• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/write.c
4  *
5  * Write file data over NFS.
6  *
7  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
8  */
9 
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/pagemap.h>
14 #include <linux/file.h>
15 #include <linux/writeback.h>
16 #include <linux/swap.h>
17 #include <linux/migrate.h>
18 
19 #include <linux/sunrpc/clnt.h>
20 #include <linux/nfs_fs.h>
21 #include <linux/nfs_mount.h>
22 #include <linux/nfs_page.h>
23 #include <linux/backing-dev.h>
24 #include <linux/export.h>
25 #include <linux/freezer.h>
26 #include <linux/wait.h>
27 #include <linux/iversion.h>
28 
29 #include <linux/uaccess.h>
30 #include <linux/sched/mm.h>
31 
32 #include "delegation.h"
33 #include "internal.h"
34 #include "iostat.h"
35 #include "nfs4_fs.h"
36 #include "fscache.h"
37 #include "pnfs.h"
38 
39 #include "nfstrace.h"
40 
41 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
42 
43 #define MIN_POOL_WRITE		(32)
44 #define MIN_POOL_COMMIT		(4)
45 
46 struct nfs_io_completion {
47 	void (*complete)(void *data);
48 	void *data;
49 	struct kref refcount;
50 };
51 
52 /*
53  * Local function declarations
54  */
55 static void nfs_redirty_request(struct nfs_page *req);
56 static const struct rpc_call_ops nfs_commit_ops;
57 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
58 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
59 static const struct nfs_rw_ops nfs_rw_write_ops;
60 static void nfs_inode_remove_request(struct nfs_page *req);
61 static void nfs_clear_request_commit(struct nfs_page *req);
62 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
63 				      struct inode *inode);
64 static struct nfs_page *
65 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
66 						struct page *page);
67 
68 static struct kmem_cache *nfs_wdata_cachep;
69 static mempool_t *nfs_wdata_mempool;
70 static struct kmem_cache *nfs_cdata_cachep;
71 static mempool_t *nfs_commit_mempool;
72 
nfs_commitdata_alloc(bool never_fail)73 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
74 {
75 	struct nfs_commit_data *p;
76 
77 	if (never_fail)
78 		p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
79 	else {
80 		/* It is OK to do some reclaim, not no safe to wait
81 		 * for anything to be returned to the pool.
82 		 * mempool_alloc() cannot handle that particular combination,
83 		 * so we need two separate attempts.
84 		 */
85 		p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
86 		if (!p)
87 			p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
88 					     __GFP_NOWARN | __GFP_NORETRY);
89 		if (!p)
90 			return NULL;
91 	}
92 
93 	memset(p, 0, sizeof(*p));
94 	INIT_LIST_HEAD(&p->pages);
95 	return p;
96 }
97 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
98 
nfs_commit_free(struct nfs_commit_data * p)99 void nfs_commit_free(struct nfs_commit_data *p)
100 {
101 	mempool_free(p, nfs_commit_mempool);
102 }
103 EXPORT_SYMBOL_GPL(nfs_commit_free);
104 
nfs_writehdr_alloc(void)105 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
106 {
107 	struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_KERNEL);
108 
109 	memset(p, 0, sizeof(*p));
110 	p->rw_mode = FMODE_WRITE;
111 	return p;
112 }
113 
nfs_writehdr_free(struct nfs_pgio_header * hdr)114 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
115 {
116 	mempool_free(hdr, nfs_wdata_mempool);
117 }
118 
nfs_io_completion_alloc(gfp_t gfp_flags)119 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
120 {
121 	return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
122 }
123 
nfs_io_completion_init(struct nfs_io_completion * ioc,void (* complete)(void *),void * data)124 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
125 		void (*complete)(void *), void *data)
126 {
127 	ioc->complete = complete;
128 	ioc->data = data;
129 	kref_init(&ioc->refcount);
130 }
131 
nfs_io_completion_release(struct kref * kref)132 static void nfs_io_completion_release(struct kref *kref)
133 {
134 	struct nfs_io_completion *ioc = container_of(kref,
135 			struct nfs_io_completion, refcount);
136 	ioc->complete(ioc->data);
137 	kfree(ioc);
138 }
139 
nfs_io_completion_get(struct nfs_io_completion * ioc)140 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
141 {
142 	if (ioc != NULL)
143 		kref_get(&ioc->refcount);
144 }
145 
nfs_io_completion_put(struct nfs_io_completion * ioc)146 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
147 {
148 	if (ioc != NULL)
149 		kref_put(&ioc->refcount, nfs_io_completion_release);
150 }
151 
152 static struct nfs_page *
nfs_page_private_request(struct page * page)153 nfs_page_private_request(struct page *page)
154 {
155 	if (!PagePrivate(page))
156 		return NULL;
157 	return (struct nfs_page *)page_private(page);
158 }
159 
160 /*
161  * nfs_page_find_head_request_locked - find head request associated with @page
162  *
163  * must be called while holding the inode lock.
164  *
165  * returns matching head request with reference held, or NULL if not found.
166  */
167 static struct nfs_page *
nfs_page_find_private_request(struct page * page)168 nfs_page_find_private_request(struct page *page)
169 {
170 	struct address_space *mapping = page_file_mapping(page);
171 	struct nfs_page *req;
172 
173 	if (!PagePrivate(page))
174 		return NULL;
175 	spin_lock(&mapping->private_lock);
176 	req = nfs_page_private_request(page);
177 	if (req) {
178 		WARN_ON_ONCE(req->wb_head != req);
179 		kref_get(&req->wb_kref);
180 	}
181 	spin_unlock(&mapping->private_lock);
182 	return req;
183 }
184 
185 static struct nfs_page *
nfs_page_find_swap_request(struct page * page)186 nfs_page_find_swap_request(struct page *page)
187 {
188 	struct inode *inode = page_file_mapping(page)->host;
189 	struct nfs_inode *nfsi = NFS_I(inode);
190 	struct nfs_page *req = NULL;
191 	if (!PageSwapCache(page))
192 		return NULL;
193 	mutex_lock(&nfsi->commit_mutex);
194 	if (PageSwapCache(page)) {
195 		req = nfs_page_search_commits_for_head_request_locked(nfsi,
196 			page);
197 		if (req) {
198 			WARN_ON_ONCE(req->wb_head != req);
199 			kref_get(&req->wb_kref);
200 		}
201 	}
202 	mutex_unlock(&nfsi->commit_mutex);
203 	return req;
204 }
205 
206 /*
207  * nfs_page_find_head_request - find head request associated with @page
208  *
209  * returns matching head request with reference held, or NULL if not found.
210  */
nfs_page_find_head_request(struct page * page)211 static struct nfs_page *nfs_page_find_head_request(struct page *page)
212 {
213 	struct nfs_page *req;
214 
215 	req = nfs_page_find_private_request(page);
216 	if (!req)
217 		req = nfs_page_find_swap_request(page);
218 	return req;
219 }
220 
221 /* Adjust the file length if we're writing beyond the end */
nfs_grow_file(struct page * page,unsigned int offset,unsigned int count)222 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
223 {
224 	struct inode *inode = page_file_mapping(page)->host;
225 	loff_t end, i_size;
226 	pgoff_t end_index;
227 
228 	spin_lock(&inode->i_lock);
229 	i_size = i_size_read(inode);
230 	end_index = (i_size - 1) >> PAGE_SHIFT;
231 	if (i_size > 0 && page_index(page) < end_index)
232 		goto out;
233 	end = page_file_offset(page) + ((loff_t)offset+count);
234 	if (i_size >= end)
235 		goto out;
236 	i_size_write(inode, end);
237 	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
238 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
239 out:
240 	spin_unlock(&inode->i_lock);
241 }
242 
243 /* A writeback failed: mark the page as bad, and invalidate the page cache */
nfs_set_pageerror(struct address_space * mapping)244 static void nfs_set_pageerror(struct address_space *mapping)
245 {
246 	struct inode *inode = mapping->host;
247 
248 	nfs_zap_mapping(mapping->host, mapping);
249 	/* Force file size revalidation */
250 	spin_lock(&inode->i_lock);
251 	NFS_I(inode)->cache_validity |= NFS_INO_REVAL_FORCED |
252 					NFS_INO_REVAL_PAGECACHE |
253 					NFS_INO_INVALID_SIZE;
254 	spin_unlock(&inode->i_lock);
255 }
256 
nfs_mapping_set_error(struct page * page,int error)257 static void nfs_mapping_set_error(struct page *page, int error)
258 {
259 	SetPageError(page);
260 	mapping_set_error(page_file_mapping(page), error);
261 }
262 
263 /*
264  * nfs_page_group_search_locked
265  * @head - head request of page group
266  * @page_offset - offset into page
267  *
268  * Search page group with head @head to find a request that contains the
269  * page offset @page_offset.
270  *
271  * Returns a pointer to the first matching nfs request, or NULL if no
272  * match is found.
273  *
274  * Must be called with the page group lock held
275  */
276 static struct nfs_page *
nfs_page_group_search_locked(struct nfs_page * head,unsigned int page_offset)277 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
278 {
279 	struct nfs_page *req;
280 
281 	req = head;
282 	do {
283 		if (page_offset >= req->wb_pgbase &&
284 		    page_offset < (req->wb_pgbase + req->wb_bytes))
285 			return req;
286 
287 		req = req->wb_this_page;
288 	} while (req != head);
289 
290 	return NULL;
291 }
292 
293 /*
294  * nfs_page_group_covers_page
295  * @head - head request of page group
296  *
297  * Return true if the page group with head @head covers the whole page,
298  * returns false otherwise
299  */
nfs_page_group_covers_page(struct nfs_page * req)300 static bool nfs_page_group_covers_page(struct nfs_page *req)
301 {
302 	struct nfs_page *tmp;
303 	unsigned int pos = 0;
304 	unsigned int len = nfs_page_length(req->wb_page);
305 
306 	nfs_page_group_lock(req);
307 
308 	for (;;) {
309 		tmp = nfs_page_group_search_locked(req->wb_head, pos);
310 		if (!tmp)
311 			break;
312 		pos = tmp->wb_pgbase + tmp->wb_bytes;
313 	}
314 
315 	nfs_page_group_unlock(req);
316 	return pos >= len;
317 }
318 
319 /* We can set the PG_uptodate flag if we see that a write request
320  * covers the full page.
321  */
nfs_mark_uptodate(struct nfs_page * req)322 static void nfs_mark_uptodate(struct nfs_page *req)
323 {
324 	if (PageUptodate(req->wb_page))
325 		return;
326 	if (!nfs_page_group_covers_page(req))
327 		return;
328 	SetPageUptodate(req->wb_page);
329 }
330 
wb_priority(struct writeback_control * wbc)331 static int wb_priority(struct writeback_control *wbc)
332 {
333 	int ret = 0;
334 
335 	if (wbc->sync_mode == WB_SYNC_ALL)
336 		ret = FLUSH_COND_STABLE;
337 	return ret;
338 }
339 
340 /*
341  * NFS congestion control
342  */
343 
344 int nfs_congestion_kb;
345 
346 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
347 #define NFS_CONGESTION_OFF_THRESH	\
348 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
349 
nfs_set_page_writeback(struct page * page)350 static void nfs_set_page_writeback(struct page *page)
351 {
352 	struct inode *inode = page_file_mapping(page)->host;
353 	struct nfs_server *nfss = NFS_SERVER(inode);
354 	int ret = test_set_page_writeback(page);
355 
356 	WARN_ON_ONCE(ret != 0);
357 
358 	if (atomic_long_inc_return(&nfss->writeback) >
359 			NFS_CONGESTION_ON_THRESH)
360 		set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
361 }
362 
nfs_end_page_writeback(struct nfs_page * req)363 static void nfs_end_page_writeback(struct nfs_page *req)
364 {
365 	struct inode *inode = page_file_mapping(req->wb_page)->host;
366 	struct nfs_server *nfss = NFS_SERVER(inode);
367 	bool is_done;
368 
369 	is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
370 	nfs_unlock_request(req);
371 	if (!is_done)
372 		return;
373 
374 	end_page_writeback(req->wb_page);
375 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
376 		clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
377 }
378 
379 /*
380  * nfs_unroll_locks_and_wait -  unlock all newly locked reqs and wait on @req
381  *
382  * this is a helper function for nfs_lock_and_join_requests
383  *
384  * @inode - inode associated with request page group, must be holding inode lock
385  * @head  - head request of page group, must be holding head lock
386  * @req   - request that couldn't lock and needs to wait on the req bit lock
387  *
388  * NOTE: this must be called holding page_group bit lock
389  *       which will be released before returning.
390  *
391  * returns 0 on success, < 0 on error.
392  */
393 static void
nfs_unroll_locks(struct inode * inode,struct nfs_page * head,struct nfs_page * req)394 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
395 			  struct nfs_page *req)
396 {
397 	struct nfs_page *tmp;
398 
399 	/* relinquish all the locks successfully grabbed this run */
400 	for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
401 		if (!kref_read(&tmp->wb_kref))
402 			continue;
403 		nfs_unlock_and_release_request(tmp);
404 	}
405 }
406 
407 /*
408  * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
409  *
410  * @destroy_list - request list (using wb_this_page) terminated by @old_head
411  * @old_head - the old head of the list
412  *
413  * All subrequests must be locked and removed from all lists, so at this point
414  * they are only "active" in this function, and possibly in nfs_wait_on_request
415  * with a reference held by some other context.
416  */
417 static void
nfs_destroy_unlinked_subrequests(struct nfs_page * destroy_list,struct nfs_page * old_head,struct inode * inode)418 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
419 				 struct nfs_page *old_head,
420 				 struct inode *inode)
421 {
422 	while (destroy_list) {
423 		struct nfs_page *subreq = destroy_list;
424 
425 		destroy_list = (subreq->wb_this_page == old_head) ?
426 				   NULL : subreq->wb_this_page;
427 
428 		/* Note: lock subreq in order to change subreq->wb_head */
429 		nfs_page_set_headlock(subreq);
430 		WARN_ON_ONCE(old_head != subreq->wb_head);
431 
432 		/* make sure old group is not used */
433 		subreq->wb_this_page = subreq;
434 		subreq->wb_head = subreq;
435 
436 		clear_bit(PG_REMOVE, &subreq->wb_flags);
437 
438 		/* Note: races with nfs_page_group_destroy() */
439 		if (!kref_read(&subreq->wb_kref)) {
440 			/* Check if we raced with nfs_page_group_destroy() */
441 			if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags)) {
442 				nfs_page_clear_headlock(subreq);
443 				nfs_free_request(subreq);
444 			} else
445 				nfs_page_clear_headlock(subreq);
446 			continue;
447 		}
448 		nfs_page_clear_headlock(subreq);
449 
450 		nfs_release_request(old_head);
451 
452 		if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
453 			nfs_release_request(subreq);
454 			atomic_long_dec(&NFS_I(inode)->nrequests);
455 		}
456 
457 		/* subreq is now totally disconnected from page group or any
458 		 * write / commit lists. last chance to wake any waiters */
459 		nfs_unlock_and_release_request(subreq);
460 	}
461 }
462 
463 /*
464  * nfs_lock_and_join_requests - join all subreqs to the head req and return
465  *                              a locked reference, cancelling any pending
466  *                              operations for this page.
467  *
468  * @page - the page used to lookup the "page group" of nfs_page structures
469  *
470  * This function joins all sub requests to the head request by first
471  * locking all requests in the group, cancelling any pending operations
472  * and finally updating the head request to cover the whole range covered by
473  * the (former) group.  All subrequests are removed from any write or commit
474  * lists, unlinked from the group and destroyed.
475  *
476  * Returns a locked, referenced pointer to the head request - which after
477  * this call is guaranteed to be the only request associated with the page.
478  * Returns NULL if no requests are found for @page, or a ERR_PTR if an
479  * error was encountered.
480  */
481 static struct nfs_page *
nfs_lock_and_join_requests(struct page * page)482 nfs_lock_and_join_requests(struct page *page)
483 {
484 	struct inode *inode = page_file_mapping(page)->host;
485 	struct nfs_page *head, *subreq;
486 	struct nfs_page *destroy_list = NULL;
487 	unsigned int total_bytes;
488 	int ret;
489 
490 try_again:
491 	/*
492 	 * A reference is taken only on the head request which acts as a
493 	 * reference to the whole page group - the group will not be destroyed
494 	 * until the head reference is released.
495 	 */
496 	head = nfs_page_find_head_request(page);
497 	if (!head)
498 		return NULL;
499 
500 	/* lock the page head first in order to avoid an ABBA inefficiency */
501 	if (!nfs_lock_request(head)) {
502 		ret = nfs_wait_on_request(head);
503 		nfs_release_request(head);
504 		if (ret < 0)
505 			return ERR_PTR(ret);
506 		goto try_again;
507 	}
508 
509 	/* Ensure that nobody removed the request before we locked it */
510 	if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
511 		nfs_unlock_and_release_request(head);
512 		goto try_again;
513 	}
514 
515 	ret = nfs_page_group_lock(head);
516 	if (ret < 0)
517 		goto release_request;
518 
519 	/* lock each request in the page group */
520 	total_bytes = head->wb_bytes;
521 	for (subreq = head->wb_this_page; subreq != head;
522 			subreq = subreq->wb_this_page) {
523 
524 		if (!kref_get_unless_zero(&subreq->wb_kref)) {
525 			if (subreq->wb_offset == head->wb_offset + total_bytes)
526 				total_bytes += subreq->wb_bytes;
527 			continue;
528 		}
529 
530 		while (!nfs_lock_request(subreq)) {
531 			/*
532 			 * Unlock page to allow nfs_page_group_sync_on_bit()
533 			 * to succeed
534 			 */
535 			nfs_page_group_unlock(head);
536 			ret = nfs_wait_on_request(subreq);
537 			if (!ret)
538 				ret = nfs_page_group_lock(head);
539 			if (ret < 0) {
540 				nfs_unroll_locks(inode, head, subreq);
541 				nfs_release_request(subreq);
542 				goto release_request;
543 			}
544 		}
545 		/*
546 		 * Subrequests are always contiguous, non overlapping
547 		 * and in order - but may be repeated (mirrored writes).
548 		 */
549 		if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
550 			/* keep track of how many bytes this group covers */
551 			total_bytes += subreq->wb_bytes;
552 		} else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
553 			    ((subreq->wb_offset + subreq->wb_bytes) >
554 			     (head->wb_offset + total_bytes)))) {
555 			nfs_page_group_unlock(head);
556 			nfs_unroll_locks(inode, head, subreq);
557 			nfs_unlock_and_release_request(subreq);
558 			ret = -EIO;
559 			goto release_request;
560 		}
561 	}
562 
563 	/* Now that all requests are locked, make sure they aren't on any list.
564 	 * Commit list removal accounting is done after locks are dropped */
565 	subreq = head;
566 	do {
567 		nfs_clear_request_commit(subreq);
568 		subreq = subreq->wb_this_page;
569 	} while (subreq != head);
570 
571 	/* unlink subrequests from head, destroy them later */
572 	if (head->wb_this_page != head) {
573 		/* destroy list will be terminated by head */
574 		destroy_list = head->wb_this_page;
575 		head->wb_this_page = head;
576 
577 		/* change head request to cover whole range that
578 		 * the former page group covered */
579 		head->wb_bytes = total_bytes;
580 	}
581 
582 	/* Postpone destruction of this request */
583 	if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
584 		set_bit(PG_INODE_REF, &head->wb_flags);
585 		kref_get(&head->wb_kref);
586 		atomic_long_inc(&NFS_I(inode)->nrequests);
587 	}
588 
589 	nfs_page_group_unlock(head);
590 
591 	nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
592 
593 	/* Did we lose a race with nfs_inode_remove_request()? */
594 	if (!(PagePrivate(page) || PageSwapCache(page))) {
595 		nfs_unlock_and_release_request(head);
596 		return NULL;
597 	}
598 
599 	/* still holds ref on head from nfs_page_find_head_request
600 	 * and still has lock on head from lock loop */
601 	return head;
602 
603 release_request:
604 	nfs_unlock_and_release_request(head);
605 	return ERR_PTR(ret);
606 }
607 
nfs_write_error(struct nfs_page * req,int error)608 static void nfs_write_error(struct nfs_page *req, int error)
609 {
610 	nfs_set_pageerror(page_file_mapping(req->wb_page));
611 	nfs_mapping_set_error(req->wb_page, error);
612 	nfs_inode_remove_request(req);
613 	nfs_end_page_writeback(req);
614 	nfs_release_request(req);
615 }
616 
617 /*
618  * Find an associated nfs write request, and prepare to flush it out
619  * May return an error if the user signalled nfs_wait_on_request().
620  */
nfs_page_async_flush(struct nfs_pageio_descriptor * pgio,struct page * page)621 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
622 				struct page *page)
623 {
624 	struct nfs_page *req;
625 	int ret = 0;
626 
627 	req = nfs_lock_and_join_requests(page);
628 	if (!req)
629 		goto out;
630 	ret = PTR_ERR(req);
631 	if (IS_ERR(req))
632 		goto out;
633 
634 	nfs_set_page_writeback(page);
635 	WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
636 
637 	/* If there is a fatal error that covers this write, just exit */
638 	ret = pgio->pg_error;
639 	if (nfs_error_is_fatal_on_server(ret))
640 		goto out_launder;
641 
642 	ret = 0;
643 	if (!nfs_pageio_add_request(pgio, req)) {
644 		ret = pgio->pg_error;
645 		/*
646 		 * Remove the problematic req upon fatal errors on the server
647 		 */
648 		if (nfs_error_is_fatal(ret)) {
649 			if (nfs_error_is_fatal_on_server(ret))
650 				goto out_launder;
651 		} else
652 			ret = -EAGAIN;
653 		nfs_redirty_request(req);
654 		pgio->pg_error = 0;
655 	} else
656 		nfs_add_stats(page_file_mapping(page)->host,
657 				NFSIOS_WRITEPAGES, 1);
658 out:
659 	return ret;
660 out_launder:
661 	nfs_write_error(req, ret);
662 	return 0;
663 }
664 
nfs_do_writepage(struct page * page,struct writeback_control * wbc,struct nfs_pageio_descriptor * pgio)665 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
666 			    struct nfs_pageio_descriptor *pgio)
667 {
668 	int ret;
669 
670 	nfs_pageio_cond_complete(pgio, page_index(page));
671 	ret = nfs_page_async_flush(pgio, page);
672 	if (ret == -EAGAIN) {
673 		redirty_page_for_writepage(wbc, page);
674 		ret = AOP_WRITEPAGE_ACTIVATE;
675 	}
676 	return ret;
677 }
678 
679 /*
680  * Write an mmapped page to the server.
681  */
nfs_writepage_locked(struct page * page,struct writeback_control * wbc)682 static int nfs_writepage_locked(struct page *page,
683 				struct writeback_control *wbc)
684 {
685 	struct nfs_pageio_descriptor pgio;
686 	struct inode *inode = page_file_mapping(page)->host;
687 	int err;
688 
689 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
690 	nfs_pageio_init_write(&pgio, inode, 0,
691 				false, &nfs_async_write_completion_ops);
692 	err = nfs_do_writepage(page, wbc, &pgio);
693 	pgio.pg_error = 0;
694 	nfs_pageio_complete(&pgio);
695 	return err;
696 }
697 
nfs_writepage(struct page * page,struct writeback_control * wbc)698 int nfs_writepage(struct page *page, struct writeback_control *wbc)
699 {
700 	int ret;
701 
702 	ret = nfs_writepage_locked(page, wbc);
703 	if (ret != AOP_WRITEPAGE_ACTIVATE)
704 		unlock_page(page);
705 	return ret;
706 }
707 
nfs_writepages_callback(struct page * page,struct writeback_control * wbc,void * data)708 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
709 {
710 	int ret;
711 
712 	ret = nfs_do_writepage(page, wbc, data);
713 	if (ret != AOP_WRITEPAGE_ACTIVATE)
714 		unlock_page(page);
715 	return ret;
716 }
717 
nfs_io_completion_commit(void * inode)718 static void nfs_io_completion_commit(void *inode)
719 {
720 	nfs_commit_inode(inode, 0);
721 }
722 
nfs_writepages(struct address_space * mapping,struct writeback_control * wbc)723 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
724 {
725 	struct inode *inode = mapping->host;
726 	struct nfs_pageio_descriptor pgio;
727 	struct nfs_io_completion *ioc;
728 	int err;
729 
730 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
731 
732 	ioc = nfs_io_completion_alloc(GFP_KERNEL);
733 	if (ioc)
734 		nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
735 
736 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
737 				&nfs_async_write_completion_ops);
738 	pgio.pg_io_completion = ioc;
739 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
740 	pgio.pg_error = 0;
741 	nfs_pageio_complete(&pgio);
742 	nfs_io_completion_put(ioc);
743 
744 	if (err < 0)
745 		goto out_err;
746 	return 0;
747 out_err:
748 	return err;
749 }
750 
751 /*
752  * Insert a write request into an inode
753  */
nfs_inode_add_request(struct inode * inode,struct nfs_page * req)754 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
755 {
756 	struct address_space *mapping = page_file_mapping(req->wb_page);
757 	struct nfs_inode *nfsi = NFS_I(inode);
758 
759 	WARN_ON_ONCE(req->wb_this_page != req);
760 
761 	/* Lock the request! */
762 	nfs_lock_request(req);
763 
764 	/*
765 	 * Swap-space should not get truncated. Hence no need to plug the race
766 	 * with invalidate/truncate.
767 	 */
768 	spin_lock(&mapping->private_lock);
769 	if (!nfs_have_writebacks(inode) &&
770 	    NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
771 		inode_inc_iversion_raw(inode);
772 	if (likely(!PageSwapCache(req->wb_page))) {
773 		set_bit(PG_MAPPED, &req->wb_flags);
774 		SetPagePrivate(req->wb_page);
775 		set_page_private(req->wb_page, (unsigned long)req);
776 	}
777 	spin_unlock(&mapping->private_lock);
778 	atomic_long_inc(&nfsi->nrequests);
779 	/* this a head request for a page group - mark it as having an
780 	 * extra reference so sub groups can follow suit.
781 	 * This flag also informs pgio layer when to bump nrequests when
782 	 * adding subrequests. */
783 	WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
784 	kref_get(&req->wb_kref);
785 }
786 
787 /*
788  * Remove a write request from an inode
789  */
nfs_inode_remove_request(struct nfs_page * req)790 static void nfs_inode_remove_request(struct nfs_page *req)
791 {
792 	struct address_space *mapping = page_file_mapping(req->wb_page);
793 	struct inode *inode = mapping->host;
794 	struct nfs_inode *nfsi = NFS_I(inode);
795 	struct nfs_page *head;
796 
797 	if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
798 		head = req->wb_head;
799 
800 		spin_lock(&mapping->private_lock);
801 		if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
802 			set_page_private(head->wb_page, 0);
803 			ClearPagePrivate(head->wb_page);
804 			clear_bit(PG_MAPPED, &head->wb_flags);
805 		}
806 		spin_unlock(&mapping->private_lock);
807 	}
808 
809 	if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags)) {
810 		nfs_release_request(req);
811 		atomic_long_dec(&nfsi->nrequests);
812 	}
813 }
814 
815 static void
nfs_mark_request_dirty(struct nfs_page * req)816 nfs_mark_request_dirty(struct nfs_page *req)
817 {
818 	if (req->wb_page)
819 		__set_page_dirty_nobuffers(req->wb_page);
820 }
821 
822 /*
823  * nfs_page_search_commits_for_head_request_locked
824  *
825  * Search through commit lists on @inode for the head request for @page.
826  * Must be called while holding the inode (which is cinfo) lock.
827  *
828  * Returns the head request if found, or NULL if not found.
829  */
830 static struct nfs_page *
nfs_page_search_commits_for_head_request_locked(struct nfs_inode * nfsi,struct page * page)831 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
832 						struct page *page)
833 {
834 	struct nfs_page *freq, *t;
835 	struct nfs_commit_info cinfo;
836 	struct inode *inode = &nfsi->vfs_inode;
837 
838 	nfs_init_cinfo_from_inode(&cinfo, inode);
839 
840 	/* search through pnfs commit lists */
841 	freq = pnfs_search_commit_reqs(inode, &cinfo, page);
842 	if (freq)
843 		return freq->wb_head;
844 
845 	/* Linearly search the commit list for the correct request */
846 	list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
847 		if (freq->wb_page == page)
848 			return freq->wb_head;
849 	}
850 
851 	return NULL;
852 }
853 
854 /**
855  * nfs_request_add_commit_list_locked - add request to a commit list
856  * @req: pointer to a struct nfs_page
857  * @dst: commit list head
858  * @cinfo: holds list lock and accounting info
859  *
860  * This sets the PG_CLEAN bit, updates the cinfo count of
861  * number of outstanding requests requiring a commit as well as
862  * the MM page stats.
863  *
864  * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
865  * nfs_page lock.
866  */
867 void
nfs_request_add_commit_list_locked(struct nfs_page * req,struct list_head * dst,struct nfs_commit_info * cinfo)868 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
869 			    struct nfs_commit_info *cinfo)
870 {
871 	set_bit(PG_CLEAN, &req->wb_flags);
872 	nfs_list_add_request(req, dst);
873 	atomic_long_inc(&cinfo->mds->ncommit);
874 }
875 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
876 
877 /**
878  * nfs_request_add_commit_list - add request to a commit list
879  * @req: pointer to a struct nfs_page
880  * @cinfo: holds list lock and accounting info
881  *
882  * This sets the PG_CLEAN bit, updates the cinfo count of
883  * number of outstanding requests requiring a commit as well as
884  * the MM page stats.
885  *
886  * The caller must _not_ hold the cinfo->lock, but must be
887  * holding the nfs_page lock.
888  */
889 void
nfs_request_add_commit_list(struct nfs_page * req,struct nfs_commit_info * cinfo)890 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
891 {
892 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
893 	nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
894 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
895 	if (req->wb_page)
896 		nfs_mark_page_unstable(req->wb_page, cinfo);
897 }
898 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
899 
900 /**
901  * nfs_request_remove_commit_list - Remove request from a commit list
902  * @req: pointer to a nfs_page
903  * @cinfo: holds list lock and accounting info
904  *
905  * This clears the PG_CLEAN bit, and updates the cinfo's count of
906  * number of outstanding requests requiring a commit
907  * It does not update the MM page stats.
908  *
909  * The caller _must_ hold the cinfo->lock and the nfs_page lock.
910  */
911 void
nfs_request_remove_commit_list(struct nfs_page * req,struct nfs_commit_info * cinfo)912 nfs_request_remove_commit_list(struct nfs_page *req,
913 			       struct nfs_commit_info *cinfo)
914 {
915 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
916 		return;
917 	nfs_list_remove_request(req);
918 	atomic_long_dec(&cinfo->mds->ncommit);
919 }
920 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
921 
nfs_init_cinfo_from_inode(struct nfs_commit_info * cinfo,struct inode * inode)922 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
923 				      struct inode *inode)
924 {
925 	cinfo->inode = inode;
926 	cinfo->mds = &NFS_I(inode)->commit_info;
927 	cinfo->ds = pnfs_get_ds_info(inode);
928 	cinfo->dreq = NULL;
929 	cinfo->completion_ops = &nfs_commit_completion_ops;
930 }
931 
nfs_init_cinfo(struct nfs_commit_info * cinfo,struct inode * inode,struct nfs_direct_req * dreq)932 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
933 		    struct inode *inode,
934 		    struct nfs_direct_req *dreq)
935 {
936 	if (dreq)
937 		nfs_init_cinfo_from_dreq(cinfo, dreq);
938 	else
939 		nfs_init_cinfo_from_inode(cinfo, inode);
940 }
941 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
942 
943 /*
944  * Add a request to the inode's commit list.
945  */
946 void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo,u32 ds_commit_idx)947 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
948 			struct nfs_commit_info *cinfo, u32 ds_commit_idx)
949 {
950 	if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
951 		return;
952 	nfs_request_add_commit_list(req, cinfo);
953 }
954 
955 static void
nfs_clear_page_commit(struct page * page)956 nfs_clear_page_commit(struct page *page)
957 {
958 	dec_node_page_state(page, NR_UNSTABLE_NFS);
959 	dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
960 		    WB_RECLAIMABLE);
961 }
962 
963 /* Called holding the request lock on @req */
964 static void
nfs_clear_request_commit(struct nfs_page * req)965 nfs_clear_request_commit(struct nfs_page *req)
966 {
967 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
968 		struct nfs_open_context *ctx = nfs_req_openctx(req);
969 		struct inode *inode = d_inode(ctx->dentry);
970 		struct nfs_commit_info cinfo;
971 
972 		nfs_init_cinfo_from_inode(&cinfo, inode);
973 		mutex_lock(&NFS_I(inode)->commit_mutex);
974 		if (!pnfs_clear_request_commit(req, &cinfo)) {
975 			nfs_request_remove_commit_list(req, &cinfo);
976 		}
977 		mutex_unlock(&NFS_I(inode)->commit_mutex);
978 		nfs_clear_page_commit(req->wb_page);
979 	}
980 }
981 
nfs_write_need_commit(struct nfs_pgio_header * hdr)982 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
983 {
984 	if (hdr->verf.committed == NFS_DATA_SYNC)
985 		return hdr->lseg == NULL;
986 	return hdr->verf.committed != NFS_FILE_SYNC;
987 }
988 
nfs_async_write_init(struct nfs_pgio_header * hdr)989 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
990 {
991 	nfs_io_completion_get(hdr->io_completion);
992 }
993 
nfs_write_completion(struct nfs_pgio_header * hdr)994 static void nfs_write_completion(struct nfs_pgio_header *hdr)
995 {
996 	struct nfs_commit_info cinfo;
997 	unsigned long bytes = 0;
998 
999 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
1000 		goto out;
1001 	nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
1002 	while (!list_empty(&hdr->pages)) {
1003 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
1004 
1005 		bytes += req->wb_bytes;
1006 		nfs_list_remove_request(req);
1007 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
1008 		    (hdr->good_bytes < bytes)) {
1009 			nfs_set_pageerror(page_file_mapping(req->wb_page));
1010 			nfs_mapping_set_error(req->wb_page, hdr->error);
1011 			goto remove_req;
1012 		}
1013 		if (nfs_write_need_commit(hdr)) {
1014 			/* Reset wb_nio, since the write was successful. */
1015 			req->wb_nio = 0;
1016 			memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1017 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1018 				hdr->pgio_mirror_idx);
1019 			goto next;
1020 		}
1021 remove_req:
1022 		nfs_inode_remove_request(req);
1023 next:
1024 		nfs_end_page_writeback(req);
1025 		nfs_release_request(req);
1026 	}
1027 out:
1028 	nfs_io_completion_put(hdr->io_completion);
1029 	hdr->release(hdr);
1030 }
1031 
1032 unsigned long
nfs_reqs_to_commit(struct nfs_commit_info * cinfo)1033 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1034 {
1035 	return atomic_long_read(&cinfo->mds->ncommit);
1036 }
1037 
1038 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1039 int
nfs_scan_commit_list(struct list_head * src,struct list_head * dst,struct nfs_commit_info * cinfo,int max)1040 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1041 		     struct nfs_commit_info *cinfo, int max)
1042 {
1043 	struct nfs_page *req, *tmp;
1044 	int ret = 0;
1045 
1046 	list_for_each_entry_safe(req, tmp, src, wb_list) {
1047 		kref_get(&req->wb_kref);
1048 		if (!nfs_lock_request(req)) {
1049 			nfs_release_request(req);
1050 			continue;
1051 		}
1052 		nfs_request_remove_commit_list(req, cinfo);
1053 		clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1054 		nfs_list_add_request(req, dst);
1055 		ret++;
1056 		if ((ret == max) && !cinfo->dreq)
1057 			break;
1058 		cond_resched();
1059 	}
1060 	return ret;
1061 }
1062 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1063 
1064 /*
1065  * nfs_scan_commit - Scan an inode for commit requests
1066  * @inode: NFS inode to scan
1067  * @dst: mds destination list
1068  * @cinfo: mds and ds lists of reqs ready to commit
1069  *
1070  * Moves requests from the inode's 'commit' request list.
1071  * The requests are *not* checked to ensure that they form a contiguous set.
1072  */
1073 int
nfs_scan_commit(struct inode * inode,struct list_head * dst,struct nfs_commit_info * cinfo)1074 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1075 		struct nfs_commit_info *cinfo)
1076 {
1077 	int ret = 0;
1078 
1079 	if (!atomic_long_read(&cinfo->mds->ncommit))
1080 		return 0;
1081 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1082 	if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1083 		const int max = INT_MAX;
1084 
1085 		ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1086 					   cinfo, max);
1087 		ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1088 	}
1089 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1090 	return ret;
1091 }
1092 
1093 /*
1094  * Search for an existing write request, and attempt to update
1095  * it to reflect a new dirty region on a given page.
1096  *
1097  * If the attempt fails, then the existing request is flushed out
1098  * to disk.
1099  */
nfs_try_to_update_request(struct inode * inode,struct page * page,unsigned int offset,unsigned int bytes)1100 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1101 		struct page *page,
1102 		unsigned int offset,
1103 		unsigned int bytes)
1104 {
1105 	struct nfs_page *req;
1106 	unsigned int rqend;
1107 	unsigned int end;
1108 	int error;
1109 
1110 	end = offset + bytes;
1111 
1112 	req = nfs_lock_and_join_requests(page);
1113 	if (IS_ERR_OR_NULL(req))
1114 		return req;
1115 
1116 	rqend = req->wb_offset + req->wb_bytes;
1117 	/*
1118 	 * Tell the caller to flush out the request if
1119 	 * the offsets are non-contiguous.
1120 	 * Note: nfs_flush_incompatible() will already
1121 	 * have flushed out requests having wrong owners.
1122 	 */
1123 	if (offset > rqend || end < req->wb_offset)
1124 		goto out_flushme;
1125 
1126 	/* Okay, the request matches. Update the region */
1127 	if (offset < req->wb_offset) {
1128 		req->wb_offset = offset;
1129 		req->wb_pgbase = offset;
1130 	}
1131 	if (end > rqend)
1132 		req->wb_bytes = end - req->wb_offset;
1133 	else
1134 		req->wb_bytes = rqend - req->wb_offset;
1135 	req->wb_nio = 0;
1136 	return req;
1137 out_flushme:
1138 	/*
1139 	 * Note: we mark the request dirty here because
1140 	 * nfs_lock_and_join_requests() cannot preserve
1141 	 * commit flags, so we have to replay the write.
1142 	 */
1143 	nfs_mark_request_dirty(req);
1144 	nfs_unlock_and_release_request(req);
1145 	error = nfs_wb_page(inode, page);
1146 	return (error < 0) ? ERR_PTR(error) : NULL;
1147 }
1148 
1149 /*
1150  * Try to update an existing write request, or create one if there is none.
1151  *
1152  * Note: Should always be called with the Page Lock held to prevent races
1153  * if we have to add a new request. Also assumes that the caller has
1154  * already called nfs_flush_incompatible() if necessary.
1155  */
nfs_setup_write_request(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int bytes)1156 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1157 		struct page *page, unsigned int offset, unsigned int bytes)
1158 {
1159 	struct inode *inode = page_file_mapping(page)->host;
1160 	struct nfs_page	*req;
1161 
1162 	req = nfs_try_to_update_request(inode, page, offset, bytes);
1163 	if (req != NULL)
1164 		goto out;
1165 	req = nfs_create_request(ctx, page, offset, bytes);
1166 	if (IS_ERR(req))
1167 		goto out;
1168 	nfs_inode_add_request(inode, req);
1169 out:
1170 	return req;
1171 }
1172 
nfs_writepage_setup(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int count)1173 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1174 		unsigned int offset, unsigned int count)
1175 {
1176 	struct nfs_page	*req;
1177 
1178 	req = nfs_setup_write_request(ctx, page, offset, count);
1179 	if (IS_ERR(req))
1180 		return PTR_ERR(req);
1181 	/* Update file length */
1182 	nfs_grow_file(page, offset, count);
1183 	nfs_mark_uptodate(req);
1184 	nfs_mark_request_dirty(req);
1185 	nfs_unlock_and_release_request(req);
1186 	return 0;
1187 }
1188 
nfs_flush_incompatible(struct file * file,struct page * page)1189 int nfs_flush_incompatible(struct file *file, struct page *page)
1190 {
1191 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1192 	struct nfs_lock_context *l_ctx;
1193 	struct file_lock_context *flctx = file_inode(file)->i_flctx;
1194 	struct nfs_page	*req;
1195 	int do_flush, status;
1196 	/*
1197 	 * Look for a request corresponding to this page. If there
1198 	 * is one, and it belongs to another file, we flush it out
1199 	 * before we try to copy anything into the page. Do this
1200 	 * due to the lack of an ACCESS-type call in NFSv2.
1201 	 * Also do the same if we find a request from an existing
1202 	 * dropped page.
1203 	 */
1204 	do {
1205 		req = nfs_page_find_head_request(page);
1206 		if (req == NULL)
1207 			return 0;
1208 		l_ctx = req->wb_lock_context;
1209 		do_flush = req->wb_page != page ||
1210 			!nfs_match_open_context(nfs_req_openctx(req), ctx);
1211 		if (l_ctx && flctx &&
1212 		    !(list_empty_careful(&flctx->flc_posix) &&
1213 		      list_empty_careful(&flctx->flc_flock))) {
1214 			do_flush |= l_ctx->lockowner != current->files;
1215 		}
1216 		nfs_release_request(req);
1217 		if (!do_flush)
1218 			return 0;
1219 		status = nfs_wb_page(page_file_mapping(page)->host, page);
1220 	} while (status == 0);
1221 	return status;
1222 }
1223 
1224 /*
1225  * Avoid buffered writes when a open context credential's key would
1226  * expire soon.
1227  *
1228  * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1229  *
1230  * Return 0 and set a credential flag which triggers the inode to flush
1231  * and performs  NFS_FILE_SYNC writes if the key will expired within
1232  * RPC_KEY_EXPIRE_TIMEO.
1233  */
1234 int
nfs_key_timeout_notify(struct file * filp,struct inode * inode)1235 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1236 {
1237 	struct nfs_open_context *ctx = nfs_file_open_context(filp);
1238 
1239 	if (nfs_ctx_key_to_expire(ctx, inode) &&
1240 	    !ctx->ll_cred)
1241 		/* Already expired! */
1242 		return -EACCES;
1243 	return 0;
1244 }
1245 
1246 /*
1247  * Test if the open context credential key is marked to expire soon.
1248  */
nfs_ctx_key_to_expire(struct nfs_open_context * ctx,struct inode * inode)1249 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1250 {
1251 	struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1252 	struct rpc_cred *cred = ctx->ll_cred;
1253 	struct auth_cred acred = {
1254 		.cred = ctx->cred,
1255 	};
1256 
1257 	if (cred && !cred->cr_ops->crmatch(&acred, cred, 0)) {
1258 		put_rpccred(cred);
1259 		ctx->ll_cred = NULL;
1260 		cred = NULL;
1261 	}
1262 	if (!cred)
1263 		cred = auth->au_ops->lookup_cred(auth, &acred, 0);
1264 	if (!cred || IS_ERR(cred))
1265 		return true;
1266 	ctx->ll_cred = cred;
1267 	return !!(cred->cr_ops->crkey_timeout &&
1268 		  cred->cr_ops->crkey_timeout(cred));
1269 }
1270 
1271 /*
1272  * If the page cache is marked as unsafe or invalid, then we can't rely on
1273  * the PageUptodate() flag. In this case, we will need to turn off
1274  * write optimisations that depend on the page contents being correct.
1275  */
nfs_write_pageuptodate(struct page * page,struct inode * inode)1276 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1277 {
1278 	struct nfs_inode *nfsi = NFS_I(inode);
1279 
1280 	if (nfs_have_delegated_attributes(inode))
1281 		goto out;
1282 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1283 		return false;
1284 	smp_rmb();
1285 	if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1286 		return false;
1287 out:
1288 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1289 		return false;
1290 	return PageUptodate(page) != 0;
1291 }
1292 
1293 static bool
is_whole_file_wrlock(struct file_lock * fl)1294 is_whole_file_wrlock(struct file_lock *fl)
1295 {
1296 	return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1297 			fl->fl_type == F_WRLCK;
1298 }
1299 
1300 /* If we know the page is up to date, and we're not using byte range locks (or
1301  * if we have the whole file locked for writing), it may be more efficient to
1302  * extend the write to cover the entire page in order to avoid fragmentation
1303  * inefficiencies.
1304  *
1305  * If the file is opened for synchronous writes then we can just skip the rest
1306  * of the checks.
1307  */
nfs_can_extend_write(struct file * file,struct page * page,struct inode * inode)1308 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1309 {
1310 	int ret;
1311 	struct file_lock_context *flctx = inode->i_flctx;
1312 	struct file_lock *fl;
1313 
1314 	if (file->f_flags & O_DSYNC)
1315 		return 0;
1316 	if (!nfs_write_pageuptodate(page, inode))
1317 		return 0;
1318 	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1319 		return 1;
1320 	if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1321 		       list_empty_careful(&flctx->flc_posix)))
1322 		return 1;
1323 
1324 	/* Check to see if there are whole file write locks */
1325 	ret = 0;
1326 	spin_lock(&flctx->flc_lock);
1327 	if (!list_empty(&flctx->flc_posix)) {
1328 		fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1329 					fl_list);
1330 		if (is_whole_file_wrlock(fl))
1331 			ret = 1;
1332 	} else if (!list_empty(&flctx->flc_flock)) {
1333 		fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1334 					fl_list);
1335 		if (fl->fl_type == F_WRLCK)
1336 			ret = 1;
1337 	}
1338 	spin_unlock(&flctx->flc_lock);
1339 	return ret;
1340 }
1341 
1342 /*
1343  * Update and possibly write a cached page of an NFS file.
1344  *
1345  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1346  * things with a page scheduled for an RPC call (e.g. invalidate it).
1347  */
nfs_updatepage(struct file * file,struct page * page,unsigned int offset,unsigned int count)1348 int nfs_updatepage(struct file *file, struct page *page,
1349 		unsigned int offset, unsigned int count)
1350 {
1351 	struct nfs_open_context *ctx = nfs_file_open_context(file);
1352 	struct address_space *mapping = page_file_mapping(page);
1353 	struct inode	*inode = mapping->host;
1354 	int		status = 0;
1355 
1356 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1357 
1358 	dprintk("NFS:       nfs_updatepage(%pD2 %d@%lld)\n",
1359 		file, count, (long long)(page_file_offset(page) + offset));
1360 
1361 	if (!count)
1362 		goto out;
1363 
1364 	if (nfs_can_extend_write(file, page, inode)) {
1365 		count = max(count + offset, nfs_page_length(page));
1366 		offset = 0;
1367 	}
1368 
1369 	status = nfs_writepage_setup(ctx, page, offset, count);
1370 	if (status < 0)
1371 		nfs_set_pageerror(mapping);
1372 	else
1373 		__set_page_dirty_nobuffers(page);
1374 out:
1375 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
1376 			status, (long long)i_size_read(inode));
1377 	return status;
1378 }
1379 
flush_task_priority(int how)1380 static int flush_task_priority(int how)
1381 {
1382 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1383 		case FLUSH_HIGHPRI:
1384 			return RPC_PRIORITY_HIGH;
1385 		case FLUSH_LOWPRI:
1386 			return RPC_PRIORITY_LOW;
1387 	}
1388 	return RPC_PRIORITY_NORMAL;
1389 }
1390 
nfs_initiate_write(struct nfs_pgio_header * hdr,struct rpc_message * msg,const struct nfs_rpc_ops * rpc_ops,struct rpc_task_setup * task_setup_data,int how)1391 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1392 			       struct rpc_message *msg,
1393 			       const struct nfs_rpc_ops *rpc_ops,
1394 			       struct rpc_task_setup *task_setup_data, int how)
1395 {
1396 	int priority = flush_task_priority(how);
1397 
1398 	task_setup_data->priority = priority;
1399 	rpc_ops->write_setup(hdr, msg, &task_setup_data->rpc_client);
1400 	trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes,
1401 				 hdr->args.stable);
1402 }
1403 
1404 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1405  * call this on each, which will prepare them to be retried on next
1406  * writeback using standard nfs.
1407  */
nfs_redirty_request(struct nfs_page * req)1408 static void nfs_redirty_request(struct nfs_page *req)
1409 {
1410 	/* Bump the transmission count */
1411 	req->wb_nio++;
1412 	nfs_mark_request_dirty(req);
1413 	set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1414 	nfs_end_page_writeback(req);
1415 	nfs_release_request(req);
1416 }
1417 
nfs_async_write_error(struct list_head * head,int error)1418 static void nfs_async_write_error(struct list_head *head, int error)
1419 {
1420 	struct nfs_page	*req;
1421 
1422 	while (!list_empty(head)) {
1423 		req = nfs_list_entry(head->next);
1424 		nfs_list_remove_request(req);
1425 		if (nfs_error_is_fatal_on_server(error))
1426 			nfs_write_error(req, error);
1427 		else
1428 			nfs_redirty_request(req);
1429 	}
1430 }
1431 
nfs_async_write_reschedule_io(struct nfs_pgio_header * hdr)1432 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1433 {
1434 	nfs_async_write_error(&hdr->pages, 0);
1435 	filemap_fdatawrite_range(hdr->inode->i_mapping, hdr->args.offset,
1436 			hdr->args.offset + hdr->args.count - 1);
1437 }
1438 
1439 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1440 	.init_hdr = nfs_async_write_init,
1441 	.error_cleanup = nfs_async_write_error,
1442 	.completion = nfs_write_completion,
1443 	.reschedule_io = nfs_async_write_reschedule_io,
1444 };
1445 
nfs_pageio_init_write(struct nfs_pageio_descriptor * pgio,struct inode * inode,int ioflags,bool force_mds,const struct nfs_pgio_completion_ops * compl_ops)1446 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1447 			       struct inode *inode, int ioflags, bool force_mds,
1448 			       const struct nfs_pgio_completion_ops *compl_ops)
1449 {
1450 	struct nfs_server *server = NFS_SERVER(inode);
1451 	const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1452 
1453 #ifdef CONFIG_NFS_V4_1
1454 	if (server->pnfs_curr_ld && !force_mds)
1455 		pg_ops = server->pnfs_curr_ld->pg_write_ops;
1456 #endif
1457 	nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1458 			server->wsize, ioflags);
1459 }
1460 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1461 
nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor * pgio)1462 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1463 {
1464 	struct nfs_pgio_mirror *mirror;
1465 
1466 	if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1467 		pgio->pg_ops->pg_cleanup(pgio);
1468 
1469 	pgio->pg_ops = &nfs_pgio_rw_ops;
1470 
1471 	nfs_pageio_stop_mirroring(pgio);
1472 
1473 	mirror = &pgio->pg_mirrors[0];
1474 	mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1475 }
1476 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1477 
1478 
nfs_commit_prepare(struct rpc_task * task,void * calldata)1479 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1480 {
1481 	struct nfs_commit_data *data = calldata;
1482 
1483 	NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1484 }
1485 
1486 /*
1487  * Special version of should_remove_suid() that ignores capabilities.
1488  */
nfs_should_remove_suid(const struct inode * inode)1489 static int nfs_should_remove_suid(const struct inode *inode)
1490 {
1491 	umode_t mode = inode->i_mode;
1492 	int kill = 0;
1493 
1494 	/* suid always must be killed */
1495 	if (unlikely(mode & S_ISUID))
1496 		kill = ATTR_KILL_SUID;
1497 
1498 	/*
1499 	 * sgid without any exec bits is just a mandatory locking mark; leave
1500 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1501 	 */
1502 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1503 		kill |= ATTR_KILL_SGID;
1504 
1505 	if (unlikely(kill && S_ISREG(mode)))
1506 		return kill;
1507 
1508 	return 0;
1509 }
1510 
nfs_writeback_check_extend(struct nfs_pgio_header * hdr,struct nfs_fattr * fattr)1511 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1512 		struct nfs_fattr *fattr)
1513 {
1514 	struct nfs_pgio_args *argp = &hdr->args;
1515 	struct nfs_pgio_res *resp = &hdr->res;
1516 	u64 size = argp->offset + resp->count;
1517 
1518 	if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1519 		fattr->size = size;
1520 	if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1521 		fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1522 		return;
1523 	}
1524 	if (size != fattr->size)
1525 		return;
1526 	/* Set attribute barrier */
1527 	nfs_fattr_set_barrier(fattr);
1528 	/* ...and update size */
1529 	fattr->valid |= NFS_ATTR_FATTR_SIZE;
1530 }
1531 
nfs_writeback_update_inode(struct nfs_pgio_header * hdr)1532 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1533 {
1534 	struct nfs_fattr *fattr = &hdr->fattr;
1535 	struct inode *inode = hdr->inode;
1536 
1537 	spin_lock(&inode->i_lock);
1538 	nfs_writeback_check_extend(hdr, fattr);
1539 	nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1540 	spin_unlock(&inode->i_lock);
1541 }
1542 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1543 
1544 /*
1545  * This function is called when the WRITE call is complete.
1546  */
nfs_writeback_done(struct rpc_task * task,struct nfs_pgio_header * hdr,struct inode * inode)1547 static int nfs_writeback_done(struct rpc_task *task,
1548 			      struct nfs_pgio_header *hdr,
1549 			      struct inode *inode)
1550 {
1551 	int status;
1552 
1553 	/*
1554 	 * ->write_done will attempt to use post-op attributes to detect
1555 	 * conflicting writes by other clients.  A strict interpretation
1556 	 * of close-to-open would allow us to continue caching even if
1557 	 * another writer had changed the file, but some applications
1558 	 * depend on tighter cache coherency when writing.
1559 	 */
1560 	status = NFS_PROTO(inode)->write_done(task, hdr);
1561 	if (status != 0)
1562 		return status;
1563 
1564 	nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1565 	trace_nfs_writeback_done(inode, task->tk_status,
1566 				 hdr->args.offset, hdr->res.verf);
1567 
1568 	if (hdr->res.verf->committed < hdr->args.stable &&
1569 	    task->tk_status >= 0) {
1570 		/* We tried a write call, but the server did not
1571 		 * commit data to stable storage even though we
1572 		 * requested it.
1573 		 * Note: There is a known bug in Tru64 < 5.0 in which
1574 		 *	 the server reports NFS_DATA_SYNC, but performs
1575 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1576 		 *	 as a dprintk() in order to avoid filling syslog.
1577 		 */
1578 		static unsigned long    complain;
1579 
1580 		/* Note this will print the MDS for a DS write */
1581 		if (time_before(complain, jiffies)) {
1582 			dprintk("NFS:       faulty NFS server %s:"
1583 				" (committed = %d) != (stable = %d)\n",
1584 				NFS_SERVER(inode)->nfs_client->cl_hostname,
1585 				hdr->res.verf->committed, hdr->args.stable);
1586 			complain = jiffies + 300 * HZ;
1587 		}
1588 	}
1589 
1590 	/* Deal with the suid/sgid bit corner case */
1591 	if (nfs_should_remove_suid(inode)) {
1592 		spin_lock(&inode->i_lock);
1593 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_OTHER;
1594 		spin_unlock(&inode->i_lock);
1595 	}
1596 	return 0;
1597 }
1598 
1599 /*
1600  * This function is called when the WRITE call is complete.
1601  */
nfs_writeback_result(struct rpc_task * task,struct nfs_pgio_header * hdr)1602 static void nfs_writeback_result(struct rpc_task *task,
1603 				 struct nfs_pgio_header *hdr)
1604 {
1605 	struct nfs_pgio_args	*argp = &hdr->args;
1606 	struct nfs_pgio_res	*resp = &hdr->res;
1607 
1608 	if (resp->count < argp->count) {
1609 		static unsigned long    complain;
1610 
1611 		/* This a short write! */
1612 		nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1613 
1614 		/* Has the server at least made some progress? */
1615 		if (resp->count == 0) {
1616 			if (time_before(complain, jiffies)) {
1617 				printk(KERN_WARNING
1618 				       "NFS: Server wrote zero bytes, expected %u.\n",
1619 				       argp->count);
1620 				complain = jiffies + 300 * HZ;
1621 			}
1622 			nfs_set_pgio_error(hdr, -EIO, argp->offset);
1623 			task->tk_status = -EIO;
1624 			return;
1625 		}
1626 
1627 		/* For non rpc-based layout drivers, retry-through-MDS */
1628 		if (!task->tk_ops) {
1629 			hdr->pnfs_error = -EAGAIN;
1630 			return;
1631 		}
1632 
1633 		/* Was this an NFSv2 write or an NFSv3 stable write? */
1634 		if (resp->verf->committed != NFS_UNSTABLE) {
1635 			/* Resend from where the server left off */
1636 			hdr->mds_offset += resp->count;
1637 			argp->offset += resp->count;
1638 			argp->pgbase += resp->count;
1639 			argp->count -= resp->count;
1640 		} else {
1641 			/* Resend as a stable write in order to avoid
1642 			 * headaches in the case of a server crash.
1643 			 */
1644 			argp->stable = NFS_FILE_SYNC;
1645 		}
1646 		rpc_restart_call_prepare(task);
1647 	}
1648 }
1649 
wait_on_commit(struct nfs_mds_commit_info * cinfo)1650 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1651 {
1652 	return wait_var_event_killable(&cinfo->rpcs_out,
1653 				       !atomic_read(&cinfo->rpcs_out));
1654 }
1655 
nfs_commit_begin(struct nfs_mds_commit_info * cinfo)1656 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1657 {
1658 	atomic_inc(&cinfo->rpcs_out);
1659 }
1660 
nfs_commit_end(struct nfs_mds_commit_info * cinfo)1661 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1662 {
1663 	if (atomic_dec_and_test(&cinfo->rpcs_out))
1664 		wake_up_var(&cinfo->rpcs_out);
1665 }
1666 
nfs_commitdata_release(struct nfs_commit_data * data)1667 void nfs_commitdata_release(struct nfs_commit_data *data)
1668 {
1669 	put_nfs_open_context(data->context);
1670 	nfs_commit_free(data);
1671 }
1672 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1673 
nfs_initiate_commit(struct rpc_clnt * clnt,struct nfs_commit_data * data,const struct nfs_rpc_ops * nfs_ops,const struct rpc_call_ops * call_ops,int how,int flags)1674 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1675 			const struct nfs_rpc_ops *nfs_ops,
1676 			const struct rpc_call_ops *call_ops,
1677 			int how, int flags)
1678 {
1679 	struct rpc_task *task;
1680 	int priority = flush_task_priority(how);
1681 	struct rpc_message msg = {
1682 		.rpc_argp = &data->args,
1683 		.rpc_resp = &data->res,
1684 		.rpc_cred = data->cred,
1685 	};
1686 	struct rpc_task_setup task_setup_data = {
1687 		.task = &data->task,
1688 		.rpc_client = clnt,
1689 		.rpc_message = &msg,
1690 		.callback_ops = call_ops,
1691 		.callback_data = data,
1692 		.workqueue = nfsiod_workqueue,
1693 		.flags = RPC_TASK_ASYNC | flags,
1694 		.priority = priority,
1695 	};
1696 	/* Set up the initial task struct.  */
1697 	nfs_ops->commit_setup(data, &msg, &task_setup_data.rpc_client);
1698 	trace_nfs_initiate_commit(data);
1699 
1700 	dprintk("NFS: initiated commit call\n");
1701 
1702 	task = rpc_run_task(&task_setup_data);
1703 	if (IS_ERR(task))
1704 		return PTR_ERR(task);
1705 	if (how & FLUSH_SYNC)
1706 		rpc_wait_for_completion_task(task);
1707 	rpc_put_task(task);
1708 	return 0;
1709 }
1710 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1711 
nfs_get_lwb(struct list_head * head)1712 static loff_t nfs_get_lwb(struct list_head *head)
1713 {
1714 	loff_t lwb = 0;
1715 	struct nfs_page *req;
1716 
1717 	list_for_each_entry(req, head, wb_list)
1718 		if (lwb < (req_offset(req) + req->wb_bytes))
1719 			lwb = req_offset(req) + req->wb_bytes;
1720 
1721 	return lwb;
1722 }
1723 
1724 /*
1725  * Set up the argument/result storage required for the RPC call.
1726  */
nfs_init_commit(struct nfs_commit_data * data,struct list_head * head,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo)1727 void nfs_init_commit(struct nfs_commit_data *data,
1728 		     struct list_head *head,
1729 		     struct pnfs_layout_segment *lseg,
1730 		     struct nfs_commit_info *cinfo)
1731 {
1732 	struct nfs_page *first = nfs_list_entry(head->next);
1733 	struct nfs_open_context *ctx = nfs_req_openctx(first);
1734 	struct inode *inode = d_inode(ctx->dentry);
1735 
1736 	/* Set up the RPC argument and reply structs
1737 	 * NB: take care not to mess about with data->commit et al. */
1738 
1739 	list_splice_init(head, &data->pages);
1740 
1741 	data->inode	  = inode;
1742 	data->cred	  = ctx->cred;
1743 	data->lseg	  = lseg; /* reference transferred */
1744 	/* only set lwb for pnfs commit */
1745 	if (lseg)
1746 		data->lwb = nfs_get_lwb(&data->pages);
1747 	data->mds_ops     = &nfs_commit_ops;
1748 	data->completion_ops = cinfo->completion_ops;
1749 	data->dreq	  = cinfo->dreq;
1750 
1751 	data->args.fh     = NFS_FH(data->inode);
1752 	/* Note: we always request a commit of the entire inode */
1753 	data->args.offset = 0;
1754 	data->args.count  = 0;
1755 	data->context     = get_nfs_open_context(ctx);
1756 	data->res.fattr   = &data->fattr;
1757 	data->res.verf    = &data->verf;
1758 	nfs_fattr_init(&data->fattr);
1759 }
1760 EXPORT_SYMBOL_GPL(nfs_init_commit);
1761 
nfs_retry_commit(struct list_head * page_list,struct pnfs_layout_segment * lseg,struct nfs_commit_info * cinfo,u32 ds_commit_idx)1762 void nfs_retry_commit(struct list_head *page_list,
1763 		      struct pnfs_layout_segment *lseg,
1764 		      struct nfs_commit_info *cinfo,
1765 		      u32 ds_commit_idx)
1766 {
1767 	struct nfs_page *req;
1768 
1769 	while (!list_empty(page_list)) {
1770 		req = nfs_list_entry(page_list->next);
1771 		nfs_list_remove_request(req);
1772 		nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1773 		if (!cinfo->dreq)
1774 			nfs_clear_page_commit(req->wb_page);
1775 		nfs_unlock_and_release_request(req);
1776 	}
1777 }
1778 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1779 
1780 static void
nfs_commit_resched_write(struct nfs_commit_info * cinfo,struct nfs_page * req)1781 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1782 		struct nfs_page *req)
1783 {
1784 	__set_page_dirty_nobuffers(req->wb_page);
1785 }
1786 
1787 /*
1788  * Commit dirty pages
1789  */
1790 static int
nfs_commit_list(struct inode * inode,struct list_head * head,int how,struct nfs_commit_info * cinfo)1791 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1792 		struct nfs_commit_info *cinfo)
1793 {
1794 	struct nfs_commit_data	*data;
1795 
1796 	/* another commit raced with us */
1797 	if (list_empty(head))
1798 		return 0;
1799 
1800 	data = nfs_commitdata_alloc(true);
1801 
1802 	/* Set up the argument struct */
1803 	nfs_init_commit(data, head, NULL, cinfo);
1804 	atomic_inc(&cinfo->mds->rpcs_out);
1805 	return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1806 				   data->mds_ops, how, 0);
1807 }
1808 
1809 /*
1810  * COMMIT call returned
1811  */
nfs_commit_done(struct rpc_task * task,void * calldata)1812 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1813 {
1814 	struct nfs_commit_data	*data = calldata;
1815 
1816         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1817                                 task->tk_pid, task->tk_status);
1818 
1819 	/* Call the NFS version-specific code */
1820 	NFS_PROTO(data->inode)->commit_done(task, data);
1821 	trace_nfs_commit_done(data);
1822 }
1823 
nfs_commit_release_pages(struct nfs_commit_data * data)1824 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1825 {
1826 	const struct nfs_writeverf *verf = data->res.verf;
1827 	struct nfs_page	*req;
1828 	int status = data->task.tk_status;
1829 	struct nfs_commit_info cinfo;
1830 	struct nfs_server *nfss;
1831 
1832 	while (!list_empty(&data->pages)) {
1833 		req = nfs_list_entry(data->pages.next);
1834 		nfs_list_remove_request(req);
1835 		if (req->wb_page)
1836 			nfs_clear_page_commit(req->wb_page);
1837 
1838 		dprintk("NFS:       commit (%s/%llu %d@%lld)",
1839 			nfs_req_openctx(req)->dentry->d_sb->s_id,
1840 			(unsigned long long)NFS_FILEID(d_inode(nfs_req_openctx(req)->dentry)),
1841 			req->wb_bytes,
1842 			(long long)req_offset(req));
1843 		if (status < 0) {
1844 			if (req->wb_page) {
1845 				nfs_mapping_set_error(req->wb_page, status);
1846 				nfs_inode_remove_request(req);
1847 			}
1848 			dprintk_cont(", error = %d\n", status);
1849 			goto next;
1850 		}
1851 
1852 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1853 		 * returned by the server against all stored verfs. */
1854 		if (verf->committed > NFS_UNSTABLE &&
1855 		    !nfs_write_verifier_cmp(&req->wb_verf, &verf->verifier)) {
1856 			/* We have a match */
1857 			if (req->wb_page)
1858 				nfs_inode_remove_request(req);
1859 			dprintk_cont(" OK\n");
1860 			goto next;
1861 		}
1862 		/* We have a mismatch. Write the page again */
1863 		dprintk_cont(" mismatch\n");
1864 		nfs_mark_request_dirty(req);
1865 		set_bit(NFS_CONTEXT_RESEND_WRITES, &nfs_req_openctx(req)->flags);
1866 	next:
1867 		nfs_unlock_and_release_request(req);
1868 		/* Latency breaker */
1869 		cond_resched();
1870 	}
1871 	nfss = NFS_SERVER(data->inode);
1872 	if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1873 		clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1874 
1875 	nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1876 	nfs_commit_end(cinfo.mds);
1877 }
1878 
nfs_commit_release(void * calldata)1879 static void nfs_commit_release(void *calldata)
1880 {
1881 	struct nfs_commit_data *data = calldata;
1882 
1883 	data->completion_ops->completion(data);
1884 	nfs_commitdata_release(calldata);
1885 }
1886 
1887 static const struct rpc_call_ops nfs_commit_ops = {
1888 	.rpc_call_prepare = nfs_commit_prepare,
1889 	.rpc_call_done = nfs_commit_done,
1890 	.rpc_release = nfs_commit_release,
1891 };
1892 
1893 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1894 	.completion = nfs_commit_release_pages,
1895 	.resched_write = nfs_commit_resched_write,
1896 };
1897 
nfs_generic_commit_list(struct inode * inode,struct list_head * head,int how,struct nfs_commit_info * cinfo)1898 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1899 			    int how, struct nfs_commit_info *cinfo)
1900 {
1901 	int status;
1902 
1903 	status = pnfs_commit_list(inode, head, how, cinfo);
1904 	if (status == PNFS_NOT_ATTEMPTED)
1905 		status = nfs_commit_list(inode, head, how, cinfo);
1906 	return status;
1907 }
1908 
__nfs_commit_inode(struct inode * inode,int how,struct writeback_control * wbc)1909 static int __nfs_commit_inode(struct inode *inode, int how,
1910 		struct writeback_control *wbc)
1911 {
1912 	LIST_HEAD(head);
1913 	struct nfs_commit_info cinfo;
1914 	int may_wait = how & FLUSH_SYNC;
1915 	int ret, nscan;
1916 
1917 	how &= ~FLUSH_SYNC;
1918 	nfs_init_cinfo_from_inode(&cinfo, inode);
1919 	nfs_commit_begin(cinfo.mds);
1920 	for (;;) {
1921 		ret = nscan = nfs_scan_commit(inode, &head, &cinfo);
1922 		if (ret <= 0)
1923 			break;
1924 		ret = nfs_generic_commit_list(inode, &head, how, &cinfo);
1925 		if (ret < 0)
1926 			break;
1927 		ret = 0;
1928 		if (wbc && wbc->sync_mode == WB_SYNC_NONE) {
1929 			if (nscan < wbc->nr_to_write)
1930 				wbc->nr_to_write -= nscan;
1931 			else
1932 				wbc->nr_to_write = 0;
1933 		}
1934 		if (nscan < INT_MAX)
1935 			break;
1936 		cond_resched();
1937 	}
1938 	nfs_commit_end(cinfo.mds);
1939 	if (ret || !may_wait)
1940 		return ret;
1941 	return wait_on_commit(cinfo.mds);
1942 }
1943 
nfs_commit_inode(struct inode * inode,int how)1944 int nfs_commit_inode(struct inode *inode, int how)
1945 {
1946 	return __nfs_commit_inode(inode, how, NULL);
1947 }
1948 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1949 
nfs_write_inode(struct inode * inode,struct writeback_control * wbc)1950 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1951 {
1952 	struct nfs_inode *nfsi = NFS_I(inode);
1953 	int flags = FLUSH_SYNC;
1954 	int ret = 0;
1955 
1956 	if (wbc->sync_mode == WB_SYNC_NONE) {
1957 		/* no commits means nothing needs to be done */
1958 		if (!atomic_long_read(&nfsi->commit_info.ncommit))
1959 			goto check_requests_outstanding;
1960 
1961 		/* Don't commit yet if this is a non-blocking flush and there
1962 		 * are a lot of outstanding writes for this mapping.
1963 		 */
1964 		if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1965 			goto out_mark_dirty;
1966 
1967 		/* don't wait for the COMMIT response */
1968 		flags = 0;
1969 	}
1970 
1971 	ret = __nfs_commit_inode(inode, flags, wbc);
1972 	if (!ret) {
1973 		if (flags & FLUSH_SYNC)
1974 			return 0;
1975 	} else if (atomic_long_read(&nfsi->commit_info.ncommit))
1976 		goto out_mark_dirty;
1977 
1978 check_requests_outstanding:
1979 	if (!atomic_read(&nfsi->commit_info.rpcs_out))
1980 		return ret;
1981 out_mark_dirty:
1982 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1983 	return ret;
1984 }
1985 EXPORT_SYMBOL_GPL(nfs_write_inode);
1986 
1987 /*
1988  * Wrapper for filemap_write_and_wait_range()
1989  *
1990  * Needed for pNFS in order to ensure data becomes visible to the
1991  * client.
1992  */
nfs_filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)1993 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
1994 		loff_t lstart, loff_t lend)
1995 {
1996 	int ret;
1997 
1998 	ret = filemap_write_and_wait_range(mapping, lstart, lend);
1999 	if (ret == 0)
2000 		ret = pnfs_sync_inode(mapping->host, true);
2001 	return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
2004 
2005 /*
2006  * flush the inode to disk.
2007  */
nfs_wb_all(struct inode * inode)2008 int nfs_wb_all(struct inode *inode)
2009 {
2010 	int ret;
2011 
2012 	trace_nfs_writeback_inode_enter(inode);
2013 
2014 	ret = filemap_write_and_wait(inode->i_mapping);
2015 	if (ret)
2016 		goto out;
2017 	ret = nfs_commit_inode(inode, FLUSH_SYNC);
2018 	if (ret < 0)
2019 		goto out;
2020 	pnfs_sync_inode(inode, true);
2021 	ret = 0;
2022 
2023 out:
2024 	trace_nfs_writeback_inode_exit(inode, ret);
2025 	return ret;
2026 }
2027 EXPORT_SYMBOL_GPL(nfs_wb_all);
2028 
nfs_wb_page_cancel(struct inode * inode,struct page * page)2029 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
2030 {
2031 	struct nfs_page *req;
2032 	int ret = 0;
2033 
2034 	wait_on_page_writeback(page);
2035 
2036 	/* blocking call to cancel all requests and join to a single (head)
2037 	 * request */
2038 	req = nfs_lock_and_join_requests(page);
2039 
2040 	if (IS_ERR(req)) {
2041 		ret = PTR_ERR(req);
2042 	} else if (req) {
2043 		/* all requests from this page have been cancelled by
2044 		 * nfs_lock_and_join_requests, so just remove the head
2045 		 * request from the inode / page_private pointer and
2046 		 * release it */
2047 		nfs_inode_remove_request(req);
2048 		nfs_unlock_and_release_request(req);
2049 	}
2050 
2051 	return ret;
2052 }
2053 
2054 /*
2055  * Write back all requests on one page - we do this before reading it.
2056  */
nfs_wb_page(struct inode * inode,struct page * page)2057 int nfs_wb_page(struct inode *inode, struct page *page)
2058 {
2059 	loff_t range_start = page_file_offset(page);
2060 	loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2061 	struct writeback_control wbc = {
2062 		.sync_mode = WB_SYNC_ALL,
2063 		.nr_to_write = 0,
2064 		.range_start = range_start,
2065 		.range_end = range_end,
2066 	};
2067 	int ret;
2068 
2069 	trace_nfs_writeback_page_enter(inode);
2070 
2071 	for (;;) {
2072 		wait_on_page_writeback(page);
2073 		if (clear_page_dirty_for_io(page)) {
2074 			ret = nfs_writepage_locked(page, &wbc);
2075 			if (ret < 0)
2076 				goto out_error;
2077 			continue;
2078 		}
2079 		ret = 0;
2080 		if (!PagePrivate(page))
2081 			break;
2082 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
2083 		if (ret < 0)
2084 			goto out_error;
2085 	}
2086 out_error:
2087 	trace_nfs_writeback_page_exit(inode, ret);
2088 	return ret;
2089 }
2090 
2091 #ifdef CONFIG_MIGRATION
nfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)2092 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2093 		struct page *page, enum migrate_mode mode)
2094 {
2095 	/*
2096 	 * If PagePrivate is set, then the page is currently associated with
2097 	 * an in-progress read or write request. Don't try to migrate it.
2098 	 *
2099 	 * FIXME: we could do this in principle, but we'll need a way to ensure
2100 	 *        that we can safely release the inode reference while holding
2101 	 *        the page lock.
2102 	 */
2103 	if (PagePrivate(page))
2104 		return -EBUSY;
2105 
2106 	if (!nfs_fscache_release_page(page, GFP_KERNEL))
2107 		return -EBUSY;
2108 
2109 	return migrate_page(mapping, newpage, page, mode);
2110 }
2111 #endif
2112 
nfs_init_writepagecache(void)2113 int __init nfs_init_writepagecache(void)
2114 {
2115 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2116 					     sizeof(struct nfs_pgio_header),
2117 					     0, SLAB_HWCACHE_ALIGN,
2118 					     NULL);
2119 	if (nfs_wdata_cachep == NULL)
2120 		return -ENOMEM;
2121 
2122 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2123 						     nfs_wdata_cachep);
2124 	if (nfs_wdata_mempool == NULL)
2125 		goto out_destroy_write_cache;
2126 
2127 	nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2128 					     sizeof(struct nfs_commit_data),
2129 					     0, SLAB_HWCACHE_ALIGN,
2130 					     NULL);
2131 	if (nfs_cdata_cachep == NULL)
2132 		goto out_destroy_write_mempool;
2133 
2134 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2135 						      nfs_cdata_cachep);
2136 	if (nfs_commit_mempool == NULL)
2137 		goto out_destroy_commit_cache;
2138 
2139 	/*
2140 	 * NFS congestion size, scale with available memory.
2141 	 *
2142 	 *  64MB:    8192k
2143 	 * 128MB:   11585k
2144 	 * 256MB:   16384k
2145 	 * 512MB:   23170k
2146 	 *   1GB:   32768k
2147 	 *   2GB:   46340k
2148 	 *   4GB:   65536k
2149 	 *   8GB:   92681k
2150 	 *  16GB:  131072k
2151 	 *
2152 	 * This allows larger machines to have larger/more transfers.
2153 	 * Limit the default to 256M
2154 	 */
2155 	nfs_congestion_kb = (16*int_sqrt(totalram_pages())) << (PAGE_SHIFT-10);
2156 	if (nfs_congestion_kb > 256*1024)
2157 		nfs_congestion_kb = 256*1024;
2158 
2159 	return 0;
2160 
2161 out_destroy_commit_cache:
2162 	kmem_cache_destroy(nfs_cdata_cachep);
2163 out_destroy_write_mempool:
2164 	mempool_destroy(nfs_wdata_mempool);
2165 out_destroy_write_cache:
2166 	kmem_cache_destroy(nfs_wdata_cachep);
2167 	return -ENOMEM;
2168 }
2169 
nfs_destroy_writepagecache(void)2170 void nfs_destroy_writepagecache(void)
2171 {
2172 	mempool_destroy(nfs_commit_mempool);
2173 	kmem_cache_destroy(nfs_cdata_cachep);
2174 	mempool_destroy(nfs_wdata_mempool);
2175 	kmem_cache_destroy(nfs_wdata_cachep);
2176 }
2177 
2178 static const struct nfs_rw_ops nfs_rw_write_ops = {
2179 	.rw_alloc_header	= nfs_writehdr_alloc,
2180 	.rw_free_header		= nfs_writehdr_free,
2181 	.rw_done		= nfs_writeback_done,
2182 	.rw_result		= nfs_writeback_result,
2183 	.rw_initiate		= nfs_initiate_write,
2184 };
2185