlock_bh(&pcpu->lock);
2146 cond_resched();
2147 }
2148 }
2149
nf_ct_unconfirmed_destroy(struct net * net)2150 void nf_ct_unconfirmed_destroy(struct net *net)
2151 {
2152 might_sleep();
2153
2154 if (atomic_read(&net->ct.count) > 0) {
2155 __nf_ct_unconfirmed_destroy(net);
2156 nf_queue_nf_hook_drop(net);
2157 synchronize_net();
2158 }
2159 }
2160 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2161
nf_ct_iterate_cleanup_net(struct net * net,int (* iter)(struct nf_conn * i,void * data),void * data,u32 portid,int report)2162 void nf_ct_iterate_cleanup_net(struct net *net,
2163 int (*iter)(struct nf_conn *i, void *data),
2164 void *data, u32 portid, int report)
2165 {
2166 struct iter_data d;
2167
2168 might_sleep();
2169
2170 if (atomic_read(&net->ct.count) == 0)
2171 return;
2172
2173 d.iter = iter;
2174 d.data = data;
2175 d.net = net;
2176
2177 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2178 }
2179 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2180
2181 /**
2182 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2183 * @iter: callback to invoke for each conntrack
2184 * @data: data to pass to @iter
2185 *
2186 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2187 * unconfirmed list as dying (so they will not be inserted into
2188 * main table).
2189 *
2190 * Can only be called in module exit path.
2191 */
2192 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2193 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2194 {
2195 struct net *net;
2196
2197 down_read(&net_rwsem);
2198 for_each_net(net) {
2199 if (atomic_read(&net->ct.count) == 0)
2200 continue;
2201 __nf_ct_unconfirmed_destroy(net);
2202 nf_queue_nf_hook_drop(net);
2203 }
2204 up_read(&net_rwsem);
2205
2206 /* Need to wait for netns cleanup worker to finish, if its
2207 * running -- it might have deleted a net namespace from
2208 * the global list, so our __nf_ct_unconfirmed_destroy() might
2209 * not have affected all namespaces.
2210 */
2211 net_ns_barrier();
2212
2213 /* a conntrack could have been unlinked from unconfirmed list
2214 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2215 * This makes sure its inserted into conntrack table.
2216 */
2217 synchronize_net();
2218
2219 nf_ct_iterate_cleanup(iter, data, 0, 0);
2220 }
2221 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2222
kill_all(struct nf_conn * i,void * data)2223 static int kill_all(struct nf_conn *i, void *data)
2224 {
2225 return net_eq(nf_ct_net(i), data);
2226 }
2227
nf_conntrack_cleanup_start(void)2228 void nf_conntrack_cleanup_start(void)
2229 {
2230 conntrack_gc_work.exiting = true;
2231 RCU_INIT_POINTER(ip_ct_attach, NULL);
2232 }
2233
nf_conntrack_cleanup_end(void)2234 void nf_conntrack_cleanup_end(void)
2235 {
2236 RCU_INIT_POINTER(nf_ct_hook, NULL);
2237 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2238 kvfree(nf_conntrack_hash);
2239
2240 nf_conntrack_proto_fini();
2241 nf_conntrack_seqadj_fini();
2242 nf_conntrack_labels_fini();
2243 nf_conntrack_helper_fini();
2244 nf_conntrack_timeout_fini();
2245 nf_conntrack_ecache_fini();
2246 nf_conntrack_tstamp_fini();
2247 nf_conntrack_acct_fini();
2248 nf_conntrack_expect_fini();
2249
2250 kmem_cache_destroy(nf_conntrack_cachep);
2251 }
2252
2253 /*
2254 * Mishearing the voices in his head, our hero wonders how he's
2255 * supposed to kill the mall.
2256 */
nf_conntrack_cleanup_net(struct net * net)2257 void nf_conntrack_cleanup_net(struct net *net)
2258 {
2259 LIST_HEAD(single);
2260
2261 list_add(&net->exit_list, &single);
2262 nf_conntrack_cleanup_net_list(&single);
2263 }
2264
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2265 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2266 {
2267 int busy;
2268 struct net *net;
2269
2270 /*
2271 * This makes sure all current packets have passed through
2272 * netfilter framework. Roll on, two-stage module
2273 * delete...
2274 */
2275 synchronize_net();
2276 i_see_dead_people:
2277 busy = 0;
2278 list_for_each_entry(net, net_exit_list, exit_list) {
2279 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2280 if (atomic_read(&net->ct.count) != 0)
2281 busy = 1;
2282 }
2283 if (busy) {
2284 schedule();
2285 goto i_see_dead_people;
2286 }
2287
2288 list_for_each_entry(net, net_exit_list, exit_list) {
2289 nf_conntrack_proto_pernet_fini(net);
2290 nf_conntrack_ecache_pernet_fini(net);
2291 nf_conntrack_expect_pernet_fini(net);
2292 free_percpu(net->ct.stat);
2293 free_percpu(net->ct.pcpu_lists);
2294 }
2295 }
2296
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2297 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2298 {
2299 struct hlist_nulls_head *hash;
2300 unsigned int nr_slots, i;
2301
2302 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2303 return NULL;
2304
2305 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2306 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2307
2308 hash = kvmalloc_array(nr_slots, sizeof(struct hlist_nulls_head),
2309 GFP_KERNEL | __GFP_ZERO);
2310
2311 if (hash && nulls)
2312 for (i = 0; i < nr_slots; i++)
2313 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2314
2315 return hash;
2316 }
2317 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2318
nf_conntrack_hash_resize(unsigned int hashsize)2319 int nf_conntrack_hash_resize(unsigned int hashsize)
2320 {
2321 int i, bucket;
2322 unsigned int old_size;
2323 struct hlist_nulls_head *hash, *old_hash;
2324 struct nf_conntrack_tuple_hash *h;
2325 struct nf_conn *ct;
2326
2327 if (!hashsize)
2328 return -EINVAL;
2329
2330 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2331 if (!hash)
2332 return -ENOMEM;
2333
2334 old_size = nf_conntrack_htable_size;
2335 if (old_size == hashsize) {
2336 kvfree(hash);
2337 return 0;
2338 }
2339
2340 local_bh_disable();
2341 nf_conntrack_all_lock();
2342 write_seqcount_begin(&nf_conntrack_generation);
2343
2344 /* Lookups in the old hash might happen in parallel, which means we
2345 * might get false negatives during connection lookup. New connections
2346 * created because of a false negative won't make it into the hash
2347 * though since that required taking the locks.
2348 */
2349
2350 for (i = 0; i < nf_conntrack_htable_size; i++) {
2351 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2352 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2353 struct nf_conntrack_tuple_hash, hnnode);
2354 ct = nf_ct_tuplehash_to_ctrack(h);
2355 hlist_nulls_del_rcu(&h->hnnode);
2356 bucket = __hash_conntrack(nf_ct_net(ct),
2357 &h->tuple, hashsize);
2358 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2359 }
2360 }
2361 old_size = nf_conntrack_htable_size;
2362 old_hash = nf_conntrack_hash;
2363
2364 nf_conntrack_hash = hash;
2365 nf_conntrack_htable_size = hashsize;
2366
2367 write_seqcount_end(&nf_conntrack_generation);
2368 nf_conntrack_all_unlock();
2369 local_bh_enable();
2370
2371 synchronize_net();
2372 kvfree(old_hash);
2373 return 0;
2374 }
2375
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2376 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2377 {
2378 unsigned int hashsize;
2379 int rc;
2380
2381 if (current->nsproxy->net_ns != &init_net)
2382 return -EOPNOTSUPP;
2383
2384 /* On boot, we can set this without any fancy locking. */
2385 if (!nf_conntrack_hash)
2386 return param_set_uint(val, kp);
2387
2388 rc = kstrtouint(val, 0, &hashsize);
2389 if (rc)
2390 return rc;
2391
2392 return nf_conntrack_hash_resize(hashsize);
2393 }
2394 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
2395
total_extension_size(void)2396 static __always_inline unsigned int total_extension_size(void)
2397 {
2398 /* remember to add new extensions below */
2399 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2400
2401 return sizeof(struct nf_ct_ext) +
2402 sizeof(struct nf_conn_help)
2403 #if IS_ENABLED(CONFIG_NF_NAT)
2404 + sizeof(struct nf_conn_nat)
2405 #endif
2406 + sizeof(struct nf_conn_seqadj)
2407 + sizeof(struct nf_conn_acct)
2408 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2409 + sizeof(struct nf_conntrack_ecache)
2410 #endif
2411 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2412 + sizeof(struct nf_conn_tstamp)
2413 #endif
2414 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2415 + sizeof(struct nf_conn_timeout)
2416 #endif
2417 #ifdef CONFIG_NF_CONNTRACK_LABELS
2418 + sizeof(struct nf_conn_labels)
2419 #endif
2420 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2421 + sizeof(struct nf_conn_synproxy)
2422 #endif
2423 ;
2424 };
2425
nf_conntrack_init_start(void)2426 int nf_conntrack_init_start(void)
2427 {
2428 unsigned long nr_pages = totalram_pages();
2429 int max_factor = 8;
2430 int ret = -ENOMEM;
2431 int i;
2432
2433 /* struct nf_ct_ext uses u8 to store offsets/size */
2434 BUILD_BUG_ON(total_extension_size() > 255u);
2435
2436 seqcount_init(&nf_conntrack_generation);
2437
2438 for (i = 0; i < CONNTRACK_LOCKS; i++)
2439 spin_lock_init(&nf_conntrack_locks[i]);
2440
2441 if (!nf_conntrack_htable_size) {
2442 /* Idea from tcp.c: use 1/16384 of memory.
2443 * On i386: 32MB machine has 512 buckets.
2444 * >= 1GB machines have 16384 buckets.
2445 * >= 4GB machines have 65536 buckets.
2446 */
2447 nf_conntrack_htable_size
2448 = (((nr_pages << PAGE_SHIFT) / 16384)
2449 / sizeof(struct hlist_head));
2450 if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2451 nf_conntrack_htable_size = 65536;
2452 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2453 nf_conntrack_htable_size = 16384;
2454 if (nf_conntrack_htable_size < 32)
2455 nf_conntrack_htable_size = 32;
2456
2457 /* Use a max. factor of four by default to get the same max as
2458 * with the old struct list_heads. When a table size is given
2459 * we use the old value of 8 to avoid reducing the max.
2460 * entries. */
2461 max_factor = 4;
2462 }
2463
2464 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2465 if (!nf_conntrack_hash)
2466 return -ENOMEM;
2467
2468 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2469
2470 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2471 sizeof(struct nf_conn),
2472 NFCT_INFOMASK + 1,
2473 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2474 if (!nf_conntrack_cachep)
2475 goto err_cachep;
2476
2477 ret = nf_conntrack_expect_init();
2478 if (ret < 0)
2479 goto err_expect;
2480
2481 ret = nf_conntrack_acct_init();
2482 if (ret < 0)
2483 goto err_acct;
2484
2485 ret = nf_conntrack_tstamp_init();
2486 if (ret < 0)
2487 goto err_tstamp;
2488
2489 ret = nf_conntrack_ecache_init();
2490 if (ret < 0)
2491 goto err_ecache;
2492
2493 ret = nf_conntrack_timeout_init();
2494 if (ret < 0)
2495 goto err_timeout;
2496
2497 ret = nf_conntrack_helper_init();
2498 if (ret < 0)
2499 goto err_helper;
2500
2501 ret = nf_conntrack_labels_init();
2502 if (ret < 0)
2503 goto err_labels;
2504
2505 ret = nf_conntrack_seqadj_init();
2506 if (ret < 0)
2507 goto err_seqadj;
2508
2509 ret = nf_conntrack_proto_init();
2510 if (ret < 0)
2511 goto err_proto;
2512
2513 conntrack_gc_work_init(&conntrack_gc_work);
2514 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2515
2516 return 0;
2517
2518 err_proto:
2519 nf_conntrack_seqadj_fini();
2520 err_seqadj:
2521 nf_conntrack_labels_fini();
2522 err_labels:
2523 nf_conntrack_helper_fini();
2524 err_helper:
2525 nf_conntrack_timeout_fini();
2526 err_timeout:
2527 nf_conntrack_ecache_fini();
2528 err_ecache:
2529 nf_conntrack_tstamp_fini();
2530 err_tstamp:
2531 nf_conntrack_acct_fini();
2532 err_acct:
2533 nf_conntrack_expect_fini();
2534 err_expect:
2535 kmem_cache_destroy(nf_conntrack_cachep);
2536 err_cachep:
2537 kvfree(nf_conntrack_hash);
2538 return ret;
2539 }
2540
2541 static struct nf_ct_hook nf_conntrack_hook = {
2542 .update = nf_conntrack_update,
2543 .destroy = destroy_conntrack,
2544 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2545 };
2546
nf_conntrack_init_end(void)2547 void nf_conntrack_init_end(void)
2548 {
2549 /* For use by REJECT target */
2550 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2551 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2552 }
2553
2554 /*
2555 * We need to use special "null" values, not used in hash table
2556 */
2557 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2558 #define DYING_NULLS_VAL ((1<<30)+1)
2559 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
2560
nf_conntrack_init_net(struct net * net)2561 int nf_conntrack_init_net(struct net *net)
2562 {
2563 int ret = -ENOMEM;
2564 int cpu;
2565
2566 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2567 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2568 atomic_set(&net->ct.count, 0);
2569
2570 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2571 if (!net->ct.pcpu_lists)
2572 goto err_stat;
2573
2574 for_each_possible_cpu(cpu) {
2575 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2576
2577 spin_lock_init(&pcpu->lock);
2578 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2579 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2580 }
2581
2582 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2583 if (!net->ct.stat)
2584 goto err_pcpu_lists;
2585
2586 ret = nf_conntrack_expect_pernet_init(net);
2587 if (ret < 0)
2588 goto err_expect;
2589
2590 nf_conntrack_acct_pernet_init(net);
2591 nf_conntrack_tstamp_pernet_init(net);
2592 nf_conntrack_ecache_pernet_init(net);
2593 nf_conntrack_helper_pernet_init(net);
2594 nf_conntrack_proto_pernet_init(net);
2595
2596 return 0;
2597
2598 err_expect:
2599 free_percpu(net->ct.stat);
2600 err_pcpu_lists:
2601 free_percpu(net->ct.pcpu_lists);
2602 err_stat:
2603 return ret;
2604 }
2605